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LARGE RAINBOW CLIQUES IN RANDOMLY
PERTURBED DENSE GRAPHS\ast 

ELAD AIGNER-HOREV\dagger , ORAN DANON\dagger , DAN HEFETZ\dagger , AND SHOHAM LETZTER\ddagger 

Abstract. For two graphs G and H, write G
rbw - \rightarrow H if G has the property that every proper

coloring of its edges yields a rainbow copy of H. We study the thresholds for such so-called anti-
Ramsey properties in randomly perturbed dense graphs, which are unions of the form G \cup \BbbG (n, p),
where G is an n-vertex graph with edge-density at least d, and d is a constant that does not depend
on n. Our results in this paper, combined with our results in a companion paper, determine the

threshold for the property G \cup \BbbG (n, p)
rbw - \rightarrow Ks for every s. In this paper, we show that for s \geq 9

the threshold is n - 1/m2(K\lceil s/2\rceil ); in fact, our 1-statement is a supersaturation result. This turns out
to (almost) be the threshold for s = 8 as well, but for every 4 \leq s \leq 7, the threshold is lower; see
our companion paper for more details. Also in this paper, we determine that the threshold for the

property G \cup \BbbG (n, p)
rbw - \rightarrow C2\ell  - 1 is n - 2 for every \ell \geq 2; in particular, the threshold does not depend

on the length of the cycle C2\ell  - 1. For even cycles, and in fact any fixed bipartite graph, no random

edges are needed at all; that is, G
rbw - \rightarrow H always holds, whenever G is as above and H is bipartite.
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1. Introduction. A random perturbation of a fixed n-vertex graph G, denoted
by G \cup \BbbG (n, p), is a distribution over the supergraphs of G. The elements of such a
distribution are generated via the addition of randomly sampled edges to G. These
random edges are taken from the binomial random graph with edge-probability p,
namely \BbbG (n, p). The fixed graph G being perturbed or augmented in this manner is
referred to as the seed of the perturbation (or augmentation) G \cup \BbbG (n, p).

The above model of randomly perturbed graphs was introduced by Bohman,
Frieze, and Martin [10], who allowed the seed G to range over the family of n-vertex
graphs with minimum degree at least \delta n, which we denote here by \scrG \delta ,n. In particular,
they discovered the phenomenon that for every \delta > 0, there exists a constant C(\delta ) > 0
such that G \cup \BbbG (n, p) asymptotically almost surely (henceforth a.a.s. for brevity)
admits a Hamilton cycle, whenever p := p(n) \geq C(\delta )/n and G \in \scrG \delta ,n. Note that the
value of p attained by their result is smaller by a logarithmic factor than that required
for the emergence of Hamilton cycles in \BbbG (n, p). That is, while G itself might not be
Hamiltonian, making it Hamiltonian requires far fewer random edges than the number
of random edges which typically form a Hamilton cycle by themselves. The notation
\scrG \delta ,n\cup \BbbG (n, p) then suggests itself to mean the collection of perturbations arising from
the members of \scrG \delta ,n for a prescribed \delta > 0.

Several strands of results regarding the properties of randomly perturbed (hy-
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2976 AIGNER-HOREV, DANON, HEFETZ, AND LETZTER

per)graphs can be found in the literature. One prominent such strand can be seen
as an extension of the results found in [10] pertaining to the Hamiltonicity of \scrG \delta ,n \cup 
\BbbG (n, p). Indeed, the emergence of various spanning configurations in randomly per-
turbed (hyper)graphs was studied, for example, in [6, 8, 12, 13, 17, 24, 34, 35, 38].

Another prominent line of research regarding random perturbations concerns
Ramsey properties of Gd,n \cup \BbbG (n, p), where here Gd,n stands for the family of n-
vertex graphs with edge-density at least d > 0, and d is a constant. This strand
stems from the work of Krivelevich, Sudakov, and Tetali [36]. This line of research is
heavily influenced by the now fairly mature body of results regarding the thresholds
of various Ramsey properties in random graphs.

The study of Ramsey properties in random graphs was initiated by \Luczak,
Ruci\'nski, and Voigt [37]. The so-called symmetric edge Ramsey problem for random
graphs was settled completely by R\"odl and Ruci\'nski in a series of papers [43, 44, 45]
that collectively established the so-called symmetric random Ramsey theorem. The
best-known consequence of this theorem is that for every integer r \geq 2 and every
graph H containing a cycle, there exist constants c := c(r,H) and C := C(r,H) such
that

(1) lim
n\rightarrow \infty 

\BbbP [\BbbG (n, p) \rightarrow (H)r] =

\Biggl\{ 
0 if p \leq cn - 1/m2(H),

1 if p \geq Cn - 1/m2(H).

Here, G\rightarrow (H)r is the classical arrow notation used in Ramsey theory to denote that
the graph G has the property that every r-edge-coloring of G admits a monochromatic
copy of H. Having the same configuration H sought in every color lends this type of
results the title of being symmetric. The parameter m2(H) is the so-called maximum
2-density of H given by

m2(H) := max

\biggl\{ 
e(F )  - 1

v(F )  - 2
: F \subseteq H, e(F ) \geq 2

\biggr\} 
.

The symmetric random Ramsey theorem determines the threshold for the property
\BbbG (n, p) \rightarrow (H)r for all H, i.e., also in the case that H does not contain a cycle;
see, e.g., [23, Theorem 1] for a complete and accurate formulation of this result. An
alternative short proof of the 1-statement appearing in (1) was recently provided by
Nenadov and Steger [41] utilizing the so-called container method [5, 47].

As noted above, Krivelevich, Sudakov, and Tetali [36] were the first to study
Ramsey properties of random perturbations. In particular, they proved that for every
real d > 0, integer t \geq 3, and graph G \in Gd,n, the perturbation G \cup \BbbG (n, p) a.a.s.
satisfies the property G \cup \BbbG (n, p) \rightarrow (K3,Kt), whenever p := p(n) = \omega (n - 2/(t - 1));
moreover, this bound on p is asymptotically best possible. Here, the notation G \rightarrow 
(H1, . . . ,Hr) is used to denote that G has the asymmetric Ramsey property asserting
that any r-edge-coloring of G admits a color i \in [r] such that Hi appears with all its
edges assigned the color i.

Recently, the aforementioned result of Krivelevich, Sudakov, and Tetali [36] has
been significantly extended by Das and Treglown [16] and also by Powierski [42].
In particular, there is now a significant body of results pertaining to the property
G \cup \BbbG (n, p) \rightarrow (Kr,Ks) for any pair of integers r, s \geq 3, whenever G \in Gd,n for
constant d > 0. Furtherin this direction, the work of Das, Morris, and Treglown [15]
extends the results of Kreuter [33] pertaining to vertex Ramsey properties of random
graphs into the perturbed model.
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Krivelevich, Sudakov, and Tetali [36] studied additional properties of Gd,n \cup 
\BbbG (n, p). In particular, they studied the so-called containment problem of small pre-
scribed graphs in such perturbations. The emergence of complete graphs of fixed size
in this model was studied earlier by Bohman, Frieze, Krivelevich, and Martin [9] who
determined thresholds for their emergence in this model.

Sudakov and Vondr\'ak [48] studied the non-2-colorability of randomly perturbed
dense hypergraphs. Furthermore, in the arithmetic-Ramsey setting, the first author
and Person [2] established an (asymptotically) optimal Schur-type theorem for ran-
domly perturbed dense sets of integers.

Problems concerning the emergence of non-monochromatic configurations in every
(sensible) edge-coloring of a given graph are collectively referred to as anti-Ramsey
problems. Here, one encounters a great diversity of variants; further details can be
found in the excellent survey [21] and the many references therein.

An edge-coloring \psi of a graph G is said to be b-bounded if no color is used on
more than b edges. It is said to be locally-b-bounded if every color appears at most b
times at every vertex. In particular, locally-1-bounded colorings are the traditional
proper colorings. A subgraph H \subseteq G is said to be rainbow with respect to an edge
colouring \psi if any two of its edges are assigned different colors under \psi , that is, if
| \psi (H)| := | \psi (E(H))| = e(H), where \psi (E(H)) := \{ \psi (e) : e \in E(H)\} . We write

G
rbw - \rightarrow H if G has the property that every proper coloring of its edges admits a

rainbow copy of H.
For a fairly complete overview regarding the emergence of small fixed rainbow

configurations in random graphs with respect to every b-bounded coloring, see the
work of Bohman, Frieze, Pikhurko, and Smyth [11] and references therein. The first
to consider the emergence of small fixed rainbow configurations in random graphs
with respect to proper colorings were R\"odl and Tuza [46]. In a response to a question
of Spencer (see [18, page 19]), R\"odl and Tuza studied the emergence of rainbow cycles
of fixed length.

The systematic study of the emergence of general rainbow fixed graphs in random
graphs with respect to proper colorings was initiated by Kohayakawa, Kostadinidis,
and Mota [29, 30]. They [29] proved that for every graph H, there exists a constant

C > 0 such that \BbbG (n, p)
rbw - \rightarrow H, whenever p \geq Cn - 1/m2(H). Nenadov, Person,

\v Skori\'c, and Steger [40] proved, among other things, that for H \sim = C\ell with \ell \geq 7,
and for H \sim = Kr with r \geq 19, n - 1/m2(H) is, in fact, the threshold for the property

\BbbG (n, p)
rbw - \rightarrow H. Barros, Cavalar, Mota, and Parczyk [7] extended the result of [40] for

cycles, proving that the threshold for the property \BbbG (n, p)
rbw - \rightarrow C\ell remains n - 1/m2(C\ell )

also when \ell \geq 5. Kohayakawa, Mota, Parczyk, and Schnitzer [31] extended the result

of [40] for complete graphs, proving that the threshold of \BbbG (n, p)
rbw - \rightarrow Kr remains

n - 1/m2(Kr) also when r \geq 5.

For C4 andK4 the situation is different. The threshold for the property \BbbG (n, p)
rbw - \rightarrow 

C4 is n - 3/4 = o
\bigl( 
n - 1/m2(C4)

\bigr) 
, as proved by Mota [39]. For the property \BbbG (n, p)

rbw - \rightarrow 
K4, the threshold is n - 7/15 = o

\bigl( 
n - 1/m2(K4)

\bigr) 
as proved by Kohayakawa, Mota, Par-

czyk, and Schnitzer [31]. More generally, Kohayakawa, Kostadinidis, and Mota [30]
proved that there are infinitely many graphs H for which the threshold for the prop-

erty \BbbG (n, p)
rbw - \rightarrow H is significantly smaller than n - 1/m2(H).

Note that every properly colored triangle is rainbow, so the threshold for \BbbG (n, p)
containing a rainbow triangle in every proper edge-coloring is simply the threshold
for containing a triangle, which is known to be 1/n.
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2978 AIGNER-HOREV, DANON, HEFETZ, AND LETZTER

1.1. Our results. For a real d > 0, we say that Gd,n \cup \BbbG (n, p) a.a.s. satisfies a
graph property \scrP if

lim
n\rightarrow \infty 

\BbbP [Gn \cup \BbbG (n, p) \in \scrP ] = 1

holds for every sequence \{ Gn\} n\in \BbbN satisfying Gn \in Gd,n for every n \in \BbbN . We say that
Gd,n \cup \BbbG (n, p) a.a.s. does not satisfy \scrP if

lim
n\rightarrow \infty 

\BbbP [Gn \cup \BbbG (n, p) \in \scrP ] = 0

holds for at least one sequence \{ Gn\} n\in \BbbN satisfying Gn \in Gd,n for every n \in \BbbN .
Throughout, we suppress this sequence-based terminology and write more concisely
that Gd,n \cup \BbbG (n, p) a.a.s. satisfies (or does not) a certain property. In particular,

given a fixed graph H, we write that a.a.s. Gd,n \cup \BbbG (n, p)
rbw - \rightarrow H to mean that

for every sequence \{ Gn\} n\in \BbbN , satisfying Gn \in Gd,n for every n \in \BbbN , the property

Gn \cup \BbbG (n, p)
rbw - \rightarrow H holds asymptotically almost surely. On the other hand, we write

that a.a.s. Gd,n \cup \BbbG (n, p)
rbwX - \rightarrow H to mean that there exists a sequence \{ Gn\} n\in \BbbN , sat-

isfying Gn \in Gd,n for every n \in \BbbN , for which a.a.s. Gn \cup \BbbG (n, p)
rbw - \rightarrow H does not

hold.
A sequence \widehat p := \widehat p(n) is said to form a threshold for the property \scrP in the per-

turbed model if Gd,n\cup \BbbG (n, p) a.a.s. satisfies \scrP whenever p = \omega (\widehat p), and if Gd,n\cup \BbbG (n, p)
a.a.s. does not satisfy \scrP whenever p = o(\widehat p).

For every real d > 0 and every pair of integers s, t \geq 1, every sufficiently large

graph G \in Gd,n satisfies G
rbw - \rightarrow Ks,t; in fact, every proper coloring of G supersaturates

G with \Omega (ns+t) rainbow copies of Ks,t. The latter is a direct consequence of (7) stated

below (see also [27]). Consequently, the property Gd,n \cup \BbbG (n, p)
rbw - \rightarrow Ks,t is trivial as

no random perturbation is needed for it to be satisfied. The emergence of rainbow
copies of non-bipartite prescribed graphs may then be of interest. For odd cycles
(including K3) we prove the following.

Proposition 1.1. For every integer \ell \geq 2, and every real 0 < d \leq 1/2, the

threshold for the property Gd,n \cup \BbbG (n, p)
rbw - \rightarrow C2\ell  - 1 is n - 2.

Unlike the aforementioned thresholds for the property \BbbG (n, p)
rbw - \rightarrow C\ell , established

in [7, 40], the threshold for the counterpart property in the perturbed model is inde-
pendent of the length of the cycle. The proof of Proposition 1.1 is fairly standard and
is thus postponed until section 6.

Our main result concerns the thresholds for the emergence of rainbow complete
graphs in properly colored randomly perturbed dense graphs. The aforementioned
results of [31, 40] can be easily used in order to establish a lower bound on such
thresholds. Indeed, by these results, if r \geq 5 and p = o

\bigl( 
n - 1/m2(Kr)

\bigr) 
, then a.a.s.

there exists a proper coloring of the edges of \BbbG (n, p) admitting no rainbow copy
of Kr. Consequently, given a real number 0 < d \leq 1/2 and an n-vertex bipartite
graph G of edge-density d, a.a.s. there exists a proper edge-coloring of G \cup \BbbG (n, p)
admitting no rainbow copy of K2r - 1, provided that p = o

\bigl( 
n - 1/m2(Kr)

\bigr) 
. We conclude

that Gd,n \cup \BbbG (n, p)
rbwX - \rightarrow K2r and Gd,n \cup \BbbG (n, p)

rbwX - \rightarrow K2r - 1 hold a.a.s. whenever p =
o
\bigl( 
n - 1/m2(Kr)

\bigr) 
.

For every r \geq 5, we prove a matching upper bound for the above construction.
Our main result reads as follows.
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Theorem 1.2. Let a real number 0 < d \leq 1/2 and an integer r \geq 5 be given.

Then, the threshold for the property Gd,n \cup \BbbG (n, p)
rbw - \rightarrow K2r is n - 1/m2(Kr). In fact,

Gd,n \cup \BbbG (n, p) a.a.s. has the property that every proper coloring of its edges gives rise

to \Omega 
\bigl( 
p2(

r
2)n2r

\bigr) 
rainbow copies of K2r, whenever p = \omega (n - 1/m2(Kr)).

The following result is an immediate consequence of Theorem 1.2 and the afore-
mentioned lower bound.

Corollary 1.3. Let a real number 0 < d \leq 1/2 and an integer r \geq 5 be given.

Then, the threshold for the property Gd,n \cup \BbbG (n, p)
rbw - \rightarrow K2r - 1 is n - 1/m2(Kr).

Theorem 1.2 and Corollary 1.3 establish that for sufficiently large complete graphs,

i.e., Ks with s \geq 9, the threshold for the property Gd,n\cup \BbbG (n, p)
rbw - \rightarrow Ks is governed by

a single parameter, namely, m2(K\lceil s/2\rceil ). This turns out to be true (almost, at least)
for s = 8 as well, but proving it requires new ideas. For 4 \leq s \leq 7, this is not the case;
here, for each value of s in this range, the threshold is different. Using completely
different methods, we prove the following results in the companion paper [1].

Theorem 1.4. Let 0 < d \leq 1/2 be given.

1. The threshold for the property Gd,n \cup \BbbG (n, p)
rbw - \rightarrow K4 is n - 5/4.

2. The threshold for the property Gd,n \cup \BbbG (n, p)
rbw - \rightarrow K5 is n - 1.

3. The threshold for the property Gd,n \cup \BbbG (n, p)
rbw - \rightarrow K7 is n - 7/15.

For K6 and K8 we can ``almost"" determine the thresholds.

Theorem 1.5. Let 0 < d \leq 1/2 be given.

1. The property Gd,n \cup \BbbG (n, p)
rbw - \rightarrow K6 holds a.a.s. whenever p = \omega (n - 2/3).

2. For every constant \varepsilon > 0 it holds that a.a.s. Gd,n \cup \BbbG (n, p)
rbwX - \rightarrow K6 whenever

p := p(n) = n - (2/3+\varepsilon ).

Theorem 1.6. Let 0 < d \leq 1/2 be given.

1. The property Gd,n \cup \BbbG (n, p)
rbw - \rightarrow K8 holds a.a.s. whenever p = \omega (n - 2/5).

2. For every constant \varepsilon > 0 it holds that a.a.s. Gd,n \cup \BbbG (n, p)
rbwX - \rightarrow K8 whenever

p := p(n) = n - (2/5+\varepsilon ).

Note that Part 1 of Theorem 1.6 follows directly from our results in this paper
(see Proposition 5.1 in section 5). Part 2, however, requires new ideas which are
detailed in [1].

1.2. Overview of the proof of Theorem 1.2. In this section, we provide a
brief overview of the main ideas involved in our proof of the main result of this paper,
namely Theorem 1.2. We consider the emergence of rainbow copies of K2r in G \cup R,
where G \in Gd,n with n sufficiently large, 0 < d \leq 1/2 is fixed, and R \sim \BbbG (n, p) with
p := p(n) as in Theorem 1.2. Without loss of generality (and owing to Szemer\'edi's
regularity lemma [49]), the graph G can be assumed to be an \varepsilon -regular bipartite
graph (see section 2 for a definition) with vertex bipartition V (G) = U \cup \cdot W such that
| U | = | W | = m = \Omega (n). Our argument entails the exposure of R \sim \BbbG (n, p), first over
W and then over U as described below.

Prior to exposing R over W , we prove that R[W ] a.a.s. simultaneously satisfies
the three properties detailed below in Claim 5.2; at this stage not all properties stated
in that claim can be motivated. The third property asserts that no matter how R[W ]

is properly edge-colored, \Omega 
\bigl( 
p(

r
2)nr

\bigr) 
rainbow copies of Kr arise in R[W ]; moreover, all
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such rainbow copies are realized over a predetermined collection of so-called desirable
r-subsets of W . By desirable we mean r-subsets whose common neighborhood in U
with respect to G is linear in n. Such a rainbow supersaturation result, targeting a pre-
determined collection of r-subsets, is proved with the aid of Proposition 3.5 (implicit
in [29]) and the so-called K\LR-theorem, namely Theorem 3.7 [14, Theorem 1.6(i)]
stated below.

We expose R over W and may assume from now on that the part exposed has the
aforementioned properties. We then prove deterministically that given any proper
edge-coloring of G and given any rainbow copy K of Kr supported on a desirable
r-subset of W , there are (1  - o(1))

\bigl( | NG(V (K))| 
r

\bigr) 
many r-sets Y in the common neigh-

borhood NG(V (K)) of V (K) in G having the property that K\cup G[V (K), Y ] is rainbow
under the given coloring; this is seen in (12).

Put another way, as soon as we expose R over W , any proper edge-coloring of

R[W ] \cup G gives rise to \Omega 
\bigl( 
p(

r
2)nr

\bigr) 
rainbow copies of Kr, all supported on desirable

r-subsets of W (with respect to G). Moreover, any such rainbow copy K has the
property that K \cup G[V (K), Y ] is rainbow for virtually all r-subsets Y of its common
neighborhood.

Prior to exposing R over U , we prove that R[U ] a.a.s. simultaneously satisfies
the four properties detailed below in Claim 5.3. Being highly technical in nature, we
are unable to state these here in any meaningful way. Collectively, these properties
enable us to appeal yet again to rainbow supersaturation properties of R[W ] so as to
obtain, given a rainbow copy K of Kr in W , a sufficient number of rainbow copies K \prime 

of Kr in the common neighborhood of V (K) in U for which K \cup G[V (K), V (K \prime )] is
also rainbow. We show that this holds a.a.s. for every proper edge-coloring of G \cup R.

At this stage, we have an adequate number of pairs (K,K \prime ) \in W \times U such that
K \prime is rainbow and K\cup G[V (K), V (K \prime )] is rainbow. However, there could still be color
clashes between the colors seen on E(K \prime ) and E(K) or between those seen on E(K \prime )
and those found on E(G[V (K), V (K \prime )]; in either of these cases the pair (K,K \prime ) is
said to be bad. The last part of the proof is a deterministic argument asserting that
there exist many pairs (K,K \prime ) as above that are not bad and thus induce a rainbow
copy of K2r.

2. Preliminaries. Throughout, we make appeals to both the dense regular-
ity lemma [49] (see also [32]) and the sparse regularity lemma [28] (see also [22]).
For a bipartite graph G := (U \cup \cdot W,E) and two sets U \prime \subseteq U and W \prime \subseteq W , write

dG(U \prime ,W \prime ) := eG(U \prime ,W \prime )
| U \prime | | W \prime | for the edge-density of the induced subgraph G[U \prime ,W \prime ]. For

0 < p \leq 1, the graph G is called (\varepsilon , p)-regular if

| dG(U \prime ,W \prime )  - dG(U,W )| < \varepsilon p

holds whenever U \prime \subseteq U and W \prime \subseteq W satisfy | U \prime | \geq \varepsilon | U | and | W \prime | \geq \varepsilon | W | . We
abbreviate (\varepsilon , 1)-regular to \varepsilon -regular.

We make repeated use of a result by Janson [25] (see also [26, Theorems 2.14
and 2.18]), regarding random variables of the form X =

\sum 
A\in \scrS IA. Here, \scrS is a

family of non-empty subsets of some ground set \Omega and IA is the indicator random
variable for the event A \subseteq \Omega p, where \Omega p is the so-called binomial random set arising
from including every element of \Omega independently at random with probability p. For
such random variables, set \lambda := \BbbE [X], and define

\Delta :=
\sum 

A,B\in \scrS 

\sum 
A\cap B \not =\emptyset 

\BbbE [IAIB ], \Delta :=
1

2

\sum 
A,B\in \scrS 
A \not =B

\sum 
A\cap B \not =\emptyset 

\BbbE [IAIB ].

D
ow

nl
oa

de
d 

01
/1

2/
23

 to
 1

37
.2

20
.7

1.
20

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RAINBOW CLIQUES IN RANDOMLY PERTURBED GRAPHS 2981

Janson's result concerns the lower tail of X.

Theorem 2.1 (see [26, Theorem 2.14]). For every 0 < t \leq \BbbE [X], it holds that

\BbbP [X \leq \BbbE [X]  - t] \leq exp( - t2/2\Delta ).

We also use the following lemma (see, e.g., Lemma 2.1 in [20]), which is known
as a basic dependent random choice lemma.

Lemma 2.2. Let a, d,m, n, r be positive integers. Let G be a graph on n vertices
with average degree at least d. If there exists a positive integer t such that

(d)t

nt - 1
 - 
\biggl( 
n

r

\biggr) \Bigl( m
n

\Bigr) t
\geq a,

then G contains a set of vertices U of size | U | \geq a such that every r vertices in U
have at least m common neighbors.

We conclude this section with some additional notation which will be used through-
out this paper. Given a sequence f := f(n) and constants \varepsilon 1, . . . , \varepsilon k > 0 independent
of n, we write \Omega \varepsilon 1,...,\varepsilon k(f), \Theta \varepsilon 1,...,\varepsilon k(f), and O\varepsilon 1,...,\varepsilon k(f) to mean that the constants
which are implicit in the asymptotic notation depend on \varepsilon 1, . . . , \varepsilon k. If g := g(n) is a
sequence, then we sometimes write f \gg g and f \ll g to mean f = \omega (g) and f = o(g),
respectively. In addition, given two constants \mu > 0 and \nu > 0 we write \mu \ll \nu to
mean that, while \mu and \nu are fixed, they can be chosen so that \mu is arbitrarily smaller
than \nu .

3. Properties of \BbbG (\bfitn , \bfitp ). In this section, we collect the various properties of
\BbbG (n, p) facilitating subsequent arguments. Beyond the aggregation of such properties,
the main result of this section is Proposition 3.9 concerning the supersaturation of
rainbow copies of a given fixed graph in \BbbG (n, p) with respect to any proper edge-
coloring. We commence, however, with the more standard properties, some of which
will also facilitate the proof of Proposition 3.9.

3.1. Concentration results. While Theorem 1.2 deals only with complete
graphs, in this section we consider a more general class of graphs. Recall that a
graph H is strictly 2-balanced if m2(H) > m2(K) whenever K \subsetneq H. Throughout this
section, H denotes a fixed strictly 2-balanced graph. For such a graph H, let \scrH := \scrH n

denote the family of (labelled) copies of H in Kn. For every \~H \in \scrH , let Z \~H denote

the indicator random variable for the event \~H \subseteq \BbbG (n, p). Then, XH :=
\sum 

\~H\in \scrH Z \~H

counts the number of copies of H in \BbbG (n, p). Note that

(2) \BbbE (XH) =
\sum 
\~H\in \scrH 

pe(
\~H) = pe(H)

\biggl( 
n

v(H)

\biggr) 
(v(H))!

| Aut(H)| 
= \Theta 

\Bigl( 
pe(H)nv(H)

\Bigr) 
,

where Aut(H) is the automorphism group of H.
We require large deviation inequalities for both the upper and lower tails of XH .

For the lower tail, we make the standard appeal to Janson's inequality (seen at (4) be-
low) so as to subsequently yield Lemma 3.2. For the upper tail, however, the standard
appeal to Chebyshev's inequality is insufficient for our needs. For indeed, subsequent
arguments require that certain properties of \BbbG (n, p) hold with probability at least
1  - \Omega 

\bigl( 
n - b

\bigr) 
, for some constant b which we are allowed to choose to be sufficiently

large. We thus replace the standard appeal to Chebyshev's inequality with an appeal
to one of the main results of Vu's paper [50].
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In broad terms, [50, Theorem 2.1] asserts that if

p\gg (log n)
v(H) - 1
e(H) \cdot n - 

v(H)
e(H)

(i.e., p is larger than the containment threshold for H in \BbbG (n, p) by at least some
polylogarithmic multiplicative factor), then a large deviation inequality for the upper
tail of XH with a decaying exponential error rate exists. As our focus is on strictly
2-balanced graphs and on p = \Omega 

\bigl( 
n - 1/m2(H)

\bigr) 
, we make do with the following more

relaxed formulation of the aforementioned result of Vu [50].

Theorem 3.1 (see [50, Theorem 2.1]). For any (fixed) \alpha > 0 and any strictly
2-balanced graph H, there exists a constant C3.1 > 0, such that

\BbbP [XH \geq (1 + \alpha )\BbbE (XH)] \leq exp
\Bigl( 
 - \Omega \alpha ,H

\Bigl( 
(\BbbE (XH))1/(v(H) - 1)

\Bigr) \Bigr) 
holds whenever p \geq C3.1n

 - 1/m2(H).

We proceed to deal with the lower tail of XH as outlined above. Writing H \prime \sim H \prime \prime 

whenever (H \prime , H \prime \prime ) \in \scrH \times \scrH are not edge disjoint, let

\=\Delta (H) :=
\sum 

(H\prime ,H\prime \prime )\in \scrH \times \scrH 
H\prime \sim H\prime \prime 

\BbbE [ZH\prime ZH\prime \prime ] =
\sum 

(H\prime ,H\prime \prime )\in \scrH \times \scrH 
H\prime \sim H\prime \prime 

pe(H
\prime )+e(H\prime \prime ) - e(H\prime \cap H\prime \prime ).

For a strictly 2-balanced graph H, it is well-known that

(3) \=\Delta (H) = OH

\Bigl( 
pe(H)nv(H)

\Bigr) 
,

whenever p = \Omega 
\bigl( 
n - 1/m2(H)

\bigr) 
.

Janson's inequality, as seen in Theorem 2.1, asserts that

\BbbP [XH \leq (1  - \xi )\BbbE (XH)] \leq e
 - \xi 2(\BbbE (XH ))2

2 \=\Delta (H)

holds for every fixed 0 \leq \xi \leq 1. It then follows by (3) and (2) that

(4) \BbbP 
\biggl[ 
XH \leq (1  - \xi )pe(H)

\biggl( 
n

v(H)

\biggr) 
(v(H))!

| Aut(H)| 

\biggr] 
\leq e - \Omega (pe(H)nv(H))

for every fixed 0 \leq \xi \leq 1.
We require a slight strengthening of (4). Given a set \scrC \subseteq 

\bigl( 
[n]
v(H)

\bigr) 
satisfying | \scrC | =

\eta 
\bigl( 

n
v(H)

\bigr) 
for some fixed \eta > 0, write XH(\scrC ) to denote the number of copies of H

in \BbbG (n, p) supported on the members of \scrC , that is, XH(\scrC ) = \{ \~H \in \scrH : V ( \~H) \in 
\scrC and \~H \subseteq \BbbG (n, p)\} . Then, \BbbE [XH(\scrC )] = \Theta H,\eta (pe(H)nv(H)). Set

(5) \=\Delta (H, \scrC ) :=
\sum 

(H\prime ,H\prime \prime )\in \scrH (\scrC )\times \scrH (\scrC )
H\prime \sim H\prime \prime 

\BbbE [ZH\prime ZH\prime \prime ],

where here \scrH (C) serves as the analogue of \scrH for the copies of H supported on \scrC .
Since, clearly, \=\Delta (H, \scrC ) \leq \=\Delta (H), inequality (4) can be extended so as to yield that

(6) \BbbP 
\biggl[ 
XH(\scrC ) \leq (1  - \xi )pe(H)| \scrC | (v(H))!

| Aut(H)| 

\biggr] 
\leq e - \Omega (pe(H)nv(H))

holds for every fixed 0 \leq \xi \leq 1. The following is then established.
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Lemma 3.2. Let H be a strictly 2-balanced graph, and let \xi > 0. There exists an
integer n0 such that for every n \geq n0 the following holds. Let \eta > 0 be a constant, and
let \scrC \subseteq 

\bigl( 
[n]
v(H)

\bigr) 
satisfying | \scrC | \geq \eta 

\bigl( 
n

v(H)

\bigr) 
be fixed. Then, there exists a constant C3.2 > 0

such that with probability at least 1  - e - \Omega (pe(H)nv(H)), the random graph \BbbG (n, p) has

at least (1  - \xi )pe(H)| \scrC | (v(H))!
| Aut(H)| copies of H supported on the members of \scrC , whenever

p \geq C3.2n
 - 1/m2(H).

The exponential rate of decay, seen in the error probability of Lemma 3.2, will
be used in subsequent applications where we will need a union bound to be extended
over a large family, as specified in the following corollary.

Corollary 3.3. Let H be a strictly 2-balanced graph, and let \xi > 0. There
exists an integer n0 such that for every n \geq n0 the following holds. Let \eta > 0 be a
constant, and let a nonempty set C comprising at most 2O(n logn) sets \scrC \subseteq 

\bigl( 
[n]
v(H)

\bigr) 
,

each satisfying | \scrC | \geq \eta 
\bigl( 

n
v(H)

\bigr) 
, be fixed. Then, there exists a constant C3.3 > 0 such

that with probability at least 1 - eO(n logn) - \Omega (pe(H)nv(H)), the random graph \BbbG (n, p) has

at least (1  - \xi )pe(H)| \scrC | (v(H))!
| Aut(H)| copies of H supported on the members of \scrC , for every

\scrC \in C , whenever p \geq C3.3n
 - 1/m2(H).

Corollary 3.3 is meaningful as long as H and p are such that pe(H)nv(H) \gg n log n
holds; this inequality clearly holds if H is strictly 2-balanced and p = \Omega 

\bigl( 
n - 1/m2(H)

\bigr) 
.

Nevertheless, in Corollary 3.3, we keep the error probability in its explicit form in
order to facilitate subsequent arguments.

3.2. Rainbow supersaturation in \BbbG (\bfitn , \bfitp ). The main result of this section
is a supersaturation version of the main result of [29] and can be seen in Proposi-
tion 3.9 below. In its simplest form, Proposition 3.9 asserts that given a strictly
2-balanced graph H, the random graph \BbbG (n, p) a.a.s. has the property that every
proper coloring of its edges admits \Omega (\BbbE (XH)) rainbow copies of H. The formulation
of Proposition 3.9 is somewhat more involved as in subsequent arguments we require
supersaturation of rainbow copies supported on the members of prescribed subsets
of

\bigl( 
[n]
v(H)

\bigr) 
and, moreover, we require \BbbG (n, p) to satisfy the aforementioned property

with ``very high"" probability. Our proof of Proposition 3.9 employs the so-called
K\LR-theorem [14, Theorem 1.6(i)] and the core so-called ``technical"" result of [29,
section 5] (see Proposition 3.5 below).

Prior to proving Proposition 3.9, an explanation as to our appeal to the K\LR-
theorem is warranted. To this end, let us consider the task of establishing supersat-
uration of rainbow copies of a prescribed graph H in a host graph G, without the
additional restriction imposed by Proposition 3.9, mandating that these copies all be
supported on a prechosen set of v(H)-sets. A moment's thought1 reveals that upon
fixing a proper edge-coloring of G, the number of non-rainbow copies of H can be
upper bounded by

(7) e(G) \cdot n \cdot max
e,f\in E(G)
e\cap f=\emptyset 

\bigm| \bigm| \bigm| \{ e, f\} \lhook \rightarrow 
G
H
\bigm| \bigm| \bigm| ,

where \{ e, f\} \lhook \rightarrow 
G
H denotes the set of injections of the form H \mapsto \rightarrow G constrained to

containing the listed pair of edges of G, namely e and f . Put another way, this set

1This argument is reproduced below in the proof of Observation 4.1.
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is composed of all the so-called extensions of the pair of fixed edges \{ e, f\} into a
(labelled) copy of H in G. This type of argument can also be seen in [27], where it is
attributed to [3].

Employing (7) in order to establish Proposition 3.9 entails attaining sufficiently
tight upper bounds on

\bigm| \bigm| \{ e, f\} \lhook \rightarrow 
\BbbG (n,p)

H
\bigm| \bigm| for any pair of independent edges in \BbbG (n, p) for

the relevant values of p. In our case, p can be as low as to yield \BbbE 
\bigl( \bigm| \bigm| \{ e, f\} \lhook \rightarrow 

\BbbG (n,p)
H
\bigm| \bigm| \bigr) =

o(1), rendering standard concentration-type arguments for estimating the order of
magnitude of

\bigm| \bigm| \{ e, f\} \lhook \rightarrow 
\BbbG (n,p)

H
\bigm| \bigm| meaningless. We circumvent this obstacle by resorting

to a more detailed analysis of counting non-rainbow copies of H in \BbbG (n, p); the latter
approach, as mentioned above, entails the use of the K\LR-theorem. Nevertheless, (7)
remains relevant as will be seen in the sequel.

Let V (H) = [h] := \{ 1, . . . , h\} . Following [14], we write \scrG (H, \ell ,m, p, \varepsilon ) to denote
the collection of graphs \Gamma obtained as follows. The vertex set of \Gamma is V (\Gamma ) = V1\cup \cdot \cdot \cdot \cdot \cup \cdot 
Vh, where | Vi| = \ell for every i \in [h]. For every edge ij \in E(H), add an (\varepsilon , p)-regular
graph with at least m edges between the pair (Vi, Vj); these are the sole edges of \Gamma .
For such a graph \Gamma , a copy of H in \Gamma is called canonical if it has a single vertex in
each Vi. We write \Gamma (H) to denote the collection of canonical copies of H in \Gamma .

Remark 3.4. When H is a complete graph (as will be the case later on), every
copy of H in \Gamma is a canonical copy of H.

The following result is implicit in [29].

Proposition 3.5. For every graph H and every real number b > 0, there exist a
constant \beta 3.5 > 0 and an integer n0 > 0 such that the following holds for every (fixed)
\varepsilon > 0. If n \geq n0 and p := p(n) \geq C3.5 log n/n, where C3.5 > 0 is an appropriately
chosen constant, then \BbbG (n, p) satisfies the following property with probability at least
1  - \Omega 

\bigl( 
n - b

\bigr) 
. Every proper coloring \psi of the edges of \BbbG (n, p) gives rise to a subgraph

\Gamma \psi \subseteq \BbbG (n, p) satisfying \Gamma \psi \in \scrG (H, \lfloor n/v(H)\rfloor ,
\bigl\lfloor 
\beta 3.5p \lfloor n/v(H)\rfloor 2

\bigr\rfloor 
, p, \varepsilon ); moreover, ev-

ery member of \Gamma \psi (H) is rainbow under \psi .

Remark 3.6. The assertion of Proposition 3.5 can be found in the proof of Lemma
5.3 in [29]. This lemma relies on various additional results. In order to obtain the
bound 1  - \Omega 

\bigl( 
n - b

\bigr) 
stated in Proposition 3.5, one has to verify that the assertion

of Lemma 3.3 from [29] holds with this probability (as opposed to simply a.a.s. as
is stated there). The latter asserts that certain properties are a.a.s. satisfied by
G \sim \BbbG (n, p) for an appropriate choice of p. Lemma 5.3 of [29] is a deterministic
lemma that delivers the graph \Gamma \psi , defined in Proposition 3.5, in any graph satisfying
the properties stated in [29, Lemma 3.3]. The aforementioned bound 1  - \Omega 

\bigl( 
n - b

\bigr) 
on

the success probability of [29, Lemma 3.3] can indeed be attained and this can be
traced back to [19, Theorem 1.1], which is used in the proof of [29, Lemma 3.3].

The argument of [29] entails an application of the so-called embedding lemma
associated with the K\LR-theorem (see [29, Lemma 3.9]) to \Gamma \psi , thus ensuring at least
one rainbow copy of H. As our aim is set on supersaturation of rainbow copies of H,
we replace [29, Lemma 3.9] with an application of the so-called one-sided counting
lemma associated with the K\LR-theorem, namely [14, Theorem 1.6(i)].

Theorem 3.7 (see [14, Theorem 1.6(i)]). For every d > 0 and every strictly
2-balanced graph H, there exist positive constants \zeta 3.7, \xi 3.7 and an integer n0 > 0
such that the following holds. For every \eta > 0, there exists a constant C3.7 > 0 such
that \BbbG (n, p) admits the following property with probability at least 1  - e - \Omega H,d,\eta (pn

2),
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whenever p := p(n) \geq C3.7n
 - 1/m2(H) and n \geq n0. For every \ell \geq \eta n and m \geq dpn2,

and for every subgraph \Gamma \subseteq \BbbG (n, p) satisfying \Gamma \in \scrG (H, \ell ,m, p, \zeta 3.7), it holds that

| \Gamma (H)| \geq \xi 3.7

\Bigl( m
n2

\Bigr) e(H)
\biggl( 

n

v(H)

\biggr) 
.

Proposition 3.5 and Theorem 3.7 imply the following rainbow supersaturation
result for \BbbG (n, p).

Corollary 3.8. For every real b > 0 and every strictly 2-balanced graph H, there
exist positive constants \beta 3.8, C3.8 and an integer n0 > 0 such that if n \geq n0 and p :=
p(n) \geq C3.8n

 - 1/m2(H), then with probability at least 1  - \Omega 
\bigl( 
n - b

\bigr) 
, every proper edge

coloring of the random graph \BbbG (n, p) admits at least \beta 3.8p
e(H)

\bigl( 
n

v(H)

\bigr) (v(H))!
| Aut(H)| rainbow

copies of H.

Proof. Let \beta = \beta 3.5 be the constant given by Proposition 3.5, corresponding to
b. Set d = \beta /

\bigl( 
2v(H)2

\bigr) 
, and let \zeta = \zeta 3.7 and \xi = \xi 3.7 be the corresponding constants

given by Theorem 3.7. Let \eta = v(H)/2, and suppose that C3.8 is chosen to be at least
as large as C3.7, where the latter constant is given by Theorem 3.7 in correspondence
to \eta . Let \ell = \lfloor n/v(H)\rfloor and m =

\bigl\lfloor 
\beta p \lfloor n/v(H)\rfloor 2

\bigr\rfloor 
.

By Proposition 3.5, with probability at least 1  - \Omega (n - b), given a proper edge-
coloring \psi of \BbbG (n, p), there exists a subgraph \Gamma \psi \subseteq \BbbG (n, p) such that \Gamma \psi \in \scrG (H, \ell ,m, p,
\zeta ) and, moreover, every member of \Gamma \psi is rainbow under \psi (here we used the fact that
p \geq \omega (log n/n) which holds, e.g., since H is strictly 2-balanced and thus contains a
cycle, implying m2(H) > 1).

Observe that \ell \geq \eta n and m \geq dpn2. It thus follows by Theorem 3.7 that, with
probability at least 1  - \Omega (n - b), the subgraph \Gamma \psi satisfies

| \Gamma \psi (H)| \geq \xi 
\Bigl( m
n2

\Bigr) e(H)
\biggl( 

n

v(H)

\biggr) 
\geq \xi de(H)pe(H)

\biggl( 
n

v(H)

\biggr) 
.

Setting \beta 3.8 = \xi de(H) | Aut(H)| 
(v(H))! concludes the proof of Corollary 3.8.

We are now ready to state and prove the main result of this section.

Proposition 3.9. For every real b > 0, every strictly 2-balanced graph H, and
every 0 < \beta \ll \beta 3.8(b,H), there exist n0 > 0 and C3.9 > 0 such that the following
holds whenever n \geq n0 and p := p(n) \geq C3.9n

 - 1/m2(H). Fix a non-empty family C

composed of at most 2O(n logn) sets \scrC \subseteq 
\bigl( 

[n]
v(H)

\bigr) 
, each of size | \scrC | \geq (1 - \beta )

\bigl( 
n

v(H)

\bigr) 
. Then,

with probability at least 1  - \Omega 
\bigl( 
n - b

\bigr) 
, every proper edge coloring of the random graph

\BbbG (n, p) admits \Omega H,\beta 
\bigl( 
pe(H)nv(H)

\bigr) 
rainbow copies of H supported on members of \scrC ,

for every \scrC \in C .

Proof. Let b,H, and \beta be as in the statement of the proposition. Set auxiliary
constants \eta = 1  - \beta and \alpha , \xi \ll \beta . Define

C3.9 := max\{ C3.1(\alpha ,H), C3.3(\eta , \xi ,H), C3.8(b,H)\} .

Then, for sufficiently large n and for p := p(n) \geq C3.9n
 - 1/m2(H), Theorem 3.1

and Corollaries 3.3 and 3.8 collectively imply that with probability at least

1 - e - \Omega \alpha ,H

\Bigl( 
(pe(H)nv(H))

1/(v(H) - 1)
\Bigr) 
 - eO(n logn) - \Omega \xi ,H,\eta (pe(H)nv(H)) - \Omega (n - b) \geq 1 - \Omega (n - b)

the following properties are satisfied by G \sim \BbbG (n, p) simultaneously.
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(P.1) G admits at most (1 + \alpha )pe(H)
\bigl( 

n
v(H)

\bigr) (v(H))!
| Aut(H)| copies of H.

(P.2) For every \scrC \in C , the graphG admits at least (1 - \xi )(1 - \beta )pe(H)
\bigl( 

n
v(H)

\bigr) (v(H))!
| Aut(H)| 

copies of H supported on the members of \scrC .
(P.3) Every proper coloring of the edges of G admits at least \beta 3.8(b,H)pe(H)\bigl( 

n
v(H)

\bigr) (v(H))!
| Aut(H)| rainbow copies of H in G.

Let a proper coloring \psi of the edges of G \sim \BbbG (n, p) and a member \scrC \in C be
fixed. It follows by Properties (P.1) and (P.2) that all but at most

[(1+\alpha ) - (1 - \xi )(1 - \beta )]pe(H)

\biggl( 
n

v(H)

\biggr) 
(v(H))!

| Aut(H)| 
= (\alpha +\xi +\beta  - \xi \beta )pe(H)

\biggl( 
n

v(H)

\biggr) 
(v(H))!

| Aut(H)| 

of the copies of H in G are supported on members of \scrC . Then, owing to Property
(P.3), \psi admits at least

(\beta 3.8(b,H)  - \alpha  - \xi  - \beta + \xi \beta ) pe(H)

\biggl( 
n

v(H)

\biggr) 
(v(H))!

| Aut(H)| 

rainbow copies of H which are supported on members of \scrC . The claim then follows
since \alpha , \xi , \beta \ll \beta 3.8(b,H) holds by assumption.

Remark 3.10. Proposition 3.9 is somewhat of an overkill as far as our needs go
regarding rainbow supersaturation. In particular, in what follows, we apply this result
over a single set system of v(Kr)-sets and not over 2O(n logn) such set-systems. As
the difference in the proof is minuscule, we keep the above formulation.

3.3. Number of complete subgraphs containing a prescribed vertex.
The final property of random graphs that we shall use is that when p is sufficiently
large, the number of copies of Kr that contain any single vertex is significantly smaller
than the expected total number of copies of Kr in the random graph.

Let a vertex v \in [n] be fixed. Let A1, . . . , At, where t =
\bigl( 
n - 1
r - 1

\bigr) 
, be an enumeration

of the elements of
\bigl( 
[n]\setminus v
r - 1

\bigr) 
. For every 1 \leq i \leq t, let Yi denote the indicator random

variable for the event: ``(\BbbG (n, p))[Ai \cup \{ v\} ] is a clique."" Let Xv =
\sum t
i=1 Yi, that is,

Xv counts the number of copies of Kr in \BbbG (n, p) containing v.

Lemma 3.11. For any fixed integer r \geq 3, the random graph \BbbG (n, p) a.a.s. sat-
isfies the property that Xv = o(\BbbE (XKr )) holds for every vertex v \in [n], whenever
p := p(n) = \Omega 

\bigl( 
n - 1/m2(Kr)

\bigr) 
.

Proof. Fix an arbitrary vertex v \in [n]. Observe that

n1/r \BbbE (Xv) + \BbbE (Xv)

\BbbE (XKr
)

\leq 
2n1/r

\bigl( 
n - 1
r - 1

\bigr) 
p(

r
2)\bigl( 

n
r

\bigr) 
p(

r
2)

= Or(n
1/r - 1),

implying that n1/r \BbbE (Xv) + \BbbE (Xv) = o(\BbbE (XKr
)). Therefore, a union bound over [n]

implies that in order to prove the lemma it suffices to show that

\BbbP [| Xv  - \BbbE (Xv)| \geq n1/r \BbbE (Xv)] = o(1/n).

Applying Chebyshev's inequality (see, e.g., [4, 26]), we obtain

\BbbP [| Xv  - \BbbE (Xv)| \geq n1/r \BbbE (Xv)] \leq 
Var(Xv)

n2/r(\BbbE (Xv))2
.
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For the variance of Xv we may write

(8) Var(Xv) =

t\sum 
i=1

Var(Yi) + 2
\sum 

1\leq i<j\leq t

Cov(Yi, Yj) \leq \BbbE (Xv) +Or

\Bigl( 
n2r - 3p2(

r
2) - 1

\Bigr) 
,

where the second term on the right hand side of the above inequality is an upper
bound on

\sum 
1\leq i<j\leq tCov(Yi, Yj); this bound can be proved by observing that the

dominant term in this sum arises from pairs of copies of Kr which share v and one
other vertex. Then

\BbbP [| Xv  - \BbbE (Xv)| \geq n1/r \BbbE (Xv)] \leq 
1

n2/r \BbbE (Xv)
+

Or(1)

n2/rpn
= o(1/n),

where the inequality holds by Chebyshev's inequality and by (8), and the equality
follows by a straightforward calculation which uses the assumed lower bound on p.

4. Sparse complete bipartite graphs. In this section, we consider certain
applications of (7) to sparse bipartite graphs and relatives thereof that arise in sub-
sequent arguments. We start with the following observation.

Observation 4.1. For every pair of integers r \geq 1 and s \geq 2, there exists an
integer n0 such that for any n \geq n0, every proper coloring of the edges of Kr,n

admits at most Or,s(n
s - 1) non-rainbow copies of Kr,s (whose partition class of size r

coincides with the partition class of size r of Kr,n).

Proof. Fix a proper edge coloring \psi of Kr,n. Note first that, since \psi is proper,
our claim is trivial if r = 1; we can thus assume that r \geq 2. Clearly, we may also
assume that n \geq s. Any non-rainbow copy of Kr,s must admit at least two edges
bearing the same color under \psi . The number of ways to pick the first of these two
edges is upper bounded by e(Kr,n) = rn. The number of ways to choose the second
of these two edges is at most r - 1 as the coloring is proper and one of the bipartition
classes of the graph has size r. The number of ways to complete any such choice of
two edges into a copy of Kr,s in Kr,n is

\bigl( 
n - 2
s - 2

\bigr) 
; the latter quantity making sense owing

to n \geq s \geq 2. We conclude that the number of copies of Kr,s in Kr,n (whose partition
class of size r coincides with the partition class of size r of Kr,n) that are non-rainbow
under \psi is at most rn \cdot (r  - 1) \cdot 

\bigl( 
n - 2
s - 2

\bigr) 
= Or,s(n

s - 1).

For two integers n > r, let \widehat Kr,n denote the graph obtained from Kr,n by placing
a copy of Kr, denoted K, on its partition class of size r. By the bipartition classes of\widehat Kr,n we mean the bipartition classes of Kr,n. Given an integer s \geq 2, write \scrB = \scrB (s)

to denote the family of copies of Kr,s in \widehat Kr,n such that its partition class of size r
coincides with V (K).

Definition 4.2. Let \psi be a proper coloring of the edges of \widehat Kr,n under which K
is rainbow. A member B \in \scrB is said to be compatible with the coloring of K under
\psi (or, for brevity, simply compatible with K) if the following two properties hold:

1. B is rainbow under \psi ;
2. the sets of colors seen on E(K) and E(B) are disjoint; in this case we say

that K and B do not clash under \psi .

Observation 4.3. Let r, s, and n be as in Observation 4.1. If \psi is a proper
coloring of the edges of \widehat Kr,n under which K is rainbow, then all but at most Or,s(n

s - 1)
of the members of \scrB are compatible with K.
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Proof. In view of Observation 4.1, it suffices to prove that there are Or,s(n
s - 1)

members of \scrB that clash with K. Let c be a color appearing on some edge of K, and
let Xc be the set of vertices in the partition class of size n that send a c-colored edge
to K; then | Xc| \leq r  - 2. Note that every member of \scrB that clashes with K contains
a vertex in Xc for some color c that appears on K. As the number of members in \scrB 
that contain a given vertex is at most

\bigl( 
n
s - 1

\bigr) 
, we conclude that the number of members

of \scrB that clash with K is at most e(K) \cdot (r  - 2) \cdot 
\bigl( 
n
s - 1

\bigr) 
= Or,s(n

s - 1).

5. Proof of Theorem 1.2: 1-statement. In this section, we prove the 1-
statement associated with Theorem 1.2. The proof of the relevant 0-statement is
detailed in section 1.1 prior to the statement of the theorem. The main result of this
section reads as follows.

Proposition 5.1. For every real number d > 0 and integer r \geq 3, the property

Gd,n \cup \BbbG (n, p)
rbw - \rightarrow K2r holds a.a.s., whenever p := p(n) = \omega (n - 1/m2(Kr)). In fact,

for values of p in this range, Gd,n \cup \BbbG (n, p) a.a.s. has the property that every proper

coloring of its edges gives rise to \Omega 
\bigl( 
p2(

r
2)n2r

\bigr) 
rainbow copies of K2r.

Proof. Fix d > 0, an integer r \geq 3, and G \in Gd,n, where throughout we assume
n to be sufficiently large. Set auxiliary constants

(9) r \ll b and 0 < \varepsilon \ll \gamma \ll \beta 3.8(b,Kr).

By a standard application of the (so-called dense) regularity lemma [49] (see
also [32]), we may assume, without loss of generality, that G is a bipartite \varepsilon -regular
graph with edge-density at least d\prime for some constant \varepsilon \ll d\prime \ll \gamma , such that V (G) =
W \cup \cdot U , and | U | = | W | = m = \Omega \varepsilon (n). Let

(10) \scrC W =

\biggl\{ 
X \in 

\biggl( 
W

r

\biggr) 
: | NX | = \Omega d\prime ,\varepsilon (m)

\biggr\} 
,

where NX := \{ u \in U : uv \in E(G) for every v \in X\} is the common neighborhood of
X in G. Regularity then implies that

(11) | \scrC W | \geq (1  - \gamma )

\biggl( 
m

r

\biggr) 
.

We expose the random edges added to G in three steps. First, the random
edges with both endpoints in W are exposed; second, the random edges with both
endpoints in U are exposed; third and finally, all other random edges are exposed.
Note, however, that the third step is a mere formality as, indeed, the edges exposed in
this step serve no role in the formation of any eventual rainbow copy of K2r produced
by our argument.

Claim 5.2. Asymptotically almost surely, G1 \sim \BbbG (n, p)[W ] satisfies the following
properties simultaneously.

(Q.1) Every vertex w \in W lies in at most o
\bigl( 
p(

r
2)mr

\bigr) 
copies of Kr in G1.

(Q.2) G1 has O
\bigl( 
p(

r
2)mr

\bigr) 
copies of Kr.

(Q.3) Every proper coloring \psi of the edges of G1 admits \Omega 
\bigl( 
p(

r
2)mr

\bigr) 
rainbow

copies of Kr supported on members of \scrC W .

Proof. It suffices to prove that G1 satisfies each of the aforementioned properties
asymptotically almost surely Property (Q.1) follows from Lemma 3.11 applied to G1,
and Property (Q.2) follows from Theorem 3.1 applied to G1.
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Property (Q.3) follows from Proposition 3.9 applied with b as in (9), \beta = \gamma , and
C = \{ \scrC W \} . Indeed, the latter asserts that G1 a.a.s. satisfies the property that any

proper coloring of the edges of G1 admits \Omega 
\bigl( 
p(

r
2)mr

\bigr) 
rainbow copies of Kr supported

on the members of \scrC W .

Fix a graph G1 \sim (\BbbG (n, p))[W ] satisfying Properties (Q.1), (Q.2), and (Q.3),
and denote H1 := G1\cup G. We establish an additional property of H1 deterministically,
so to speak; see (12).

A member X \in \scrC W satisfying H1[X] \sim = Kr is termed relevant. For a relevant X,

let \widehat BX denote the copy of \widehat Kr,| NX | in H1 whose r-part is X and whose other part is
NX . Given a proper coloring \psi of the edges of H1, a subgraph K \subseteq H1 appearing
rainbow under \psi is called \psi -rainbow; similarly, if H1[Y ] is a \psi -rainbow clique, then
we say that Y is \psi -rainbow.

For a proper edge-coloring \psi of H1 and a relevant \psi -rainbow X \in \scrC W , set

\scrB X,\psi :=

\biggl\{ 
Y \in 

\biggl( 
NX
r

\biggr) 
: H1[X] \cup H1[X,Y ] is \psi -rainbow

\biggr\} 
.

It follows by Observation 4.3 that

(12) | \scrB X,\psi | =

\biggl( 
1  - Or

\biggl( 
1

| NX | 

\biggr) \biggr) \biggl( 
| NX | 
r

\biggr) 
\geq 

\biggl( 
1  - Or,d\prime ,\varepsilon 

\biggl( 
1

m

\biggr) \biggr) \biggl( 
| NX | 
r

\biggr) 
,

where for the last inequality we appeal to m being sufficiently large and | NX | =
\Omega d\prime ,\varepsilon (m).

The next claim addresses the properties of the distribution H1\cup (\BbbG (n, p))[U ]; the
notation of subgraphs being \psi -rainbow extends naturally to proper edge-colorings \psi 
of the latter and subgraphs thereof.

Claim 5.3. Let G1 \sim (\BbbG (n, p))[W ] satisfying Properties (Q.1), (Q.2), and (Q.3)
be fixed, and let G2 \sim (\BbbG (n, p))[U ]. Then, a.a.s. the following properties hold simul-
taneously for every proper coloring \psi of the edges of G \cup G1 \cup G2 and every rel-
evant \psi -rainbow X \in \scrC W . Denote \ell := | NX | , \beta := \beta 3.5(Kr, b), k := \beta \cdot p\ell 2/r2,
\mu := \zeta 3.7(\beta /2,Kr), and \alpha :=

\bigl( 
\beta 
2r2

\bigr) (r
2)\xi 3.7(\beta /(2r2),Kr) (note that some of these pa-

rameters depend on X). Then,

(Q.4) G2 admits \Theta 
\bigl( 
p(

r
2)mr

\bigr) 
copies of Kr.

(Q.5) There is a subgraph \Gamma X,\psi \subseteq G2[NX ] satisfying

(13) \Gamma X,\psi \in \scrG (Kr, \lfloor \ell /r\rfloor , k, p, \mu /2) ,

such that every copy of Kr in \Gamma X,\psi is \psi -rainbow.
(Q.6) Every subgraph \Gamma \subseteq G2[NX ] satisfying

(14) \Gamma \in \scrG (Kr, \lfloor \ell /r\rfloor , k/2, p, \mu )

admits at least \alpha p(
r
2)
\bigl( 
\ell 
r

\bigr) 
copies of Kr.

(Q.7) All but at most \alpha 2 p
(r
2)
\bigl( 
\ell 
r

\bigr) 
copies of Kr in G2[NX ] are supported on members

of \scrB X,\psi .
Proof. It suffices to prove that a.a.s. each of the above four properties holds for

every proper coloring \psi and every relevant \psi -rainbow X. Property (Q.4) follows
from Theorem 3.1 and Lemma 3.2 (with \scrC =

\bigl( 
U
r

\bigr) 
and \eta = 1).
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Property (Q.5) follows from Proposition 3.5. Indeed, by the assumptions on p,
we have p = \omega (log n/n). Consequently, Proposition 3.5, applied to the graph G2[NX ]
with b as in (9) and \varepsilon (from Proposition 3.5) set to \mu /2, implies that given X \in \scrC W
there exists a graph \Gamma X,\psi as specified in (13), for every proper coloring \psi , with
probability at least 1 - \Omega \varepsilon ,r(n

 - b). Consequently, the probability that Property (Q.5)
fails for some \psi or X is at most O(nr \cdot n - b) = o(1), where the equality holds since
r \ll b by (9).

Property (Q.6) is a consequence of the K\LR-theorem, namely, Theorem 3.7.
By Theorem 3.7, applied to G2[NX ] with H = Kr and with d (per that theorem)
set to \beta /(2r2) (recall that \beta = \beta 3.5(Kr, b)), it follows that with probability at least

1 - e - \Omega r,\varepsilon ,d(pn
2), every \Gamma \subseteq G2[NX ] such that \Gamma \in \scrG (Kr, \lfloor \ell /r\rfloor , k/2, p, \mu ), satisfies the

stipulated counting property associated with the K\LR-theorem. The probability that
Property (Q.6) fails for some X \in \scrC W is at most O(nr \cdot e - \Omega (pn2)) = o(1), where the
equality holds by the assumed lower bound on p.

We now prepare for the proof that Property (Q.7) holds asymptotically almost
surely. By Theorem 3.1, the number of copies of Kr in G2[NX ] is at most

(15) (1 + \alpha /4) \cdot p(
r
2)
\biggl( 
\ell 

r

\biggr) 
,

with probability at least 1  - exp
\bigl( 
 - \Omega 

\bigl( \bigl( 
p(

r
2)nr

\bigr) 1
r - 1

\bigr) \bigr) 
\geq 1  - exp

\bigl( 
 - \Omega 

\bigl( 
n

3
2(r - 1)

\bigr) \bigr) 
; this

inequality holds since p(
r
2)nr = \omega (n2p) = \omega (n3/2), where here the first equality is due

to the assumed lower bound on p and the second equality holds since r \geq 3. Thus,
the probability that the number of copies of Kr in NX is larger than the expression

appearing in (15) for some X is at most nr \cdot exp
\bigl( 
 - \Omega 

\bigl( 
n

3
2(r - 1)

\bigr) \bigr) 
= o(1).

Gearing up towards an application of Corollary 3.3, let \widehat BX denote the copy of\widehat Kr,| NX | , with its part of size r being X and its other part being NX . Consider the set

\scrB X := \{ \scrB X,\psi : \psi is a proper edge-coloring of \widehat BX and X is \psi -rainbow\} .

As the number of proper colorings of \widehat BX (up to relabeling of the colors) is at most

e( \widehat BX)e(
\widehat BX) = 2O(n logn), we have | \scrB X | = 2O(n logn) for every X \in \scrC W . Apply Corol-

lary 3.3 to G2[NX ] with C = \scrB X along with \alpha /8 (as set above) and \eta = 1  - \alpha /8.
Using (12), the corollary asserts that, for every \scrB X,\psi \in \scrB X , the number of copies of
Kr supported on members of \scrB X,\psi is at least

(16) (1  - \alpha /8)2 \cdot p(
r
2)
\biggl( 
\ell 

r

\biggr) 
\geq (1  - \alpha /4) \cdot p(

r
2)
\biggl( 
\ell 

r

\biggr) 
,

with probability at least 1  - exp
\bigl( 
O(n log n)  - \Omega 

\bigl( 
p(

r
2)n

r\bigr) \bigr) 
= 1  - exp

\bigl( 
 - \Omega (n3/2)

\bigr) 
. It

follows that, with probability at least 1 - nr exp
\bigl( 
 - \Omega (n3/2)

\bigr) 
= 1 - o(1), the number of

copies of Kr supported on members of \scrB X,\psi is at least the number appearing in (16)
for every X \in \scrC W and every proper edge-coloring \psi .

With the above two properties of G2 established, Property (Q.7) follows deter-
ministically, so to speak. Indeed, by (15) and (16), a.a.s. there are at most

\alpha 

2
\cdot p(

r
2)
\biggl( 
\ell 

r

\biggr) 
copies of Kr in G2[NX ] not supported on members of \scrB X,\psi , as required for Prop-
erty (Q.7).
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Let H \sim G \cup \BbbG (n, p) satisfying Properties (Q.1)--(Q.7) be fixed. Let \psi , a
proper coloring of the edges of H, be fixed as well. We prove that H admits at

least \Omega 
\bigl( 
p2(

r
2)n2r

\bigr) 
\psi -rainbow copies of K2r. To this end, let \scrR W \subseteq \scrC W be the collec-

tion of members of \scrC W inducing a \psi -rainbow copy of Kr, and let \scrR U \subseteq 
\bigl( 
U
r

\bigr) 
be the

collection of \psi -rainbow copies of Kr supported on H[U ]. Define an auxiliary bipartite
graph \scrF whose vertex bipartition is given by (\scrR W ,\scrR U ) with X \in \scrR W and Y \in \scrR U

forming an edge of \scrF if and only if
(i) Y \in \scrB X,\psi , that is, H[X \cup Y ] \sim = K2r and H[X] \cup H[X,Y ] is \psi -rainbow and
(ii) \psi (EH(Y )) \cap \psi (EH(X)) = \emptyset , i.e., there is no clash between the set of colors

seen on H[X] and that seen on H[Y ].
A pair \{ X,Y \} , as above, forming an edge of \scrF , forms a copy of K2r in H such

that H[X] \cup H[X,Y ] is \psi -rainbow and H[X] \cup H[Y ] is \psi -rainbow. Still, such a copy
of K2r may not be \psi -rainbow as a clash between the colors seen on H[Y ] and H[X,Y ]
is still possible; such clashes are dealt with below.

Combined with the following claim, Properties (Q.2), (Q.3), and (Q.4) imply

that | \scrR W | , | \scrR U | = \Theta 
\bigl( 
p(

r
2)nr

\bigr) 
and that \scrF is dense.

Claim 5.4. For every X \in \scrR W , deg\scrF (X) = \Omega 
\bigl( 
p(

r
2)nr

\bigr) 
holds.

Proof. Fix X \in \scrR W and let \Gamma X,\psi \subseteq H[NX ] be the subgraph whose existence is
guaranteed by Property (Q.5). For a color c \in \psi (EH(X)) seen on some edge of X, let
Mc \subseteq E(\Gamma X,\psi ) be the matching in \Gamma X,\psi induced by the color c. Standard regularity
arguments assert that the graph

\Gamma \prime 
X,\psi := \Gamma X,\psi \setminus 

\bigcup 
c\in \psi (EH(X))

Mc,

obtained from \Gamma X,\psi by removing all edges colored using a color seen on the edges of
H[X], is a member of the graph family specified in (14). Indeed, | \cup c\in \psi (E\Gamma (X))Mc| =
Or(n) = o(pn2), where the last equality holds since p = \omega (n - 1). Consequently, the
intercluster density of the K\LR-graph \Gamma X,\psi as well as its regularity parameter are
worsened by a factor of at most 2, say.

By Property (Q.5), every copy of Kr in \Gamma X,\psi is \psi -rainbow. At least \alpha p(
r
2)
\bigl( | NX | 

r

\bigr) 
of these \psi -rainbow copies of Kr are retained in \Gamma \prime 

X,\psi by Property (Q.6). Since

| NX | = \Omega d\prime ,\varepsilon (n) and, by Property (Q.7), all but at most \alpha 
2 p

(r
2)
\bigl( | NX | 

r

\bigr) 
copies of Kr in

H[NX ] are supported on the members of \scrB X,\psi , the claim follows.

It remains to prove that there are \Omega 
\bigl( 
p2(

r
2)n2r

\bigr) 
edges \{ X,Y \} of \scrF with X \in \scrR W

and Y \in \scrR U such that H[Y ] and H[X,Y ] do not clash, as each such pair gives rise
to a distinct \psi -rainbow copy of K2r. Let \scrF \prime be the spanning subgraph of \scrF whose
edges are pairs \{ X,Y \} \in E(\scrF ) such that H[Y ] and H[X,Y ] do clash. We claim that

(17) deg\scrF \prime (Y ) = o
\Bigl( 
p(

r
2)nr

\Bigr) 
for every Y \in \scrR U . To prove (17), fix Y \in \scrR U and let SY \subseteq W be the set of vertices
s \in W such that H[Y ] and H[\{ s\} , Y ] clash. As \psi is proper, each edge e in H[Y ] gives
rise to at most r - 2 edges from Y to W of color \psi (e). It follows that | SY | \leq (r - 2)

\bigl( 
r
2

\bigr) 
.

Note that every X \in \scrR W such that \{ X,Y \} \in E(\scrF \prime ) intersects SY . Property (Q.1)

then implies that deg\scrF \prime (Y ) = o
\bigl( 
| SY | p(

r
2)nr

\bigr) 
= o

\bigl( 
p(

r
2)nr

\bigr) 
and (17) follows. Since

| \scrR U | = \Theta 
\bigl( 
p(

r
2)nr

\bigr) 
, we conclude that e(\scrF \prime ) = o

\bigl( 
p2(

r
2)n2r

\bigr) 
. Since e(\scrF ) = \Omega 

\bigl( 
p2(

r
2)n2r

\bigr) D
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holds by Claim 5.4 and by the established fact that | \scrR W | = \Theta 
\bigl( 
p(

r
2)nr

\bigr) 
, we deduce

that

| E(\scrF \setminus \scrF \prime )| = \Omega 
\Bigl( 
p2(

r
2)n2r

\Bigr) 
,

i.e., the number of pairs \{ X,Y \} \in E(\scrF ) giving rise to a \psi -rainbow K2r is \Omega 
\bigl( 
p2(

r
2)n2r

\bigr) 
.

This concludes our proof of Theorem 1.2.

6. Rainbow odd cycles. In this section we prove Proposition 1.1.

Proof of Proposition 1.1. To see the 0-statement, fix some \ell \geq 2 and d \leq 1/2,
and let G be a bipartite graph on n vertices with edge-density at least d. Since
G is bipartite, any copy of C2\ell  - 1 in \Gamma \sim G \cup \BbbG (n, p) must contain some edge of
\BbbG (n, p). However, \BbbG (n, p) is a.a.s. empty whenever p = o

\bigl( 
n - 2

\bigr) 
. In particular, a.a.s.

no edge-coloring of \Gamma can yield a rainbow C2\ell  - 1 for any \ell \geq 2.
Proceeding to the 1-statement, let \ell \geq 2 and d > 0 be fixed, and let G \in Gd,n

be given. Apply Lemma 2.2 with parameters a := d2\ell \cdot n  - 1, d := dn, r := \ell , and
m :=

\surd 
n. Note that \biggl( 

n

r

\biggr) \Bigl( m
n

\Bigr) t
\leq n\ell \cdot n - 2\ell /2 = 1

holds for t = 2\ell . In particular, the inequality in Lemma 2.2 holds for this choice of
parameters. It follows that there exists a set U of at least d2\ell \cdot n - 1 vertices such that
every \ell vertex in U has at least

\surd 
n common neighbors. The probability that there

are no edges of \BbbG (n, p) in U is

(1  - p)(
| U| 
2 ) \leq e - \omega (n

 - 2\cdot n2) = o(1).

In other words, a.a.s. there is an edge of \BbbG (n, p) with both ends in U ; denote such
an edge by xy, and let X be a subset of U of size \ell that contains x and y. By the
assumption on U , the set Z of common neighbors of X has size at least

\surd 
n. We claim

that G[X,Z] \cup \{ xy\} contains a rainbow C2\ell  - 1 for every proper coloring \psi .
Let A = \{ z \in Z : \exists w \in X such that \psi (zw) = \psi (xy)\} . Note that | A| \leq \ell  - 2 as \psi 

is a proper edge-coloring. Let Z \prime = Z \setminus A. Now recall that the number of non-rainbow
copies of K\ell ,\ell  - 1 in G[X,Z \prime ], with X being their \ell -part, is at most O(| Z \prime | \ell  - 2) (see

Observation 4.1). As there are
\bigl( | Z\prime | 
\ell  - 1

\bigr) 
such copies of K\ell ,\ell  - 1 in G[X,Z \prime ], it follows that

there is a rainbow copy of K\ell ,\ell  - 1 in G[X,Z \prime ], whose vertex-set is X \cup Z \prime \prime , where Z \prime \prime is
a subset of Z \prime of size \ell  - 1. Consider the graph H with vertices X \cup Z \prime \prime and edge-set
(X\times Z \prime \prime )\cup \{ xy\} . It is a rainbow subgraph of G (by choice of Z \prime and Z \prime \prime ) which clearly
contains a copy of C2\ell  - 1. This concludes the proof of the proposition.
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