
Where should I comment my code? A dataset and model for
predicting locations that need comments

Annie Louis
alouis@inf.ed.ac.uk

University of Edinburgh*

Santanu Kumar Dash
s.dash@surrey.ac.uk
University of Surrey

Earl T. Barr
e.barr@ucl.ac.uk

University College London

Michael D. Ernst
mernst@cs.washington.edu
University of Washington

Charles Sutton
charlessutton@google.com

Google Research

ABSTRACT
Programmers should write code comments, but not on every line
of code. We have created a machine learning model that suggests
locations where a programmer should write a code comment. We
trained it on existing commented code to learn locations that are
chosen by developers. Once trained, the model can predict locations
in new code. Our models achieved precision of 74% and recall of
13% in identifying comment-worthy locations. This first success
opens the door to future work, both in the new where-to-comment
problem and in guiding comment generation. Our code and data is
available at http://groups.inf.ed.ac.uk/cup/comment-locator/.

CCS CONCEPTS
• Software and its engineering → Maintaining software; •
Computingmethodologies→Neural networks;Natural language
processing.

KEYWORDS
NLP, natural language processing, comments

ACM Reference Format:
Annie Louis, SantanuKumarDash, Earl T. Barr,Michael D. Ernst, and Charles
Sutton. 2020. Where should I comment my code? A dataset and model for
predicting locations that need comments. In New Ideas and Emerging Results
(ICSE-NIER’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3377816.3381736

1 INTRODUCTION
Code comments are essential. With too few comments, software
is difficult to maintain and change. Too many comments are also
harmful: they may not contribute to understanding the code, they
can reduce readability, they are more likely to fall out of date with
the code, and creating them wastes the most valuable resource,
which is developer time. Thus, it is important to write comments
in the most useful locations.

* now works at Google.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-NIER’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7126-1/20/05.
https://doi.org/10.1145/3377816.3381736

Although a common suggestion is to write comments at the
same time as the code, many programs lack sufficient comments.
Therefore, developers frequently return to code to add comments:
when preparing for a code review, when coming up to speed on a
codebase, when answering a colleague’s questions, when perform-
ing refactoring, etc. Currently, developers must use their judgment
in deciding where to write explanatory code comments.

We propose a new research problem: identifying where to write
comments. Such a facility could guide developers to write comments
in the most useful locations, without wasting time elsewhere. Our
tool does not suggest comment text, but is a first step towards the
larger research goal of automatically writing comments.

Our machine learning approach identifies comment locations
from simple cues present within the source code, and is trained
on the comment locations from existing code. So it is important
that the code in the model’s training set be high quality and well
commented. For this reason, we trained our model on a corpus of
commented C code from the Android code base, so that the training
set is a model of good practice.

When applied to uncommented code, the model suggests loca-
tions where comments could be written. Our best approach is based
on neural networks, specifically a simple extension to the standard
recurrent neural network, which we call a hierarchical sequence
model, that computes a representation of a snippet of contiguous
lines of code, rather than representing each line of code in isolation.
Our results show that even a technique that shallowly captures the
content of code reaches a precision of 74% and recall of 13% in iden-
tifying comment-worthy locations. A good comment-suggestion
tool must ensure precise suggestions and guard against too many
false positives, so our initial results are in the right direction.

In summary, we make three contributions:

• We propose the where-to-comment task: a useful problem
that has not been studied before.

• We present a corpus of C code where comment locations are
identified.

• We developed a machine learning solution. Our results are
promising, but they also point out the immense potential for
further work to improve techniques for solving the where-
to-comment problem.

2 RELATEDWORK
We have proposed a new task: where to write comments. There is
no previous work on this topic. There is, however, a growing body

http://groups.inf.ed.ac.uk/cup/comment-locator/
https://doi.org/10.1145/3377816.3381736
https://doi.org/10.1145/3377816.3381736


ICSE-NIER’20, May 23–29, 2020, Seoul, Republic of Korea Louis et al.

of work on generating comments. Pioneering work started with
rules or templates [2], before work moved to comparing 𝑛-gram
languagemodels to LDAmodels for generating class comments [11].
Representative recent work translates code to comments via deep
learning for method header comments [6]. This generation task
must produce comments at particular locations, which means it
must implicitly solve our where-to-comment task. Because the
where-to-comment problem is hard, comment generation work has,
to date, either commented its input code snippet as a whole [6] or
it has produced a comment at every instance of a specific kind of
comment location, like statement, class, or method headers. Most
work falls into the latter category, e.g., [11]. Learning where to
comment is an essential first step to generation of high-quality
comments.

There is also work on translating comments into assertions (com-
ments to code) [1, 3, 5, 10] and/or detecting inconsistency between
comments and code [12–14]. Such research assumes that comments
already exist. Our work can be seen as a degenerate case of code-
comment inconsistency where the inconsistency is between the
code and lack of a comment.

In contrast to our goal of suggesting where to add comments,
CRAIC [7] is a system that identifies where to remove redundant
comments.

3 DATASET OF COMMENTED CODE
To train and evaluate models for the where-to-comment problem,
we curated a dataset of historical commenting behavior. Our dataset
is based on the idea of snippets: code blocks delimited by empty
lines. An example is shown in Listing 1. Using blank lines to create
logical groupings is a standard coding practice recommended by
the official Python style guide (PEP 8), Oracle’s Java code conven-
tions, Google’s style guides (for C++ (which encourages a blank line
before comments), Java, Python, and more), McConnell’s Code Com-
plete [8], etc. We propose predicting where-to-comment at the level
of snippets, rather than individual lines of code. By doing so, we
aim to make the prediction problem easier for an automatic method
— because snippets provide more information to the method than
single lines — while still providing a location that is specific enough
to a developer.

We created a dataset of 41,506 snippets of C/C++ source code.
Each snippet was delimited by blank lines in the original program,
All comments have been removed. Each snippet is annotated by a
Boolean label indicating whether a programmer wrote a comment
within the snippet.

3.1 Source Code
Our dataset comes from 601 files from 9 C/C++ libraries in the native
substrate of the Android Open Source Project (AOSP): boringssl,
libjpeg-turbo, libmpeg2, libpcap, libpng, netcat, netperf, tcpdump,
and zlib. These libraries’ domains include cryptography, graphics,
network, and codecs. This codebase is professionally developed,
and we consider it to demonstrate good commenting practice.

A threat to validity is the possibility that the AOSP developers
wrote too few or too many comments. Extra comments are a serious
concern: they would reduce a trained model’s precision and cause
the model to make useless suggestions to programmers. Missing

Listing 1: Two snippetswith comments. It is part of an imple-
mentation of Huffman coding. Taken from jchuff.c in the
libjpeg-turbo project of the Android Open Source Project.

193

194 /* Find the input Huffman table */
195 if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
196 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
197 htbl =
198 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] :

cinfo->ac_huff_tbl_ptrs[tblno];
199 if (htbl == NULL)
200 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
201

202 /* Allocate a workspace if we haven't already done so. */
203 if (*pdtbl == NULL)
204 *pdtbl = (c_derived_tbl *)
205 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo,

JPOOL_IMAGE, SIZEOF(c_derived_tbl));
206 dtbl = *pdtbl;

comments in AOSP would only reduce recall, but the model would
still be useful to programmers.

3.2 Snippets and Comment Locations
To create our dataset, we divided the source code into snippets,
labeled each snippet depending on whether it contains a comment,
and removed all comments from the snippets.

Segmenting source code into snippets. A comment may explain
multiple lines of code. Our model does not merely indicate a single
line of code (LOC) as needing a comment. Rather, we segment the
source code into snippets, and predict whether a comment is needed
somewhere within each snippet.

A snippet is a contiguous sequence of non-blank lines in the
source code. It is intended to capture a logical unit of related code,
as indicated by the programmer who wrote blank lines between
snippets. We hypothesize that these snippets are semantically or
syntactically meaningful spans.

Our tool creates snippets as follows. (1) Remove blank lines
between a comment and subsequent code (such as lines 193 and
201 in Listing 1). We assume that a comment is documenting the
immediately following code except for those on the same line as a
LOC. (2) Split the code into segments at blank lines. The resulting
snippets have a mean length of around 6 LOC and median length
of 4 LOC, but some have hundreds of LOC. (3) If a snippet is more
than 30 lines long (only 2% of snippets), we split it into 𝑛 separate
segments, the first 𝑛 − 1 of which are exactly 30 lines long. This
split is arbitrary, but it keeps suggestions to programmers focused.1

Labeling. We attach a snippet-label of 1 (comment location) to
any snippet containing a comment. The label does not depend on
whether the comment is on the same line as source code or on a line
of its own. The label also does not depend on how many comments
are contained within the snippet, only on whether any comment

1We also tried other ways of dealing with long segments—truncate to length 30 or
remove long segments altogether from the training and test sets. We found these
configurations to give similar results as the one with maximum length of 30.



Where should I comment my code? A dataset and model for predicting locations that need comments ICSE-NIER’20, May 23–29, 2020, Seoul, Republic of Korea

total commented snippets
data snippets anywhere at top
train 36,277 10,904 (30%) 7,330 (20%)
valid 2,436 614 (25%) 386 (16%)
test 2,793 711 (25%) 417 (15%)

Table 1: Dataset Statistics: the number of snippets that are
commented and, how many have a comment at the top of
the snippet.

is present. All other snippets are given a label of 0 (not a comment
location).2

Our goal is to predict these binary labels on the snippets. Those
predicted with a label of 1 can be presented to the developer as
possible locations to be commented.

While our goal is to predict snippet labels, some of our models
are trained with the additional signal of LOC-labels. We obtain these
labels by dividing the file into single LOCs (snippets of size 1). The
LOC is given a label of 1 if there is an end-of-line comment on the
same line or a whole-line comment just before it. These labels are
called LOC-labels.

Remove comments. Before using the snippets for training, we
removed all comments and any blank lines that would be caused
by the removal of a comment.

Dataset Statistics. We randomly divided our dataset into 501 files
for training, 50 validation, and 50 test (Table 1).

Around 25–30% of the snippets are commented. About two thirds
of these have a comment before the first line of the snippet. This
high percentage of snippets beginning with comments indicates
that many snippets may correspond to semantically meaningful
segments of code.

4 TECHNIQUE
Our goal is to produce a binary label for each snippet indicating
whether it should be commented or not. The comment might be
needed on the snippet as a whole or on some LOC within it. We
evaluated several models for this task.

4.1 LOC Model
The “LOC model” treats each line of code as independent from
others. This model has no information about surrounding LOCs
nor the boundaries of the snippet.

Themodel is trained on only the LOC labels, and predicts whether
individual LOCs should be commented. To produce a snippet-label
prediction, the predictions for the LOCs within a snippet are com-
bined by logical OR.

The model is a multi-layer perceptron model that takes a LOC
as input and produces a binary label at the output layer. The input
LOC is represented by the average of embeddings for each token.
These embeddings are obtained using word2vec [9] on about 10M
lines of C code (different from our training/test data) In all the
following models as well, the input LOC is represented in the same
manner.
2We did not filter out any comments, but those such as TODOs occur rarely (less than
1%).

4.2 Sequence Model
The “sequence model” also uses per-line labels, but the label pro-
duced for a LOC is conditioned on the content of all the previous
LOCs in the file.

Here a recurrent neural network (RNN), with LSTM cells, is
run from the start of a code file to its end. Each step in the RNN
consumes one LOC and produces a state which summarizes the
LOCs encountered thus far in the sequence. This summary state
obtained after each LOC is used to predict a binary label which
indicates whether a comment appeared before (or on) this LOC.
Similar to the LOC model, the LOC-labels are used for training.

After training, the per-LOC predictions are combined with the
logical OR operation to produce the prediction for a snippet. We
call this model “seq-OR”.

4.3 Hierarchical Sequence Models
Here we have a RNN at the snippet level from the start of a file to its
end. Each step of the network encodes one snippet and summarizes
the snippets so far. Each snippet in turn is represented by another
RNN which sequentially encodes the LOCs within that snippet.
The states produced by this LOC-level RNN are combined by max
pooling to produce the snippet representation. This model (“hier”)
is trained on snippet level labels.

A second model (“hier-multi-task”) is similar to the previous
except that it also takes advantage of LOC-labels. We add a fine-
grained loss which characterizes how well the model can predict
LOC level labels. The total loss is a weighted average of the snippet
level and the fine-grained loss:

Model_loss = 𝛼 · snippet_level_loss + (1 − 𝛼) · LOC_level_loss

where 0 ≤ 𝛼 ≤ 1.0.
We trained this model using a curriculum learning approach.

We first train with fine-grained loss only. When the loss does not
improve further on the validation set, we switch to the two-loss
training. We tuned 𝛼 on the validation data.

5 EVALUATION
We evaluated our models using precision and recall. Precision is the
fraction of snippets predicted as comment locations that are truly
commented. Recall is the fraction of truly commented snippets that
the model predicts. Some of our models use LOC-labels, but only
as learning signals. Our goal is prediction of snippet labels only.

Presenting low-confidence suggestions would waste the devel-
oper’s time and lose trust. So while tuning the hyperparameters
of our model on the validation set, we pick the highest-precision
model, among those that have at least 20% recall. Obtaining high
recall is not particularly important for this task: so long as the
model predicts useful locations, it is beneficial even if it does not
identify every location.

All our models use a vocabulary size of 5000 consisting of the
most frequent tokens (appearing least 10 times on the training data).
The hyperparameters of each model are tuned on the validation set.
We tune the learning rate, dropout, number of hidden layers, and
units. For multi-task learning, we also tune the 𝛼 parameter.

Table 2 presents our results. The table also reports validation re-
sults for reference in future work and to demonstrate how we chose



ICSE-NIER’20, May 23–29, 2020, Seoul, Republic of Korea Louis et al.

Model Validation Test
Precision Recall Precision Recall

LOC-OR 52 39 51 34
seq-OR 88 30 72 9
Hier 85 22 74 13
Hier-multi-task 78 27 61 17

Table 2: Performance of our models on comment prediction
for snippets.

our best models during tuning. But it does not reflect our expected
performance on new data. So we show results on a completely blind
test set, meaning that we never perused or used these files until we
performed all model development, tuning, and selection of the best
settings.

Our experiments allow us to test a couple of hypotheses behind
our choice of models. Firstly, we wanted to see if a continuous
representation of a full snippet is better than having representations
at LOC level. This question can be answered by comparing the “hier”
models (which compose snippet representations from LOCs) against
the “seq” and “LOC” models (these two do not have a notion of
snippet during training). During validation, “seq” has best precision.
But “hier” gives the top test performance.

Second, we introduced the “hier-multi-task” to understand if
some training signals at the LOC level can still help training for
snippet labels. The 𝛼 parameters in the best models always turned
out close to 1.0, indicating that the model ignores the LOC signals.
Although the LOC signals could help to pretrain the models (find
good weights which can be further optimized), the final weights do
not seem to depend much on these LOC signals. Hence the results
for “hier” and “hier-multi-task” are fairly similar during validation.
On new data, the “hier” model is better.

Based on both accuracy and the model’s generalization ability
on unseen data, “hier” emerges as the best choice.

Note that we specifically chose models with high precision to
avoid incorrect suggestions. Currently, these models have low recall.
To improve upon our recall (or the number of suggestions to the
developer), we could leverage other sources of information, such
as a developer’s surprise upon seeing certain constructs, or her
background knowledge that indicates some parts as needing com-
ment (or otherwise). Our initial efforts to incorporate background
knowledge and ‘surprise’-capturing features into the models were
not successful. These are interesting directions for future work.

6 FUTUREWORK
Future work3 could automatically segment the code into snippets
rather than using our blank-line heuristic. Such a model would
predict not only the comment location, but also which span of code
should be commented at that location.

Just as fault localization is essential to automated program repair,
predicting comment locations is essential to effective comment gen-
eration. Futurework could evaluateways to combine the techniques,
as well as other modelling improvements to increase performance.

3We have released our dataset and code:http://groups.inf.ed.ac.uk/cup/comment-
locator/

It would be interesting to evaluate whether code that needs
comments is worse code, or code that requires refactoring. (An
extracted method’s name acts as a kind of comment [4].) Are our
models also code smell detectors?
Acknowledgments This work was partly supported by the Engineering and
Physical Sciences Research Council [grant number EP/P005314/1] and NSF
grant CCF-1836813.

REFERENCES
[1] A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè, and S. D. Castel-

lanos. 2018. Translating code comments to procedure specifications. In ISSTA.
242–253.

[2] R. P. Buse and W. R. Weimer. 2010. Automatically documenting program changes.
In ASE. 33–42.

[3] M. D. Ernst. 2017. Natural language is a programming language: Applying natural
language processing to software development. In SNAPL. 4:1–4:14.

[4] M. Fowler. 2000. Refactoring: Improving the Design of Existing Code. Addison-
Wesley.

[5] A. Goffi, A. Gorla, M. D. Ernst, and M. Pezzè. 2016. Automatic generation of
oracles for exceptional behaviors. In ISSTA. 213–224.

[6] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin. 2018. Deep code comment generation. In
ICPC. 200–210.

[7] A. Louis, S. K. Dash, E. T. Barr, and C. Sutton. 2018. Deep Learning to Detect
Redundant Method Comments. http://arxiv.org/abs/1806.04616.

[8] S. McConnell. 2004. Code complete: A practical handbook of software construction
(2nd ed.). Microsoft Press, Redmond, WA, USA.

[9] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. 2013. Distributed
representations of words and phrases and their compositionality. In NIPS. 3111–
3119.

[10] M. Motwani and Y. Brun. 2019. Automatically Generating Precise Oracles from
Structured Natural Language Specifications. In ICSE. Montreal, Canada, 188–199.

[11] D. Movshovitz-Attias and W. W. Cohen. 2013. Natural language models for
predicting programming comments. In ACL. 35–40.

[12] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. 2007. /*iComment: Bugs or Bad
Comments?*/. In SOSP. 145–158.

[13] L. Tan, Y. Zhou, and Y. Padioleau. 2011. aComment: Mining annotations from
comments and code to detect interrupt related concurrency bugs. In ICSE. 11–20.

[14] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens. 2012. @tComment: Testing
Javadoc Comments to Detect Comment-Code Inconsistencies. In ICST. Montreal,
Canada, 260–269.

http://groups.inf.ed.ac.uk/cup/comment-locator/
http://groups.inf.ed.ac.uk/cup/comment-locator/
http://arxiv.org/abs/1806.04616

	Abstract
	1 Introduction
	2 Related work
	3 Dataset of Commented Code
	3.1 Source Code
	3.2 Snippets and Comment Locations

	4 Technique
	4.1 LOC Model
	4.2 Sequence Model
	4.3 Hierarchical Sequence Models

	5 Evaluation
	6 Future work
	Acknowledgments
	References

