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Abstract

Studies of the neural basis of intelligence have focused on comparing brain imaging

variables with global scales instead of the cognitive domains integrating these scales

or quotients. Here, the relation between mean tract-based fractional anisotropy

(mTBFA) and intelligence indices was explored. Deterministic tractography was per-

formed using a regions of interest approach for 10 white-matter fascicles along

which the mTBFA was calculated. The study sample included 83 healthy individuals

from the second wave of the Cuban Human Brain Mapping Project, whose WAIS-III

intelligence quotients and indices were obtained. Inspired by the “Watershed model”

of intelligence, we employed a regularized hierarchical Multiple Indicator, Multiple

Causes model (MIMIC), to assess the association of mTBFA with intelligence scores,

as mediated by latent variables summarizing the indices. Regularized MIMIC, used

due to the limited sample size, selected relevant mTBFA by means of an elastic net

penalty and achieved good fits to the data. Two latent variables were necessary to

describe the indices: Fluid intelligence (Perceptual Organization and Processing

Speed indices) and Crystallized Intelligence (Verbal Comprehension and Working

Memory indices). Regularized MIMIC revealed effects of the forceps minor tract on

crystallized intelligence and of the superior longitudinal fasciculus on fluid intelli-

gence. The model also detected the significant effect of age on both latent variables.
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1 | INTRODUCTION

Intelligence has been defined in many ways over the years, leading to still

intense controversy in psychology. Definitions have ranged from the

operational statement that “intelligence is what Intelligence Quotient

(IQ) tests measure” to the proposal of a latent variable reflecting a very

general capability that, among other things, involves the ability to reason,

plan, solve problems, think abstractly, understand complex ideas, learn

quickly, and learn from experience (Gottfredson, 1997). In any case,

irrespective of the definition, measures of intelligence have strong corre-

lations with brain imaging and genetic measures (Deary, Penke, & John-

son, 2010), prompting the use of several neuroimaging techniques to try

to understand the neural basis of intelligence. The relationship between

IQ and brain structure has been explored using many techniques
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including voxel-based morphometry, cortical thickness, spectroscopy,

and diffusion-weighted imaging (DWI) (Basten, Hilger, & Fiebach, 2015;

Haier, 2009; Joshi et al., 2011; Reiss, Abrams, Singer, Ross, & Denckla,

1996; Yu et al., 2008). These studies suggest that structural and func-

tional brain imaging can express individual differences in brain pathways,

particularly the parietofrontal structures (Jung & Haier, 2007) which cor-

relate positively with intelligence (Deary et al., 2010).

An interesting strand of these studies, one that we will follow in

this article, suggests links of white-matter microstructural properties

(such as fractional anisotropy or FA) to cognitive information-

processing speed and thus to the neural foundation of general intelli-

gence (Penke et al., 2012). FA quantifies the dispersion of water

molecules, and it is constrained by the organization of white-matter

structures. While sometimes interpreted as a measure of white-matter

integrity, FA is a very complex and indirect measure with various limi-

tations, and its relationship to white-matter health is not yet fully

understood (Bender, Prindle, Brandmaier, & Raz, 2016; Jones,

Knösche, & Turner, 2013). Nevertheless, FA is widely used, as it has

been shown to be associated with individual differences in a range of

cognitive domains, especially in old age (Madden et al., 2009). As an

example, there are significant correlations between water diffusion

parameters and intelligence across the life span, from childhood

(Deary et al., 2010) to old adulthood (Charlton et al., 2006; Deary

et al., 2006). Other studies have provided evidence that all measures

of information-processing speed, as well as a general speed factor

composed from these tests (g-speed), were significantly associated

with FA (Kuznetsova et al., 2015).

Many of these studies suffer from three main shortcomings:

1. The relation of neuroimaging with intelligence measures is usually

based on simple correlations. While useful in exploratory analyses,

they do not provide information about causal pathways that

require more complex multivariate analyses. Specific statistical

methods for causal analysis must be used.

2. There is an inconsistent exploration of cognitive domains. Some

studies rely on specially designed cognitive scales, then summa-

rized to reflect a single latent variable. Even when widely available

scales, such as the Wechsler Adult Intelligence Scale (WAIS)

(Wechsler, Sierra, & Blanca, 2003), are used, they are often also

reduced to a single score, such as the general or “g” factor

(Spearman, 1904), or “fluid intelligence” using different procedures.

It is better to explore the individual indices of the WAIS, those

related to performance intelligence: Perceptual Organization

(PO) and Processing Speed (PS), as well as verbal Intelligence: Ver-

bal Comprehension (VC) and Working Memory (WM).

3. The anatomical accuracy in the definition of the tracts has been

variable across studies. Some examples with progressive accuracy

are as follows:

a. Initial studies using voxel-based averages of FA values without

close matching to the tract they belonged to voxel based frac-

tional anisotropy.

b. The mean FA values over each tract, where these are defined

by the projection fasciculi from a population-averaged

tractography atlas to the subject's native space (mean tract-

based fractional anisotropy [mTBFA]-atlas).

c. FA averages along tracts obtained from each subject's DWI in

native space (mTBFA-individual).

We now review the solution to these three issues and analyze

recent papers which dealt with them.

Regarding the first problem about statistical issues, appropriate

multivariate methods to determine causal pathways are now emerg-

ing. Specifically, the Structural Equation Modeling (SEM) framework

has proven to be particularly useful (Bollen & Hoyle, 2012). These

models estimate a set of regression equations which may be inter-

preted in terms of a directed Bayesian network in which the variables

studied are considered as nodes of a graph with each valid regression

equation a directed edge. This graph fulfills a Markov property that

can be explained as follows: If variable A is connected to B and B to C,

and there is no other direct or indirect path from A to C, B “totally

mediates” the influence of A on C. In other words, B “screens off” A

from C. Under appropriate conditions (Pearl, 2000), the resulting

graphs allow some inference about mechanistic causal relations. For a

discussion of these concepts in brain networks, see Valdes-Sosa,

Roebroeck, Daunizeau, and Friston (2011). A particularly useful type

of SEM is the Multiple Indicator, Multiple Causes (MIMIC) introduced

by Jöreskog and Goldberger (2006) in which latent variables are intro-

duced as mediators between two sets of observed variables. This

framework was leveraged by Kievit et al. (2012, 2016) and Kievit,

Fuhrmann, Borgeest, Simpson-Kent, and Henson (2018) to provide an

SEM specification for the study of the relation of FA with intelligence,

work that is worth summarizing in the next paragraph.

In Kievit et al. (2012), a MIMIC model was estimated with the fol-

lowing three levels to the data of 80 subjects: (a) Voxel-based region

of interest (ROI) measures for four FA (VBFA) tracts and 4 Gy matter,

(b) a single g (WAIS) latent variable, (c) the four WAIS indices (WM,

VC, PO, and PS). This model was applied and showed a good fit but

considered only a single cognitive domain based on a sample with a

limited age range (18–29 years) and a limited small number of FA

measures that were not actually tract based.

The former study was followed by a seminal paper by Kievit et al.

(2016) that embodied statistically the “watershed model” proposed by

Cannon and Keller (2006) within the MIMIC framework. That model

postulated that multiple causes act through latent variables (endo-

phenotypes) to produce the observable phenotypes. This MIMIC/

watershed model was fit to a cross-sectional sample of 555 subjects

aged from 18 to 87 years of age (Cam-CAN; Shafto et al., 2014). The

model comprised four levels, the first level consisting of 10 mBTFA-

atlas measures (Table 1). The second level was six speed of processing

(CAM/CAN). The third level was a unique latent variable identified

with “fluid intelligence” (FI-CAM/CAM). Hereon we will identify psy-

chometric scales and latent variable by the initials of the study. Finally,

the last level consisted of the four subtests of fluid intelligence of

Cattell's Culture Fair, Scale 2, Form A (Cattell, 1971). This model was

built up by a successive exploration of increasingly more complex

models verified with confirmatory factor analyses. The overall model
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gave an excellent fit to such a large sample, verifying the use of the

MIMIC approach. Note that age was not included as an explicit vari-

able at level one.

Subsequent to the Kievit et al. (2016) proposal of the watershed

model for intelligence regularized regression methods were integrated

into SEM/MIMIC modeling (Jacobucci, Brandmaier, & Kievit, 2019).

Regularization (Zou & Hastie, 2005) imposes restrictions on the rela-

tions between coefficients allowing the exploration of large sets of

variables with built-in selection of those that are relevant. This model

was used to study subjects from the UK Biobank (Kievit et al., 2018)

in a longitudinal study with three waves, with 185,317, 9,719, and

870 subjects, respectively. As acknowledged by the authors, the cog-

nitive domains explored were limited by the UK Biobank design with

a conflation of fluid and crystal intelligence items. Interestingly, a

three-level MIMIC model was integrated with a longitudinal one to

analyze individual variable trajectories. This time, a three-level model

was assumed:

1. Fifteen mTBFA individual for a set that includes those described in

Table 1;

2. Coefficients of the age regression (two latent variables);

3. Fluid intelligence scores (FI-UK Biobank).

In this very large longitudinal study, the use of MIMIC models is

once more validated, the effect of aging is discussed, and the use of

personalized (mTBFA-individual) and not atlas-based FA measures

was introduced. As the authors state, the “suboptimal task design”

restricted the exploration of cognitive interpretation. Besides, findings

from the same group (Kievit et al., 2018) showed a weak but signifi-

cant negative association between age and fluid intelligence.

Our study reported here will attempt to fill in some of the gaps of

previous studies. We will take advantage of one of the rare

population-based studies based in a country in Latin America: the sec-

ond wave of the Cuban Human Brain Mapping Project (CHBMP;

Hernandez-Gonzalez et al., 2011). This cross-sectional study evalu-

ated more than 95% of a random sample of 2,109 subjects with medi-

cal, cognitive, and neuroimaging studies (T1, T2, DWI,

electroencephalogram (EEG)) to yield a final group of 240 “functionally

healthy” subjects, of which 83 (aged 18–69 years) were used in this

study. Not only does this allow us to reexamine some of the unan-

swered questions from previous studies but also to construct an

MIMIC (watershed model) that integrates previous approaches by the

following:

1. Exploring a wider range of cognitive domains namely, the four

WAIS indices for intelligence as in Kievit et al. (2012).

2. Partitioning for the first time, the variance of these indices among

the optimal number of latent variables.

3. Using individualized average FA tract-based measures of white-

matter microstructure as in Kievit et al. (2018).

4. Constructing a watershed model of the influence of white-matter

microstructure, mediated by latent factors, on the full set of indices

of the WAIS.

2 | MATERIAL AND METHODS

2.1 | Participants

The sample included 83 healthy right-handed participants with an

average age of 35.03 ± 10.27 years and 12.12 ± 2.46 years of educa-

tion. The recruitment was based on a completely randomized sampling

using the identity card database stratified by age, gender, and outward

ethnic features of 2,109 subjects of the whole population of La Lisa

municipality (more than 30,000) in La Habana. It is important to note

that this municipality was selected because its demography closely

matched those of the general Cuban population according to the

national census of the Republic of Cuba: http://www.one.cu/.

The present study was carried out in accordance with The Code

of Ethics of the World Medical Association, Declaration of Helsinki

(World Medical Organization, 2013), and the experimental protocols

were approved by the Ethics Committee of the Cuban Neuroscience

Center. The recruitment procedure did not involve any kind of reward,

but only feedback about the results and participants were included in

the study after accepting and signing the informed consent.

2.2 | Assessments

Each participant underwent an interview and medical examination

with specialists in Neurology and Psychiatry, in order to rule out

chronic diseases (e.g., addictions, including smoking) or any disorders

of the nervous system that would invalidate their participation in the

study. Neurological examination was performed following the proce-

dure described in the guidelines published by the U.S. Department of

Health and Human Services in 2003 (Neurological Single System

Examination in http://www.cms.gov/MLNEdWebGuide/25_EMDOC.

asp). The Mini-International Psychiatric Interview was used for psychi-

atric evaluation (Sheehan et al., 1998). Intelligence was assessed using

the fully validated and translated to Spanish language version of the

WAIS-III (Wechsler et al., 2003), printed and distributed in Mexico by

TABLE 1 White-matter tracts included in the analysis

Full name of white-matter tract Abbreviation

Anterior thalamic radiation ATR

Cingulum associated to cingulate gyrus CGC

Cingulum associated to hippocampal gyrus CGH

Corticospinal tract CST

Forceps major Fmj

Forceps minor Fmn

Inferior fronto-occipital fasciculus IFO

Inferior longitudinal fasciculus ILF

Superior longitudinal fasciculus SLF

Uncinate fasciculus UNC
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The Manual Moderno (https://www.worldcat.org/title/wais-iii-escala-

weschler-de-inteligencia-para-adultos-iii/oclc/54053545). This scale

provided scores for a Full Scale IQ (FSIQ), Verbal IQ (VIQ), and Perfor-

mance IQ (PIQ) along with four secondary indices: PO, PS, VC, and

WM. The subtests included in each index were as follows: PO: picture

completion, block design, matrix reasoning; PS: digit-symbol coding

and symbol search; VC: vocabulary, similarities, information, compre-

hension; and WM: arithmetic, digit span, letter-number sequencing.

The raw measures were scored according to the official normative

data included in the printed version of WAIS-III. However, to avoid

culture bias, they were subsequently standardized with information

from the Cuban sample to produce scores of the specific performance,

adjusted for age for our population.

2.3 | Magnetic resonance imaging acquisition
protocol

A Siemens 1.5 T Magnetom Symphony system with a standard bird-

cage head coil for signal transmission/reception (Siemens, Erlangen,

Germany) was used to acquire images, including a high-resolution

T1-weighted anatomical image and a standard diffusion sequence.

The T1-weighted structural image (1 × 1 × 1 mm resolution) was

acquired with the following parameters: echo time (TE) = 3.93 ms,

repetition time (TR) = 3,000 ms, flip angle = 8�, and field of view

(FOV) = 256 × 256. This yielded 160 contiguous 1-mm-thick slices in

a sagittal orientation. Axial diffusion weighted images were acquired

along 12 independent directions, in 50 slices spaced at 3 mm, with

2 × 2 mm in-plane resolution, and a diffusion weighting b value of

1,200 s/mm2. The following parameters were used: FOV = 128 × 128,

TE = 160 ms, TR = 7,000 ms, flip angle = 90�. A reference image (b0

image) with no diffusion weighting was also obtained (b = 0 s/mm2).

In order to correct the distortions caused by magnetic field inho-

mogeneities in the series of diffusion-weighted images, phase and

magnitude maps were obtained. The parameters used were voxel size

of 3.5 mm, ET1 = 7.71 ms, ET2 = 12.47 ms, and RT = 672 ms. The Dif-

fusion Tensor Imaging images were movement, eddy-current, and dis-

tortion corrected. Using the magnitude and phase images and the

unwarping functionality (Anderson, 2001), the effects of the principal

inhomogeneities of magnetic fields were corrected. Later, the diffu-

sion tensor and the FA were determined in each voxel (Pierpaoli &

Basser, 1996).

2.4 | Fiber tracking computation

Computation of the diffusion tensor and fiber tracking was performed

using DTI&FiberTools v.3.0 (www.uniklinik-reiburg.de/mr/live/

arbeitsgruppen/diffusion_en.html; Kreher, Hennig, & Il'yasov, 2006)

and implemented in Matlab (The MathWorks, 2014). According to the

formulation of Basser, Mattiello, and LeBihan (1994), and by diagonal-

izing the diffusion tensor for each voxel, the toolbox generates as out-

put six components of a diffusion tensor, three eigenvectors that

characterize the direction of diffusion, and three eigenvalues that

characterize the magnitude of the diffusion in the corresponding

eigenvector calculated (Basser et al., 1994).

Three-dimensional reconstruction of the tracts was performed

using the deterministic tractography method Fiber Assignment by

Continuous Tracking algorithm and a brute-force reconstruction

approach (Mori, Crain, Chacko, & Van Zijl, 1999). Fiber tracking was

initiated by specifying six parameters: the minimum FA threshold for

starting tracking, the minimum FA for stopping tracking, the maximum

trace (Tr) for starting tracking, the maximum trace for stopping track-

ing, the critical angle threshold for stopping tracking in case the algo-

rithm encounters a sharp turn in the fiber direction, and a minimum

fiber length. The start criteria used in the reconstruction of the tracts

were FA = 0.15, Tr = 0.0016, and a stop criteria FA = 0.10, Tr = 0.002.

A turning angle threshold of 53.1� and minimum fiber length of five

voxels were used. The DTI&Fiber Tools v.3.0 used these parameters

to generate the coordinates of all fibers in the brain from which the

tract trajectory is reconstructed after drawing an ROI in a user-

defined region of the brain.

2.5 | Definition of tract-based fractional
anisotropy (mTBFA)

A multiple ROIs approach was used for the reconstruction of the

tracts of interest because it has been shown that the two-ROI and

brute-force approaches could effectively reduce the sensitivity to the

noise and ROI placement (Huang, Zhang, van Zijl, & Mori, 2004). The

fiber tracking was performed on every voxel of the brain, and fibers

that penetrated the previously defined ROIs were assigned to the spe-

cific tracts associated with each pair of ROIs.

Definition of ROIs for studied tracts was made by replicating a

set of predefined ROI by Mori et al. (2002) that was employed suc-

cessfully in subsequent work (Góngora, Domínguez, & Bobes, 2016;

Mori et al., 2008; Wakana et al., 2007; Wakana, Jiang, Nagae-

Poetscher, Van Zijl, & Mori, 2004). The following procedure replicated

the methodology published by Góngora et al. (2016). These ROIs were

drawn using the program MRIcron (http://www.mricron.com) on a

reference anatomical image with a spatial resolution of 1 × 1 × 1 mm3

in stereotactic space of the Montreal Neurological Institute (Evans

et al., 1993). The ROIs were then transformed to each individual brain

space automatically using the SPM toolbox functionalities (Friston,

Ashburner, Kiebel, Nichols, & Penny, 2007). In this routine, the high-

resolution anatomical T1 image was realigned to the standard position

on the AC–PC plane and normalized using the procedures of SPM.

The unnormalized T1 was rigidly co-registered with the b0 image

using a mutual information cost function (Collignon et al., 1995). The

ROIs were defined for the following tracts defined in Table 1. The

resulting path of these tracts was visually inspected and corrected in

cases where necessary by the exclusion of fibers that did not belong

anatomically to tracts. The mean tract-based FA (mTBFA) was

obtained as an estimate of the average along each tract, which

resulted from the superposition of the specific coordinates for each
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tract on the corresponding maps of FA. For the statistical analysis, this

parameter was averaged between the corresponding bilateral tracts.

2.6 | Statistical analysis

In the present study, we first used the MIMIC model to determine the

number of latent variables necessary to explain the four indices of

WAIS-III. For this purpose, we first fitted a single latent g (WAIS-III)

model as in Kievit et al. (2012) as a composite of PO and PS, and VC

and WM. Subsequently, a two-latent variable model was fitted to

these same indices corresponding to verbal and performance intelli-

gence scales.

Subsequently, the sample was fitted with a modification of the

watershed model proposed by Kievit et al. (2016). In our model, ana-

tomical variables (mTBFA) affect the two intelligence latent variables

that in turn mediate the WAIS-III indices. Age is also included as affect-

ing the latent variables as in Kievit et al. (2018). Exploratory analysis

regarding possible confounds (gender, handedness, and educational

level) in the estimations was performed but without relevant effects in

the estimations and will not be further considered in this article.

Estimates may be imprecise when using maximum likelihood esti-

mation with large numbers of variables and a limited sample size. We

therefore used the regularized SEM model (Jacobucci et al., 2019)

implemented in the cv_regsem function (regsem package in R)

(Jacobucci, Grimm, & McArdle, 2016) as a postprocessing of a laavan

model. We used an Elastic-net regularization (equal proportion of

Lasso and Ridge regularization). The regularization parameter λ, which

determines the number of variables to keep in the model, was

explored across 35 values of λ ranging from 0 to 0.35. The elastic-net

method provides a compromise between sparsity and variable selec-

tion of cluster of related variables (Zou & Hastie, 2005). To choose a

final model among the 35 models run, the Bayesian information crite-

rion (BIC; Schwartz, 1978) was used, which approximates the Bayes-

ian model evidence, thus providing a trade-off metric of model fit and

model complexity in which the best model achieves the lowest value.

The final model is shown as that selected by the regularized SEM

package.

3 | RESULTS

Analysis of the IQ measures

The application of the WAIS-III resulted in the estimation of a

mean FSIQ of 101.75 ± 13.25, a mean VIQ of 96.58 ± 13.73, and a

mean PIQ of 107.94 ± 11.64, which were in the average range and

were normally distributed (Figure 1). The means for the four indices

were PO: 27.71 ± 6.77, PS: 16.63 ± 4.97, VC: 29.39 ± 7.42, and WM:

26.17 ± 5.77.

As a first step for the full MIMIC model, we first built up the mea-

surement model using only the WAIS-III indices. We tested the ade-

quacy of the single latent variable g-WAIS. This model showed an

almost acceptable, but not good, fit, with a χ2 = 5.589, df = 2,

p = .061, Root Mean Square Error of Approximation (RMSEA) = 0.161

(0.000–0.326), Comparative Fix Index (CFI) = 0.963, Standardised

Root Mean Square Residual (SRMR) = 0.044, and Satorra–Bentler

scaling factor = 1.196. The BIC of this model was 831.075. All the

indexes contribute significantly to their corresponding latent variables

with a p < .001.

We subsequently fitted a second model for the indices, now consid-

ering two latent variables: one corresponding to the verbal (VC and WM)

and the other to the performance (PO and PS)-related indices. This

model also fits the data very well: χ2 = 0.189, df = 1, p = .664,

RMSEA = 0.000 (0.000–0.226), CFI = 1, SRMR = 0.008, and Satorra–

Bentler scaling factor = 1.045. The BIC of this model was lower than the

single latent variable one with an estimate of 825.854 indicating a better

fit. Note that all the indices contributed significantly to their

corresponding latent variables with a p < .001. For the rest of the article,

we used these two latent factors identifying the verbal one with “crystal-

lized intelligence” and the performance one with “fluid intelligence”

according to Cattell (1963)), denoted in this article as CI and FI without

any further clarification. The detailed breakdown of the contribution of

the indices to latent factors is as follows. For FI, PO has an R2 of 0.856

while PS: 0.408. For CI, the R2 of VC is 0.756 and WM 0.483.

3.1 | MIMIC (watershed) model of integrated WM
and cognitive measures

We fitted a regularized SEM/MIMIC/Watershed model with an

elastic-net penalty (Jacobucci et al., 2019), introducing the following

hierarchical levels:

1. The most upstream variables were the 10 major white-matter tract

mTBFA, which were modeled as influencing only the two latent

variables. Note that age was also added at this level as in Kievit

et al. (2018).

F IGURE 1 Histogram of Wechsler Adult Intelligence Scale III
(Wechsler et al., 2003). FSIQ, Full Scale Intelligence Quotient; PIQ,
Performance Intelligence Quotient; VIQ, Verbal Intelligence Quotient
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2. A next level where the two latent variables obtained in the previ-

ous section: Fluid and Crystallized intelligence.

3. Finally, at the lowest level, the four WAIS-III indices (VC, PO, WM,

and PS) mediated by the latent variable of their corresponding cog-

nitive domain.

Note that for this implementation of regularized SEM, p values

are not estimated. Instead, there is a selection of regression coeffi-

cients (or edges in the SEM graph) thus finessing the need for multiple

comparisons. The parameter trajectory plot of this model is shown in

Figure 2, which shows the value of the coefficients for each value of

the regularization parameter which controls the trade-off between

model fit and the penalty imposed. The elastic net imposes a balance

(in our case, half and half) between an L1 sparseness penalty and an L2

ridge penalty (see Jacobucci et al. 2019 and for a more detailed

discussion Valdes-Sosa et al., 2005) for a discussion of this and other

similar models in the detection of neural networks.

The value of the regularization parameter lambda selected was

0.3 corresponding to the lowest BIC value of 0.836. The resulting

model is depicted in Figure 3. The latent variables are represented as

circles in the resulting diagrams and the observed variables as squares

(Schreiber, Stage, King, Nora, & Barlow, 2006). From Figure 3, it can

be seen that the edges selected by the regularized MIMIC (with the

coefficient values in parenthesis) were as follows:

1. Age to FI (0.069) and CI (−0.043)

2. Forceps Minor (Fmn) to CI (0.019)

3. Superior longitudinal fasciculus (SLF) to FI (−0.004)

As noted in Jacobucci et al. (2019), this type of variable selection

may not be familiar to some researchers who are more used to

p values or R-squared statistics.

4 | DISCUSSION

4.1 | Structure of cognitive variables

Previous studies using MIMIC have postulated a single latent variable

mediating between FA and cognitive indexes. In fact, there are many

studies, focusing only on relations between intelligence indices, that

have demonstrated that rather than a single general factor, there are

several relatively independent factors needed to explain intelligence

in terms of different cognitive domains. Particularly important is the

confirmatory factor analysis of a sample of 6,832 individuals from

33 cross-sectional studies where five correlated first-order factors

were identified: reasoning, spatial ability, memory, PS, and vocabulary

(Salthouse, 2004), which are very closely related but not identical to

the four independent indexes of the WAIS-III: PO or Reasoning (PO),

PS, VC, and WM. Thus, the single-factor summarization of intelligence

scales in Kievit et al. (2016, Kievit et al., 2018) lead to a misallocation

of variance of the intelligence measures that will affect the full model.

F IGURE 2 Parameter trajectory plot from regularized MIMIC. The
graph shows the values of the regression coefficients as a function of
the penalty value. The dashed vertical line highlights the penalty value
yielding the model with the best fit (i.e., the lowest Bayesian
information criterion)

F IGURE 3 A regularized MIMIC
model of the relationship between
two latent variables (CI and FI) and
white-matter tracts where nonzero
model estimates edges are by solid
lines and the color indicates whether
the effect is positive (green) or
negative (red). The zero estimates
edges are represented by dotted
lines. CI, Crystallized Intelligence; FI,
Fluid intelligence; MIMIC, Multiple
Indicators, Multiple Causes
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By contrast, here we leveraged the availability of the full WAIS-III

recorded with DWI from the CHBMP. Our analysis showed that two

latent factors, fluid intelligence or FI and crystalized intelligence or CI,

provide better fits than a single general or g (WAIS) latent variable. This is

in agreement with the observation of Kievit et al. (2016) who suggested

that fitting more than one latent variable, with the exploration of more

cognitive domains, would increase the explained variance of the models.

4.2 | Full MIMIC model relating white-matter
microstructure to intelligence indexes, mediated by
latent variables

As mentioned before, the model produced by regsem is not accompa-

nied by p values or confidence intervals, which may seem surprising.

Jacobucci et al. (2019) point out that this type of model incurs accept-

able bias when using regularization, but the more important aim is the

holdout sample generalization, which is achieved by reducing variance

and preferring models of a complexity that is afforded by the

observed data. In this framework, the resulting edges left in the

MIMIC model are important if they are simply not set to zero. This is

the interpretation we will follow here.

The regularized MIMIC model indicated an age effect on both FI

and CI. This points to the effectiveness of this method to unravel

more subtle relations in a set of predictors since age was not signifi-

cant in nonregularized versions of MIMIC models. This method of reg-

ularization is supported by previous studies that showed its ability to

model the relation between cognitive performance and imaging met-

rics, taking a high-dimensional set of predictors and reducing this set

to create a relatively parsimonious representation of key tracts previ-

ously implicated in specific tasks, for example, visual short-term mem-

ory performance (Jacobucci et al., 2019).

The regularized MIMIC model revealed two tracts that are con-

nected directly to the latent variables. We describe these two paths

of putative causation next.

One tract, Fmn is an interhemispheric tract whose fibers connect

left and right frontal lobes through the genu of the corpus callosum

(Mori, Wakana, Van Zijl, & Nagae-Poetscher, 2005), the enhanced

anatomical connectivity of which may underlie the greater fluid rea-

soning, visuospatial WM, and creative capabilities appreciated in

mathematically gifted children (Navas-Sánchez et al., 2014). The

microstructural characteristics of interhemispheric connections have

been positively correlated to some intelligence variables in females

but negatively correlated in males (Tang et al., 2010).

In our model, the Fmn was connected to the CI latent variable,

therefore also predicting performance in the WM and VC indices. In

contradistinction, a positive association of the Fmn with the FI (Cam-

CAN) has been reported by Kievit et al. (2016). This is not surprising

since FI (Cam-CAN) in the words of the authors they are all subtests

of a single cognitive domain (Cattell, 1971). Even more complicated is

the comparison with results of the UK Biobank study (Kievit et al.,

2018) since the latent variable is defined with a set of measures that

have been suggested to be difficult to interpret (Lyall et al., 2016).

Our model also identified another white-matter tract as impor-

tant, the SLF. The SLF is located over the cingulum running from the

dorsal and medial parietal cortex to premotor and prefrontal cortices

(Schmahmann et al., 2007). Specifically, it is on the superior lateral

portion of the putamen forming a long arch that emits branches

toward the temporal, parietal, and occipital lobes (Mori et al., 2005).

This tract connects the caudal part of the inferior parietal lobule and

intraparietal sulcus, areas that are involved in visuospatial information

processing. Also, their fibers get to the posterior prefrontal cortex,

which is of great importance in perception and awareness (Petrides &

Pandya, 2006; Schmahmann et al., 2007).

In our model, the SLF influences FI with a negative sign, which in

turn influences PS and PO. This negative path between SLF and the

latent variable FI suggests that those subjects with higher FI scores

will have lower FA values. This result, at first sight, is counterintuitive

if FA reflects “white-matter integrity” or “increased speed” of neural

activity along the corresponding fiber tracts. Similar lack of concor-

dance with the “myelin integrity” hypothesis was found by Braddick

et al. (2017) for the correlation of individual children's sensitivity to

global motion coherence with the FA of the left SLF. Hoeft et al.

(2007) also showed increased FA of SLF was associated with poor

visuospatial abilities in Williams' syndrome, which argues against the

white-matter FA identification. In addition, the negative relation

between the FA of the SLF and memory tests has been previously

reported (Tang et al., 2010), at least for males in the left branch of

the SLF.

This apparently counterintuitive result may be viewed as we

stated in the introduction, due to the fact that FA is a highly complex

measure that must be interpreted with caution (Jones et al., 2013).

Although it is true that FA is directly related to increased myelin thick-

ness, parallelism, and packing of axons, it also depends on other fac-

tors such as barriers and obstacles imposed by microstructure, cell

membranes, myelin sheaths, and microtubules (Beaulieu, 2002). It may

decrease with larger axonal diameters due to an increase in the mobil-

ity of water in the intra-axonal compartment water mobility

(Takahashi et al., 2002). Fiber crossings may be another factor

influencing the observed values of FA. This may explain both positive

and negative correlations of FA with reaction time as reported and

discussed by Tuch et al. (2005). A deeper understanding of white-

matter microstructural determinants of cognitive functions will require

improved diffusion magnetic resonance imaging (MRI) technology and

methods (Jelescu & Budde, 2017; Jones et al., 2013; Riffert, Schreiber,

Anwander, & Knösche, 2014).

Interestingly, the effect of the SLF was restricted to FI while we

were expecting some influence over CI. There are some reports of a

relationship of this white-matter tract with the tests which composed

CI. For example, a multiple sclerosis study by combining the Paced

Visual Serial Addition Test with functional MRI-guided fiber

tractography found the SLF was the main white-matter tract con-

necting areas active during this attention and WM task (Bonzano,

Pardini, Mancardi, Pizzorno, & Roccatagliata, 2009). In addtition,

Papagno et al. (2017) found that direct electrical stimulation of the

SLF during awake surgery improves verbal short-term memory. This
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also supports the participation of the SLF in the so-called “phonologi-

cal loop,” which has been described as a crucial component for lan-

guage acquisition (Papagno et al., 2017).

4.3 | Limitations and future work

Several limitations should be noted in the present research which per-

tain to study design, measures of brain organization, and statistical

methodology. We detail them here and point out that the next wave

of the CHBMP will take them into consideration.

The sample is relatively small with data gathered cross-section-

ally. A larger sample is foreseen for the third wave of the CHBMP,

and collaborative studies with other Latin American countries are

being organized. A major difficulty to perform combined analyses with

other databases from the United States or Europe is the lack of har-

monization of their cognitive studies. There are also the following

problems related to measures of brain organization:

1. Even when the trajectories obtained agreed with neuro-anatomic

descriptions derived from postmortem and other in vivo

tractography studies (Carpenter & Sutin, 1983; Góngora et al.,

2016; Mori et al., 2002; Nieuwenhuys, Voogd, & Van Huijzen,

2007; Wakana et al., 2007), the existence of inaccuracies due to

partial volume effects, noise, and crossing fibers involve the visual-

ized pathways do not necessarily reflect brain connectivity since

individual axons could be merging and blanching at any point along

the bundle (Wakana et al., 2007).

2. A further limitation is related to the quality of DWI images gath-

ered in the second wave of the CHBMP:

a. Only 12 diffusion-sensitizing gradient directions were recorded

(too sparse to allow higher order diffusion models);

b. Also, only limited voxel size was possible (2 × 2 × 3) that could

affect the robustness to noise, partial volume effect, and cross-

ing fiber regions. These limitations were due to the technology

available in 2004 in Cuba, which has been since then

modernized.

3. The fiber tracking algorithm (Fiber Assignment by Continuous

Tracking) employed is highly susceptible to errors in the orienta-

tion of the principal eigenvector, due both to noise and to

instances where the direction of the underlying tract anatomy is

ambiguous, for example, assessment of voxels where fiber bundles

cross, diverge, or converge. Improved algorithms now exist and will

be used in the future.

4. The only measure of brain organization analyzed is FA, which as

we have discussed previously is not very specific. Improved mea-

sures of white-matter microstructure are to be preferred (Riffert

et al., 2014)

5. Instead of exploring only the effects of white-matter differences

on individual intelligence, it would be preferable to use a model

based on integrating model of DWI, functional Magnetic Reso-

nance Imaging (fMRI), and possibly EEG as previously described

(Valdés-Sosa, Vega-Hernández, Sánchez-Bornot, Martínez-

Montes, & Bobes, 2009). This type of causal neural connectivity

model (Valdes-Sosa et al., 2011) might then be used as the

upstream construct in an extended MIMIC model of intelligence.

Despite these limitations, we believe this study is valuable due to

the completely randomized sampling of participants from the general

Cuban population, the personalized determination of tract-based FA

analysis, and the administration of the complete WAIS-III. In fact, one

of the limitations of previous work was the limited measures of FI

employed (four subtests of fluid reasoning) collected on the Cam-

CAN project (Shafto et al., 2014). This issue was overcome in our

study employing more WAIS-III measures, opening a wider spectrum

of cognitive domains, and finding other significant associations. On

the other hand, the selection of two latent variables, independent of

the evaluator seems to be a reasonable alternative to reduce the ran-

dom or systematic measurement errors associated with observable

variables (IQ scores). The MIMIC model revealed the effect of distinct

fiber tracts, Fmn and SFL, on FI and CI, respectively. Work to over-

come the limitations and extend this line of research will be pursued

in the future.

5 | CONCLUSIONS

The present work was inspired by the watershed model of Kievit et al.

(2016) who proposed the use of a MIMIC hierarchical model, using a

regularized SEM version. We found this approach very useful. By

exploring the full set of indices of the WAIS-III, it was possible to find

novel associations of FA with four cognitive domains mediated by

latent variables relating to both fluid intelligence (SLF) and crystallized

intelligence (Fmn). The relation of the Fmn tract with crystalized intel-

ligence was only discoverable by including in the model indices related

to this domain, something that seems to have been overlooked in

many studies. In fact, we believe that a wide range of cognitive func-

tions could be explored, something apparently not yet envisaged in

the current large brain projects.
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