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Abstract 

Objective: To develop and evaluate a model for staging cortical amyloid deposition using 

PET with high generalizability.  

Methods: 3027 subjects (1763 Cognitively Unimpaired (CU), 658 Impaired, 467 Alzheimer’s 

disease (AD) dementia, 111 non-AD dementia, and 28 with missing diagnosis) from six 

cohorts (EMIF-AD, ALFA, ABIDE, ADC, OASIS-3, ADNI) who underwent amyloid PET 

were retrospectively included; 1049 subjects had follow-up scans. Applying dataset-specific 

cut-offs to global Standard Uptake Value ratio (SUVr) values from 27 regions, single-tracer 

and pooled multi-tracer regional rankings were constructed from the frequency of abnormality 

across 400 CU subjects (100 per tracer). The pooled multi-tracer ranking was used to create a 

staging model consisting of four clusters of regions as it displayed a high and consistent 

correlation with each single-tracer ranking. Relationships between amyloid stage, clinical 

variables and longitudinal cognitive decline were investigated.  

Results: SUVr abnormality was most frequently observed in cingulate, followed by 

orbitofrontal, precuneal, and insular cortices, then the associative, temporal and occipital 

regions. Abnormal amyloid levels based on binary global SUVr classification were observed 

in 1.0%, 5.5%, 17.9%, 90.0%, and 100.0% of stage 0-4 subjects, respectively. Baseline stage 

predicted decline in MMSE (ADNI: N=867, F=67.37, p<0.001; OASIS: (N=475, F=9.12, 

p<0.001) and faster progression towards an MMSE≤25 (ADNI: N=787, HRstage1=2.00, 

HRstage2=3.53, HRstage3=4.55, HRstage4=9.91, p<0.001; OASIS: N=469, HRstage4=4.80, 

p<0.001).  

Conclusion: The pooled multi-tracer staging model successfully classified the level of 

amyloid burden in >3000 subjects across cohorts and radiotracers, and detects pre-global 
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amyloid burden and distinct risk profiles of cognitive decline within globally amyloid-

positive subjects. 
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Introduction 

Positron emission tomography (PET) can identify amyloid-β (Aβ) plaques in vivo with high 

sensitivity and specificity in clinical populations.1 The clinical standard for determining 

amyloid abnormality is a dichotomous visual assessment, while classification based on 

thresholds of global standardized uptake value ratios (SUVr) are generally used for research 

purposes. However, both procedures might miss emerging amyloid pathology, and the extent 

of the pathological burden is generally disregarded.2 3 

Recently, staging of amyloid burden with PET imaging has showed promising results to 

address the limitations of signal dichotomization.4-6 Hanseeuw et al. identified three stages of 

amyloid deposition where cortical and striatal PET signal is classified separately, 

corresponding to distinct risk of cognitive decline.4 Grothe and colleagues used 

[18F]florbetapir PET data from cognitively unimpaired (CU) subjects and constructed a four-

stage model, which successfully staged 410 (98%) subjects from the same cohort.5 More 

recently, Mattson et al. used cerebrospinal fluid (CSF) to develop a longitudinally valid PET 

staging model, which could also be applied to an independent cohort using a different 

radiotracer.6 However, the model construction could not be replicated and contrasting 

CSF/PET groups could have hampered the ability to identify more fine-grained stages.6 As 

such, further evidence is required regarding the generalizability of single-tracer models to 

multi-tracer studies.   

The present work aimed to construct and apply a data-driven and generalizable PET-based 

model for staging cortical amyloid burden. Cross-sectional and longitudinal relationships 

were assessed between amyloid stages and cognitive status, age, genetic risk, CSF and risk of 

future cognitive decline.  
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Materials and Methods 

Cohorts  

From six cohorts, all participants with available amyloid PET scans of sufficient quality for 

quantification were retrospectively included in this study (Table 1). In detail, 

[18F]flutemetamol scans of 226 CU subjects from the Alzheimer’s and Family (ALFA) cohort 

of the Barcelonaβeta Brain Research center,7 145 memory clinic patients from the Amsterdam 

Dementia Cohort (ADC) of the Amsterdam University Medical Center,8 and 190 CU subjects 

from the Innovative Medicine Initiative European Medical Information Framework for AD 

(EMIF-AD)9 project (http://www.emif.eu/emif-ad-2/) were included. [18F]florbetaben scans of 

353 memory clinic patients were obtained from the Alzheimer’s biomarkers in daily practice 

(ABIDE) study.10 Regional SUVr values were obtained from [18F]florbetapir scans of 360 

subjects and [11C]PiB scans of 572 subjects from the Open Access Series of Imaging Studies 

(OASIS)-3 dataset (https://www.oasis-brains.org/).11 Regional SUVr values from 

[18F]florbetapir scans of 1179 subjects were included from the ADNI database 

(http://adni.loni.usc.edu/). The ADNI study was launched in 2003 as a public-private 

partnership, led by principal investigator Michael W. Weiner, MD. The primary goal of 

ADNI is to test whether serial MRI, PET, other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early AD.  

Across cohorts, 3027 subjects (1763 CU, 658 Impaired, 467 AD dementia, 111 non-AD 

dementia, and 28 with missing diagnosis at time of baseline PET) were included. In total, 

4783 PET scans were included, as 1049 subjects had at least two amyloid PET scan sessions 

(OASIS and ADNI), with an average of 2.7 PET scans per subject (range 2 – 5). For each 

study, missing data was assumed to be missing at random.  
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Standard Protocol Approvals, Registrations, and Patient Consents 

The protocol, patient information, consent form, and other relevant study documentation were 

approved by the Ethics Committees or Institutional Review Boards of each site before study 

initiation. The studies were performed in accordance with the Declaration of Helsinki and 

consistent with Good Clinical Practice. Before enrollment, all patients provided written 

informed consent. 

 

Image acquisition and processing 

[18F]Flutemetamol scans from the ALFA cohort consisted of four frames (4x5 minutes) 

acquired 90-110 minutes post-injection (p.i.). Images were checked for motion, and PET and 

accompanying structural T1-weighted MR images were warped into MNI space using 

SPM12. [18F]Flutemetamol scans from ADC studies and [18F]florbetaben scans from ABIDE 

were processed as described previously,12 with static scans consisting of four frames (4x5 

minutes) acquired 90-110 minutes p.i. In addition, [18F]flutemetamol EMIF-AD scans were 

acquired using a dual-time-window protocol (0-30 minutes p.i., 60 minute break, 90-110 

minutes p.i.).13 Images were checked for motion, accompanying structural T1-weighted MR 

images were co-registered to PET using the Vinci software (Max Planck Institute for 

Neurological Research, Cologne, Germany) and then warped into MNI using SPM12. 

[18F]Florbetapir (50-70 minutes p.i.) and [11C]PiB (30-60 minutes p.i.) data from the OASIS 

platform were processed with FreeSurfer and the PET Unified Pipeline 

(https://github.com/ysu001/PUP).14 

Acquisition and standardized preprocessing steps of MR and PET data in ADNI have been 

reported previously and are described in detail on the ADNI website 

(http://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis). Briefly, [18F]florbetapir 
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PET scans consisted of four frames (4x5 minutes), acquired 50-70 minutes p.i. and were 

processed using FreeSurfer.  

The Desikan-Killiany (DK) atlas was used to extract regional SUVr values normalized to 

cerebellar grey matter 15. Small regions enclosed within high-signal areas were excluded due 

to risk for spill-in and misregistration errors (pericalcarine and banks superior temporal), and 

small/intermediate regions were merged (volume-weighted average) to reduce noise-related 

variability. The resulting 27 regions were anterior, isthmus, and posterior cingulate cortices, 

inferior frontal gyrus (pars opercularis, pars triangularis, and pars orbitalis), lateral- and 

medial orbitofrontal cortex, middle frontal gyrus (caudal and rostral middle frontal), superior 

frontal gyrus, frontal pole, inferior temporal gyrus, middle temporal gyrus, superior temporal 

gyrus (superior temporal and transverse temporal), fusiform gyrus, entorhinal cortex, 

parahippocampal gyrus, lingual gyrus, lateral occipital gyrus temporal pole, insula, inferior 

parietal gyrus, supramarginal gyrus, precuneus, superior parietal gyrus, precentral gyrus, 

postcentral gyrus, paracentral gyrus, and cuneus. Global SUVr was determined as a volume-

weighted average of the 27 regions above.  

 

Model development  

To construct a PET-based cortical amyloid staging model, regions were ranked as suggested 

in Grothe et al., assuming those most frequently abnormal in a CU population reflect early 

events in the pathological process, similar to how pathology studies are performed.5 16 17  

Gaussian Mixture Modelling (mixtools and AdaptGauss packages from R statistical software 

program) was used to identify two distributions from global cortical SUVr values and based 

on each complete cohort, tracer and cohort specific cut-offs were determined based on the 

mean plus two standard deviations (SD) from the Gaussian (i.e. ‘normal’) distribution 
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corresponding to the amyloid-negative group (Data available from Dryad (Figure 1) 

https://doi.org/10.5061/dryad.7wm37pvp9).  

Using an in-house algorithm for random optimal allocation subsampling, 400 baseline scans 

balanced across tracers (i.e. 100 per tracer) were randomly selected from the CU group for 

model construction to minimize demographic differences (i.e. APOE ε4 carriership, age, and 

sex) (Table S1 available from Dryad doi:10.5061/dryad.7wm37pvp9).  

 

Single-tracer regional ranking 

First, four different regional rankings were computed for each radiotracer (N=100 per tracer) 

in order to assess comparability. The cohort and tracer specific cut-offs were applied to each 

region and these were ranked according to the frequency of abnormality (% subjects for 

which a region’s SUVr > cut-off) across each radiotracer group. Correlations between the four 

rankings ([11C]PiB, [18F]flutemetamol, [18F]florbetaben, and [18F]florbetapir) was assessed by 

Spearman ranking correlation analysis.  

 

Multi-tracer regional ranking  

Next, the complete selection of 400 baseline scans from CU subjects was pooled to create a 

multi-tracer regional ranking as per above. Agreement between the multi-tracer and each of 

the single-tracer rankings was also assessed.  

 

Staging model 

To overcome differences between single-tracer rankings identified in the previous steps, the 

model construction was performed based on the pooled multi-tracer data from 400 CU 

subjects.  
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In the construction step, we assessed the impact of strategies for cut-off and stage definition 

on the applicability of the model. Therefore, two additional data-driven cut-offs were defined 

as 1) the Bayes’ optimal classifier (i.e. intersection between the two distributions) and 2) 

mean plus three SD from the Gaussian distribution corresponding to the amyloid-negative 

group (Figure S1 available from Dryad doi:10.5061/dryad.7wm37pvp9). Subsequently, 

these additional cut-offs were also used to rank regions based on the frequency of abnormality 

across the 400 CU subjects. Finally, four stages of amyloid burden were defined based on 

three independent strategies:  

1) Equal frequencies: regions were grouped in four categories, each with equal 

frequencies5 

2) Equal number of regions: regions were grouped so that each stage had an equal 

number of regions, and  

3) Equal volume: regions were grouped such that each stage contained ¼ of the total 

cortical brain volume.  

The steps described above (Fig. 1) resulted in nine candidate staging models (Data available 

from Dryad (Figure 2) https://doi.org/10.5061/dryad.7wm37pvp9). Further, in order to assess 

the impact of known confounding factors (e.g. spill-in, PVE and cerebral blood flow effects) 

on the regional ranking, the regional ranking was repeated for available PVC SUVr (EMIF-

AD) and distribution volume ratio (DVR) values (EMIF-AD and OASIS) and reported in the 

supplementary results in Dryad.18  

 

Model application and assessment 

All scans (N=4783) were classified into five stages (0-4) according to all nine models. A 

stage was attributed when more than 50% of the encompassed regions displayed SUVr > cut-

off.5 In addition, the model was hierarchical by design, i.e. higher stages are only achieved 
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once the staging conditions are also met for previous stages; otherwise the scan was 

considered unclassifiable. 

The optimal model used for all subsequent analyses was defined as the one minimizing the 

number of unclassifiable subjects across cohorts. This performance indicator was chosen to 

assess the applicability of the model to a heterogeneous dataset.  

 

Statistical analysis 

Statistical Package for the Social Sciences (SPSS) version 22 was used for all statistical 

analyses.  

 

Cross-sectional relationships 

Chi-squared tests were used to assess the distribution of stages across dichotomous amyloid 

PET status (based on global SUVr), syndromic diagnosis, and APOE ε4 alleles. One-way 

ANCOVA was performed to assess the relationship between stages and age, Mini Mental 

State Examination (MMSE), and cerebrospinal fluid (CSF) measures, with cohort as a 

covariate and excluding subjects with a clinical diagnosis of non-AD dementia. A Bonferroni 

post-hoc test was used to assess between-stage differences, and effect-size was reported 

according to Cohen’s guidelines (η2=0.01 small, η2=0.06 medium, and η2=0.14 large), with 

significance set at p<0.05. 

CSF measures of Aβ40, Aβ42, p-Tau, and t-Tau were available in a sub-set of subjects (Table 

1). These were standardized to z-scores (tau CSF after log transformation due to skewedness) 

within each dataset based on the mean and SD of CU subjects to correct for cross-cohort 

differences in assays.  
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Longitudinal PET 

Based on first and last PET scans, subjects were considered Stable (no changes in stage or 

global PET status), Progressors (increase in stage or global PET status conversion from 

normal to abnormal) or Reversed (decrease in stage or global PET status conversion from 

abnormal to normal). Based on all PET scans, the monotonicity of the trajectory was 

determined. Differences in follow-up time between stage Stable and Progressors were tested 

using one-way ANOVA.  

 

Longitudinal Cognition 

Longitudinal cognitive data was only available for subsets of ADNI and OASIS cohorts, and 

all non-AD dementia subjects were excluded for these analyses. The effect of 1) baseline 

stage and 2) global SUVr classification on cognitive decline were investigated using a linear 

mixed model (LMM) analysis with MMSE as outcome measure (corrected for age, sex, 

clinical diagnosis, and time between repeated measures), and Kaplan-Meier (KM) survival 

analysis with an MMSE score ≤ 25 as event (excluding subjects with MMSE ≤ 25 at 

baseline). In parallel, a Cox Regression analysis was performed to obtain stage- and global 

status-related Hazard Ratios. For both the LMM and KM survival analyses, pairwise 

comparison with Bonferroni correction was performed to assess between-stage differences.  

 

Data Availability 

The data that support the findings of this study can be made available upon request with the 

study-specific principal investigator (i.e. ABIDE, EMIF-AD, ADC, ALFA) or are openly 

available (i.e. ADNI & OASIS open-source databases).
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Results 

Demographics 

Single- and cross-cohort baseline demographics are shown in Table 1.  

 

Model development 

Single-tracer regional rankings can be found in Fig. 2A. Correlation of the regional rankings 

was highest between [18F]florbetaben and [18F]flutemetamol (ρ=0.89), followed by [11C]PiB 

and [18F]flutemetamol (ρ=0.81), and then by [11C]PiB and [18F]florbetaben (ρ=0.79). Lower 

correlations (ρ ranged from 0.58 to 0.63) were observed between [18F]florbetapir and all other 

tracers (Fig. 2B). The multi-tracer regional ranking showed improved correlations (ρ ranged 

from 0.69 to 0.94) with each single-tracer ranking compared to the correlations of the single-

tracer rankings between themselves (Fig. 2C) and was used to construct the nine potential 

staging models (Data available from Dryad (Figure 2) 

https://doi.org/10.5061/dryad.7wm37pvp9). 

The model defined based on equal frequencies using the mean plus 2SD cut-offs of the 

Gaussian distribution corresponding to the amyloid-negative group (Table 1) resulted in the 

smallest amount of unclassifiable subjects (N=23, 0.8%) and was therefore selected for all 

subsequent analyses. Of note, 2/23 unclassifiable subjects were represented in model 

construction. The results for the application of all nine models can be found in Data available 

from Dryad (Table 2) https://doi.org/10.5061/dryad.7wm37pvp9.  

 

Model application and assessment 

According to the final 5-stage model (Fig. 3), the ranking of regional frequency of 

abnormality starts with the cingulate regions (~60% of subjects), followed by precuneus, 
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paracentral gyrus, lateral orbital cortex and insula (~40% of subjects), basal temporal, frontal, 

and more associative cortices (~20-30% of subjects), and ends with other temporal and 

occipital regions (~10% of subjects).  

The model successfully classified virtually all 4783 scans, with only 48 (1.0%) unclassifiable 

scans. These scans were not from any particular cohort, tracer, diagnostic group, or age group 

(data not shown). Most unclassifiable scans (N=38, 79.2%) met the requirements for stages 1 

and 3, but failed to fulfill stage 2. The remaining (N=10, 21.8%) displayed sufficient 

abnormal stage 2 regions without achieving stage 1.  

 

Cross-sectional relationships 

At baseline, 1058 (35.0%) subjects were classified as stage 0, 694 (22.9%) as stage 1, 336 

(11.1%) as stage 2, 319 (10.5%) as stage 3, and 597 (19.7%) subjects as stage 4. The 

distribution of stages per cohort is depicted in Fig. 4A. The association between stages and 

age was small (N=2866, F=30.55, η2=0.04). Global SUVr classification identified positivity 

in 1.0%, 5.5%, 17.9%, 90.0%, and 100.0% in stage 0-4 subjects, respectively (N=3004, 

χ
2=2439.67) (Fig. 4B). There was a significant association between stage and syndromic 

diagnosis (N=2977, χ2=679.00), with most (~60%) CU and non-AD dementia subjects 

classified as stage 0-1, ~40% the impaired subjects were classified as stage 0, while the 

remaining subjects were distributed across stages, and AD dementia subjects mostly classified 

as stages 3 and 4 (Fig. 4C). Baseline stage was related to number of APOE ε4 alleles 

(N=2887, χ2=400.16) (Fig. 4D). Higher stages were associated with lower baseline MMSE 

scores across diagnostic groups (N=2852, F=129.64, η2=0.15), within CU subjects (N=1743, 

F=3.27, η2=0.01), and within impaired subjects (N=654, F=14.12, η2=0.08) with distinct 

effect-sizes. Increasing stages were associated with decreases in Aβ42 levels (N=1462, 

F=235.35, η2=0.39). More specifically, stage 3 and 4 subjects had lower Aβ42 levels 
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compared to all other stages, stage 2 subjects had lower levels compared to stage 0/1, and 

there stage 1 subjects had lower levels compared to stage 0 (Fig. 4E). Finally, cortical 

amyloid stage was related to p-Tau levels, with stages 3 and 4 associated with higher z-scores 

compared to the other stages, but not differently from each other (N=1461, F=108.58, 

η
2=0.22) (Fig. 4F).  

 

Longitudinal PET  

In total, 1049 subjects (ADNI: N=741 and OASIS: N=308) had longitudinal PET available, 

with a mean follow-up period of 3.97 years (SD=1.84, range=0.86 – 9.61 years). Based on 

stage at first and last PET scans, 65.5% of subjects were Stable, 24.9% subjects were 

Progressors, 8.1% Reversed, and 1.5% had an unclassifiable scan at follow-up. In 

comparison, based on global amyloid PET status, 89.0% of subjects were Stable, 6.7% 

subjects were Progressors, and 3.9% Reversed. Importantly, progression and reversal rates 

were relatively consistent across stages of amyloid burden(Table 2). Considering all scans, 

14.8% of subjects displayed a non-monotonic behavior based on the staging model, compared 

to 6.8% based on global PET.  

Further, stage Progressors (Myears=4.61, SDyears=1.92, 95% CI: 4.38 to 4.85) had a 

significantly longer follow-up period compared to stage Stable (Myears=3.77, SDyears=1.75, 

95% CI: 3.64 to 3.91) subjects (N=941, F=40.68, η2=0.04). Global Progressors (Myears=4.45, 

SDyears=1.98, 95% CI: 3.98 to 4.92) also had a significantly longer follow-up period compared 

to global Stable (Myears=3.94, SDyears=1.82, 95% CI: 3.82 to 4.06) subjects (N=1008, F=5.00, 

η
2=0.01).  
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Longitudinal cognition 

Linear mixed model analysis showed that baseline stage, corrected for age, sex, clinical 

diagnosis, and time between follow-up visits (repeated measures), predicts longitudinal 

MMSE decline (ADNI: N=867, F=67.37; OASIS: (N=475, F=9.12). More specifically in 

ADNI, post-hoc analyses showed that stage 1-4 declined faster compared to 0 (95% CI: -1.13 

to 0.42, -1.49 to -0.44, -2.25 to 1.47 and -2.74 to -2.01 respectively), those in stage 4 declined 

faster than stage 1/2 (95% CI: -2.05 to -1.14, -2.00 to -0.81, respectively) subjects, and those 

in stage 3 declined faster than stage 1/2 subjects (95% CI: -1.56 to -0.60, -1.50 to -0.28, 

respectively ). In OASIS, stage 4 subjects declined faster than stage 0/1/2 subjects (95% CI: -

1.13 to -0.45, -1.09 to -0.39 and 1.35 to -0.60 respectively). No other significant differences 

between stages were observed (Fig. 5A&B ). 

Furthermore, in ADNI, higher baseline stage predicted faster decline towards an MMSE≤25 

(N=787) (Fig. 5C). Post-hoc analyses showed a number of stage-wise differences in time to 

reach the event (Table 2). This effect was mainly driven by the impaired subgroup (Figure 

S7 available from Dryad doi:10.5061/dryad.7wm37pvp9). In comparison, a global SUVr 

dichotomization showed amyloid-positive subjects (N = 242) reached the event faster than 

amyloid-negative subjects (N=552).) (Table 2).  

In OASIS, a faster decline towards an MMSE≤25 was observed only for subjects with 

baseline stages 3 and 4 (N=469) (Fig. 5D). In comparison, global SUVr dichotomization 

showed amyloid-positive subjects (N=122) reached the event faster compared to amyloid-

negative ones (N=351) . Mean estimated time to event and hazard ratio’s for all survival 

analyses can be found in Table 2.  
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Discussion  

Our pooled-analysis of >3000 subjects demonstrates that a PET-based multi-tracer model can 

reliably assign cortical amyloid stage across six cohorts. More specifically, the 5-stage model 

classified >99% of 4783 scans from a large heterogeneous sample, across diagnostic groups, 

and scanned with four different amyloid PET radiotracers. The model provides information 

on amyloid burden beyond global dichotomized classification and shows a clear relationship 

with genetic risk, CSF values, and clinical variables, thereby supporting its value.  

The excellent cross-cohort performance of the presented model can be attributed to its multi-

tracer aspect. While previous groups achieved high applicability either within a single-cohort 

4 5 or between two studies,6 neither fully replicated the model in an independent sample. In 

this work, we were able to perform a head-to-head comparison of the same methodology 

applied to a balanced sample of subjects across four different tracers, which showed marked 

differences in regional rankings (Fig. 2A) especially for [18F]florbetapir. This particular tracer 

effect could be due to the choice of target and reference region in this work, which has been 

previously deemed suboptimal for ADNI scans.19 However, a consistent ROI definition across 

cohorts was prioritized in this work to allow the pooling of the data-sets. This finding 

suggests the direct translation of a single-tracer model to multi-tracer studies could bring 

challenges. As the field moves towards large-scale integrative studies, the need for 

harmonizing results across radiotracers and cohorts greatly increases, as can already be 

appreciated by initiatives such as the Centiloid Project.20 

The observed regional ordering of the 5-stage model is in somewhat disagreement to 

established neuropathological literature.16 17 The main difference would be the early 

appearance of the cingulate in our model, while it is reported only after neocortical 

involvement by Thal,17 and after basal portions of the frontal, temporal and occipital lobe by 
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Braak.16 In addition, Braak reports an early involvement of basal temporal regions, a pattern 

which is not consistently observed in PET literature. Except for the work of Grothe and 

colleagues,5 several PET studies fail to identify early temporal involvement despite distinct 

methodologies, and instead also point to the cingulate and precuneus as early regions, 

including the most recent and extensive staging work to date.6 21 22 This consistent 

discrepancy between neuropathology and PET-only studies has been described previously,23 

and is likely to be influenced by signal distortion present in PET imaging. Due to the 

proximity of medial regions to white matter and the additional grey matter signal spill-in from 

the contralateral hemisphere, medial regions such as those in stage 1 and 2 in this work are 

more frequently classified as abnormal in PET imaging compared to lateral counterparts, even 

when levels of pathology are comparable..24  

While the discrepancy with pathological studies might be due to sample size, resolution 

limitations and differences in technique such as the intrinsic signal distortion of PET imaging, 

remaining differences across PET studies could also be explained by methodological choices 

including the use of partial volume correction (PVC). However, our results from PVE-

corrected SUVr values did not substantially differ from the main model (Data available from 

Dryad (Figure 3) https://doi.org/10.5061/dryad.7wm37pvp9), suggesting that spill-in from 

white matter (of special concern for 18F-labeled radiotracers 25) has only a limited effect on 

the regional ordering. In addition, the similar ordering observed with DVR indicates that the 

overall impact of SUVr confounders on this method is limited (Data available from Dryad 

(Figure 4) https://doi.org/10.5061/dryad.7wm37pvp9).26 27  

The observed relationships between stages and several demographic, clinical, and CSF 

measures support the validity of the staging model. In particular, the lower CSF Aβ42 values 

observed in stage 2 compared to stage 0/1 subjects suggests that regional amyloid PET may 

be more sensitive for early pathological detection compared to standard dichotomization of 
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global amyloid burden. In addition, the comparable levels of CSF Aβ42 between stage 3 and 

stage 4 subjects indicate that an amyloid-PET staging system can differentiate pathological 

burden even after a plateau is reached in CSF levels. Furthermore, the cortical amyloid 

staging model seems valuable for prognosis as baseline amyloid stage relates to distinct risk 

profiles of subsequent cognitive decline as measured with MMSE (Fig. 5). In particular, 

distinct patterns can be observed per cohort, where a step-wise effect of stage on cognitive 

decline is apparent mostly in the impaired subjects of ADNI, while only later stages related to 

faster decline in CU individuals. Further, a staging system captures differences in cognitive 

decline between stage 3 and 4 subjects, where the latter decline faster than a globally positive 

group, indicating the extent of the ‘global’ burden provides further prognostic information. 

Importantly, these results demonstrate the risk related to amyloid pathology alone, and in 

order to fully assess an individual’s risk profile, it is necessary to incorporate additional 

biomarkers.2 

In view of these results, the main added value of this cortical amyloid staging model 

compared to current approaches in PET quantification is twofold. First, it is able to detect 

regional abnormality before global positivity is assigned, as more than 90% of stage 1, 

approximately 80% of stage 2 and 10% of stage 3 subjects are classified as negative based on 

global SUVr. This points to the limitations of dichotomizing amyloid PET and provides 

further evidence to the possibility for early pathological identification with amyloid PET 

imaging. Second, even after global positivity is assigned the model allows for a detailed 

assessment of the extent of amyloid burden and corresponding risk of cognitive decline (Fig. 

5, stage 3 vs. stage 4 subjects). Therefore, independent of global PET status, the stage 

classifications can help identify individuals with Alzheimer’s pathological changes who have 

greater risk of amyloid-related long-term cognitive decline, a relevant population for 

secondary prevention trials (Ritchie 2016). In addition, the staging’s intrinsic grouping of 
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individuals with similar levels of amyloid pathology ensures treatment arms are appropriately 

balanced 28 and may be relevant for modeling expected treatment effects on cognition.29 

Importantly, the staging model better captures the accumulation process in comparison to a 

simple conversion from negative to positive. In this study, the model identified 24.7% of 

subjects with longitudinal PET as Progressors compared to 6.7% of converters based on 

global SUVr. On the other hand, the staging model relies on classifying regional SUVr, which 

might be more sensitive than composite or global signal to local blood flow changes, 

segmentation and co-registration errors, all common challenges in longitudinal PET 

analyses.19 This can be appreciated by the model’s identification of 14.8% non-monotonic 

trajectories, of which approximately half are also observed using dichotomous global SUVr. 

This suggests that creating a composite ROI per stage, as has been done by Mattsson and 

colleagues,6 could reduce the variability observed in our results, although likely not below the 

effect already present with global SUVr. Since the choice of reference region could also have 

affected these results, future work could assess the performance of different regions in order 

to improve longitudinal plausibility.  

One potential solution to minimize the impact of regional sensitivity in a staging system while 

maintaining a more fine-grained description of the accumulation process would be to create 

stages based on global SUVr alone. In order for such a model to be applicable across tracers, 

a harmonization tool such as the Centiloid scale would be required, which would avoid 

single-tracer cut-offs.20 Conversion to Centiloid was out of the scope of this work, and in fact, 

the staging model can be considered an alternative and simple method for cross-tracer 

analysis of amyloid PET images. Nonetheless, a supplementary analysis was performed 

where ADNI data was divided in quintiles to create 5 stages based on global SUVr. Although 

such a global system showed a low agreement (Kappa = 0.32) to the stages defined in this 

work (Data available from Dryad (Table 3, Figure 8) 
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https://doi.org/10.5061/dryad.7wm37pvp9), in general a similar pattern of increased risk per 

level of amyloid burden was observed. However, hazard-ratios are consistently higher for the 

5-stage model compared to a quintiles-based approach, and only the 5-stage model associates 

the first stage with increased risk compared to amyloid-negative subjects. These results 

suggest that while global analyses are able to provide risk stratification, the use of regional 

information is particularly relevant for the earliest changes in amyloid burden and better 

distinguishes risk profiles across the spectrum.  

In this work, a total of nine model definitions were assessed without an available standard of 

truth to determine the underlying regional levels of amyloid burden. While the results add to 

the evidence of a temporal evolution of the topography of amyloid pathology, this 

methodology is not sufficient to shed light into the potential underlying mechanism. In fact, 

our results reflect the ordering of regions as detected by PET, which are likely to be affected 

by the distortions in the PET signal between medial and lateral regions.24 Therefore, this 

staging model should be seen as a tool, applicable across tracers and cohorts, with which one 

is able to assess a subject’s level of brain amyloidosis and its associated risks in terms of 

cognitive decline. As such, the model is optimized to classify as many subjects as possible, 

and, while defining additional stages could provide a more detailed picture of the pathological 

process, it would likely increase the number of unclassifiable scans due to between-subject 

variability. In addition, when utilizing this model within a particular application, image 

processing and cut-off definitions can be optimized accordingly, e.g. using more lenient cut-

offs to detect risk of subsequent amyloid accumulation, or more conservative and 

neuropathology-grounded cut-offs for trial inclusion. 

Main limitations of this study are the lack of pathological confirmation, the use of a global 

cut-off for regional SUVr values, the omission of sub-cortical structures, and the atlas-based 

definition of regions of interest. First, no pathological evaluation has been made at the level of 
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detail available from PET scans used in this analysis, thereby limiting the availability of a 

standard of truth to this work. However, current studies find similar relationships between 

global and regional SUVr and post-mortem data.30 Second, the use of a global SUVr cut-off 

to define regional abnormality has not been validated, and such a validation would require a 

reference method (regional visual assessment or regional histopathological data), with its 

application across datasets potentially posing major challenges. In addition, recent work 

suggests that while regional cut-offs would differ from global ones, the final regional ordering 

would be highly consistent with results from global cut-off.31-33Third, including sub-cortical 

structures in the model would likely require region-specific cut-offs, as indicated by previous 

work.4 However, our model could be combined with previous work by Hanseeuw et al. for a 

complete cortical and subcortical staging of amyloid deposition. Finally, atlas-based 

approaches could be limiting the power to detect signal increases that do not follow 

anatomical boundaries, and a voxel-wise model could be considered to extend the current 

work.34 

 

Conclusion 

A multi-tracer 5-stage cortical amyloid staging model developed solely based on amyloid 

PET scans from 400 CU subjects is able to classify the level of amyloid burden in >3000 

subjects across cohorts and radiotracers. Amyloid stage is strongly related to demographic 

and clinical measures, can detect pre-global amyloid burden and distinguish cognitive decline 

risk profiles within amyloid-positive subjects. The model is easily applicable to any cohort 

after a cohort-specific global SUVr cut-off is defined and the DK atlas is applied, and it has 

the potential to improve targeted subject trial inclusion and support routine clinical work. In 

relation to identification of pre-global amyloid pathology, further comparison of this model 

with other established methods is warranted to minimize false positives.   
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Table 1. Baseline Demographics Cohorts  

Tracer  [18F]Flutemetamol [18F]Florbetaben 

Cohort 
ALL 

(N = 3027) 

ALFA 

(N = 226) 

EMIF-AD  

(N = 190) 

ADC 

(N= 145) 

ABIDE 

(N = 353) 

Diagnostic group N/A CU CU 
CU  

(N = 3) 

Impaired 

(N = 10) 

AD 

Dementia 

(N = 84) 

Non AD 

Dementia 

(N = 48) 

CU  

(N = 128) 

Impaired 

(N = 66) 

AD 

Dementia 

(N = 106) 

Non AD 

Dementia 

(N = 53) 

Age (SD) 
68.71 

(9.08) 

61.17 

(4.83) 

70.44  

(7.55) 

59.76 

(1.78) 

62.80 

(7.65) 

62.47 

(5.41) 

61.77 

(5.54) 

60.70 

(7.97) 

66.13 

(7.09) 

66.69 

(7.47) 

66.84 

(7.16) 

Gender (F) 
1551 

(51.30%) 

142 

(62.8%) 

112  

(58.9%) 

0 

 (0.0%) 

3 

 (30.0%) 

45 

 (53.6%) 

18 

 (37.5%) 

53  

(41.4%) 

24 

 (36.4%) 

52  

(49.1%) 

15  

(28.3%) 

MMSE (SD) 
27.61 

(3.14) 

29.01  

(2.25) 

28.99  

(1.14) 

25.00 

(3.46) 

25.80 

(1.75) 

22.78 

(3.10) 

23.96 

(3.72) 

27.76 

(2.42) 

26.94 

(2.01) 

22.41 

(4.24) 

24.45 

(3.40) 

APOE ε4 

carriership +#  

1230 

(42.30%) 

98 

(43.3%) 

62  

(33.3%) 

1  

(33.3%) 

5  

(50.0%) 

63  

(75.0%) 

18  

(37.5%) 

50  

(39.4%) 

31  

(47.7%) 

63  

(59.4%) 

21  

(42.0%) 

Global PET +$  
1007 

(33.30%) 

31 

(13.7%) 

36  

(18.9%) 

0 

(0.0%) 

2  

(20.0%) 

81  

(96.4%) 

10  

(20.8%) 

25  

(19.5%) 

26  

(39.4%) 

71  

(67.0%) 

16  

(30.2%) 

PET cut-off* N/A 1.34 1.27 1.22 1.28 

CSF Aβ42 (SD) N/A 
1347.12 

(360.98) 

892.28 

(317.98) 

1277.00 

(131.52) 

918.80 

(318.69) 

539.75 

(92.56) 

939.48 

(215.34) 

1081.74 

(283.94) 

906.45 

(319.25) 

681.61 

(276.33) 

892.94 

(295.90) 

CSF T-Tau (SD) N/A 
204.44 

(77.13) 
N/A 

192.67 

(180.94) 

303.71 

(397.04) 

569.99 

(339.82) 

357.38 

(213.89) 

366.23 

(286.48) 

476.39 

(274.50) 

651.77 

(368.39) 

387.72 

(178.33) 

CSF P-Tau (SD) N/A 
16.78 

(8.25) 

76.34  

(44.38) 

37.00 

(35.50) 

58.40 

(46.83) 

77.09 

(27.36) 

44.05 

(18.55) 

53.92 

(29.84) 

65.74 

(27.82) 

79.04 

(35.37) 

53.47 

(17.88) 

CSF Essay N/A Elecsys 
Adx 

Euroimmune 
Innotest Innotest 
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CU = cognitively unimpaired subjects, which includes both controls and subjective cognitive decliners. 
Impaired subjects either had a clinical diagnosis of MCI or a Clinical Dementia Rating of 0·5 (in the absence of a clinical diagnosis) 

Table 1. Baseline Demographics Cohorts (continued) 

Tracer [11C]PiB [18F]Florbetapir  

Cohort 
OASIS  

(N = 572) 

OASIS  

(N = 360) 

ADNI 

(N = 1181) 

Diagnostic group 
CU 

(N = 482) 

Impaired 

(N = 32) 

AD 

Dementia 

(N = 49) 

Non AD 

Dementia 

(N = 9) 

CU 

(N = 304) 

Impaired 

(N = 25) 

AD 

Dementia  

(N = 30) 

Non AD 

Dementia 

(N = 1) 

Missing 

(N = 28) 

CU 

(N = 430) 

Impaired 

(N = 525) 

AD 

Dementia 

(N = 198) 

Age (SD) 
64.63  

(9.32) 

70.44 

(8.35) 

75.43 

(7.72) 

66.81 

(0.35) 

66.78 

(8.53) 

70.92 

(6.30) 

73.70 

(6.86) 
67.61 

72.72 

(9.84) 

73.97 

(6.78) 

72.87 

(7.96) 

75.02 

(7.75) 

Gender (F) 
292  

(60.6%) 

18  

(56.3%) 

20  

(40.8%) 

4 

(44.4%) 

163 

(53.6%) 

17  

(68.0%) 

18  

(60.0%) 

1  

(100%) 

14  

(51.9%) 

233  

(54.2%) 

222 

(42.3%) 

82  

(41.4%) 

MMSE (SD) 
29.13  

(1.15) 

27.97  

(1.94) 

23.60 

(3.57) 

24.67 

(5.66) 

29.04 

(1.25) 

28.56 

(1.53) 

24.63 

(4.00) 
19.00 

26.00 

(2.55) 

29.06 

(1.19) 

28.02 

(1.78) 

22.49 

(3.28) 

APOE ε4 

carriership +#  

161  

(33.5%) 

15 

(46.9%) 

31  

(63.3%) 

4  

(44.4%) 

101 

(34.7%) 

6  

(30.4%) 

23  

(76.7%) 

1  

(100.0%) 
8 (36.4%) 

102 

(27.9%) 

237 

(46.2%) 

129 

(66.8%) 

Global PET +$  
114  

(23.7%) 

15 

(46.9%) 

44  

(89.8%) 

6 

(66.7%) 

65  

(21.4%) 

12  

(48.0%) 

25  

(83.3%) 

1 

(100.0%) 

11 

(39.43%) 

94  

(21.9%) 

192 

(36.6%) 

131 

(66.2%) 

PET cut-off*  1.16 1.28 1.41 

CSF Aβ42 (SD) N/A N/A N/A 
1246.92 

(433.15) 

1016.95 

(431.53) 

696.12 

(338.48) 

CSF T-Tau (SD) N/A N/A N/A 
241.58 

(91.21) 

277.50 

(128.44) 

374.06 

(156.31) 

CSF P-Tau (SD) N/A N/A N/A 
22.13 

(9.35) 

26.60 

(14.32) 

36.71 

(16.37) 

CSF Essay N/A N/A Elecsys ACCEPTED
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AD and non-AD dementia subjects all had a clinical diagnosis of AD or non-AD dementia, respectively.  
# Subject carries at least 1 APOE ε4 allele 
$ Based on global cortical amyloid burden 
* Cut-off derived from Gaussian Mixture Modelling and used for final model 
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Table 2. Longitudinal Results 

Longitudinal PET 

Baseline Stage 

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Total 

Stable 409 (78.8%) 61 (36.1%) 35 (39.3%) 43 (39.4%) 134 (86.5%) 682 (65.5%) 

Progressed 107 (20.6%) 68 (40.2%) 35 (39.3%) 49 (45.0%) - 259 (24.9%) 

Reversed - 33 (19.5%) 18 (20.2%) 15 (13.8%) 18 (11.6%) 84 (8.1%) 

Unclassifiable at 

follow-up 
3 (0.6%) 7 (4.1%) 1 (1.1%) 2 (1.8%) 3 (1.9%) 16 (1.5%) 

Total 519 (49.9%) 169 (16.2%) 89 (8.5%) 109 (10.5%) 155 (14.9%) 1041Ψ 

 

Longitudinal Cognition 

ADNI cohort  OASIS cohort 

 Kaplan Meier Cox Regression  Kaplan Meier Cox Regression 

PET status  
# 

Subjects 

% 

subjects 

who 

reached 

the event 

Estimated 

time to event 

(years) 

Mean (SE) 

95% Confidence 

Interval 

 

Hazard 

Ratio’s 
95% Confidence 

Interval 
# Subjects 

% 

subjects 

who 

reached 

the event 

Estimated 

time to event 

(years) 

Mean (SE) 

95% Confidence 

Interval 

 

Hazard 

Ratio’s 
95% Confidence 

Interval 

Global PET - 552 19.5 6.71 (0.12) 6.47 6.95 Reference group 351 6.0 11.73 (0.16) 11.43 12.01 Reference group 
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Ψ8 scans were unclassifiable at baseline and therefore not included in these analyses. 
 *p < 0.001 compared to Global PET – 
#Significantly higher risk compared to stage number(s) in superscript (p < 0.05) 
$Higher risk compared to stage number(s) in superscript at trend level (p = 0.05-0.10) 
 
 

 

 

 

 

 

 

 

 

 

Global PET + 242 54.9 4.17 (0.18) 3.81 4.52 3.45
*
 2.63 4.53 122 23.1 9.29 (0.48) 8.35 10.24 4.42

*
 2.50 7.83 

No amyloid 462 24.9 6.99 (0.12) 6.76 7.23 Reference group 152 7.2 10.79 (0.21) 10.37 11.20 Reference group 

Stage 1 97 25.8 5.65 (0.28) 5.10 6.20 2.00
#
 1.26 3.16 117 7.7 11.53 (0.30) 10.93 12.12 1.10 0.46 2.65 

Stage 2 41 41.5 4.65 (0.39) 3.88 5.42 3.53
#0,$1

 2.07 6.00 86 1.2 11.54 (0.14) 11.27 11.82
$
 0.17

$0,1 0.02 1.33 

Stage 3 82 45.1 4.10 (0.29) 3.52 4.68 4.55
#0,1

 3.04 6.81 36 16.7 9.30 (0.54) 8.24 10.35 2.32
#2 0.86 6.26 

Stage 4 105 59.0 3.30 (0.24) 2.82 3.78 9.91
#0-3

 4.86 9.81 78 27.9 8.53 (0.58) 7.40 9.67 4.80
#0,1,2

 2.31 9.98 

ACCEPTED

Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.



 

 

37 

 

 

 

Figure 1. Construction of cortical amyloid staging models Schematic representation of the work-

flow for constructing nine staging models. First, three different data-driven cut-offs per cohort were 

determined using Gaussian Mixture Modelling and each entire cohort. Then, 400 out of all CU 

subjects were selected for model construction using a iterative algorithm, following by regional 

ranking of the cortical regions in their frequency of abnormality across these subjects. Finally, three 

definitions of stages were applied to the ranking.  
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Figure 2. Regional ranking per radiotracer A) Frequency of regional abnormality across 100 CU 

subjects per radiotracer. B) Heatmap showing Spearman’s rank correlation (rho) between the tracer-

specific regional rankings. C) Correlation matrix displaying the correlation between each single-tracer 

regional ranking and the multi-tracer regional ranking based on the pooled data of 400 CU subjects.  
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Figure 3. The 5-stage (mean + 2SD equal frequencies) cortical amyloid staging model A) Frequency 

of regional abnormality across 400 CU subjects used to construct the model. The colours represent 

the four different stages as defined by the equal frequency approach. B) Anatomical image displaying 

the brain regions involved in each stage. A stage was attributed when more than 50% of the 

encompassed regions displayed SUVr > cut-off (mean + 2SD cohort- and tracer-specific cutoff). 

Higher stages were only achieved once the staging conditions are also met for previous stages.  
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Figure 4. Cross-sectional analyses A) Baseline distribution of staging classification per cohort. 

Classification based on the amyloid staging model versus B) global amyloid PET classification, C) 

syndromic diagnosis, D) genetic risk, E) z-scored CSF Aβ42 levels, and F) log-transformed z-scored p-

Tau values.  
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Figure 5. Longitudinal analyses Results from the linear mixed model analyses, displaying the effect of 

baseline amyloid stage on subsequent MMSE scores with coloured bands representing the 95% C.I. 

for ADNI (A) and OASIS (B) separately. Kaplan- 2 Meier survival plot displaying risk of progression to 

MMSE ≤ 25 per baseline amyloid stage for ADNI (C) and OASIS (D) separately. 
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