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This paper reviews the recent literature on machine learning (ML) models that have been used for
condition monitoring in wind turbines (e.g. blade fault detection or generator temperature monitoring).
We classify these models by typical ML steps, including data sources, feature selection and extraction,
model selection (classification, regression), validation and decision-making. Our findings show that most
models use SCADA or simulated data, with almost two-thirds of methods using classification and the rest
relying on regression. Neural networks, support vector machines and decision trees are most commonly
used. We conclude with a discussion of the main areas for future work in this domain.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Prompted in part by public investments [1] and climate change
awareness, rapid advances in the technology used for renewable
energy collection have resulted in an increasing proportion of such
sources relative to conventional ones (e.g. fossil fuels). Specifically,
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wind energy is captured via the use of turbines that can be situated
onshore (on land) or offshore (at sea). Wind farms are increasingly
being built offshore for several reasons, including wind condition
being stronger and more stable at sea, larger units being more
easily transported and deployed, less visual disturbance and po-
tential conflicts of interests being minimized etc. [2]. However, the
cost of maintaining wind turbines in offshore locations is signifi-
cant: ensuring that wind turbines perform at their optimal level
over their lifetime (usually 20e25 years) costs around 25% of the
offshore installation [3].

Condition monitoring (CM) involves observing the components
of a wind turbine to identify changes in operation that can be
indicative of a developing fault. It is clear that predicting faults
before they occur, through robust CM, should lead to significant
reduction in Operation and Maintenance (O&M) costs [4]. CM ap-
proaches have relied on analyses of specific measurements and
aspects of the operation (e.g. vibration analysis, strain measure-
ment, thermography and acoustic emissions). Recent de-
velopments in sensors and signal processing systems, big data
management, machine learning (ML) and improvements in
computational capabilities have opened-up opportunities for in-
tegrated and in-depth CM analytics, where different types of data
can facilitate informed, reliable, cost-effective and robust decision-
making in CM.

This paper reviews recent ML-based approaches (2011 onwards)
to CM of wind turbines. To conduct the review, articles were
retrieved from Google Scholar using the search terms “wind tur-
bine conditionmonitoring regression” and “wind turbine condition
monitoring classification” and filtered by year (>2011), access, ci-
tations and relevancy; selected papers from pre-2011 are intro-
duced for their historical importance.

We screened 144 papers for task relevance (fault diagnosis/
prognosis) and related data, ML pipeline (feature selection and
extraction, model) and decision-making. For each category of
model identified, we discuss related challenges, potentials and
drawbacks. Appendix A presents an overview of feature extraction
and selection methods; Appendix B summarizes the main trends
identified relating to datasets, tasks, methods and evaluation.

The paper is structured as follows: Section 2 overviews CM of
wind turbine; Section 3 introduces typical steps in ML; Section 4
presents specific CM approaches; Section 5 concludes and dis-
cusses future work.

2. Condition monitoring of wind turbines

CM of wind turbine is an integral part of O&M,where operations
include the management, monitoring and high-level onshore
control of the wind farm site, while maintenance covers in-
terventions required to upkeep the installation. Maintenance can
be reactive, preventive or predictive [5]: reactive (or corrective, run-
to-failure) is the most expensive type and does not utilize CM with
components being replaced when defects occur or accumulate;
under preventive (scheduled) maintenance, components are
replaced at the next intervention, hopefully before a related fault
occurs; a predictive maintenance strategy based on CM can inform
maintenance about components that are likely to fail and have
them replaced in due time.

CM can be viewed along several aspects. Firstly, CM can be
applied at different levels of granularity: at the most granular level,
we can monitor the condition of wind turbine sub-components
(e.g. drivetrain); at the most coarse-grained uppermost level we
can consider the whole wind farm. The signals provided by
different models can be combined to provide higher-level warnings
for the whole turbine.

Secondly, the ways inwhichmonitoring is performed can have a
physical impact on the component being monitored. The literature
identifies two main types of monitoring:

- Intrusive Monitoring: involves Vibration Analysis [6], oil debris
monitoring, shock pulse methods etc. Such methods impose a
penalty (wear) on the component being monitored.

- Non-intrusive Monitoring: involves ultrasonic testing tech-
niques, visual inspection, acoustic emission, thermography,
performance monitoring using power signal analysis etc. [7].

Thirdly, CM can be used for fault detection in real-time or in the
future, so we distinguish between:

- CM for diagnosis (fault detection), where we identify a fault
when it happens. Ensuring that the CM can identify the pres-
ence of failure should be a prerequisite for building a ML model
for prognosis.

- CM for prognosis (fault prediction), where the underlying
model finds patterns in the signal data that are predictive of
failures in the future.

When deciding which components to monitor, it is important to
consider the failure rates and downtimes per failure of different
sub-components. Prioritized considerations are given to compo-
nents that are more likely to fail or can lead to long downtimes, as
they may incur the greatest potential impact. Pfaffel et al. [8]
aggregated data from seven surveys to identify annual failure rates
of different sub-systems of a wind turbine together with mean
downtime per day. They concluded that some components (such as
the rotor (especially pitch system), transmission and power sys-
tem) tend to have a higher failure rate than others. Carroll et al. [9]
analyzed over 300 offshore wind turbines and found that failure
rate per offshore turbine per year is about 10, with around 80%
requiring minor repairs (<1 k Euro), 17.5% major repairs (1-10 k
Euro) and 2.5% major replacements (>10 k Euro). They identified
the pitch/hydraulic, generator and other subsystems (door/hatch
issues, covers, bolts, lightning) as contributing the most to failure
rates. Generators and converters tend to have a higher level of
failure rates in offshore wind turbines than onshore ones. Typical
failures in gearboxes include slip ring, grease pipe, rotor issues [9]
failures in planetary gears and bearings, intermediate and high-
speed shaft bearings and lubrication system malfunction [10].

Crabtree et al. [11] found that although there is a wide variety of
commercial CM system in use, there is no consensus regarding the
future direction of research. They reported that current commercial
wind turbine CM relies heavily on established methodologies bor-
rowed from conventional rotating machine industries. Common
ways of performing CM include acoustic measurement-based
methods, electrical effects monitoring, power quality and temper-
ature monitoring, oil debris monitoring, vibration analysis [12] [13],
physics based data analytics [14] etc.

3. Machine learning (ML) overview

ML is the process of building an inductive model that learns
from a limited amount of data without specialist intervention. This
learning implies finding an underlying set of structures (or pat-
terns) that are useful to understand relationships in data that might
not be exactly similar to that on which learning occurred. In the
taxonomy of ML models (Fig. 1), supervised learning predicts an
output variable using labeled input data, while unsupervised
learning draws inferences from datawithout labeled inputs (such as
done by clustering algorithms, recommender systems etc.). For
supervised learning we distinguish between models that predict a
numeric variable (regression) or a categorical variable (classifiers).



Fig. 1. Taxonomy of ML models.

A. Stetco et al. / Renewable Energy 133 (2019) 620e635622
Learning in models translates into fitting a model's parameters to a
specific dataset, iteratively updating them with several passes
through the data until a specific predefined function is minimized.

The ML process can be represented as a series of steps:

� Data acquisition and preprocessing: where possibly different
data sets and modalities are integrated, cleaned of outliers, etc.

� Feature selection and extraction: important signals and char-
acteristics are identified and extracted from the data.

� Model selection: an appropriate model is chosen, taking into
consideration the task to be solved.

� Validation: a performancemeasure is used that is specific to the
task, including accuracy (classification) andmean absolute error
(regression), evaluated on a validation set of data.

Fig. 2 illustrates a typical detailed workflow for two commonML
tasks:

� Classification/prediction: Important steps include data pre-
processing (dealing with missing data, outliers, etc.), classes
equalization (ensuring the classes to be predicted have equal
distribution so that the model is not biased [15]), filter/wrapper
feature selection and extraction (for keeping only relevant fea-
tures), classification model fitting (where the model's parame-
ters are estimated), cross-validation (where the model's
generalizability is tested).

The solution can be cast as a prediction problem if the features
are fed into the model with labels at future times (e.g. tþ1), which
extends the solution from diagnostic to prognostic.

� Regression-based anomaly detection: Here the task is to
identify how signals and features are related to outputs in
different components. This relationship is captured by fitting
regression models when the system is in a healthy state. When
new data comes in, it is compared to what the model predicts
for a healthy state and if a deviation is found for several
consecutive time intervals, an alarm is raised. Behaviour of a
component (from low to high granularities) can be captured
through regressions of different complexities (from a simple
linear model to a complex non-linear one).

The MLmodel selection step is particularly significant as it is the
core functionality that learns from past data and generalizes into
the future. Such models have been used for different tasks,
including classification, regression, anomaly detection, synthesis
and sampling, imputation of missing values, denoising, density
estimation and many others [16].

Several different models have been suggested for learning from
data. Support vector machines (SVMs) and neural networks (NNs)
are two common models that have been used in ML for diagnostics
and prognostics. Connectionist models, such as NNs, consist of
simple replicated computing units called neurons which can
communicate with and pass information to each other through
links between the synapses. In the beginning, these models were
basic and could only solve linear classification problems (e.g. see
the perceptron [17]). Solving non-linearly separable cases requires
more complex architectures, typically made of several layers of
neurons (see Fig. 3). Such architectures are able to approximate any
classification function and can be understood as universal
approximators [18]. Feed-forward multi-layered is a type of NN
architecture that has no cycles between neurons and where infor-
mation propagates in one direction, making it simple to model and
implement (as opposed to recurrent neural networks (RNNs)).
While the main principles behind NNs have been around for some
time (e.g. the backpropagation algorithm for error contribution of
each neuron [19]), availability of larger data sets, better initializa-
tion algorithms, larger sets of neuron activation functions andmore
powerful machines have made it possible to train NNs composed of
hundreds of stacked hidden layers. This approach, termed “deep
learning”, has shown disruptive capabilities in many domains from
image recognition to speech translation and has started to pene-
trate the wind energy industry (e.g. general rotary machineries
[20], [21]). Although the training time of an NN can be potentially
long, when it comes to actual classification or regression, the
application of models is comparatively very fast. However, results
obtained using NNs are highly dependent on the choice of archi-
tecture used, weight initialization, activation function, optimization
procedure etc., and the process can require much effort and
expertise. Moreover, if transparency, explanation or audit of a
model is important, NNs are not well suited.

NNs have been used widely in the wind energy sector for
forecasting (e.g. wind speed forecasting), control (e.g. wind turbine
power control), identification and evaluation (e.g. fault diagnosis)
[22,23].

SVMs are often used in fault detection and CM [22], [23], and for
complex data sets in general [25]. They perform linear/non-linear
classification or regression by finding decision boundary hyper-
planes that best separate classes of instances, i.e. by leaving the
widest possible margin to the instances closest to the margin (see
Fig. 4). It is not always possible to clearly separate instances (e.g. in
the presence of outliers) and a parameter C (slack variable) allows
control of margin violations. For non-linear problems, adding
polynomial features created from existing ones can make the
problem linearly separable in a higher dimensional space. Imple-
mentations of SVMs (e.g. SCIKIT-Learn [26]) have several ways to
transform a problem into a linearly separable one with the use of
kernels (polynomial, RBF, etc.).

As with other classes of learning algorithms, NNs and SVMs can
be used as classifiers (where a nominal variable is predicted) or



Fig. 2. Two main approaches to learning from data.
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regressors (where a numeric variable is predicted). Compared to
NNs, not only do SVMs always find the global minimum when
performing optimization on the training set, but they also have an
intuitive graphical interpretation [27]. SVMs can be slow and
training on large dataset remains a challenge [27]; time complexity
is usually between Oðm2nÞ and Oðm3nÞ, where m is the number of
instances and n is the number of features [25]. Having a multitude
of kernels to choose from is another complication and without any
assumptions about the underlying data distribution, the search for
optimum kernel (and kernel parameter) can introduce a significant
time burden.

Validity of ML models can be estimated through several specific
measures in combination with an out-of-sample technique such as
n-fold cross validation which assess how well the results of the
model will generalize beyond the training data. We discuss several
specific measures such as MAE (mean absolute error), MAPE (ab-
solute percentage error) and its variants for regression-based
models. Classification models are typically evaluated using
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accuracy, sensitivity, specificity and F1-measure. These metrics are
discussed in more detail in Section 4.5.

4. Machine learning for condition monitoring

This Section investigates recent regression and classification-
based models proposed for CM of different components in a wind
turbine. As indicated above, 144 papers that used ML for wind
turbine CM were screened and an aggregated summary of the
methods was developed. A variety of tasks have been considered,
including identification of blade faults, generator brush failure
prediction, transmission system fault diagnosis, lubricant pressure
monitoring, etc. In presenting the findings, we follow the typical ML
steps as presented in Section 3.

4.1. Data

A wind farm CM system may rely on several types of datasets.
Most CM models discussed in the literature are based on opera-
tional and event datasets, such as the ones provided by SCADA
(Supervisory Control And Data Acquisition). SCADA systems have
been built into turbines to control electricity generation [29], by
providing time-series signals in regular intervals. This type of sys-
tem collects basic informationwith the use of sensors placed on key
wind turbine components (e.g. bearing vibration, temperature,
phase currents, wind speed, etc.) [30] [31]. There is no common set
of available SCADA signals nor is there a generally accepted tax-
onomy of signals, with different systems having different names
[32]. As well as SCADA time series signals, different other types of
Fig. 4. A multitude of linear decision boundaries separate the two classes (left). SVMs find s
data points (right) [28].
data might be collected such as drone images or event data in free-
text form.

Data typically available in a wind turbine pose the “big data”
challenges:

1. Volume: a typical wind farm with 20e30 sensors for each wind
turbine would generate between 60 and 100 SCADA signals
which, when sampled every second, would produce about
0.2 GB of raw data per turbine [33].

2. Velocity: the frequency at which data is produced and trans-
mitted, with new wireless and acoustic sensors [34].

3. Variety: CM systems have to integrate sensor data with images,
video (e.g. captured by drones), and free-text action reports [35],
etc.

4. Veracity: ideally, data should be free of missing or impossible
values and inconsistencies; if not, automatic or semi-automatic
data cleaning (scrubbing) procedures are typically needed. This
need increases with the number of data sources of data, espe-
cially if heterogeneous [36].

Given such big data, CM needs to rely on efficient, scalable and
fault tolerant data management systems. For example, Canizo et al.
[37] use a technology stack consisting of HDFS (Hadoop Data File
System [38], a distributed, fault tolerant file system), Apache Kafka
[39] (a stream processing framework), Spark [40], [41] (a cluster
computing framework suited for big data ML) and Apache Mesos
[42] and Zookeeper (for cluster management) that can be deployed
to cloud computing environments. The Map/Reduce processing
framework is often used in combination with Hadoop infrastruc-
ture for parallel data processing. Batch distributed parallel appli-
cations with big data requires movement of data in and out of disk
[43]. ML algorithms, which typically make several passes over the
data in estimating parameters and decreasing a predefined cost
function, can be optimized by using Spark which holds the dataset
in memory. Hence, for wind farm CM that needs to perform in real-
time and update/tune themodels at regular intervals, Spark is quite
appropriate.

4.2. Feature selection and extraction

One of the initial tasks before building an ML model is outlier
identification (i.e. extreme or likely impossible values, or mea-
surement errors). Careful consideration should be given to the re-
lationships between variables when implementing outlier filtering
methods; for example, generator temperature spikes could arise
due to ambient temperature spikes and not due to an internal
malfunction of the generator, and a simple outlier selection might
upport vectors which maximize the distance between decision hyperplanes and closest
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remove these data points. Marti-Puig et al. [44] investigated the
effects of removing outliers in fault diagnostics of wind turbine
using common filtering methods such as quantile filter, extreme
studentized deviate test and the Hampel identifier. They found that
the outlier filtering methods can decrease the error on the training
data set but increase the error in the test data set because many of
the outliers discovered automatically were actual failure states of
the turbine. Therefore, they recommend expert input to predefine
variable's absolute and relative ranges. Once the data has been
cleaned, feature selection and extraction are the next critical steps
in building an ML model.

Feature selection is the process of selecting variables, here time
series signals, that relate to the outcome that we wish to study,
understand or predict. This can be achieved automatically or semi-
automatically under the guidance of an expert. For example,
choosing to keep generator vibration sensor data and discard
acoustic sensors in the tower when studying generator faults is a
form of feature selection. Feature selection can be achieved auto-
matically using:

� Wrapper methods for feature selection view ML algorithms as
black boxes and feed them with different subsets of features.
The prediction performance of a given model is then used to
assess the relative usefulness of subsets of variables [45], [46].
For wrappers, the user needs to specify the algorithm to use, the
strategy for selecting features and the performance criteria for
the model. Exhaustive searches are NP-hard [47] and sub-
optimal strategies such as forward (start small and add fea-
tures as long as they increase performance) or backward se-
lection (start with all features and remove as long as it increases
performance) are often used.

� Embedded methods perform feature selection as part of the
training of the ML model (consider the relative importance of
nodes in a decision tree) and can be very successful when used
in combination with filters [48].

� Filter methods are independent from the model itself [49].
They perform a significance test between each feature/signal
and an outcome (e.g. through correlation) and then rank them. A
user selects the top k features, where k can further be selected
based on the performance it offers with a specific model.

Feature extraction is used to compress high-dimensional time
series (such as sensor signals) by keeping their main characteristics
intact while discarding noise and removing correlations [50,51].
This should speed up model training and produce better outcomes
thanwhen applied to the original, raw data. For time series, some of
the most common techniques for feature extraction involve
computing:

� Statistics: This class of features is the simplest to compute and
sometimes the most efficient; these include mean, standard
deviation, maximum, minimum, skewness, kurtosis, peak-to-
peak, crest factor, wave factor, impulse factor, margin factor,
root mean square, etc.; for an example see Ref. [52];

� Parameters of fitted time series models: Coefficients of fitted
ARIMA models [53], autocorrelation coefficients, of fitted sto-
chastic processes (e.g. Hidden Markov [54]), etc.;

� Time-Frequency domain properties: These techniques trans-
form time domain signals into frequency domain; examples
include the largest coefficients of the Discrete Fourier/Wavelet
transform [51,55,56], Morlet Wavelet feature extraction [57] and
Wigner-Ville distribution [58], SVD [59], cluster-based Wavelet
feature extraction [60], Multi-Wavelet feature extraction from
vibration data [61], energy tracking [62] and with S-transform
[63], instantaneous power spectrum [64], etc. For a
comprehensive survey on Wavelet transform applications to
fault diagnosis in rotary machines, see Ref. [65]. Empirical mode
decomposition (EMD) [66,84] and its derivatives (e.g. Ensemble-
EMD [67]) has received interest in fault-diagnosis research
[68e71].

Time-frequency strategies have been the main feature extrac-
tion approach in wind turbine CM research. Compared to the
traditional Fourier transform which decomposes a signal in the
time domain to its constituent frequency components, the Wavelet
transform [72,73] can provide both time (time at which the fre-
quency changes) and frequency localization (close frequencies can
be separated). The principle behind the Wavelet transform is the
use of a “mother” Wavelet function (e.g. Morlet, Haar, Daubechies)
to transform a signal from the time-domain to the time-frequency
(scale) domain. Compact daughter functions, created using dilation
and translation of the chosen mother function, are convoluted with
the signal, resulting in Wavelet coefficients that express the
amount of similarity between the two.

It should be noted that methods that work well on stationary,
lab-generated signals may not transfer to real-world conditions. For
example, frequency-domain feature extraction using the Fourier
transform is unsuitable when the underlying signal is non-
stationary, i.e. when the signal does not have the same mean/
variation over the entire time domain space [74]. For example, non-
stationarity can express itself in vibration time series produced by
rotating machinery (such as the gearbox and generator of a wind
turbine) and their handling might necessitate special processing
[75]. The Short Time Fourier transform (STFT) segments the series
into equal windows that are assumed to be stationary. Making the
segments short provides good time resolution but poor frequency
resolution; conversely, making segments larger provides better
frequency resolution with poor time resolution. The Wavelet
transform trades-off between time and frequency localization: high
frequency spectra have good time/poor frequency resolution, while
low frequency spectra have the opposite.

Fig. 5 presents an example of a non-stationary time series,
showing hourly total wind power production in the UK for 2016.
We note the heteroskedastic nature with higher variance of the
signal at both ends and lower in the middle (see Fig. 6).

The computational cost of a transform for a fast implementation
of Fourier transform is O(N log N) (STFT is based on Fourier trans-
forms) and for a Wavelet transform is O(N). Given this ability to
work on non-stationary, non-linear signals, Wavelet transforms is
considered superior to Fourier and STFT transforms [75] [77]. Ex-
amples of application of Wavelet transform in CM include [78e81].
Empirical Mode Decomposition (EMD) is another important time-
frequency method used for signal decomposition that finds
Intrinsic Mode Functions (IMFs) of different frequencies that sum to
obtain the original signal. This gives another time series that can be
further preprocessed using methods specified above to extract
relevant features. The EMD algorithm, although suited for non-
stationary, non-linear time series such as in wind farms and other
domains [82,83], lacks the theoretical basis of Fourier transform or
Wavelet decomposition.

A potential problem of the algorithm is mode-mixing, where
IMFs have different frequencies that coexist in the same signal or
the same frequencies scattered in different IMFs. Fig. 7 shows an
example of the problemwith the 1st, 5th and 10th IMF of the hourly
total wind series in Fig. 5. Ensemble EMD (EEMD), an extension of
EMD, address this problem by adding finite noise in the decom-
position process. Applications of EMD-based techniques in fault
diagnosis of rotating machines include [82,85e88]. For a more
detailed comparison between time-frequency analysis techniques
in terms of speed, resolution, theoretical framework, etc. see



Fig. 6. Wavelet Spectrum and original signal reconstruction using significant coefficients of the Wavelet transform. The upper part shows the Wavelet transform power spectrum of
the time series in Fig. 5. Given only a few coefficients that are found relevant (in red, marked with a black ridge) the original signal can be approximated (bottom figure), filtered of
noise, etc. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 5. Hourly total wind power production in the UK [76].
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Refs. [77,89,90].
Finally, it should be noted that feature extraction as a process

may not finish using the three discussed approaches (statistics,
parameters of fitted models or time-frequency properties). For a
specific task we may need to further reduce the extracted features
or combine them [91]. An interesting approach to drivetrains in-
cludes use of auto-encoders [92]. These are potentially deep NNs,
composed of an encoder which converts the input to an internal
representation (in low dimensions) and a decoder that converts
internal representation to outputs [25]. It is more general than
classical Principal Component Analysis (PCA), although it can
perform similarly when the activation functions are linear, and the
cost function is MSE (mean squared error). A comparison to many
dimensionality-reducing techniques found that non-linear
dimensionality techniques are often incapable of outperforming
traditional linear techniques such as PCA [93].
4.3. Models: regression-based

An important approach to CM in wind farms is modelling
normal behaviour of different components or subcomponents,
when they are assumed to be in a healthy state (also called ‘steady
state modelling’). Based on the inputs (independent variables such
as wind speed), regression models are built which predict the
numeric output (dependent variables such as power) when the
component to be modeled is assumed to be performing at its op-
timum. What constitutes a healthy (normal, optimum) component
in many cases is a function of time. The failure rate of electrical and
mechanical components is distributed as shown in Fig. 8 with
failing failure rates in early life, followed by a long period of healthy
life and then a wear-out phase with rising failure rates as damage
accumulates with operational age [94]. Ideally, normal behaviour
data about the component should be recorded during the period
when likelihood of failures is low.

Regression models of normal behaviour can be constructed at



Fig. 7. IMF 1, 5, 10 of the Empirical Mode Decomposition (EMD) and original signal reconstruction (bottom).

Fig. 8. Failure rate as a function of time [94]. b represents the shape (Weibull) parameter.
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various levels of complexity. For example, modelling the power
curve, which specifies the relationship between wind speed and
the power generated by the wind turbine, is the highest conceptual
level (the entire wind turbine is assumed to be a black box). Power
curves made available by manufacturers are specific to the location
where the turbines were tested, which means they were subject to
particular meteorological conditions which may be different to
where they will be installed. By independently modelling these
power curves empirically, we can better asses and predict the wind
energy potential at specific site, make better wind turbine choices,
construct monitoring and troubleshooting, and predictive control
and optimization applications. Empirically, points will appear



A. Stetco et al. / Renewable Energy 133 (2019) 620e635628
scattered around this curve, with points on the left representing
instances where thewind turbine over-performed (generatedmore
power for a given speed) and points on the right representing in-
stances where the turbine under-performed (generated less power)
[95]. There are many reasons for outliers around the power curve,
such as failure of the control mechanism to adapt to the malfunc-
tion of the sensors, pitch control malfunctions, blade pitch angle
errors, blade damage, control program problems, incorrect
controller settings, blades affected by dirt, bugs, and ice, etc. [96].
Power curves have been modeled in two ways [97]:

1. Parametric modelling techniques: linearized segmented
model, polynomial curve, maximum principle method,
dynamical power curve, probabilistic model, ideal power curve,
4-parameter logistic function, etc. [96,98e100].

2. Non-parametric modelling techniques: copula power curve,
cubic spline interpolation, NNs, fuzzy methods, ML algorithms
[95,96,98,101e103].

Parametric models can be described by a finite set of parameters
in a parametric vector. In contrast, non-parametric models are
defined by parametric vectors that are unbounded in length [98].
For example, as NNs are non-parametric models with many neu-
rons, increasing the number of connections will typically translate
into an increasing number of parameters. We note the distinction
between parameters (which change during the training process)
and hyperparameters which are fixed before the training com-
mences (e.g. the number of hidden layers which are specified in
advanced).

When modelling power curves, wind speed may not be the only
dependent variable used. For example, Schlechtingen et al. [104]
compared two classes of models: one using only wind speed as the
dependent variable and one also using wind direction and ambient
temperature. For each class, they trained and compared four types
of models: CCFL (cluster center fuzzy logic), NNs, k-NN (k-nearest
neighbor) and ANFIS (Adaptive Neuro-Fuzzy Inference System).
ANFIS is a type of ML model which combines NNs with fuzzy the-
ory. An extension of the theory of sets, fuzzy functions define
memberships of objects to sets. Schlechtingen et al. have shown
that by adding wind direction and ambient temperature, the
models fit the data better (with the errors having a lower variance),
with the ANFIS model achieving the best performance (detecting
anomalies five days in advance). Once a suitable regressionmodel is
chosen, the distribution of the errors can be modeled for defining
what constitutes outliers. A power curve model alone cannot
pinpoint why an outlier occurred, but can focus attention on a
possible faulty turbine. Deeper, more granular regression models
are needed for subcomponents if specific faults are to be discov-
ered. By using maximum likelihood, error distribution parameters
can be estimated in order to define what constitutes outliers [105].
For example, if the errors are normally distributed, points two or
more standard deviations away from the mean can be considered
outliers, with the choice of threshold being flexibly defined. This
may not be the case in general and other outlier detection tech-
niques can be investigated [106].

The use of unsupervised methods for wind turbine CM has been
relatively less explored. For example, Lapira et al. [107] compared a
regression model based on feed forward NNs (FFNNs) with two
unsupervised methods (Self Organizing Maps (SOMs) and Gaussian
Mixture Models (GMMs)) trained on an operational large-scale on-
shore wind turbine. They modeled the power curve and analyzed
the system health by using a new approach (confidence health
value) based on residuals being greater than a given threshold
during a given time segment. They found the GMMmodel presents
a more gradual health change being more suitable in performance
prediction.
Power curve modelling is the highest conceptual level that can

be modeled as a regression e though it is possible to model the
behaviour of different subcomponents by applying the same prin-
ciples. The choice of regression model will be informed by a com-
bination of expert knowledge and optimized parameter searches
(e.g. grid-based cross validation). Other aspects that may influence
the choice are performance of the model (both in training and real-
time), transparency of the model, etc.

SVMs with a radial basis kernel have been used to detect faults
in blade pitch positions, generator and rotor speeds [108]. The
model is learned from the data to detect all sensors, actuators and
system faults. Schlechtingen et al. [109] investigated three models
(regression, NNs and autoregressive NNs) that learn to approximate
the normal bearing temperature using SCADA input signals such as
power output, nacelle temperature, generator speed, generator
stator temperature, etc. For identifying the lag and the signals
which are related to the output signal (bearing temperature), cross-
correlationwas used. They found that the nonlinear NN approaches
outperform the regression models.

Guo et al. [110] built a regression model for generator faults
based on the non-linear state estimate technique (NSET), intro-
duced by Singer in Ref. [111]. For each input vector at any time step,
the output of the model is a linear combination of historical ob-
servations held in a special matrix called the memory matrix. The
model for predicting generator temperature is built using five
variables (out of 47 SCADA signals): power, ambient temperature,
nacelle temperature, generator cooling air and stator winding
temperature. The residuals obtained are analyzed using a moving
averagewindow. Abnormality is identified either when the residual
mean value remains zero or standard deviation increases dramat-
ically, residual mean deviates from zero and standard deviation
remains low or a combination.

Wang et al. [112] built regression-based deep NN models of
lubricant pressure based on SCADA data. They used MAPE and
SDAPE (standard deviation of the absolute error) as an accuracy
measure and showed performance to be superior to other models
including Lasso, Ridge, k-NN, SVMs and NNs. They used Exponen-
tiallyWeightedMoving Average (EWMA) charts to identify shifts in
absolute percentage errors signifying failures and to prevent
overfitting they use dropout layers in the network [112]; six wind
farms were considered and the trained deep NNs achieved a MAPE
between 2.9 and 14.25.

Orozco et al. [113] built regression models for normal temper-
ature behaviour on a large set of SCADA data (614 turbines from 7
plants). As the data set used is large (948 GB) Orozco et al. make use
of novel distributed processing frameworks such as Hadoop [38]
and Spark [40]. The models learn the causal relationship between
independent variables such as ambient temperature and power
output and dependent ones representing component temperature.
Multiple types of regression models were built including linear and
polynomial regression, random forests and NNs. Root mean
squared error (RMSE) was used as a measure to find the best model
fit and the fitted values were used to adjust the entire temperature
data. This adjustment has the purpose of removing the false posi-
tives, for example temperature spikes that can be explained by a
high ambient temperature or turbine producing more energy. The
residuals above the 99th quantile were flagged and those followed
by turbine shutdown (power drops to zero) were labeled as turbine
failures.

4.4. Models:Classification-based

Classification models find a relationship between independent
variables typically grouped in vectors and one of several predefined
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categories identified by labels. During the training phase, we feed in
each input vector together with the corresponding system state
indicated by a label. The input vector can consist of features
extracted from preprocessed time series of signals relevant to the
modeled component. For generator CM we might, for example,
have categories such as “healthy”, “winding failure”, “brush failure”,
etc.

As a supervised ML methodology, classification needs labels to
be assigned specifying the category to which training instances
belong. This is time consuming, error prone and likely to result in a
set of labeled vectors with an unbalanced number of classes. This is
a common issue in practice [114]. There are several ways that the
problem of unbalanced classes has been addressed [115], including
under-sampling (remove instances belonging to the majority class),
oversampling (sample more instances fromminority class), SMOTE
[116], Tomek-links (which removes points in the majority class that
are considered borderline, noise or redundant) [117], etc.

Several CM tasks have been explored using classification. Verma
et al. [15], for example, developed generator brush failure classifi-
cation models based on SCADA data sampled every 10min. For the
relevant signal selection step, they used chi-square (filter tech-
nique), boosting tree (embedded method) and a wrapper method
with genetic search and found 10 signals to be predictive of
generator brush failure (nacelle revolution, drive train acceleration,
etc.). They solved the imbalance problem using a combination of
Tomek-links and Random-Forest based data sampling (which use
ensembles of classification trees trained on bootstrap samples). By
using these class equalization techniques, they observe an accuracy
increase between 82.1% and 97.1% with a boosting ensemble model.
Their results show that brush failures can be predicted with
reasonable accuracy 12 h before they occur.

Leahy et al. [118] considered three generator fault classification
scenarios: fault detection (two cases: fault and other), fault diag-
nosis (five classes including generator heating, power feeder cable,
generator excitation, air cooling malfunction faults and other) and
fault prognosis with the aim to predict faults at time intervals
before they occurred. The data used came from a 3MW wind tur-
bine situated in Ireland; Leahy et al. selected 29 features from the
SCADA system to be used in classification. Given the unbalanced
class data, different undersampling and oversampling procedures
were used when training SVM classifiers. For fault detection, recall
was high (78%e95%) but precision was low (2%e4%) suggesting a
high number of false positives. High recall and low precision were
also found for the diagnostic and prognostic cases.

Ibrahim et al. [23] developed a general model of variable speed
wind turbine in order to investigate mechanical fault detection
(such as the ones related to rotor eccentricity) through the use of
NNs applied to generator current signal. Several NNs are trained on
the simulated healthy/faulty current signals coming at different
rotational speed ranges. They report median classification accuracy
between 93.5% and 98% for different NNs on simulated transient
fault data; however, the models achieved lower accuracy when
predicting linearly increasing faults. Besides optimizing the NNs
used, future work is needed to validate this method on real data.

Kusiak et al. [22] used SCADA data to build models that could
identify/predict faults at different granularity levels (fault and no-
fault prediction; fault category (severity); and specific fault pre-
diction). They reported that NN ensembles outperformed NNs,
Boosting Tree Algorithms (BTAs) and SVMs when building level 1
models (that discriminate at higher granularities: failure/status).
For level 2 models (that identify the category of status and failures),
CART (standard Classification and Regression Tree) was identified
as being themost accurate followed by SVMs, NNs and BTAs. Level 3
models identify specific types of statuses and faults (such as Mal-
function of Diverter) and at this level of granularity BTAs were
identified at being the best.
Tang et al. [119] built a classifier to identify gear, bearings, shaft

and general transmission failures. They performed non-linear
dimensionality reduction of vibration signals using Orthogonal
Neighborhood Preserving Embedding (ONPE) [120] with Shannon
Wavelet Support Vector Machines (SWSVM). Compared to Locality
Preserving Projection (LPP) obtaining 62% and Locally Linear
Embedding (LLE) obtaining 52%, ONPE resulted in an accuracy of
92% when used for predicting inner race crack in bearings. A
standard SVM with a radial basis function kernel obtained an ac-
curacy of 76%. Jiang et al. [121] consider eight classes of health
condition (normal, gear broken tooth, imbalanced shaft, etc.). They
used a set of robust and abstract features extracted from vibration
signals through the use of a Multiscale Convoluted Neural Network
(MSCNN). The original vibration signals are down-sampled by
constructing consecutive coarse-grained signals and averaging
original data points with the use of non-overlapping windows
before being fed to a CNN made of several convolutional and
pooling layers. Jiang et al. [121] suggest the learned multiscale
representations may contain complementary and rich faults that
are not immediately observable in the raw vibration signal on only
one single scale. By considering multiscale learning together with
NNs, the algorithm can be fed raw signals and can output health
condition labels without other intermediary steps such as pre-
processing (an approach called end-to-end learning). The proposed
method achieved the best overall performance with 98.53% F1
measure (discussed in Section 4.5).

Blades are exposed to gravitational and aerodynamic loads un-
der possibly harsh environment conditions with vibration forces
that lead to damages such as cracks, erosion, pitch angle twists,
bends and loose connections with the hubs. Traditionally turbine
blades are visually inspected using a time-based maintenance
strategy which are infrequent, expensive and pose physical risks to
the inspector [122]. Vibration signals from a variable speed wind
turbine were used to construct classifiers that can distinguish be-
tween various conditions [123]. A C4.5 decision tree model [124]
was used to select four features (sum, range, standard deviation,
kurtosis) of 12 statistical descriptors computed from time-domain
accelerometer data. Using these features, a best-first decision tree
achieving 85.33% in accuracy was compared with a functional tree
that achieved 91.67%. It should be noted that the confusionmatrices
showed a high amount of errors due to misclassification between
good and loose connections between hub and blades. A possible
reason was that at high speeds the blade may stick to the hub and
behave as normal despite the loose bolts.

Santos et al. [125] proposed an SVM classification-basedmethod
to detect several types of faults related to rotor blade imbalance and
misalignment (or a combination of both) on simulated data. They
compare different SVM kernels to NNs and find that the best ac-
curacy is obtained using a linear kernel SVM (suggesting that the
data is linearly separable). As opposed to other kernels (such as
Gaussian), a linear kernel has only one parameter, which reduces
training and tuning time.

Godwin et al. [126] investigated rule-based classifiers for blade
pitch faults (e.g. deviations of blade pitch angle from a predefined
optimum) using SCADA data. They note that pitch faults are over-
represented in SCADA systems, with one third of the errors
attributed to this. Ripper models (a type of inductive rule-learner)
were used for rule extraction [127] to classify between three
types of failure (“no pitch fault”, “potential pitch fault”, “pitch fault
established”); 10 independent variables (including average and
maximum wind speed, pitch motor torque, etc.) were used to
obtain accuracies between 85.73% (for 4 months data) and 87.41%
(full data). Typically, larger datasets result in higher accuracies at
the cost of larger rule-sets. Godwin et al. [126] selected a model
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with a lower accuracy of 85.50% but with a smaller rule-set (14
rules) validated by a domain expert. Deployed as an expert system
(with human readable rules), it reduced the number of alarms and
thus the quantity of information that the operator must manage.
The problem with interpretability of the rules becomes non-trivial
in cases where the list of rules becomes large or/and they are
derived on top of over-engineered features.

Wang et al. [128] used Unmanned Aerial Vehicles to take images
used in classifiers to detect surface cracks in blades. Remotely
controlled and equipped with high resolution cameras, these ve-
hicles can be deployed far offshore to aid in visual inspection and
automatic investigation of structural health of the turbine. The
authors used the Viola-Jones framework for deriving Haar-features
from images that were latter used in cascading classifiers (sets of
classifiers applied sequentially). Although the classifier achieved
high accuracy (98%), it would be interesting to explore how use of
deep convolutional NNs [129] would perform on this task.

In addition to images, acoustic-based health monitoring of the
blades was explored. Acoustic-based fault detection with ML al-
gorithms is a novel and challenging area for blade CM. For example,
Regan et al. [122] used hollow blade cavities of an experimental
turbine, which were fitted with wireless speakers and a micro-
phone attached to the tower. Seven types of acoustic excitation
were performed to assess how well specific frequency tones or
ranges can discriminate between 28 use cases. The use cases
involved holes and split edges of different sizes and different lo-
cations along the blade while the turbine was stationary (24 cases)
or rotating (4 cases). Twelve features representing statistical mea-
sures such as mean, median, RMS, kurtosis, etc. as well as peaks of
the Fourier transformwere used, which were further filtered using
Fisher Ratio and a distinguishability measure. The best accuracy
(98%) was achieved by using an SVM with a cubic kernel and a
multi-mid acoustic excitation on stationary blade tests. It was
suggested that hole-type damages are best discovered using multi-
high excitations and edge splits using white noise. In contrast to the
experimental turbine, operational off-shore wind turbines will be
subjected to various sources of noise that will need to be filtered
out; a possible way of achieving the filtering is through blind signal
separation [130].

Motivated by ease of interpretation and implementation,
Abdallah et al. [131] have used decision trees to identify faults,
damage and abnormal operations in a windfarm data obtained
from 48 wind turbines over a 12 month period (sampled every
10min across 64 channels). For training the decision tree classifiers,
Abdallah et al. [131] preferred to manually select features of in-
terest and did not use a dimensionality reduction algorithm (such
as PCA). A bagged decision tree ensemble was used where multiple
CART trees were trained using bootstrap sampling, i.e., generating
multiple predictors based on random subsets of the original data.
Using the trained trees, a sequential trace of events leading to the
fault can be expressed as a set of rules that are easier to interpret.

4.5. Models: validation

Many models reported in the literature lack proper validation
procedures. A standard approach in ML is to use cross validation
techniques accompanied by hold-out sets. To evaluate a model, the
original dataset is split into training (typically 66% of the data) and
testing (33%). Using the training data, k-fold cross validation
(typically k¼ 10) is performed with different hyperparameters for
each model tested noting the results in terms of validation mea-
sures. Relatively few papers reporting classification for CM use this
approach, now viewed as standard in other domains. This may
make the derived CM models more brittle by inflating accuracy
results and with unknown generalization performance.
Furthermore, wider access to code, data and the use of common
evaluation frameworks based on k-fold cross validation may be
valuable.

Validity of regression-based normal behaviour models (such as
the onemodelling a power curve) can be expressed through several

measures based on bY ðwÞ (predicted output) and actual output YðwÞ
as function of wind speed w [97]. Some of the most common
measures include:
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MAE is mean absolute error, MAPE is absolute percentage error,
sMAPE is symmetric mean absolute percentage error, RMSE is root
mean squared error and R2 is the coefficient of determination.

These measures are commonly used not only for training of
power curvemodels but for any normal-behavior, regression-based
models. We view these measures as distances between vectors: the

predicted bY and the actual model output values Y. We note that
MAE and RMSE, the most commonly used measures in the litera-
ture, correspond to the Manhattan (l1 norm) and Euclidean dis-
tances (l2 norm), which are specific cases of Minkowski distance (lk
norm):

lk ¼
 XN

w¼1

�bY ðwÞ � YðwÞ
�k!1

k

(6)

The choice of the lk norm can have an important effect on the
results. Choosing lower norms k typically results in measures being
less sensitive to outliers with some papers arguing for the use of
MAE over RMSE [132]. In many cases, the choice is relative to the
problem at hand and if we care that the model makes occasional
large errors thenwe use RMSE to compare between several options
[133] MAPE, a less used accuracy measure, requires the denomi-
nator to not be zero and outputs accuracy as a percentage [134]. To

overcome the symmetry problem in MAPE (where changing bY ðwÞ
with YðwÞ results in different values), sMAPE (symmetric MAPE)
was introduced. R2 represents the proportion of variance in the
dependent variable that can be described by the independent
variable. Typically used for linear regression, R2 has values in the
range [0,1] with higher values representing better models. Draw-
backs of using R2 are discussed in Ref. [135]. Options for error
measures for regression forecasting are discussed in
Refs. [136e138].

For classification-based models, which can be used for both



A. Stetco et al. / Renewable Energy 133 (2019) 620e635 631
diagnostic and prognostic purposes, several measures have been
used which derive from the following observations: the number of
True Positives (TPs, when the component was predicted as healthy
and it was in fact healthy), False Negatives (FT, when the model
predicted unhealthy and it was in fact healthy), True Negative (TN,
predicted as unhealthy and actually unhealthy) and False Positive
(FP, when the model predicted healthy and the instance was
unhealthy).

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(7)

Recall ¼ TP
TP þ FN

(8)

Specificty ¼ TN
TN þ FP

(9)

Precision ¼ TP
TP þ FP

(10)

F1 ¼ 2� Precision � Recall
Precisionþ Recall

(11)

While accuracy of the model is important, other measures can
be relevant (8e11). For example, for a classifier to be accurate in
predicting the negative (unhealthy class), we look at the specificity
measure.

It is important to note that errors made by different models can
be understood as a trade-off between variance and bias. Here, an
error can be decomposed into a sum of bias, variance and unex-
plained errors [139]. Typically, the more assumptions made about
the function that we want to model (a power curve for example)
the higher the bias and lower the variance. If the normal-behaviour
data on which we train the model is truly representative of a
healthy turbine, a low bias model such as an NN might be more
appropriate. In this case we want to make sure a priori that no
outliers are present in the data before training as they may make
the model overfit.

4.6. Using ML models in CM decision support systems

Ultimately, ML models should be integrated into a decision
support system that provides a stream of high-level CM informa-
tion in real-time to human operators. The usefulness of ML CM
models in decision making stems not only from their accuracy in
identifying or predicting failures but also in their potential to
explain how conclusions are reached. Thus, they can be categorized
on a spectrum based on the interpretability of their underlying
model. On one side we have “white box” models such as decision
trees (which are hierarchical structures that can be interpreted as a
set of rules). Provided they are not too large in depth, an operator
can follow how the system reached a certain conclusion. The user
can opt to discard or retrain the model if it does not make sense
from an engineering or physical perspective, or may learn new
aspects about themonitored component not previously considered.
As decision trees grow in depth or if multiple trees are used (such as
in ensembles) their interpretability diminishes. In contrast, we
have “black box” models that provide little or no interpretation.
Despite the successes of NNs on information-rich data, there re-
mains a need to understand how they operate (e.g. combining
existing techniques such as feature visualization with semantic
dictionaries (explaining what the network sees) and attribution
models (explaining relationships between neurons) [140]).

While standard classification models that return a specific class
label may be useful, adding a probability (or confidence) for pre-
dicted labels can be used as part of the decision strategy. Existing
classifiers such as logistic regression or Naïve Bayes are by default
probabilistic, while others such as SVMs can be extended [141].
Calibration plots, also known as reliability diagrams, have been
traditionally used to investigate how well the probabilities the
model is outputting are calibrated.

In the case of regression models, the difference between a
model's predicted value in normal conditions and the actual
registered value gives an indication whether there is an incipient
failure in the subcomponent and its degree of magnitude. It is
important to note that thresholds need to be defined in order to
decide when an error magnitude is sufficient to be of concern;
multiple such errors need to occur in order to trigger an alarm,
otherwise the error might just be an outlier (a false alarm) [142].
The question of when to raise an alarm with regression-based
methods has received much attention with many methodologies
being proposed, such as absolute thresholds, confidence bands
[119], experience [103], Mahalanobis distance [123], exponentially
weighted moving average, etc.

Monitoring code that runs periodically and checks the deployed
models is essential as performance degradation might occur with
time and faults might develop in the data processing pipelines [25].
Performance might degrade because of failing hardware (e.g. sen-
sors) that supply models with data. Monitoring these inputs on a
regular basis is an important part of any online learning procedure
and retraining models may be triggered by monitoring code.
Alternatively, some classification models can be tuned to learn
online as new data comes in, provided the signals are clean (so that
they do not degrade the performance in the learning process).
Online learning for regression-based models trained on a healthy
state may be trickier to implement as newer data may not follow
the data with which the model has been trained.

5. Conclusions

Recent developments in computational capabilities have
opened opportunities for integrated and more in-depth CM ana-
lytics, where different types of data can be used to facilitate
informed, reliable, cost-effective and robust decision-making
relying on actionable information about developing hazards. Bet-
ter monitoring practices, through use of ML techniques, can inform
planning, resulting in fewer maintenance interventions to offshore
wind farms.

This paper has reviewed ML-driven CM. The reviewed studies
focus on various tasks, including blade fault detection, generator
temperature monitoring, power curve monitoring, etc. We found
that most models in the literature use SCADA, simulated or, rarely,
experimental data; few approaches also utilised images and audio
signals. Work uses classification methods (in two-thirds of cases)
and regression (the remainder). Specifically, NNs, SVMs and deci-
sion trees are most commonly used.

A major hindrance to progress is a lack of large public datasets
where new models could be developed, evaluated and compared.
Relying on synthetically generated data produced by test rigs or
mathematical models may not generalize well to actual real-world
conditions. Further work is also needed for identification of rele-
vant signals, given the potential volume of generated CM datasets.

While dimensionality reduction methods may work in specific
cases, careful consideration should be taken when making as-
sumptions about characteristics of high dimensional spaces (e.g.
linearity/non-linearity).

The choice of ML model depends on the problems to be solved,
as it is unlikely that a single model would outperform others over
all datasets and for all tasks. However, there are indications that
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deep NNs, capable of learning complex non-linear functions, may
achieve better performance (in terms of accuracy) than more
traditional models as data volume grows [143]. Although shallow
NNs have been used, less attention has been given to deeper
models and this may represent a significant avenue for achieving
higher performances (caveated by their interpretability).

Although the data types might narrow the search for models
and hyper-parameters, the space remains large and there are
several strategies to investigate in the search for the best model for
individual sub-problems. Examples of model hyper-parameter
optimization approaches include grid (exhaustive), Bayesian and
Randomized search facilitated by powerful hardware. Given that
searching for the best models is a demanding, high-latency task, big
data processing platforms such as Apache Spark, are needed to
facilitate rapid model training via parallelization. Such systems also
require new types of distributed, fault-tolerant storage platforms,
Paper Task Method

[44] Outlier detection Univariat
[45] Feature Selection Wrapper

[48] Feature Selection Embedde

[49] Feature Selection Filter met

[52] Feature Extraction Statistics

[53], [54] Feature Extraction Paramete
models

[51] Feature Extraction Time-Freq

[55e61,65] Feature Extraction Time-Freq
transform

[66e69,71,85e89] Feature Extraction Time-Freq
decompo

[92], [25] Feature Extraction Autoenco
such as Apache HDFS, that allow for a wider variety and granularity
of data types (e.g. low granularity signals from bearings; higher
granularity from the whole generator) as well as flexible data
refresh intervals (e.g. different sensing rates or obtaining additional
CM data on demand for missing values).
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Appendix A. Feature processing 1
Description

e outlier detection Detecting outliers in time signals.
Prediction performance of a given
model is used to assess the
usefulness of a subset of features.

d methods Perform feature selection as part of
the training of the ML model.

hods Independent from the model, these
methods perform significance tests
between each feature and a
dependent variable; can rank the
features based on importance.
Statistical features such as max/
min, standard deviation, mean,
median are extracted from signal
and used as features.

rs of fitted time series Models are fitted (e.g. Auto-
regressive moving average) and
their coefficients are used as
features.

uency: Fourier transform Decomposes a signal in time
domain to its constituent frequency
components; unsuitable for non-
stationary signals.

uency: Wavelet Dilatation and translation of a
“mother” function are convoluted
with the signal resulting in a set of
Wavelet coefficients that express
the amount of similarity between
the two.

uency: Empirical mode
sition

Signal decomposition method that
finds a set of intrinsic mode
functions at different frequencies
that sum to obtain the original
signal; suited for non-stationary,
non-linear time series.

ders Potentially deep NNs composed of
an encoder which converts the
input to an internal representation
(extracted features) and a decoder
which converts internal
representation into outputs.

1 Note: Some of the cited papers use methods that are applicable for machine
learning, although not specifically used for wind turbine condition monitoring.

http://homeoffshore.org/
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Appendix B. Regression/Classification models2
Paper Year Data Task Method Evaluation

[107] 2012 SCADA Turbine Performance assessment Regression vs
Unsupervised
methods

GMMmodels exhibited more gradual health change,
being more suitable than SOMs and NNs.

[109] 2011 SCADA Generator bearing failure prediction Regression/Normal
Behaviour Model

Nonlinear neural network approaches outperform
the regression models.

[104] 2013 SCADA Power curve monitoring Regression/Normal
Behaviour Model

MAPE: 8.25 for ANFIS

[112] 2017 SCADA Lubricant pressure monitoring Regression/Normal
Behaviour Model

MAPE between 2.9 and 14.25

[144] 2012 SCADA Generator temperature monitoring Regression/Normal
Behaviour Model

NSET achieves better modelling accuracy than a
standard NN.

[113] 2018 SCADA Gearbox Regression/Normal
Behaviour Model

7.66 in RMSE for Multivariate Polynomial Regression
and 8.58 for Linear Regression.

[22] 2011 SCADA Predict failures at different granularities Classification Status/fault: NN Ensem.:74.5%
Category of status/fault:
CART: 96.08%
Specific fault: BTA:69.8%.

[125] 2015 Simulated/Experimental data Detect several types of faults related to rotor blade
imbalance and misalignment (or both)

Classification SVM: 98%

[23] 2016 Simulated/Experimental data Mechanical fault detection Classification NN: 93%e98%
[123] 2017 Simulated data (small scale

wind turbine: FP50W-12V)
Blade faults detection Classification Best-first tree: 85.33%

Functional trees:91.67
[126] 2013 SCADA Blade faults detection Classification RIPPER (rule-based): 85.5%
[128] 2017 UAV images Blade faults detection Classification Cascading-classifiers based on Haar-features: 98.6%.
[122] 2017 Simulated/Experimental data Blade fault detection Classification SVM: 98.3%
[15] 2012 SCADA Generator Brush Failure prediction Classification Boosting tree: 82.7%e97.1% for all time stamps and

59.2%e100% for specific fault cases
[119] 2014 SCADA Transmission system fault diagnosis Classification SWSVM:92%

SVM: 76%
[121] 2018 Simulated/Experimental data wind turbine gearbox fault detection Classification MSCNN obtained 98.53% F1.
[118] 2018 SCADA Fault detection, diagnosis, and prediction of

generator faults
Classification SVM obtained high recall but low precision on a

number of scenarios.
[131] 2018 SCADA Structural vibration errors; root cause analysis Classification Ensemble decision trees.
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