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A b s t r a c t

We propose that data mining, the search for useful, non-trivial and previously unknown infor­

mation within a database, can be successfully performed with Numerical Dependencies (NDs), a 

generalisation of Functional Dependencies (FDs), to model the data, together with resampling, a 

computationally intensive statistical sampling process, which allows us to make inferences from 

temporal and indefinite databases.

We use NDs to model relations containing temporal and indefinite information. We extend 

the theory of NDs by presenting measures for data mining and generalise the chase procedure, a 

method for updating a relation to satisfy a constraint set, for NDs. We motivate NDs in real-world 

applications by introducing a database design tool.

The consistency problem, that of attempting to find a relation satisfying a set of FDs within 

an indefinite relation, known to be NP-complete, is studied in the context of using NDs for ap­

proximation. We employ resampling, based on taking samples of definite relations from indefi­

nite ones, on incremental sample sizes until an approximate fixpoint is reached, denoting an upper 

bound on the required sample size. Extensive simulations highlight that resampling to find upper 

bounds in conjunction with the chase for indefinite relations returns valid approximate solutions.

We also study NDs in temporal sequences of relations for knowledge discovery purposes. 

Each relation within a sequence is mined for a set of NDs which evolve with updates in data. We 

introduce a temporal logic for the discovery of rules and properties within these sequences, or 

subsequences, which includes statistical functions within the temporal operators for time series 

analysis. We also show that time series data may be analysed using a restricted set of the logic. 

We apply discovery algorithms to both sequences and resampled sequences, allowing smoothing 

for trend detection. Investigations, presented herein, show these rules to provide interesting and 

practicable results.
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C h a p t e r  1

Introduction

Knowledge Discovery in databases is currently a particularly fast growing area of computing re­

search, not least because it can be said to be the hybrid of a number of other research disciplines 

as shown in Figure 1.1, primarily statistics, machine learning, and database theory, with direct 

real-world application.

In this thesis we propose a general approach to knowledge discovery problems in databases 

which contain either indefinite or temporal information. Throughout we use Numerical Depen­

dencies (NDs), a generalisation of the Functional Dependency (FD), and show how they are appli­

cable in numerous domains. We also use and develop some resampling processes, which are com­

putationally intensive statistical procedures, well suited to inferring information from databases 

containing temporal and indefinite information.

In Section 1.1 we present the goal of the thesis, moving on to discuss knowledge discovery in 

databases in 1.2, where we place our work in context and present a brief example for overview. 

We detail the contribution of this work in Section 1.3 and outline the rest of the thesis in 1.4. 

Lastly, we detail notation in Section 1.5.

1.1 The Goal of the Thesis

The ability to discover knowledge from a database which is not explicitly represented in the data 

is clearly a desirable goal. We propose that such data mining can be achieved using NDs, gener­

alisations of the FD, which themselves have a well-defined semantics for application within the 

relational model. The application of NDs allow data mining principles to be exercised on cat­

egorical data, often the bulk of many corporate databases, or a combination of categorical and 

numerical data.

We show how relations containing indefinite or temporal data satisfy numerous ND sets, be­

ing either definite instances of indefinite data or possibly changing ND sets over time. The ND
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sets satisfied are obtained from an initial template of FDs which is supplied by the user; alter­

natively, it would be possible to mine for ND set satisfaction. In the indefinite domain the ND 

sets are satisfied in definite instances of the same indefinite relation. We show how resampling, 

a computationally intensive sampling procedure, may be applied on increasing sample sizes to 

determine an approximate fixpoint upon which a heuristic based hill-climbing algorithm is em­

ployed to find a suitable ND set approximation to functional satisfaction. In the temporal domain 

the ND sets may change over time for the same attributes; we show how resampling and other 

time series statistics may be employed to determine properties which may hold over time, us­

ing a logic we have developed. Our data mining framework thereby discovers information using 

many ND set approximations upon which statistics are applied, varied for the domain in question, 

to make further inferences from the data.

1.2 Knowledge Discovery in Databases and this thesis
The following widely accepted definition is due to (Fayyad et al., 1996d):

Definition 1.2.1 (Knowledge Discovery in Databases) Knowledge Discovery in Databases is 

defined as the nontrivial extraction o f valid, previously unknown, potentially useful, and ulti­

mately understandable information from a database. □

Knowledge Discovery may only provide potentially useful information given that it may fre­

quently discover relations, possibly weak, between unconnected real-world information or even 

relations that do not serve the interests of the user. This includes the possible discovery of re­

dundant information. For instance, in a medical database a system may discover a dependency 

pregnant —> fem ale  implying that all pregnant patients are female; obviously such information 

is superfluous. Methods to prevent such redundant information generation may include the spec-
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Figure 1.2: The Knowledge Discovery Application Cycle

ification of trivial associations before the mining process takes place and continuous interaction 

with an expert, a much understated component of knowledge discovery, defined as data archae- 

ology (Brachman and Anand, 1996), as well as provision of a dependency template upon which 

knowledge is discovered.

Knowledge discovery comprises a number of component parts including data cleansing, de­

sign, warehousing and mining as well as expert analysis, detailed in Figure 1.2. Databases within 

data warehouses are now frequently designed with a view to data mining operations; where the 

goal of the database is reliable storage the goal of the data warehouse is decision support (Fayyad, 

1998b). The process of data cleansing includes collecting data from different sources and process­

ing it into a homogeneous form. The design and implementation of a capable knowledge discov­

ery tool will handle these stages. Figure 1.2 displays a generic cycle for knowledge discovery. It 

highlights the requirement that interaction and analysis of the system may need to return to the 

design stage if initial results suggest comparison with new data, which may have been omitted, or 

the data cleansing stage has to be repeated with new error parameters, perhaps to adjust the error 

and confidence for noise within the database. Recent work has included research on formalising 

the data warehouse (Hammer et al., 1995; Inmon, 1996) as well as significant data cleansing re­

search. Interesting as the issues of data cleansing and warehousing are, we do not consider them 

further within this thesis, concentrating on data mining.
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Knowledge discovery refers to the process of extracting patterns and relationships from the 

data whereas data mining refers to the actual process of applying these algorithms to the data, 

though many of the boundaries are vague. In data mining applications a key requirement is the 

preparation of data for analysis. In Figure 1.2, an example of a KDD application cycle, we assume 

that the design and application components handle any required data cleansing. Many data min­

ing algorithms may also divide the data into suitable training and validation subsets. Data Mining 

encompasses a number of different approaches, such as clustering, data summarisation, learning 

classification rules, finding dependency networks, and anomaly detection. Data Mining is seen as 

a research frontier for both database research and machine learning. Many other AI based tech­

niques, such as Natural Language Processing and Distributed AI methods, are also increasingly 

included (Fayyad et al., 1996d). Machine Learning can be said to be the use of sophisticated al­

gorithms to generate and then process information, for eventual understanding. (Hu, 1995) char­

acterises learning from a database as a triple ( D, C, A ) where D is the data, C the concept biases, 

and A the language in which to phrase the definitions. He also notes that as a database stores no 

negative information induction should be performed cautiously to avoid over generalisation.

Data Mining has been defined as the application of algorithms, within the limits of com­

putational efficiency, that produce a set of expressions E  which represent patterns expressed in 

a well-defined language over a data set F  (Fayyad et al., 1996d). There are a number of ways 

to represent E , including: association rules (Agrawal et al., 1993; Toivonen, 1996), rough sets 

(Ziarko, 1991; Alagar et al., 1993), temporal logic (Padmanabhan and Tuzhilin, 1996; Berger 

and Tuzhilin, 1998), and FDs (Kivinen and Mannila, 1995). This latter class consists itself of 

many well-developed approximation techniques including Fuzzy FDs (Bose et al., 1994), PAC- 

approximation (Akutsu and Takasu, 1994; Kivinen and Mannila, 1995), and probabilistic approx­

imations (Piatetsky-Shapiro and Matheus, 1993; Pfahringer and Kramer, 1995; Huhtala et al., 

1998). To this category we add NDs for pattern expression (Collopy and Levene, 1998d). Their 

suitability to this task is shown via their satisfaction of lattice properties from which measures for 

approximation can be formed and the desirability of mining NDs from databases. Mined NDs, 

expressed as cardinality constraints (equivalent to NDs with empty left hand sides), have recently 

been used to reverse-engineer ER-models in (Soutou, 1998). We also develop a restricted tem­

poral logic for discovery of patterns using NDs as our atoms (Collopy and Levene, 1998b).

To date knowledge discovery research has focused on application within relational databases 

containing definite information. However, the advanced functionality of DBMSs extend the set 

of data types beyond that of strict numerical or categorical data to include NULL value represen­
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tation (Lipski, 1979; Imielinski and Lipski, 1984), the most common interpretation being that a 

value exists but we do not currently know what it is. The literature has extended this to handle in­

definite or disjunctive information where a value might now be, for example, Tuesday or Wednes­

day, implying that we know the value is one of a finite set (Imielinski et al., 1991; Vadaparty and 

Naqvi, 1995). To allow DBMSs to handle scheduling and planning processing and querying di­

rectly the ability to store indefinite information is paramount. Data Mining techniques will then 

have to be extended to encompass these data types. We show for the case of NDs in (Collopy 

and Levene, 1998d) how definite instances (or possible worlds) of an indefinite relation satisfy 

different ND sets; other FD approximation methodologies can be applied similarly.

Data Mining algorithms are bounded both by potentially huge data sets and the limits of 

a computationally efficient methodology. Therefore, sampling and the use of randomised algo­

rithms for data mining have been utilised (Kivinen and Mannila, 1994; Gunopulos et al., 1997; 

Collopy and Levene, 1998c). Sampling within data mining has been well studied (Kivinen and 

Mannila, 1994; John and Langley, 1996); to this we include the use of resampling for data min­

ing. Resampling is a computationally intensive sampling methodology for non-parametric data; 

the distribution is unknown for most data sets. Its use allows for information about the distribu­

tion of data to be made and has a wider range of application than standard sampling. Many data 

mining algorithms seek to make inferences from sample data; classical statistics refers to this 

as estimation. Our work incorporates resampling processes (Efron, 1979; Efron and Tibshirani, 

1986; Efron and Tibshirani, 1993) to achieve this. Heuristics are often required for knowledge to 

be discovered; in such cases randomised algorithms may allow the efficient processing of data for 

discovery. Indeed for a theory to be verified without error the complete data set needs to be exam­

ined though only one violating occurrence is required for falsification. Randomised algorithms 

and sampling allow for efficient analysis to be achieved utilising this fact. We use randomised al­

gorithms and resampling to find approximate solutions to the consistency problem, known to be 

NP-complete, which is the problem of searching for a possible world within an indefinite relation 

that satisfies a given FD set (Vadaparty and Naqvi, 1995; Collopy and Levene, 1998c; Collopy 

and Levene, 1998d).

Temporal Databases have been a significant area of research in the last few years (Tansel 

et al., 1993; Clifford and Tuzhilin, 1995), unsurprising given the need for temporal support in real- 

world applications, particularly in the financial and medical domains. Building on this work is 

the rapid rise of, and need for, temporal data mining applications. Much of Temporal Knowledge 

Discovery relates to forecasting events in the future and analysing patterns which occur over time.
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Indeed, these goals are closely related to time series analysis, a well established research field in 

statistics and econometrics (Enders, 1995; Nazem, 1988). Nearly all databases in use contain a 

temporal component and there has been much recent data mining work on temporal knowledge 

discovery (Agrawal et al., 1995; Padmanabhan and Tuzhilin, 1996; Bemdt and Clifford, 1996; 

Berger and Tuzhilin, 1998).

Data mining and statistics have been substantially analysed (Fayyad et al., 1996a; Glymour 

et al., 1997). One of the prime goals of data mining is that of predicting values and this is inher­

ently related to the representation of temporal data and time series analysis. Time series analysis 

when applied in a database is used for anything from identifying demand and modifying supply 

accordingly or for calculating patterns and changes in salary over time to predicting the expense 

of projects within different time periods. Until recently there was minimal use of time series anal­

ysis techniques within temporal databases (Schmidt et al., 1995).

The Classic multiplicative model views time series as containing four parts, namely trend, 

cycles, seasonal, and irregular patterns. Trends may be up or down and can be used to characterise 

the time series over a long time irrespective of short term fluctuations. Cycles display a recurring 

up and down movement around trend levels, including expansion and contraction. Seasonal pat­

terns complete within a given time period. Finally, irregular patterns account for erratic changes 

in a time series and may be modelled as noise in the data.

The above may be understood using many techniques including trend moving averages, 

ratio-to-moving averages (for deriving the seasonal component), and difference equations for 

model representation. Using these time series may be extrapolated. Related issues are (1) gran­

ularity changes (2) application of moving windows, and (3) attribute value transformation. The 

temporal logic we present, as well as the related work we survey (Faloutsos et al., 1994; Laird, 

1993; Agrawal et al., 1995; Das et al., 1997; Das et al., 1998), is closely linked with many as­

pects of (stationary) time series analysis. (Glymour et al., 1997) also tackles the issues of how 

data mining is extending and not simply repeating previous statistical research. There have been 

significant use of data mining algorithms incorporating statistical functions, not least in the scien­

tific domain in applications as diverse as astronomical cataloguing through to geological sensing 

for earthquake detection (Fayyad et al., 1996a).

Recently there have been a number of different approaches to temporal data mining, stem­

ming from machine learning work on pattern matching (Laird, 1993; Agrawal et al., 1995). There 

seems to be a demarcation between research based on data mining from temporal databases and 

research using time series as the input data set from which knowledge is to be discovered. Our
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approach allows for discovery from either or a combination of the two, given that in each case 

only series of numbers change over time.

Temporal logic is used for temporal data mining in (Padmanabhan and Tuzhilin, 1996; 

Berger and Tuzhilin, 1998). It has been shown to be sufficient for expressing temporal relation­

ships that have been discovered. If more complex relationships are required, such as, say, corre­

lation between two data sets temporal logic does not have the functionality to express this without 

an explicit correlation function. Therefore we present a logic with statistical functionality so that 

such values are embedded within the logic. Given that the sentences of the logic express results 

of statistics we do not have to present confidence and frequency values (akin to work on associa­

tion rules (Agrawal et al., 1993; Klemettinen et al., 1994; Holsheimer et al., 1995)) for the rules 

that we discover as our rule discovery itself is representative of specific statistical values. Our 

work on temporal relations is pattern focused; we do not attempt to discover a global model, the 

undoing of many time series analysis studies, but logical rules which describe local behaviour on 

subsequences of the temporal data set. Of course these can be, if desired, extended to global con­

ditions. It is interesting to note that discovery in this sense is closely linked to the power of the 

query language. Similarly, we may view rule discovery using temporal logic as directly depen­

dent on the expressiveness of the logic. Patterns within a (temporal) database may be referred to 

as properties which model the data. Temporal logic for property satisfaction is a well-researched 

area within program verification. Properties used to express the correctness of a temporal sys­

tem also have application in data mining where a database with many states may be viewed as a 

temporal system. We claim that these properties are therefore suitable as candidate patterns for 

potentially interesting knowledge discovery.

The real-world desire for ever more information and knowledge precludes data mining from 

being anything but a significant research area. Many different mechanisms for expressing pat­

terns have been developed and we believe that NDs, though not a panacea for expression within 

data mining, are widely applicable and easily understood. To illustrate, an ND S T U D E N T  —>5 

C O U R SE  in a timetable relation specifies that a student can take at most 5 different courses; it 

is clear that such data may often need to be represented and in current DBMSs this data would 

satisfy no built-in constraints. The progression towards a standardised query language for data 

mining (Chaudhuri, 1998) would benefit from their inclusion as we note their utility in different 

domains.



1.3. Main Results and Contribution 22

1.3 Main Results and Contribution

We provide a novel approach to data mining. We show how, in databases containing indefinite and 

temporal information, given an FD set F we form sets of approximations to F which may be sat­

isfied for different definite instances of the indefinite relation or over time in a temporal relation. 

We choose to express these approximations as sets of NDs; other expressions may also be appro­

priate, such as a probabilistic approximation (Piatetsky-Shapiro and Matheus, 1993). In either 

indefinite or temporal databases we can use these sets to obtain statistics to determine how they 

may change in the indefinite relation or over time. We show how resampling can be applied to 

these sets to make inferences from the data. For indefinite relations we present a dynamic resam­

pling process which allows for resampling on increasingly large sample sizes until an approximate 

fixpoint is reached. This provides an upper bound on sample size which is then used in a heuristic 

based hill-climbing algorithm. For temporal relation sequences we may take moving averages or 

create resampled sequences to determine how patterns, expressed in the form of properties, are 

satisfied at various time points.

We now outline our methodology as a general framework. We take a large set a  of approx­

imations to a given FD set and then apply resampling to a  to draw conclusions on the nature of 

the data in the database. The exact method of the application of resampling, and the use of other 

statistical functions, differs with the type of data we are mining. This framework is applicable 

to other domains, extending the traditional mining approaches of simply using approximations 

to dependencies to infer information. Indeed, we assume that an FD set is provided by the user 

as a template in both indefinite and temporal domains; this FD set may be modified by a system 

user to compare results for different dependency sets. We shall demonstrate how it is possible 

to utilise temporal and indefinite domains from which the approximations, in our case NDs, are 

taken to make further discoveries from the relation which is being mined.

This thesis makes the following specific contributions:

1. NDs are shown to be effective and useful for data mining in that they provide a clear notion 

of proximity to FDs. NDs are shown to be able to efficiently and accurately approximate 

FDs in a relation with an easily understood semantics. An evolutionary database design 

procedure is introduced as a motivation for real-world ND applications as a precursor to 

their application in non-standard database domains. The lattice properties of NDs are ex­

ploited to provide a metric for data mining which we use in this work.

2. We provide a detailed study on an approach which uses NDs to provide approximations 

to the Consistency Problem, namely the NP-Complete problem of finding a definite world
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that satisfies a set of FDs within a relation containing indefinite data.

3. Procedures for applying the Bootstrap, a resampling methodology (Efron and Tibshirani, 

1993), within relations containing indefinite and temporal data are defined and shown to be 

useful via extensive simulations. They include a dynamic procedure for application of the 

bootstrap in indefinite relations for sample size determination.

4. A temporal logic for NDs is presented. This logic is then used for mining sequences of re­

lations. We examine the sequences for proximity to FD set satisfaction, expressed as NDs, 

and compare this to standard time series analysis. The logic is transferable to standard time 

series and other linearly ordered numerical data sequences.

5. We present a model for the application of our temporal data mining system to a sequence of 

temporal relations. Results using financial time series of stock prices from the oil, finance 

and retail sectors are presented and analysed.

The thesis also presents a taxonomy of standard and temporal dependency data mining, plac­

ing our work in context, as well as making suggestions for future research.

1.4 Outline of the Thesis

After this introduction, Chapter 2 formally introduces the required relational database theory so 

that the remainder of the work is self-contained. All of the relevant theory presented is placed 

in the context of this research and related work. Additionally, we survey related data mining re­

search, focusing on three areas:

1. We examine functional dependency data mining and the methods used to find approxima­

tions to FDs (Kivinen and Mannila, 1995; Akutsu and Takasu, 1994; Mannila and Raiha, 

1992a; Savnik and Flach, 1993; Hale and Shenoi, 1995; Pfahringer and Kramer, 1995; Bell, 

1995; Piatetsky-Shapiro and Matheus, 1993), of which using NDs is part of our contribu­

tion, shown in Chapter 3.

2. We briefly examine work conducted on indefinite information, related to our study of the 

consistency problem.

3. Temporal data mining research is discussed so that the reader is able to appreciate the con­

tribution of the work in Chapters 5 and 6.

Chapter 2 concludes with a brief presentation of resampling in statistical applications, which is 

then expanded upon in Chapters 4 and 6.
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Chapter 3 presents ND theory with regard to data mining, including a chase procedure for 

NDs. The chase procedure may be used to modify a relation to satisfy a given ND set allowing 

us to test whether or not an ND set implies a specific ND. We show how a data mining distance 

function is used for assessment, related to approximation work presented in Chapter 2. Addition­

ally, research on applying NDs for mining within relations is discussed and compared with other 

approaches. We also present a practical database design tool for randomly evolving example re­

lations which satisfy FD sets.

Chapter 4 then introduces the consistency problem and its applications. We present ran­

domised algorithms which use NDs and the chase procedure for indefinite relations together with 

a novel application of resampling to determine sample size. Results of extensive simulations ap­

plied to randomly generated indefinite relations are examined. We also discuss the usefulness of 

the chase procedure as a heuristic.

Chapter 5 moves on to temporal data mining. We motivate the need for rules in temporal 

data mining, introduce our logic for temporal data mining, examine the logic and introduce the 

notion of temporal properties which we use in our temporal data mining environment. This logic 

is then assessed against a standard time series analysis which could be conducted on any time 

series data set and also on any temporal sequence of relations satisfying ND sets in each state 

over fixed intervals. Chapter 6 presents the details of our temporal rule discovery system, the use 

of resampling, and results from data sets studied, concluding with a discussion of future work 

together with an analysis of the utility of our temporal data mining approach.

Finally in Chapter 7 we give our concluding remarks and present a final discussion of the 

work, introducing avenues for further research and stating the open problems that remain.

1.5 Notation

We presented an index of the symbols used at the beginning of the thesis in the symbol index.

This thesis adheres to the standard notational convention generally followed in relational 

and deductive database texts, notably (Ullman, 1988). R refers to a relation schema, denoting a 

finite set of attributes, and r to a relation over R, denoting a finite set of tuples. Uppercase letters 

(possibly subscripted) refer to attributes if they are from the beginning of the alphabet such as 

A, B, C and to attribute sets if they are from the end of the alphabet such as X, Y, Z. Tuples are 

referred to by lowercase t  and u (possibly subscripted).

Lowercase letters (possibly subscripted) refer to constants if they are from the beginning of 

the alphabet such as a, b, c and to variables if they are from the end of the alphabet such as x,y,z.
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Predicate symbols (possibly subscripted) of arity > 0 are referred to by p, q and r . We use | X  \ 

to refer to the cardinality of set X  and simply X  to denote the singleton set {X}. The nonempty 

powerset of a set X  is denoted by V{X).  From the relational database literature, we refer to the 

union of two sets X  U Y  by X Y . The end of a definition or proof is denoted by □.



Ch a p t e r  2

Relational Database, Data Mining, and 

Statistical Theory

The aims of this chapter are to provide the requisite background to be able to read the thesis as a 

self-contained body of work as well as enabling the reader to appreciate this research within the 

wider fields of both relational database theory and data mining.

In Section 2.1 we present the relationship of this work to both database and data mining the­

ory. In Section 2.2 we introduce the relational database theoretic concepts relevant to this thesis 

and in Section 2.3 we introduce the area of data mining, concentrating firstly on dependency data 

mining so that the reader can fully appreciate the context of Chapter 3 and then temporal data 

mining for the background of Chapters 5 and 6. In later chapters we will refer to the definitions 

presented in 2.2 and 2.3 as and when they are initially used.

2.1 Database Theory for Data Mining

There has been significant work in the data mining community on the mining of data dependen­

cies, both in standard (Piatetsky-Shapiro and Matheus, 1993; Kivinen and Mannila, 1995) and 

temporal environments (Bettini et al., 1996). Much of this concentrates solely on the discovery 

process, in effect working totally within a machine learning (ML) context, i.e. (Shen, 1991); scant 

regard is paid to the database theory upon which the dependencies are based. Though we do not 

question the quality of this work because of this omission we believe that NDs which fit into the 

relational model, both for design and, as we show in this thesis, data mining, are a valuable tool. 

Until recently, much data mining research was disjoint from database theory, based within statis­

tics or machine learning though there is now a body of work on unifying these areas (Chaud- 

huri, 1998); this thesis requires an appreciation of both. We introduce the background material 

on database theory in Section 2.2 to clarify later work on Armstrong relations and the chase pro­

cedure, a theorem proving tool for FDs in a relation, as well as our use of indefinite information
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for the consistency problem. Theoretical work on FD behaviour has directly led to the creation of 

numerous data mining methodologies which we introduce in 2.3.1. Section 2.2 concludes with a 

presentation of temporal databases and dependencies.

Section 2.3 introduces aspects of dependency data mining, including a discussion of the re­

lationship to NDs. We provide a discussion of measures based on aspects of FD theory in 2.3.1. 

We then introduce temporal databases and dependencies before moving on to temporal data min­

ing and rule discovery from time series, closely related to work in Chapters 5 and 6. This section 

concludes with a brief overview of sampling in data mining followed by an informal introduction 

to resampling, useful for later work presented on indefinite and temporal relations.

2.2 Relational Database Theory

We now present the relational database theory required within this thesis. The reader is referred 

to (Abiteboul et al., 1995; Atzeni and De Antonellis, 1993; Maier, 1983; Ullman, 1988) for a 

complete coverage of the area.

2.2.1 The Relational Model

In 1970, E. F. Codd introduced the relational model (Codd, 1970), with relations as the data 

structure, so that database users need not concern themselves with the physical storage of data. 

This allowed independence between programs and their machine representations by providing a 

sound basis for describing the structure of data and operations for data manipulation without the 

need for consideration of the internal machine representation. Subsequently other data models 

have been developed, including the Entity-Relationship model, for high level conceptual database 

modelling, and object-oriented data models (Kim, 1990; Abiteboul et al., 1995). The latter were 

primarily developed to combat the growing requirements for complex data manipulation; we do 

not make further reference to these data models and remain within the confines of the relational 

model in this thesis. Its universality and ease of data manipulation does not require further justi­

fication. We now formalise the relational model.

Definition 2.2.1 (Universe) A universe U is a finite, fixed set of symbols that represent the col­

umn names which can appear within a relation. They are referred to as attributes. □

Definition 2.2.2 (Attribute Domain) The domain of an attribute A  e U ,  denoted by DOM(A), 

is the countable set of possible values which can be members of A. This is the set of values which 

can appear in a column of A. □

Definition 2.2.3 (Relation Schema and Relation) A relation schema R is a subset of the uni­

verse U. The elements of a relation schema are denoted by { A i , . . . ,  An }. A tuple over R is an
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element of DOM(Ai) x . . .  x DOM(An), where x refers to the cartesian product. An instance 

of a relation over R is a finite set of tuples defined over R. □

A relation consists of a finite set of tuples where each tuple represents an entity. A relation 

is therefore simply an entity set. Each tuple can be considered a row if we assume the table rep­

resentation of a relational database.

Definition 2.2.4 (Database Schema and Database) A Database Schema over R  is a finite set of 

relation schema { R i , . . Rn }. A database over R  is a finite set d = { r i , . . . ,  r n} such that each 

r t- E d  is a relation over Rt E R. □

The relational algebra is presented by Codd (Codd, 1970) in the context of deriving desired 

result relations from other relations. The operations include selection, projection, defined below, 

join, union, difference, and renaming; all are defined in (Abiteboul et al., 1995; Atzeni and De An- 

tonellis, 1993; Date, 1995; Maier, 1983; Ullman, 1988).

Definition 2.2.5 (Projection) The projection of an R-tuple t  onto a set of attributes Y C R ,  de­

noted by t[Y] (also called the Y-value of t), is the restriction of t to the attributes in Y. The pro­

jection of a relation r  onto Y, denoted as 7ry(r), is defined by ny(r) = { t[Y] 11 E r  }. □

We now move on to the representation of constraints in the relational model required to 

ensure the maintenance of integrity within a database. Data mining now often uses such con­

straints and constraint approximations to discover previously unknown and non-trivial informa­

tion (Fayyad et al., 1996d).

2.2.2 Functional Dependencies

Integrity constraints, or data dependencies, allow a database to have associated with it an intended 

meaning or semantics for the tuples within the database. The most common constraint is the FD 

introduced in (Codd, 1972), its prevailing application in practice is as a key dependency. FDs 

were given a sound and complete axiomatisation in (Armstrong, 1974). We note that soundness 

implies that each dependency, which is derived using a finite number of applications of an ax­

iomatisation from a given set, holds. Completeness implies that valid each dependency which 

holds can be derived using the axiomatisation. FDs are restricted first order logic (FOL) sentences 

shown in (Sagiv et al., 1981) to be equivalent to Horn clause statements, relating determinations 

to logical implication (Fagin, 1977; Lloyd, 1987; Makowsky, 1987). There has been extensive 

work on the theory of FDs, of which some seminal contributions are (Armstrong, 1974; Fagin, 

1977; Beeri and Bernstein, 1979; Sagiv et al., 1981). Although work on FD theory has some­

what exhausted itself there has recently been extensive work in data mining for approximating
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FDs (Mannila and Raiha, 1992a; Savnik and Flach, 1993; Bell and Brockhausen, 1995; Huhtala 

et al., 1998).

Definition 2.2.6 (Data Dependency) A data dependency is a restricted integrity constraint in­

corporating a (specified) property that is to be satisfied by all instances of the database schema. 

□

Dependencies within the relational model allow for the incorporation of a more complex 

semantics via meta-data representations. We now formalise the FD, its axiom system, and the 

closure of FD attribute sets.

Definition 2.2.7 (Functional Dependency (FD)) A functional dependency over R (or simply an 

FD) is a statement of the form X —>■ Y, where X, Y C R. □

F is known as a set o f FDs over R and X —> Y is a single FD over R. We denote logical 

implication by |=. A key dependency is an FD of the form X —> R for some X C R.

Definition 2.2.8 (Satisfaction of an FD) Given r, a definite relation over R, an FD X —> Y is 

satisfied in r, denoted by r  J= X —> Y, whenever V ti, ^2 G r, if t\  [X] = £2 [X] then t\ [Y] = £2 [Y]. 

A set of FDs F is satisfied in r, denoted by r  f= F, whenever V X —>• Y 6 F, r  |= X ->• Y. □

FDs obey a set of axioms, shown to be sound and complete in (Armstrong, 1974), which are:

Definition 2.2.9 (Armstrong’s Axioms for functional dependencies) Given a relation schema 

R and X,Y,Z C R:

Reflexivity If Y C X, then X -> Y

Augmentation If X —>■ Y then XZ —> YZ

Transitivity If X —> Y and Y -> Z, then X —>• Z □

Definition 2.2.10 (Closure of an attribute set) Given a set F of FDs over a set of attributes X 

in schema R the closure of X under F, denoted X+ , is the set { A € R | F |= X —> A }. □

Xp refers to the closure of X with respect to F, that is the set of all attributes A G R such that 

X —y A  holds in F. We define F* to be the closure of F such that trivial FDs of the form X —>■ Y, 

where Y C X ,  are excluded.

Definition2.2.11 (Non-trivialclosure) F* = { X - > Y | X Y C R a n d Y C X j - X } .  □
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Definition 2.2.12 (Closure of a set of attribute sets) Given an FD set F we denote the closure 

of all possible attribute sets under F by CL(F). This is defined as CL(F) = { X | X C R and Xp = 

X }. □

Note that the schema R is always included in the closure of attribute sets for any FD set. 

The next lemma shows that F* and CL(F) are equivalent in characterising a set of FDs F. The 

non-trivial closure is relevant in data mining measures, discussed in Section 2.3.1.

Lemma 2.2.1 Given two sets of FDs, F and G, we then prove G * C F  =  CL(G) D CL(F)

Proof, (if) Assume, to the contrary, that CL(G) 2  CL(F). Therefore 3 X 6  CL(F) such that 

X ^  CL(G), implying that X is not closed in G. Then X j = XY, for some attribute set Y. This 

implies that X -> Y is in G but not in F, yet G *CF*, leading to a contradiction.

(only-if) Assume, to the contrary, that G* £  F*. Then 3 X —> Y 6 G* such that X —> Y ^ 

F*. Then Y C Xq but Y % X p, and so X j /  X p. Given that CL(G) 2  CL(F) it must be the case 

that any closed set in F must be closed in G, and so we have a contradiction. □

Definition 2.2.13 (Closure of a set of FDs) Given an FD set F we denote the closure of F by F+. 

This is defined as

F+ =  {X -> Y | XY C R and F |= X Y} □

An algorithm to compute the closure of a set of FDs is in (Abiteboul et al., 1995; Atzeni and 

De Antonellis, 1993) which runs in time linear to the size of the set FDs. The concept of a maximal 

set is now introduced; its data mining applications will be briefly discussed in Section 2.3.1 and 

Chapter 3.

Definition 2.2.14 (Maximal Set) Given X, a subset of schema R, and A 6 X then a set Y C X is 

a maximal set for A, if F ^  Y —> A and for any Z C X  such that Y C Z we have F |= Z —> A. □

Definition 2.2.15 (The set of all maximal sets) maz(F,X,A) = { Y C X | Y i s a  maximal set 

such that F ^  Y —> A }. I fFi s  understood from the context then it is written simply m ax(X,A); 

m ax(X ) denotes the union of m ax(X,A) where A 6 X. □

A maximal set is an attribute set X which for some attribute A is a largest possible set not 

determining A. We also define generator sets. The generator function, GEN, omits those sets from 

the closure of an attribute set which can be formed by the intersection of other sets in the closure 

to obtain a more concise representation. Theorem 13.1 of (Mannila and Raiha, 1992a) shows that 

m ax(X) = GEN(X).
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Definition 2.2.16 (The generator function) The generator function produces a set for X such 

that GEN(X) = { Y E CL(X) | Y C f |{  W E CL(X) | Y C W }} □

We now define the cover of a set of dependencies, useful for discovering equivalent FD sets.

Definition 2.2.17 (Cover of a set of Dependencies) Given sets F and G of FDs, F is a cover of 

G if F+ = G+ . A cover G is minimal for F if there does not exist a cover H of F such that | H | < | 

G |. A minimal cover is necessarily nonredundant, that is, Vd E G we have G \{d }  \/= d, though 

nonredundancy does not imply minimality. □

Example 2.2.1 From (Mannila and Raiha, 1992b), the set F = { A —> BC, B —> AD, CD —>■ E, E 

—)■ CD } and the set G = { A —> BE, B —> A, CD —> E, E —> CD } are equivalent. This is proven 

by showing that G |= F and F (= G. The non-trivial cases are showing that F \= A  —> E and G |= { 

A —> C, B —>• D }. To illustrate, A C may be shown to hold from G as we know A —> E holds, 

by transitivity A -» CD holds, and therefore A —> C is known to be satisfied by G.

To test if two covers, F and G, are equivalent we can check that every X —> Y E F is satisfied 

in G and vice versa. Using the algorithm presented in (Mannila and Raiha, 1992b) this can be done 

in time 0 ( | F | | | G | | + | G | | | F | | ) ,  where || X || denotes the number of attributes in X including 

repetitions. Alternatively, we can check for equivalence of the maximal sets. We now introduce 

some notation to aid the reading of the next section.

Definition 2.2.18 (Agreement set of two tuples) Given a relation r  over R, where t\  fa  are two 

tuples in r  the agreement set is defined as ag(ti, £2 ) =  { B E R | h[B] = ^[B]}.

The disagreement set is defined dually, disag(£i,£2 ) = R ? £2 )• n

Given an attribute A in disag(a,b) let X be the disagreement set of all attributes for tuples a 

and b apart from A, i.e. X = disag(a,b) \{A}. Then any set in the left-hand side of A must contain 

at least one attribute of X. Why is this so? Let us assume that it does not hold and that for a member 

of the left-hand side of A an attribute of X is not contained. This implies, however, that there exist 

two tuples which disagree on A when they have the same left-hand side. Obviously this violates 

F and so is not the case. X is therefore said to be a necessary set for A, used in dependency mining 

(Mannila and Raiha, 1992a).

Definition 2.2.19 (Agreement set of a relation) Given a relation r  over attribute set R, the

agreement set is defined as agr(r) = {a g (ti ,t2 ) | £i, £2 E r}. □

We now define Armstrong Relations (AR) and follow this with a discussion of database de­

sign and its relationship to data mining.



2.2. Relational Database Theory 32

2.2.3 Armstrong Relations

(Armstrong, 1974) introduced the concept of an Armstrong relation :

Definition 2.2.20 (Armstrong Relation) An Armstrong relation for F is a relation r  which sat­

isfies F+ and is such that for every FD a  ^  F+ for which F+ o, then r violates o. □

In theory, Armstrong relations (Fagin, 1982; Beeri et al., 1984; Demetrovics and Thi, 1995; 

Gottlob and Libkin, 1990; Levene, 1995; Mannila and Raiha, 1986) serve as “ideal” example 

relations, since they satisfy exactly the set of all logical consequences of the set of FDs specified, 

say F. Thus an Armstrong relation provides an example for all FDs that are logically implied by 

F and a counterexample for all those FDs that are not logically implied by F. One of the problems 

with Armstrong relations is that, in general, their cardinality is exponential in the size of F and 

the set of attributes, R, over which F is defined (Beeri et al., 1984). An Armstrong relation for a 

set of FDs, if deterministically generated (Mannila and Raiha, 1992a), always provides the same 

resulting relation. It would be highly desirable if varying Armstrong relations of different domain 

and tuple sizes may be generated as a side effect of the forming of example relations.

(Fagin, 1982) presents a survey of Armstrong Databases including descriptions of the tech­

niques for generating Armstrong Relations from a set of FDs. These are: (1) Use disjoint union 

to create an isomorphic copy of each relation and then form the union of all of the tuples in all 

of the relations. For each FD o which is not a logical consequence of the relations create a rela­

tion ra which obeys F but not a. Then form the union for all standard FDs, where the left hand 

side is non-empty, to give an AR. (2) Create agreement sets. The agreement set is formed such 

that GEN(F) C agr(r) C CL(F). (Beeri et al., 1984) construct an Armstrong relation by firstly 

computing the closure of the FD set F, CL(F), and then constructing a relation such that agr(r) 

= CL(F). (3) Direct products (used by (Grant and Minker, 1985b) to prove no Horn clause rep­

resentation exists for NDs). A relation is created for each o  outside of CL(F) which violates a  

and satisfies CL(F). The direct product of these is then formed. (4) Use the chase procedure, pre­

sented in Section 2.2.5. Given an Armstrong relation which obeys an FD set F and violates all 

FDs outside of CL(F) form a model where all FDs are violated using the chase which can cause 

new tuples and/or constants to be added to the database. We shall see in Chapter 3 how an evolu­

tionary technique using mutation and guided by ND satisfaction may often generate Armstrong 

relations (Collopy and Levene, 1996; Collopy and Levene, 1998a).

(Fagin and Vardi, 1983) shows that an Armstrong database may be generated for a set of in­

clusion dependencies and standard FDs. An inclusion dependency states that if some combination 

of values occurs in one part of a database it must also occur in another part.
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Lemma 3.1 (Beeri et al., 1984) shows that if E is a set of FDs and o  a single FD such that 

E ^  o then there exists a two tuple relation that obeys E but not cr. A by-product of this result is 

that it is always possible to add a tuple to a relation r satisfying E which violates o. A deficiency 

of deterministic processes for AR generation are that only one specific Armstrong relation is ever 

returned for a given FD set. (Beeri et al., 1984) present an analysis on the upper and lower bounds 

of the size of an Armstrong Relation based on the number of distinct entries in the relation, re­

ferred to as the generator sets which (Mannila and Raiha, 1986) later refine. (Mannila and Raiha, 

1986) show that the size of a minimal Armstrong relation for a normalised scheme R depends 

strongly on the number of keys for R. The possible exponential size of a minimal Armstrong re­

lation depends only on the number of dependencies, and not on the number of attributes.

An Armstrong relation should be as small as possible, as should the set of values used, 

though the smaller the relation the more difficult it becomes for the designer to locate all of the 

anomalies as opposed to an Armstrong relation which lists all examples of dependency violations 

in a pairwise format.

2.2.4 Relational Database Design

We now mention relational database design related to work presented in Chapter 3. Informally, 

database design attempts to remove redundancy and facilitate querying by the use of normalisa­

tion. A relation can be constructed to adhere to a series of increasingly restrictive normal forms 

introduced so as to prevent redundancy and (update) anomalies within the database, discussed in 

(Codd, 1972; Abiteboul et al., 1995; Atzeni and De Antonellis, 1993; Date, 1995; Maier, 1983; 

Ullman, 1988).

Keys provide the only method for tuple identification in the standard relational model, and 

they are therefore central to the retrieval of information and good database design. There are many 

key related properties whose determination is computationally intractable (Lucchesi and Osborn,

1978). We now present the superkey class, used within Boyce-Codd Normal Form.

Definition 2.2.21 (SuperKey) Given a relation scheme R and a set E of FDs which apply to it, 

a set of attributes X is a superkey for R if the FD X —¥ R G E + . □

Definition 2.2.22 (Boyce Codd Normal Form) Given a relation scheme R and a set of FDs E

which apply to it, R is in Boyce Codd Normal Form (BCNF) if for every non-trivial FD X -* A 

G E + , X is a superkey. □

We assume that all relations discussed in this thesis satisfy first normal form (INF), where 

each relation is flat, and present a database or relation satisfying BCNF as the ideal normal form,
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where each non-trivial FD has a superkey as its left hand side. BCNF attempts to overcome the de­

ficiencies in 3NF by dropping the constraint that non-prime attributes, those not in any key, which 

are allowed on the right hand side of FDs may violate the normal form . (Beeri and Bernstein,

1979) present an analysis method to achieve a BCNF relation by splitting relations successively 

which violate BCNF. No such procedures exist which are guaranteed to be constraint preserving. 

A non-mathematical treatment of normal forms is given in (Kent, 1983) which are then extended 

for temporal relations in (Jensen et al., 1992).

(Silva and Melkanoff, 1981) introduced the idea of example relations generated from a set 

of FDs and MVDs for database design purposes. Example relations give the database designer a 

guide to the information within a relation associated with a given set of dependencies. (Silva and 

Melkanoff, 1981) formalise a design technique which attempts to provide the database designer 

an iterative method of obtaining the FD set which most characterises a relation. More recently 

(Mannila and Raiha, 1986; Mannila and Raiha, 1992b), approached various database design prob­

lems with the goal of formalising methods and tools to produce schemas with specific properties. 

They introduce the technique of using example relations within the design process, notably as “an 

application of ARs”, by presenting an algorithm to deterministically generate ARs for the benefit 

of the database designer. (Beeri et al., 1984) note how an Armstrong relation, perhaps generated 

automatically from a set of FDs, is of much use in the design process from an application point 

of view. Automated database design has been seen as a goal for dependency theory (Beeri and 

Vardi, 1984).

In (Collopy and Levene, 1998a), summarised in Chapter 3, we present a probabilistic ex­

tension of this work, allowing the database designer to view many different example relations, 

though not necessarily ARs, for any given FD set specified over R. The size of the relation is 

governed by the database designer. (Mannila and Raiha, 1986) state, “A good example relation 

should not leave the designer any illusions about what can be stored in the database.” Our algo­

rithm for generating example relations achieves this. It is based on the following loop which we 

envisage during the database design process:

1. The database designer specifies a set of FDs, F, the maximum number of tuples in the ex­

ample relation, m, and the maximum domain size, d, for a relation. (The designer has the 

options of specifying m  and d so that relations of different structure can be viewed.)

2. A random example relation satisfying F, having at most m  tuples, and a domain ranging 

from 2 to d values is generated. The quality, in terms of its proximity to that of an Arm­

strong relation, for the FD set is measured and returned to the designer.
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3. The database designer either accepts F or modifies the parameters F, m  and d, and then 

returns to step (2).

Two aspects of this work are discussed subsequently; the evolutionary hill climbing algo­

rithm which uses NDs in a hill climbing fashion to obtain a relation satisfying an FD set is pre­

sented in Chapter 3 and the quality function used to obtain a proximity to an Armstrong relation 

for the output, which may be viewed as the data mining component of this work, is introduced 

in 2.3.3.

2.2.5 The Chase Procedure

If we have an attribute set R, an FD set F over R and a relation r  which does not satisfy F, r  ^  F, we 

can use the chase procedure to modify r  so that it satisfies F. This technique is known as the chase, 

introduced in (Maier et al., 1979) and generalised to tuple and equality generating dependencies 

in (Beeri and Vardi, 1984). We assume in algorithm 1, without loss of generality, that our domains 

are linearly ordered.

Algorithm 1 (CHASE(r, F))
1. begin
2. Result := r;
3. Tmp := 0;
4. while Tmp ^  Result do
5. Tmp := Result;
6. if 3 X —»• Y G F and 3£i, £2 G Result

such that 11 [X] = £2 [X] but £1 [Y] ^  £2 [Y] then
7. VA £ Y -X , £1 [A], £2 [A] := max(£i [A], £2 [A]);
8. end if
9. end while
10. return Result;
11. end.

Figure 2.1: The Chase procedure for FDs

Given that NDs and FDs are expressible in First-Order Logic (FOL) any FOL proof proce­

dure may be applied. The chase is however suitably specialised for FDs avoiding costly theorem 

proving procedures. Additionally, the chase procedure is a decision procedure in that it always 

halts. We can discover the closure of a set of attributes X by creating a two-tuple relation which 

agrees on X and disagrees on all other attributes. After the chase procedure halts (proven to occur 

in (Maier et al., 1979)) the agreement set in the relation r  consists of exactly the closure of X. We 

illustrate this with a small example for the FD set F = { T —>■ H, H —> C } and the relation r\ in 

Table 2.1. We wish to obtain the closure of T, shown in Table 2.2 after application of the chase 

where T+ = THC.
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T H C
2 1 1
2 2 4

T H C
2 2 4

Table 2.1: r\ before the chase Table 2.2: r\ after the chase, T+ = THC

In Chapter 3 we generalise the concept of the equality generating chase to cover NDs and 

in Chapter 4 we extend it to accept relations which contain indefinite information. Examples of 

the chase in use are given in (Abiteboul et al., 1995; Mannila and Raiha, 1992a). In (Lerat, 1986) 

it is noted that the chase turns a database consisting of extensional and intensional data into one 

containing extensional data only.

2.2.6 N um erical D ependency Theory

(Grant and Minker, 1985b; Grant and Minker, 1985a) introduced the concept of NDs as exten­

sions of FDs for providing the database designer with additional flexibility. They have a clear 

intuitive semantics which can easily be accommodated for many database representation issues, 

including cardinality constraints.

Definition 2.2.23 (Numerical Dependency (ND)) A numerical dependency over R (or simply 

an ND) is a statement of the form X —>k Y, where X, Y C R and k > 1. □

We let N be a set o f NDs over R and X -*k Y is a single ND over R, with k > 1. Intuitively, an ND 

X — Y is satisfied in a definite relation r over R, if each X-value in r  is associated with at most 

k Y-values in r; when k =  1 then the ND X —>-1 Y reduces to the FD X —> Y. For an ND X Y 

we refer to k as the branching factor. The satisfaction of X — Y with k > 1 is equivalent to the 

satisfaction of a Functional Independency (Gottlob and Libkin, 1990). NDs are generalisations 

of FDs which allow an attribute set to uniquely determine up to k different attribute set values, 

noting that k = 1 in the case of FDs. For any given FD set F and a relation r  the set of all possible 

approximations forms a complete lattice (Davey and Priestly, 1990); this is the basis for a metric 

we define in Chapter 3 and use for how well an ND set approximates F in Chapter 4.

Definition 2.2.24 (Satisfaction of an ND) Given a definite relation r  over R, an ND X —>k Y is

satisfied in r, denoted by r \= X —¥k Y, whenever VG, £2 ? • • • > ffc? tk+i € r, if t \ [X] = t 2 [X\ = . . .  

= tk [X] = tk+i [X] then 3i, j  such that 1 < i < j  < k + 1 and U [Y] = t j  [Y]. A set of NDs N is 

satisfied in r, denoted by r  |= N, whenever V X — Y € N, r  |= X —>k Y. □

We now present an example of the application of NDs in Table 2.3 in a teaching relation 

P L  A N  (Lecturer, Course). The intended semantics for this relation is that a lecturer can teach up 

to, but not more than, 2 different courses, written as Lecturer —t 2 Course.
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Lecturer Course
Mark
Robin
Robin
Mark
Sean

C320
B lla
B151
B151
C340

Table 2.3: relation P L  A N  (Lecturer, Course)

We now define cardinality constraints and show in lemma 2.2.2 that cardinality constraints 

restricted only by upper bounds are equivalent to NDs with empty left hand sides.

Definition 2.2.25 (Cardinality Constraint) A cardinality constraint over R (or simply a CC) 

for an attribute set X C R is a statement of the form c\ < | 7rx (R) | < c^ where c\ and C2 are 

constants. A cardinality constraint is satisfied if the formula holds. The formula may be restricted

to just having either an upper (C2 ) or lower (ci) bound. □

Cardinality constraints were introduced in (Kanellakis, 1980). (Liddle et al., 1993) surveys 

cardinality constraints and shows their widespread application in numerous data models.

Lemma 2.2.2 A cardinality constraint | 7Tx(R) |<  c  is equivalent to the ND 0 -» c X.

Proof. Trivial, given that 0 is a unique partition. □

Cardinality constraints are applied, as restricted NDs, in Chapter 6 . NDs were themselves 

generalised to branching dependencies in (Demetrovics et al., 1992). Informally, a branching 

dependency over R is a statement X Y which states that there do not exist <7 +  1  different 

tuples such that for at most p different values on X there are not <7 +  1  different values on Y.

Definition 2.2.26 (Branching dependency) A branching dependency over R (or simply a BD) 

is a statement of the form X Y where X, Y C R and p > 1, q > 1. □

Definition 2.2.27 (Satisfaction of a BD) Given a definite relation r  over R, a BD X Y is

satisfied in r, denoted by r  |= X Y, whenever VG, t2 , . . . ,  tq, t q + 1 € r, if | { t\  [X], £2 [X], • • •> 

*g+i [x ] } I < P then I { *i tYL *2 [Y ],. . . ,  t q + 1 [Y] } | < q. □

Note the special cases of branching dependencies where p =  1 such that the BD is A  B

is equivalent to a standard ND and when p = 1, q = 1 such that A  ^  ̂  B  then this is equivalent 

to a FD. We now present an example of a BD:
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Example 2.2.2 In Table 2.3 the BD Lecturer Course is violated. This is highlighted in the

first three tuples where we have Robin and Mark as the lecturers for { C320, B lla , B151}. Lec- 
(2)2)turer A  Course implies that at most two Lecturers teach at most two courses. Table 2.3 satisfies 

(2)3)
Lecturer A  Course.

The following lemma is a restatement of lemma 3.2 of (Demetrovics et al., 1992). Based 

on this we do not consider BDs any further within the mining process due to all cases satisfying 

NDs.

Lemma 2.2.3 Any BD X A satisfied in a relation r also satisfies X A.

Proof. No single partition on X contains more than q different values, therefore the relation 

r  |= X —}q A. □

In the sequel we frequently refer to partitions on attributes, implying the semantics of Defi­

nition 2.2.28, and we define mean NDs in Section 3.1.3 to be the sum of branching factors for an 

ND in all partitions divided by the number of partitions. We define an ND X —>k A  to be vacu­

ously satisfied if there does not exist a block B € r with B having at most k different values on 

A. We define the size of a set or NDs N to be the number of attributes appearing in N including 

repetitions.

Definition 2.2.28 (Partitioning of a relation) The partitioning of a relation r  with respect to the 

ND X A, is the partition {B \ , £?2 , . . . ,  Bw} of r , such that for each X-value, x £ 7rx ( r ) , there 

exists exactly one block Bi in the partition having the single X-value x, i.e. such that 7rx(Bi) = 

{x}. We denote the block whose X-value is x  by r[X, x], The projection on X of Bi is 7rx(Bi) =

{tpq 11 e Bi). □

In Chapter 3 we focus on the theory of NDS, NDs for data mining, and for NDs in a database 

design context. We now move on to a general outline on indefinite information in databases, the 

background for the work on the consistency problem in Chapter 4.

2.2.7 Indefinite Relations

Lipski’s 1979 paper (Lipski, 1979) formalised many of the methods for representing incomplete 

information within a database. Incomplete information theory must formalise the relationship 

between the external and internal representations of knowledge, the former corresponding to the 

real world and the latter to the database representation of it. (Abiteboul et al., 1995) define a 

database with incomplete information as a set of possible worlds where the table contains null 

values that may be replaced by domain value sets. The set of possible worlds of an incomplete
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database, given a table T , a relation with NULL values, is defined by (Abiteboul et al., 1995) 

as rep(T) = {u(T)|u is a valuation of variables in T }. In this thesis, incomplete relations are 

restricted to indefinite relations where a cell c may contain a set of values, denoting a disjunction 

of the values in c.

OR-objects (Imielinski et al., 1991) are a generalisation of marked nulls. An unmarked null 

value states that the value exists but is at present unknown. Null values with identifiers also allow 

for comparison between nulls. Additionally, OR-objects can be viewed as expressing disjunction 

which can be applied in many applications. Frequently a particular attribute value may be known 

to be one of a number of options though it may be unknown precisely which one, possibly until 

a later date or inference from data dependencies which are known to hold. For example we may 

wish to express the fact that Ship 23 sets sail from either Dover or Portsmouth. This is achieved 

using an OR-object, o\, inside a tuple, such as t(Ship 23,oi) with the domain of e>i, Dom{o{) 

= {Dover, P ortsm outh} to represent the disjunction. OR-objects are introduced in (Imielinski 

et al., 1991) where formalisations are presented for querying databases that contain OR-objects 

either against the possible worlds or the database, containing OR-objects, itself and details of a 

practical application for scheduling are provided.

Definition 2.2.29 (OR-Object) An OR-object, o\ , refers to a finite domain set of values, entitled 

Dom(oi), that is a disjunctive set where each element may replace the OR-object to obtain an 

instance, or possible world, of the database. A database containing OR-objects is called an OR- 

database. □

Definition 2.230 (Possible World) A possible world W of an OR-database D with a set of OR- 

objects O is obtained by replacing every OR-object o G O with a value from the respective 

Dom(o). □

Definition 2.2.31 (Conforming World) A possible world W of an OR-database D is conform­

ing with respect to a set of FDs F if it satisfies every /  G F. If a world W violates at least one /  G 

F it is said to be non-conforming. □

Definition 2.2.32 (Redundant Element) A member c G Dom{o{) of an OR-object oi is redun­

dant under a set of FDs F if every possible world that assigns c to o is a non-conforming possible 

world with respect to F. □

(Vadaparty and Naqvi, 1995) present a number of algorithms using OR-objects to improve 

query optimisation processes via the processing of OR-objects with respect to the set of FDs F
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that hold for a database. In Chapter 4 we compare a pre-processing algorithm for a relation with 

OR-objects to the chase algorithm we define for indefinite relations.

In the context of this thesis we refer to OR-objects as indefinite cells; they are equivalent to 

OR-objects. Related work on FDs in relations with incomplete information, using NULL values 

is presented in (Levene and Loizou, 1998; Levene and Vincent, 1997). Another interpretation 

for indefinite information semantics in the relational model is that of it being a probabilistic rela­

tion, which we now formalise. A probabilistic interpretation allows for the likelihood of possible 

worlds to be calculated.

Definition 2.233 (Indefinite relation) Let V  be a countable set of domain values. An indefinite 

tuple t over R is a total mapping from R into V(T>) such that V A G R, t(A) G V(T>). A tuple t 

over R is definite if V A G R, | i(A) |=  1, i.e. t(A) is a singleton. □

An indefinite relation over R is a finite (possibly empty) set of indefinite tuples over R. A 

relation r  over R is definite if all of its tuples are definite. In the following definitions we assume 

a uniform distribution and stochastic independence of tuples.

Definition 2.2.34 (The probability of a tuple) The probability of a value v G S , where S  G 

V  {T>), denoted by ps  (v), is

The set ofpossible definite tuples of an indefinite tuple t, denoted by POSS(f), is the set of tu­

ples given by {u \ u is definite and VAG R,w[A] G t[A]}. The probability of a tuples G POSS(t), 

denoted by pt{u) is given by Pt(u) = riAeRP*[A] MAD- We observe that Y  pt(u) = 1.
uePOSS(t)

□

Definition 2.2.35 (The probability of a relation) The set of possible relations (or possible 

worlds) of a relation r  =  { ti, t 2, • •., tn}, denoted by POSS(r), is the set of relations given 

by {s | s =  {^i, u2, u n} and ui G POSS(ti), w2 € POSS(£2), POSS(tn)}.

The probability of a relation s G POSS(r), denoted by pr(s), is given by

Pr{s) =  IN  -u), where u G POSS(t) andt G r
uEs

We observe that Yt, Pr(s) = 1. 1=1
sGPOSS(r)

In Tables 2.4 and 2.5 we see indefinite data in a relation. The OR-object model uses the labels 

oi and o2 to denote or-object sets, equivalent to {1,2} and {3,6}, respectively. Tables 2.6 and 

2.7 represent, respectively, non-conforming and conforming possible worlds for the FD A  —> B. 

Note that in Table 2.6, a non-conforming possible world, the ND A  —>2 B  is satisfied.
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A B
{1,2}

2
5

3
4

{3,6}

A B
o\ 3
2 4
5 02

Table 2.4: OR-object indefinite relation Table 2.5: Indefinite relation

A B
2 3
2 4
5 3

A B
1 3
2 4
5 3

Table 2.6: Non-conforming possible world Table 2.7: Conforming possible world

We now motivate NDs and indefinite information by providing an example where the tradi­

tional FD is too strict and a weaker integrity constraint is required. For this we claim that the ND 

is a worthwhile generalisation. Table 2.8 shows how we might want to represent indefinite infor­

mation in a teaching relation P L A N  (Lecturer, Course). Irrespective of whatever courses Mark 

and Robin decide to teach no definite relation extracted from P L A N  will satisfy the FD Lecturer 

—» Course though all satisfy the ND Lecturer -*2 Course. This may be the desired goal of the 

database designer who wishes to represent the fact that a Lecturer can teach up to two courses 

in a year. We formalise this notation in Chapter 4 where we use ND set satisfaction within the 

possible worlds in indefinite relations to approximate FD set satisfaction.

Lecturer Course
Mark
Robin
{Robin, Mark}

{B lla, C320}
B lla
B151

Table 2.8: An indefinite relation P L A N

2.2.8 Temporal Databases and Temporal Dependencies

There are a number of different methods for modelling temporal data within the relational model; 

not least due to the fact that there may be many different applications and requirements of a tem­

poral database. These may range from financial data storage to recording sales data or simply 

storing dates for birthdays.

A temporal relation can be considered as one which adds a third dimension, time, to a stan­

dard relation. A two-dimensional relation corresponding to a given time is referred to as a snap­

shot relation. There are two prime modes for interpreting time in a relation, valid and transaction 

time, which we now define, extracted from (Jensen et al., 1998):
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Definition 2.2.36 (Valid Time) Valid time represents the time over which the fact to which the 

tuple is attached is true within the world or reality which we are modelling. Valid time is usually 

supplied by the user. □

Definition 2.2.37 (Transaction Time) The transaction time attached to a tuple is the time at 

which the tuple was entered into the database until it is logically deleted. A transaction time may 

be associated with any database object, implemented via a system generated transaction commit 

time. □

In the past transaction time may have been represented implicitly though with the increase of 

data mining and data warehousing systems this is more likely to now be explicit also. We assume 

time, within the context of this thesis, to be valid time. We also assume that the reader is familiar 

with the interval representation of time (Allen, 1984). The other key issue in temporal databases 

(and also temporal reasoning and planning research) is that of temporal granularity (Bettini et al.,

1996). We are not concerned specifically with granularity problems though we refer to problems 

that granularity issues might pose as and when they may occur. There are also many options for 

representing the time domain; we assume that time is discrete.

There has been a growing body of work on dependencies in the temporal domain. In a tem­

poral database model dependencies extend to cover dynamic behaviour within the database, dy­

namic implying changes over time. As such, a temporal dependency may restrict the evolution 

of the database. Much work on temporal dependencies makes use of temporal logic (Emerson, 

1990; Manna and Pnueli, 1992) which we also assume the reader is familiar with. The field of 

temporal dependency satisfaction is directly relevant to temporal data mining.

(Vianu, 1987; Vianu, 1988) introduced dynamic FDs with a view to integrating dependencies 

into the relational model which constrain the evolution of a database. We now define an Action 

Relation so that we can easily present dynamic FDs.

Definition 2.2.38 (Action Relation) Given two relations r \ , r 2 such that r 2 is the relation gener­

ated after an update (insertion, deletion, and/or modification) is applied to r i  we form the action 

relation ra from r\ and r 2. For all attributes A  € r t- we add a subscript i to each attribute so 

that it corresponds with the temporal state it is in and we then create the action relation ra where 

ra =  {f x 8{t) 11 G ri}  for all tuples t  in ra where S(£) is the updated tuple t £ r 2. □

Definition 2.2.39 (Dynamic Functional Dependency (DFD)) A dynamic functional depen­

dency X —>• Y across states r*i, r 2 is an FD over the action relation ra formed by r i  and r 2 such 

that for each A*■ € Y we have XAt- D r i ^  0 and XAt fl r 2 ^  0. □
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Note that the states formed by the action relation need not be contiguous. An example pre­

sented in (Vianu, 1987) is the DFD M E R IT \S A L A R Y \  —>■ S A L A R Y 2 , implying that the old 

merit and salary of an employee determine the new salary. We also note that dynamic depen­

dencies could be easily extended to dynamic numerical dependencies. Examples for dynamic 

numerical dependencies might include M A N A G E R 1G R A D E 1 —t k E M P 2 , stating that the 

grade of a manager determines subsequently the number of employees he is allowed to manage, 

perhaps as part of a career development rule. We assume the interim time period between the two 

states is of a fixed length.

Another extension for dynamic NDs may be a change of the branching factor in an ND 

being determined by old dependencies. Using => to denote implication, we may form a rule 

(M A N A G E R 1G R A D E 1 ->* E M P X) =» (M A N A G E R 2G R A D E 2 -+m E M P 2), stating 

that the grade of a manager taken together with the number of employees he currently manages 

(k) determines subsequently the number, m, of employees he is allowed to manage taken together 

with his grade. This type of ND is different from a FD in that the dependency itself is modified 

based upon the structure of the data in a previous state. Though potentially useful we do not con­

sider these dependencies further.

(Jensen et al., 1996) introduce the TFD, X -4- Y, which holds in a temporal relation schema if 

for all snapshots the FD X —»• Y holds. X Y refers only to temporal data models though (Jensen 

et al., 1996) note that FDs are intensional in that they apply to every possible extension which 

the TFD represents. (Wijsen, 1995) defines two temporal dependencies using operators based on 

standard temporal logic, noting that m axtim e  represents the final point in time, assuming time 

is represented by a finite set:

1. A Temporal Functional Dependency □ (X —> Y) which is satisfied at time i if X —> Y holds 

in all states from i to m axtim e.

2. ADynamic Functional Dependency Q  (X —> Y) which is satisfied at time i if X —»• Y holds 

i n z , i - | - l o r X - * Y  holds if i = m axtim e.

We remark that the temporal dependencies of (Vianu, 1987; Wijsen, 1995) may be mined, 

at each state, similarly to standard FDs.

(Gertz and Lipeck, 1995) introduces transition graphs for analysing state sequences. These 

graphs are labelled such that transitions within a sequence have constraints attached to them; in 

such a way an admissible lifecycle of an object, as well as other concepts, can be represented in a 

temporal database. Transition graphs may be used to recover from information gaps, which may
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occur from either an update or a delete, providing the time instants fill the gap exactly and that 

the loop label is valid when the gaps meet.

(Chomicki, 1994) introduces the use of linear temporal logic (LTL) (Emerson, 1990) to rep­

resent integrity constraints in a database. Temporal integrity constraints can be easily stated in 

LTL though there is no notion of any transition constraints. (Chomicki and Toman, 1998) dis­

cusses the application of temporal logic in databases noting that it allows querying without ex­

plicit reference to time. Temporal logic is easily applied for the specification of temporal integrity 

constraints in a relational database. Temporal logic may also be used to define constraints on the 

evolution of a database. An example follows.

Example 2.2.3 We represent the intuition in a company database containing relations 

employee^name) and trainee(name), extendible with time attributes, that all employees must 

have, at some time in the past (♦), been trainees:

->3x(employee(x) A (-i+trainee(x)))

Given that a temporal constraint may relate to an event that has not yet occurred, for exam­

ple, there may be trainees who are not yet employees, then updates are only allowed within such a 

database if all of the constraints may be potentially satisfied (Chomicki and Toman, 1998). There 

has been a large amount of work on restricted classes of temporal logic for dependency satisfac­

tion including the restriction of temporal operators to past connectives which apply only to finite 

histories. There are numerous methodologies for temporal dependency representations (Jensen 

et al., 1996). We do not consider these directly in our work though our sequence logic allows us to 

view specific formulas as NDs holding over certain time periods, detailed in Chapter 5. The tem­

poral logic we introduce is restricted to expressing patterns within temporal sequences, defined 

with regard for knowledge discovery purposes.

2.2.9 Time Series and Temporal Databases

As we shall see, much of our temporal work has a relationship with time series analysis. We now 

introduce time series and formalise the relationship with temporal databases. The dichotomy be­

tween temporal database research and time series analysis, partially addressed in (Schmidt et al., 

1995), is now disappearing given the incorporation of data mining and statistical functions into 

DBMSs and related increases in querying and computation speed.

(Segev and Shoshani, 1993) defines the properties of time sequences for the creation of a 

temporal data model. These properties include their type, granularity and lifespan, which speci­

fies the start and end time of a time sequence. A temporal data value is defined as a triplet (s , t, a)
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where s is an identifier for an object, t is the time, and a the attribute value. In the model these 

values are totally ordered in time. For example, a time sequence may be the midday price of a 

given share over a period of two years. The triplet may be reduced to a sequence of (t , a) for a 

known object, referred to as a time sequence collection. The object s may also denote complex 

instances corresponding to values obtained for composite clauses. A class of retrieval operators 

are developed for this model, of which the closest to time series functions are the aggregation 

operators for max, sum etc. Clearly these operators are too naive for time series analysis.

Given a relation over R = ABT, where T is time, and there exists an attribute over a numerical 

domain, say A, and each tuple occurs with a constant time between each point then 7Ta(R) will 

represent a time series. If each tuple does not occur at constant times the relation may be folded 

or unfolded to obtain records over fixed intervals.

Definition 2.2.40 (Time Series) A sequence {xn : 0 < n < N }  of N  observations, indexed by 

the time at which they were taken. These may be modelled by random processes. □

Time series analysis usually requires accounting of the order of observations; which are in 

general not independent implying that forecasting is possible. A deterministic time series is one 

which can have its future predicted exactly, though it is obviously of minimal worth. In practice, 

time series occur frequently in the economic domain, for example, in successive share prices. 

There also exist numerous meteorological and geological time series, for example.

Essentially, any time series analysis attempts to predict y (N  +  1), y (N  +  2), and so on, 

using the values in the sequence y (1), y (2) , . . . ,  y (N ) . The quality of predictions in a time series 

context is given by:
Y>t(observationt — predictionf)2 

Tit{observationt — observationt-i)2

If the above is less than one then this implies an improvement over the random walk. A clear 

overview of many of the uses of time series is presented in (Weigend and Gershenfeld, 1994) 

which also denotes the three main aims of time series analysis as being: (1) forecasting which 

attempts to predict short term system evolution, (2) modelling which attempts to describe long 

term system behaviour, and (3) characterisation which attempts to determine the fundamental 

properties of a system. We might say that we use our logic for property discovery to characterise 

one or more temporal sequences, and possibly to aid forecasting.

2.3 Dependency and Temporal Data Mining

We now move on to present the background on data mining related to this thesis. Firstly, we in­

troduce functional dependency data mining, before considering its relationship with ND approxi­
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mations in Chapter 3. We discuss similarity measures for FDs, sampling procedures for databases 

and temporal data mining, in particular temporal rule discovery research.

2.3.1 Functional Dependency Data Mining

Dependency inference is a key area in the rapidly developing field of data mining. This section 

focuses on the inference of functional dependencies. Dependency mining is also concerned with 

inference of inclusion, join, multivalued and algebraic dependencies, not examined in this thesis. 

In recent years work has progressed from the inference of FDs in relations to methods to infer 

approximations to FDs, based on the real-world requirements where many large databases con­

tain noise making exact FD inference unfeasible. We first highlight a potential problem with FD 

inference when there are FDs with multiple attributes on their left hand side.

Lemma 2.3.1 A relation schema R with | R |=  n has n2n~1 possible non-trivial FDs.

Proof. For each attribute AG R there are 2n~1 attribute sets in R \{A}. □

As lemma 2.3.1 shows, there is an exponential number of possible FDs in the number of 

attributes which may hold in a relation. We note however that many real-world databases have 

numerous attributes, notably many of the datasets in (Blake et al., 1998). However, in a relation 

containing, say, 11 attributes it is highly likely that AB . . .  GH —>• I is satisfied functionally or 

close to functionally, due to the attribute set AB . . .  GH having a significant number of value 

combinations even within a binary database. We therefore suggest restricting the left hand side 

of attributes to a reasonable number for dependency discovery. This is a motivation for a use 

of a dependency template, provided by the user, which contains those FDs that he wishes to see 

approximated. We use this in our work in both indefinite and temporal relations.

Definition 23.1 (Dependency Inference problem) Given a relation r, the dependency infer­

ence problem is is to find a small (if not the smallest possible) cover for the set of all dependencies 

in r. □

The functional dependency inference problem, initially described in (Mannila and Raiha, 

1986), is to find a set of functional dependencies equivalent to the set of all functional dependen­

cies that hold for a given relation r.

To test for satisfaction of a FD in a relation requires 0 (n 2) comparisons, where n is the num­

ber of tuples within the relation. For a set of FDs this is computationally expensive and so tech­

niques for approximating the set of functional dependencies are discussed, presented in (Man­

nila and Raiha, 1994; Kivinen and Mannila, 1995; Piatetsky-Shapiro and Matheus, 1993; Savnik 

and Flach, 1993; Schlimmer, 1993; Shen, 1991). (Schlimmer, 1993), (Savnik and Flach, 1993)
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and (Piatetsky-Shapiro and Matheus, 1993) use probabilistic measures. (Savnik and Flach, 1993) 

infer dependencies from a database using dependencies which are known to be invalid in the 

database as well as the valid dependencies. (Bell and Brockhausen, 1995) discusses the problem 

of dependency inference within real world databases where issues concerning dependency infer­

ence after updates are considered. Recently (Huhtala et al., 1998) has looked at improving the 

efficiency of approximate FD data mining. They maintain information about which rows agree 

on a set of attributes, partitioning the relation on these different values. This then allows FD in­

ference to reduce to checking that the rows agree on the left hand side whenever they agree on 

the right hand side. Each set within a partition is known as an equivalence class.

Example 2.3.1 In relation P L A N , given in Table 2.3, we note that attribute Lecturer agrees 

on tuples t\ and £ 4  as well as £2 and £ 3 . Attribute Course agrees only on tuples £ 3  and £ 4 . The 

partition with respect to Lecturer is =  {{1,4}, {2,3}, {5}}. The partition with respect to 

Course is ir{c} =  {{1}, {2}, {3,4}, {5}}.

A partition 7r0 refines partition 7Ti if every equivalence class in 7Tq is a subset of some equiv­

alence class in 7Ti. (Huhtala et al., 1998) show that an FD X -> Y holds if and only 7rx  refines 

Try. This work may be extended with regard to the mining of NDs by examination of equivalence 

classes, noting that an ND X —yk Y will hold by counting the number of subsets each member of 

the equivalence classes of 7rx  has in 7Ty where k is the maximum number across all equivalence 

classes. Optimisations, used by (Huhtala et al., 1998), principally the removal of equivalence 

classes of size 1, noting that they can not violate an FD, and pruning of the search space, enhance 

the efficiency of FD mining to increase linearly with increases in the number of rows.

Uses of dependency inference include database design, query optimisation, determinations 

and various constraint satisfaction procedures. Machine learning can be said to be the inference 

of general rules from instances of data and, as such, dependency inference is an attractive branch 

given that for the instances of data, the database itself, there always exists a concept which fits 

the data set, namely the dependency set (Mannila and Raiha, 1994). (Mannila and Raiha, 1986) 

show the dependency inference problem to be the converse of the generation of an Armstrong 

relation for a given set, F, of FDs. (Bell and Brockhausen, 1995) notes three possible approaches 

to the dependency inference problem: (1) Enumerate and verify all possible data dependencies, 

(2) infer as much as possible and prevent unnecessary queries, and (3) draw inferences from the 

verified and invalid data dependencies.

In (Kivinen and Mannila, 1995) the problem described is to find a cover Fc of the set of 

FDs which hold in r, where Fc is a minimal set. Algorithms to do this are in the worst case
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exponential in the size of the smallest cover of the dependency set, as presented in (Mannila and 

Raiha, 1994). Therefore (Kivinen and Mannila, 1995) suggest an approximation algorithm. The 

prime results of their work are measures on the error of a dependency /  holding in a relation r  

and an algorithm for finding, with high probability, a set of FDs, F, such that d(F, dep(r)) < e, 

where d is a distance measure, e is the allowed error and dep(r) denotes the FD set holding in 

r. The algorithm which Kivinen and Mannila have implemented works in polynomial time with 

respect to J and the size of the smallest cover of F. Of particular interest are the dependency error 

measures which are used, to which we refer to in Section 2.3.3.

(Mannila and Raiha, 1992b) present an algorithm for dependency inference of a cover in a 

relation r, using hypergraph transversals, or hitting sets (Eiter and Gottlob, 1995). We briefly 

introduce this procedure. hypergraph is a family of subsets of R. A set R  of subsets of R  

is a simple hypergraph if no element of R  is empty and if X , Y  € R  and X  C Y  imply that 

X  = Y . The elements of % are referred to as the edges of the hypergraph and the elements of R 

are the vertices. A transversal T  of R  is a subset of R  intersecting all of the edges of R  such that 

T  fl E  ^  0 for all E  G R . A minimal transversal of R  is a transversal T  such that noT; C T  is 

a transversal. We denote the minimal transversals by Tr(R).

(Mannila and Raiha, 1992a) prove that the complement of the set of maximal sets, 

cmax(A) =  | W  E max (A)}, is a hypergraph. (Mannila and Raiha, 1992a) presents

an algorithm for dependency inference, of polynomial time in the size of | r  |, | R  |, and the 

product of the sizes of the cmax sets. The algorithm computes cmax for the max sets which 

hold in a relation and then forms a cover of these dependencies using transversals. Lemma 13.3 

of (Mannila and Raiha, 1992a) shows that Tr(cmax(A)) = lhs(A) where lhs(A) is exactly the set 

of elements X C R  such that, for an FD set F, F |= X -* A, there does not exist Y C X where F |= 

Y —> A. Hypergraph transversals may therefore be used for dependency discovery. We illustrate 

this procedure with a small example.

Lecturer Course Room
Robin C320 G il
Mark B lla 227
Robin B lla G il

Table 2.9: Relation P L A N 2 (Lecturer, Course, Room)

Example 2.3.2 In relation P L A N 2 , given in Table 2.9, we abbreviate the respective attributes 

Lecturer, Course, and Room to L, C, and R. Firstly we form the disagreement sets and remove any
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subsets to obtain the cmax values for each attribute. This gives disag^ = { LCR, LR }, disagc 

= { LCR, C }, and disagc = { LCR, LR }. We have, after superset removal, cm ax l  = { LR }, 

cm axc = { C }, and cm axr  = { LR }. We now form the hypergraph transversals such that lhs(L) 

= { L, R }, lhs(C) = { C }, and lhs(R) = { L, R }. Therefore we may infer the dependency set F 

= { L —>-R, R —>L}  from P L A N 2 , assuming removal of trivial FDs, implying that a Lecturer 

teaches only in one Room and that a Room only has one Lecturer teach in it.

(Mannila and Raiha, 1992b) state that it is one of the aims of dependency inference to ob­

tain algorithms which work in polynomial time in the number of different minimal left-hand sides 

of each attribute. (Bitton et al., 1989; Mannila and Raiha, 1992a) also present algorithms using 

the behaviour of disagreement sets to optimise the discovery process, as does (Savnik and Flach,

1993). (Savnik and Flach, 1993) provides a bottom-up inductive approach with a view to au­

tomating data dependency creation via discovery of the dependencies from the existing relations 

within the database. Savnik and Flach define the process of inducing FDs using invalid depen­

dencies, which will all be contradicted by a given relation. We now formalise this:

Definition 2.3.2 (Invalid Dependency) A FD is invalid in a relation r  if it is contradicted by two 

or more tuples within r. □

Definition 2.3.3 (Positive Cover) A set of dependencies F is a positive cover for relation r if  and 

only-if

1. All FDs are of the form X —> A  where A is a single attribute.

2. For all functional dependencies that are satisfied in r  there is a more general dependency 

in the positive cover so that if X C Y then X —> A  is more general than Y —>• A. □

(Savnik and Flach, 1993) presents the notion of negative cover so that every pair of tuples 

need not be examined for contradiction of a dependency which allows inference of all dependen­

cies contradicted by the relation. In contrast to the above, in a negative cover all invalid depen­

dencies in r there is a more specific dependency in the positive cover so that if X D Y then X 

—> A  is more specific than Y —y A. Invalid dependencies are identified by comparing each pair 

of tuples within a relation and splitting their attributes into two partitions, one for equivalent at­

tribute values the other for non-equal attribute values. The checking of dependency satisfaction 

then becomes a simple search for more specific dependencies in the negative cover. A problem 

with this approach is the removal of meaningless and useless data, the former relating to trivial 

dependencies and the latter relating to information that can be deduced using Armstrong’s ax­

ioms. (Bell and Brockhausen, 1995) present procedures for FD discovery in standard SQL. The
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results are shown to be poor with respect to efficiency but the methods can be applied to large 

databases and SQL is eminently portable. Fuzzy FDs (Bose et al., 1994; Hale et al., 1994) may

also be viewed as approximations to FDs. A fuzzy weight can represent either the degree to which 

the tuple belongs in the relation or the global confidence level in the information that is stored in 

the tuple. To prevent multiple weights over R for the same attribute it is assumed that weight is 

a special attribute and the FD R —»■ W eight holds. Fuzzy subsets can be viewed as a collection 

of weighted subsets. Rough sets, introduced in (Wong and Ziarko, 1986), may also be used for 

FD approximation. Each attribute A has a class description which is the set of regions into which 

each value of X will fit. From this upper and lower approximations may be formed based on exact 

and minimal set membership of the attributes. These classifications may then be used to test for 

FD satisfaction (Beaubouef et al., 1995).

We present some results for mining of NDs for approximating FDs in Chapter 3.

2.3.2 Temporal Dependency Data Mining: A review

A significant amount of work has been carried out on data mining within temporal databases. Tem­

poral Data Mining generally takes the form of finding interesting patterns (Berger and Tuzhilin, 

1998) or rules (Das et al., 1998; Mannila and Toivonen, 1996a). Our approach uses a number of 

features, similar to and developed independently from previous work. We introduce these com­

ponents followed by a brief outline of knowledge discovery research conducted on time series. It 

is important that the reader appreciates the highly disparate goals between our work (and the as­

sociated work presented here) and that of time series methodologies using neural network or con- 

nectionist architectures (Weigend and Gershenfeld, 1994; Faraway and Chatfield, 1995). Naively, 

we demarcate this from knowledge discovery research in that its goal is to create neural networks, 

using many different mechanisms, which successfully forecast the values of a time series. It is not 

concerned with understanding the time series but simply forecasting future values. Alternatively, 

knowledge discovery research is user-oriented, attempting to provide understandable rules that a 

data miner can easily follow without a significant knowledge of statistics or time series analysis 

techniques. This may be said to be a key goal of our own research, presented in Chapters 5 and 6.

Nearly all temporal data mining research breaks an input temporal sequence into subse­

quences. The ability to find a global model describing a sequence is very difficult for any non­

trivial time series (Enders, 1995).

(Mannila et al., 1995; Mannila and Toivonen, 1996a; Mannila and Toivonen, 1996b) define 

episodes for modelling event sequences. An event is a tuple with a timestamp attached. Also, x 

occurring within [ t i , t2] where ti < t2 implies that x holds at all points p where h  < p < t2.
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Attached to each episode rule is a frequency of each episode occurring within a sequence. There­

fore (Mannila and Toivonen, 1996a) states the episode rule discovery task is to find all frequent 

episode rules, where the frequency may be specified by the user. We shall show how properties 

discovered by our logic are related to issues of frequency in Chapter 6. (Mannila and Toivonen, 

1996a) restrict the rule discovery task to serial or parallel episode discovery where parallel im­

plies that there are no conditions on the relative order of events. Mannila and Toivonen prove that 

finding whether a serial or parallel episode holds within a sequence is an NP-complete problem 

therefore the discovery is necessarily restricted. This definition of episode is different from the 

accepted definition of episode in temporal logic.

Definition 23.4 (Episode of (Mannila and Toivonen, 1996a)) An episode is a conjunction 

a £ _ Z{) where y,-, Z{ are event variables and </>t (y»-, Z{) is of the form a(x .A ), j3(x. A, y.B) 

or z.T  < y.T denoting a unary predicate on the domain of A, a binary predicate on the domains 

of A and B, or a temporal ordering relationship, respectively. □

Definition 23.5 (Episode Rule) An episode rule takes the form P[V] => Q\W \ where P, Q are 

episodes and V , W  are real numbers denoting that if P  occurs throughout the interval [t i , t 2] with 

V  > t2 — h  then Q occurs in [£i, £3 ] with W  > £3 — t i . □

Algorithms presented are based upon discovery of simple episodes, namely those without bi­

nary predicates, using minimal occurrences. An occurrence of a simple serial episode is minimal 

over an interval [£,-, tj] if it does not hold over any subinterval of [£,-, tj\. The discovery process 

exploits this by finding minimal occurrences and increasing the episode size for serial episode 

discovery. We now illustrate this with an example.

Example 2.33 An example of a rule found is (dept, page, spring term 96 [15s] => classes spring 

96 [30s]) (confidence 0.83). This rule tells us that 83% of cases where the department page and 

the spring term 96 page were accessed within 15 seconds resulted in the classes spring 96 page 

being visited within 30 seconds.

The results are shown to be useful for expressing connections between events. Our temporal 

logic was similarly defined to express connections between events.

(Padmanabhan and Tuzhilin, 1996) claims to extend this work to the discovery of temporal 

logic patterns. This work simply uses temporal logic to represent episodes expressed in clausal 

form, for example holds(stock) —> value Jncrease(stock, 25). We agree that temporal logic is 

an expressive and valuable mechanism for rule discovery though the implementation using data- 

log, given in (Padmanabhan and Tuzhilin, 1996), provides no results due to inefficiency; if any­
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thing, this shows how we need to be careful of efficiency considerations when constructing data 

mining algorithms, particularly in the temporal domain, where there may be many possible rules.

(Berger and Tuzhilin, 1998) uses a subset of propositional temporal logic, incorporating op­

erators ABkB, AUB, A N B , to denote k events before, until, and next respectively. They at­

tempt to discover patterns attached to a defined measure of interestingness, defined as the ac­

tual number of occurrences of a pattern exceeding the expected number of occurrences. This is 

equivalent to specifying a required frequency though it is complicated by attaching probabilities 

to each event. However, with probabilities attached the discovery of larger from smaller patterns 

becomes non-monotonic. Therefore, given a temporal logic pattern containing only Before (B) 

operators, the discovery of interesting patterns is shown to be NP-complete (by reduction to an 

instance of CLIQUE (Garey and Johnson, 1979)). To deal with this a restriction is placed on the 

temporal logic and the maximum length of patterns discovered. We present a simple example 

from (Berger and Tuzhilin, 1998).

Example 2.3.4 Given the 20 item string A B A B A B A B C C C C C C C C C C C C  where A, B, 

and C  are events, the expectation of both A and B  is 5 implying that both have a 0.25 proba­

bility of occurring. The expectation E of A N B  is then Fr(A )Pr(B )(N  - 1) = (0.25)(0.25)(19) 

where N is the length of the string. Given that A N B  occurred 4 times the interestingness is 

4/((0.25)(0.25)(19)).

Naive algorithms presented are based on expanding an interesting pattern with prefix 

and suffix operators and then examining the interestingness of the generated rules. The non­

monotonicity of the approach prevents interesting patterns being expanded by anything more 

than a single literal preventing conjunctions (not included in their syntax) of temporal operators 

being discovered. Results show that the length restriction prevents significant knowledge from 

being discovered once the data set grows too large. In the case of simulations conducted on web 

log data this was 1400 points. We compare this work with our own in Section 6.8.

(Srikant and Agrawal, 1996) essentially applies the discovery of association rules in a tem­

poral setting. We now present data mining research on time series rule discovery. (Faloutsos et al.,

1994) present the goal of mining a time series as that of searching for a subsequence in the series 

which matches a given query. The discrete Fourier transform is used for mapping the time se­

ries into the frequency domain and then forming a trail in multi-dimensional feature space based 

on the first /  coefficients so that the time series can be clustered into rectangles in feature space. 

This allows similarity queries to then be answered. Results show these procedures to be more 

efficient than standard sequential scanning processes. (Agrawal et al., 1995; Das et al., 1997;
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Rafiei and Mendelzon, 1997) compare the similarity of time series by examing non-overlapping 

time ordered pairs of subsequences. Again the subsequences are similar if the number of matches 

exceeds a given threshold. Offsets, gaps, and scaling are all addressed by this model. (Das et al.,

1997) presents a number of transformation functions specifically to handle outliers and scaling. 

The goal here is to approximately map one sequence into another. (Keogh and Smyth, 1997) has 

the same goal and uses templates which are deformed by a probability distribution. We refer to 

the use of our logic for similarity assessment in Section 6.9.

(Das et al., 1998) is closely associated with our research primarily in that it attempts to dis­

cover rules from time series. Given that we may view ND sequences as time series then our logic 

can be said to have the same goal. (Das et al., 1998) initially discretise the series and then at­

tempt to cluster them according to similarity of the pattern. The discretisation creates a sequence 

of primitive shapes related to the chosen window size. The measures for clustering may range, 

in the simplest instance, from Euclidean distance to more sophisticated measures, not discussed 

here. A frequency is then attached to produce rules which are similar to association rules.

Definition 2.3.6 (Temporal Rule of (Das et al., 1998)) A temporal rule is of the form A ^  B 

which denotes that if A occurs, then B occurs within time T. A frequency of the number of oc­

currences is associated with the rule as is a confidence in the rule obtained from the frequency 

divided by the number of occurrences of A, the left hand side, in the sequence. □

(Das et al., 1998) also discusses extensions to multivariate series by having conjunctions of 

different patterns on the left hand side of the rule. This extends the applicability of their method 

and is discussed more fully in Chapter 5.

2.3.3 Similarity Measures for Functional Dependency sets

Data mining tools often require a quality function which assesses and classifies the knowledge 

discovered in a form which is understandable by the user (Holsheimer and Siebes, 1994). In this 

section we briefly present a synopsis of measures used to approximate the distance from ND sat­

isfaction in a relation, of which NDs are a category, and then we present methods to compare 

distance between FD sets themselves.

In Table 2.10 we present some approximation measures used for FDs. The error measures of 

(Kivinen and Mannila, 1995) are all based, in some sense, on the proportion of a relation which 

violates an FD X —> Y. The measure of (Piatetsky-Shapiro and Matheus, 1993) requires a fre­

quency table, shown in Table 2.11, which sums the different values for each partition on the FD, 

which we detail for the relation PLAN in Table 2.3. The values given for FD approximation vary 

significantly depending on the choice of measure. The different results depend on how we choose
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FD Approximation Methods Values from Table 2.3
(Kivinen and Mannila, 1995) | r | = 5 in all cases
Error measure for the number of violating tuple pairs in a relation r  for an FD 
X - ¥  Y:

4
2 5

<7i(X-> Y) =

Error measure for the number of violating tuples in a relation r for an FD X —>• 
Y:

4
5

cyr v \ | {£ | t  e  r, 3tj € r  such that t[X] =  ti\X], t[Y] ^  t*[Y]} | 
<72 (X —» Y) =

Approximation measure for the size of the largest partition s in a relation r 
which satisfies an FD X —¥ Y:

2
5

,,v , m a x{  1 s II s C r ands 1= X —¥ Y}
<73 (X Y) =  1 ----------11 " " ,  ■----- !=------------

1 r 1

(Piatetsky-Shapiro and Matheus, 1993)
Conditional probability that any two rows in r  agree on Y, given they agree on 
X, pdep(X,Y) =  p(ti  [Y] = t2 [Y] | ti[X] = t2[X]) where

3
5

i K  M  « 2

* ( x ’y )  =  m S P

where K ,  M  are the number of different values in attributes X and Y, c; is the 
number of X values where X = * and is the number of tuples with X = i and 
Y =  j
Numerical Dependency
X -> '£ Y L C
Mean ND value, see definitions 3.1.7,3.1.8
X -»* Y L - * 1'66 C

Table 2.10: A comparison of FD Approximation Techniques

to approximate FD set satisfaction. Table 2.10 shows that this may be achieved via counting vi­

olating tuple pairs, violating tuples, counting the rows of the largest partition which satisfies an 

FD or by assessing the conditional probability that two rows agree on Y given that they agree on 

X for X —> Y. An ND for the FD X Y finds the maximum number of different Y values (k ) for

partitions which agree on X. The Mean ND value is formally defined in Section 3.1.3.

Course
Lecturer C320 Blla B151 C340 Ci

Mark 1 0 1 0 2
Robin 0 1 1 0 2
Sean 0 0 0 1 1

h 1 1 2 1 5

Table 2.11: Frequency Table for relation PLAN

We note how these measures consider FDs to be the goal of the dependency search. Our use 

of NDs, though they approximate NDs, considers them in their own right as possible dependen­



2.3. Dependency and Temporal Data Mining 55

cies which may hold when an FD is too strict. Therefore NDs are expressing a general constraint 

which may hold in a relation, such as a teacher can teach at most two courses, and in this case 

we do not consider any part of the relation to be erroneous. This demonstrates the general appli­

cability of NDs. We define a metric for NDs in Chapter 3 and use this within our simulations in 

Chapter 4.

In our work on the use of example relations, outlined in 3.5, within the database design pro­

cess we assessed the evolved relations via the use of a quality function for FDs (Collopy and 

Levene, 1996). This quality function can be used to describe the proximity of relation s to an 

Armstrong relation for a set F of FDs, being one when the evolved example relation is an Arm­

strong relation; it may also be used to generate the distance between two FD sets. This was taken 

to be the symmetric difference of GEN(F) and GEN(dep(s)), where GEN(F) is the set of gener­

ators for a set of FDs F (Mannila and Raiha, 1986), and dep(s) is the dependency set holding in 

s. It is stated as:
aualitytF s) =  I GEN(F) n GEN(dep(s)) |
9 V( ’ ’ | GEN(F) U GEN(dep(s)) | ( ’

For example, two customer relations for different supermarkets may need to be assessed 

against a hypothetical optimally performing supermarket and/or against themselves. Obviously, 

a reliable distance measure is needed. Other areas of application occur in a database design con­

text. We aim to assess this measure. We seek to characterise the distance from Armstrong that a 

relation can be. In this way, for a relation r, we can infer exactly how distant r is from the best 

relation that can hold for any relation of the same size satisfying the same FD set.

In the remainder of this section we briefly define distance measures and a metric before pre­

senting a brief analysis of an FD measure using the symmetric difference of the closure of FD 

sets. We characterise this in Figure 2.2 to enforce the point that information about the behaviour 

of measures we are using themselves aid the data mining process. (Toivonen et al., 1995) discuss 

a distance measure for association rules. Association rule discovery in (Agrawal et al., 1993) 

assumes a binary database. For relation r with schema R, and given a set of attributes I C R  

and a tuple t e r  if VA e X  t[A] = 1 then £[X] =  1. The set of tuples matched by X  is 

m (X ) = {t e r | t[X] = 1 }. The distance between two association rules X  =>■ Z  and Y  Z ,

where denotes implication, is defined as:

d (X  => Z ,Y  => Z) = | (m {X Z )  U m {Y Z )) m (X Y Z )  \

= | m (X Z )  | +  | m (Y Z )  | - 2  | m (X Y Z )  |

(Tuomela, 1978) provides a general overview of distance in logical terms without any regard for
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Maximum quality
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Figure 2.2: Max Quality for FD sets with 3 and 4 elements in closure

practical methods of distance evaluation. He notes, “We can finally say that the more overlap or 

common content (information) [theories] T\ and T2 have, the closer they are.” Within database 

design or mining, a designer may attach weights to the set of FDs implying his level of desire for 

a particular FD to be satisfied in preference to another or others. A normalised (the sum of all 

weights) distance can then be calculated based on these input factors.

A function d(Fi,F2) is a metric iff it satisfies the following properties:

d(F1 ,F 2) =  d(F 2 ,Fx)

d (F i,F 2) =  0 if and only if F\ = F2

d{Fu F3) < d (F i,F 2) +  d(F2, F 3 )

A distance function which violates the last property, known as the triangle inequality, is known 

as a pseudo-metric, and of use within distance theory.

We now define a similarity measure between two FD sets F and G as a generalisation of the 

quality function previously defined, using the closure and not generator sets. Such a similarity 

measure is of use in data mining whenever we desire to compare two FD sets. (Kivinen and Man­

nila, 1995) define a metric <fp(F, G) = F(CL(F) A CL(G)), where A is the symmetric difference 

and P  is a probability measure. The measure now defined is a ratio of the symmetric difference 

used directly. We study its properties and show how this might help the data miner.

Definition 23.7  (Similarity Measure) Given two sets of FDs, F and G over R, we define the 

measure of their similarity as:

. _  I CL(F) fi CL(G) I
« m (F , C!) =  | c l (F ) u  c l (G) I °
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We now seek to characterise the monotonicity properties of sim  with respect to F and G. In 

equation 2.2 we consider the maximum possible values of sim  where one FD set F is fixed, con­

taining n elements in CL(F). Any other FD set G containing k elements in CL(G) has a maximal 

quality, if all FDs in G are in F whenever k < n, and if all FDs in F are in G whenever k  > n.

The similarity measure is monotonically increasing and if a core, or intersection, of the two 

FD sets is increased by two different amounts, m  and k, where m  < k, then the value of similarity

is larger for the larger core size increase. We now define some axioms of this similarity measure:

1 . s«m(F, F) =  1

2 . sim (F ,G ) = sim (G ,F)

3. sim (F, G) =  0, if F* D G* =  0

4. sim (F, 0) =  0

6 . sim (F, G) < sim (G , H) if F C H and H A F £ G.

Information concerning related similarities can now be formed. Assume we have three sets 

of FDs, F, G, and H, and that F is fixed. Now, if szmp(G) = 0 and 0 < sim p(H) < 1 then we 

know that s im (G, H) < 1 given that there is a similarity between F and H. Essentially, this is 

stating that the core of F and H cannot form any part of the core of G and H. Using knowledge of 

the measure itself allows for inferences to be drawn easily based on the input FD set and resulting 

values of the measure. We have briefly presented an overview of a similarity measure for FD sets. 

In Chapter 3 we define a metric based on the lattice properties of NDs, used within our work on 

indefinite relations.

2.3.4 Relational Database Sampling Procedures

Many real-world databases are too large to consider applying standard data mining algorithms to. 

Therefore, as a solution, sampling from such databases has been promoted (Kivinen and Mannila, 

1994; Toivonen, 1996). Samples drawn from a large database are mined for dependencies which

In Figure 2.2 we show these variations for two fixed FD sets with 3 and 4 respective elements in 

their closure.

s z m ir (G )  =  <
: n > k when F* D G*

when G* D F*
(2.2)

5. si
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are then associated with error and confidence thresholds based on the size of the sample in rela­

tion to the database. Alternatively, results obtained from the mining of a sample may be verified 

against the database as a whole. In this manner sampling is a necessary trade-off between accu­

racy and efficiency of results.

(Kivinen and Mannila, 1994) addresses the problem of finding a suitable sample size. This 

is presented within a PAC-leaming framework (Valiant, 1984). Based on an error measure, akin 

to the similarity measure presented in Section 2.3.3 or <73 of Table 2.10, sampling is used to detect 

all sentences which have an error (or 1 - similarity) less than a given threshold e. The probabil­

ity that at least one sentence with an error greater than e will not be formed is given by S, the 

confidence parameter. FDs which hold are, obviously, never detected as false. (Toivonen, 1996) 

presents sampling within an exact discovery framework for association rules using a sample to 

find a superset of frequent associations subsequently verified by one pass over the database.

2.3.5 Resampling in Statistics

Statistical methods have evolved rapidly over the last 30 years, not least due to the harnessing of 

increasing computational power. In the 70’s statistical modelling was based upon decomposing 

the data into a structure and noise. In the 80’s non-parametric processes such as the jackknife 

were developed where n or more (possibly) correlated estimates of the quantity of interest are 

replaced by pseudovalues. Linear regression takes a linear combination of the available values 

whereas non-parametric models keep the data around and use it for estimating the response class 

of a new point.

The bootstrap (Efron, 1979; Diaconis and Efron, 1983; Efron and Tibshirani, 1993) is a data 

driven simulation method for estimating the sampling distribution of a statistic. It is a computa­

tionally intensive procedure that has been shown to provide good results which would not have 

been capable of being readily generated more than 30 years ago. In our experience, resampling 

has not previously been applied to solve database problems such as the consistency problem. De­

clining computational cost is altering the face of statistical analysis entailing a domino effect in 

other fields so that computer intensive statistical methods such as the bootstrap will become much 

more prominent in many areas of computer science over the next few years. Figure 2.3 shows how 

the bootstrap procedure may be applied to an indefinite relation r. The sample in the figure will 

consist of n possible worlds, each satisfying an ND set. We now introduce bootstrap resampling 

with a simple example; resampling indefinite relations is formalised in Chapter 4.

The following example is used for instruction and is similar to one described in (Efron and 

Tibshirani, 1993) but with a business application. If we have a relation depicting the number of



2.3. Dependency and Temporal Data Mining 59
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Figure 2.3: The Bootstrap Procedure as applied to an indefinite relation with a Bootstrap Repli­

cation size (BRS) B

pension plan subscribers (referred to as Clients) in two different companies with a number of the

employees in each company as in Table 2.12 then we can form a ratio of success 6  based on the

number of clients for the respective number of employees, given as follows:

■ =  230/15746 
299/13430

Company Clients Employees
HAL co. 
JCN co.

230
299

15746
13430

Table 2.12: Company Data Relation 

So we can say that HAL co. is only 6 6 % as successful as JCN co. when it comes to getting 

employees to take up its pension plan. Yet this is only an estimated ratio. To apply a bootstrap 

procedure to the above data we can create two sample populations for each company with 230 

clients and (15746 - 230) employees and 299 clients and (13430 - 299) employees, respectively. 

These populations of 15746 and 13430 items may be represented with ones and zeros to represent 

clients and employees who are not clients. If we then draw randomly with replacement a sam­

ple of 15746 subjects and 13430 subjects from each population we can form what is known as a 

bootstrap replicate sample success ratio 0*. We can now repeat this, say, 1000 times, to obtain 

bootstrap standard deviation values or other statistics which are based on the distribution found 

and not naive assumptions on the distribution.
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The majority of bootstrap applications in the statistical domain use resampling due to the 

unavailability of the complete domain. Likewise, in an indefinite relation, although we potentially 

have access to all possible worlds, there are generally too many to examine them all. We employ 

resampling in a dynamic manner on increasing sample sizes, elaborated upon in Chapter 4.

2.4 Discussion

Within the limits of our experience, there has been no work on the data mining of relations con­

taining indefinite information, possibly due to the lack of availability of indefinite data. Catalytic 

relations, introduced in (Hale and Shenoi, 1995), those that are essentially the join of two or more 

relations, provide a possible avenue for indefinite information data mining if the join performed 

does not create the cartesian product but instead creates disjunction within cells which do not 

agree on their attributes, referred to in Section 5.4.3.

The work of (Vianu, 1987; Vianu, 1988) was seminal in the field of temporal dependencies. 

Possible extensions discussed herein for NDs in 2.2.8 warrant further study. Nearly all work on 

dependency mining (Mannila and Raiha, 1992a; Kivinen and Mannila, 1995; Savnik and Flach, 

1993; Bell and Brockhausen, 1995; Huhtala et al., 1998) presents studies of the efficiency of de­

pendency mining, frequently noting that large number of dependencies were discovered in rela­

tions. For example, (Savnik and Flach, 1993) reports the discovery of 1191 FDs in a relation with 

471 tuples over 17 attributes. Obviously the majority of these FDs discovered will be near triv­

ial due to large left hand side attribute sets functioning as keys. We remark that there has been 

little work assessing the real value of FD discovery in the data mining process. Such potentially 

meaningless FDs also motivate the use of a user supplied template to define FD approximations 

to dependencies which the user is interested in.

From the work of (Mannila and Toivonen, 1996a; Berger and Tuzhilin, 1998) we note the re­

quired restriction to simple pattern discovery otherwise an NP-complete problem is faced. There­

fore it is necessary to restrict the discovery process. We choose, in Chapters 5 and 6 , to restrict 

our discovery to patterns which correspond to temporal properties (Manna and Pnueli, 1992). We 

cite the work of (Das et al., 1998) and (Berger and Tuzhilin, 1998) as having closely related goals 

to our own work though their methodologies are different.



Ch a p t e r  3

Numerical Dependencies in Databases and 

Data Mining

We now concentrate on introducing Numerical Dependencies (NDs) and related theoretical and 

practical issues so that we are fully able to appreciate later work utilising NDs in indefinite and 

temporal relations.

Initially, in Section 3.1 we formalise the lattice of NDs. We also show how ND values may 

be uninformative for a given relation and define mean NDs to combat such problems. Section 3.2 

introduces the chase for NDs as a precursor to the chase for NDs in indefinite relations in Chap­

ter 4. We discuss and extend the ND axiomatisation of (Grant and Minker, 1985b) in Section 3.3 

and show that the chase for NDs as an inference procedure is sound and complete. An algorithm 

for data mining of NDs in Section 3.4 is presented with respect to related work. Section 3.5 dis­

cusses, briefly, an evolutionary algorithm for database design presented in (Collopy and Levene, 

1998a), which uses NDs within a hill-climbing procedure. We conclude with a general overview 

of this chapter and its implications for data mining in Section 3.6, together with a note on possible 

Armstrong relations for NDs.

3.1 Approximating FDs with NDs

We now define the lattice of NDs and then show how this may be used to form a metric for ap­

proximating proximity to a given FD set.

3.1.1 The Lattice of NDs

Firstly, we present the lattice of NDs. We begin with Definition 3.1.1 which is then used to define 

the lattice of NDs and Definition 3.1.2 which is used in our algorithm for climbing the lattice.

Definition 3.1.1 (More functional set of NDs) A set of NDs N \ over R is more functional than 

a set of NDs N 2 over R, denoted by N 2 E -Ni, whenever X —>k2 Y € N 2 if and only if
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X-**i Ye J Vi  andfci < k2. □

The set-theoretic relation, more functional than, is a partial order in the sets of NDs. Assume 

that we are considering only sets of NDs over a schema R which are more functional than a given 

set of NDs, N over R, each of the form X —>k Y, for some k > 1. Then the family of sets of NDs 

that are more functional than N form a lattice whose bottom element is N and whose top element 

is the set of FDs induced by N, i.e. {X —> Y | X —>k YE N} .  The least upper bound, lub, of 

N \ and N 2 is the set of NDs {X — y  | x  —i kl Y E N i and X — >k2 Y E N 2}, where 

m in(k\, k2) is the minimum of k\ and k2, and the greatest lower bound, gib, of N \ and N 2 is 

defined similarly using maximum. We call the lattice, whose top element is the set of FDs F over 

R and whose bottom element is the set of NDs {X —Ym Y | X —> Y G F}, £ m(F) (or simply Cm 

if F is understood from context), with m  > 1.

Therefore, we can approximate a set of FDs F by a set of NDs N such that N C R  The closer N 

is to F in Cm the better the approximation is. From now on we let Cm be the lattice o f NDs whose 

top element is F and, for a relation r, assume that | r  |=  m  +  1, with m  > 1. In Figure 3.1 we 

present a lattice for two NDs whose attributes are not specified, over a relation with a maximum 

domain size of 4 in the right hand side of each ND. The lattice size significantly increases with 

more NDs and larger domain sizes. The probability of an ND X  — Y  being satisfied in a relation 

r  tends to one as k gets closer to | r \ — 1 .

Definition 3.1.2 (Covered By) We say that N 2 is covered by N \, denoted by N 2 —< N \,  where 

N i,N 2 G £ m, if N \ ^  N 2 ,N 2 C N i and ViV' E Cm such that N 2 C N ' C N± we have 

N ‘ =  N 2. □

4
4

4
4

Figure 3.1: Lattice of NDs for a relation of 2 FDs (not shown) and maximum domain size of 4 

for each dependency
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Definition 3.1.3 (Maximal set of NDs) The maximal set of NDs of r  with respect to F, denoted 

by m axim al(r, F), is the maximal set N of NDs in £ m(F) (with respect to Q  such that r |= 

N. □

Given r and F, m axim al (r, F) can be computed in polynomial time in the sizes of r and F 

by a straightforward hill climbing procedure on £ m(F), illustrated in algorithm 2. For each X —> 

A G F this procedure finds the minimal k such that r  |= X — A, starting from X —>m A  which 

r  trivially satisfies since | r  |=  m.

Definition 3.1.4 (Improvement set of a set of NDs) The improvement set of r  with respect to F, 

denoted by p(r, F), is defined as

p(r, F) =  {X —»■* A | X —yk A G m axim al(r , F) and k > 1 }.

Algorithm 2 returns the improvement set of r  if any FDs satisfied in r are removed from N. □

Algorithm 2 (MU(r, F))
1. begin
2 . m  := | r  |;
3. N := the bottom element of Cm (F);
4. while 3 G such that N —< G and r  f= G do
5. N := G;
6 . end while
7. return N;
8. end.

Figure 3.2: The improvement algorithm for NDs

3.1.2 Similarity Measures and Numerical Dependencies

We introduce a measure for calculating the proximity of two ND sets using their position within 

the lattice. We show that this measure is a distance function, satisfying reflexivity and symme­

try, and is also a metric, satisfying the triangle inequality. Firstly, we begin by defining the best 

approximation given by a set of NDs to their functional counterparts. We define the size of a set 

of NDs N to be the number of attributes appearing in N including repetitions and define a step, 

either up or down, to be exactly minus or plus one, respectively, to a single branch of one ND 

within an ND set.

Definition 3.1.5 (The best approximation of a set of FDs) A set of NDs N over R is the best 

approximation of a set of FDs F over R with respect to a relation r  over R, with | r |=  m  +  1 (or 

simply the best approximation of F if r  is understood from context), if r  f= N and there does not 

exist a set of NDs, N ' G Cm such that N -<  N ' and r  |= N '. □
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Proposition 3.1.1 (The number of NDs higher in the Lattice) Given an ND set N  =

{Xi —>kl A \ , X 2 - + k2 A 2, . . . ,  X n -+kn A n}, the number of ND sets above this set in the 

lattice is (&i • &2 *. . .  ■ kn) - 1 .

Proof. An ND is higher in the lattice if within a set of NDs none of the k{ branches have any 

values higher than any of those in the set and. at least one of the NDs has some kj branch value 

lower than one of those in the set. Each ND X{ ~^k' A{ within the set can take &,• values. We 

consider all permutations of these values to get k\ • k 2 • . . .  • kn from which we must ensure that 

the ND set values of N  itself is not included to get ki ■ k 2 • . . .  • kn -1. □

This provides us with the basis for a distance measure between an ND set and its functional 

representation. However, using this technique allows, in some instances, ND sets which are the 

same number of steps below the FD equivalent to have different values. This is due to ND sets 

containing FDs or NDs which are close to being functional having less sets above them in the 

lattice. To illustrate, if we have two ND sets N i, N 2 each containing two NDs such that N \ has 

dependencies with 4 and 2 as branches whilst N 2 has dependencies with 3 and 3 as branches then 

N i will have fewer ND sets above it in the lattice though both are the same number of steps from 

their functional equivalent, shown in Figure 3.1. We now introduce the metric we used in our 

simulations and note that if we are interested in comparing ND sets with either more or less near 

FDs we can refer to the above measure whenever the metric provides the same distance.

In the following definition distance is defined as the number of steps in the lattice. In Defini­

tion 3.1.6 we use proposition 3.1.2 to prove that the denominator for this measure is normalised 

for any two NDs within a given relation. p(2V1, N 2) provides a suitable measure of proximity 

between two ND sets. We use the measure of Definition 3.1.6 in our simulations presented in 

Chapter 4 in the following form: Given a set of NDs N i and a set of FDs F, which N \ approxi­

mates, then the proximity between the two dependency sets is given by p (N i, F ) .

Definition 3.1.6 (Proximity between two ND sets) Given two sets of NDs N \ and N 2 we define 

the metric as follows:

. , T „r . £ ;=i 2 Distance from N{ to lub{N\, A^}
p {N i,N 2) = ---------------------— —-------------------- ---------- -—- — —------------------  □

Maximum distance between any two ND sets to their lub in the lattice

We define the bottom of the lattice to be the set of NDs with each branching factor equivalent 

to the domain size of the attribute on the right hand side of each ND, assuming a finite domain 

size.

Proposition 3.1.2 The maximum distance between any two points in the lattice to their lub is 

always equivalent to the distance from the bottom to the top of the lattice.
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Proof. We prove this by induction on the NDs within the two ND sets.

(Basis): We see that if N i and N 2 are empty then the result is immediate.

(Induction): We have two ND sets N \ and N 2 which are distance d apart where d < q and 

q is the maximum distance apart between any two ND sets. We add an ND X  —>kl Y  to N i 

and X  — Y  to N 2 which differ only on their branching factor. Without loss of generality, if 

ki < k2 then the distance apart between N i and N 2 becomes d +  k 2 — k \ . This remains less than 

or equal to the maximum distance apart which is q +  k '2 — k[ where, without loss of generality, 

k[ = 1 (it is an FD) and k2 is at the bottom of the lattice. □

The measure p  is a distance function given that the distance between two NDs is zero only 

when they are equivalent and thatpfni, n2) = p(n2, n f) always holds. It also satisfies the triangle 

inequality, whose proof we now outline. This implies therefore that p is a metric implying that 

sets with a common value can be compared.

Theorem 3.13 Given three ND sets, N \, N 2, and iV3, p(N i, N 2) +  p(N 2, N 3) > p (N i, N 3).

Proof. We show that if N i, N 2 and N 3 are non-empty and the triangle inequality holds then 

the addition of a new ND to each set which may differ only on its branching factor will still satisfy 

the triangle inequality. Assume we add three NDs X  ->ki A  with i =  1 ,2 ,3  to N i, N 2 and iV3, 

respectively. We also assume, without loss of generality, that ki < k3. We denote each ND set 

Ni U { X  —tki A}  by N- for * =  1,2,3. We perform induction on the NDs in each set.

(Basis): If N i = N 2 = N 3  = 0 then the result is immediate.

(Induction): We assume that k2 < k \, then p(N[, N 2) = distance from N \ to lub(Ni, N 2) 

+ distance from N 2 to lub(Ni, N 2) + k 2 — ki. Similarly forp(iV2 , N 3 ) and p(iV{, N$) we have 

the additional components, -  k2 and fc3  — k\. Therefore, we havep(iV{, N 2) +  p(N 2, N£) = 

p (N i , N 2) + k \ - k 2 + p(N 2, N 3 ) +  k3  -  k 2 and p(N [ , N£) = p (N i , N 3 ) +  fc3  -  k i . We know that 

p (N i , N 2) +  p(N 2, N 3 ) > p (N i, N 3 ) holds and we see that ki — k2 + k3  — k 2 > k3  — ki holds 

if ki > k2 which is true, based on our initial assumption. We can similarly prove the triangle 

inequality for the case when k\ < k2. □

3.1.3 Partitioning a Relation for Mean NDs

In many data mining tools it is important that there exist measures which accurately reflect the 

content of the database; this motivates us to define mean ND set satisfaction for some situations 

like that of Example 3.1.1.

In Chapter 2 we presented Definition 2.2.28 for partitioning of a relation into blocks for an 

ND X ~^k Y which agree on X. The satisfaction of an ND X —t k Y  implies only that there exists at



3.2. The Chase Procedure for NDs 66

least one partition B which contains at least k tuples with at most k different Y-values. There may 

however be numerous other partitions on X which may have far less than k different Y-values and 

so the partition B dominates the relation and presents an inaccurate representation of the proximity 

to FD set satisfaction. We therefore define the mean numerical dependency.

Definition 3.1.7 (Mean Numerical dependency) A mean numerical dependency over R (or 

simply a mean ND) is a statement of the form X Y, where X, Y C R and k > 1. We refer to 

k as the mean branching factor. □

Definition 3.1.8 (Satisfaction of a Mean ND) Let r  be a relation over R. An ND X —yk Y is sat­

isfied in r, denoted by r  [= X —>k Y, such that r  is partitioned into blocks {Bi, # 2 j • • • > Bw} with
— I /M \|______________________ _

respect to X —> Y such that k = . A set of averaged NDs N is satisfied in r , denoted

by r  [= N, whenever V X — Y <E N ,r  |= X —»■* Y. □

Example 3.1.1 We assume that a relation r over AB satisfies the ND A -* 14 B as its closest 

approximation to the FD A —» B. However r may, for example, only contain three partitions 

{Bi, B2 , # 3} with each partition satisfying the NDs A -* 14 B, A — B, and A —y1 B, respec­

tively. We note the last two are satisfied functionally. The mean ND set satisfaction is A —>-5 -6 7  

B. Within a block B the number of tuples is not related to the branching factor value, given by

\ M ® ) 1

In our work on indefinite information in relations we remark that we are interested in exact 

ND set satisfaction only, given the nature of the problem. In the data mining of NDs in standard 

and temporal relations we may often be interested in the mean ND set satisfaction value. We note 

that if this value is vastly different from the exact satisfaction value then it is likely that one or 

more partitions from the relation dominate and remaining partitions will satisfy the NDs more 

functionally.

3.2 The Chase Procedure for NDs
We now show how CHASE(r, F) can be generalised to CHASE(r, N), where N is a set of NDs 

over R, shown in Figure 3.3.

We leave it to the reader to verify that when k =  1, i.e. X —>k Y is an FD, then CHASE(r, 

N) reduces to CHASE(r, F).

Lemma 3.2.1 Algorithm 3 terminates.

Proof. No new values are introduced into the algorithm at any step and therefore the algo­

rithm must halt after executing the while loop a finite number of times. □
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Algorithm 3 (CHASE(r, N))
1. begin
2. Result := r;
3. Tm p:=0;
4. while Tmp ^  Result do
5. Tmp := Result;
6 . if 3 X Y E N, 3ti, t 2, . . . ,  tk, tk+i E Result such that

h  [X] = t2 [X] = . . .=£/ .  [X] = tk+i [X]
buth [Y] ^ t 2[Y] /  . . .  t k[Y] /  tk+1[Y] then

7. for each A  E Y—X do
8. t{ [A),tj [A] := max(t,- [A],tj [A]) for two distinct values i , j  E 1,. •, k +  1 ;
9. end for
10. end if
1 1 . end while
12. return Result;
13. end.

Figure 3.3: The Chase procedure for NDs 

Theorem 3.2.2 Given a set of NDs, N, then Vrc E N , CHASE(r, N) |= n.

Proof. Direct from the definitions of the algorithm and of ND satisfaction. □

We also note in theorem 3.2.2 that if r  \= N, for a relation r  and an ND set N then 

CHASE(r, N) = r. We return to the chase procedure and show how it can be used as an infer­

ence procedure in Section 3.3.2, after discussion of the axiomatisation of NDs.

3.3 Inferences for Numerical Dependencies

The axiom system given in (Grant and Minker, 1985b) is shown to be sound and complete only 

in the special cases of, for a schema R, either |R| < 3 or when the number of NDs with k > 1 is 

at most one. (Grant and Minker, 1985a) extends this result and shows that there is no finite sound 

and complete axiomatisation for NDs.

3.3.1 ND Axiomatisation

NDs allow a more general dependency relation than functional dependencies. (Grant and Minker, 

1985b; Grant and Minker, 1985a) introduce NDs with regard to obtaining normal forms which 

avoid or minimise redundancy, from a database with A;-dependency constraints. Grant and Minker 

also provide an axiomatisation for NDs which is a generalisation of the Armstrong axioms for 

FDs. (Grant and Minker, 1985b) presents a set of sound inference rules for NDs. (Grant and 

Minker, 1985a) shows that there does not exist a finite set of sound and complete inference rules 

for Numerical Dependencies. These axioms are shown to be complete for relations which have, 

at most, 3 attributes. It is shown that any relation with more than 3 attributes is not complete.
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We show in Section 3.3.2 how the chase may be used as an inference procedure. If the relation 

utilises only FDs then the axioms contain the Armstrong rules as a subset.

For clarity, we now present inference rules 1-5 from (Grant and Minker, 1985a):

R1 If Y C X then infer X —» Y

R2 From X -+k Y infer ZX -+k ZY

R3(a) From X -+k Y and Y ->J Z infer X -+hj YZ

R3(b) From X Y and Y -V  Z infer X -+hj Z

R4 From X Y infer X - > fc+1 Y

R5m From {X  — Y{ | 1  < i < 3m  — 2}

U {YnYi2 ..  • Yim —> Z  | 1 < i l  < *2 < . . .  < im  < 3m  — 2} infer X  —t 2 Z

Rules R1,R2 and R3(b) are extensions of the axioms for FDs. We now present another in­

ference rule which generalises the rule R5m of (Grant and Minker, 1985a), R6 A;,m, which can be 

viewed as a generalised transitivity rule for NDs wherein a bound on the number of attributes 

required for inference is created based on the branching factor of the NDs and the number of at­

tributes on the left hand side of the FD which determines attribute Z. R6 fc)T7l is a useful extension 

to the class of transitive axioms for NDs.

(R6 fc,m): From { X  ->k Y{ \ 1 < * < » / }  U
{YnYi2 .. .Yim —► Z  | 1  < i l  < i2  < . . .  < im  < 77}

we can infer X  —>k Z  where 77 =  (m  — 1 ) (fĉ 1) +  1 

Theorem 3.3.1 Each rule R6 k,m is sound and has minimal hypothesis.

X Y< y 2 Y„ Z
1 1

1 2

1 k + 1

Table 3.1: Example relation for proof of axiom R6 fc)Tn

Proof. We assume that we have a relation r with 77 +  2 attributes and k +  1 cells, as 

in Table 3.1, and that X agrees on all of its k +  1 cells. We also assume, from R6 &,m, that
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X —>k Yi holds for all 1 < i < rj and that for a given m  all possible FDs of the form 

Yti Yt 2 • • • Ytm -» Z hold for 1 < i l  < i2 < . . .  < im  < rj and that X Z does not hold. Each 

X — Yi implies that each Yr attribute must agree on at least two cells. In a relation with k +  1 

tuples there are (fe2 1) ways in which a single attribute may agree on two tuples. For some set of 

attributes Y,-i Y# • • ■ Ytm in Yi to Y v if 7/ =  (m — 1) (^g1) +  then at least one FD of the form 

Yti Y,2  . . .  Yim —> Z must agree on all of its Y, attributes. This is due to exhaustion of all possible 

combinations on which two tuples may agree. Whichever tuples agree on all m  attributes imply 

that Z also agrees on these attributes. Therefore there may not be k + 1  different values on Z and 

we have a contradiction.

We prove the minimal hypothesis by noting that if any FD X Y or

Y,iY t-2 • ■ • Ytm —> Z for 1 < i l  < i2 < . . .  < im  < rj is omitted from our requirements 

then there exists a counterexample which does not imply X — Z for some combination of 

values on the attributes in Yi to Y^. □

We can also prove this as for R5m in (Grant and Minker, 1985a) by explicitly proving that 

no counterexample relation exists. We note that when k = 1 then R6 fc)7n reduces to transitivity of 

FDs, and when k = 2 then 77 =  3m — 2, the figure given in (Grant and Minker, 1985a) for R5m.

3.3.2 The Chase as an Inference Procedure

We prove that the chase is a sound and complete inference procedure for NDs. In the sequel, we 

assume that NDs have singleton right hand sides.

Given a set of NDs N  and an ND o , we apply the chase as an inference tool to discover if 

N  J= <7 . We create a relation ra which for a =  X  —vk A  has k +  1 tuples with k +  1 different 

values on attribute set A, all values on X equivalent and all values in R \X A  unique. We need to 

consider all possible iterations of the chase procedure, presented in algorithm 3, for a relation ra 

for the inference procedure to be sound and complete, given that one instance of the chase may 

not terminate with a unique end result, known as the Church-Rosser property (Maier et al., 1979). 

We refer to each complete application of the chase as a chase sequence.

X i X™ A Bi Bm
h 1 1 1 1 1

2̂ 1 1 2 2 2

t k +1 1 1 k +  1 k +  1 k + 1

Table 3.2: Relation to be chased by ND set N with a — X  —>k A ,X  = { X i , . . . ,  X m}, R \  XA 
= {B \ , . . . ,  B m} and m = | R \  XA |

We motivate theorem 3.3.3 by showing an example relation where different sequences
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of tuples modified by the chase produce different results. We show this for an ND set 

N = { X - * 2 Bi, X — >2 B2, B1 B2 —> A }, a  = X - » 2 A, and relation r\ in Table 3.3. For two 

different chase sequences, with different tuples modified, we have r \ X —v2 A, shown in Ta­

ble 3.4, and r \ |= X —>2 A, shown in Table 3.5. Therefore N ^  X — >2 A, which may not have 

been discovered if we had only examined one chase sequence.

X Bi b 2 A
1 1 1 1

1 2 2 2

1 3 3 3

Table 3.3: r i  before CHASE procedure

X Bi b 2 A
1 1 2 1

1 3 2 2

1 3 3 3

X Bi b 2 A
1 1 1 1

1 3 3 3
1 3 3 3

Table 3.4: Example CHASE(ri,N) after Table 3.5: Counterexample CHASE(r2 ,N) af-
CHASE procedure ter CHASE procedure

Theorem 3.3.2 requires the notion of containment mapping cf. (Atzeni and De Antonellis, 

1993). We define a function dom  which returns the active domain of a relation.

Definition 3.3.1 (Containment Mapping) A containment mapping 0 from ra to a relation r  has 

each value in dom(ra) mapped by 0 to a value in dom(r). This is extended to tuples over R  = 

A i A 2 . . .  A m as 0(t) =  0(t[Ai]), 0(£[A2] ) , . . . ,  0(t[Am]) and extends to a relation as 0(r) =  

{0 ( t ) | t € r } .  □

Theorem 33.2  Given a set of Numerical Dependencies N and a ND a  =  X  —t k A, N |= o iff 

-r3t\[A\ ^  t$[A] ^  ^  tck+1 [A] where t f , . • . , ^ + i  £ r% and r% = chase(rCT,N) for all

possible sequences of the chase.

Proof, (if) We assume that A  £  X .  We let r  be a relation over R  such that r  |= N ; we show 

that r \= cr. Let ti ,  i 2, . . . ,  t/t+i € r  such that ti[X] =  t 2 [X] =  . . .  =  tk+i[X]. We claim that 

for some i , j  E {1 ,2 , . . . ,  fc -f 1 } there exists U[A] = tj[A].

Let 0  be a containment mapping from ra <j>(ui) =  t\ ,  0(it2) =  t2, . . . ,  <f>(uk+1 ) =  f̂c+i- 

We shall prove that 0 is additionally a containment mapping from CHASE(ra , N) to r  so that for 

some j  E r£, 0(^[A]) = 0(^[A]) implies t{[A] = tj[A]. This is the case for all possible chase 

sequences on ra.
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We prove this by induction on the number of steps, s, required to compute CHASE(ra , N).

(Basis): If s =  1 then for some ND W  — B  E N  two values are equated in B  where 

W  C X  and A  =  B  so therefore wt[A] =  Uj[A] implying that cf)(ui[A]) = U[A] and 

4>(uj[A]) = tj[A] and so U[A] = tj[A ] for some i , j  in r.

(Induction): We assume that the result holds when s steps of the chase procedure are re­

quired. We now prove it to be true when s +  1 chase steps are required. We let the s +  1 chase 

step be for an ND W  —>k B  and w*-, Uj be two tuples in ra such that the s + 1  step either modifies 

U{ or uj. Thus, for B  either U{[B] or uj[B] is modified so that U{[B] = uj[B\ =  tf [A] =  tj[A]. 

Now, given U{[W] = Uj[W] then <f>(ui\W]) = <f>(uj[W]) by the definition of containment map­

ping. Therefore </>(££[A]) = <f>(tj[A]) =  <j>(ui[B]) = (f>(uj[B]) = U[A\ = tj[A] holds, since 

ra f= W  -+k B. Given that (f> only differs from the result of s steps on U{[B] or uj[B] it is a 

containment mapping from r£ in all possible chase sequences. In any sequence, if t^[A] = tj[A] 

we have, by definition of (f>, £,-[A] =  tj[A\.

(only-if) If, in some chase sequence, there does not exist t^[A] = tj[A] for some i , j  G 

1 , 2 , . . . ,  k +  1 then we can construct a relation r which satisfies all n E N  but violates o. 

Alternatively, the chase for ra can be shown to be isomorphic to a relation r  which satisfies N

but violates X -+k A by mapping each value in r% to a value in dom (r) . □

Corollary 33 3  The chase inference procedure for Numerical Dependencies is sound and com­

plete.

Proof. Soundness and completeness of the chase as an inference procedure is a corollary of 

theorem 3.3.3. □

The existence of a sound and complete chase procedure shows that implication on NDs is 

decidable. The implication problem for NDs is in co-NP, used to denote that the complementary 

no/yes problem is in the set NP (Garey and Johnson, 1979); we know that the converse problem 

is NP given that we can guess a relation (equivalent to a complete sequence of the chase proce­

dure) r% and verify in polynomial time whether or not rca |= o. NP-completeness remains an open 

problem.

3.3.3 Armstrong Relations for NDs

Within a finite relation there does not exist an Armstrong Relation, defined for FDs in Defini­

tion 2.2.20, for a set of NDs N, unless N contains all possible combinations of attribute sets. We 

may prove this as follows. Assume that we are given a set of NDs N and that a  is an ND X —

Y such that N ^  o. For any relation r  such that r  (=Nwe have, at least, r  f= o  where k = | r  |.
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We therefore define a weak AR for an ND set N.

Definition 3.3.2 (A Weak Armstrong Relation) A relation r  is a weak AR for a set of NDs N if

r  |= N and Vo- such that N ^  o then r  \= o  maximally with respect to ka implying that r  satisfies 

all NDs a  with a branching factor no higher than ka. The choice of a value for ka may be related 

to branching factors of NDs in N (or the size of the relation). □

These weak Armstrong Relations would extend the practical application of NDs within 

database design tools by helping designers think of what NDs may be required via examination 

of an actual relation.

3.4 Numerical Dependencies in Data Mining
We now briefly present data mining for numerical dependencies in standard relations. We em­

phasise the following:

•  In contrast with functional dependency approximation data mining we are not seeking to 

assess what proportion of a relation satisfies a functional relationship, cf. Table 2.10 and 

(Huhtala et al., 1998; Kivinen and Mannila, 1995). We seek to discover generalisations of 

FDs when the FD may be viewed as too strict.

•  In our work on temporal and indefinite relations we assume the user provides a ND set upon 

which we seek instances of ND satisfaction. The use of NDs in a blind discovery context 

would generate ND satisfying instances for all possible attribute set combinations, which 

is not practical due to the complexity.

3.4.1 Dependency Mining Applications

Approximation of the dependency set, possibly approximated using numerical dependencies, on 

a large database in existence may reveal unknown information in the form of these dependencies 

which may hold in the database. A recent work on the reverse-engineering, or discovery if you 

will, of cardinality constraints for inference of the ER-model is presented in (Soutou, 1998). From 

lemma 2.2.2 this is another application for ND discovery.

Applications for dependency mining include a database design tool which the database de­

signer can use in conjunction with a possible instance of the data to be stored within the database. 

Inference upon this example set will then provide the designer with vital information as to possi­

ble unknown dependencies that be satisfied in the relation. The approach of Bell and Brockhausen 

(Bell and Brockhausen, 1995) in making inferences from the verified and invalid data dependen­

cies is aimed at supporting the database designer. Example 3.4.1 shows an application of ND 

discovery.
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Example 3.4.1 In a patient database within a hospital every patient visit is independently stored 

within a patient details relation and a disease/symptom/treatment relation. Given a numerical de­

pendency specified D IS E A S E  —>-10 S Y M P T O M  stating that a disease can have at most 10 

symptoms, it may however be approximated that A D D R E S S  P A T  I  E N T  — >6  S Y M P T O M  

showing that at most 6  of the symptoms can occur at the same location for a patient.

3.4.2 Mining a relation for a set of NDs

We consider only singleton right hand sides. For a relation r  over R with n  attributes we have 

n2n~1 NDs returned by this algorithm and so in Figure 3.5 we only give results obtained from 

restricting the left hand sides to a given arity of attributes. Algorithm 4 uses Algorithm 2 to gen­

erate the ND satisfied from an FD template.

Algorithm 4 (ND jmine(r, R))
1. begin
2 . NDjset := 0;
3. for each A G R do
4. for each W G V(R  - A) do
5. { W ->k A  } = MU(r, { W -»> A });
6 . ND^et := ND_set U { W —>k A  };
7. end for;
8 . end for;
9. return ND_set;
10. end.

Figure 3.4: The ND mining algorithm

The computational complexity of algorithm 4 is 0(rc22n_1 \ r \ log \ r \). There are n2n_1 

possible NDs and it takes time 0(ra | r | log \ r |) to sort a relation into partitions. We can 

restrict the arity of the left hand side to a size m  or even restrict to singleton left and right hand 

sides where we have a time of 0 (n 3 \ r \ log \ r \). When the lhs of any ND is 0 then the 

ND corresponds directly to the domain size. The scale of the mining can be cut down by using 

axioms provided in (Grant and Minker, 1985a; Grant and Minker, 1985b) when exact details are 

not required for dependencies of the form W  — A  where W  = Y V  and we already know 

y  — A  and V  — >k2 A  which would give k < k i or k <  &2 , depending on the larger partition.

It is also possible that we could use the chase procedure for NDs to further improve the ef­

ficiency of the algorithm such that for a set of NDs N we do not mine for an ND o  if N |= o.

In Figure 3.5 we see how increases in the arity of the left side of the NDs increase the time 

required to mine for sets of NDs in increasing relation sizes. The time increases represent the ad­

ditional overhead of more dependencies due to more possible attribute combinations on the left
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Graph of mining of NDs with Ihs arity restricted on breast cancer dataset
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Figure 3.5: Results for mining Mean and standard NDs with arity of the lhs of each ND restricted 

upon the breast cancer dataset

hand side of NDs, with respect to the complete attribute set, and the time to compare additional 

attributes for insertion into partitions. We have applied this to the breast cancer data set (Blake 

et al., 1998) used in many data mining research papers. The data set has 11 attributes and 699 tu­

ples. We increase these tuples by adding identifiers to each tuple and copying (as used by (Huhtala 

et al., 1998)). Obviously in a relation with 11 attributes there is little point in examining the pow- 

erset of attributes as it is highly likely that an FD with, say 7 or more, attributes on the left hand 

side will be satisfied functionally and will be meaningless. This point is reiterated in (Savnik and 

Flach, 1993).

3.4.3 Mining a relation for a set of Mean NDs

The time to mine for a set of mean NDs is the same as for standard NDs given that we need to 

examine each partition as before. The difference between the satisfied mean NDs and the standard 

ND satisfaction may tell us much about the dataset which we highlight in Example 3.4.2.

Example 3.4.2 In the breast cancer database there is an attribute marginal .adhesion with a do­

main of 10 elements. The ND m itosis  —»10 m arginal Jidhesion  tells us only that there is at 

least one partition containing all 10 elements on an attribute value of m itosis. The mean ND 

m itosis —>5ST m arginal Jidhesion  tells us most partitions have fewer elements.

3.5 Evolving Example Relations to Satisfy FDs
We now briefly present an example of applying NDs to approximate FDs in an evolutionary hill- 

climbing algorithm for creating probabilistic example relations for use within database design 

applications. This work summarises (Collopy and Levene, 1998d), and, as indicated in Sec­

tion 2.2.4, is related to work in the Design-By-Example project of (Mannila and Raiha, 1986).
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Example relations satisfying a given set of integrity constraints such as FDs are important 

during the database design activity in order to guide the designer towards the specification of a 

correct set of constraints for the application in hand (Silva and Melkanoff, 1981).

3.5.1 Motivation

If the example relation shown to the database designer is too large then the designer will not be 

able to assimilate all the knowledge embedded in that relation. Thus it would be useful to be able 

to generate random examples relations that satisfy F and whose maximal cardinality is specified 

by the database designer; in general, such an example may not be an Armstrong relation.

Our algorithm is evolutionary in that it incorporates a stochastic approach for altering a rela­

tion by a mutation operation. The algorithm proceeds as follows; initially a relation is randomly 

generated following the input of the designer and a given FD set. This relation is then mutated 

based on a probabilistic selection of an unsatisfied FD from the given set and an attribute which 

assists violation of this FD in the relation. We use NDs as an approximation of the unsatisfied 

FDs in the relation. The mutations steer the relation towards a final state wherein all of the FDs 

in the specified set are satisfied. It is a simple algorithm, and indeed a basic tenet of evolutionary 

programming is to create algorithms which do not constrain evolution too severely, much like or­

ganic evolution (Back and Schwefel, 1993). All evolved relations are then mined using a quality 

function, defined in 2.3.3, whose criterion is exact satisfaction of the given FD set.

A deterministic approach used to generate an Armstrong relation (Algorithm 14.2, (Mannila 

and Raiha, 1992a)) has the severe drawback in that the same relation is generated every time the 

algorithm runs. Our probabilistic approach is advantageous in that different example relations 

may be generated from equivalent domain sizes and the tuple size may be increased or decreased 

by the designer as desired. Moreover, as long as the number of tuples exceed the minimum size 

required for an Armstrong relation (Beeri et al., 1984; Mannila and Raiha, 1986) then one may be 

returned, although this is not guaranteed. Below this number and a deterministic approach fails 

whereas our evolutionary approach complies with the desires of the user and returns a relation 

which, if selected from a batch or population of evolutions, is likely to be as high a quality as 

possible given the domain and tuple restriction. From the user’s point of view it may often be 

highly beneficial to examine a smaller relation of a high quality, but less than one, as opposed to 

a larger Armstrong relation (with a quality of one). Simulations emphasised the validity of this 

approach within database design, showing that many varying relations can be efficiently evolved 

for an FD set with numerous domain and tuple inputs. They also showed that it is extremely 

useful to know the quality of an example relation, and additionally that Armstrong relations are
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often formed within a batch.

3.5.2 Mutating relations

Herein, we present an algorithm for mutating a relation. Informally, given a relation which does 

not satisfy F, MUTATE(r, F) randomly selects an ND, say X — A, in the improvement set of r 

and stochastically modifies some of the tuple values in r. We then define the syntactic property 

of non-interfering NDs and show that if the selected ND and another ND Y —v9  C in m axim al (r, 

F) are non-interfering, see Definition 3.5.2 then, after the mutation, r will still satisfy Y —V9  C. 

The non-interference property is important, since if we evolve a relation to satisfy a set of FDs by 

iterating the mutation operation, then the evolution process will be more efficient when the NDs 

in m axim al(r, F) are non-interfering.

The mutation of a relation over R with respect to a set of FDs over R denoted by MUTATE(r, 

F), is defined as the relation resulting from invoking Algorithm 5 presented below. In this algo­

rithm we use LHS to denote the left hand side of an ND and RHS to denote the right hand side. 

This random selection of a side removes any bias which might otherwise have been incurred if 

the selection of an attribute to mutate were taken over the whole ND, given that the left hand side 

may be any length less than or equal to | R | but the right hand side is always singleton. V  denotes 

the domain of values in the relation r.

The following definition provides us with a measure of how useful a mutation is in the evo­

lution of a relation to satisfy a set of FDs.

Definition 3.5.1 (Useful, neutral and damaging mutations) Let s be the relation resulting 

from the mutation MUTATE(r, F). Then a mutation such as s is said to be useful, neutral or 

damaging, respectively, for an ND Y - * 9  C, if the number of blocks Bi in the partitioning of s 

with respect to Y —>9  C such that Bi Y — >9  C is less than, equal to or greater than, respectively, 

the number of blocks Bi in the partitioning of r  with respect to Y —v9  C such that Bi ^  Y — >9  C. 

□

Definition 3.5.2 (Non-interfering NDs) Two NDs X — A and Y —v9  C are said to be non­

interfering if either A = C and Y = X, or YC Pi XA =  0, or A ^  C, X = C and YC = R. □

We call a set of NDs N over R such that every pair of FDs in N is non-interfering a non­

interfering set of NDs. An attribute B in the left-hand side of an FD X —> A is said to be redundant 

with respect to a set of FD F over R, if A £ (X—B)+ . Assuming that no left-hand sides of FDs 

in F have redundant attributes, it can be shown that when X — A is the ND chosen at line 3
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Algorithm 5 (MUTATE(r, F))
1 . begin
2 . Result := r;
3. Uniformly randomly select an ND X A  G MU(r, F) with k > 1;
4. Uniformly randomly select a tuple t G r;
5. if r[X, t[X]] \= X  A then
6 . return r;
7. end if
8 . Uniformly randomly select RHS or LHS of ND
9. if LHS then
1 0 . Uniformly randomly select an attribute B G X
1 1 . Uniformly randomly select a value v G V  — {£[B]};
1 2 . else % B = A
13. B := A;
14. Uniformly randomly select a value v G 7TA(r[X,£[X]]) — {£[A]};
15. end if
16. for each u G r[X, f [X]] such that w[XA] =  f [XA] do
17. w[B] := v ;
18. end for
19. if Result |= X —>k A  then
2 0 . return Result;
2 1 . else
2 2 . return r;
23. end if
24. end.

Figure 3.6: The MUTATE procedure for evolving relations

of Algorithm 5, then the probability that any mutation MUTATE(r, F) is neutral for Y — >9  C G 

m axim al (r, F), is at least 1 / |XA|. At times, it is necessary to accept mutations that are damaging 

to some of the NDs in N.

Theorem 3.5.1 Assuming that X —>k A is the ND chosen at line 3 of Algorithm 5, then for all 

relations r  over R, any mutation MUTATE(r, F) is neutral for Y — >9  C G m axim a l(r, F), if and 

only if X — A  and Y — >9  C are non-interfering NDs.

Proof. We prove this by considering all possible relationships between XA and YC in ex­

ample relations, given in (Collopy and Levene, 1996).

If. The only nontrivial case to consider is when A ^  C, X = {C} and YC = R, implying that 

A G Y. If the attribute chosen for mutation is A, then equating two or more A-values is neutral for 

Y C, since the C-values of the all the tuples, u G r[X, t[X]], are equal. On the other hand, if 

the attribute chosen for mutation is C, then forcing two or more C-values to be unequal is neutral 

for Y — >9  C, since there can only be one tuple in r having the same YC-values due to the fact that
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YC = R.

Only if. We prove the result by contraposition, considering the various cases.

Case 1.1. Suppose that A = C and X and Y are incomparable, i.e. X £  Y and Y % X. Let 

X be the singleton B, Y be the singleton D, and r  be the relation over ABD, shown in Table 3.6. 

Then, it can easily be verified that r \/= B —>■ A but r  |= D -> A. On the other hand, the relation 

s shown in Table 3.7, which is a mutation resulting from MUTATE(r, F) assuming that B —>2 A 

is the ND chosen at line 3 of Algorithm 5, is damaging for D —> A, since s \/= D -* A.

A B D A B D

0 0 1 0 0 1

1 0 0 0 0 0

1 1 0 1 1 0

Table 3.6: Example relation for Case 1.1. Table 3.7: A mutation of r  shown in Table 3.6

Case 1.2. Suppose that A = C and Y C X, i.e. Y is a proper subset of X. Let Y be the singleton 

B, X = DB, and r  be the relation over ABD, shown in Table 3.8. Then, it can easily be verified 

that v DB —y A but r  |= B — >2 A. On the other hand, the relation s shown in Table 3.9, which 

is a mutation resulting from MUTATE(r, F) assuming that DB —>2 A is the ND chosen at line 3 

of Algorithm 5, is damaging for B — >2 A, since s \/= B —Y2 A.

A B D A B D

2 0 0 2 1 0

0 0 0 0 0 0

0 1 1 0 1 1

1 1 1 1 1 1

Table 3.8: Example relation for Case 1.2. Table 3.9: A mutation of r  shown in Table 3.8

Case 1.3. Suppose that A = C and X C Y, i.e. X is a proper subset of Y.

Let X be the singleton B, Y = DB, and r  be the relation over ABD, shown in Table 3.10. 

Then, it can easily be verified that r B —> A  but r \= DB —► A. On the other hand, the relation 

s shown in Table 3.11, which is a mutation resulting from MUTATE(r, F) assuming that B —>2 

A  is the ND chosen at line 3 of Algorithm 5, is damaging for DB —» A, since s \/= DB —> A.

Case 2.1. Suppose that A ^  C, X ^  {C} and YC = R; in this case C G X may or may not 

hold. Let X be either the singleton B or X = BC, Y = AB. and r be the relation over ABC, shown in
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A B D

0 1 0

1 0 1

1 1 0

A B D

0 0 0

1 0 1

1 1 0

Table 3.11: A mutation of r  shown in Ta- 

Table 3.10: Example relation for Case 1.3. ble 3.10

Table 3.12. Then, it can easily be verified that r ^  BC —> A but r  |= AB —> C. On the other hand, 

the relation s shown in Table 3.13, which is a mutation resulting from MUTATE(r, F) assuming 

that either B - » 2 A or BC — A is the ND chosen at line 3 of Algorithm 5, is damaging for AB 

-* C, since s AB —> C.

A B C

0 1 0

1 0 0

0 1 1

A B c
0 0 0
1 0 0
0 1 1

Table 3.13: A mutation of r shown in Ta- 

Table 3.12: Example relation for Case 2.1. ble 3.12

Case 2.2. Suppose that A ^  C, X = {C} and YC ^  R. Let X be the singleton A, Y be the 

singleton C, and r be the relation over ABC, shown in Table 3.14. Then, it can easily be verified 

that r  \/= C —> A  but r |= A —> C. On the other hand, the relation s shown in Table 3.15, which 

is a mutation resulting from MUTATE(r, F) assuming that C - » 2 A is the ND chosen at line 3 of 

Algorithm 5, is damaging for A -* C, since s A  —> C.

A B c
0 0 1
1 0 0
0 1 0

A B c
0 0 0
1 0 0
0 1 0

Table 3.15: A mutation of r  shown in Ta- 

Table 3.14: Example relation for Case 2.2. ble 3.14

Case 2.3. Suppose that A /  C, X = {C} and A ^  Y. Let Y be the singleton D, and r  be the 

relation over ABC, shown in Table 3.16. Then, it can easily be verified that r \/= C -» A but r  (=



3.5. Evolving Example Relations to Satisfy FDs 80

B —> C. On the other hand, the relation s shown in Table 3.17, which is a mutation resulting from 

MUTATE(r, F) assuming that C - » 2 A is the ND chosen at line 3 of Algorithm 5, is damaging 

for B —y C, since s ^  B —> C. □

A B c
1 0 1
0 0 0

A B c
1 0 0
0 0 0

Table 3.17: A mutation of r  shown in Ta- 

Table 3.16: Example relation for Case 2.3 ble 3.16

3.5.3 An Algorithm for Evolving Relations to satisfy FDs

Herein, we present our algorithm for evolving a relation r  to satisfy a set of FDs F. The algorithm, 

ITERATE(r, F) simply iterates the mutation operation on the current state of r  until the set of FDs 

is satisfied. The number of iterations required is denoted by q. We show in (Collopy and Levene, 

1996) that there always exists a finite number of states q such that ITERATE(r, F) satisfies F with a 

probability of one. The iteration of a relation, denoted by ITERATE(r, F), is defined as the result 

of invoking Algorithm 6 , presented below. The mutations are repeated until F is satisfied in r. 

We say that ITERATE(r, F) evolves the relation it returns in q steps, and that r<i evolves from r\ 

if ITERATE(ri, F) evolves 7*2 .

Algorithm 6 (ITERATE(r, F))
1 . begin
2 . Result := r;
3. q := 0 ;
3. while Result ^  F do
4. Result := MUTATE(Result,F);
5. g : = g +  1 ;
6 . end while;
7. return Result, q;
8 . end.

Figure 3.7: The ITERATE procedure for evolving relations

3.5.4 Simulation Results

We now detail the simulations conducted to examine the viability of evolving example relations 

from an initial random relation. The designer can select and vary the maximum tuple size of an 

example relation as well as the maximum domain size of the attributes for any FD set. With such a 

large possible input space it was necessary to perform extensive simulations to test the efficiency
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of generating random examples as well as assessing the quality of the examples in terms of prox­

imity to an Armstrong relation. We stress that the variation for generating relations is completely 

up to the designer; for an FD set he may wish to view example relations of any tuple or domain 

size. Analysing the differences between example relations may highlight the need for perhaps 

an additional dependency in the specified set, particularly if it is known exactly how close to an 

Armstrong relation each example is. This section also investigates FD sets whose examples tend 

to have a low quality.

Number of FD sets 72
For each FD set 1  batch for each domain/tuple combination
Batch Range 1 , 0 0 0  runs in each
Domain Range G /2  -  2 G  where G =\ GEN(F) |
Ttiple Range G /2 -  3G  where G =\ GEN(F) |

Table 3.18: Simulation details for evolving relations study

We describe the experiment in detail. In Table 3.18 a run refers to the process of mutating a 

randomly generated relation until the given FD set is satisfied. Each FD set was evaluated with 

respect to the average length of the evolution process and the average and maximal quality of 

the relations produced in batches of 1,000 runs. This was performed for many batches, varying 

over domain and tuple sizes, both held constant within a batch. As Table 3.18 shows, the batches 

ranged from having a domain and tuple size of around half the cardinality of GEN(F) to a domain 

and tuple size of double the cardinality of GEN(F). The spread of batches provided all of the useful 

information; outside this range and smaller relations satisfy the FD set trivially whilst results for 

larger relations can be gathered from extrapolating within our range. This spread also covered 

the algorithms behaviour relative to a deterministic generation of an Armstrong relation which 

always produces a relation with a tuple size of | GEN(F) | +1.

We discuss the absorption rates (number of states to evolution) of two typical sets of FDs, 

interfering and non-interfering BCNF. Figure 3.8 shows the average number of evolutions to FD 

satisfaction over 1000 runs for two BCNF FD sets, F\ = {A  —> BC, B C  —)■ A } (non-interfering) 

over A B C  and F<i = {A  —> B C D , B  —»■ A, C  —»■ A}  (interfering) over A B C D . All of the FD 

sets used here were comparable in size and complexity given that the larger the FD set the higher, 

on average, number of states to evolution required. F2 has an average number of states which 

increases rapidly as the number of tuples is increased. This is due to the interfering nature of 

the sets. To describe a possible mutation for set F2 a uniform random selection may choose to 

mutate violating attribute B  for the FD A  —» B C D . This however could be damaging for the 

FD B  —> A  and so our algorithm rejects this mutation. As we can see from Figure 3.8 it is the



3.5. Evolving Example Relations to Satisfy FDs 82

Average states to absorption for sets F1 and F2, both BCNF
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Figure 3.8: Average states to absorption for sets F\ and F2 , Domain sizes: 3, 6

rejection of such possible mutations that causes the increase in the number of states to absorption. 

F\ is non-interfering so that any mutations will only ever be neutral or useful for the other FDs in 

the set ((Collopy and Levene, 1996), Theorem 3.1) creating fewer rejected mutations and faster 

absorption rates. The absorption rate of an FD set also rises the more interfering FD pairs there 

are within the set. Figure 3.8 also highlights another aspect of our evolutionary process, namely 

that we can generally not determine a difference in the absorption rates between BCNF and non- 

BCNF FD sets of a comparable size.

Most evolved relations for FD sets achieved a quality of 1, using our similarity measure 2.1, 

once the tuple size was above | GEN(F) | +1, detailed in (Collopy and Levene, 1996). This is 

because the probability of evolving an Armstrong relation is evidently lower when the tuple size 

is below | GEN(F) | +1. With a larger domain the chance of an example relation being Armstrong 

is significantly lower, especially when the domain and tuple sizes are comparable, often leading 

to a trivial satisfaction of the FDs as well as FDs outside the specified set. For an empty FD set 

over R  any random relation with schema R  satisfies this set; in terms of quality every possible 

FD would need to be violated for such a relation to be Armstrong. With a null FD set | GEN(F) 

|= | R  | and so anything larger than a binary domain is unlikely to ever be an Armstrong relation 

given the possible spread of all random relations. A measure of the pathology of an FD set F can 

be provided by the ratio of the determinations in F to the number of all possible determinations 

which can occur over the schema R. Given an attribute set and an FD set which explicitly specifies 

all possible non-trivial FDs which can hold amongst the attributes except for one FD then it is 

highly likely that many relations will be evolved which in addition violate this FD. Thus within 

such a batch it is likely that many example evolutions will be Armstrong relations.
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The evolutionary procedure is now highlighted with a real world example. A greater under­

standing of the semantics of an FD set is reached by repeated examinations of different instances 

of the example relations; this is one motivating factor behind our probabilistic approach.

Example 3.5.1 We use the following non-BCNF FD set F = {N am e —>• Phone F latN o., 

FlatN o. —» N am e, Postcode —»• C ity}. We present a deterministic Armstrong relation for 

this set of dependencies in Table 3.19 together with two different evolved Armstrong relations of 

varying tuple and domain size. An evolved Armstrong relation is shown in Table 3.20 with the 

same domain size and tuple number as that used in a deterministic generation. A quick inspection 

of these two relations shows that the differences in Armstrong relations with the same domain and 

tuple sizes tend to be superficial, yet the stochastic nature of the generation of relations leads a 

more well-rounded view of the data. Table 3.21 contains another Armstrong relation, extending 

the domain size of the deterministic Armstrong relation slightly with an attribute domain size of 

8  over 9 tuples. In this instance a larger relation highlights both the satisfied and violated depen­

dencies, those which are not logically implied by F such as Phone —>• N am e, thoroughly.

Name Phone Flat no. Postcode City
Dave 1246 19 NW1 London
Dave 1246 19 Y02 York
Dan 3748 7 Y02 York
Dan 3748 7 YOl York

Charles 3748 1 1 YOl York

Table 3.19: Mannila’s deterministic AR

We briefly introduce pathological sets, these being the sets for which an Armstrong relation 

was only rarely, or in some cases never, achieved are discussed more fully in (Collopy and Levene, 

1996) We remark that these FD sets contain many FDs which determine few attributes without 

attributes on their lhs being determined, remembering that our algorithm is not concerned with 

such relationships.

To conclude, the results have shown that example relations which satisfy sets of FDs can

Name Phone Flat no. Postcode City
Dave 1246 19 NW1 London
Dave 1246 19 Y02 York
Dan 3748 7 NW1 London
Dan 3748 7 W14 London

Charles 1246 1 1 Y02 York

Table 3.20: An evolved AR with the same domain size
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Name Phone Flat no. Postcode City
Dave 1246 19 NW1 London
Dave 1246 19 W14 London
Dave 1246 19 Y03 York
Dan 1246 7 BS8 Bristol
Dan 1246 7 BA1 Bath
Dan 1246 7 BA2 Bath

Charles 1246 1 1 Y02 York
Matt 8881 84 BA8 Bath
Fred 2383 24 Y03 York

Table 3.21: An evolved AR with 9 tuples

be efficiently evolved. The many different relations which can be studied for the same FD set 

also provide a more well-rounded view of the data in the designer’s mind. Batches containing 

many evolutions can be run and a database designer would then be able to view many relations, 

including those that are Armstrong if the domain and tuple sizes satisfy the size bounds and an 

Armstrong relation was actually evolved. If they do not, either domain or tuple size being too low, 

then the designer can view an approximation to an Armstrong which a batch has provided. In non- 

pathological cases we conjecture that this will be the best, or close to the best, approximation to 

Armstrong which exists.

3.6 Discussion

In the chapter we have defined a metric for NDs which we will use in Chapter 4. We reiterate 

that the goal of data mining with NDs is not to determine a proportion of the database in which a 

functional relationship is not satisfied but a value for a numerical satisfaction which approximates 

functional satisfaction. Such mining has been shown to be of use with respect to cardinality con­

straints in the context of the ER model (Soutou, 1998). Efficient implementations of algorithm 4 

warrant further investigation. Work in (Huhtala et al., 1998) which includes computing partitions 

as a product of previous partitions within the lattice of attribute sets as well a pruning the search 

space if an FD is found to hold would be directly applicable for ND mining.

For design purposes the evolution of example relations has been shown to be a potentially 

useful tool. A good database design tool is based on ease of use for the designer and example 

relations are a step in this direction. To study the applicability of a set of FDs the user can limit 

the number of tuples in a relation as well as the domain size. The simulations have shown that 

informative example relations can be evolved by our process. The average number of states to 

evolution is dependent on both the nature (non-interfering or interfering) and size of the FD set 

and the size of the relation. Example relations containing attributes independent of each other
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are less likely to be evolved into Armstrong relations. For 63 out of the 72 sets of FDs used in 

simulations an Armstrong relation was evolved for some domain/tuple combination; this is an 

important side-effect of our approach and may form the basis for further research.

This work will be of use to the database designer as an auxiliary tool to complement the 

other stages of the design process. From a schema the designer is now able to evolve many varied 

example relations.

In the domain of Armstrong relations it would be highly interesting to study algorithms for 

the generation of weak Armstrong Relations, defined in Definition 3.3.2, in the manner of (Fagin, 

1982; Beeri et al., 1984) which examine ARs for FDs in the context of improving database design.



Ch a p t e r  4

The Consistency Problem in Indefinite 

Relations

In this chapter we demonstrate how NDs may be applied within a heuristic chase based algorithm 

for approximating solutions to the consistency problem (Vadaparty and Naqvi, 1995). We also 

demonstrate how resampling may be applied in a dynamic fashion to decide upon suitable sample 

sizes for the indefinite relation in question.

Our approach to approximating the consistency problem is presented in Section 4.1. In Sec­

tion 4,2 we motivate the application of indefinite information in relations, referring to the work of 

(Vadaparty and Naqvi, 1995; Imielinski et al., 1991; Imielinski et al., 1995). Section 4.3 details 

our approach to the consistency problem, detailing the chase procedure for indefinite informa­

tion relations, the algorithms applied and the use of two resampling techniques, the bootstrap and 

the jackknife, for sample size determination. Section 4.4 presents the extensive simulations con­

ducted on randomly generated indefinite relations, both uniform and biased with respect to indef­

inite cell appearance. We also detail how the simulations were assessed and the results achieved. 

We conclude in 4.5 with a discussion of further work and introduce how our work might be ex­

tended to search for phase transitions using our approximation technique for relations containing 

indefinite information.

4.1 Our Approach to the Consistency Problem
Given a set of FDs F and an indefinite relation r  (a relation with one or more indefinite cells) we 

tackle the problem of attempting to find a definite relation extracted from r  which satisfies F. This 

is widely known as the consistency problem. The consistency problem has been shown to be NP- 

Complete in general, and of polynomial time complexity in the case where indefinite information 

is only allowed in attributes which are present in the right hand side of FDs (referred to as a good 

database) or when the FDs have a singleton right hand side and attributes with a domain size of
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at most arity two are allowed in the left hand side (Vadaparty and Naqvi, 1995). Henceforth, we 

refer to definite relations as possible worlds. An incomplete relation can be seen as a collection 

of possible worlds where each world contains a complete instance of the incomplete relation.

Definition 4.1.1 (The consistency problem) Given a set of FDs F and an indefinite relation r the 

consistency problem is the problem of deciding whether there exists a possible world in r  which 

satisfies F, written as r  |» F, see Definition 4.2.1. □

Our approach in attempting to solve the consistency problem is based on using a chase pro­

cedure, adapted from the standard chase of Section 2.2.5 for indefinite relations, as a heuristic in 

conjunction with a hill-climbing technique. We start by applying the chase procedure to remove 

inconsistent data from the relation which does not satisfy an initial ND set. For an ND X —>k Y the 

chase procedure will collect k +  1 tuples and remove values from indefinite cells which would 

otherwise prevent X —>k Y being satisfied and whose removal will not prevent the generation 

of worlds satisfying ND sets higher in the lattice. If there is inconsistent information, implying 

that X — >k + 1  Y is the closest ND to an FD which the relation satisfies, then the chase applied for 

X —>k Y will return an undefined relation containing empty cells, indicating that the result of this 

is undefined.

The algorithm applies this procedure in a hill-climbing manner whereby each iteration gen­

erates a possible world satisfying an ND set N from an indefinite relation r. After each iteration 

the chase is applied to r  using the best ND set found so far. This procedure is repeated until the 

chase returns either an undefined result, stating that it can get no closer to an FD set, or the limit 

on the number of worlds to generate is exhausted. In contrast to this, a naive procedure was also 

used which randomly generates n  possible worlds and stores the best approximation. For the pur­

poses of this experiment we assume that all possible worlds are equally probable having a uni­

form distribution. Changing this assumption, for instance by assuming an increased weighting of 

a particular attribute domain value, leads to different results, briefly discussed in Section 4.4.4.

We wish to know what is a suitable limit on the generation of possible worlds to give the 

hill-climbing chase procedure. An appropriate size is one which is large enough such that the 

probability of obtaining the best possible approximation to the FD set is high. Though we may 

expect such a size to be exponential in the cardinality of the relation r, the schema, and the arity 

of the indefinite cells, it would be foolish to generate a figure without examination or sampling 

of the data in r. Therefore we use the Bootstrap procedure (Efron and Tibshirani, 1986; Efron 

and Tibshirani, 1993), a computationally intensive statistical procedure, introduced in Chapter 2. 

We initially take a sample of n  observed possible worlds. Based upon this sample we perform a
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number of bootstrap replications. Each bootstrap replication samples from the observed possible 

worlds with replacement. In this way the Bootstrap is used to provide a guide to the distribution of 

the possible worlds (Dopazo, 1994). The key assumption we make in this case is that our sample 

of observed possible worlds is representative of the indefinite relation. We then repeat the Boot­

strap with an increasing sample size of observed possible worlds. After each bootstrap iteration 

we calculate the mean and standard error. The number of observed possible worlds (sample size) 

is increased until the Bootstrap procedure converges to an approximate fixpoint.

In this sense the convergence of the Bootstrap mean value tells us, with a high probability, 

that increasing the sample size further will not provide us with any additional information con­

cerning the distribution of data within the indefinite relation. Our results have shown this con­

vergence always occurs with a sample size that is an upper bound on the number actually used 

by the chase hill-climbing procedure. This is a novel application of sampling within databases, 

to our knowledge not previously used. To illustrate its usage, a relation with minimal indefinite 

information and therefore only a few possible worlds will have much less variance amongst the 

satisfaction of numerical dependency sets. In such a case the bootstrap will reach a fixpoint after 

few iterations with a final sample size of p. The chase and hill-climbing algorithm will then have 

p as a limit on the number of worlds to generate and apply heuristics to. This will be an upper 

bound based on the minimal variance within the relation.

In order to test the viability of our approach we conducted simulations over 12 sets of FDs, 

demarcated into Boyce-CoddNormal Form(BCNF), see Definition 2.2.22, and non-BCNF, rang­

ing from small to large sizes. Each FD set was evaluated with respect to the average and maximum 

number of worlds generated and the final value of the best ND set. This was performed for around 

100 batches, each containing 500 runs, a single run being the process of applying the chase and 

hill-climbing process until we can climb no further. Each batch was varied over domain, tuple 

and maximum cell arity size each held constant within a particular batch. The batches were all 

repeated for the naive procedures. The parameters were varied from a range of trivial satisfaction 

to trivial inconsistency within a relation. Across batches the weighting of the number of indefinite 

cells appearing in a relation was also varied from a 25% to a 75% likelihood with this weighting 

given to cells which are in an attribute present in the left hand side of an FD or not. The simula­

tions emphasised the validity of the chase hill-climbing procedure noting that far fewer worlds are 

used (before any further chase iterations create an undefined relation) to provide a similar result 

to the generation of a very large number of possible worlds, the naive approach. Additionally, the 

run times for the chase and hill-climbing algorithm were much faster than the corresponding naive 

algorithm. The higher the degree of indefinite cells in a relation tended to provide better results
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when using the chase hill-climbing approach. The simulations also showed that our use of the 

Bootstrap for parameter setting is both valid and useful. Indeed, the application of such statistics 

seems set to become more commonplace in data mining, as was recently expressed by U. Fayyad 

in a data mining journal, “I personally look forward to the proper balance that will emerge from 

the mixing of computational algorithm-oriented approaches characterizing the database ... with 

the powerful mathematical theories and methods for estimation developed in statistics” (Fayyad, 

1998a).

(Imielinski et al., 1991) motivated the use of indefinite information within a relation us­

ing a scheduling application and in this context the consistency problem is equivalent to asking 

whether a particular schedule in invalid. (Vadaparty and Naqvi, 1995) presents a relationship be­

tween work on indefinite information and constraint logic programming. (Van Hentenryck, 1989) 

presents a number of logic programs which incorporate domain constraints and use them to aid 

solving various programs, ranging from simple puzzles to search algorithms. Our methodology 

could be applied to instances of such puzzles in cases where approximations to a final answer are 

satisfactory.

4.1.1 Intractability o f the consistency problem

It was shown in (Vadaparty and Naqvi, 1995) that the consistency problem is, in general, NP- 

complete (Garey and Johnson, 1979). It follows that the corresponding consistency problem for 

NDs is also NP-complete, since FDs are a special case of NDs. In the special case when for all 

attributes A in the left-hand sides of the FDs in F the A-values of all the tuples in r  are definite, 

then the consistency problem can be solved in polynomial time in the sizes of F and r  (Vadaparty 

and Naqvi, 1995). The NP-complete nature of the consistency problem inherently implies that it 

would be fruitless to design an algorithm which searches for an exact solution for a relation and 

a set of FDs. Therefore our algorithm attempts to find an approximation to the best solution that 

is available.

(Imielinski et al., 1995) shows how query complexity across more than a single relation be­

comes co-NP-complete when the relations contain indefinite information. Also introduced are 

typing functions, which state whether an attribute can contain indefinite information or not and 

degree o f co-referencing, which places restrictions on the type of indefinite information allowed 

in a relation. This ranges from no repetition of OR-objects, no repetition across columns, and 

unrestricted repetition. Due to our allowance of indefinite information directly within cells we 

inherently allow unrestricted repetition. (Imielinski et al., 1995) identifies a complete charac­

terisation of queries for the different classes of database, based on the degree of co-referencing, 

which are evaluable in polynomial time. This is intended to provide an outline of the allowed use
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of queries and indefinacy within a database so that query complexity remains within polynomial 

time.

The notion of mutable and persistent object identifiers is also introduced in (Imielinski et al., 

1991). A persistent object identifier is where the cell containing indefinite information is taken 

as an object which contains a disjunction (i.e. a name for the object whose value is not yet 

known) whereas in a mutable object identifier the indefinite information is interpreted as disjunc­

tion across tuples, which is therefore assumed to have a place-holder representation. Mutability 

is required for structure sharing within indefinite data. We do not consider this in the context of 

our work. Mutable object identifiers generalise marked nulls.

4.2 Indefinite Information in Relations
In Section 2.2.7 we introduced the background on indefinite information representation in rela­

tions principally focusing on the use of OR-objects. We now discuss applications of indefinite 

information and formalise dependency satisfaction.

4.2.1 Applications

Indefinite information representation in relations has been shown to be a useful facility for incom­

plete specifications in design and planning applications (Imielinski et al., 1991; Imielinski et al., 

1995; Vadaparty and Naqvi, 1995). We define indefinite cells as cells containing one or more val­

ues which represent a set of possibilities denoting the current limit of knowledge in the database. 

Any indefinite cell in column A which contains the complete domain allowed for A is equivalent 

to the traditional NULL value (Lipski, 1979). A definite relation extracted from one containing 

indefinite information is a relation with the same schema and definite cells, which are invariant 

throughout, but with each indefinite cell, say I, replaced with a definite cell containing one value 

from I. Associated with an indefinite relation may be a set of integrity constraints, primarily FDs, 

the most common integrity constraint in relational databases.

(Imielinski et al., 1991) introduced OR-objects for use within design, planning and schedul­

ing operations, motivated by the lack of functionality in information systems to handle

•  coexistence of objects in different stages within the design process

•  the ability to evaluate hypothetical queries

•  allowing choice within the data model

(Imielinski et al., 1991) presents differences between the interpretational and structural lev­

els of a schedule. The interpretational level refers to the final designs, possible worlds in our inter­

pretation, of an indefinite relation whilst at the structural level we are concerned with the indefinite
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relation itself. In this work we provide a methodology for assessing interpretational information 

content of indefinite relations. Structural queries discussed in (Imielinski and Vadaparty, 1989; 

Imielinski et al., 1991) such as “are there two people in a travel relation c with common des­

tinations,” may be addressed by including NDs as constraints within the respective data model. 

(Imielinski et al., 1991) formalises views which allow for querying at either the interpretational or 

structural level, or a combination of the two. The data complexity of the query language is shown 

to be co-NP-complete, correlating with the proof given in (Vadaparty and Naqvi, 1995) that the 

consistency problem is NP-complete due to the fact that a query might ask if all schedules are 

invalid (a structural query), consistent with all schedules violating an FD set.

We now define FD and ND satisfaction in indefinite relations:

Definition 4.2.1 (Satisfaction of an FD in an Indefinite Relation) Let s E POSS(r), be a def­

inite relation over R. An FD X -> Y is satisfied in s, denoted by s |= X —> Y, whenever V ti, t<i E 

s, if t \ [X] = t i  [X] then ti  [Y] = ti  [Y]. A set of FDs F is satisfied in s, denoted by s \= F, whenever 

V X —f Y E F ,  s | = X —»Y.

A set of FDs F is weakly satisfied (or simply satisfied whenever no ambiguity arises) in a 

relation r, denoted by r |w F, whenever 3s E POSS(r) such that s |= F. If r F we say that r  is 

consistent with respect to F (or simply r is consistent if F is understood from context); otherwise 

if r  F then we say that r  is inconsistent with respect to F (or simply r  is inconsistent). □

As for standard relations in Section 2.2.6, we generalise the concept of an FD by an ND.

Definition 4.2.2 (Satisfaction of an ND in an Indefinite Relation) Let s G POSS(r), be a def­

inite relation over R. An ND X —>k Y is satisfied in s, denoted by s f= X —>k Y, whenever 

V ti, i 2 j • ■ •»tk, tk+i € s, if ti  [X] = t 2 [X] = . . .  = tk[X] = tk+ 1  [X] then 3i, j  such that 1 < i < 

j  < k +  1 and U [Y] = tj [Y]. A set of NDs N is satisfied in s, denoted by s |= N, whenever V X 

—̂  Y E N, 5 |= X -+k Y.

We define a set of NDs N to be weakly satisfied in a relation r  in the same way as for FDs; 

similarly we define a relation r  to be consistent with respect to a set of NDs if r  N and otherwise 

to be inconsistent. □

The use of NDs in possible worlds to approximate FD set satisfaction in an indefinite relation 

has not previously been considered to our knowledge.

4.3 Algorithm design
We now present an overview of the component parts of our process for approximating solutions to 

the consistency problem. We begin with a presentation of the chase for NDs in indefinite relations,
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followed by an overview of our use of resampling. The principal algorithms are then introduced.

4.3.1 The chase algorithm for indefinite relations

In Algorithm 7, ND-CHASE, we present the chase for NDs in indefinite relations, called within 

CHECK-CONS. It is a heuristic procedure extended from the standard chase procedure for FDs 

(Beeri and Vardi, 1984; Mannila and Raiha, 1992a) which, given a set of NDs, attempts to remove 

extraneous or redundant information that may otherwise prevent the ND set from being satisfied. 

The forward chase removes extraneous values from indefinite cells in attributes which are in the 

right hand side of a given FD which is satisfied numerically but not functionally and therefore 

generalised to an ND. Informally, a partition on attributes in the left hand side of the FD which 

has at least one more tuple than the branching factor of the ND is selected and indefinite cell 

values of attributes in the right hand side of the FDs, whose appearance in a possible world would 

cause the ND to be unsatisfied, are removed. The backward chase removes values from indefinite 

cells in attributes on the left hand side of the given FDs which would have otherwise prevented 

satisfaction of the current ND if that value had been selected for inclusion within a possible world.

Algorithm 7 (ND_CHASE(r, N))
1 . begin
2. Result := r;
3. Tmp := 0;
4. while Tmp /  Result do
5. Tmp := Result;
6 . if 3 X — Y € N, 3 ti, t2, • • • > tk, t k+i € Result such that

*i [X], t 2 [X ]. . . ,  t* [X], tk+i [X] are definite and ti [X] = t 2 [X] = . . .  = t k [X] = t k + 1 [X] 
but h  [Y] ^ t 2 [ Y ] ^ . . . ^ t k [Y] #  t k + 1  [Y] then

7. for each A  E Y—X and v E t k + 1  [A] do
8 . if v ^  U t i  tk [A] and Vi, j  E {1 ,2 , . . . ,  k}  such that i ^  j ,  U [A] Df j [A] = 0 then
9. tfc+i [A] := t k+i [A] - { v } ;
1 0 . end if
1 1 . end for
1 2 . end if
13. if 3 X —>k Y E N, 3£i, t2, . . . ,  t k , t k + 1 E Result such that

fi [XY], t 2 [XY],. . . ,  t k [XY], t k + 1 [Y-X] are definite and h  [X] = t 2 [X] = . . .  = t k [X] 
and ti[Y —X] ^  t 2 [Y -X ] ^  . . .  #  t k [Y -X ] /  t k+1 [Y-X ]  and 
sound(fi [X] ,£ 2 [X],.. .,^[X ],tfc+i[X]) then

14. V A E X -Y , t k+i [A] := t k+1 [A] -  U[A], for somei E {1,2,.
15. end if
16. end while
17. return Result;
18. end.

Figure 4.1: Chase for Numerical Dependencies with forwards and backwards tests 

We include the sound check for the attributes values on the left hand side of an ND
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X — Y to ensure that values are not removed unnecessarily from cells which might otherwise 

form an attribute value combination over X which is not present in any of the tuples in { ti[X], 

2̂ [X],. . . ,  tk[X] } and therefore not redundant. If this step were not performed we might create 

an undefined relation unnecessarily. To illustrate this we present Table 4.1 showing an indefinite 

relation over ABC with an FD AB —> C. If we apply the backwards chase to this relation without 

the sound check then, due to each tuple disagreeing on C with the indefinite tuple, this would 

result in an undefined relation. Table 4.2 depicts the satisfying instance.

A B c A B c
0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0

{0,1} {0,1} 1 1 1 1

Table 4.1: Indefinite relation r, FD AB —> C Table 4.2: A satisfying world for AB —► C

Definition 43.1 (Good Classes of Indefinite relations, (Vadaparty and Naqvi, 1995)) Given 

a relation r  and a set of FDs F, r  is good for F if it contains no indefinite cells in r  on any of the 

attributes which are also on the left hand side of any FD in F. □

An 0 { n 2) algorithm, DELETE JREDUND ANT, is presented in (Vadaparty and Naqvi, 1995) that 

takes a relation good for F, and pre-processes it such that the resulting relation has only conform­

ing possible worlds. It is said to fully incorporate any set of FDs in a database D  if the database 

is good for the set of FDs; it is equivalent to ND_CHASE with only a forward chase component. 

The algorithm maintains a cumulative domain of all the OR-objects; the relation r  is partitioned 

for agreement on the attributes in the body of F and each partition has an intersected domain of 

all OR-objects within the attributes on the right hand side of F. It is shown to be sound given that 

(Vadaparty and Naqvi, 1995) accept, without comment, that a relation that is not satisfying will 

have a null-intersection on its OR-objects and will not therefore have any possible worlds.

43.2 Resampling for the Consistency Problem

Given that the number of possible worlds of an indefinite relation increases exponentially in the 

size of the relation it is impossible to examine all possible worlds for the best solution. The com­

plete population distribution is unknown; otherwise we would know exactly how many definite 

relations to generate to have a specific probability of finding the closest ND set to the given FD 

set. This suggests applying a bootstrap procedure to a sample of definite instances to approximate 

the population distribution based on the sample distribution. Essentially we take a sample of n
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possible worlds from an indefinite relation. Then we use the sample to construct pseudosamples 

of size n, obtained by selecting randomly from the sample with replacement for each pseudosam­

ple. We then increase the sample size by a small amount 8  and repeat the bootstrap procedure with 

sample size n  +  8 until a fixpoint is reached and subsequent increases do not affect the variance 

any further. Informally, we use this incremental bootstrap procedure to tell us how many worlds 

we need to consider so that we have a high confidence that generating additional worlds will not 

improve our solution.

Independently of this work we refer the reader to (John and Langley, 1996) which defines 

dynamic sampling as, “the use of knowledge about the behaviour of the mining algorithm in order 

to choose a sample size.” Within the context of this work, we prefer to define dynamic sampling 

as the use of knowledge about the data to choose a sample size. Our incorporation of resampling 

does exactly this. (John and Langley, 1996) note that in data mining and decision support it is 

important that the sample size is well chosen. Indeed, a poorly chosen sample size which may not 

accurately capture the information content of a database to within the correct degree of error, may 

result in a loss of much money. (John and Langley, 1996) therefore introduces the PCE (Probably 

Close Enough) inequality, a derivation of the PAC-leaming criterion (Valiant, 1984; Anthony and 

Biggs, 1992), which states that

Pr(acc(D)  — acc(s) >  c) <  S

where acc measures the accuracy of the mining algorithm, D  refers to the database, s  the sam­

ple and € and 8  are error and confidence limits, respectively. (John and Langley, 1996) assumes 

that whenever acc(st+i) < occ(s,) then further increases in sample size will result in a loss of 

accuracy and that n,- is a suitable sample size, given that the derivative of accuracy with respect 

to sample size has become non-positive. (John and Langley, 1996) state that it is necessary to es­

timate acc(si) and uses leave-one-out cross-validation to achieve this; we choose instead to use 

bootstrap resampling for our estimation of a sample size. Similarly, our employment of dynamic 

resampling assumes that when we reach an approximate fixpoint no further increases in sample 

size will improve the knowledge of the indefinite relation.

4.3.3 The Bootstrap Process within Indefinite Relations

The bootstrap is a data driven simulation method for statistical inference. It is a computationally 

intensive procedure that has been shown to ably provide confidence limits which would not have 

been capable of being similarly generated more than 30 years ago. In our experience, statisti­

cal methods have not previously been applied in the solution of database problems such as the 

consistency problem. We now formalise the use of the bootstrap in indefinite relations.
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Figure 4.2: The Bootstrap procedure applied to increasing sample sizes for an indefinite relation

Definition 4.3.2 (The Bootstrap Sample) Given an indefinite relation r over schema R  where 

| R  | = m  and | r | = v and the maximum arity in an indefinite cell is q, then r can have at 

most qmv possible worlds. From r  we uniformly randomly extract n possible worlds. Each of 

these worlds will satisfy a set of NDs (which may be FDs). These n possible worlds are referred 

to as the original sample or observed possible worlds and are written as p  = (ri, r2, . . . ,  rn). A  

bootstrap sample is p* = (r*, r^, • • •, r*) where for all i = 1 , 2 . . . ,  n each r* is randomly selected 

with replacement from the n observed possible worlds, p. □

The probability of an observed possible world not being present in a bootstrap sample of 

size n is (1 — ^)n assuming each world in the sample has a ^ chance of being selected. Note 

that every observed possible world has an equal likelihood of being selected for each point in the 

Bootstrap sample. The ND set is restricted to expressing approximations to a given FD set in this 

work.

We denote each of the I NDs which may hold in r by X, —yki Y{ where 1 < i < I. We 

denote the branching factor k which holds for ND X{ —>k Yi in r  as brxtYi(r )-

Definition 4.3.3 (The Bootstrap Sample Mean) Given a bootstrap sample p* = 

(r i 5 r 2 i ■ • • 5 r n)>we calculate the mean s(-), or any other statistic of interest, in exactly the same 

way as we would have for the original sample of ND sets, each containing m NDs,

S(Pk) = {x j ~>K Yj  I 1  < 3 < m } where K  = ^ i =1 brXjYj (r*)/n
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When we refer to the sample mean of a set of possible worlds we are implying the sample mean 

of the sets of NDs of the possible worlds. □

Definition 4.3.4 (The Bootstrap Replication Size (BRS)) The Bootstrap Replication Size, B,  

is the number of times a Bootstrap sample of size n  is created from the observed possible worlds 

(the original sample) and evaluated on a parameter of interest. We denote the B  bootstrap samples 

byp£ = (p*,P2 , 1=1

Definition 4.3.5 (The Bootstrap Mean of all Values) Given a set of B  bootstrap samples p \, 

we calculate the mean s(-), or any other statistic of interest, in exactly the same way as we would 

have for the original sample, s(p£) = E fL jsd fJ /B .  □

(Efron and Tibshirani, 1993) tackles how large the BRS should be. Given a BRS B , (Efron 

and Tibshirani, 1993) refers to the ideal bootstrap estimate which takes B  equal to infinity. As 

B  increases the empirical standard error tends towards the standard error of the original sample. 

Therefore the population distribution of the resamples are based on the population distribution 

found in the sample; this emphasises the non-parametric nature of the bootstrap. (Efron and Tib­

shirani, 1993) show that the amount of computation time required for increasing BRS sizes grows 

linearly. We show that this is also the case for increasing the BRS for indefinite relations in Fig­

ure 4.3 where new FDs, determining a new attribute, are added. Figure 4.3 represents a near worst 

case scenario where each FD added to the set determines a single attribute where all of its cells 

are indefinite, of arity 3, and intersect on only one value. The number of tuples in the relation and 

both the degree of indefinite cells and arity of these cells affects the gradient of these lines.

Definition 4.3.6 (The Bootstrap Standard Error for Indefinite Relations) The sample stan­

dard error in the values for B  bootstrapped values is:

(M)= {gsg*m) -*my/2 °

We now describe the methods of our Bootstrap application, detailed in Algorithm 10. The 

process is outlined in Figure 4.2. We start with a small initial sample size a  and a Bootstrap Repli­

cation Size B. Having created B  bootstrap samples we will have a bootstrap mean of all values 

in the form of an ND set. For this value we can use the bootstrap to calculate the standard devia­

tion (and other statistics if desired). From this we can empirically infer the width of the interval in 

which a certain percentage of the relations occur. We continue to increase a  by a fixed amount, S, 

until we reach a point where the mean value of the NDs in the ND set converge. In Figure 4.2 this
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Figure 4.3: Average number of worlds to reach an approximate fixpoint of the mean bootstrapped 

ND values in 10 and 20 tuple random relations

occurs after q bootstrap applications on different sample sizes. This provides a parameter where­

upon any samples larger than a  +  (q — 1 )<£ is unlikely to have any significant change in variance. 

It is unlikely, even for an ND set with just one dependency, for this to be reached randomly and 

running our simulations in batches of 500 implied that any erroneous fixpoint values as outliers 

would have a negligible impact on the final results.

We also examined the variance of the observed possible worlds, for a range of original sam­

ple sizes, as the bootstrap replication size was scaled from 20 up to 50,000 to decide on a suitable 

BRS, detailed more fully in Appendix B. As this was increased we noted that above 1000 there 

was negligible change in the variance. Extensive research on the bootstrap has shown that even 

for BRS of 25 useful inferences can be made, and that there is seldom a significant change once 

a BRS is over 200 (Efron and Tibshirani, 1986). For the purposes of our experiment setting B  

at 1 0 0  gave a suitable value which allowed sufficient repetitions of the complete bootstrapping 

process in a reasonable time, knowing that there would be only a minimal change in the variance 

for any increase in B. Additionally we experimented with using the original indefinite relation 

for each resampling iteration from which n possible worlds are sampled each time. The variance 

is much higher in this case as we have all possible worlds to select from for each sample of size 

n. In terms of reaching a fixpoint this takes much longer and was not used in the final simula­

tions. It could be of use in situations where the bootstrap sample may be unrepresentative of the 

population.
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4.3.4 Resampling Algorithms

We now formalise the bootstrap and jackknife algorithms used for resampling and the 

dynamic algorithm within which they were used for indefinite relations. Algorithm 8 , 

BOOTSTRAP(7V&a 5  ,s,B), describes the standard bootstrap procedure which returns the mean 

value of ND sets for a BRS value B  of Bootstrap replications, sample size s and a sample 

population Nf,ag of ND sets. The value a  provided by the bootstrap is used both in ND_GEN 

and CHASE-GEN. Algorithm 9, JACKKNIFE(A^a5), creates n resamples from Nbag where 

| N^g |=  n and each resample is of size n — 1. This was initially developed before the bootstrap, 

to which it has been shown to be an approximation (Efron and Tibshirani, 1986). It is of most 

use when a sample is likely to contain significant outliers. We discuss its use in Section 4.4.6.

Algorithm 8 (BOOTSTRAP(nd Jbag, n, B))
1.begin
2. ND_mean := 0 ;
3. for 1 to B  do
4. ND_samp := Uniform Randomly select n ND

sets from ndJbag with replacement;
5. Insert the mean of ND_samp into ND_mean;
6. end for
7. return the mean of ND_mean;
8 .end.

Figure 4.4: The Bootstrap procedure for indefinite relations

Algorithm 9 (JACKKNIFE(nd Jbag))
1 .begin
2. ND_m := 0;
3. n  := | ndJbag |;
4. for j  := 1 to n  do
5. ND_samp := ndJbag - ndj\
6 . Insert the mean of ND_samp into ND_m;
7. end for
8 . return the mean of ND jm;
9.end.

Figure 4.5: The Jackknife procedure for indefinite relations

Algorithm 10, WORLD _LIMIT(r, F, B ), implements our novel use of the Bootstrap proce­

dure. The initial sample size we incorporated in our simulations was 10 possible worlds, suffi­

ciently small for application to all indefinite relations. This could possibly be extended to using 

the degree of indefinite cells and the domain sizes to calculate a suitable initial sample size. We 

motivate our procedure on the assumption that different sample sizes are required according to the



4.3. Algorithm design 99

variance within an indefinite relation in the different ND sets which may be satisfied in possible 

worlds. The number of dependencies in the given FD set also influences the results obtained from 

our use of the bootstrap. In Section 4.4.2 we show that this application of the bootstrap returns an 

upper bound on the number of worlds required for a good answer. Unlike many statistical oper­

ations, the BOOTSTRAP algorithm operates in exactly the same manner as a standard bootstrap 

procedure despite the fact that we potentially have all possible worlds within the indefinite rela­

tion, unlike many statistical applications from which inferences are made on incomplete popula­

tions. Based on this we conducted experiments whereby the bootstrap resamples were obtained 

not from the original sample but from the indefinite relation. As stated, the variance of resam­

pling from the relation was much higher than resampling from the sample and in such cases the 

upper bound was much higher. Therefore we have found it to be suitable to use just one original 

sample from the indefinite relation within each iteration of WORLD XIMIT. This is elaborated 

upon in Appendix B.

Algorithm 10 (WORLDXIMIT (r, F, B))
1 . begin
2 . n := initial(r); % sample size, based on r
3. ND_bag := n ND sets from n possible worlds, each approximating F
4. No := 0;
5. N i  := BOOTSTRAP(ND_bag, n, B);
6 . j  ••= 1 ; ^
7. while Njj  Nj~i  are not approx. fixpoint do
8 . ND_bag := n ND sets from n  possible worlds;
9. N j  := BOOTSTRAP(ND_bag, n, B);
1 0 . n := n +  6 ; % Increase the sample size by S
1 1 . j  := j + 1 ;
1 2 . end while
13. return n;
14. end.

Figure 4.6: The WORLD XIMIT algorithm for incremental bootstrap sampling in indefinite re­
lations

4.3.5 Finding an approximate solution to the consistency problem

We focus on finding an approximation N of an FD set F for an indefinite relation 

r such that r  f s N  using Algorithm 11, denoted by CHECK_CONS(r, F, B), where B  is the 

bootstrap replication size (BRS). Recall that we have assumed that | r |=  m  +  1, where m  > 1; 

if | r  | < 2, then r |w F trivially holds; we refer the reader to Definition 4.2.2.

We now briefly describe the naive version of CHECKLCONS applied to an indefinite relation 

and an FD set F. This simply generates a fixed number of possible worlds, each satisfying an ND
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set approximation of F, and returns the ND set with the closest proximity to that of F. We apply 

ND-CHASE before the generation to remove redundancy, even from the naive selection. It is 

quite feasible to consider the use of the bootstrap in conjunction with a naive approach though this 

would always generate exactly a  definite worlds, exactly the figure returned by WORLD_LIMIT. 

Use of resampling in a naive procedure is unwarranted given that such computation time would 

be better spent generating new possible worlds and not resampling, which may generate possible 

worlds that satisfy close approximations but are not then detected again by a naive procedure.

Algorithm 11 (CHECK_CONS(r, F, B))
1 . begin
2 . BOT := the bottom element of £ m(F);
3. 5  := CHASE(r, BOT);
4. if s is undefined then
5. return {X —>m + 1  Y | X —»■ Y E F};
6 . end if;
7. APPROX := BOT;
8 . a  := WORLD_LIMIT(r, F, B);
9. S := 0;
1 0 . while APPROX ^  F and |S|< a  do
1 1 . repeat
1 2 . gen_rel := ND_GEN(s, APPROX, a);
13. if gen jrel is not definite then
14. return APPROX;
15. end if
16. until gen_rel £  S;
17. S := S U {gen_rel};
18. while 3 G such that APPROX —< G and gen_rel |= G do
19. APPROX := G; % hill climbing step
2 0 . end while
2 1 . if 3 G such that APPROX -<  G and CHASE(s, G) is defined then
2 2 . 5 := CHASE(s, G);
23. else
24. return APPROX;
25. end if
26. end while
27. return APPROX;
28. end.

Figure 4.7: The CHECK_CONS algorithm for approximating solutions to the consistency prob­
lem

4.3.6 The Chase and Hill-Climbing Algorithm

Algorithm 11, CHECK_CONS(r, F, B), initially removes extraneous information from r  via 

ND_CHASE. Algorithm 10 generates a suitable sample size a  using the bootstrap dynamically. 

Then, until either a possible world satisfying F is found, or a  is reached the following occurs:
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ND_GEN is called to generate a definite world gen_rel; gen_rel is used in a hill-climbing fashion 

to obtain the best ND set A P P R O X  which it satisfies and the chase is reapplied to the indefi­

nite relation using an ND set G  which covers A P P R O X . If the chase is undefined for all sets 

covering A P P R O X  then this set is returned as the best approximation given that the indefinite 

information in the relation does not satisfy any higher ND set.

ND_GEN(r, N, a), invoked from CHECK-CONS, attempts to generate a possible world 

using uniform random selection in conjunction with chase procedures of CHASE_GEN. Using 

such random selection in this manner allows for a value to be removed from an indefinite cell 

which may then aid subsequent redundant values to be removed by CHASE_GEN. Algorithm 13, 

CHASE_GEN(r, N, a), applies a chase based heuristic to unify two tuples which have a non-null 

intersection on a determined attribute A, randomly selecting one value from their intersection. If 

we reach a point where k +  1  tuples have a null intersection then we have removed too much 

information for X Y to ever hold and we return to the original indefinite relation. We use 

the WORLD _LIMIT sample size on the assumption that if we have to repeat this procedure a  

times we assume that X —>k Y will never hold based on the indefinite data. In ND_GEN we also 

assume that a  is large enough such that a definite relation is returned if there exists a possible 

world in r  which satisfies the given ND_set. The empirical results of our simulations show that 

using these heuristic algorithms generate, on average, equivalent if not better, approximations in 

a much faster time than naive selection.

4.4 Simulations and Results

We now discuss the simulations conducted to examine the viability of our methods for attempting 

to find a consistent possible world within indefinite relations, detailed in Appendix B. We con­

centrated on a few FD sets demarcated by the number of dependencies in the set and whether they 

were BCNF or non-BCNF. In Table 4.3 we present an overview of the parameter ranges for the 

simulations conducted. Batches containing 500 runs were executed so that we could find reliable 

averages for both naive and chase and hill-climbing algorithms. The range of possible inputs for 

an indefinite relation is very large. We limited the size of our relations to 50 tuples, and carried 

out the simulations with batches having a maximum indefinite cell arity of up to six elements and 

a domain size for each attribute of up to 1 0  elements, noting that the domain size must be higher 

than the maximum indefinite cell arity. The weighting of the likelihood of the presence of an in­

definite cell was also varied for selected batches. In a standard batch we randomly generate a 

relation wherein each cell has a 50% chance of being indefinite. If it is selected to be indefinite 

then its arity, up to the maximum for the batch, is then randomly selected. The weighting was
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Algorithm 12 (NDGEN(s, N, f3))
1. begin
2. gen_rel := CHASE_GEN(s, N, /3);
3. if gen_rel is undefined then
4. return gen_rel;
5. end if
6. Fail := 0;
7. while gen _rel is not definite and Fail < (3 do
8 . Tmp := gen_rel;
9. if 3 A £ R and U{ £ s such that |wt [A]|> 1 then
1 0 . wt [A] := {v}, where v £ Wt[A] is randomly chosen;
1 1 . end if
12. gen_rel := CHASE_GEN(gen_rel, N, j3);
13. if gen_rel is undefined then
14. gen_rel := Tmp;
15. Fail := Fail + 1;
16. end if
17. end while
18. return gen_rel;
19. end.

Figure 4.8: The ND_GEN algorithm for generating a possible world

varied in batches for suitable FD sets from a 25% to 75% likelihood of being indefinite on the 

attributes according to whether they are in the left or right hand side of an FD. The value of our 

approximate fixpoint within WORLDXIMIT was set to 2 decimal places; this may be set empir­

ically.

Number of FD sets 12 ( 6  BCNF / 6  non-BCNF)
Program Versions Naive/Chase and hill-climbing
Single FD simulations 1 batch for each domain/tuple/cell-arity combination
Batch Range 500 runs in each
Domain Range 1 - 1 0

Ttiple Range 5 - 5 0
Cell-Arity Range 2 - 6  (domain size > cell-arity)

Table 4.3: Simulation details for the consistency problem

4.4.1 Use of our metric

The metric for sets of NDs, defined in Section 3.1, was used throughout the simulations to asses 

the proximity of an ND set to an FD set which it approximates, known to be the top of the lattice, 

N j.  Within a batch we formed the mean value of the metric, as shown in the graphs.



4.4. Simulations and Results 103

Algorithm 13 (CHASE_GEN(s, N, 7 ))
1 . begin
2 . Result := s ;
3. Tmp := 0;
4. Fail := 0;
5. while Tmp 7  ̂Result do
6 . Tmp := Result;
7. if 3 X —t k Y E N, A E Y—X and u \ , u 2___, Wfc, itfc+i £ Result such that

ui[X],u2[X], . . . ,  ?/A;[X], Uk+i[X] are definite and 
ui [X] = u2 [X] = . . .  Uk [X] = Uk+1 [X] then

8 . if 3i, j  E {1,2 , . . . ,  k, k +  1} such that u,-[A] D Uj [A] ^  0 then
9. ut'[A], uj  [A] := {u}, where i, j  and v E U{[A] fl Uj [A] is randomly chosen;
1 0 . else
1 1 . if Fail < 7  then
1 2 . Result := s;
13. Tmp := 0;
14. Fail := Fail + 1;
15. else
16. Vi E {1,2, .  k + 1}, w,[A] = 0;
17. return Result;
18. end if
19. end if
2 0 . end if
2 1 . end while
2 2 . return Result;
23. end.

Figure 4.9: The CHASE_GEN algorithm for applying a chase method randomly

4.4.2 Results

We now present some results based upon our simulations. We show in Figure 4.10 results de­

picting the closest proximity within a batch for both the naive and the chase and hill-climbing 

approaches for the FD set Fi =  {A  ->■ B, A  —> C, A  ->■ D}  having a domain of 7 and contain­

ing indefinite cells of a maximum arity 6 , rather large for real purposes. This figure represents 

the result for just one run in a batch. We can see for this run that the best results for the use of our 

chase methodology are the same as for the naive procedure when the relation contains both 15 

and 35 tuples. The similarity between the use of the chase and naive methods, leading to an un­

even graph is expected given that the chase is only a heuristic to aid our hill-climbing procedure. 

We note, however, that across a batch or 500 runs that the mean results of the chase procedure 

are slightly better, shown in Figures A.9 and A. 10 in Appendix A. Additionally, we discuss the 

superior efficiency of the chase and hill-climbing algorithm in section 4.4.3.

The limit, a, on the iteration size, as supplied by the Bootstrap was equalled in less than
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Figure 4.10: Closest Proximity for FD set F\ across a number of different weighted relations

1% of the simulations, showing this to be a suitable upper bound. Indefinite relations with a large 

number of indefinite cells in relation to the domain size are apt to satisfy very many ND sets which 

are equivalent, leading to exhausting of the limit a  provided by WORLDXIMIT.

4.4.3 Analysis of the Chase results

Simulations showed that the chase procedure outperformed the naive approach, on average, by an 

increasing margin as the number of tuples within a randomly generated relation increased. This 

margin became slightly larger at higher domain sizes within relations. Obviously, as the tuple and 

domain size are increased, the chase procedure becomes more effective due to the increased prob­

ability of there being more redundant values to remove. We can see in Figure 4.10 that if there is 

a bias towards having more indefinite cells in attributes which are present in the right hand side 

of FDs (or fewer indefinite cells in the left hand side, by symmetry) then the closest proximity for 

both the naive and chase approaches are better than an even weighting of indefinacy in left and 

right hand sides. The chase procedure is also more effective at an earlier stage, evidenced by the 

Reduced Jhs-weighting line in Figure 4.10. An increased number of indefinite cells in attributes 

on the right hand side of FDs implies that there may be more values which may lead to unnec­

essarily low ND satisfaction (i.e. each ND will have a larger branching factor) which can now 

be removed by the chase heuristic. Our simulations show the increased efficacy of the chase in 

such cases. A larger indefinite cell arity also implies that the chase will have more values to re­

move and therefore perform even better. In the case of reducing the weighting of indefinite cells 

of the left hand side of FDs, a naive approach performs much worse than in an evenly weighted 

relation due to there being fewer indefinite cells from which it can select different values, thereby 

preventing much variation of the partitioning on the NDs in a relation which might otherwise oc-

’Chase_Hill_Climbing’
’Naive’ h -  

’ReducedJhsjvelghting' -B-
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Figure 4.11: Closest and Average Proximity for FD set F3

cur. Fewer possible worlds are present in such biased relations though there are still too many to 

consider applying a naive approach alone. Conversely, a reduced weighting of indefinite cells in 

the right hand side of FDs also produces better results than an even weighting of indefinite cells. 

This was simply due to the creation of more partitions. As expected, and in contrast to our work 

in Chapter 3 on evolving relations, we did not find a significant difference between using BCNF 

and non-BCNF FD sets in either case. The fact that an attribute is, or is not, part of a superkey did 

not affect the overall proximity to an FD holding within a randomly generated indefinite relation. 

This may not necessarily be the case for real-world data, where the presence of a key may suggest 

a closer proximity to dependency satisfaction.

Figure 4.11 shows results for F 3 = F i U {B D  —> A}. For this relation the chase procedure 

performs poorly, on average, with respect to the naive technique. We believe this is due to the 

interference of the attributes within the FD set having attributes determining and being determined 

by each other which reduces the application of the chase heuristic. We note however that the best 

results within a batch obtained by both the naive and the chase and hill climbing are increasingly 

similar as relation size increases. We reiterate that the chase and hill climbing approach requires 

far fewer worlds.

In Figure 4.12 we see that, for both FD set F\ and F2 =  {A  —> F , B  —> C, C  —¥ D }, as the 

number of tuples increases there is a slight peak, after which further increases in the number of 

tuples results in a fall in the average number of worlds required. This is based on every relation 

within a batch having a fixed domain size d and an indefinite cell maximum arity, reaching a point 

where it is likely that any further increases in the tuple size will lead to the satisfaction of the nu­

merical dependency set with each ND left hand side determining d branches and so fewer worlds
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Figure 4.12: Average Number of Worlds required by the chase and hill-climbing approach

are required before any attempts to apply the chase returns an undefined relation implying that 

nothing better can be found. The peaks in Figure 4.12 were reflected in the values of a  returned 

by our bootstrap technique, corroborated by Figure 4.15. In our application of the bootstrap, as 

the relation size of a random relation is increased and the domain size is held constant, the sam­

pling will also reach a point where the variance in the samples amongst the randomly generated 

possible worlds is reduced due to most possible worlds satisfying the NDs each with a branch­

ing factor close to their domain size. This is likely to also be the case for very large real world 

indefinite relations.

Given that all of our test data was uniformly randomly generated, with a bias to or against in- 

definacy in specified attributes if desired, we remark that the results echoed the general behaviour 

presented here. The average number of worlds required in Figure 4.12 emphasises the efficiency 

of the chase and hill-climbing over naive procedures. The lack of indefinite information within 

databases in daily use prevent grander conclusions on the efficacy of the chase, where it may have 

wider use, particularly with respect to larger relations. For example, if a database required only 

indefinite information in an attribute on the right hand side of a given FD and the domain size was 

small with respect to the database size then the chase would be an effective heuristic.

4.4.4 Changing Bias of indefinite information

We now briefly discuss differences within resampling for relations with different bias of indefinite 

cells in the relation, following on from the discussion of bias in the previous section. Experiments 

exemplified the importance of how the definite cells satisfy ND sets; if the definite cells in an in­

definite relation satisfy ND sets which are closer to FD sets then we found a larger overall variance 

in our possible worlds. This is explained due to the definite cells themselves being further from or
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Figure 4.13: Histogram of 2000 bootstrap replications of sample size 25 for a 20 tuple relation 

and 10 FDs, with lhs attributes definite and rhs attributes sparse (in FD set) in indefinite cells

closer to FD set satisfaction which implies, respectively, a smaller or larger change in proximity 

within the lattice of NDs. This was more significant for bigger relations, with a larger domain 

size and hence a larger lattice.

In Figure 4.13 we provide a histogram of 2000 bootstrap replications for a relation with 20 

tuples, 10 attributes and 10 FDs, each with the same singleton left hand side A and a different 

singleton right hand side Bi, . . . ,  Bg. The relation has a single partition on A and for each B, 

50% of the tuples are indefinite. We emphasise that more indefinite cells on the left hand side of 

the FDs decrease the variance due to each left hand side indefinite value creating new partitions 

on attribute values whilst more indefinite cells on the right hand side of FDs increase the variance. 

Obviously, the arity of indefinite cells and intersections of values temper the change in variance.

4.4.5 Finding a suitable sample size

Our use of the bootstrap procedure was found to provide a suitable upper bound on the number 

of worlds required by our algorithms. We have explained how the dynamic resampling relies on 

the variance of ND set satisfaction amongst possible worlds in the sample to infer when a larger 

sample is not required. The fact that this provided an upper bound for our algorithms justifies 

its use. As the sample size grows, highlighted in Figure 4.14, there is a reduction in variance 

between successive iterations. The non-parametric nature of the resampling is shown to be useful 

in that the empirical confidence limits for the bootstrap process are shown to converge for the 

distance measure of an ND set. Determining confidence intervals with the bootstrap is discussed 

in Appendix B.

A problem with the bootstrap is also discussed in (Diaconis and Efron, 1983). It seems to

Variance of Resamples1 
Variance of Original Sample'
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Figure 4.14: Empirical bootstrap percentile confidence limits shown to converge for the distance 

measure of ND sets

occur when there is very little variation in the range of values in the sample data. For instance, it 

may be the case that we have an indefinite relation which for a given FD set is such that nearly all 

possible worlds satisfy this FD set. Bootstrap sampling on this data set would be judged to have 

a very high accuracy, based on the empirical lack of variation found in the samples. (Diaconis 

and Efron, 1983) says this would be incorrect. The bootstrap will always perform badly when 

there is an indefinite relation with only one or few worlds which we consider to be good in the 

context of approximating FD sets. Indeed, we do not say that the bootstrap performs badly, it 

merely creates an average of the branching values based upon sampling with replacement from 

the original subsample. This will always be a good reflection of the average branching values in 

the ND set unless the original n samples are not a good reflection of the true values in the relation.

Note that the bootstrap procedure can not be used to provide any indication as to whether 

there is, or is not, present a very good approximation to an FD set, or an FD set itself within the 

relation. It will only provide an indication of this when there are a large number of very good FD 

sets. Therefore we can state, obviously:

1. If the values of the Bootstrap when a fixpoint is reached are functional or near functional 

then the majority of possible worlds will satisfy the dependency set functionally or nearly 

functionally.

2. If the values of the Bootstrap are not nearly functional in proportion to the size of the rela­

tion this indicates that most of the definite worlds are poor in terms of satisfying the spec­

ified FD set close to functionally.

We can see from this that the Bootstrap is an averaging mechanism. The question of why
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the bootstrap provides an upper bound remains. The chase and hill-climbing algorithm exits if 

the chase heuristic returns an undefined relation for the current highest found ND set, N r ,  in the 

lattice. This implies that the indefinite relation is unable to satisfy any ND sets above N j .  Given 

that this generally occurs before reaching the limit a  (provided by the bootstrap) it seems reason­

able to propose that the variance across the possible worlds of an indefinite relation, in terms of 

ND set satisfaction, is a naive statistic and our hill-climbing and chase heuristic method is suf­

ficient to reach a good approximation before examing a  initial points. The correspondence be­

tween the heuristic and the changing upper limit, due to changing variance of ND set satisfaction 

in indefinite relations, is to be expected and its usefulness is highlighted in this work.

4.4.6 A Comparison with Jackknife Resampling

The strategy of the jackknife is to remove a single data point from each resample. This allows 

the creation of n jackknife resamples from an original sample of size n. The bootstrap provides 

additional flexibility in that the sample is made up of any values uniformly and randomly selected 

with replacement from the original and, additionally, is not limited to n resamples. In our process 

the number of worlds required is increased until a fixpoint is reached. Using the jackknife as the 

worlds reach a large number q we are constrained to q resamples, each of size q — 1. Under the 

bootstrap application we have a fixed number of resamples which, in the majority of cases, will 

increase to a sample size that is smaller than the q required by the jackknife. We found that the 

results were very similar for both the bootstrap and jackknife, highlighted in Figure 4.15, despite 

our use of the bootstrap conducting fewer replications than the jackknife at large sample sizes. 

Based on the dynamic nature of our resampling often requiring large sample sizes it is therefore 

much more efficient to use bootstrap and not jackknife resampling. Figure 4.15 also presents the 

falling limit of the fixpoint as the domain size is held constant but the tuple size increases, due to a 

reduction in variance within possible worlds as the relation size grows, highlighted in Figure 4.14.

Additional results are given in appendix A for different FD sets; they parallel the results 

presented.

4.4.7 Real-World Applications

In (Imielinski et al., 1991) we are shown how indefinite information may be used to represent 

a possible schedule. Our approach allows us to discover an approximation to an ideal relation, 

ideal being a relation which satisfies a set of FDs. NDs are a useful tool in this context and in­

deed schedule representation within relational databases would be enhanced with their use. Any 

approximation provided by our system for a relation can be analysed by the system users. The 

schedule which is produced by this, or any other, system can be studied with respect to the result
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Figure 4.15: Average Number of Worlds given as upper bounds by the Bootstrap and Jackknife 

techniques for a fixed domain size 5

of our procedures. If there are FDs which are not satisfied within the relation and these are less 

functional than those provided as output by our chase and hill-climbing approach we can assume 

a superior schedule exists. The Bootstrap parameters will also tell the user valuable information 

on the variance and mean of the possible dependency sets which will enhance their knowledge of 

the indefinite data within the relation.

Section 4.1 briefly mentioned the relationship between the use of indefinite information and 

constraint logic programming. We can easily see that a domain constraint, stating for example 

p = 4 or p = 5 or p = 6 , can be represented within a relation with an indefinite cell of the form 

{4 ,5 ,6 }. A FD can then be used to constrain p  to just one of these values. In such a way we 

note that various constraint problems can be encoded within a database, motivating the use of 

indefinite information.

NDs, together with the metric presented in Section 4.3.5, are applicable within any relational 

database for approximating and comparison of FD sets. In a data mining environment this could 

be used for contrasting approximations in relations over the same attributes which may be in use 

at different locations. The use of our dynamic resampling procedure, presented in algorithm 10, 

has applications wherever a non-naive sample size is required to be representative of a population. 

The approximate fixpoint can be refined empirically based upon the data set and the application 

to a point where dynamic resampling can be applied to numerous problem instances within the 

same domain.
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4.5 Discussion
We have described how the representation of indefinite information is a valuable extension to re­

lational databases, following on from the work in (Imielinski et al., 1991; Vadaparty and Naqvi, 

1995). In addition to this we note that NDs suitably generalise FDs both in a database design con­

text where they may be used in their own right when an FD is too strict (Grant and Minker, 1985a), 

or within the context of their usage in this chapter where we have used them to approximate FDs 

based on all possible NDs which may hold within a relation for a given set of FDs forming a com­

plete lattice. The use of NDs extends the work of (Vadaparty and Naqvi, 1995) where relations 

which do not satisfy the constraint set functionally are said to be unrealisable. In many depen­

dency data mining applications, which range from data summarisation to learning within decision 

trees (Piatetsky-Shapiro and Matheus, 1993), we may wish to obtain a numerical value, between 

0 and 1, denoting how close a set of FDs are to being satisfied; the metric, presented in Chapter 3, 

and used in indefinite relations, achieves this. The consistency problem for relations with indef­

inite information is widely known to be NP-complete. Therefore we cannot expect to develop a 

polynomial time based solution unless P  = N P  or the database is restricted as in (Vadaparty 

and Naqvi, 1995). Our approach does however introduce an interesting new technique based on 

sampling, extending the bootstrap to providing useful approximations for problems such as the 

consistency problem. Essentially, it is based on extracting a representative sample and inducing 

assumptions on the complete indefinite relation based on the variance within the samples, and sub­

sequently the Bootstrap resamples. We have shown this to provide us with valid upper bounds. 

The dynamic resampling approach we have presented may be applicable to other NP-complete 

problems where an approximation to a solution may be useful, using a sample of the data.

The simulations have shown that our procedure can provide useful approximations to FD 

sets in the form of ND sets for any indefinite relation. We compared different weightings of in­

definite information within a relation and showed that as a relation approaches what (Vadaparty 

and Naqvi, 1995) refer to as a good database, one without indefinite information in the left hand 

side of the dependencies, then the chase procedure for NDs becomes more effective. The efficacy 

of the chase heuristic, extended in this work to apply to NDs, over naive methods is shown in that 

best result achieved within a batch is generally found when using the chase and hill-climbing pro­

cedure, evidenced in Appendix A. Also, on average around 10% of the worlds used in a naive 

approach are required by a chase and hill-climbing approach. The bootstrap provides a suitable 

upper bound with, on average, less than 1 % percent of relations generating the number of worlds it 

takes to reach a fixpoint when using chase and hill-climbing technique. No simulations or empir­

ical discussion is provided in related work, (Vadaparty and Naqvi, 1995; Imielinski et al., 1991).
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(Imielinski, 1991) presents a theorem (Theorem 3) which states that no chase-like procedure, 

namely an algorithm which examines a fixed number of tuples at a time, exists to completely re­

move all redundant values in relations with indefinite information. (Vadaparty and Naqvi, 1995) 

notes that other algorithms, however, may achieve this.

A greater understanding of the behaviour of NP-complete problems is provided in (Selman 

et al., 1992; Mitchell et al., 1992). (Cheeseman et al., 1991) introduces the details of phase transi­

tions occurring where NP-complete problems become really hard. These areas are dense in local 

minima so that there are many near solutions which the search procedure follows. On either side 

of this critical boundary the problem distribution tends to be either over- or under- constrained. 

For both of these cases the search is cut off quickly and the probability of success tends to 1 and 0 

respectively. Phase transitions occur from a region where most problems are easy and soluble to 

a region where most are easy but do not contain a solution. However, as (Smith and Grant, 1994) 

note, there are certain exceptionally hard problems on either side of the phase transition which 

are much harder than those occurring inside the phase transition. A study of these exceptionally 

hard problems shows that they are the ones most likely to encounter an insoluble subproblem at 

an early stage. (Cheeseman et al., 1991) points out that complex systems with many interacting 

values can often be understood at the macroscopic level which characterises the whole system. 

We should seek, similarly, to understand where such transitions occur for the consistency prob­

lem in further work, as they might provide a useful insight into the representation of indefinite 

information in relations such as a suitable frequency of indefinacy.

Though we have analysed our algorithms behaviour empirically, an approach advocated in 

(Hooker, 1994), we consider a theoretical analysis to be an interesting avenue for future research, 

in particular for algorithm 10, our dynamic bootstrap application. Other approximation tech­

niques for the consistency problem, such as finding a suitable subset of an indefinite relation 

which satisfies an ND set and then adding tuples to this in a hill-climbing fashion would also 

be interesting to study, both empirically and theoretically. We would also like to see results of 

dynamic resampling gained from application in other domains.



Ch a p t e r  5

Temporal Data Mining for Temporal Property 

Detection

In this chapter we introduce a temporal logic based upon sequences with NDs, possibly represent­

ing time series functions, for temporal data mining purposes. We show how temporal properties 

may be formalised within this logic and used for temporal data mining.

In Section 5.1 we introduce and motivate this work, stating why we focus on NDs. Sec­

tion 5.2 follows with a discussion of why properties are useful for temporal data mining, con­

centrating on the ability to succinctly characterise temporal behaviour. In Section 5.3 we briefly 

present NDs in a temporal database and follow this in Section 5.4 with a presentation of time 

series analysis. We provide this for two reasons. Principally because our logic uses some time 

series analysis functions and secondly as a comparison between our work and a standard time se­

ries analysis that may be performed on a temporal database, noting that the branching factors of an 

ND in a temporal database may be viewed as a time series. In the next chapter we shall see some 

results from applying our logic for temporal property discovery just to time series. Section 5.3.1 

provides an introduction to temporal sequences upon which our logic is based. In Section 5.5 we 

formally define our temporal logic. Finally, in Section 5.6 we define some temporal properties 

and discuss the intuition behind attempting to discover these properties from a temporal database. 

(Jaeger et al., 1996) state that, “the task of data mining can be seen as the problem of extracting 

the interesting part of the logical theory of a model.” We consider specific properties to represent 

interesting patterns within our logic. We conclude with a discussion of the open problems that 

remain in 5.7.

5.1 Introduction

In Temporal Databases we may view each state at time point t as a snapshot of the database. Over 

a series of time points, taken at fixed intervals, each snapshot may satisfy changing ND sets which
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may model temporal relationships previously unknown to the database user. We assume the time 

intervals are fixed for clarity within the discovery process though it would be feasible to unfold 

time points over different size intervals into a fixed representation.

The sets of points satisfied by the ND sets across time form a time series. We introduce in 

Section 5.5 a temporal logic of sequences to model aspects of time series statistics and present 

them as “properties” of the temporal database. The modal operators are extended from the tem­

poral logic operators of safety, implying at all future points, and guarantee, implying at some point 

in the future, to implying all subsequences of size n  and some subsequence of size n, respectively. 

In this way we use these operators to characterise the temporal database with such statements as, 

for example, “all sequences of 100 days contain, at some point, a downward trend of 30 days.” 

The size of the sequence may pertain to a relevant unit of time, such as a month or a week, or 

length relating to behaviour of the data in question. We also define th e ^  temporal operator which 

represents a non-strict temporal ordering in that overlap is allowed. The expression of temporal 

behaviour within a succinct logical form allows for both the discovery of new knowledge and the 

machine understandable form of well understood behaviour within the temporal database. This 

has applications both in knowledge discovery and decision support.

We show how our logic may be applied to study time series for property discovery. In Chap­

ter 6  we give examples of properties found in temporal datasets which may be viewed as temporal 

relations. Loosely speaking, properties are formulae within our language which satisfy a template 

such that properties of a particular nature may be classified as, say, conditional or persistent prop­

erties. We motivate their use in Section 5.2. We also provide results showing interesting proper­

ties discovered on stocks within the FTSE100 over different time periods. Additionally, we make 

use of the resampling technique known as the moving blocks bootstrap. From an input time series 

we randomly sample blocks, or in this case sequences of a size n, and append the sequences to the 

resampled series as they are selected until we have a resampled series of equivalent length to the 

original series. The resampling destroys long term relationships whilst preserving relationships 

of a size less than n, allowing us to look for short range properties which may hold in various time 

series. We apply our property discovery algorithms to these and the original sequences and pro­

vide examples of interesting, useful and previously unknown properties which hold, satisfying all 

of the criteria for successful knowledge discovery. We do however stress that properties discov­

ered may require expert examination for validation as a contribution to knowledge. This is a key 

point for all knowledge discovery systems (Fayyad et al., 1996b; Mannila, 1997). We conclude 

in Section 5.7 with a discussion proposing the inclusion of these techniques into DBMS.
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5.2 Why do we need properties for Temporal Data Mining?

There has been much work on properties holding in temporal logic, upon which the seeds of this 

work lie, most notably (Manna and Pnueli, 1992). Properties in temporal logic have arisen out 

of the application of temporal logic to computing. Transition rules in a program allow for prop­

erties to be specified. For example, the standard notation would use Up —t Oq to denote that 

at all future points p holds (dp) which implies that at some point in the future q holds (Oq) and 

this is referred to as a response to insistence property. We redefine connectives and properties in 

our logic so that we may discover various forms of response and persistence rules for temporal 

sequences. We define a response rule as ETOm o which implies that all subsequences of size 

n (Bn) contain a sequence of size m  (Om) which satisfies <r, and a persistence rule as ^ nBm o 

stating that for a sequence of size n all of its m length subsequences satisfy <7 , where m  < n. The 

contribution of this work is the use of property discovery in a temporal logic relating to subse­

quences for discovering relationships about NDs, the atoms of our logic, in temporal databases.

5.3 Numerical Dependencies in a Temporal Database

In a Temporal Database each snapshot at a particular time may satisfy a set of NDs. We assume 

that the ND set is specified via an attribute set template provided by the database user, though we 

note that it is possible to “mine” the relation for NDs blindly as detailed in Section 3.4.

5.3.1 Temporal Relation Sequences

Definition 5.3.1 (Temporal Relation Sequence) A relation sequence (temporal database) A 

over R is a finite set of relations over R with A = {r0, n , . . rn}, indexed chronologically 

0 , 1 , . . . ,  n  from an initial point 0  and having a final point n, each state corresponding to a time 

point a fixed interval apart from its previous and next value. □

We assume that our relation sequence, equivalent to a temporal database, is a collection of 

relations which are linearly ordered. As such we infer within our logic that time itself is linearly- 

ordered. At each moment there is only one possible future moment. Our underlying sequence is 

finite. This is natural given that the input for the data mining procedures is a finite sequence of 

relations.

5.3.2 Time Series Analysis and Numerical Dependencies

We now briefly present the relationship between time series and NDs.

The simple example in tables 5.1 and 5.2 for a relation C O L L E G E (C , S', T) over two years 

where C, S , and T  represent course, student and tutor, respectively, highlights possible transition 

in a temporal database. The change in ND set satisfaction for the ND set = {C  —>k S , C —>k T }
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from {C  —>-3  S , C  — >2 T } to {C —»4  5, C  — T } may be an indicator of both increasing 

student numbers on courses whilst at the same time implying that tutors have more work to do on 

a course. This information could be represented in a single relation if timestamps were attached 

to each tuple.

C S T
b lla Tom Mark

c S T b lla Dan Mark
b lla Paul Mark b lla Louise Mark
b lla Tina Mark b lla Jim Mark
b lla Fred Robin bl51 Jim Robin
bl51 Paul Robin bl51 Jose Robin

Table 5.1: 1997 student intake records Table 5.2: 1998 student intake records

Clearly, the change in ND set satisfaction may be viewed as a time series. For example, 

C  —» 16 S , C  - » 2 0  S , C  —>2 7  S  may be viewed as a time series of points 16,20,27 assuming a 

fixed time interval between insertion.

The requirement that for a template of NDs provided for a relation the ND set only changes 

on the branching factor may be seen as restricting. Schema evolution (Orlowska and Ewald, 1992; 

Roddick, 1994) may remove an attribute from the relation thereby making an ND in a given set 

null and void. We assume the following: (1) For the input provided the schema is fixed, and 

(2 ) changes in the schema can be assessed by separate mining processes on two separate relation 

sequences, one before and the other after any schema update.

5.4 Time Series Analysis

We now provide a brief overview of time series analysis. In Section 5.4.1 we discuss research on 

time series analysis and emphasise areas which our work may be considered as contributory to. 

Then in Section 5.4.2 we provide definitions of standard functions used within linear time series 

analysis which are embedded within our logic.

5.4.1 Time Series Analysis: Basics

The goal of time series analysis is to model an observed system so that its future behaviour may 

be predicted (Weigend and Gershenfeld, 1994). We discuss both traditional time series analysis 

and new techniques, such as the use of neural networks, and then relate this to our work. Having 

read this section the reader will fully appreciate the statistical functionality we incorporate into 

our logic, presented in Section 5.5. We assume familiarity with the statistical functions, such as 

variance, covariance, correlation, autocorrelation etc, defined in Section 5.4.2.
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The standard methodology for analysing a time series is to decompose the series into trend, 

seasonal and irregular components, each of which may be expressed as individual functions of 

time. (Weigend and Gershenfeld, 1994) demarcates the difference between understanding and 

learning from a time series as that of applying explicit mathematical insight for model creation to 

that of using learning algorithms to emulate the behaviour of the time series. Our goal is closer 

in spirit to understanding the sequence, using properties to achieve this. For linear and stationary 

time series one of the most popular techniques is to create an autoregressive (AR) model, of the 

following form for the Mth order AR model, where the first M  autocorrelations determine the 

coefficients (Enders, 1995):
M

Xt  =  ^   ̂ “I"
771 =  1

where et represents noise and am the autoregressive coefficients for x t  on x t~i, x t ~ 2 ,  •  • x t - M ' ,  

et is assumed to have expectation 0 and is independent of previous values. Moving Average (MA) 

models can also be characterised by autocorrelation coefficients describing how values r  steps 

apart co-vary with each other. (Kendall and Ord, 1990) remark that autocorrelation coefficients 

for large lags are unreliable for model identification. We found this to be true within our logical 

representation and adopted their advice of restricting lags of a time series with n points to lags up 

to | . This seemed to be a sensible restriction across all time series sizes, given that the reliability 

of the lag values decrease for higher lags and that we are using sequences of a size chosen by the 

user which may be arbitrarily short.

AR and MA models may themselves be combined to form ARIMA models, denoting Au­

toregressive Integrated Moving Average models, integrated implying that we are dealing with a 

stationary time series, after differencing. We omit a full discussion of model selection, provided 

in (Kendall and Ord, 1990; Enders, 1995), suffice to say that ARIMA models have had the great­

est impact on linear time series analysis. Other aspects of time series analysis are the Yule-Walker 

equations which allow the autocorrelation coefficients of a time series to be expressed by autore­

gressive coefficients. This is simply understood given their definitions; see (Kendall and Ord, 

1990). The restriction of analysis methods to linear time series may cause problems. Two ap­

proaches to combat this are:

1. Approximating a system with more than one linear model, known as local linear modelling. 

(Weigend and Gershenfeld, 1994) state that many regions must be selected if the nonlin­

earity is of a quadratic degree or greater.

2. The use of differencing to remove trend. (Nazem, 1988; Enders, 1995) comment that most 

nonstationary time series, where nonstationary implies a trend, can be changed to stationary
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time series by differencing once or twice. Given a series 2 /1 , y 2 , ..  •, y n  we obtain the first 

and second order differenced series by y2 — 2/1 > 2/3 — 2/2 ? • ■ ■, 2/n — 2/n -i and 2/3 — 2 y2 +  

2/1 , 2/4 -  2 2 /3  +  2/2 , • • •, 2/rc -  22/n-i +  2/n—2 , respectively. (Nazem, 1988) comments that 

most economic time series are stationary after at most second order differencing. (Rafiei, 

1999) refers to differencing as momentum.

Our logic incorporates aspects of local linear modelling by breaking a time series into se­

quences which may then be linearly regressed within the sequence; we also allow differencing 

within our logic. (Nazem, 1988) states that “the best practical approach in examining a series is 

visual examination of the plot of the series.” It is a key intention of this work to provide a definite 

contribution to any visual examination of a time series.

Nonlinear time series have most recently been the subject of analysis by neural networks. 

(Weigend and Gershenfeld, 1994) stresses the importance of differentiating between learning for 

model discovery and simple memorisation. The latter occurs when the data is overfitted and pre­

diction relies too heavily on previous values (including noise) rather than looking for a model. 

The complexities of non-linear time series analysis are outside the remit of this work. We be­

lieve that the application of sequences to differenced, and/or moving averaged, time series im­

plies that our procedures can still obtain meaningful properties from such non-linear series. This 

is due to the fact that though there may not be any global linear properties of the time series our 

use of sequences breaks the time series up and within these sequences there may be linear be­

haviour allowing for potentially interesting knowledge discovery. (Cleveland and Loader, 1996) 

notes some strengths of local regression stating it adapts well to high curvature, can be tailored 

for many distributional assumptions, and is easy to understand and implement.

5.4.2 Time Series Analysis: Definitions

We now present the standard statistical functions used within linear time series analysis (Kendall 

and Ord, 1990).

Definition 5.4.1 (Variance) Given a time series x of length n, its variance is written as var[x) 

where

We assume that the series is stationary having a mean value //. □

Definition 5.4.2 (Standard Deviation) Given a time series x its standard deviation is ox where

ox =  y/var(x) □
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Definition 5.4.3 (Covariance) Given two time series x  and y,  both of length n,  their covariance 

is written as cov(x, y),  where

We assume that the series x  and y  are stationary with mean values fix and fiy, respectively. □

Covariance is a measure of the linear association between two variables. The strength of 

the relationship unfortunately depends on the unit of measurement used and so to avoid this we 

introduce the correlation coefficient.

Definition 5.4.4 (Correlation Coefficient) Given two time series x  and y  the correlation coef­

ficient cor(x , y) is

The regression coefficient determines the slope for a series of values where y  is time when 

dealing with temporal sequences.

Definition 5.4.5 (Regression Coefficient) Given a time series x,  the regression coefficient 

reg(x)  is

where y  represents time. □

We note that regression is equivalent to correlation but without the standard deviation of x  in 

the denominator. Therefore, unlike regression, correlation does not make a distinction between 

the y-value and the value upon which it is regressed, in our case time. Another process for deter­

mining the trend of a sequence is to use discordance which sums the value comparisons over all 

possible pairs of values to determine trend, defined as:

Definition 5.4.6 (Discordance Test) Given a time series y  = { i/i, y25 • • •»yn }, we let

i<3
Now, this series is random under the null hypothesis and since there are n  points in the time 

series then there are \n (n  — 1 ) pairs and so the expected value of Q, E(Q) = \n (n  — 1) Our

, . cov(x .y)  
reg(x) = -----

G y

qij =  1 , if yi > yj when j  > i 

= 0 , otherwise

We define Q as:
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discordance function for a time series y is:

discord(y) =  1, Q < E (Q )

=  -1 ,  Q > E{Q)

0 , otherwise □

Autocovariance and autocorrelation are presented as we may wish to compare sequences of 

the same time series.

Definition 5.4.7 (Autocovariance) Given a time series x, of length n, its autocovariance of lag 

k (or lead —k ) is written as autocov(x, k ) where

We assume that the series x  is stationary with mean value p x . □

Definition 5.4.8 (Autocorrelation Coefficient) Given a time series x the correlation coefficient 

acor(x, k) is
. autocov(x.k)

acor(x,k) — . - ^ . =  □
y/var(x)var(x — k)

Definition 5.4.9 (Cross Covariance) Given two time series x and y, both of length n, their cross 

covariance of lag k (or lead —k ) is written as ccov(x, y, k) where

We assume that the series x and y are stationary with mean values fix and fiy , respectively. □

Definition 5.4.10 (Cross Correlation Coefficient) Given two time series x and y the cross cor­

relation coefficient ccor(x, y, k ) is

5.4.3 Catalytic Data Mining

Catalytic Data Mining is a term introduced by (Hale and Shenoi, 1995) for the data mining of 

two or more relations which agree on a common attribute or more so that the data mining process 

can be enhanced. We mention it here given that it applies to NDs in temporal relations. Our data 

mining process is such that for a company we can extract NDs from either an employee or product 

sales relation and then perform the mining on this together with a directly numerical value such 

as the stock price. Over time a fall in stock price combined with little change in an ND in the 

sales relation each October may suggest that a sale is held at this time of year to increase sales.

-j i f #

autocovix, k) = — Y  (x{ -  fix) (xt_fc -  fix) 
m  t-r*  

where m  — n — k

ccov

ccor{x, y, k) =
ccov{x, y, k)

( T  X ( 7 y
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5.4.4 Advantages of a logical approach

Standard time series techniques allow us to apply time series functions to time series naively. 

This, in turn, may produce useful results such as a high cross-correlation between two time se­

ries. A symbolic representation of this provides similar information without recourse to numerical 

comparison. Therefore our logic is algorithmic and as such is amenable to symbolic manipula­

tion. This implies that it is of use within decision support tools and perhaps general data mining 

systems.

The logic is also flexible so that many different kinds of relationships and patterns can be 

expressed in a very concise form. This is a result of using a high-level logic to represent desired 

concepts.

5.5 Numerical Dependency Linear Temporal Logic

We now formalise our temporal logic for sequences which we refer to henceforth as NDLTL. 

Much of the intuition behind sequences follows from Allen’s temporal intervals which we advise 

reading for a clear understanding of the use of intervals and sequences in time (Allen, 1984).

5.5.1 Temporal Logic

Propositional Linear Temporal Logic is propositional logic augmented with the modalities S  and 

U, denoting since and until, respectively, defined in (Gabbay et al., 1994). For atoms A and B, A 

S  B is true at time tn , if for time t0  where to < tn , if B is true at to and for all points between t 0  

and tn , A is true. Similarly, A U B is true at tp if for some t q where q > p, B is true at tq and for all 

points between tp and tq, A is true. From these modal primitives further temporal operators may 

be defined, of which the principal ones are □ and O, implying, respectively, at all future points 

and at some point in the future. O A may be defined as trueU  A, DA is the dual of O A defined 

as -iO-i A. O  A, representing nexttime A, may be defined as false U A

A  logic may be created due to concerns that there are inadequacies within previous logics 

to represent various kinds of informal argument (Haack, 1978). We wish to represent arguments 

representing aspects of time series analysis within a logical form that allows patterns in the tempo­

ral sequences to be represented; a logic is a system for obtaining answers from A (Gabbay et al., 

1994). Our logic is with respect to sequences of temporal relations, equivalent to the interval rep­

resentation of time (Allen, 1984). We modified our logic to contain ̂  and Bn as primitives with 

respect to sequences. Formulae of the form o\ ^  imply that a sequence si starts before 

and ends before S2 ends, with si satisfying<J\ ands2 satisfying cr2. If a sequence s\ satisfies Bn <7 

this implies that all sequences of size n in s i satisfy o .
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Another possible approach would have been to incorporate the time series operators at the 

atomic level and apply these within a standard temporal logic for knowledge discovery. We now 

show by example some potential problems with this. A sequence s may satisfy ccor((7 i, o2, k i ) 

U ccor(cri, <7 2 , k2). Even if we allow the inclusion of such time series functions we are likely to 

discover that time series are unlikely to satisfy a formulae A U B without numerous conjuncts 

leading to formulae such a s AWBW CU A U  B. The problem with using standard point based 

temporal logic for the discovery of such formulae is that they are apt to overfit the data; in this 

brief example we have A IA B holding twice. It would be of more value to be able to represent 

this fact, which our logic of sequences achieves in some respect. Standard temporal logic models 

atoms occurring at certain time points such as inferring A U  B over a period of p  time points. This, 

within a point based logic, may lead to the discovery of many hundreds of formula. However, we 

approach our discovery from the basis of creating sequences so that we control the granularity of 

property discovery given that we may have to deal with many hundreds of time points. Though 

this may result in valuable knowledge found we believe a sequence based logic results in finding 

interesting knowledge more easily. Similarly UA, denoting at all points in the future A holds in 

temporal logic, is unlikely to either be satisfied or, if it does, represent interesting information. 

Another potential problem is that the discovery of temporal logic formulae without restriction 

may often be too complex for efficient knowledge discovery; formulae such as (C IA A) S  (B U 

C) or □ (A —> O D). These formulae themselves do not represent complex behaviour, for exam­

ple, the former proposition may hold if C occurs between one or more occurrence of both B and 

A. Therefore we choose to restrict our discovery to search for what we believe are interesting 

formulae.

These deficiencies suggest that formulae be verified with respect to sequences. Therefore, 

we have modified our modal operators with respect to sequences. We also introduce this is 

a temporal ordering operator which allows overlap. We motivate its inclusion based on the fact 

that within time series and temporal sequences strict transitions of properties may not occur. The 

formalisation of is sufficiently flexible yet restrictive enough to discover interesting patterns 

within and across sequences. The requirements outlined in (Gabbay et al., 1994) for the com­

ponents for specification of a temporal logic are all provided in our formal definition apart from 

allowing our units of time to vary across data sets, though we may generalise and say that time is 

the set of integers, satisfied in all data sets.

We shall demonstrate, informally, how sequence-based temporal operators are more appro­

priate for data mining applications. As we shall see in section 5.5.6 our discovery process is com­

putationally efficient due to our restriction of fixed sequence sizes which allow for polynomial
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time knowledge discovery. We assume that we have as input a finite temporal database; given 

this it is of minimal value to search for certain temporal logic formulae. The discovery of Ocr in 

state i, say, tells us little in a knowledge discovery sense. Additionally, the random discovery of 

useful formula is a challenging task given that there may be a significant number of different pat­

terns within a temporal database. The division of an input sequence into all possible sequences 

of a size chosen by the user allows knowledge discovery over all possible different time periods 

within the input sequence. Sentences not containing any of the sequence or temporal operators 

reduce to sentences of classical propositional logic with NDs and ND time series functions as 

atoms.

Our logic has additional operators which incorporate a means of representation for time se­

ries analysis techniques within our logic. Therefore our logic allows information about the in­

put data to be analysed with respect to a given time period specified by the user within which 

techniques such as regression and correlation are applied and then the rules for the time periods 

themselves are analysed for possible properties which may hold in a sequence. The complexity 

of temporal logic and time series implies that it is highly unlikely that we will discover a rule of 

the form Oa at a particular point, unless the input is near trivial in which case it is uninteresting. 

Similarly, Ocr is uninteresting due to its general application.

The modal operator Bn is not, in the strict sense, a temporal operator. A system is considered 

temporal if it has an (irreflexive transitive) ordering < (Gabbay et al., 1994). Our operator B 

makes use of inclusion (of sequences), see Definition 5.5.2, which refers to set containment as 

opposed to ordering.

We remark that our logic is non-monotonic in that properties discovered for a sequence may 

not hold if we apply the same discovery algorithms to an updated version of the same sequence, 

containing a longer sequence. As such fewer properties are likely to hold demonstrating the non­

monotonicity of this approach. In temporal databases logics for integrity constraints are neces­

sarily monotonic, unless the semantics of the database are altered; this is not the case for data 

mining. (Gabbay et al., 1994) notes that monotonicity in temporal logic requires further study.

5.5.2 Syntax

We refer to a particular relation at state j  within a relation sequence A as (A, rj).  We refer to 

a subsequence s of A (s ■< A) as (A,s). rj  is relation at point j  and rj  |= Nj ,  the set of NDs 

satisfied by rj  and Nj  is an approximation to an FD set F  which is given as input in our discovery 

model. A may be omitted if the sequence is understood from the context. We may use A (= a  to 

represent (A,A) f= a.
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A si

s s2

Figure 5.1: Sequence Inclusion, s ■< A Figure 5.2: Sequence Ordering, s i  < s2

We define two operators for inclusion and ordering of sequences referred to in the semantics 

of our logic, after initially defining a sequence.

Definition 5.5.1 (Sequence) s  is a sequence of relations within a temporal relation sequence A 

iffVri £ s we have -G r/ G A such that rj < r i < r k  and rj,  G s but r/ ^  s. □

Definition 5.5.1 enforces that all sequences are continuous.

Definition 5.5.2 (The inclusion operator, •<) s ■< A G s we have r t £ A and s  is a

sequence in A. □

s -< A implies that s is a subsequence of A and that s contains a series of consecutive states, 

as illustrated in 5.1.

Definition 5.5.3 (The Temporal Ordering operators, < and >) si < S2 iff 3rj £ s± such 

that Wfc £ 52 we have j  < k and 3 rp £ S2 such that Vrm £ «i we have p > m  and s i , S2 are 

sequences. > is defined similarly. □

The intuition behind our temporal ordering operator is that a sequence comes before another 

sequence if at least one point in the sequence s\ is before any in $ 2  and 52 has at least one point 

after s i .  As desired, a subsequence of another sequence does not satisfy this relation. Figure 5.2 

shows an example of sequence ordering with an overlap between sequences.

The set of formulae of NDLTL is the least set generated by:

1. Each ND X  -+k' Y  or X  ->*** Y  is an atomic formula where k* £ {k , fc, k } and ^£ { t

3. If <j is a formula then so are Bm<r and o.

We now define the semantics of our logic inductively.

5.5.3 Semantics

Relation state formulae are not concerned with the sequence size used. They are obtained by per­

forming operations on the complete temporal relation sequence, A. These operations represented

2. If o\ and 0 2  are formulae then so are -kti , 0 1 A 0 2 , 0 1  Ak 0 2  (k is a constant) and o\ fr2 •
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the ND holding at a particular state, the moving average value for a window size w, or the dif­

ferenced value for a particular state. We write (A, u) f=™ o to mean that o  holds with respect 

to a window size w in sequence (or state) u of the temporal relation sequence A. We may omit 

w if it is not pertinent to o; for example, a  may be an ND alone and u may be a single relation 

state. The discussion of Section 5.4 motivated the need for differencing. Second order differenc­

ing, not directly expressible in our logic, is occasionally required; an additional axiom could be 

added similar to our differencing formulae.

Relation State Formulae:

1. (A, r j)  b ”  (X  -+* Y )  iff rj \ = X ^ k Y .

2. (A, r j)  b ”  (X  Y )  iff r,-_m (= X  -►*> Y ,  b  X  Y , rj |=

X  1 Y ,  r J+i b  X  —b m + 2 y , . . f j+m b  X  -¥kn y  where m =  !!y b  w  is odd 

and k = T YlZ=i an^ i  ~ m  — 0  and j  +  m  < 0 .

3. (A, rj) \=w ( X ^ Y )  iff j  > 0 and r ^ i  |= X  ^  Y  and r5 [= X  Y  with 

k = k i — k 2 .

Definition 2 provides the moving average value for a window of size w for the branching 

factors of the NDs for relation state j .  At times we omit w from the following definitions for 

clarity. Definition 3 above provides a difference ND values, from which a differenced sequence 

may be created.

All the following time series functions used are defined in Section 5.4.2.

Relation subsequence trend formulae are required to represent trends within our logic. These 

may be strict, linearly regressed, or discordant trends. Informally, a t  denotes an upward trend 

and I  a downarrow trend. We may subscript these with either a d or an r  to represent discordance 

or regression, respectively. In the following formulae we abbreviate such that to s.t. and denote 

the first relation r,- in a sequence s by f s t ( s ) . We also refer to a particular ND X  —>k Y  sequence 

in s as s x y  where necessary.

Relation Subsequence Trend Formulae:

1 . (A, s) |=™ (X  Y )  iff | s |>  2  and Vri? rj + 1  £ s (A, rj) \=w X  Y  and (A,

rj+1 ) N™ X  ~ ^ 2 Y  f°r some k2, where k\ < k2.

2. (A, s) \=w (X  Y ) i f f \ s \ > 2  and Vrj5  r j + 1  £ s (A, rj ) \=w X  Y  and (A,

rj+ i) \=w X  — Y  for some k2, where k \ > k 2.

3. (A, s) |=™ (.X  Y )  iff | s |>  2 s.t. n  = fs t(s )  and (A, r{) \=w X  -+k Y  and 

reg (sxy) > 0 .
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4. (A, s) \=w (.X  ->^rk Y )  iff | s |>  2  s.t. r t- =  fs t(s )  and (A, r t) |=w X  Y  and

reg(sXY ) < 0.

In definitions 3 and 4 we can replace the trend operator t r  with t d to represent that we have 

obtained the trend using the discordance method, Definition 5.4.6, in place of linear regression.

We now present two rules which allow for the representation of a trend without an explicit 

initial value; these rules are necessary when we may want to represent such a rule within our 

operator for all sequences of a size n (Bn) and the regression values may differ between sequences 

though the general trend may be the same.

1. (A, 5 ) |=™ (X  -» tr Y )  iff | s |>  2 s.t. reg(sxy)  > 0.

2. (A, s) 1=“  (X  Y )  iff \ s \ >  2  s.t. reg(sX Y ) < 0.

Relation Subsequence Formulae are required to represent the more complex relationships

within our temporal database, o , possibly subscripted, is either a relation state formulae or a re­

lation subsequence trend formulae and s may be a relation state or sequence. We note that A may 

be superscripted by k; this denotes a fixed value maximum lag cross-correlation for the sequence 

between o\ and <r2. If o\ and 0 2  relate to the same sequence then this becomes auto-correlation; 

we do not consider this further due to autocorrelations for linear time series following a dampen­

ing oscillatory pattern towards 0 as the lag increases (Enders, 1995). The use of autocorrelations 

for non-linear time series in this logic is deserving of further study. Bn is a universal operator for 

all sequences of size n  and is its existential dual. The final operator is which introduces a 

temporal ordering between two sequences allowing for change in a temporal database to be de­

picted; we shall see in Section 5.6 how these operators are used to form temporal properties. We 

require in the following definitions that all sequences are maximal.

Relation Subsequence Formulae:

1 . (A, s) \= -.<7 i iff (A, s) £  <7i.

2. (A, s) |= <7 i A cr2 iff (A ,s) |= <71 and (A,s) |= <72.

3. (A, s) |= <7 i A* <7 2 iff (A,s) |= < 71 and (A,s) |= <72 and k is the lag value for which the 

cross-correlation is maximum.

4. (A, s) |= <7i <72 iff (s ,s i) |= <71 and (5 ,5 2 ) 1= <72 for some s i, s 2 < s where si < s2.

5. (A, s) 1= Bn<7i iff < s where | st- |=  n and (s , st) |== <7i.

6. (A, s) |= 0 n <71 iff 3st- ■< s where | | = n  such that (s, s t) \= <7i.
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We note in rule (4) that s \ , S2 ^  s do not have to cover every point in s. Within this logic it 

is possible to express formulae such as (A, s) |= Bn (<7 i —>■ a 2 ), stating that for all n size subse­

quences of s either <Ti does not hold or 0 2  holds. We restrict our knowledge discovery process to 

search for positive information though a user might ask such queries.

5.5.4 Examples

We now provide some examples of the logic. From Section 5.3.2 we introduced an example of 

NDs in a relation of student records. We assume that for the ND C  -¥ k S  we have 7 years of 

records and the relation sequence of ND branching factors is A cs = { 3,4,5,6 ,5,4,7 } where each 

refers to a relation starting from position 0. We now highlight some rules satisfied by this se­

quence:

1. (Aca,r3) |= 3 (C ->5~33S)

2. ( A c f O H ^ C - ^ S )

3. (Acs,s3) ( = 3  (C - f * 6  S) where « 3  = {6 ,5 ,4}.

4. (Ac.)|= 3 (C->1>3S)

5. (Acs) ^ = 3  B4  (C -Vfr S)

Examples 1 and 2 show moving average and differenced values for NDs. In the data mining 

process we generally do not need to represent these values directly though occasionally it may 

be required. Example 3 provides a strict downward trend rule within a given subsequence of A cs 

and Example 4 provides similar for a linear regression trend on the sequence. Example 5 states 

that all sequences of size 4 contain, at some point, a sequence of size 3 for which there exists an 

upward linear regression. We do not represent the exact value as these differ within sequences but 

our logic allows for this, highlighted in Section 5.5.3. This is needed given that general properties 

might exist, as in 5, but the exact values will differ.

5.5.5 Axioms of the logic

We now highlight some additional axioms of our logic, related to sequences, with A and B as 

formulae of our logic. We use => to denote implies.

1. =  -i Bn -i0

2. Bn A =£► On A

3. B n (A A B) =  B n A  A B n B
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4. On (A V B) =  On A V B

5. Bn ( A ^  B) =4- Bn (Oni A A O” 2 B) where n i,r i2 < n

6 . Bm Bn implies that m >  n

7. implies that m >  n

8 . Bm^ n implies that m  > n

9. OmBn implies that m >  n

Axiom 1 implies that we merely have to define either Bn or On as primitive. Axioms 1, 2, 

3, and 4 are all properties of standard temporal logic. Axiom 5 expresses behaviour concerning 

the operator. Its proof is clear from the definitions of ̂  and <. Finally, axioms 6 ,7 , 8  and 9 

present some properties related to the sequence size requirements of our modal operators.

Some standard axioms of temporal logic do not hold within our logic. These include 

B mo  =>• (T. All subsequences of size m  satisfying o  does not imply that cr holds. This is due 

to the incorporation of statistical functions which may hold in all sequences of a particular size 

but not for the sequence as a whole. If we consider a time series there may be a general upward

trend within it though this may consist of many local peaks and troughs; our sequence logic is

capable of detecting these. Bm A On A, where m  ^  n, does not generally hold for the same 

reason.

5.5.6 Querying our Logic

We now show by induction that any formulae a  in the logic can be tested in polynomial time. 

Firstly, we present some lemmas which shall be of use in the proof.

Lemma 5.5.1 Given a sequence s of n  relation states then s has \n {n  +  1) subsequences

Proof. There are n  subsequences of size 1, n — 1 of size 2, . . . ,  1 of size n. n-\- (n — 1) +  

( n -  2 ) +  . . . +  l  = ^ y :^ .  □

We note that a sequence of size 1 contains two relations, temporally ordered.

Lemma 5.5.2 The number of subsequences which start in position A; in a sequence of size n  is 

n — k. We assume the first position is denoted by 0.

Proof Trivial. □
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Figure 5.3: All possible subsequences in a sequence containing 7 relations

Lemma 5.5.3 Assuming a total sequence length m  and a sequence s  which begins in position k 

of the complete sequence. The number of sequences which start after and end after a sequence s 

of size n is:
m  n —1

y ]  m  — i — y y  n — 1

i = k + l  t= l

Proof. Clear, using the facts that we wish to count all sequences which start at position 

k + 1  onwards to the end of the sequence which sums lemma 5.5.2 and we wish to exclude those 

subsequences from position k + 1  which do not end after s, therefore we remove all subsequences 

contained at each position from k 4 - 1  to k +  n  that are contained in a sequence of size n — 1 . □

Theorem 5.5.4 Given a subsequence s  of a relation sequence A and a formulae o  in NDLTL we 

prove that (A, s) |= o can be shown in polynomial time.

Proof We show inductively that we can test if (A, s) \= o in polynomial time. We base our 

proof on the structure of a.

(Basis): If o  is an atomic formula of the form X  — Y  or X  Y  we examine each con­

secutive pair of points (relations) in s to determine if the trend is satisfied. This can be achieved in 

linear time. Similarly we can test branching factor values of regression and discordance in linear 

and polynomial time respectively.

(Induction): We now consider all possible structures of a. If a  is of the form:

1 . - * 7  we need to determine if (A, s) \/= o. We assume, by the inductive hypothesis, that o 

can be checked in polynomial time. Therefore it is easy to see that ->o can also be checked 

by polynomial time.

2. o i Ak 0 2  - we assume that oi and o2 can be determined in polynomial time and it is clear 

that the result of the cross-correlation function ccor(br(<Ti ),br(<7 2 ),k) can be computed in 

polynomial time. Similarly o\ A o 2 holds.
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3. (Ji (t2 can be tested in time polynomial from lemma 5.5.3.

4. Bn o can be determined if for all subsequences of s we can show that a holds. Given Bn 

there are n(n+1) subsequences of s where n is at most the size of the sequence. We as­

sume that each subsequence can be checked in time polynomial, implying that Bn a can 

be checked in polynomial time.

5. o holds if there is at least one subsequence S2 , of size n, of s such that (s, $2 ) |= and 

it is clear that we can examine each subsequence of this individually in polynomial time.

We have shown by induction on the structure of <7 \ that we can check if this is satisfied in poly­

nomial time. □

We now show why we restrict ourselves to sequences of a fixed length. We define a cover 

to be a set of sequences of different sizes whose union contain the complete sequence. In a time 

series there may be properties which hold across different sequence sizes, however we now show 

that there is an exponential number of such covers.

Lemma 5.5.5 Given a sequence sn containing n relation states then sn has covers, where 

nl denotes n  factorial.

Proof. If there is 1 relation in a sequence there is only 1 cover. If n > 1 then we state that 

there are m n covers. We note that an n — 1 size sequence has m n_ 1 covers. A sequence sn will 

have one more relation in the sequence than s„ _ i. The additional relation state in sn provides an 

additional n +  1 ways of combining with m n_ 1 so we have the recurrence relation

TTl\ — 1

m n =  (n +  l)m n_i

We can easily see that m n = (n +  1) (n) ( n — 1) (n — 2 ) . . .  3.1 which is equivalent to □

We therefore restrict ourselves to fixed length sequences in the logic for safety properties 

(Bn) defined in Section 5.6.

5.5.7 Expressiveness of NDLTL

We wish to know how expressive are the temporal connectives of our logic? In propositional tem­

poral logic we know that the connectives since, S , and until, U, are defined as fully expressive by 

(Gabbay et al., 1980) due to their satisfaction of the separation property, where any formulae can 

be rewritten as a combination of past, present, and future, over integer time. The only temporal 

operator our logic permits is due to Bn and relating to sequences. We are only interested
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in certain temporal orderings within sequences and we know that use of U, or other temporal 

operators, might frequently be too restrictive; the changing nature of ND values in a temporal 

relation sequence and in a temporal database may require many instances of U. We consider the 

expressiveness of our logic with respect to time series as the capability of expressing patterns.

We consider the following for pattern expression with respect to linear regression, without 

loss of generality. Within any single time series and for a sufficient sequence size we can express 

patterns in a time series obtained using linear regression and using the connectives. At the finest 

granularity these sequences may contain only two points. If we consider multiple time series the 

sequence size must be fine enough for representation of change in any of the patterns in any of 

the time series. Our temporal operator s  is not expressively complete as we can not state sen­

tences of the form ’A before B’. It is reasonable to view the restriction to fixed length sequences 

as necessary for uniform property discovery, given the result of lemma 5.5.5. Any sequence of 

size n can be separated into subsequences of any fixed size m, where m  < n, which enhances the 

expressive nature of the logic. Due to lemma 5.5.5 it is not feasible to consider otherwise within 

an applied scenario.

When we move into time series issues of expressive completeness become vague as we do 

not know what is complete when denoting the relationship between two or more time series. The 

temporal and modal connectives of our logic are clearly incomplete and require further study; we 

have formulated them such they are sufficient for the data mining task at hand.

5.6 Temporal Logic Properties
We now show how we can use our logic for the expression of properties which may hold for a 

temporal sequence. Initially, we informally discuss the intuition behind the properties holding in 

our logic and provide a brief survey of the field.

(Pnueli, 1977) introduced the application of temporal logic for program verification. (Gab- 

bay et al., 1980) presented numerous properties for the application of temporal logic to reactive 

and concurrent (non-terminating) programs. Such programs could not utilise previously devel­

oped correctness methods given that these methods were intended for finite (terminating) pro­

grams. Much of the literature refers to the two general forms of properties, safety and liveness. 

Safety properties refer to the intuition that “nothing bad ever happens” whilst liveness proper­

ties imply that “something good eventually happens” (Prasad-Sistla, 1994). We can see in pro­

gram verification how we might want to prevent particular conditions from ever being satisfied 

(safety) whilst at the same time ensuring that specific condition are satisfied intermittently (live­

ness). From these definitions we can infer the dual universal and existential natures of safety and
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liveness. These are also referred to as the two most general classes of invariances and eventuali­

ties.

We now provide two brief examples of safety and liveness properties from program verifica­

tion (Emerson, 1990). If we assume that s and h are the initial and final labels of a program then 

sA(j) => □(/& =$► ip), where =>■ denotes implication, is a safety property. It infers that if a program 

in state s satisfies <f> then at all points in the future the final state implies if). We view <f> and 'if) 

as pre- and post-conditions. Mutual exclusion and deadlock prevention principles are also exam­

ples of safety properties. Liveness properties consist of intermittent assertion, total correctness 

and guaranteed accessibility conditions. To illustrate, s A <j> => 0 (h  A if)) is the total correctness 

property implying that a program starting in s satisfying <f> will, at some point in the future, halt 

in h satisfying 'if). We can see from these simple examples how temporal logic is directly appli­

cable for program verification. Proof theoretic methods for program verification, not considered 

here, have been developed and the most appropriate proof method depends on the property being 

verified.

Properties may take numerous forms which we now outline. Safety properties have the 

canonical form EP o. We may refer to invariant NDs as safety properties. The “informal” de­

scription of safety, stating that nothing bad ever happens implies that it is a bad thing if o  does 

not hold in a relation. (Prasad-Sistla, 1994) describes strong safety properties which remain safety 

properties after the exclusion of a state. In our logic all possible sequences satisfying a property 

imply that it is a safety property. For example (A,s) |= Bn (X  Y )  implies that all subse­

quences of s satisfy an upward trend from value k. Conditional safety properties have the form 

o i Bn 0 2 . We can refer to this as a trigger, denoting that once <J\ occurs then at some point 

after a 2 will hold in all sequences of size n. It is apt within a finite temporal sequence wherein a 

certain value may imply other values for all subsequent states.

Guarantee properties have the canonical form o. A conditional guarantee property im­

plies that all subsequences of a fixed size n always contain a sequence where s i < S2 and (A ,si) 

f= Co which leads to (A,s2) |= 0 1 . This is written as (A,s) f= Bn ( <r{) where

si , s 2 ■< s.

Obligation properties are the disjunction of canonical safety and guarantee properties On o\ 

V Bm 0 -2. A canonical obligation formula is a conjunction of these properties. Note that the se­

quence sizes need not be the same, though the semantics of this in a knowledge discovery context 

is not clear.

Response properties are of the general form BnOm o. A Canonical response property can
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also be viewed as a seasonal occurrence property and is represented by (A,s) f= BnOm o. Within 

sequence s all sequences of size n contain an occurrence of a  which will hold at some point in 

the s. The temporal logic definition states that at a particular point all points imply that a will 

hold at some point in the future. Our definition is that all sequences of size n will, at some point, 

contain a sequence of size m  which satisfies o. It is clear that we can use this property to present 

seasonal behaviour to the system user. Alternatives for standard temporal logic, listed in (Manna 

and Pnueli, 1992), are p  —>■ Oq, known as response to an impulse, and D(p —>• Oq) where O 

implies at some point in the future and □ implies at all points in the future. Within our logic a 

response property may occur only finitely many times. A seasonal response property implies a 

regular chain of two, or more, events written as (A,s) |= BnOm ( oo <f\ )• An immediate 

response property in temporal logic states that at a particular point all points imply that a will 

hold at the next point, written as □ O  a - We do not incorporate this within our logic of sequences 

given that the representation of the next sequence will often, depending on sequence size, contain 

a significant overlap which would frequently result in the discovery of uninteresting properties.

Persistence properties in standard temporal logic, written as OOp, may be triggered by a 

preceding event where we infer that all positions from a certain time on satisfy p. This directly 

translates to our logic where we write persistence as (A,s) |= <0>nBm o. In our sequence logic 

a persistence property implies that at some point in a sequence s of size n all sequences within 

s of size m  satisfy a. This allows us to depict properties which may hold in nonlinear time se­

ries, for example, a continuous downward trend in an otherwise rising microchip stock due to an 

unforeseeable influence, such as fires in the chip factory destroying stock. It is likely that this 

would otherwise represent nonlinear behaviour. Ordered persistence properties, written as (A,s) 

|= gq OnBm o i are not directly relevant in our work due to a single occurrence of (Tq possibly

having no relation to ^ nBm o \ .

Reactive properties, shown in (Manna and Pnueli, 1992) to be the maximal class of prop­

erties which needs to be considered, are written as BnOm V ^ B 9 <7 2 . Within the finite se­

quence of our logic and the knowledge discovery process such a property found would represent 

complex behaviour. Such a reactive property might denote the oscillation between o\ occurring 

sporadically in all n size sequences and a 2 holding continually within all q size sequences within 

a sequence of size p. This may represent a relationship between o\ and 0 2 . The reactive formu­

lae could also be restricted just to contain the same atom in each disjunct, which may be more 

interesting.
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5.6.1 Application of Properties

We now show how the properties are related to each other and extend the discussion to include 

data mining applications. We note that the classification provided in Figure 5.4, given in (Manna 

and Pnueli, 1992), for temporal logic properties holds within our logic, exemplified by the axioms 

of Section 5.5.5. We make use of this hierarchy to discover rules in an incremental fashion.

Persistence Reactive

Conditional
Safety Obligation

Guarantee

Response & 
Immediate Response

Safety

Figure 5.4: A Classification of Temporal Properties

The classification of temporal properties aids the process of knowledge discovery as we 

move concurrently from smaller to larger sequences and from obtaining different properties ac­

cording to their classification in the hierarchy. The structure of properties, which we believe to 

contain a good classification of interesting patterns, therefore simplifies the data mining process. 

The value of these properties in program verification translates directly to knowledge discovery. 

We discuss this further in Chapter 6 .

5.7 Discussion

Our logic conveys information within time series without the need to compare or analyse specific 

values, unlike a standard statistical analysis. Moreover, on top of this analysis we seek to discover 

properties, derived from those used within program verification, which the time series satisfies. 

Representation in our symbolic logic itself enhances the overall knowledge discovery process. 

(Halpern and Rabin, 1983) present a belief logic for reasoning about the likelihood of events with 

a modal operator C to state that an event is likely to happen. The application of this logic is as a 

decision support tool where, the authors claim, a statement “it is likely that s” is more useful than 

saying “s will occur with probability 0.63.” Numbers may be attached to the modal operator C to
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provide a degree of likelihood. Similarly, our logic may be viewed as a decision support tool when 

we state that, for example, in all monthly periods the trends in a particular bank lead the trends 

in its insurance subsidiary by one day. This formula expressed succinctly will directly aid any 

decision support process. Also, symbolic rules provide more information support than a graphical 

analysis as well as expressing data in a machine understandable form which is transferable to other 

knowledge discovery tools.

Further work is required to study the expressive nature of our logic which may lead to en­

hancements within the data mining process for knowledge discovery. Two mechanisms suggest 

themselves: ( 1 ) to include additional temporal operators within sequences, and (2 ) to extend the 

time series functionality of the logic at the atomic (and possibly at the connective) level. The lat­

ter could easily be extended to use techniques from related research, such as the discrete Fourier 

transform (Agrawal et al., 1995; Das et al., 1997; Rafiei, 1999), upon which we then search for 

properties.

We examine how our logic for NDs can be applied for inferring additional dependencies 

within a temporal relation sequence. If this logic were restricted further to FDs alone then the ax­

ioms of reflexivity, augmentation and transitivity are invariant within this language. For example, 

using => to denote implies, we have, with respect to a sequence, HnX  —> Y  =>• BnX Z  - + Y Z  

where X ,Y ,Z  C R. Inference within the language is also similar to standard FD inference:

B n (A ->  B) A $ n{B - + C ) ^  $ n (A  -»  C)

or

B n (A - +B)  A B n ((A C)  V (B C))  B n ((A  C))

A logic with FDs as atomic formulae provides much more flexibility that incorporating 

Boolean dependencies into the model (Demetrovics et al., 1993) given that we have the enhanced 

expressiveness of temporal operators. This is a possible avenue for further research.

Within a temporal query language we propose that it would be valuable to be able to form 

queries asking if certain properties are satisfied over a given time period. These properties could 

be defined with respect to our, or another, logic. They also need not exactly conform to ND sets. 

Their use would be widespread both in data mining and for integrity analysis. For example, in 

a financial data mining system a user might want to ask if a persistence property holds in some 

yearly period for all monthly segments. A positive result might imply some seasonal behaviour 

that would not have been directly deducible from a visual analysis.
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Schema evolution (Roddick, 1994) is a research area on the fringes of temporal data min­

ing. Schema evolution is defined as the ability for a database schema to evolve without the loss 

of existing information. Mining the changes in schemas for patterns is a valid temporal data min­

ing research area, not yet well developed, (van Bommel, 1993) presents an interesting discussion 

of evolutionary schema mutation and the converse of these ideas can be adopted for data mining. 

The methodology presented herein could mine different segments of temporal databases for prop­

erties; a comparison for properties found could then be conducted on relation sequences having 

different schemas. For example, an attribute sterling-value  may be updated to ecujvalue; this 

may or may not affect the general form of knowledge discovered.



Ch a p t e r  6

Temporal Property Detection with Numerical 

Dependencies and Resampling

We now present results of our temporal logic for knowledge discovery from NDs in temporal se­

quences applied to real world data. In Section 6.1 we discuss the context of our experiments and 

present the model for the discovery of properties in Section 6.2. The model we provide, given the 

flexibility of our logic, is not rigid and numerous algorithms may be created to extend or diverge 

from this model. We present one algorithm in this context, noting that other algorithms are direct 

implementations of the semantics provided by the logic. The results of our experiments are pre­

sented in two sections. Firstly, in 6.3 we present results gained from temporal relation sequences 

satisfying NDs. Then, in Section 6.4 we discuss results from experiments on standard time se­

ries data obtained from financial stocks. We present an analysis of our work in the context of this 

research area in Sections 6.5 and 6 .6 , as two case studies, relating these results to behaviour in 

the real-world in Section 6.6.1. In section 6.7 we introduce the moving blocks bootstrap for large 

relations and provide a critical study of our methodology in 6 .8 . We compare our work with other 

work conducted on time series similarity in Section 6.9. We conclude in Section 6.10.

6.1 Introduction

The flexibility of the logic implies that the knowledge discovery process requires restriction of the 

types of rules found to prevent trivial rules being discovered; we therefore focus on the discovery 

of properties, defined in Section 5.6, for pairs of temporal datasets. The discovery of properties 

used within program verification has not previously been applied to knowledge discovery. Ob­

viously our work is closely related to other work on rule discovery though our logic allows for 

temporal relationships to be discovered. As we have seen in 2.3.2, (Berger and Tuzhilin, 1998) is 

a recent work which uses temporal logic for rule discovery; the logic used is a standard temporal 

logic and as such requires restriction for interesting patterns to be found. The use of properties
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places such a restriction on patterns to be discovered whilst at the same time ensures the discovery 

of interesting properties.

Our property discovery model incorporates aspects of the property classification hierarchy 

thereby simplifying the knowledge discovery process. We move from obtaining values of sta­

tistical functions at the sequence level to the creation of safety and guarantee rules and then to 

a larger sequence size for the discovery of more complex properties, such as response and per­

sistence. Within the knowledge discovery process we employ moving blocks resampling to dis­

cover short range properties. The moving blocks bootstrap considers all possible blocks of a given 

size n within an input time series. A resampled time series is then formed by randomly selecting 

blocks from the original series and appending each block to the resampled series until the resam­

ple is equal to or greater than the length of the original series. Different time series are sampled 

from simultaneously so that relationships between series are preserved within blocks. Property 

discovery may then be applied to this resampled sequence knowing that relationships have only 

been preserved within blocks. We show that useful conclusions can be found from this process, 

particularly in conjunction with property discovery from the original process. Our data mining 

model is no different from typical data mining systems which, as (Mannila, 1996) states, have 

modest aims in terms of the complexity of the knowledge obtained.

We applied our property discovery model to a number of different data sets including Na­

tional Football League (NFL) data over 3 seasons and data sets of US National Notifiable disease 

data, both of which we could mine for ND set satisfaction. Restricting our logic solely for time 

series we then applied our methods to stocks from the FTSE100. We found rules which comple­

ment the graphical depiction of a time series. Because we are referring explicitly to time series 

and not NDs in a temporal relation sequence we do not have specific attributes within which to re­

fer to trends, or similar, so we use placeholders, in this case bp and sh. To illustrate, we found the 

following property in two oil stocks, BP (bp) and SFIELL (sh), represented as A 0u ( = 3  O3 0 B 15 

(bp A0  sh  4.r v2) where | r implies a downward regressive trend and v i , v 2 are the initial 

values of the stock when the rule holds (found at 7 locations over 242 days). Graphical analysis 

of these stocks (in Figure 6.9) would suggest a definite relationship but any general trends are 

obscure. This result for these sequence sizes suggests downward trends have lasted longer than 

upward from 1 December 1997 to 1 November 1998 for these stocks. Many additional results 

showed that interesting and unexpected properties were discovered, which we detail and analyse, 

that both complement and extend a graphical depiction.

For the sake of clarity we often present rules without specific values which we believe would
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not aid in the presentation or understanding of the rule. The analysis of data mining methods is 

both an empirical and theoretical science. Measures are used for the latter whilst expert analysis 

is incorporated into the former. The results we find here, given that they are expressed in a logical 

form, are assessed empirically. The use of standard statistical functions within our logic implies 

that all results are statistically sound.

6.2 Property Discovery Model

We may validate our property discovery model of Figure 6.1 as follows. Our model is a natu­

ral generalisation of the upward formation of property discovery based on the formalisation of 

our logic. The goal is the discovery of properties within the framework of the temporal logic of 

sequences described in Section 5.5. A standard time series analysis would examine series for po­

tential correlations, cross-correlations and similar functions (Kendall and Ord, 1990). The func­

tions would take as input either the original time series, or a moving average time series to allow 

smoothing or a differenced time series for trend removal or a combination of these. The first part 

of our model incorporates this behaviour linearly by creating moving averages before searching 

for correlations. We also note that we may also create resampled sequences upon which we ap­

ply moving average and differencing techniques. After this initial step we seek to obtain reliable 

trends for sequence description.

At this stage we then have expressions representing the temporal relation sequence. These 

expressions of our logic do not contain any of the modal operators. Firstly, we may obtain a com­

plete sequence description by applying to the non-modal expressions for a specific sequence 

size n. This may optionally include the correlations between NDs in the given input template of 

FDs F.

The final section of the property discovery model seeks to discover properties of our logic 

containing the Bn and On modal operators using the classification hierarchy of Figure 5.4. Indi­

cated in Figure 6.1 by the upward arrows from response to guarantee properties and from per­

sistence to safety properties is the potential for recursive property discovery; such as a safety 

property containing persistence rules. We could not attempt to discover properties without first 

having expressions, similarly we do not wish to discover expressions without first applying mov­

ing average, differencing, and/or resampling techniques; it would not make sense to, say, create 

the moving average of a trend expression after we had broken it up into sequences due to extra 

repeated computation and, perhaps, different results due to increased end effects.

We now step through the property discovery model. Input is a sequence of n relation states. 

Each relation in this sequence satisfies a set of NDs. We wish to provide details of properties
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INPUT: F, Temporal Sequence

Moving Average / Differenced / Resampled Sequence

Find all trends for complete sequence description

i-------------------------------------------------------------------------------------------------------------------------- 1

i Find Correlation between any/all ND sets !
i i

Find Sequence Description

For a fixed sequence size: n

1 1 1 1
1 1
i Create Guarantee '

1 1
i Create Safety !

i Rules 1
i i\ 
i i

A Rules ! 
7i i 
/  * »::::::

1 11 J Persistence [/ \  * iV Response ■
[ Properties [ 1 Properties !

For a fixed sequence size: m (where m >= n)

OUTPUT

Figure 6.1: A description of our Temporal Property Discovery System

which may hold in the sequence. From the initial relation sequence we may form series of mov­

ing averages of windows, each of size w, so that the sequences we in effect deal with are moving 

average sequences, each of size n — (w — 1), given the original relation sequence is of size n, or 

we can simply use the original relation sequence for trend detection. Differenced lists can also be 

created for seasonal property detection. We also have the option of employing jackknife resam­

pling (Efron, 1982), for smoothing, at this point so that the sequences are robust i.e. noisy outliers 

are weakened by the use of resampling. We consider examples both with and without jackknife 

resampling. We can also apply the moving blocks bootstrap to recreate time series for short range 

property detection.

Using this information we then can gain trend, cross- and auto-correlation, and sequence 

description information. We examine the sequence for correlation and sequence description pur­
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poses all sequences of a fixed size n. This allows us to find safety and guarantee properties with 

regard to n. We also obtain an input for a larger sequence size m  so that complex properties, such 

as response properties, are detected with respect to m  and n. Additional flexibility is therefore 

achieved by looking for patterns of n time points within larger sequences m  time points. Property 

discovery occurs in a bottom-up fashion whilst querying, if enabled, would occur top-down.

If all sequences of a fixed size satisfy a rule we refer to this as a safety property, whereas 

there may exist a set of sequences such that a property holds throughout the complete sequence 

but not for subsequences of a fixed size, which we denote as a cover, which may imply irregular 

behaviour. As we have shown there are an exponential number of such covers and we do not 

attempt to discover these. If any of these properties occur not for the complete sequence but for 

a complete subsequence we denote this by creating persistent properties. Figure 6.1 also shows 

that properties may themselves contain properties, such as a safety property for persistence rules. 

This would then require three sequence sizes to be given by the user or for incremental steps in 

sequence size to be performed within the discovery process. We limit ourselves to two sequence 

sizes.

6.2.1 The Generic Property Discovery Algorithm

In the data mining literature there has been much discussion of working towards a common frame­

work for data mining, presenting comparisons of data mining now to database research in the 

60s before the adoption of the relational model (Fayyad et al., 1996c; Mannila, 1996). Generic 

algorithms for data mining have been proposed, most notably by (Mannila, 1996), extended in 

(Mannila, 1997). We now outline this generic procedure. A candidate set of initial patterns is 

provided by the user. The database (or data set) is then examined to see if these patterns occur a 

sufficiently frequent number of times, in which case they are classified as interesting. A new can­

didate set is generated from the interesting patterns and the previous candidate set and the process 

is repeated. This is continued until there are no new candidate elements and the interesting set is 

returned as knowledge discovered. We can see that our algorithm 14 has a similar skeleton to this 

generic procedure. Our procedure is general in that we consider the satisfaction of a property to 

be interesting and the natural classification of properties allows properties to be discovered using 

the input relation sequence and the properties previously discovered. Using Figure 5.4 as a basis, 

property set pi is higher than set P2 if there does not exist a property in P2 which is formed from a 

property in p\. We also assume that within sets p\ orp2 no properties are formed from any other 

properties in the set.
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Algorithm 14 (Property_Mine(A, F))
1. begin
2. Rule-set := 0;
3. while 3 a new classification of properties do
4. for each property p  at same classification c do
5. Rule_set :={q \ p property rule q discovered from A, F, and Rule_set } U Rule_set;
6. end for
7. c := Next classification of temporal properties
8. end while
9. return Rule_set;
10. end.

Figure 6.2: The Generic Property Data Mining Algorithm

6.2.2 The Response Persistence Algorithm

In Algorithm 15, detailed in Figure 6.3, we present a simple algorithm for detecting response and 

persistence properties with respect to two sequence sizes given by the user. This may be consid­

ered as a direct specialisation of Algorithm 14. For this algorithm the classification is {{ Safety, 

Guarantee }, { Response, Persistence }}. Algorithm 15 accepts a temporal relation sequence A 

and a set of FDs F, which we assume are satisfied as NDs, together with lower and upper sequence 

sizes. The algorithm works in a bottom up fashion such that all formulae which may hold are clas­

sified into sets of formulae for each subsequence. Membership of formulae in any or all of these 

sets then determines if a rule in a higher classification is satisfied.

6.3 Relational Sequence Data Sets
We now discuss the experiments carried out and the results achieved using NDLTL. Given the 

flexibility of our logic it is easy to extend the results presented here by:

•  Allowing the user to query a given input. He may want to know, using sales data ob­

tained daily over 2 years, if there is a peak of sales in every quarter, and express this using

our logic. This example shows a possible seasonality query which would take the form 

B730 ̂ 90 (X _^trK  Y ^ X - + irK  Y)

• Modifying the time series functions within the logic. Different functions can be incorpo­

rated, for example, that are specifically known to handle nonlinear time series better than 

linear regression or discordance.

We now present the results, initially focusing on ND temporal relation sequences and then 

moving on to time series results alone. We focus on the latter due to the lack of significant real- 

world data available for temporal data (it is easier to obtain public data, such as share closing
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Algorithm 15 (Response_Persistence(A, F, n , m))
1. begin
2. Main_Rule_set := 0;
3. Final_Rule-set : = 0;
4. for each subsequence s of A of size m  do
5. Rule_set := 0;
6. for each subsequence sn of s of size n do
7. Rule_setSn := Rule set discovered for sn wrt F;
8. Rule-set := { RulejsetSn } U Rule_set;
9. end for
10. M_rule := 0;
11. if V r G Rule jset 3<r such that a G r then
12. M_rule := {Bn<r}U M_rule;
13. end if;
14. if 3 r  G Rule-set and 3 r2 G Rule_set with r / r 2 

such that o  G r and o £  r*2 then
15. M_rule := { 0 -}U M_rule;
16. end if;
17. MainJRule_set := { M_rule } U Main_Rule_set;
18. end for
19. if V r G Main .Rule _set 3<r such that o  G r then
20. Final_Rule_set := {Bm<r} U Final_Rule_set;
21. end if;
22. if 3 r G Main_Rule_set and 3 V2 G Main_Rule_set with r ^  r*2 

such that o G r and o  0  then
23. Final_Rule-set := { a}  U Final_Rule_set;
24. end if;
25. return Final_Rule_set;
26. end.

Figure 6.3: The Response Persistence Algorithm

prices, compared to a database of employee data over the last 20 years). We also concentrate on 

time series due to the availability of data with a significant number of points, whereas a tempo­

ral database may only be updated monthly/yearly, though this is changing for many automated 

knowledge discovery and data warehousing applications.

6.3.1 Results

We present two datasets used to obtain ND values, both publicly available at Statlib, a data set 

resource ( h t t p : /  /  l i b . s t a t . em u. edu). The experimental methodology used in these sim­

ulations is fully discussed in Appendix B. The first we discuss are (blind) records of disease data 

concerning occurrences of mumps in the US from 1957 to 1989. These records contain the num­

ber of patients for cases of mumps reported on a state-by-state basis. Though we obtained from 

the dataset the number of patients per year suffering from mumps we note that this may have 

been expressed in a database from where a relation was used for storing patient data in the form
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Original values for NDs extracted mumps ohio and mumps alaska data sets
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Figure 6.4: Original data values of mumps cases in Ohio and Alaska from 1957 -1989

of 0 —>k P A T I E N T J D .  We note that when the left hand side of an ND is empty the branching 

factor of the ND is a cardinality constraint on the domain size of the right hand side attribute set. 

This is a small data set, referred to as A mp, and we can see that it has a clear downward trend in 

Figure 6.4. We use it for illustration before moving on to more complex data sets. For the sake of 

clarity we express both ND values such as 0 P A T IE N T  J D  simply as a marker of trend 

preceded by an identifier if the trends are for different NDs or time series, e.g. ohio t- The spe­

cific ND values are not important in this context particularly as they are most probably related to 

population size which would need to be normalised.

The results obtained for a small sequence size of 5 years and a large size of 10 years were 

A mp |= B 10O5 (ohio AQ alaska  4,r ) together with persistence results of the following ab­

breviated form ^ 10B5 (ohio | r AQ alaska  ,|,r). Clearly, these results tell us that the number of 

cases in mumps is falling, continuously, without significant fluctuation. Applying a simple pattern 

matching algorithm for comparing exact trend within a sequence we find that B 12 (ohio |  ohio 

t  ohio 4) holds for Ohio. Therefore although we have found the general trends to be downward 

there are peaks within larger sequences. For a comparison between the number of cases in Alaska 

and Ohio we increased the sequence sizes to 12 and 20 and found, continuously throughout the 

sequence that the following persistence rule holds: ^ 20B 12 (ohio A2alaska  4,r ). We see that 

the lag in the downward trends (ohio lags alaska by 2 years) may provide an indication that the 

number of cases falling is correlated with geographical regions. Obviously expert knowledge is 

required to confirm this; (Fayyad, 1998b) discusses issues of correlation versus causality noting 

that it is generally not clear in which situations correlation can lead to causality. It may be foolish 

to infer a causal relationship solely on the basis of the discovery of a lagged correlation. This is
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Moving Average plot of size 5 for fav_winning and home_fav data
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Figure 6.5: Moving Average data set values of two NDs from NFL season data 1989-1991

the subject of much study with further references provided in (Glymour et al., 1997).

A complete description of the series is provided by (ohio A1 alaska (ohio

A2 alaska j,r ). We find the same rule from applying discordance instead of linear regression. This 

mle concisely presents the behaviour of the sequence. It is obtained from three 12 year sequences 

with some overlap (there is 33 years of data) and compressed, for clarity, so that a ^  o becomes 

a. We omit presentation of such description rules for longer time series. We can see from these 

simple results how properties of NDs over time can be succinctly characterised within our logic. 

We now move on to a slightly more interesting example.

In Figure 6.5 we present the changing ND values for two NDs obtained from relations con­

taining Football Data. Each week of the season, for three seasons from 1989 to 1991, details of 

team results were stored in a database together with details of the favourite team for each match. 

We obtained two NDs from the relation Y E A R  W E E K  -±k F A V  _TE A M J V IN  and Y E A R  

W E E K  -*k H O M E JF A V . These NDs correspond to the number of favoured teams winning 

and the number of home favourites, respectively, within a particular week. We note that each rela­

tion contained Y  E A R W E E K  D A Y  representing the day the match was played on. Figure 6.5 

shows the two lines relating to changes in each ND. We can see no clear trend in this figure for 

moving averaged data.

For the two NDs we found the following property from the moving average record 

of points with each moving average of size 5, A n f l  1= ^ 10B5 (H O M E JF A V  t r  A0 

F A V IT E A M -W IN  jY) suggesting that an increase in the home team winning is correlated 

with an increase in the favourite team winning. This persistence property expresses the fact 

concisely and we can perhaps infer from this that the home teams are most often the favourite
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team. Additionally, we examined the original and differenced data set for patterns in sequences 

of 5 weeks and found none. It is clear that the nature of the data contains no underlying trend 

expressing only the strong correlation between NDs.

Before presenting the results obtained from time series data we formally define the moving 

blocks bootstrap.

6.3.2 The Moving Blocks Bootstrap

We introduce the Moving Blocks Bootstrap for verification of short range event rules and provide 

details of its efficacy discussing the results we found from its application in later sections.

Definition 6.3.1 (Moving Blocks Bootstrap for Relation Sequences) Given a relation se­

quence { r i , r 2, ..  .,r;v} we construct blocks of relations where M B t is a block containing 

b relations such that M B t =  {rt , rT+ i , . . r*+&_i} and there are N  — b +  1 blocks where 

t = 1 , 2 , . . . ,  iV — 6 + 1 .  We then resample k moving blocks uniformly with replacement from 

{ M B i , M B 2 , ..  •, MB]y-b+1 } where N  ~  bk. This may be repeated any number of times. □

______  ~   Moving Blocks

O O O O O O O O O O O  Relations

Figure 6.6: All possible blocks of size 4 for a relation sequence

The moving blocks bootstrap forms an empirical distribution and this distribution is the pro­

posed bootstrap approximation. For a block length b all possible contiguous blocks of length b 

within the time series are available for selection. In (Efron and Tibshirani, 1993) each moving 

blocks bootstrap sample has an AR(1) model fitted to it to estimate the parameter Results de­

creased upon an increase in the block size, perhaps allowing us to infer that dependency was based 

on the previous few points only (to any significant degree). The potential to sample all possible 

contiguous blocks of a given size b allows all possible relationships of length less than or equal 

to b to be sampled.

6.3.3 The Moving Blocks Bootstrap for Large Data Sets

We now propose a new Moving Blocks Bootstrap for creating resamples when either the temporal 

relation sequence or the time series contain too many points for a resample to obtain meaningful 

results. For example this may be a stock over 10 years. We may form a series of values, which are 

fixed in ordering, so that this 10 year sequence may be compressed into resamples of, say, 2 years 

each. This will then create a manageable sequence size for property discovery across multiple 

resampled sequences.
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Definition 6.3.2 (Moving Blocks Bootstrap for Large Relation Sequences) Given a rela­

tion sequence {ri,r*2 , . . . ,  r/v} we construct a resampled relation sequence of size n, where 

N  n, with the order of the resampled relation sequence preserved from the original data 

set. We construct blocks of relations where M B t is a block containing b relations such that 

M B t = {r*, rt+i , . . . ,  rt+^ i} and there are N  — b +  1 blocks where t =  1 , 2 , . . . ,  N  — b +  1. 

We then divide the sequence into R  regions where R  = From each region R{, 0 < i < R  — 1 

we resample 1 moving block uniformly from M B(t*n)+2, . . . ,  M B ^ n^+n_b+1}

and append the block to our resampled sequence. Order is therefore preserved for n, a given size. 

This may be repeated any number of times. □

Moving Blocks

o o o O O Large Relation Sequence

Resample

Figure 6.7: A large relation sequence and a resample

Given that the random block selection for the moving blocks bootstrap for large relations is 

order preserving we must be careful in our random block selection to ensure that we do not ini­

tially select a block at the end of the sequence to which no blocks can be appended. To remedy 

this we propose that the sequence is divided into a number of regions n, from Definition 6.3.2. 

From these regions we select one block randomly. For example, a 10 year sequence may be di­

vided into 24 regions, of 5 months each, from which a block of one month is selected from each. 

This would then allow reasonable knowledge discovery on a manageable sequence with relation­

ships between either NDs or time series preserved within blocks and the ordering of the sequence 

is preserved in the resamples. Alternatively, we could use standard moving blocks resampling 

with smaller sample sizes and sorting each resample into the correct temporal order; this would 

create more randomness in the resamples.

6.4 Time Series Data Results

We now examine more complex temporal data sets. We assume that the data is restricted to nu­

merical data alone, although if the data were stored in a suitable manner then NDs could easily 

apply. When analysing time series we are not seeking to discover what a complex statistical anal­

ysis could not; indeed much of our logic is based on statistical functions. Instead we are looking
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for a concise representation that might convey specific properties which hold at a certain time or 

throughout time and we express these with our logic. The logic details properties in a machine 

understandable form.

For the following study we focused on financial stocks from the FTSE 100. We analysed 

stocks in similar sectors seeing if there are general properties from which we can infer informa­

tion, concentrating on financial, oil and retail sectors. We highlight some of the results found and 

remark that all applications discovered possibly useful properties. In the following we initially 

present results based on each category of data, discussing the results with respect to the sequence 

size selected; we follow this with a discussion of how these properties might relate to the data they 

represent in the real world. A summary of results is presented for each data set in Tables 6.1, 6.2, 

and 6.3. As a precursor to this discussion we remark that the absence of a property with respect 

to sequence sizes chosen by the user, when evaluated with results for other sequence sizes, may 

itself tell us much about the data set.

6.5 Case Study I
We present results for Debenhams (db) and the Arcadia Group (ag), summarised in Table 6.1, in 

an extended form which highlight characterisation of the discovery of property. Subsequent stud­

ies are abbreviated to avoid repetition and we refer to this sequence as A acj. Due to the similarity 

between regression and discordance results, we concentrate on results obtained using linear re­

gression. We note that we are now dealing exclusively with time series and not ND values; this is 

primarily due to the availability of time series data and, as we have seen, the limited availability 

of data satisfying ND sets. We note that all results are equivalent to those that may be found for 

ND sets in a temporal relation sequence and could feasibly be expressed with NDs, though this 

may often be impractical.

6.5.1 Original Data Analysis

Properties extracted from the original data set are based solely on the original data values upon 

which our property discovery algorithms are applied. We first discuss looking for trends as prop­

erties. We see in Table 6.1 that we obtained safety trends, for a sequence size 80, B80^ 1 (ag | )  

for the Arcadia Group and B80^ 1 (db f )  for Debenhams. This states that in every 80 day se­

quence there is at least one day when the stock goes up or down! This may seem obvious but 

these two results together suggest that Debenhams might be performing better than Arcadia. The 

procedure to obtain these naive trend rules uses a simple pattern matching algorithm. We also 

found persistence rules of the form ^ 20B 10 (ag A °db ) and O20B 10 (ag 4,r A°c?6 ,|,r )• The 

former persistence rule was discovered at five points in the complete sequence and the latter was



6.5. Case Study I 149

Debenhams and Arcadia Group
Description of data set 199 days of closing prices

In all formulae: Arcadia Group (ag) and Debenhams (db)
TVend Discovery

Original Data Set A ad b  B80^ 1 ( ag 4.)
A ad b  B80^ 1 (db t)

Property Discovery
Original Data Set A ad b  B160 ( ag tr A0 db tr ) ̂  ( ag tr A°d6 tr) 

Aad b  ^ 10B5 (ag tr A°db tr )
A ad b  O20B10 (ag tr A°d6 tr )
A ad \= ^ 20B10 (ag ; r A°db tr )
Aad b  O30B15 (ag tr A°db t r )
Aad b  ^ 40B20 (ag b  A°d6 tr)
Aad b ^ 8°B40 (ag tr A°d6 tr)
Aad b  B160<3>80 (ag tr A0 tr)

Aad b  B160̂ 80 (ag tr Axdb t r )
Moving Average 
Window size:3 
Window size:8

A ad b 3 O20B10 (ag tr A°d6 tr), found 12 times 
A ad b 8 ^ 8°B40 (ag tr A°d6 tr)

Moving Block Bootstrap 
Block Size: 5 

Block Size: 10

All for MA Block Size:3

Aad b 3 O20B10 (ag tr A°d6 tr ) 
Aad b 3 B40^ 20 (ag tr A°d6 tr) 
Aad b 3 B80O20 (ag tr A0 tr) 

Aad b 3 B80^ 20 (ag tr A°db tr)
Differenced Series

Aad b  B80̂ 20 (ag tr A°d6 tr) 
Aad b  B80̂ 20 (ag tr A°db tr)

2nd Order Differenced Series
A a d b B 80O20(ag tr A°d6 tr) 
Aad b  B80̂ 20 (ag tr A°d6 tr)

Table 6.1: Results for 199 days of Arcadia and Debenhams Group

found to hold at the very beginning of the series. This corresponds with the actual values which 

are generally within a downward trend apart from an initial upward trend depicted by their mov­

ing averages in Figure 6.10. Increasing the sequence size shows that persistence rules for upward 

trends do not hold at all for larger sequence sizes and so we conclude that upward trends within 

the series are short and that the general trend is down, exemplified by O80B40 (ag tr A°db tr)- 

Similarly, the safety trend descriptions indicate that Debenhams might be performing better that 

Arcadia.

6.5.2 Moving Average Analysis

The goal of creating a moving average of a time series is to smooth the series so that outliers, 

potentially caused by noise or outside effects, have a weakened influence on the data discovery 

process. They are widely used in stock data analysis (Rafiei and Mendelzon, 1997). We con-
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Moving Average plots of size 3 and 12 for deb2 199 data sets
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Figure 6.8: Moving Average Data values for two window sizes, 3 and 12

ducted experiments with a jackknife procedure for moving average smoothing, whereby the mov­

ing averages for each sequence are calculated successively with one data point removed and then 

averaged. We obtained a slight increase in smoothing over the standard moving average but not 

enough to justify the additional computational cost in its use and so this was not employed.

Moving average results in general back up the results provided by the original data set. We 

note that smoothing tends to obscure short term trends so that persistence or guarantee rules which 

hold in the original data set may not hold for a moving average series. Additionally, the size of the 

window for moving averages increases the spreading effect of a single data point. To illustrate 

we found far fewer properties for larger moving average windows. Figure 6.8 shows how a larger 

window size increases the spread for the moving averages, reducing the amplitude of both peaks 

and troughs.

6.5.3 Differenced List Analysis

In Time Series Analysis differencing is used by statisticians to remove trend from a series, as 

we outlined in Section 5.4. Similarly we may obtain the differenced values for a data set upon 

which we run our property detection algorithms. This may lead to the discovery of properties 

which then represent seasonal and not trend behaviour. We refer to Table 6.1 which present some 

results for differenced lists. Due to the complex nature of stock behaviour we can not be sure 

if the properties for differenced lists detail seasonal or just noisy behaviour. The result of a first 

differencing provides very similar results to the original and moving average properties. Namely, 

that the behaviour of the two stocks is closely related with response and persistence properties 

detecting either joint upward or downward trends. Extending this to a second order differencing 

we find that this shared behaviour is no longer discovered. What can we infer from this? For
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a conclusive answer we would have to ask a fund manager, however, we note that perhaps their 

seasonal behaviour is not related or that the stocks are affected by different events outside of their 

relationship. In such a way we can use our algorithms for the discovery of seasonal properties.

6.5.4 Moving Blocks Bootstrap Analysis

The moving blocks bootstrap, defined in Section 6.3.2, is used within time series analysis for 

model creation based on the assumption that temporal relationships do not occur for a time longer 

than the size of the blocks used to create the moving blocks resamples. The moving blocks resam­

ples may then be recreated many times to obtain a model based on these resamples. We created 

moving blocks resamples of our time series. Interesting properties were found and though we 

believe some properties for some resamples to be spurious we could have removed these via re­

peated application of the moving blocks bootstrap and intersection of the results. Applying the 

moving blocks bootstrap also allows for properties to be discovered which may be violated in 

sequences without such a rearrangement, perhaps caused by noise.

The order of the moving blocks resamples is random. It is therefore highly likely 

that spurious trends may be found for the moving blocks. B80O20 (ag ^ A°db ^ ) and 

g 8 0 ^ 2 0  âg ^ /\°db t ) were both found with a block size of 10 days. This implies, we be­

lieve, two things. Firstly, that the behaviour of the two stocks is closely related both sharing 

either upward or downward trends. Secondly, the difference between small and large sequence 

sizes is quite significant implying that it is likely that blocks will occur to create an upward trend 

shown in the second response rule. The data miner needs to choose sequence sizes carefully in 

such cases. For a block size 5 we found O20B 10 (ag I  A0 db j . ), which backs up both the original 

and moving average results. The variation of block size allows us to make conclusions about the 

nature of the trends. For 5 and 10 days we found properties with upward or downward trends 

suggesting that these stocks possess trend behaviour longer, in general, than these block sizes. 

This is, however, a feature of the financial market in general.

6.6 Case Study II
We present results for two oil stocks BP (bp) and Shell Oil (sh), summarised in Table 6.2, in an 

abbreviated form.

The original values again emphasise a strong relationship between the two data sets at 

smaller sequence sizes. We experimented with large sequence sizes and found 

gi80^90 Qp ^  a °sh  ^r). Two points about this are worth noting. Firstly, the disparity in 

trend in not immediately clear from a graph, cf. Figure 6.9, which exhibits much similarity. The 

initial upward trend of BP stocks may be viewed as masked by a number of short term downward
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BP and Shell
Description of data set 242 days of closing prices

In all formulae: British Petroleum (bp) and Shell (sh)
TVend Discovery

Techniques
BP

Shell

A ot/ b™ B15 O 'ib p l )
A 0u \= B50 O4 (bp t  ^  bp t  bp i  ^  bp t  ) 

A o il  |= B15 O1 (sh t)
A 0u b  B50 (sh t  ^  sh  4. sh  j - )

Property Discovery
Original Data Set A 0u b  O30B15 (bp b  A°sh  b ), found 7 times 

A ot-/ b  B450 15 (bp b  A°sh  b )
A ot/ b  ^ 60B30 (bp b  A°sh b )
Aotv b  B90O45 (bp tr A°sh  b )
Aril b  B180O90 (bp t r  A° s h lr )
A o i l  b  B180̂ 90 (bp b  A°sh  tr)

Moving Average 
Block Size: 3

Block Size: 8 
Block Size: 10

A ot/ b 3 B18° (bp I  A0  sh (bp l r A°sh b )  
Aril h 3 ^ 60B30 (bp tr A°sh  tr)
Aot7 b 3 ^ 60B30 (bp b  A°sh  b )

Aot/ \= 8  ^ 30B 15 (bp t r  A°sh  b ) ,  found 7 times
A o i l  b 10 ^ 60B30 (bp tr Al sh tr)

Moving Block Bootstrap 
Block Size: 15 
Block Size: 25 

All for MA Block Size: 8

A o i l  b 8 B60O30 (bp b  A°sh  b )  
A c ,7 f=8 B100̂ 50 (bp b  A°sh  b )

Differenced A 0l/ b  B60^ 30 (bp tr Aush b )
2nd Order Differenced Ao,7 b  B60^ 30 (bp tr A°sh  tr) 

A o i l  b  B60^ 30 (bp tr A°sh  b )  
A 0i l  b  B60^ 30 (bp tr A°sh  tr)

Table 6.2: Results for 242 days of BP and Shell from Dec 1997 to Oct 1998

trends which the properties suggest. Secondly, the data set consists of only 242 points (days). 

Yet we are looking for sequences of 180 days which implies that there is no sequence which does 

not overlap with another. This response rule is therefore perhaps not quite so strong though still 

interesting.

Finally, we briefly refer to Table 6.3. This consists of stock prices for two newly converted 

building societies in their first 100 days on the market. Though we found properties they do not 

present themselves as showing much similarity. We can infer that the behaviour of the market at 

the time of launch is itself more important that what the company is. Tests showed that different 

stocks over different time periods tend towards not discovering properties as opposed to discover­

ing properties which represent disparate behaviour. Additionally, of the properties discovered we 

see a number of spurious lags which do not suggest strong related behaviour. This is a validation 

of our discovery process.
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Halifax and A & L Banks
Description of data set 100 days of closing prices
In all formulae: Alliance & Leicester (al) and Halifax (h fx )

TVend Discovery
A & L 
Halifax

Afca b  B 10 o 1 (al t )

A Ha  B20 O 1 (h fx  t )

Projjerty Discovery
Original Data Set A ha 1= B60^ 30 (al j r A 6h fx  t r )  

A fta |= B60^ 30 (al t r A~3h fx  t r )
Moving Average 

Block size: 5
A ha |=5 S 2UB 10 (al t r  Aufc /i t r ) 

Afca h 5 B60^ 30 (al t r  A~zh fx  t r )
Aha |=5 B60 ( of t r  A6 h fx  t r )

Moving Block Bootstrap 
Block size: 5 

MA Block size:5
Afca H5 <3>2° S 10 («f 4-r A° h fx  t r )

Table 6.3: Results for first 100 days trading of Halifax and Alliance & Leicester Banks 

6.6.1 Real-World Analysis

Our first analysis focuses on BP and Shell. Under a story entitled “bad times for the oil indus­

try” in the Lex column of the Financial Times, November 4 1998, it was discussed how the oil 

industry has suffered in recent months though some recent results (third quarter) posted by BP 

show that a 35% drop in profits is good news in comparison with a more than 50% drop by Shell 

prices. We can see from Figure 6.9 that BP (bp) has been outperforming Shell (sh) in terms of re­

cent performance. We discovered however that the stocks are related in short term performance, 

as we would expect. We found that in Jan and Feb the following persistence property held 

O90E|60 (bp t r A0 sh  tr ) , a period of gradual rise in both stocks. We also found that 

O60E|30 (bp | r A0 sh  t r )  holds from day 160 in Figure 6.9, relating to the downward trend 

that begins in May. With a smaller sequence similar results were obtained though we also dis­

covered that ^ 10B5 (bp t r  A0 sh  t r )  held in September 1998; this opposite behaviour may be 

due to external influences.

In Figure 6.10 we show the moving averaged sequence for two companies, Debenhams (db) 

and the Arcadia Group (ag) since January 28 1998. On January 28 1998 Debenhams demerged 

from its former owner the Arcadia Group. We can see from Figure 6.10 that recently Debenhams 

has performed better than Arcadia due to, based on expert opinion, the fact that Debenhams sells 

many different goods whereas Arcadia concentrates more on fashion and is expected to perform 

poorly in the light of a recession. In August 1998, corresponding with a downturn in the economy, 

we found O30B 15 (db | r A0 ag | r) and for the recent good performance of Debenhams we found
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Original values for NDs extracted British Petroleum and Shell 11 month data sets
1000

'BP, window size: small 30, large 60' 
'Shell, window size: small 30, large 60’ 

L J* 'BP, linear regression’
Jk 'Shell linear regresswn'900
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Figure 6.9: Time series of BP and Shell from 1 Dec. 1997 to 1 Nov. 1998

Moving Average plot of size 8 for deb_199 and arg_199 data
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Figure 6.10: Moving Average values for Debenhams and Arcadia Group since demerger on Jan 

28 1998

O10B5 (db t r  A0 ag tr ) , amongst other rules. The regression coefficient used to determine trend 

may be significantly small. However the trend still exists and we can subscript trends by their 

regression value or even extend this to a fuzzy value to denote the significance of the trend.

It is imperative that the two sequence sizes are well chosen by the user. It would help if the 

user had expert knowledge of any kind of seasonality duration. If n  > y  where n  is the smaller 

sequence size and m  the larger then there will be an overlap of at least one point in all n size 

subsequences of m. This is to be avoided and is advisable as a lower bound on the sequence size 

relationship.

For BP and Shell we found no properties for sequence sizes of less than 15 days on a mov­

ing blocks resampled sequence. This may imply that trends relate to longer term behaviour. We 

found within all results that we tested the moving blocks results confirmed previously found per-
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Figure 6.11: Reduced moving blocks sam­

ples for BP and Shell moving average data, 

78 points from 11 regions and blocksize of 7 

points

Figure 6.12: Reduced moving blocks sam­

ples for BP and Shell moving average data, 

110 points from 5 regions and blocksize of 22 

points

sistence results and occasionally presented spurious response properties. Repeated application 

to numerous moving block sequences and intersecting the results removed these spurious prop­

erties. Similarly differencing provided similar results in the data we tested; this may be due to 

forcing sequences and studying local linearity removes the need for longer term trend removal.

6.7 Moving Blocks Bootstrap for Large Relations
The use of the moving blocks bootstrap for large relations allows smaller resampled relation se­

quences to be created from the original data set. We can see in Figure 6.11, for example, a moving 

block resample of only 78 points from the original data set of 242 points, which closely resem­

bles the original data set. The need for repeated iterations of the moving blocks samples is shown 

in the results found. We found A otj |= (O30B 15 (bp t r  A°sh  tr)), and, in abbreviated form, 

B30^ 15 (bp t  A°sh  t) , B30^ 15 (bp 4 A°sh  4), and B30^ 15 (bp t  A°sh  4) in one resample, 

which was not found in the original data set. We also found B90O45 (bp t  A°sh  t )  and B90O45 

(bp 4 A0 sh 4), the latter of which was not found for the original data set.

We draw the following conclusions from using the moving blocks bootstrap for very large 

relations:

•  A visual analysis shows that Figures 6.11 and 6.12 in comparison with Figure 6.9 of the 

original data set show the similarities for the two smaller resampled sequences. Such simi­

larity can be exploited for knowledge discovery when a series contains a significant number 

of points to obtain a valuable synopsis of the sequence.

That the resampled original, and possibly even the resampled moving average, data sets of 

reduced size, contains too many fluctuations, and as such allows the generation of proper­



6.8. Critical Analysis 156

ties which may be generally false of the data. For example, two resampled blocks may be 

concatenated and they may violate, or satisfy, a trend which holds, or does not.

•  The use of the moving blocks bootstrap to cut down the number of points needed to ex­

amine for the discovery of properties, is, like the property discovery process itself, highly 

dependent on the choice of both block size and the region size from which the blocks are 

selected. If the block size is too small with respect to the region size it will not reflect trends 

sufficiently well. It it is too large then it will closely resemble the original sequence, which 

we might as well use in this situation. There is of course the additional problem of selecting 

a suitable blocksize in relation to the sequence sizes for property discovery. A blocksize 

smaller than a sequence size is more likely to result in fewer properties discovered, partic­

ularly when the resampled series is much smaller than the original.

•  Even for a small number of points the reduced moving blocks bootstrap is able to detect 

relationships, and properties, across series reasonably well.

Resampling to create reduced size sequences is valuable when the data set is too large to 

mine in full for property satisfaction.

6.8 Critical Analysis

Our methodology for the discovery of properties has a number of problems. Particular properties 

are more likely to be discovered for particular sequence size choices. A response rule BmOn is 

much more likely to hold when m  n wherein the guarantee property is given more time 

in which to occur. Clearly, the data miner has the choice of setting these parameters.

Another questionable area is that whether all properties discovered are interesting. This is 

certainly not true. For example, we must be very careful with guarantee properties to ensure that 

they are not presented as knowledge discovery without good reason. This begs the question, what 

makes a property interesting? As properties become more complex they are more likely to repre­

sent an interesting feature of the dataset. We must be careful with properties that are not boxed, 

i.e., not safety properties. For example, an ordered persistence property of the form <7i OmBn 

a<i can be found for any persistence property apart from the very start of the time sequence, given 

that a i can be an arbitrary formula which is true in some sequence before Om Bn holds. There­

fore it is of little value in knowledge discovery terms. However, if this property occurs similarly 

at regular points(within Bp) then we have discovered something potentially very interesting about 

the data.
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Response and Persistence Property Discovery Time for NDs from Abbey National and Alliance & Leicester data sets over 398 days

’small sequence size varying 5 - 200, large 
'both sequence sizes varying over small n = 5 -100,

fixed at 200’
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Figure 6.13: Time for discovery of response and persistence properties for varying small and large 

sequence sizes and small varying only (for a large sequence size) within a 398 point data set

The use of time series statistics has been shown to be both efficient and useful. We have 

found our representation of lags in the logic to be equivalent, though developed independently 

by what we considered to be a requirement, to the representation in time series of lag operators 

(Enders, 1995), where the value is ignored and only the lag itself is important. We conducted 

some tests to examine the efficacy of the lag. This was particularly important as most properties 

discovered found 0 lag. We overlapped our time series by a number of points n and then removed 

the extraneous n  points at the beginning and end of the respective series. We found similar prop­

erties to hold but with the lag to be the same value as the overlap. For example, we found O30B 15 

(ag I  A°db I  ) became O30B 15 (ag |  A3db |  ) when the overlap was 3 points for the retail data 

set. As we extended this the number of properties discovered decreased due to the lower likeli­

hood of behaviour reoccurring at regular intervals. Additionally, for small sequences, overlaps 

also resulted in fewer properties. Upon the advice of (Kendall and Ord, 1990) we restricted lags 

to |  given that otherwise stronger lags are found at the highest lag length where there are far fewer 

points to correlate. (Enders, 1995) suggests beginning with the longest plausible lag length over 

which there may be a possible relationship.

In Figure 6.13 we provide details of the times required for discovery of response, Bm^ n, 

and persistence, OmBn, properties for different sequence sizes. We found that sequence size in­

creasing for both m  and n at a fixed rate (with m  = 2n) was similar to increasing only the se­

quence size n with respect to property discovery for large sequence size m  =  200. This is due to 

most of the computation time working on the discovery of safety and guarantee properties with 

respect to n. Also there are small fluctuations in the time required. We found this was due to some 

sequences satisfying fewer initial safety and guarantee properties leading to faster checking time



6.9. Similarity Assessment 158

for response and persistence properties. Figure 6.13 shows that properties can be discovered very 

efficiently.

In Section 2.3.2 we discussed a number of alternative approaches to temporal data mining. 

We now compare our approach to that of (Berger and Tuzhilin, 1998) which uses a restricted tem­

poral logic in conjunction with probabilities and an interestingness measure for rule discovery 

from input strings. In the example we now discuss (Berger and Tuzhilin, 1998) obtain the prob­

ability of an event e from dividing its frequency in a string by the total length of the string such 

that each single event has an interestingness of exactly 1. Within the domain of a s e n d m a il  pro­

gram, having 31 commands, rules were discovered, such as {sigblock M  setpgrp) Af  vtrace with 

an attached interestingness value of 43.16, where sigblock, setpgrp, and vtrace are commands 

within the program. Additionally {sigblock Bk stepgrp) Bk vtrace is also discovered with the 

same interestingness value suggesting that N  would be redundant if the subscript k were given 

explicitly. Our logic may, if applied to a similar domain, represent the latter rule as {sigblock^  

setpgrp)'"-> vtrace, assuming that we allow program commands as atoms. We can also use proper­

ties to denote how often these rules occur within a given period of time. For example, a response 

rule within every two minute period is expressed by B 120On {sigblock setpgrp)~* vtrace, 

where n is the time to execute these commands. An extension to our work could be the creation 

of our own interestingness measure based on a property being more interesting if the ratio of the 

smaller to larger sequence size is closer to 1. This could also be applied from the larger sequence 

size to complete sequence size. (Berger and Tuzhilin, 1998) also restrict the size of maximum 

string length for discovery such that the rules found cover only a small size of the original input 

string. Rules within sequences allow for discovery over longer time periods as we have seen; this 

is aided by our use of regression.

6.9 Similarity Assessment

Much recent work looking at assessing the similarity of two time series (Agrawal et al., 1995; 

Faloutsos et al., 1994; Das et al., 1997; Rafiei and Mendelzon, 1997), as discussed in Chap­

ter 2, concentrates on transformations applied to Fourier sequence representation of a time se­

ries. As a novel contribution to this field we add our use of property discovery for similarity 

assessment. From suitable sequence sizes we discover properties which may represent related 

behaviour across sequences telling us about trends, lags, and seasonal events.

(Rafiei and Mendelzon, 1997) apply Euclidean distance to moving average time series to 

see if two time series are similar. (Das et al., 1997) applies transformation functions so that the 

scaling of the two time series being compared need not necessarily be the same over the same
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number of points. This is a useful feature which would also be of value for property discovery. 

Time series are considered similar if there exists an approximate transformation function which 

maps one series to the other. (Das et al., 1997) considers linear functions only. We now propose 

another definition of similarity based on sequence sizes such that two sequences are similar if all 

properties discovered for a particular sequence size depict equivalent behaviour. For example, 

both moving average trends or seasonal behaviour after differencing would always be equivalent 

for both time series within all properties found. The work of (Agrawal et al., 1995) does not allow 

outliers and requires sequences to be of the same length whereas property discovery from moving 

averages would have the effect of already weakening any outliers. Our form of knowledge dis­

covery will also have the advantage in that properties may be discovered which correspond to a 

particular range of the sequence within which they may exhibit similar behaviour before diverg­

ing. Most studies of similarity would not provide a decent result in this instance, particular if we 

are looking for a linear transformation function. Though we do not explicitly allows translation 

across time points of our time series this, as we have shown, is represented by the presentation of 

lags or lead values within series.

Finally, we remark that if a querying system were implemented for our logic the similarity 

would be able to be enumerated via a set of queries which may or may not hold.

6.10 Discussion
If a database query language were to incorporate the ability to search for properties within a tem­

poral database then any DB user would be able to ask questions concerning possible properties 

that he suspects might hold in the data. We have shown that this can be achieved using our logic 

in polynomial time. The current range of statistical functions available in DBMS need only min­

imal extension to include time series functions and then it would be entirely feasible to express 

relationships in a readily understandable form such as that of our logic.

We have presented our logic for NDs in temporal sequences. Results applied to temporal 

relation sequences and time series have shown our logic capable of providing succinct character­

isation of the data to a system user. The response and persistence properties that we discovered 

are both useful and valid and may be applicable in a decision support environment. Properties dis­

covered within a DBMS might be desired to hold for all future points in which case they could be 

elevated to the status of integrity constraints. Extensions to this work include the implementation 

of a querying system and additional algorithms for property discovery.

We presented a generic algorithm for the discovery of knowledge using the temporal classi­

fication of properties and then refined this to a specialised algorithm for response and persistence
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rule discovery. The algorithm is generic in that it applies to all discovery which uses the classi­

fication hierarchy, of which our model in Figure 6.1 is one particular instance. The similarities 

between these and the generic algorithms given in (Mannila, 1996; Mannila, 1997) point to sim­

ilarities within the data mining model. Work on a unified theory of data mining will require a 

set of generic mining algorithms which can be specialised for many different approaches (Jaeger 

et al., 1996).

The goals of (Berger and Tuzhilin, 1998) were to generate unexpected predicates, expressed 

in a restricted temporal logic, from sequential databases or strings. This has application in rule 

discovery from categorical data whilst our logic relies on numerical data alone, though in the 

case of NDs this may be based on categorical data. The restriction of a maximum string length 

is similar to our requirement of a given sequence size. A sequence of size n satisfying <7i <r2

differs only from (?iBk(J2 found in a string of size n  in that we allow overlap, assuming that , <r2 

occur in sequences. The need for restriction is that the interestingness measure is always higher 

for longer sequences implying that a rule representing the complete input string is always the 

most interesting whereas our motivation is to enable property discovery, possibly relating to, say, 

seasonal behaviour. Both properties and measures, such as interestingness, are of value within 

data mining.

Much recent knowledge discovery research has been concerned with finding out if two time 

series are in some sense similar (Faloutsos et al., 1994; Agrawal et al., 1995; Das et al., 1997). 

Our logic has the expressive power to represent similarities as properties or standard sentences 

of the logic from which we can easily deduce similarities between two time series. As an avenue 

for further work it would be interesting to expand this using, perhaps, intersections of properties 

found for similarity assessment.
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Summary and Conclusion

In this thesis we have presented a novel methodology for data mining in indefinite and temporal 

databases. We have demonstrated throughout this thesis how NDs are useful within the data min­

ing process. In the thesis we have provided empirical evidence that our dynamic use of resampling 

is effective for determination of a sample size; this may have applications for other NP-complete 

problems. Also, we have shown that our temporal logic for time sequences (of NDs) is easily 

applicable and a viable addition to the data mining toolkit.

7.1 Contribution of this work

We have outlined a general framework for data mining in non-standard databases, not previously 

considered. In the most informal sense, we take sets of approximations to FDs, in this thesis we 

consider only NDs, and use statistical functions and tools to infer conclusions on patterns within 

the data; in the domain of indefinite information we use resampling in a dynamic fashion based 

upon mean, variance or standard errors satisfied by sets of NDs. In the temporal domain we can 

use resampling or moving averages to form new sequences from the original values of ND set 

satisfaction, which change over time, to determine specific properties which may hold within the 

temporal relation sequences. Our use, in a general sense, of statistical functions upon large sets 

or sequences of NDs to discover information can be viewed as a second order data mining. We 

evidence this general approach in two domains though we speculate that there may be many more 

applications in other domains, ranging from spatial to active databases.

We now describe in more detail the specific contributions made by this work. Chapter 3 has 

shown that NDs are viable dependencies within the relational model, extending the intentions of 

Grant and Minker (Grant and Minker, 1985a; Grant and Minker, 1985b) when they introduced 

NDs as extensions of FDs for greater flexibility in schema specification. Principally we use the 

chase for NDs, proven to be sound and complete herein, for the inference of NDs; we show this to
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be decidable. In this way the chase allows for ND inference to be tested in database applications, 

although this may be intractable. We also show how NDs themselves may be used within data 

mining or database design algorithms to approximate FD sets, demonstrated via an evolutionary 

database design algorithm. NDs were shown to effectively extend the class of methods approx­

imating FD sets in a relation. ND mining may be limited in the sense that for an ND X  A, 

if A is a category of exactly k elements, then the ND only tells us that all elements occur in A; 

it may be considered more informative if this were not the case, perhaps in continuous domains. 

Also, the mean ND combats this problem by providing more information within a data mining 

context. A metric for ND sets is also provided which we employed within our work on indefinite 

information in relations.

We studied indefinite information in relations, concentrating solely on the consistency prob­

lem, known to be NP-complete. We created a general randomised procedure which made use of 

a chase developed using NDs for indefinite relations and a dynamic resampling technique. We 

chose to employ resampling to be able to make statistically valid inferences from a sample of 

possible worlds taken from an indefinite relation. Each possible world satisfies an ND set. Re­

sampling from a sample of possible worlds allows us to determine approximate values of variance 

and standard deviation. Our randomised algorithms require a sufficient sample size upon which 

to apply their selection functions so as to obtain decent approximations to FD set satisfaction. We 

found that as the variance and standard deviation change with the degree of indefinite cells in a 

relation it is possible to apply resampling iteratively on increasing sample sizes until an approxi­

mate fixpoint is reached. Independent of our work, (John and Langley, 1996) argue, in a position 

paper, for dynamic sampling to be adopted within data mining instead of naive sampling tech­

niques in use. Our work does just this. Extensive simulations on these methods showed that the 

chase is of use in a larger relations with correspondingly larger domain sizes and that the resam­

pling is useful for providing an upper bound on the number of possible worlds required.

In Chapters 5 and 6 we demonstrate the practicality of NDs in temporal databases. Given 

that changing ND sets, from a user supplied template, may only vary on their branching factor 

we can view the sequence of changes as a time series. Considering specific time series analy­

sis techniques as a basis we developed a logic using modal operators to discover rules which a 

sequence may satisfy. Necessary restriction of the formulae of our temporal logic to properties, 

used within program verification, proved to be highly useful for knowledge discovery. We make 

no grand claims on the formalisation of our logic with respect to it being a panacea for time series 

data mining though we note that it allows for knowledge to be represented succinctly and has an
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easily understandable semantics; an important yet understated factor of many knowledge discov­

ery systems. Further theoretical analysis of the logic, outside the scope of this thesis, is definitely 

required. It is most likely that logics for time series analysis could be developed in many different 

ways.

Properties of temporal logic which were defined for program verification have been extended 

for data mining purposes. The specifications required in programs for correctness analysis lends 

itself well to knowledge discovery where changing inputs over time may frequently satisfy similar 

conditions. Properties of temporal logic have not, in the limits of our experience, been considered 

for data mining.

As we have shown this thesis is a contribution to the arena of data mining in both techniques 

and tools. We show that NDs are valuable within data mining and believe that the techniques of 

our randomised algorithms, dynamic resampling, and temporal logic have clear application. We 

feel that our hypothesis of NDs for data mining in non-standard relations has been vindicated via 

the work demonstrated herein.

7.2 Applications

There are a number of applications within which this work can be used, which we now detail:

•  Our general framework can be transferred to other domains. For example, in a spatial 

database we can, after input of a FD set as a template, mine for ND set satisfaction of 

this template and then employ (or develop) statistics which are pertinent to spatial data 

sets; (Koperski et al., 1996) presents ^-predicates for spatial data representation of the 

form, for example, close Jto(x, lake) A close Jo(x, road) implying that x is close to both 

a lake and a road which could also be summarised as an ND object —yk site in a relation 

CLOSE_TO(object,site). We believe that we could discover and use patterns represented 

by such NDs in spatial databases.

•  We can employ dynamic resampling to generate a representative sample size in a number 

of NP-complete problems.

•  Our logic can be applied to any time series for property detection.

•  We can mine any database for ND set satisfaction. The metric presented in Chapter 3 can 

be applied to any set of NDs, assuming a finite domain.
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7.3 Directions for future research
There are many directions for possible future research posed by this work, in domains of depen­

dency theory (for data mining), temporal/time series data mining, and indefinite data mining. We 

begin by considering a direct extrapolation of this research.

7.3.1 Open Problems

This thesis has the following important open problems:

•  The implementation of efficient mining procedures for NDs in standard relations. Exten­

sions for NDs to the dynamic dependencies presented in (Vianu, 1987; Vianu, 1988) as 

outlined in Section 2.2.8 warrant further analysis, with regard to both database theory and 

data mining research

•  A study of algorithms to create weak Armstrong Relations, as defined in Section 3.3.3, for 

Database design purposes.

• A theoretical analysis of our dynamic resampling algorithm, WORLD_LIMIT, is required.

•  We conjecture that implication for ND sets with the chase is an NP-complete problem. It 

would be interesting to search for special classes of NDs or relations, possibly incomplete, 

within which the chase procedure is polynomial in execution time. This work would be 

similar in spirit to that of (Levene and Loizou, 1997).

•  Implementation of a query system based on our temporal logic, NDLTL.

•  An in-depth study of expressiveness of non-standard logics, such as NDLTL, is required. 

This would be particularly useful with a view to data mining applications.

We elaborate on some of these issues in the next section.

7.3.2 Further work

In the arena of NDs we could further extend their applicability by the creation of scaling and trans­

lation functions, as used for transformation functions in time series similarity (Agrawal et al., 

1995). These functions have direct application when we are dealing with relations that are of 

vastly different sizes. As noted in Section 3.6 we could also investigate more sophisticated algo­

rithms for the mining of NDs in standard relations. This work could make use of many heuris­

tics including hypergraph transversals. One example using ND semantics may be that we do not 

have to consider mining the remainder of a relation if we have found a partition for an ND whose 

branching factor is greater than over half the number of tuples in the relation. Dynamic Depen­

dencies introduced for FDs by (Vianu, 1987) would have a highly useful semantics if extended to
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NDs, as motivated by the example in Section 2.2.8. It would be of value to mine corporate, and 

other, databases for the presence of these relationships whereby the branching factor of an ND 

may determine subsequent branching factors of itself and other NDs later in the timeline.

The work on searching for a satisfying possible world within an indefinite relation provides 

numerous avenues for further study. Clearly, it would be highly interesting to use real-world 

scheduling representations to see how useful our ND approximation sets are. We could also anal­

yse rates of convergence for our resampling process with respect to the nature of an indefinite 

relation and the FD set used. Further study of this within such dynamic algorithms as our proce­

dure would be very useful, both in terms of data mining and of relevance to a multi-disciplinary 

research field. Additionally, phase transitions in indefinite relations, referred to in Section 4.5, 

would be a most interesting further study, complementing previous phase transition work with 

dependencies and relations that have a real information content.

Finally, our work on temporal data mining requires a thorough study of the logic we have 

created. The inclusion of time series functionality makes the expressive nature of the logic un­

clear. The flexibility of the logic means that it is easily extended. Further research into time se­

ries behaviour may provoke the need for additional operators. We believe that this would include 

functions designed specifically for the analysis of non-linear relationships. We would also like to 

be able to spend time developing sophisticated algorithms which use this logic for temporal data 

mining. One such example would be to discover a suitable sequence size upon which to conduct 

the data mining process. Error functions from regression analysis could also be incorporated into 

the logic. Such would be desirable from a systems point of view.

7.4 The Evolution of Data Mining
Data Mining is a rapidly expanding field, not least due to a concentrated global effort into the 

extraction of information from data. The state of the art applications are still led by recent theo­

retical developments. There will be a significant increase in the use of statistical developments 

within data mining products. Our use of resampling in both the temporal and indefinite domains 

shows how such novel processes can be applied easily and effectively. More data mining tools 

will incorporate sampling and resampling in the quest for information which may characterise a 

data set.

There have been recent criticisms that data mining, as yet, is not fully integrated with the 

database interface (Mannila, 1997; John, 1997; Chaudhuri, 1998). It is only a matter of time be­

fore the next relational database upgrade includes a data mining toolkit. For clarity and ease of 

use, there is potential for the inclusion of such items as NDs and temporal logic. This, and other,
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logics would make use of statistical functions within the database query language.

The process of data mining will mesh with databases so that predictors and forecasting can 

be assessed at any time, which may be NDs or other dependencies. These predictors themselves 

may be mined and the technique of building our logic upon dependencies as atoms is perhaps a 

first step in this direction.

7.5 Conclusions

The field of knowledge discovery is rapidly expanding due to the ever-increasing amounts of data 

being stored. The user-centric processes of data mining are extending the fields of statistics, arti­

ficial intelligence and machine learning into a new science (Fayyad and Uthurusamy, 1996). Our 

work has made significant use of database, statistical, and logical theory to develop a new general 

framework for data mining in temporal and indefinite relations.
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The Consistency Problem: Supplemental 

Results

We now provide additional results for the consistency problem. In Table A .l we detail the FD 

sets referred to in the following figures. All of the mean values referred to for the average number 

of worlds required were obtained within batchs, each of 500 runs. The results in this appendix 

reinforce those presented in Chapter 4. All relations used, with respect to the FD sets in Table A.l, 

contain exactly those attributes within the respective FD set as the schema and no more.

Set 1 Set 2 Set 4 Set 6 Set 7 Set 11 Set 15 Set 17
A - ¥  B  
D - > C

A  —>■ B C  
D - + C

C  -> A B  
B  -> A C

D  -¥ A B C  
A B  ->■ D  
A - + B  
B  -> A

A B  -»• D  
D  -» A B C

A - ¥  B  
D - + C  

B C - + A

A  ->■ B C D A - t  B  
B  C  
C -¥ D

Table A .l: FD sets used in Figures A .l to A.21

For an FD set X -A Y, where | Y | > 1, we split this into a set of FDs such that for all A € Y 

we have X —» A for expression as NDs in simulations. This is justified given that from X Y  

we can infer, for all A E Y , X  —>k A.

A.1 Average Number of Worlds Required
We present examples showing the average number of worlds required in batches by our chase and 

hill-climbing algorithm in figures A .l to A.6. We can see immediately that the average number 

of worlds required is very small. We hypothesise that within our random relations it is relatively 

easy to generate a definite world using algorithms 12 and 13. The average number of worlds is 

reduced for larger relations with respect to a fixed domain size. Investigation has shown this to be 

due to ND sets being satisfied closer to the domain size, whilst the presence of additional tuples, 

with respect to a fixed domain size, increases the number of redundant values within indefinite 

cells which the chase procedure can remove. This is particularly true of relations with larger ar-
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ity indefinite cells, see figures A.2, and A.8. Figures A.3 and A.7 show this is less likely when 

relations have smaller arity indefinite cells.

We also note that the small number of average worlds is in sharp contrast to the number of 

worlds required by the naive generate and test algorithms to obtain similar results. We are vague 

as to an exact relationship due to the varying nature of both the indefinite relations and FD sets.

A.2 Average Proximity to FD sets
We now discuss the proximity of our results to that of an FD set. The increasing proximity to an 

FD set as relation size increases is due to the domain size remaining fixed. Normalisation of our 

measure for ND sets, a prospect for future work, would remedy this.

We draw the following conclusions concerning proximity:

•  On average the naive and chase procedures produce very similar results. We emphasise
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that our relations were created in a uniformly random manner. As such in the real world 

it may be highly likely that a relation with indefinite information may perform better with 

respect to utilising the chase and hill-climbing approach. This speculation is enforced by 

the encouraging discovery that the chase procedure produce slightly better results when a 

relation is sparse in indefinite cells in arity in either attributes on the left or right hand side 

of dependencies, as detailed in figures A.9 to A. 12.

•  Proximity to functional satisfaction increases, on average, with an increase in the number 

of attributes being determined. We can see these differences in figures A. 15 and A. 16. The 

difference in this case is slight but this was enforced by all results. This is due to additional 

attributes being examined within the hill-climbing process. The random nature of the rela­

tions generated did not provide us with any pathological data which might contradict this.

•  Whether the relation is in BCNF or non-BCNF did not, in the data assessed, affect the re­

sults. We did not expect this to be otherwise.

A.3 Closest Proximity to FD sets
In contrast with the average results we find that, generally, the best result within a batch is obtained 

by our chase and hill-climbing procedure. Figures A.11 and A.12, as well as A.15 and A.16, serve 

to emphasise that occasionally the naive procedure, at a cost of efficiency, can outperform the 

chase and hill-climbing procedure.
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A.4 Jacknife and Bootstrap Comparisons
Figures A.17, A.18 and A.19 present examples of jackknife and bootstrap resampling used within 

our dynamic algorithm 10. To ensure a fair comparison we conducted these tests so that at each it­

eration each sample of possible worlds, and therefore each sample of ND sets satisfied, was equiv­

alent before either bootstrap or jackknife resampling was performed. This accounts for much of 

the similarity in each figure.

We draw the following conclusions:

•  Jackknife and Bootstrap resampling will reach approximate fixpoints, on average, at a sim­

ilar number of possible worlds. Figures A.17, A.18 and A.19 are indicative of this.

•  The jackknife resampling technique is more computationally intensive in such a dynamic 

setting. The size of the bootstrap replication is fixed, say at 50 or 100, found to be useful 

in this context. (Efron and Tibshirani, 1986; Efron and Tibshirani, 1993) note that sizes 

about 200 produce no additional information, in general. However, the jackknife procedure 

creates n  replicates, each of size n — 1, when the sample size is n. Therefore we have to 

examine 299 jackknife resamples at sample size 300 as opposed to 100 for the bootstrap. 

The results show this to be sufficient to infer a suitable standard deviation, variance, or 

mean.

•  Jackknife resamples are slightly smoother due to the fact that we are merely omitting one 

point in each resample. Though this may imply it is likely to reach a fixpoint at an earlier 

stage, results do not suggest this, validating, in some sense, our approach.

Figure A.20 highlights convergence of the standard deviation and variance as the sample size 

is increased. We are dealing with approximate fixpoint and this implies equality within confidence
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Figure A.21: Histograms displaying variance of 500 and 10000 bootstrap replications

limits shown in Figure 4.14.

A.4.1 Bootstrap Variance Results

Figure A.21 display the overall similarity in variances achieved for 500 and 10000 BRS, respec­

tively, complementing Figure 4.13.
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Simulation Methodology

We now describe our process for conducting experiments, expanding the outlines given in Chap­

ters 3, 4, and 6, demarcated into sections on evolving relations, the consistency problem, and 

simulations on our temporal logic, respectively.

The code was implemented in GNU C++ version 2.7.2 on a UNIX platform running Sun So­

laris 2.5.1. C++ with the embedded CORAL deductive database interface (Ramakrishnan et al., 

1992) was also used for evolving relations in Chapter 3. For efficiency reasons the code for pro­

cedures described in Chapters 4 and 6 was implemented in C++ alone.

B.l Simulation Details: Evolving Relations 

B.1.1 Simulation Range Decisions

We selected 72 FD sets many of which originated from a number of well known DB texts in­

cluding (Mannila and Raiha, 1992a; Abiteboul et al., 1995; Atzeni and De Antonellis, 1993). 

These sets were divided into BCNF and non-BCNF for investigative purposes. Given that an 

Armstrong Relation can only be generated for a set of FDs F when the relation size has at least 

| GEN(F) | + 1 tuples, where GEN(F) is defined in Definition 2.2.16, then we chose to vary the 

domain and tuple sizes from G / 2  to G  and G / 2 to 3G, respectively. This allowed for the scale 

of the randomly generated relations to be related to F, as well as ensuring that we would have a 

good chance of finding an AR for each FD set. This choice was justified by finding ARs in 63 out 

of our 72 selected FD sets. We created a batch of 1000 runs, the process of evolving a randomly 

generated relation to absorption, for each domain and tuple combination. 1000 runs allowed us 

to find reliable averages for each domain and tuple combination.

Random Relations were created by random number selection within a uniform distribution 

to prevent unwanted discrepancies in ND set satisfaction. For smaller domain sizes a normal dis­

tribution in random relations would often lead to relations satisfying FD sets with few steps to
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absorption as there are likely to be fewer partitions on attributes on the left hand side of the FDs 

and fewer differences between attributes values on the right hand side of the FDs.

B.1.2 Use of Random Number Generation

A number of algorithms in this thesis use randomised techniques. To circumvent any potential 

problems with non-random behaviour we used a linear congruent procedure taken from the algo­

rithm provided by Park and Miller (Park and Miller, 1988) which avoids cycles by incorporating 

multiplier and modulus having 534 million full period generators.

B.1.3 C++ libraries

The program, a direct implementation of Algorithm 6, was written in C++ with the embedded 

CORAL deductive database C++ interface to manipulate the relations. Each randomly generated 

relation was created and stored as a database in CORAL.

Via the C++ interface in CORAL, using functional and numerical dependency classes and a 

partition class for the tuples, the relation is then mutated according to the uniform random selec­

tions made in the algorithm. C++ with embedded CORAL was also used for assessing the quality 

of the relations after evolution, the knowledge discovery component of our system.

B.2 Simulation Details: The Consistency Problem
For this work we concentrated on 12 FD sets, detailed in Appendix A and Chapter 4. Again, 

for coverage these were demarcated in BCNF and non-BCNF sets. Our simulation details are 

presented in Table 4.3. The 12 FD sets range from containing a small to a significant number of 

dependencies, 8 of which are presented in Table A.l. Those FDs not discussed directly within 

the text provided results subsumed by those FD sets which are presented.

For each domain, tuple and maximum indefinite-cell arity we ran a batch containing 500 

mns. A batch was run for both naive and the chase and hill-climbing instances of the program. 

Again these batches allowed us to infer acceptable mean behavior for each input combination.

B.2.1 Indefinite Information Data

The lack of availability of real-world data containing indefinate information dictated our use of 

randomly generated data. Though there are cases, as we have seen in Chapter 4, where it would 

be useful to represent disjunction within cells, current RDBMS systems do not generally support 

anything more than the ability to store NULL values. This also applies to deductive databases, 

as experienced by our use of the CORAL deductive database. Due to this we chose to conduct 

our experiments on randomly generated relations with a uniform distribution of values across a 

given domain size.
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Further simulations were conducted where attributes on the left hand side or right hand side 

of FDs were specified as containing indefinite cells with either a low, medium, or high probabil­

ity of containing indefinite information, as detailed in Table B.l. This allowed us to study the 

behaviour of indefinite information in sparsely generated random relations, sparsity being elabo­

rated upon in Definition B.2.1. This direct control over the presence of indefinacy within a ran­

domly generated relation created with a uniformly random distribution was preferable to that of a 

random relation created with a normal distribution, giving us direct control over the relationship 

between indefinacy in cells and their appearance in either the left or right hand side of an FD.

Sparsity
LOW 25% probability of indefinite cell
MEDIUM 50% probability of indefinite cell
HIGH 75% probability of indefinite cell

Table B.l: Depicting the range of indefinite cells in a relation

Definition B.2.1 (Sparsity) Sparsity is defined to be the fraction of indefinite cells within a re­

lation. If relation R  has m  tuples and n attributes such that it is of size m x n  and there are k 

indefinite cells in the relation then its sparsity is For example a relation with 20 tuples and 

5 attributes will have a low, medium, or high sparsity with 25,50, and 75 indefinite cells respec­

tively. □

B.2.2 A note on randomly generated relations

The use of randomly generated relations places a limit on the size of the relations which we can 

use. For example, as shown in Table 4.3, we restricted relation size to 50 tuples. Though this 

is small given the requirement of a fixed domain size any increase in relation size is likely to 

lead to all randomly created relations satisfying the given FDs as NDs with the branching factor 

equivalent to the domain size in all possible worlds.

We stress that though these relations are small there is generally a significant number of pos­

sible worlds to select from. In a randomly generated relation with each cell having a 50% chance 

of being indefinite, far higher than likely in the real world, a relation with 50 tuples, 4 attributes 

and a maximum indefinite cell size of 4 has a maximum 450,4 possible worlds. A much larger 

relation, say with 1,000 or 10,000 tuples but with only 20 indefinite cells, none with more than 

4 items in any indefinite cell, would have 420 possible worlds. Larger relations in such a case 

would not have been any more comprehensive with regard to results concerning our use of the 

bootstrap.
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B.2.3 Bootstrap Parameter Size Selection

The Bootstrap Replication Size (BRS), B , is the number of times we resample from a sample. 

As discussed in Section 4.3.3 we restate, from (Efron and Tibshirani, 1986), that there is little im­

provement setting B  above 100. We decided to conduct a number of tests with B  starting at 25 and 

approximately increasing B  by a factor of 2 until we reached B  = 10,000 on relations. Our tests 

on a suitable BRS were conducted on two relations presented together in Table B.2 with Attribute 

A as the only left hand side for the FDs guaranteeing FD violation. These relations contain every 

cell as indefinite implying that the variance within each resample would be much higher than for 

usual implying that our conclusions on a suitable BRS would be robust for a randomly generated 

relation. Empirical results allowed us to conclude that setting B  = 100 would provide reliable 

resampling results. Figure A.21 emphasises the minimal difference in variance between 500 and 

10000 resamples; a similar result was also found for 100 resamples.

A Bi b 2 Bn- i Bn
[2,3] [1,2,3] [1,2,3] [1,2,3] [1,2,3]
[2,3] [4,5,3] [4,5,3] [4,5,3] [4,5,3]

[2,3] \nm—31 Tim—2 , 3] [llm—3, nm_2,3] [nm—3, nm—2, 3] \flm—3, 2, 3]
[2,3] \nm—i , % )  3] \nm—i , fim , 3] \nm—\ , 3] [rim—1, , 3]

Table B.2: Indefinite relations r\ with 10 tuples when m  =  21 and r 2 with 20 tuples and m =  41 

B.2.4 Use of the Original Sample and Fixpoint Selection

We experimented with using the original indefinite relation for each resampling iteration from 

which n possible worlds are sampled each time. The variance is much higher in this case as we 

have all possible worlds to select from for each sample of size n. These experiments were con­

ducted on 5 batches for different domain, tuple and indefinite cell-arity combinations.

Initially we experimented with using our dynamic resampling algorithm, WORLD JLIMIT, 

with different degrees of approximate equality for out statistical estimators (standard deviation, 

variance). We found that 1 decimal place to provide too many false convergence results, though 

the averages within a batch were similar to those for 2 decimal places. We chose to use 2 decimal 

places as our degree of approximation in these tests.

B.2.5 Using the Bootstrap to determine confidence intervals

Based on the values generated by the Bootstrap samples we used the generally accepted assump­

tion that as the Bootstrap replication size increases the sampling approximates a normal distribu­

tion and so we can actually determine the confidence intervals empirically, shown to converge for
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a relation in Figure 4.14. For example to find the 95% confidence intervals we determine what 

the values of the parameter of interest are within the ordered B  Bootstrap samples at the 25th and 

975th points for the replications with B  = 1000. The extra information provided by confidence 

intervals for a sample implies that they need more computational effort, as remarked in (Efron 

and Tibshirani, 1993).

The bootstrap could also be used to find the distribution of good approximations to the FD 

set. An example of this may be that NDs such as A B  — C D  are found in the s(p£) +  2.se# 

to s(pl) +  3.ses  range of the distribution which contains 2.1% of a normal distribution, and are 

therefore considered good for the indefinite relation in question. In this case it will be unlikely to 

achieve anything better other than by an exhaustive search which is impossible. Possible prob­

lems associated with this are that it is too naive to tell us anything when there may be very few 

good approximations such as in r 2 , shown in Table B.2. We chose not to apply this technique.

Alternatively we can use the standard error for the Bootstrapped sample to assign approx­

imate confidence intervals given the bootstrapped estimate of standard error se# and the boot­

strapped variance 6 whilst assuming a normal distribution. For example, we determine a 95% 

confidence interval as 0 ±  1.960 • ses-

B.2.6 Jackknife and Bootstrap Resampling

For 3 FDs an additional batch of simulations were run, using jackknife resampling in addition 

to bootstrap resampling for 10 different domain/tuple/indefinite-cell arity combinations. We en­

forced that each step of resampling would have the same original sample in each case for more 

comprehensive comparisons. The only difference was that for jackknife resampling our statisti­

cal estimators would be based on n  resamples for a sample of size n and for 100 resamples for 

bootstrapped resamples. This implied that whenever the number of worlds in a sample exceeded 

one hundred in our algorithm, WORLD XIMIT, that the bootstrap became more computationally 

efficient.

B.3 Simulation Details: Numerical Dependency Temporal Logic

For our simulations on property discovery we used real world data downloaded from the follow­

ing sources:

•  Statlib, a data set resource, h t t p : /  /  l i b . s t a t . em u. edu

•  Financial Data sets are available in the public domain from a number of sources, we cite 

h t t p : / /www. m a r k e t - e y e .c o .u k  and h t t p : / /www. m o n ey w o rId .c o .u k

http://www.market-eye.co.uk
http://www.moneyworId.co.uk
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We implemented our objects within template classes in C++ using the classes for functional 

and numerical dependencies created for our work on evolving relations and the consistency prob­

lem. A sequence object (class) was created to hold the temporal sequence data. This was imple­

mented as a template in C++ to allow data independence. This object contained the required time 

series function values which would allow us to difference and create moving averages of the time 

series. Additionally it included a sign for the trend, initial and maximum values within the se­

quence. Moving Block procedures were also implemented upon this object. Statistical functions 

such as correlations, variance and covariance were also implemented in this class. These time 

series functions were verified for correctness via testing and comparison of results presented in 

(Kendall and Ord, 1990). Based on the results of our procedures we are able to add the modal op­

erators Bn and to a sequence so that it may represent a potentially interesting property within 

our discovery model.

B.3.1 Sequence Size Selection

Input was a Time Series and two sequence sizes. Given Theorem 5.5.4 we know that for fixed 

small and large sequence sizes the discovery of properties can be achieved in polynomial time.

We conducted our experiments with a small sequence size n  and large sequence size 2n. We 

increased n by a factor of 2 until it was considered too large to provide meaningful results with 

respect to the sequence size at hand, when n  is over half the size of the complete temporal relation 

sequence implying that all sequences overlap by at least one point, discussed in Section 6.6.1.

Often we changed the sequence sizes based upon the presence or absence of response and 

persistence rules as discussed in Section 6.8. When the small sequence size n is much smaller 

than the large sequence size m  then we are unlikely to find a response rule and if they are nearly 

the same size we are guaranteed to find one due to overlapping of sequences. A similar criteria 

holds for persistence rules. We found our use of 1:2 as an initial ratio to provide interesting results, 

though we freely changed this when results from simulations suggested so. This highlights the 

interactive nature of these simulations, stressed in much data mining research.

B.3.2 Moving Average and Moving Block Size Selection

Moving Averages ranged from 3 to 10 as our simulation shows. This was to avoid excessive 

smoothing with a temporal relation sequence.

Experiments were conducted on a range of different moving block sizes. These were ar­

bitrary choices based on our goal to obtain resampled sequences which preserved relationships 

within the blocks. The choice of block size in our use of the moving block bootstrap for large 

relations depended on our goal of whether we are seeking to discover properties relating to ei­
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ther grouping of short ranges or over a synopsis of the original sequence. Short range behaviour 

will be found if we select fewer blocks of a larger size whilst long range behaviour is found by 

selecting more blocks of a smaller size with respect to the size of the original temporal relation 

sequence.
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