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Abstract

Given a word w of length n and i, j ∈ [n], the longest common extension is the longest substring

starting at both i and j. In this note we estimate the average length of the longest common

extension over all words w and all pairs (i, j), as well as the typical maximum length of the

longest common extension.

We also consider a variant of this problem, due to Blanchet-Sadri and Lazarow, in which the

word is allowed to contain ‘holes’, which are special symbols functioning as ‘jokers’, i.e. are

considered to be equal to any character. In particular, we estimate the average longest common

extension over all words w with a small number of holes, extending a result by Blanchet-Sadri,

Harred and Lazarow, and prove a similar result for words with holes appearing randomly.

1 Introduction

Given a word w of length n and i, j ∈ [n], the longest common extension of i and j is the longest

substring which starts at both i and j. We denote the length of this substring by lw(i, j). In other

words, lw(i, j) is the maximum l such that wi+t = wj+t for every 0 ≤ t < l. The problem of finding

the maximum longest common extension among a list of given pairs appears as a subproblem of many

known problems regarding substrings, such as the k-mismatch problem and the k-difference global

alignment problem (see [12, 13, 15, 1, 10, 2] and [16, 5] for more recent developments), estimating

the number of tandem repeats (see [8, 11, 14]), and computing palindromes or matchings with holes

(see [7]).

We denote by f(n, k) the average of lw(i, j) over all words w of length n over alphabet [k] = {1, . . . , k}
and all pairs (i, j) with 1 ≤ i < j ≤ n. Ilie, Navarro and Tinta [9] computed f(n, k) exactly and

obtained the following result.
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Theorem 1 (Ilie, Navarro and Tinta [9]). Let k ≥ 2 be fixed. Then limn→∞ f(n, k) = 1/(k − 1).

A modification of this problem has been introduced and studied by Blanchet-Sadri and Lazarow

[4], with further results proved by Crochemore et al. [6] and Blanchet-Sadri, Harred and Lazarow

[3]. Given alphabet A, let w be a word over alphabet A ∪ {♦}, where ♦ stands for a ‘hole’. We let

lw(i, j) be the largest l such that for every 0 ≤ t < l either wi+t and wj+t are equal or one of them

is a hole.

Our first aim in this paper is to consider, as in [3], the analogue f(n, k, h) of f(n, k) for words

with h holes. In other words, f(n, k, h) is the average of lw(i, j) over all words w of length n over

alphabet [k] ∪ {♦} with exactly h ♦’s, and over all pairs (i, j) with 1 ≤ i < j ≤ n. We shall show

that, perhaps unsurprisingly, when the number of holes is small, the effect on the average longest

common extension is negligible. This extends the result of Blanchet-Sadri, Harred and Lazarow [3]

who showed that if h is constant, then limn→∞ f(n, k, h) = 1
k−1 . The following result implies that

this holds whenever h = o(n1/3).

Theorem 2. Let k = k(n) ≥ 2 and n ≥ h. Then, as n→∞, f(n, k, h) = 1
k−1 + O

(
h3

n

)
.

Our next aim is to consider the variant of f(n, k, h) in which the holes appear randomly. For

p ∈ [0, 1] denote by g(n, k, p) the average of lw(i, j) where w is an n-letter word each of whose

letters is chosen independently to be a hole with probability p and any letter in [k] with probability
1−p
k , and over all pairs (i, j) with 1 ≤ i < j ≤ n. This model is very close to the case of random

words of length n over an alphabet of size k, containing approximately pn holes.

Theorem 3. Let k = k(n) ≥ 2 and p = p(n) ∈ [0, 1). Then, as n → ∞, g(n, k, p) = q
1−q +

O
(

q
(1−√q)2n

)
, where q = 1− (1−p)2(k−1)

k .

To better understand the estimate of g(n, k, p) from Theorem 3, note that

q

1− q
=

1− (1−p)2(k−1)
k

(1−p)2(k−1)
k

=
1

k − 1
·
(

k

(1− p)2
− (k − 1)

)
=

1

k − 1
·
(

1 + k ·
(

1

(1− p)2
− 1

))
.

In particular, if p = 0, the estimate in Theorem 3 coincides (as expected) with the estimate of

f(n, k). If p = 1
k+1 , i.e., a hole appears with the same probability as the characters from [k], we

find that g(n, k, p) = 3
k−1 + 1

k(k−1) +O
(

1
kn

)
. Finally, we consider the case where p is close to 1. Set

p = 1− ε, and assume that ε is ‘small’. Then f(n, k, p) = k
k−1 ·

1
ε2
− 1 +O

(
1

ε4n

)
(so this estimate is

useful when ε = ω(n−1/2)).

Our final aim in this note is to study the maximum, rather than average, of the length of the

longest common extensions. To be precise, as before, let w be a word of length n, and set l(w) =
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maxi<j lw(i, j). Theorem 4 below shows that l(w) is, with high probability, very close to 2 logk n.

This improves a result of Ilie, Navarro and Tinta [9] who showed that the average of l(w) is at

least logk n − 2 and at most 2 logk n (in fact, there is a mistake in the calculation of their upper

bound: they use an upper bound on the number of strings of length n and alphabet [k] with a

repeated substring of length l, but their argument gives a worse upper bound than stated, which

results in an ineffective upper bound for the expectation). We note that statements about events

that occur with high probability tend to be more interesting and harder to prove than statements

about expectations.

Theorem 4. Let n and k = k(n) be such that k ≥ 2 and logk n → ∞ as n → ∞. If w is chosen

uniformly at random from [k]n, then l(w) = 2 logk n + O(logk(logk n)), with high probability.

We prove Theorems 1 to 3 in Section 2 and prove Theorem 4 in Section 3.

2 Average length of longest common extensions

In this section we shall prove Theorems 1 to 3, which concern the average longest common extension

in several settings. Before we turn to the proofs, we mention the following equality, which holds for

|x| < 1. We shall use it several times throughout this section.

∑
l≥0

(l + 1)xl =
∑
s≥0

∑
t≥s

xt =

(
1

1− x

)2

. (1)

For the sake of completeness, we give a short proof of Theorem 1, due to Ilie, Navarro and Tinta

[9]. Recall that f(n, k) is the average of the common longest extensions for words of length n over

alphabet [k]. In fact, we shall prove Theorem 1 in the following quantitative form.

Theorem 1’. Let k ≥ 2. Then f(n, k) =
(
1 + O

(
1
kn

))
1

k−1 .

Proof. The following holds, where w is taken uniformly at random from [k]n.

f(n, k) =
1(
n
2

)∑
i<j

Ew[lw(i, j)]

=
1(
n
2

)∑
l≥0

∑
i<j

P[lw(i, j) > l].

We now evaluate the probability that lw(i, j) > l (where i 6= j).

P[l(i, j) > l] =

{ (
1
k

)l+1
if i, j ≤ n− l

0 otherwise

3



Indeed, wi is equal to wj with probability 1/k, wi+1 is equal to wj+1 with probability 1/k and so

on. This reasoning holds even if i ≥ n− l. In particular, we have that P[l(i, j) > l] ≤
(
1
k

)l+1
. Thus,

by the above expression for f(n, k),

f(n, k) ≤
∑
l≥0

(
1

k

)l+1

=
1

k
· 1

1− 1/k
=

1

k − 1
.

We next give a lower bound on f(n, k) which is very close to the upper bound. Here we use (1) and

the fact that
(
n
2

)
−
(
n−l
2

)
= (2nl − l − l2)/2 ≤ nl.

f(n, k) =
1(
n
2

)∑
l≥0

(
n− l

2

)(
1

k

)l+1

≥ 1(
n
2

)∑
l≥0

((
n

2

)
− nl

)(
1

k

)l+1

=
∑
l≥0

(
1

k

)l+1

− 2

n− 1

∑
l≥0

l

(
1

k

)l+1

=
1

k − 1
− 2

n− 1

(
1

k − 1

)2

=

(
1 + O

(
1

kn

))
1

k − 1
.

To sum up, we have f(n, k) =
(
1 + O

(
1
kn

))
1

k−1 .

We proceed to the proof of Theorem 2 which gives an estimate for f(n, k, h), the average of the

common longest extensions of words of length n with h holes over alphabet [k].

Theorem 2. Let k = k(n) ≥ 2 and n ≥ h. Then, as n→∞, f(n, k, h) = 1
k−1 + O

(
h3

n

)
.

Proof. Clearly, the probability P[lw(i, j)] can only increase by the appearance of holes. Thus,

f(n, k, h) ≥ f(n, k) =

(
1 + O

(
1

n

))
1

k − 1
.

We now obtain an upper bound on f(n, k, h). We use the following crude bounds on the probability

that lw(i, j) > l for a word w with at most h holes (here x+ = max{0, x}).

P[l(i, j) > l] ≤

{ (
1
k

)l+1
if none of wi+k, wj+k is a hole for k ≤ l(

1
k

)(l+1−2h)+
otherwise
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In order to obtain an upper bound, we note that the following inequality holds.

f(n, k, h) ≤ 1(
n
2

)
(n

2

)∑
l≥0

(
1

k

)l+1

+ 8h3n +
∑
l≥2h

hln

(
1

k

)l+1−2h
 .

To see this, the first term accounts for all choices of i < j such that wi+t, wj+t 6= ♦ for every t ≤ l;

the second term accounts for all pairs i < j such that wi+t = ♦ or wj+t = ♦ for some t ≤ l where

l ≤ 2h− 1 (h choices for a particular hole, 2h choices for l, l + 1 ≤ 2h choices for t, two choices for

which of wi+t and wj+t is a hole, and n choices for either i or j); and the third term accounts for

pairs i < j for which wi+t = ♦ or wj+t = ♦ for some t < l and l ≥ h.

The contribution of the first term to the sum is exactly 1
k−1 ; the contribution of the second term is

O
(
h3

n

)
; and to calculate the contribution of the third term, using (1), we have the following.

∑
l≥2h

hl

(
1

k

)l+1−2h
=
∑
t≥0

h(t + 2h− 1)

(
1

k

)t

= h
k

(k − 1)2
+ h(2h− 1)

k

k − 1
= O(h2)

It follows that the contribution of the third term to the sum is O
(
h2

n

)
. Consequently,

f(n, k, h) =
1

k − 1
+ O

(
h3

n

)
.

We note that this estimate holds even if the h holes are in prescribed positions in the word (rather

than choosing the positions of the holes uniformly at random).

We now prove Theorem 3 which gives an estimate for g(n, k, p), the average of the longest common

extensions in words of length n over alphabet [k] and holes appearing with probability p.

Theorem 3. Let k = k(n) ≥ 2 and p = p(n) ∈ [0, 1). Then, as n → ∞, g(n, k, p) = q
1−q +

O
(

q
(1−√q)2n

)
, where q = 1− (1−p)2(k−1)

k .

Proof. We say that two different characters are compatible if they are either equal or one of them

is a hole. The probability that two different characters are incompatible (i.e. are not holes and are

distinct) is (1−p)2(k−1)
k . Hence q = 1 − (1−p)2(k−1)

k is the probability that two different characters

are compatible. We obtain the following bounds for the probability that lw(i, j) > l.

P[l(i, j) > l] = 0 if j > n− l

P[l(i, j) > l] = q l+1 if j ≤ n− l and i ≤ j − l − 1

P[l(i, j) > l] ≤ √q l+1 otherwise.
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To see why the inequality in the third line holds, suppose that j = i + t where t ≤ l. Denote

Is = {i+ st, i+ st+ 1, . . . , i+ (s+ 1)t− 1} and let K = (I0 ∪ I2 ∪ . . .)∩{i, . . . , i+ t}. Note that the

events {wi+s, wj+s are compatible} are independent for s ∈ K and have probability q each. Since

|K| ≥ (l + 1)/2, it follows that P[l(i, j) > l] ≤ q (l+1)/2 =
√
q l+1.

We start with the lower bound. Note that there are at least (n− l)(n− 3l)/2 pairs (i, j) such that

j ≤ n − l and i ≤ j − l − 1. For every such pair the probability that lw(i, j) > l is ql+1. Thus the

following upper bound holds (the last equality follows from (1)).

g(n, k, p) ≥ 1(
n
2

)∑
l≥0

1

2
(n− l)(n− 3l − 1)q l+1

≥ 1(
n
2

)∑
l≥0

((
n

2

)
− 2ln

)
q l+1

=
q

1− q
− 4

n− 1

(
q

1− q

)2

For the upper bound, we have the following inequality.

g(n, k, h) ≤ 1(
n
2

)
(n

2

)∑
l≥0

q l+1 +
∑
l≥0

ln · √q l+1


=

q

1− q
+

2

n− 1
· q

(1−√q)2
.

Indeed, the second term takes into account the pairs (i, j) such that j−l ≤ i < j and its contribution

can be bounded using (1). Combining the upper and lower bounds, we have that

g(n, k, p) =
q

1− q
+ O

(
q

(1−√q)2n

)
,

completing the proof of Theorem 3.

3 Maximum longest common extensions of random words

In this section we address the problem of finding the maximum length of the longest common

extensions. In particular, we prove Theorem 4.

Theorem 4. Let n and k = k(n) be such that k ≥ 2 and logk n → ∞ as n → ∞. If w is chosen

uniformly at random from [k]n, then l(w) = 2 logk n + O(logk(logk n)), with high probability.

Proof. Let w be a word selected uniformly at random from [k]n. We first prove an upper bound

on l(w). Suppose that k l = ω(n2). Recall that the probability that lw(i, j) ≥ l is at most
(
1
k

)l
.
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Thus, the probability that there is a pair i < j for which lw(i, j) ≥ l is at most
(
n
2

) (
1
k

)l
= o(1), i.e.,

P[l(wn) ≥ l] = o(1) if k l = ω(n2). Taking l = 2 logk n+logk(logk n), we have k l = n2·logk n = ω(n2),

implying that P[l(w) ≥ l] = o(1). In other words, l(wn) ≤ 2 logk n + logk(logk n), with high

probability.

On the other hand, if w is an n-letter word satisfying that l(w) < l, then, in particular, the subwords

w(t) = w(t−1)l+1 . . . wtl, where t = 1, . . . ,
⌊
n
l

⌋
, are distinct. Thus, the probability that l(w) < l is

at most the probability that w(1), . . . , w(T ) are distinct, which, if w is chosen uniformly at random

out of [k]n, is the probability that a sequence T =
⌊
n
l

⌋
words of length l generated independently

contains no two words which are the same. We thus obtain the following upper bound on the

probability that l(w) < l.

P[l(w) < l] ≤ k l(k l − 1) . . . (k l − (T − 1))

(k l)T

=
∏

0≤t<T

(
1− t

k l

)

≤ exp

− ∑
0≤t<T

t

k l


= exp

(
−
(
T
2

)
k l

)
.

Hence, if k l = o
((

n
l

)2)
, P[l(w) < l] = o(1). Let l = 2 logk n− 3 logk(logk n). Then k l = n2

(logk n)3
=

o
((

n
l

)2)
, implying that P[l(w) < l] = o(1). In other words, l(wn) ≥ 2 logk n − 3 logk(logk n), with

high probability.

From this high concentration result, it is but a short step to conclude that the expectation of l(w)

is about 2 logk n, improving a result from [9].

Corollary 5. E [l(w)] = 2 logk(n) + O(logk(logk n).

Proof. We first prove the lower bound. From the proof of Theorem 4, it follows that if l =

2 logk n − 3 logk(logk n) then P[l(w) ≤ l] ≤ exp
(
−
(
n/l
2

)
1
kl

)
= exp(− logk n/8) ≤ 1

logk n . It follows

that

E [l(w)] ≥ l · P (l(w) ≥ l) ≥

(2 logk n− 3 logk(logk n))

(
1− 1

logk n

)
=

2 logk n + O(logk(logk n)).
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For the proof of the upper bound we need to be a little more careful. Let l1 = 2 logk n+2 logk logk n

and l2 = 4 logk n. Then P (l(w) ≥ l1) ≤
(
n
2

) (
1
k

)l ≤ (logk n)−2 and P (l(w) ≥ l2) ≤ n−2. Hence,

E [l(w)] ≤ l1 · P (l(w) < l1) + l2 · P (l1 ≤ l(w) < l2) + n · P (l(w) ≥ l2)

≤ l1 +
l2

(logk n)2
+

n

n2

= 2 logk n + O(logk(logk n)).

It follows that E [l(w)] = 2 logk n + O(logk(logk n)).

The addition of holes with probability p, as in Theorem 3, would result in a similar theorem, but

with a different constant multiple of logk n as the main term.
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