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abstract

PURPOSE The STAMPEDE trial recruits men with newly diagnosed, high-risk, hormone-sensitive prostate
cancer. To ascertain the feasibility of targeted next-generation sequencing (tNGS) and the prevalence of
baseline genomic aberrations, we sequenced tumor and germline DNA from patients with metastatic prostate
cancer (mPCa) starting long-term androgen-deprivation therapy (ADT).

METHODS In a 2-stage approach, archival, formalin-fixed, paraffin-embedded (FFPE) prostate tumor core biopsy
samples were retrospectively subjected to 2 tNGS assays. Prospective enrollment enabled validation using tNGS
in tumor and germline DNA.

RESULTS In stage 1, tNGS data were obtained from 185 tumors from 287 patients (65%); 98% had de novo
mPCa. We observed PI3K pathway aberrations in 43%, due to PTEN copy-number loss (34%) and/or activating
mutations in PIK3 genes or AKT (18%) and TP53 mutation or loss in 33%. No androgen receptor (AR) ab-
errations were detected; RB1 loss was observed in , 1%. In stage 2, 93 (92%) of 101 FFPE tumors (biopsy
obtained within 8 months) were successfully sequenced prospectively. The prevalence of DNA damage repair
(DDR) deficiency was 14% (somatic) and 5% (germline). BRCA2 mutations and mismatch repair gene mu-
tations were exclusive to high-volume disease. Aberrant DDR (22% v 15%), Wnt pathway (16% v 4%), and
chromatin remodeling (16% v 8%) were all more common in high-volume compared with low-volume disease,
but the small numbers limited statistical comparisons.

CONCLUSION Prospective genomic characterization is feasible using residual diagnostic tumor samples and
reveals that the genomic landscapes of de novo high-volume mPCa and advanced metastatic prostate cancer
have notable similarities (PI3K pathway, DDR, Wnt, chromatin remodeling) and differences (AR, RB1). These
results will inform the design and conduct of biomarker-directed trials in men with metastatic hormone-sensitive
prostate cancer.

JCO Precis Oncol 4:882-897. © 2020 by American Society of Clinical Oncology

INTRODUCTION

Although localized prostate cancer is often an indolent
disease, metastatic prostate cancer is usually lethal.1

Significant improvements in outcome for men with
metastatic disease are achieved when effective sys-
temic therapies are used early, shortly after com-
mencing androgen-deprivation therapy (ADT), termed
hormone-sensitive disease. Docetaxel, abiraterone,
enzalutamide, and apalutamide all have level 1 evi-
dence showing improved overall survival when used
in addition to ADT in metastatic hormone-sensitive
prostate cancer (mHSPC).2-6 However, we lack pre-
dictive biomarkers.

Next-generation sequencing (NGS) studies of met-
astatic castrate-resistant prostate cancer (mCRPC),
defined as progressive disease despite ADT, have
identified important therapeutically targetable aber-
rant pathways.7-12 These studies used biopsies
(mostly lymph node, liver, or bone metastases) and
notably identified genomic aberrations in DNA
damage repair (DDR) pathways leading to the de-
velopment of PARP inhibitors for DDR-deficient
mCRPC.13 To date, the majority of NGS analyses
linked to clinical data of untreated cancers have
focused on low- to intermediate-risk cohorts (eg,
TCGA),9,14,15 whereas the profile of mCRPC has been
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informed by autopsy studies,11,16 pooled clinical trial co-
horts (eg, SU2C),12 and single-center clinical cohorts (eg,
MSK-IMPACT).7 When included, patients with mHSPC
have often had relapsed disease after treatment of lo-
calized prostate cancer, and there are relatively limited
data specific to de novo mHSPC.7

STAMPEDE is an adaptive, multi-arm, multistage platform
protocol that seeks to evaluate therapeutic strategies in
newly diagnosed high-risk or metastatic prostate cancer.
Our aim in this study was to support the implementation of
biomarker-stratified treatment in mHSPC. We hypothesized
that the genomic profile of mHSPC would differ from lo-
calized and advanced prostate cancer, necessitating
specific prevalence data to inform trial design. We per-
formed a 2-stage study in which we piloted targeted next-
generation sequencing (tNGS) using routinely available
prostate cancer samples in a subset of STAMPEDE trial
participants, some of whom also underwent germline
testing and volumetric assessment of metastatic disease
burden. We sought to evaluate the feasibility of tNGS,
assess the prevalence of baseline genomic aberrations in
mHSPC, and, where it was known, explore differences
according to metastatic burden.

METHODS

Stage 1 was a retrospective analysis using a dedicated
protocol reviewed by the West Midlands Regional Ethics
Committee, United Kingdom (16/WM/0188) applied to
patients who had already consented to gift their diagnostic
samples when trial consent was obtained. Stage 2 was
a prospective study undertaken following a STAMPEDE
protocol amendment (v16) to evaluate the feasibility of
obtaining tumor and germline DNA before trial randomi-
zation and to validate the results from stage 1. Study en-
rollment was an optional aspect of trial participation and
required specific additional consent. The STAMPEDE eli-
gibility criteria are described in full elsewhere.1,3,6,17 Briefly,

all participants included in this study were starting long-
term ADT for metastatic disease, had confirmed prostate
adenocarcinoma, and were fit to receive the experimental
treatments assessed in STAMPEDE. Residual diagnostic
samples were used, which in stage 2 must have been
obtained within 8 months of study registration; no extra
biopsies were required. With the permission of the trial
oversight groups, baseline clinical characteristics are
presented for all randomly assigned participants.

Stage 1

Residual diagnostic pretreatment archival formalin-fixed
paraffin-embedded (FFPE) biopsy samples were retro-
spectively retrieved from consenting participants randomly
assigned between November 2011 and May 2017. Path-
ologic review of a hematoxylin and eosin–stained slides
confirmed the histologic diagnosis and estimated tumor
content. Where multiple FFPE blocks were available per
patient, the sample with the highest tumor content was
selected. In stage 1, one sample per patient was sequenced
in one of two laboratories (Fig 1). A total of 186 samples
were sequenced in a US clinically accredited laboratory
(Foundation Medicine) and are referred to as cohort 1a.
The Foundation Medicine T7 hybrid-capture assay in-
cludes 395 cancer-related genes and reports single-
nucleotide variants (SNVs), indels, copy-number alter-
ations, and selected rearrangements.18 We here report the
pathogenic changes that occurred in 39 genes shown
to be aberrant in prostate cancer on the basis of prior
publications.7,12 To evaluate implementing screening
within STAMPEDE UK centers, we submitted samples to
a UK-based laboratory using the TST-170 panel (Illumina)
delivered by Almac Diagnostics, (Craigavon, UK), referred
to as cohort 1b. The TST170 uses a hybrid-capture method
to extract DNA and RNA to detect SNVs, indels, selected
rearrangements, and fusions.19,20 Herein we report path-
ogenic changes that occurred in 14 genes involved in DDR

CONTEXT

Key Objective
In order to characterize the genomic profile of de novo metastatic prostate cancer, we conducted a feasibility and prevalence

study using diagnostic formalin-fixed paraffin-embedded (FFPE) prostate core biopsies from participants enrolled in
STAMPEDE clinical trial, a proportion of whom also provided germline DNA.

Knowledge Generated
We demonstrate that it is feasible to perform tNGS using archival samples and the highest success rates are observed when

sequencing is performed within 8 months of biopsy fixation. We show the profile of de novo metastatic prostate cancer is
distinct from that seen in metastatic castrate resistant disease (mCRPC) and prostatectomy cohorts. Unique to our study,
we show baseline genomic differences according to metastatic burden with high volume metastatic disease showing most
similarities to metastatic castrate resistant prostate (mCRPC), with the exception of ARmutations which are absent and Rb1
loss which is rare.

Relevance
These data will inform the design of biomarker-directed trials in de novo metastatic hormone sensitive prostate cancer.
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selected based on evidence that they may predict sensi-
tivity to PARP inhibition.13,21 Assay concordance was
assessed for a subset of cases by comparing the tNGS
results on the same DNA from both providers. Appendix
Table A1 (online only) lists genes covered by each assay.

Stage 2

We undertook a prospective study to validate the retro-
spective analysis and assess the feasibility of implement-
ing molecular characterization within the STAMPEDE trial,
specifically focusing on identifying DDR pathway alter-
ations to determine the feasibility of evaluating a PARP
inhibitor. Additional substudy consent was obtained to
retrieve residual diagnostic tumor samples and to provide
a saliva sample for germline analysis. Both samples needed
to be submitted within 10 weeks after commencing hor-
mone therapy to adhere to the maximum prior hormone
therapy permitted by the trial. All tumor samples (maximum
of 2 per patient) must have been obtained within 8 months

before registration. We subjected tumors to tNGS in a UK
clinical laboratory (Almac Diagnostics, Craigavon, UK)
and saliva to a clinically accredited 30-gene panel (Color
Genomics).22 Ten genes involved in DDR were tested in
both tumor and germline DNA; gene lists are provided in
Appendix Table A1. Clinically relevant germline and so-
matic results were reported back to treating oncology teams
to ensure participants were notified in accordance with
participant information and consent.

Each study population was compared with the compara-
ble intention-to-treat (ITT) population, defined as patients
meeting the same eligibility criteria randomly assigned
contemporaneously during this period at the same sites.
Comparative analyses are limited to baseline characteris-
tics, and the χ2 test was used with a false discovery rate
correction applied within each characteristic. We have
previously reported analyses by metastatic burden at
presentation assessed using whole-body technetium bone
scans and computed tomography or magnetic resonance

FFPE
samples
(n = 186)

FFPE
samples
(n = 100)

Sequenced
(FM; n = 115)

Sequenced
(Almac; n = 70)

Concordance
analysis:

sequenced by
both assays

(n = 17)

Patients with FM
genomic data and
known metastatic

burden
(n = 63)

Saliva
samples
(n = 92)

Tumor
samples

sequenced
(Almac; n = 93)

Germline
samples

sequenced
(Color; n = 89)

FFPE
samples from 99

patients
(n = 101)

Cohort 1a Cohort 2Cohort 1b

Failed
sequencing
(n = 30; 30%)

Failed
sequencing

(n = 71; 38%)

Failed
sequencing
(n = 3; 3%)

Failed
sequencing
(n = 8; 8%)

Metastatic
burden
unknown

Metastatic
burden

unknown

Patients with
Almac genomic data

and known
metastatic burden

(n = 31)

Stage 1: Retrospective collection and sequencing of
tumor FFPE samples

Stage 2: Prospective enrollment and paired
germline analysis

FIG 1. Overview of sampling approach. In cohort 1, the vast majority of samples were transrectal prostate biopsies; however, there were two metastatic
biopsies submitted, including one bone biopsy. In cohort 2, all samples were transrectal prostate biopsies except for two lymph node biopsies. FFPE,
formalin-fixed, paraffin-embedded; FM, Foundation Medicine.
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imaging scans of the chest, abdomen, and pelvis, using
the classification criteria used by the CHAARTED trial
(ClinicalTrials.gov identifier: NCT00309985).5,23-25 An ex-
ploratory analysis of baseline genomic characteristics
according to metastatic burden was performed for patients
included in our analyses (Fig 1), and the Fisher’s exact test
was used to compare the frequency of specific mutations in
high- and low-volume disease.

RESULTS

Stage 1: Retrieval of Tissue From Men Randomly

Assigned in the STAMPEDE Trial

Cohort 1 included samples from 286 participants randomly
identified from patients recruited between November 2011
and May 2017. A total of 186 samples were processed
by Foundation Medicine (cohort 1a), of which 115 were
successfully sequenced (62%). One hundred samples
were processed by Almac Diagnostics (cohort 1b), of which
70 were successfully sequenced (70%); see Appendix
Figure A1 for reasons for failure. Overall, samples were
successfully sequenced for 185 (65%) of 286 patients.
Of these 185, 98% had de novo metastatic disease and
62% had metastases to bone only, reflecting the typical
disease distribution. As shown in Table 1 and Appendix
Table A2 (online only), the sequenced population was
representative of the comparable ITT trial cohort.

Stage 2: Prospective Collection of Tissue and Saliva for

Molecular Testing

Cohort 2 contained 99 participants registered between
December 2017 and August 2018 at 24 of the 107
STAMPEDE centers in the United Kingdom. Eleven of the
99 participants did not proceed to random assignment,
but the baseline clinical characteristics (Table 1) are sim-
ilar to cohort 1. Overall, they are representative of the
comparable ITT trial population, although all had de novo
metastatic disease, compared with 95% in the ITT. A total
of 148 FFPE tumor blocks were obtained from 99 patients.
In each case, the most suitable sample was selected after
central pathology review (Almac Diagnostics, Craigavon,
UK). If the first processed sample failed, a second sample
was used where available. In total, 101 samples were
processed, and overall sequencing success rate was
92% (93 of 101), providing data for 93 of 99 patients. Saliva
samples for germline DNA analysis were also collected for
92 of 99 patients, and 89 of 92 were successfully se-
quenced (Color Genomics).

Genomic Landscape of mHSPC

As shown in Figure 2, cohort 1a included 115 patients
sequenced by Foundation Medicine, and the most prev-
alent aberrations were copy-number alterations or somatic
point mutations in TP53 or PTEN. As would be expected for
a population not previously treated with ADT, no androgen
receptor (AR) aberrations were detected. TP53 muta-
tion or loss occurred in 33% of patients. Overall, PTEN

copy-number alterations (25%) or mutations (9%) were
observed in 34%. PI3K pathway aberrations were detected
in 18%, occurring because of an activating mutation (13%)
or copy-number alteration (4%) or PIK3R1 rearrange-
ments (1.3%). PI3K/AKT pathway aberrations occurred
with PTEN loss in 9% and without in 9%. Wnt pathway
aberrations occurred in 14%, including mutation (6%) or
rearrangement (1%) in APC (7%) or mutations in CTNNB1
(7%). Figure 3 shows the prevalence of alterations in 34 out
of the 39 genes of interest on the basis of previous pub-
lications at both a gene and pathway level.7,12,26 Overall,
aberrations were detected in 85% of patients, with 56%
harboring ≥ 2 and 24% ≥ 3. SPOP mutations occurred in
only 4 patients (4%) and, in keeping with previous reports,
were mutually exclusive of ETS-gene fusions, present in
41% of patients.

Aberrations in genes involved in cell cycle regulation oc-
curred in 7%, due to copy-number alteration or mutation in
CCND1, CDK4, CNKN1B, CDKN2A, and CDKN2B. Loss of
RB1 was observed less frequently (1%) than reported in
mCRPC (approximately 20%).8 Aberrations in genes in-
volved in chromatin remodeling occurred in 13%, includ-
ing mutation or copy-number alteration in KDM6A (4%),
mutation or rearrangement in KMT2C/MLL3 (3%), or
mutation in MLL2 (3%). RAS/RAF/MEK pathway aberra-
tions were present in 4%, due tomutation or rearrangement
of BRAF (3%) or KRAS mutation (1%). Mutations in the
mismatch repair genes (MMR) MSH2 and MSH6 were
observed in 3% overall, consistent with previous reports in
mCRPC.7,11,12

The prevalence of DDR deficiency was determined in 185
patients through combining cohorts 1a and 1b. Aberrations
in one or more of 14 genes involved in DDR were identified
in 14%. Two patients harbored pathogenic BRCA2 mu-
tations, with 1 case shown to have 2. The most frequently
mutated genes involved in DDR were ATM (8%) and
CDK12 (5%). Samples in which alterations in DDR genes
were detected by Foundation Medicine were selected for
concordance analysis, together with those with sufficient
remaining DNA. Seventeen of 20 samples passed DNA
quality control, and sequencing results performed by
Almac Diagnostics were concordant in 16 of 17. The only
discordant result was ATM copy-number loss, because the
Almac assay was not validated to detect copy-number
alterations.

Prospective Validation and Identification of Germline

DDR Deficiency in mHSPC

In stage 2, prospective screening validated the frequency of
somatic alterations in the 14 specified genes involved in
DDR, which were detected in 11%. The most frequently
mutated genes involved in DDR were again ATM and
CDK12, present in 3% and 2%, respectively. One patient
had a CHEK2mutation, 1 had anNBNmutation, and 1 had
a RAD54L mutation. All positive results were externally
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validated using a clinically accredited assay (Foundation
Medicine). Nine of 10 results were verified, with the exception
of the RAD54L mutation, resulting in an estimate of DDR
deficiency in stage 2 of 10%. Results from germline DNA
analysis were available for 89 of 93 patients (Fig 4). Overall,
5 (5%) of 89 patients were found to harbor germline

aberrations in genes involved in DDR; 2 harbored BRCA2
mutations, 2 ATM mutations, and 1 a CHEK2 mutation.
No germline mutations were identified in BARD1, BRCA1,
BRIP1,PALB2,RAD51C, orRAD51D or other genes involved
in mismatch repair (MLH1, MSH2, MSH3). See Appendix
Table A1 for a full list of genes covered by each assay.

TABLE 1. Patient Characteristics

Baseline Characteristic
Cohort 1
(n = 185)

Comparative ITTa

(n = 1,744) P b
Cohort 2c

(n = 88)
Comparative ITTa

(n = 204) P b

Age at randomization, years

Median 69 68 68 68

IQR 63-75 63-73 62-73 63-75

Presenting PSA, ng/mL

Median 93 96 81 67

IQR 25-393 31-331 22-250 20-353

T stage

≤ T2 19 (10) 203 (12) .816 5 (6) 15 (7) .868

T3 102 (55) 989 (57) 51 (58) 108 (53)

T4 51 (28) 429 (25) 23 (26) 59 (29)

Tx 13 (7) 123 (7) 9 (10) 22 (11)

Nodal stage

N0 58 (31) 581 (33) .863 22 (25) 57 (28) .103

N1 115 (62) 1,051 (60) 66 (75) 138 (68)

Nx 12 (6) 112 (6) 0 (0) 9 (4)

Disease category

De novo M1 182 (98) 1,664 (96) .089 88 (100) 193 (95) .061

Relapsed M1 3 (2) 80 (4) 0 (0) 11 (5)

Metastatic distribution

Bone only 114 (62) 1,118 (64) .775 41 (47) 107 (52) .665

Distant node only 20 (11) 185 (11) 12 (14) 28 (14)

Bone and nodal or other 51 (28) 441 (25) 34 (39) 69 (34)

Gleason

≤ 7 27 (15) 335 (19) .311 13 (15) 31 (15) .768

8-10 149 (81) 1,329 (76) 73 (83) 165 (81)

Unknown 9 (5) 80 (5) 2 (2) 8 (4)

Performance status

0 131 (71) 1,242 (71) 71 (81) 154 (75)

1 52 (28) 486 (28) 16 (18) 47 (23)

2 2 (1) 16 (1) 1 (1) 3 (1)

NOTE. Data are presented as No. (%) unless otherwise noted. The trial protocol did not collect data on ethnicity or family history, and therefore
this information is unknown.

Abbreviations: IQR, interquartile range; ITT, intention to treat; PSA, prostate-specific antigen.
aComparative ITT defined as metastatic disease at trial entry, randomized during the same time period at the sites contributing samples to this

analysis.
bP values are from χ2 tests comparing the distribution of patients within each type of baseline characteristic between the cohort subgroups and

the comparative ITT population. There is no compelling evidence that the cohort populations do not differ meaningfully from the comparative ITT
population in terms of baseline characteristics.

cBaseline characteristics were collected at randomization, and therefore are unknown for the 11 participants who did not subsequently enter
random.
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Genomic Characterization According to

Metastatic Burden

Metastatic burden was known for 94 (51%) of 185 of
cohort 1 (Fig 1). Fifty-four patients (57%) had high-
volume metastatic disease, and 40 (43%) had low-
volume disease, consistent with previous reports (see
Appendix Table A3, online only for comparative baseline
characteristics).25 Sixty-three of 94 patients in whom
metastatic burden was known were in cohort 1a, se-
quenced by Foundation Medicine. In an exploratory
analysis in this small subset, differences according to

metastatic burden were observed. Overall DDR deficiency
was detected in 18 (19%) of 94, and we observed a trend
for a higher prevalence in high-volume disease: 22%,
compared with 15% in low-volume disease. The only
BRCA2 mutant case and both MMR-deficient cases had
high-volume disease. High-volume disease was associ-
ated with a higher frequency of aberrations in Wnt sig-
naling (16% v 4%), and alterations in genes involved in
chromatin remodeling (16% v 8%; Fig 5). In contrast,
aberrations in PTEN and the PI3K pathway were equally
prevalent. TP53 and ETS fusions were both more frequent
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FIG 2. Selected genomic aberrations identified in cohort 1a (n = 115). Samples were sequenced by Foundation Medicine with targeted next-generation
sequencing assay (T7). Thirty-nine genes of interest were defined based on prior publications7,12; those 32 found to be aberrant are presented here. See
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in low-volume disease (31% v 21% and 38% v 19%,
respectively). We did not find evidence for statistically
significant differences in the frequency of specific mu-
tations between high- and low-volume subgroups (Fisher’s
exact test: P . .05).

DISCUSSION

We demonstrate that it is feasible to use residual di-
agnostic FFPE tumor biopsy specimens to perform tNGS.

Our results suggest that the time between obtaining the
biopsy and sequencing influences the sequencing suc-
cess rate, as this was the main difference between cohort
2 and cohort 1 (92% and 65% respectively). In cohort 1,
archival samples were up to 7 years old, whereas in cohort
2, all were, 8 months. Other differences included biopsy
date (before April 2017 for cohort 1, December 2017-
August 2018 for cohort 2), but we did not identify any
change in sample processing protocols, and most sites
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contributed to both cohorts. When compared with pub-
lished data, our results suggest the genomic profile of de
novo metastatic prostate cancer is different from localized
prostatectomy cohorts and, notably, shares similarities
with heavily pretreated mCRPC, other than for the ab-
sence of AR aberrations and low prevalence of RB1
loss.11,12,16 We identified a higher prevalence of PI3K/AKT
pathway aberrations compared with the MSK-IMPACT
mHSPC population, in which half had relapsed metastatic
disease after previous treatment of localized PCa.7 Dif-
ferences in genomic profiles of de novo compared with
relapsed metastatic disease may explain the recently
proposed difference in benefit with docetaxel for these 2
clinical presentations.24 AR aberrations were detected in
the MSK-IMPACT mHSPC cohort but were limited to those
with prior ADT exposure, suggesting the development
of subclinical mCRPC, and were not observed in our
cohort, who were all treatment naive. We observed a lower
prevalence of SPOP mutations (4%) compared with
published estimates in prostatectomy series (11%-13%)
but similar to mCRPC (approximately 5%).12,15,27 This
finding is consistent with data from cohorts enriched
for SPOP mutations, where the lowest frequency was ob-
served in de novo metastatic disease.9,28 The high preva-
lence observed in localized cohorts suggests it is a feature
of good-prognosis disease.28

In an exploratory analysis, high– and low–metastatic bur-
den tumors had a similar prevalence of aberrations in the

PI3K/AKT pathway, but aberrations involving MMR (5%
v 0%) and DDR (22% v 15%), Wnt (16% v 4%), and
chromatin remodeling (16% v 8%) pathways appeared
more common in high-volume disease, with a prevalence
similar to mCRPC. Validation in a larger cohort is required,
but this suggests biologic differences may underpin this
classification. The prevalence of somatic BRCA1 and
BRCA2mutations was lower than reported in other mHSPC
cohorts and heavily pretreated mCRPC.11,12,16 Consistent
with this, we observed a lower frequency of germline DDR
aberrations. This may be a result of differences in patient
selection and population: the STAMPEDE trial recruits at
both rural general hospitals and tertiary referral centers.
This contrasts with other cohorts conducted primarily at
tertiary referral centers.26,29

The sample size for this analysis offers limited power to
compare the frequency of specific mutations between
high- and low-volume subgroups. However, the results
are nonetheless interesting, given prior studies suggested
worse outcome for cancers harboring aberrations in DDR or
the WNT pathway that appeared to occur more commonly
in high-volume disease. This contrasts with ETS gene fu-
sions that appear to occur at a higher frequency in low-
volume disease and have previously been associated with
no difference in outcome. Also, the similar prevalence of
a number of aberrations suggests that differences observed
were not a result of lower tumor purity in low-volume cancer
samples.

ATM 3%

BARD1 0%

BRCA1 0%

BRCA2 2%

BRIP1 0%

CDK12 1%

CHEK2 0%

NBN 1%

PALB2 0%

RAD51 0%

RAD51B 0%

RAD51C 0%

RAD51D 0%

RAD54L 0%

Genetic alteration Missense mutation

No alterations

Coexisting germline
aberration

FIG 4. Prevalence of somatic and germline DNA damage repair (DDR) in cohort 2. Three genes were only included in tumor sequencing panel (ie,
11 genes were evaluated in both tumor and germline DNA). In 5 cases where a somatic change was detected in one gene involved in DDR, a germline
change was also reported. However, because of differences in annotation, it is uncertain as to whether these all represent second-hit somatic mutations
or coexisting mutations within the same gene. The prevalence of germline DDR mutations is lower than somatic mutations, suggesting that a screening
strategy that focuses solely on germline aberrations will identify a smaller population.
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The size of our cohort does not allow definitive assessment of
less-prevalent subgroups, such as BRCA mutants, but as
these patients have the best responses to PARP inhibition, this
finding may have implications for trial designs evaluating this
strategy in this setting.30 Wnt signaling modulates cell growth
and survival predominately viamaintaining stem cells in a self-
renewing state.31 Androgen-modulating therapies have been
shown to modify Wnt signaling, and Wnt pathway aberrations

were associated with reduced benefit from AR-targeted
therapies, suggesting this finding may also have therapeu-
tic relevance.32 The prevalence of MMR deficiency was rel-
atively low and consistent with prior mCRPC data.8,12,27,33

A limitation of the current work is that this study was per-
formed in participants of an ongoing trial, randomly assigned
to receive different therapies. Second, the sequencing
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FIG 5. Comparative genomic profile in high- and low-volume metastatic disease (n = 64). Samples were sequenced by Foundation Medicine targeted
next-generation sequencing assay (T7). Thirty-nine genes of interest were defined based on prior publications7,12; those 28 found to be aberrant are
presented here. See Appendix Table A1 for gene lists.
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technique used may miss, and therefore underestimate,
the frequency of MMR gene aberrations secondary to
complex structural rearrangements involving noncoding
regions and larger indels that account for half of hyper-
mutated mCRPC.26,34 Nonetheless, comparisons between
sequencing approaches can be challenging, and so the
reliability of the estimate of DDR deficiency is strengthened
by the use of 2 tNGS assays, shown to have good con-
cordance. Finally, the trial does not routinely collect eth-
nicity, which may limit applicability to other populations,
especially in terms of germline risk.

In summary, we present baseline genomic data obtained
from a representative subset of a large clinical trial in
mHSPC. We demonstrate that it is feasible to implement
prospective genomic characterization and report a high
sequencing success using residual diagnostic biopsy
FFPE samples. We demonstrate that a specific genomic
profile is observed in de novo mHSPC, and these prev-
alence data will inform trial design in this setting.
Adaptive protocols like STAMPEDE provide an important
opportunity to incorporate genomic or molecular char-
acterization with the aim of rational treatment selection.
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APPENDIX

Feasibility and reasons for failure 
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FIG A1. Feasibility and reasons for failure. DDR, DNA damage repair; FFPE, formalin-fixed, paraffin-embedded; FM, Foundation Medicine; QC, quality
control; tNGS, targeted next-generation sequencing.
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TABLE A1. Gene List for Each Assay

FM Genes of Interest
Almac DDR

14 Gene Panel
Color

Germline Panel

AKT1 ATM APC

AKT3 BARD1 ATM

APC BRCA1 BAP1

ATM BRCA2 BARD1

BLM BRIP1 BMPR1A

BRAF CDK12 BRCA1

BRCA2 CHEK2 BRCA2

CCND1 NBN BRIP1

CDK1 PALB2 CDH1

CDK4 RAD51 CDK4

CDKN1B RAD51B CDKN2A

CDKN2A RAD51C CHEK2

CDKN2B RAD51D EPCAM

CTNNB1 RAD54L GREM1

CUL3 MITF

ETV1 MLH1

FANCA MSH2

KDM6A MSH6

KMT2C MUTYH

KRAS NBN

MLL2 PALB2

MSH2 PMS2

MSH6 POLD1

PIK3CA POLE

PIK3CB PTEN

PIK3CG RAD51C

PIK3R1 RAD51D

PTEN SMAD4

RB1 STK11

SPOP TP53

TMPRSS2

TP53

Abbreviation: FM, Foundation Medicine.
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TABLE A2. Comparative baseline characteristics according to sequencing success

Baseline Characteristic
All

(N = 286)
Sequenced
(n = 185) P a

Sequencing Failed
(n = 101) P a

Age at randomization, years

Median 68 69 67

IQR 63-73 63-75 62-71

Presenting PSA, ng/mL

Median 127 93 149

IQR 35-400 25-393 51-435

T stage

≤ T2 27 (9) 19 (10) .975 8 (8) .915

T3 162 (57) 102 (55) 60 (59)

T4 79 (28) 51 (28) 28 (28)

Tx 18 (6) 13 (7) 5 (5)

Nodal state

N0 103 (36) 58 (31) .5601 45 (45) .288

N1 164 (57) 115 (62) 49 (48)

Nx 19 (7) 12 (6) 7 (7)

Disease category

De novo M1 282 (99) 182 (98) .998 100 (99) .996

Relapsed M1 4 (1) 3 (2) 1 (1)

Metastatic distribution

Bone only 191 (67) 114 (62) .519 77 (76) .208

Distant node only 27 (9) 20 (11) 7 (7)

Bone and nodal or other 68 (24) 51 (28) 17 (17)

Gleason

≤ 7 50 (17) 27 (15) .707 23 (23) .500

8-10 222 (78) 149 (81) 73 (72)

Unknown 14 (5) 9 (5) 5 (5)

Performance status

0 208 (73) 131 (71) .837 77 (76) .673

1 74 (26) 52 (28) 22 (22)

2 4 (1) 2 (1) 2 (2)

NOTE. Data are presented as No. (%) unless otherwise noted.
Abbreviations: IQR, interquartile range; PSA, prostate-specific antigen.
aP values are from χ2 tests comparing the distribution of patients within each type of baseline characteristic between the sequenced/

unsequenced subgroups and the comparative overall population. P. .05 in all cases, demonstrating that the sampled populations do not differ
significantly from the full patient population in terms of baseline characteristics.
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TABLE A3. Comparative Baseline Characteristics in Patients With Known Metastatic Burden

Baseline Characteristic
Sequenced
(n = 185)

Known Metastatic
Burden (n = 94) P a

Low Volume
(n = 40)

High Volume
(n = 54) P b

Age at randomization, years

Median 69 70 67 70

IQR 63-75 63-74 62-74 63-75

Presenting PSA, ng/mL

Median 93 133 62 292

IQR 25-393 44-446 11-140 81-1141

T stage

≤ T2 19 (10) 9 (10) .808 1 (3) 8 (15) .254

T3 102 (55) 47 (50) 22 (55) 25 (46)

T4 51 (28) 31 (33) 14 (35) 17 (31)

Tx 13 (7) 7 (7) 3 (8) 4 (7)

Nodal state

N0 58 (31) 33 (35) .462 14 (35) 19 (35) .830

N1 115 (62) 52 (55) 23 (58) 29 (54)

Nx 12 (6) 9 (10) 3 (8) 6 (11)

Disease category

De novo M1 182 (98) 93 (99) .998 39 (98) 54 (100) .880

Relapsed M1 3 (2) 1 (1) 1 (2) 0 (0)

Metastatic distribution

Bone only 114 (62) 57 (61) .973 19 (48) 38 (70) , .001

Distant node only 20 (11) 11 (12) 11 (28) 0 (0)

Bone and nodal or other 51 (28) 26 (28) 10 (25) 16 (30)

Gleason

≤ 7 27 (15) 19 (20) .393 9 (23) 10 (19) .808

8-10 149 (81) 69 (73) 28 (70) 41 (76)

Unknown 9 (5) 6 (6) 3 (8) 3 (6)

Performance status

0 131 (71) 61 (65) .311 26 (65) 35 (65) .998

1 52 (28) 33 (35) 14 (35) 19 (35)

2 2 (1) 0 (0) 0 (0) 0 (0)

NOTE. Data are presented as No. (%) unless otherwise noted.
Abbreviations: IQR, interquartile range; PSA, prostate-specific antigen.
aP values are from χ2 tests comparing the distribution of patients within each type of baseline characteristic between the sequenced subgroup

and the whole cohort with known metastatic burden.
bP values are from χ2 tests comparing the distribution of patients within each type of baseline characteristic between low– and high–metastatic

burden subgroups. As would be expected, patients differ only on the basis of metastatic distribution (P , .001).
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