Almost partitioning the hypercube into copies of a graph

Vytautas Gruslys* Shoham Letzter ${ }^{\dagger}$

September 19, 2018

Abstract

Let H be an induced subgraph of the hypercube Q_{k}, for some k. We show that for some $c=c(H)$, the vertices of Q_{n} can be partitioned into induced copies of H and a remainder of at most $O\left(n^{c}\right)$ vertices. We also show that the error term cannot be replaced by anything smaller than $\log n$.

1 introduction

Given graphs G and H, an H-packing of G is a collection of vertex-disjoint copies of H in G. A perfect H-packing (also known as an H-factor) is an H-packing that covers all the vertices of the ground graph G (so, in order for G to have a perfect H-packing, $|H|$ must divide $|G|$). A natural question asks for conditions on G that imply the existence of an H-factor. For example, a well researched question asks for the smallest minimum degree that implies the existence of an H-factor. If H is an edge (and more generally if H is a path), then, by Dirac's theorem [4], if G has n vertices and minimum degree at least $n / 2$ (and $|H|$ divides $|G|$), then G has a perfect H-packing. Corrádi and Hajnal [3] showed that $\delta(G) \geq 2 n / 3$ guarantees the existence of a perfect K_{3}-packing and Hajnal and Szemerédi [8] extended this result by showing that if $\delta(G) \geq(1-1 / r) n$ then G has a perfect K_{r}-packing. We remark that these conditions on $\delta(G)$ are best possible.

After a series of papers by Alon and Yuster [1, 2] and by Komlós, Sárközy and Szemerédi [9], Kuhn and Osthus [10] found the smallest minimum degree condition that guarantees the existence of an H-factor, up to an additive constant error term, and for all H.

We consider a different problem, where instead of looking for H-packings in graphs of large minimum degree, we focus on H-packings of the hypercube Q_{n}. There are two obvious conditions for the

[^0]existence of a perfect H-packing in Q_{n} : H has to be a subgraph of Q_{n}; and the order of H has to be a power of 2 . Gruslys [5] showed that these two conditions are sufficient for large n, thus confirming a conjecture of Offner [12]. In fact, he showed that if H is an induced subgraph of Q_{k} for some k and $|H|$ is a power of 2 , then there is a perfect packing of G into induced copies of H.

A similar problem concerns packings of the Boolean lattice $2^{[n]}$ into induced copies of a poset P. Note that here, if we drop the induced condition, we reduce to the case where P is a chain, thus in the case of posets we only consider induced copies of P. Again, there are two obvious necessary conditions: P must have a minimum and maximum elements; and the order of P has to be a power of 2 . Lonc [11] conjectured that for large enough n, these conditions are also sufficient, and verified the conjecture for the case where P is a chain. This conjecture was recently solved by Gruslys, Leader and Tomon [7].

It is natural to ask what can be said when the divisibility condition does not hold. Gruslys, Leader and Tomon [7] conjectured that if P is a poset with a maximum and a minimum, then there is a P-packing of Q_{n} that covers all but at most c elements, where $c=c(P)$ is a constant that depends on P. This conjecture was recently proved by Tomon [14].

In light of this result, it is natural to ask if a similar phenomenon holds in the case of H-packings of the hypercube Q_{n}. Namely, if H is a subgraph of Q_{k} for some k, how large an H-packing of Q_{n} can we find? As our first main result, we show that if H is a subgraph of Q_{k} then there is an H-packing of Q_{n} that covers all but at most $O\left(n^{c}\right)$ vertices, where $c=c(H)$.

Theorem 1. Let H be an induced subgraph of Q_{k} for some k. Then there exists a packing of G by induced copies of H, such that at most $O\left(n^{c}\right)$ vertices remain uncovered, where $c=c(H)$.

It is natural to wonder if the number of uncovered vertices can be reduced to be at most $c(H)$. Perhaps surprisingly, it turns out that this is not always the case. As our second main result, we show that a $\left(P_{3}\right)^{3}$-packing of Q_{n} misses at least $\log n$ vertices (P_{3} is the path on three vertices).

Theorem 2. In every $\left(P_{3}\right)^{3}$-packing of Q_{n}, at least $\log n$ points are uncovered.

1.1 Notation

We denote the path on l vertices by P_{l}. When we say that G can be partitioned into copies of H, we mean that there exists a perfect H-packing of G. For graphs G_{1} and G_{2}, we denote by $G_{1} \times G_{2}$ the Cartesian product of G_{1} and G_{2}, which has vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)$ is an edge iff $u_{1}=v_{1}$ and $u_{2} v_{2} \in E\left(G_{2}\right)$ or $u_{2}=v_{2}$ and $u_{1} v_{1} \in E\left(G_{1}\right)$. The n-th power G^{n} of G is defined to be $G \times \ldots \times G$ (where G appears n times).

1.2 Structure of the paper

This paper consists of three parts. In the first part (see Section 3) we prove that if H is an induced subgraph of Q_{k} for some k, then for sufficiently large n, there is a perfect packing of $\left(P_{2|H|}\right)^{n}$ into induced copies of H (see Theorem 3). In the second part (Section 4), we prove that there is a packing of Q_{n} by induced copies of $\left(P_{l}\right)^{t}$ which leaves at most $O\left(n^{t-1}\right)$ vertices uncovered. These two parts easily combine to form a proof of Theorem 1. Finally, in the third part (Section 5) we prove Theorem 2, thus showing that the error term $O\left(n^{t-1}\right)$ cannot be replaced by something smaller than $\log n$.

Before proceeding to the proofs, we give an overview of them in Section 2. We finish the paper with concluding remarks and open problems in Section 6.

2 Overview of the proofs

In this section we give an overview of the proofs in this paper.

2.1 Partitioning $\left(P_{2 l}\right)^{n}$

Our first aim in this paper is to prove Theorem 3.
Theorem 3. Let H be an induced subgraph of Q_{k} for some k. Then $\left(P_{2|H|}\right)^{n}$ can be partitioned into induced copies of H, whenever n is sufficiently large.

Our proof follows the footsteps of Gruslys [5] who proved that if H is an induced subgraph of a hypercube whose order is a power of 2 , then for large n there is a perfect packing of Q_{n} into induced copies of H.

An important tool in the proof of Theorem 3 is a result of Gruslys, Leader and Tomon [7] (introduced by Gruslys, Leader and Tan [6] for tiling of \mathbb{Z}^{n}) which gives a a general method for proving the existence of perfect packings of a product space A^{n} into copies of a subset S of A. Given a subset S of A, a collection of copies of S in A^{n} (which may contain a certain copy several times) is called an l-partition $\left((r \bmod l)\right.$-partition) if every vertex in A^{n} is covered by exactly $l((r \bmod l))$ copies of S. We note that a 1-partition is simply a perfect packing. Trivially, the existence of a perfect packing implies the existence of an l-partition and a $(1 \bmod l)$-partition. Remarkably, the aforementioned result of Gruslys, Leader and Tomon shows that, roughly speaking, the opposite is true. Namely, they showed that if there exists l for which A^{m} admits an l-partition and a $(1 \bmod l)$-partition into copies of S, then, for large n, A_{n} admits a perfect packing into copies of S. The precise statement of this result is given in Theorem 5.

The existence of an $|H|$-partition of $\left(P_{2|H|}\right)^{n}$ into induced copies of H is a simple observation (see Observation 6). The existence of a $(1 \bmod |H|)$-partition of $\left(P_{2|H|}\right)^{n}$ into copies of H is more difficult to prove, but it is quite straightforward to adapt the methods of Gruslys [5] to work in our setting. These two facts, together the aforementioned result [7], form the proof of Theorem 3.

2.2 Almost partitioning Q_{n} into powers of a path

Our second aim is to prove Theorem 4.
Theorem 4. For any l and t, there is a packing of Q_{n} into induced copies of $\left(P_{l}\right)^{t}$, for which at most $O\left(n^{t-1}\right)$ vertices are uncovered.

The fact that Q_{n} is Hamiltonian shows that there is a P_{l}-packing of Q_{n} missing fewer than l vertices. In fact, if l divides $2^{n}-1$, then exactly one vertex remains uncovered. This observation allows us to prove the existence of a $\left(P_{l}\right)^{t}$-packing of Q_{n} with at most $O\left(n^{t-1}\right)$ uncovered vertices, whenever l is odd (see Observation 8). It is then not hard to conclude that the same holds for all l (see Corollary 9) using the observation that $\left(P_{2 l}\right)^{t}$ is a subgraph of $\left(P_{l}\right)^{t} \times Q_{t}$.

Note that this does not imply Theorem 4, since we require that the copies of $\left(P_{l}\right)^{t}$ are induced. We notice that if H is a graph on l vertices with a Hamilton path, then $H \times P_{l-1}$ has a perfect packing into induced P_{l} 's (see Observation 11). This fact, with a little more work, allows us to use the packing of Q_{n} into (not necessarily induced) copies of $\left(P_{l^{\prime}}\right)^{t}$ to obtain a packing into induced copies of $\left(P_{l}\right)^{t}$ (where l^{\prime} is suitably chosen).

We note that Theorem 1 follows from Theorems 3 and 4.

Proof of Theorem 1. Let H be a subgraph of Q_{k}. Then by Theorem 3, there exists m for which there is a perfect packing of $\left(P_{2|H|}\right)^{m}$ into induced copies of H. By Theorem 4, there is a packing of Q_{n} into induced copies of $\left(P_{2|H|}\right)^{m}$, such that at most $O\left(n^{m-1}\right)$ vertices are uncovered. Hence there exists a packing of Q_{n} into induced copies of H with at most $O\left(n^{m-1}\right)$ uncovered vertices (note that m depends only on H).

2.3 Lower bound on the number of uncovered vertices

Our final aim is to prove Theorem 2.
Theorem 2. In every $\left(P_{3}\right)^{3}$-packing of Q_{n}, at least $\log n$ points are uncovered.
We use the properties of Q_{n} and of $\left(P_{3}\right)^{3}$ to conclude that the size of the intersection of any co-dimension-2 subcube of Q_{n} with any copy of $\left(P_{3}\right)^{3}$ is divisible by 3 . In fact, we deduce this from a similar statement for $\left(P_{3}\right)^{t}$ (see Proposition 13). We conclude that the set of uncovered vertices in a $\left(P_{3}\right)^{3}$-packing of Q_{n} forms a separating family for [n], implying that it has size at least $\log n$.

3 Perfect H-packings of $\left(P_{2|H|}\right)^{n}$

Our main aim in this section is to prove Theorem 3.
Theorem 3. Let H be an induced subgraph of Q_{k} for some k. Then $\left(P_{2|H|}\right)^{n}$ can be partitioned into induced copies of H, whenever n is sufficiently large.

Recall that a result of Gruslys, Leader and Tomon [7] implies that it suffices to find l - and $(1 \bmod l)$ partitions into copies of H. Before stating their result precisely, we introduce some notation.

Let A be a set. We identify $A^{n} \times A^{m}$ with A^{n+m} (whenever m and n are positive integers). Thus, for any $x \in A^{n}$ and $y \in A^{m}$, we treat (x, y) as an element of A^{n+m}. Given a set X in A^{n}, and a permutation $\pi:[n] \rightarrow[n]$, we define $\pi(X)$ to be the image of X under the permutation of the coordinates according to π. In other words, $\pi(X)=\left\{\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right):\left(x_{1}, \ldots, x_{n}\right) \in X\right\}$. Finally, given sets X in A^{m} and Y in A^{n} where $m \leq n$, we say that Y is a copy of X if $Y=\pi(X \times\{y\})$ for some $y \in A^{n-m}$.

Theorem 5 (Gruslys, Leader, Tomon [7]). Let \mathcal{F} be a family of subsets of a finite set A. If there exists l for which \mathcal{F} contains an l-partition and $a(1 \bmod l)$-partition of S, then there exists n for which S^{n} admits a partition into copies of elements in \mathcal{F}.

The task of finding an l-partition is quite simple. In fact, it follows directly from the analogous result in [5] and the fact that $\left(P_{2 l}\right)^{n}$ can be partitioned into copies of Q_{n}. For the sake of completeness, we include the proof here.

Observation 6. Let H be an induced subgraph of Q_{k} for some k. Then there is an $|H|$-partition of $\left(P_{2|H|}\right)^{n}$ into induced copies of H, for any $n \geq k$.

Proof. Denote $l=|H|$. Note that, since the path $P_{2 l}$ can be partitioned into l edges, its n-th power $\left(P_{2 l}\right)^{n}$ can be partitioned into l^{n} induced copies of Q_{n}. Thus, it suffices to exhibit an l-partition of Q_{n} into induced copies of H. Let X be the vertex set of some induced copy of H in Q_{n}. We consider the set of all shifts of X. For every $u \in Q_{n}$, we note that the set $X+u=\{x+u: x \in X\}$ (addition is done coordinate-wise and modulo 2) is an induced copy of H in Q_{n}. Consider the collection $\left\{X+u: u \in Q_{n}\right\}$. By symmetry, every vertex in Q_{n} is covered by the same number of sets. Furthermore, there are 2^{n} such sets, each covers l points, so the number of times each vertex is covered is $\frac{2^{n} l}{2^{n}}=l$. So, we found an l-partition of Q_{n} into induced copies of H.

The next task, of finding a $(1 \bmod l)$-partition of $\left(P_{2 l}\right)^{n}$ into copies of H, is significantly harder. Unlike Observation 6, we cannot directly apply the analogous result of Gruslys [5]. Instead, we adapt his method to our setting.

Theorem 7. Let H be a non-empty induced subgraph of Q_{k} for some k. Then there is a $(1 \bmod l)$ partition of $\left(P_{2 l}\right)^{k}$ into induced copies of H.

We note that in Theorem 3, unlike Observation 6, there is no restriction on the order of H.
Before proceeding to the proof of Theorem 7, we show how to prove Theorem 3 using Observation 6 and theorem 7 .

Proof of Theorem 3. Denote $l=|H|$. Note that it suffices to show that for some n the graph $\left(P_{2 l}\right)^{n}$ can be partitioned into induced copies of H. Recall that H is an induced subgraph of Q_{k}, for some k. By Theorem 7, there is a $(1 \bmod l)$-partition of $A=\left(P_{2 l}\right)^{k}$ into induced copies of H. By Observation 6 there is an l-partition of A into induced copies of H. Hence, by Theorem 5 there exists n for which there is a perfect H-packing of $A^{n}=\left(P_{2 l}\right)^{k n}$, as required.

We now proceed to the proof of Theorem 7 .

Proof of Theorem 7. We shall prove the following slightly stronger claim: if H is a non-empty induced subgraph of Q_{k}, then there is a $(1 \bmod r)$ partition of $\left(P_{2 l}\right)^{k}$ into isometric copies of H.

Let us first explain briefly what we mean by an isometric copy of H in a graph G. We consider the graphs Q_{k} and G together with the metric coming from the graph distance. An isometric copy of H is the image of H under an isometry $f: Q_{k} \rightarrow G$ (here we fix a particular embedding of H in $\left.Q_{k}\right)$.

Define H_{-}and H_{+}as follows.

$$
\begin{aligned}
H_{-} & =\left\{u \in Q_{k-1}:(u, 0) \in H\right\} \\
H_{+} & =\left\{u \in Q_{k-1}:(u, 1) \in H\right\} .
\end{aligned}
$$

We prove the claim by induction on k. It is trivial for $k=1$ (then H is either a single vertex or an edge), so suppose that $k \geq 2$ and the claim holds for $k-1$. Note that we may assume that H_{-}and H_{+}are both non-empty. We shall show that $\left(P_{2 l}\right)^{k}$ has a $(1 \bmod l)$-partition into isometric copies of H.

We denote the vertices of $P_{2 l}$ by $\{0,1, \ldots, 2 l-1\}$. Let $p \in[2 l-2]$. By induction, there is a collection of isometric copies of H_{-}in $\left(P_{2 l}\right)^{k-1} \times\{p\}$ such that each point is covered $(1 \bmod l)$ times. Let A be the vertex set of such a copy of H_{-}. Then there is an isometric copy of H in $\left(P_{2 l}\right)^{k-1} \times\{p, p+1\}$ whose intersection with $\left(P_{2 l}\right)^{k-1} \times\{p\}$ is A. It follows that there exists a collection \mathcal{H} of isometric copies of H in $\left(P_{2 l}\right)^{k-1} \times\{p, p+1\}$ for which every point in $\left(P_{2 l}\right)^{k-1} \times\{p\}$ is covered $(1 \bmod l)$ times. Let \mathcal{H}^{\prime} be the collection of isometric copies of H in $\left(P_{2 l}\right)^{k-1} \times\{p-1, p\}$, which is the image
of \mathcal{H} under the map from $\left(P_{2 l}\right)^{k-1} \times\{p, p+1\}$ to $\left(P_{2 l}\right)^{k-1} \times\{p-1, p\}$ obtained by changed the last coordinate from $p+1$ to $p-1$.

Denote by \mathcal{H}_{p} the collection $(l-1) \mathcal{H}+\mathcal{H}^{\prime}$ (i.e. each copy of H in \mathcal{H} is taken $l-1$ times). \mathcal{H} is a collection of copies of H in $\left(P_{2 l}\right)^{k-1} \times\{p-1, p, p+1\}$ which we view as a collection of copies of H in $\left(P_{2 l}\right)^{k}$. For every $x \in\left(P_{2 l}\right)^{k}$, the number of times x is covered is

$$
w_{p}(x)= \begin{cases}(1 \bmod l) & x \in\left(P_{2 l}\right)^{k-1} \times\{p+1\} \\ (-1 \bmod l) & x \in\left(P_{2 l}\right)^{k-1} \times\{p-1\} \\ (0 \bmod l) & \text { otherwise }\end{cases}
$$

Let \mathcal{G} be the collection of isometric copies of H obtained by taking i copies of $\mathcal{H}_{2 i}$ and $\mathcal{H}_{2 i-1}$ for each $i \in[l-1]$. We show that every vertex in $\left(P_{2 l}\right)^{n}$ is covered $(1 \bmod l)$ time by \mathcal{G}. Let $x \in\left(P_{2 l}\right)^{k-1}$. Then $(x, 0)$ and $(x, 1)$ are covered $(1 \bmod l)$ times (they get non zero weight only in \mathcal{H}_{1} and \mathcal{H}_{2} respectively). The vertices $(x, 2 i)$ and $(x, 2 i+1)$ (where $i \in[l-2])$ are covered $(-i \bmod l)$ times by $\mathcal{H}_{2 i-1}$ and $H_{2 i}$ respectively, and $(i+1 \bmod l)$ times by $H_{2 i+1}$ and $H_{2 i+2}$, so in total they are covered $(1 \bmod l)$ times. Finally, $(x, 2 l-2)$ and $(x, 2 l-1)$ are covered $l-1$ times by $H_{2 l-3}$ and $H_{2 l-2}$ respectively, so the number of times they are covered is $(-(l-1) \bmod l)=(1 \bmod l)$.

4 Almost partitioning the hypercube into powers of a path

Our main aim in this section is to prove Theorem 4.
Theorem 4. For any l and t, there is a packing of Q_{n} into induced copies of $\left(P_{l}\right)^{t}$, for which at most $O\left(n^{t-1}\right)$ vertices are uncovered.

Before proceeding to the proof, we make several observations and mention a result that we shall use. The following observation makes use of the fact that Q_{n} is Hamiltonian to prove the special case of Theorem 4 where l is odd and the requirement that the copies are induced is dropped.

Observation 8. Let l be odd, and let t be a positive integer. Then there exists a $\left(P_{l}\right)^{t}$-packing of Q_{n}, that covers all but at most $O\left(n^{t-1}\right)$ vertices.

Proof. It is well known that Q_{m} is Hamiltonian. Therefore, if l divides $2^{m}-1$, then Q_{m} may be partitioned into copies of P_{l} and a single vertex. Note that by the Fermat-Euler theorem, there exists m such that l divides $2^{m}-1$ (take $m=\phi(l)$, where $\phi(n)$ is Euler's totient function, counting the number of integers $p<n$ for which p and n are coprime). It follows that all but at most $2^{m(t-1)} \cdot\left|[r]^{<t}\right|$ vertices of $\left(Q_{m}\right)^{r}$ can be partitioned into copies of $\left(P_{l}\right)^{t}$. Given any n, write $n=r m+a$ where $a<r$. Since we may view Q_{n} as $\left(Q_{m}\right)^{r} \times Q_{a}$, there is a collection of pairwise
disjoint induced copies of $\left(P_{l}\right)^{t}$ that covers all but at most $2^{a+m(t-1)} \cdot\left|[r]^{<t}\right| \leq 2^{m} \cdot n^{t-1}=O\left(n^{t-1}\right)$ vertices.

The following corollary allows us to extend Observation 8 to all l.
Corollary 9. Let l and t be integers. Then all but $O\left(n^{t-1}\right)$ vertices of Q_{n} may be partitioned into copies of $\left(P_{l}\right)^{t}$.

Proof. We prove the statement by induction on i, the maximum power of 2 that divides l. If $i=0$, l is odd, and the statement follows from Observation 8. Now suppose that $i \geq 1$. Write $l=2 k$ and $Q_{n}=Q_{n-t} \times Q_{t}$. By induction, there is a collection of pairwise disjoint copies of $\left(P_{k}\right)^{t}$ that covers all but at most $O\left(n^{t-1}\right)$ vertices in Q_{n-t}. Note that the product $P_{k} \times Q_{1}$ is Hamiltonian, i.e. it spans a $P_{2 k}=P_{l}$. We conclude that Q_{n} may be covered by pairwise disjoint copies of $\left(P_{i}\right)^{t}$ and a remainder of at most $O\left(n^{t-1} \cdot 2^{t}\right)=O\left(n^{t-1}\right)$ vertices.

Let \mathcal{H}_{l} be the collection of graphs on l vertices which have a Hamilton path, and let $\left(\mathcal{H}_{l}\right)^{t}=$ $\left\{H_{1} \times \ldots \times H_{t}: H_{i} \in \mathcal{H}\right\}$. We note that the proofs of Observation 8 and Corollary 9 actually give the following slightly stronger statement.

Corollary 10. Let l and t be integers. Then there is a collection of pairwise disjoint copies of graphs in $\left(\mathcal{H}_{l}\right)^{t}$ that covers all but at most $O\left(n^{t-1}\right)$ vertices of Q_{n}.

In order to obtain an almost-partition into induced copies of $\left(P_{l}\right)^{t}$, we need two more ingredients. One is the following observation.

Observation 11. Let $H \in H_{l}$. Then $H \times P_{l-1}$ may be partitioned into induced copies of P_{l}.

Proof. Denote the vertices of H by $[l]$ and suppose that $(1, \ldots, l)$ is a path in H. Similarly, we denote the vertices of P_{l-1} by $[l-1]$. Let Q_{i} be the path $((i, 1), \ldots,(i, l-i),(i+1, l-i), \ldots,(i+$ $1, l-1)$), for $i \in[l-1]$ (see Figure 1). It is easy to see that each Q_{i} is an induced P_{l}.

The second ingredient is a result of Ramras [13], which states that if $n+1$ is a power of 2 , then Q_{n} may be partitioned into antipodal paths. In particular, we have the following corollary.

Corollary 12 (Ramras [13]). If $n+1$ is a power of 2 , then Q_{n} may be partitioned into induced copies of P_{n+1}.

We are now ready to prove Theorem 4.

Figure 1: Illustration of the paths in Observation 11 (vertical lines denote copies of H)

Proof of Theorem 4. Let m be minimal such that $2^{m} \geq l^{2}$. Suppose that $2^{m}=a(\bmod l)$ where $0 \leq a<l$ and write $2^{m}=(l-1-a)(l-1)+b$. Note that $(l-1-a)(l-1)<l^{2}$ so $b>0$, and by choice of $m, b \leq 2 l^{2}$. Furthermore, $b=-1(\bmod l)$. The path $P_{2^{m}}$ can be partitioned into $l-1-a$ copies of P_{l-1} and one copy of P_{b}. It follows from Corollary 12 that $Q_{2^{m}-1}$ may be partitioned into induced copies of P_{l-1} and P_{b}, implying that $\left(Q_{2^{m}-1}\right)^{2 t}$ may be partitioned into induced copies of $\left(P_{l-1}\right)^{t}$ and $\left(P_{b}\right)^{t}$.

Write $Q_{n}=Q_{n-t\left(2^{m}-1\right)} \times\left(Q_{2^{m}-1}\right)^{2 t}$. Recall that by Corollary $9, Q_{n-t\left(2^{m}-1\right)}$ may be partitioned into copies of graphs in $\left(\mathcal{H}_{b+1}\right)^{t}$ and a remainder of at most $O\left(n^{t-1}\right)$ vertices.

Combining these two facts, we conclude that Q_{n} can be partitioned into copies of graphs isomorphic to $\prod_{i \in[t]}\left(H_{i} \times P_{x}\right)$ (where $H_{i} \in \mathcal{H}_{b+1}$ and $x \in\{l-1, b\}$), and a remainder of at most $O\left(n^{t-1} \cdot 2^{t\left(2^{m}-1\right)}\right)=O\left(n^{t-1}\right)$. We claim that if $H \in \mathcal{H}_{b+1}$ and $x \in\{l-1, b\}$, then $H \times P_{x}$ may be partitioned into induced copies of P_{l}. Indeed, if $x=b$ then by Observation 11, $H \times P_{x}$ may be partitioned into induced P_{b+1} 's, which may in turn be partitioned into induced P_{l} 's (since, by choice of b, l divides $b+1$). A similar argument holds if $x=l-1$: first note that H may be partitioned into graphs in \mathcal{H}_{l} (since l divides $b+1$), and the product of these graphs with P_{l-1} may be partitioned into induced copies of P_{l}, by Observation 11. It follows that Q_{n} may be partitioned into induced copies of $\left(P_{l}\right)^{t}$ and a remainder of order at most $O\left(n^{t-1}\right)$.

5 A lower bound on the number of uncovered vertices

In this section we prove Theorem 2.
Theorem 2. In every $\left(P_{3}\right)^{3}$-packing of Q_{n}, at least $\log n$ points are uncovered.
We start by proving the following propositions that characterises the intersection of a copy of $\left(P_{3}\right)^{t}$ in Q_{n} with a subcube of co-dimension 1 .

Proposition 13. Let H be a copy of $\left(P_{3}\right)^{k}$ in Q_{n}. Then the intersection of H with any subcube S of co-dimension 1 is a copy of one of the following graphs: $\emptyset,\left(P_{3}\right)^{k-1}, P_{2} \times\left(P_{3}\right)^{k-1}$ or $\left(P_{3}\right)^{k}$.

Proof. Let S be the vertex set of a subcube of Q_{n} of co-dimension 1. Write $H=H^{\prime} \times P_{3}$, where every H^{\prime} is a copy of $\left(P_{3}\right)^{k-1}$, and denote $H_{i}=H^{\prime} \times\{i\}$ (where $V\left(P_{3}\right)=\{1,2,3\}$. We prove the statement by induction on k.

Let $k=1$, then each H_{i} is a single vertex. Without loss of generality, H_{2} is in S (otherwise consider the complement of S). But then at least one of H_{1} and H_{3} also are in S (because every vertex in S has exactly one neighbour outside of S). So, without loss of generality, H_{1} is in S. It follows that $V(H) \cap S$ is either H or $H_{1} \times H_{2}$, as claimed.

Now suppose that $k \geq 2$. Then by induction, and without loss of generality, the intersection of S with H_{1} is either H_{1} or a copy of $P_{2} \times\left(P_{3}\right)^{k-1}$.

Suppose that the first case holds, i.e. the intersection of S with H_{1} is H_{1}. Then, if any vertex in H_{2} is in S, all vertices of H_{1} are in S (since every vertex in S has exactly one neighbour outside of S). In other words, H_{2} is either contained in S or it is contained in \bar{S}, the complement of S. If the former holds, then, similarly, H_{2} is contained in either S or \bar{S}, and if the latter holds then H_{2} is contained in \bar{S} (since every vertex in H_{2} is in \bar{S} and has a neighbour in $S \cap H_{1}$). It follows that the intersection of S with H in this case is $H_{1}, H_{1} \times H_{2}$, or H, as required.

Now suppose that the second case holds, i.e. the intersection of H_{1} with S is a copy of $P_{2} \times\left(P_{3}\right)^{k-1}$. Then we may write $H_{1}=H^{\prime \prime} \times P_{3}$ where $H^{\prime \prime}$ is a copy of $\left(P_{3}\right)^{k-2}$, and $H^{\prime \prime} \times\{1,2\}$ (where $V\left(P_{3}\right)=$ $\{1,2,3\})$ is the intersection of H_{1} with S. Denote $H_{i, j}=H^{\prime \prime} \times\{i\} \times\{j\}$. So $H_{1,1}$ and $H_{1,2}$ are in S and $H_{1,3}$ is in \bar{S}. It follows that $H_{2,2}$ is in S (otherwise some vertex in $H_{1,2}$ would have two neighbours in \bar{S}); $H_{2,1}$ is in S (otherwise a vertex of $\bar{S} \cap H_{2,1}$ would have two neighbours in S); and $H_{2,3}$ is in \bar{S}. Similarly, $H_{3,1}$ and $H_{3,2}$ are contained in S and $H_{3,3}$ is in \bar{S}. It follows that the intersection of H with S is a copy of $P_{2} \times\left(P_{3}\right)^{k-1}$.

We are now ready for the proof of Theorem 2

Proof of Theorem 2. Let \mathcal{H} be a collection of pairwise disjoint copies of $\left(P_{3}\right)^{3}$ in Q_{n} and let S be a subcube of co-dimension 2 in Q_{n}, and let S^{\prime} be a subcube of co-dimension 1 in Q_{n} that contains S. Let $H \in \mathcal{H}$. Then, by Proposition 13, the intersection of H with S^{\prime} is either the empty set or it is the disjoint union of up to three copies of $\left(P_{3}\right)^{2}$. It follows from Proposition 13 that the intersection of H with S is the disjoint union of copies of P_{3}. In particular, since 3 does not divide the order of S, at least one vertex in S is not covered by \mathcal{H}.

Let \mathcal{P} be the collection of subsets of $[n]$ that correspond to vertices of Q_{n} that are not covered by \mathcal{H} (where we consider the usual map between Q_{n} and $\mathcal{P}([n])$ that sends a vertex u in Q_{n} to the set of
elements in $[n]$ whose coordinates in u is 1). We claim that the collection \mathcal{P} is a separating family for $[n]$, namely, for every distinct elements i and j in $[n]$, there is a set $A \in \mathcal{P}$ that contains i but not j. Indeed, given distinct i and j in $[n]$, let S be the subcube of co-dimension 2 of vertices whose i-th coordinate is 1 and whose j-th coordinate is 0 . Then S contains a vertex which is uncovered by \mathcal{H}. This vertex corresponds to a set in \mathcal{P} that contains i but not j. It is a well known fact that a family that separates $[n]$ has size at least $\log n$. It follows \mathcal{P} has size at least $\log n$, implying that at least $\log n$ vertices of Q_{n} are not covered by \mathcal{H}.

We remark that by considering $\left(P_{3}\right)^{2 k+1}$ packings of Q_{n}, the number of missing vertices can be shown to be at least $(1+o(1)) k \log n$ (since the subsets corresponding to the missing vertices form a separating system for $\left.[n]^{(k)}\right)$.

6 Concluding remarks

We showed that if H is an induced subgraph of Q_{k} then there exists a packing of Q_{n} into induced copies of H, which misses at most $O\left(n^{c}\right)$, for $c=c(H)$. On the other hand, we showed that the error term cannot be replaced by anything smaller than $\log n$ (or, as we remarked in Section 5 by $c \log n$ for any c). It would be very interesting to close the gap between the two bounds.

We believe that the upper bound, of $O\left(n^{c}\right)$ is closer to the truth, i.e., we believe that there exist graphs H for which at least $\Omega\left(n^{c}\right)$ vertices remain uncovered in any H-packing of Q_{n}. More specifically, it seems plausible to believe that every $\left(P_{3}\right)^{k}$ packing of Q_{n} leaves at least $\Omega\left(n^{k-1}\right)$ vertices uncovered. We thus state the following question.

Question 14. Is there $a\left(P_{3}\right)^{k}$ packing of Q_{n} for which the number of uncovered points is at most $o\left(n^{k-1}\right)$?

In this paper we are interested in H-packings of Q_{n}, which can be viewed as $\left(P_{2}\right)^{n}$. It would be interesting to consider the more general setting of H-packings of G^{n}. We mention a conjecture of Gruslys [5].

Conjecture 15 (Gruslys [5]). Let G be a finite vertex-transitive graph, and let H be an induced subgraph of G. Suppose further that $|H|$ divides $|G|$. Then for some n there is a perfect H-packing of G^{n}.

We note that the conjecture does not hold if we drop the vertex-transitivity (see Proposition 9 in [5]).

In Section 1, we mentioned a recent result of Tomon [14] who proved that if P is a poset with a minimum and a maximum, then the Boolean lattice $2^{[n]}$ can be partitioned into copies of P and a
remainder of at most c elements, where $c=c(P)$. It would be interesting to generalise his result to all posets P, dropping the requirement of the existence of a minimum and a maximum. This would resolve a conjecture of Gruslys, Leader and Tomon [7].

Conjecture 16 (Gruslys [7]). Let P be a poset. Then the Boolean lattice $2^{[n]}$ can be partitioned into copies of P and a remainder of at most $c=c(P)$ elements.

Finally, we mention a question about Hamilton paths of Q_{n}. Recall that in order to prove that Q_{n} can be almost partitioned into induced copies of $\left(P_{l}\right)^{t}$, we first proved this statement without requiring the copies to be induced. That followed easily from the fact that Q_{n} is Hamiltonian. We then used such a partition to obtain a partition of Q_{n} into induced copies of $\left(P_{l}\right)^{t}$. A more direct approach could be to find a Hamilton path P in Q_{n} for which every l consecutive vertices induced a P_{l}. We were unable to determine if such a Hamilton path exists. We thus conclude the paper with the following question.

Question 17. Let l be integer. Is it true that for sufficiently large n, there is a Hamilton path Q_{n} for which every l consecutive vertices induce a P_{l} ?

References

[1] N. Alon and R. Yuster, Almost h-factors in dense graphs, Graphs and Combinatorics 8 (1992), no. 2, 95-102.
[2] _, H-factors in dense graphs, J. Combin. Ser. B 66 (1996), no. 2, 269-282.
[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, cta Math. Acad. Sci. Hungar. 14 (1963), 423-439.
[4] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69-81.
[5] V. Gruslys, Decomposing the vertex set of a hypercube into isomorphic subgraphs, preprint, arXiv:1611.02021.
[6] V. Gruslys, I. Leader, and T. S. Tan, Tiling with arbitrary tiles, Proc. Lond. Math. Soc. 112 (2016), no. 6, 1019-1039.
[7] V. Gruslys, I. Leader, and I. Tomon, Partitioning the boolean lattice into copies of a poset, preprint, arXiv:1609.02520.
[8] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, Combinatorial theory and its applications, II (Proc. Colloq., Balatonfu red, 1969),, North Holland, Amsterdam.
[9] Komlós, J. and Sárközy, G. and Szemerédi, E., Proof of the alonyuster conjecture, Discr. Math. 235 (2001), no. 1, 255-269.
[10] D. Kühn and D Osthus, The minimum degree threshold for perfect graph packings, Combinatorica 29 (2009), no. 1, 65-107.
[11] Z. Lonc, Proof of a conjecture on partitions of a boolean lattice, Order 8 (1991), no. 1, 17-27.
[12] D. Offner, Packing the hypercube, Discuss. Math. Graph Theory 34 (2014), no. 1, 85-93.
[13] M. Ramras, Symmetric vertex partitions of hypercubes by isometric trees, J. Combin. Theory Ser. B 54 (1992), no. 2, 239 - 248.
[14] I. Tomon, Almost tiling of the Boolean lattice with copies of a poset, preprint, arXiv:1611.06842.

[^0]: *Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, CB3 0WB Cambridge, UK; e-mail: v.gruslys@dpmms.cam.ac.uk.
 ${ }^{\dagger}$ ETH Institute for Theoretical Studies, ETH Zurich, 8092 Zurich, Switzerland; e-mail: shoham.letzter@math.ethz.ch.

