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Abstract

Cholera remains a major global public health threat and continuous emergence of new Vib-

rio cholerae strains is of major concern. We conducted a molecular epidemiological study to

detect virulence markers and antimicrobial resistance patterns of V. cholerae isolates

obtained from the 2012–2015 cholera outbreaks in Ghana. Archived clinical isolates

obtained from the 2012, 2014 and 2015 cholera outbreaks in Ghana were revived by culture

and subjected to microscopy, biochemical identification, serotyping, antibiotic susceptibility

testing, molecular detection of distinct virulence factors and Multi-Locus Variable-Number of

Tandem-Repeat Analysis (MLVA). Of 277 isolates analysed, 168 (60.6%) were confirmed

to be V. cholerae and 109 (39.4%) isolates constituted other bacteria (Escherichia coli,

Aeromonas sobria, Pseudomonas aeruginosa, Enterobacter cloacae and Enterococci fae-

calis). Serotyping the V. cholerae isolates identified 151 (89.9%) as Ogawa, 3 (1.8%) as

Inaba and 14 (8.3%) as non-O1/O139 serogroup. The O1 serogroup isolates (154/168,

91.7%) carried the cholera toxin ctxB gene as detected by PCR. Additional virulence genes

detected include zot, tcpA, ace, rtxC, toxR, rtxA, tcpP, hlyA and tagA. The most common

and rare virulence factors detected among the isolates were rtxC (165 isolates) and tcpP

(50 isolates) respectively. All isolates from 2014 and 2015 were multidrug resistant against

the selected antibiotics. MLVA differentiated the isolates into 2 large unique clones A and B,

with each predominating in a particular year. Spatial analysis showed clustering of most iso-

lates at Ablekuma sub-district. Identification of several virulence genes among the two differ-

ent genotypes of V. cholerae isolates and resistance to first- and second-line antibiotics,

calls for scaleup of preventive strategies to reduce transmission, and strengthening of public

health laboratories for rapid antimicrobial susceptibility testing to guide accurate treatment.
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Our findings support the current WHO licensed cholera vaccines which include both O1

Inaba and Ogawa serotypes.

1. Introduction

Cholera is a highly virulent, lethal diarrhoeal disease caused by ingestion of water or food con-

taminated with the bacterium, Vibrio cholerae (V. cholerae). Vibrios can survive for a long

time in coastal waters contaminated by human faeces. Seven cholera pandemics have been

experienced globally and it continues to cause outbreaks locally and regionally across the Afri-

can continent [1, 2]. The World Health Organization (WHO) estimates that in 2018, there

were 1.3 to 4.0 million cases and 21,000 to 143,000 deaths due to cholera globally [1]. The

requirements for preventing outbreaks include improvement in sanitation, provision of safe

drinking water, and safe food and water practices as well as hand washing. These are difficult

to achieve in developing countries including Ghana, where annual cycles of cholera outbreaks

continue to occur. Since the first reported outbreak in 1970, Ghana has experienced many epi-

demics [2, 3]. Over the last two decades, the country reported an average of 3,066 (range: 50–

10,628) cholera cases with case fatality rate of 1.7%, though the WHO estimates more than

40,000 cases occur annually in years of large outbreaks [3]. The 2014 outbreak, which recorded

over 28,900 cases and 243 deaths in Ghana was the worst ever affecting all the 10 regions with

72% of cases occurring in the Greater Accra region [4]. Later in 2016, a small wave of the dis-

ease was experienced in the central region of Ghana accounting for 596 cases [5]. While oral

rehydration therapy is critical for case management, complementing with antibiotics to eradi-

cate vibrios is important in the management, prevention of spread and control of the disease

[6]. Recent reports indicate the emergence of antibiotic resistant V. cholerae strains from chol-

era-endemic African countries [7, 8].

The current licenced cholera vaccine contains limited variants of killed whole cells of the

O1 V. cholerae serogroup, at the same time newer variants are emerging with non-O1 types

causing disease in some geographical areas [9]. Moreover, the presence of distinct genetic viru-

lence markers influences clinical cholera. This implies that the inter serotype polymorphism in

virulence markers may affect the efficacy of vaccines with limited strain composition in spe-

cific geographical areas. Therefore, a molecular epidemiological study to understand the

occurrence of distinct markers among outbreak isolates is important for future vaccine devel-

opment. Moreover, utilization of discriminating tools such as multi-locus variable number of

tandem repeats analysis (MLVA) will aid in tracking disease spread, which is crucial for disease

control. Furthermore, the emergence of antimicrobial drug resistance, makes it judicious to

routinely monitor changes in strain susceptibility to antimicrobial drugs hence adapt to treat-

ment recommendations. We conducted a molecular epidemiological study to detect virulence

markers and antimicrobial resistance patterns of V. cholerae isolates obtained from cholera

cases occurring during the 2012–2015 outbreaks in Ghana.

2. Materials and methods

2.1. Isolate revival and characterisation

Archived clinical isolates used in this study were obtained from presumptive cholera cases

attending some selected health facilities (Ga West Municipal hospital, Achimota hospital,

Korle-Bu Polyclinic, La General hospital, University of Ghana hospital, Princess Marie Luis
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children’s hospital, and 37 Military hospital) in Southern Ghana during the 2012, 2014 and

2015 cholera outbreak years.

The isolates were concurrently sub-cultured on thiosulphate-citrate-bile salt-sucrose

(TCBS) agar, blood agar and in alkaline peptone water and all three media were aerobically

incubated overnight at 37˚ C. Colonies were subjected to Analytical profile index (API 20E)

standard biochemical tests. O1 polyvalent anti-sera and monovalent anti-sera were used to

define isolates as Ogawa, Inaba or Hikojima serotype. Isolates that were non-O1 were further

tested using O139 anti-sera. Vibrio cholerae isolates were genetically confirmed by the presence

of ompW and/or ctxB genes using PCR.

2.2. Drug susceptibility testing

Phenotypic drug susceptibility testing by Kirby-Bauer disc diffusion method was performed

using Muller-Hinton Agar in accordance with the Clinical and Laboratory Standards Institute

(CLSI) guidelines [10]. The antibiotic susceptibility profiles of the isolates were determined

against Cotrimoxazole (23.75μg/1.25μg), Ampicillin (10μg), Tetracycline (30μg), Ciprofloxacin

(5μg), Amikacin (30μg), Gentamicin (10μg), Erythromycin (15μg), Streptomycin (10μg),

Cefuroxime (30μg), Ceftriaxone (30μg), Nalidixic acid (30μg), Doxycyclin (30μg), Azetromy-

cin (30μg), Flucloxacillin (5μg), cefotaxime (30μg) and ceftazidime (30μg) and Chlorampheni-

col (30μg). The reference strain Escherichia coli ATCC 25922 was used as a control.

2.3. Extended-spectrum β-lactamases (ESBLs)

Each bacterial isolate was first screened for Extended Spectrum Beta Lactamase (ESBL) pro-

duction by the disc diffusion method using the antibiotics ceftriaxone (30μg), cefotaxime

(30 μg), ceftazidime (30 μg) and aztreonam according to CLSI guidelines [10]. An isolate with

reduced susceptibility to any of the four antibiotics was confirmed following the recom-

mended CLSI double disc confirmatory method [10], the modified CLSI confirmatory test

[11] and a combination disc method using discs of cefepime alone and in combination with

clavulanic acid [12]. All screened-positive isolates were first tested with the CLSI confirmatory

test using discs of ceftazidime and ceftaxime alone and in combination with clavulanic acid.

Escherichia coli ATCC 25922 and Klebsiella pneumonia ATCC 700603 were used as negative

and positive controls respectively.

2.4. DNA extraction

V. cholerae cell lysate was used as DNA template as previously described by Nandi et al. [13].

Briefly, two loops full (10 μL) of biochemically confirmed colonies of V. cholerae from a

24-hour nutrient agar culture was suspended in 100 μL of nuclease free water. The bacterial

suspension was heated at 95˚C for 10 minutes to release crude DNA. The DNA was then

stored at -20˚C for further analysis.

2.5. Detection of V. cholerae virulence genes

Genotypic detection of the following V. cholerae genes: ompW, ctxB, O1-rfb, zot, toxR, tcpA,

tcpP, rxtA, rxtC, ace, hlyA and tagA [14] was carried out using conventional PCR with specific

primers (Table 1). Each reaction volume in a total of 25μl comprised of 13.5μl of nuclease free

water, 2.5μl (10pmol/μl) of forward primer, 2.5μl (10pmol/μl) of reverse primer, 0.7μl

(2.5mM) of dNTPs, 0.3μl (5U/ul) of hot start taq plus polymerase, 2.5μl of 10X PCR coral load

buffer (Qiagene) and 3μl of template. The reaction mixture was subjected to 35 cycles of ampli-

fication with PCR condition set at; initial denaturation at 95˚C for 5min, denaturation at 94˚C
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for 30sec, annealing at specified temperature (Table 1) for 50sec, extension at 72˚C for 50sec

and final extension after the 35 cycles at 72˚C for 5min.

2.6. Multi-locus variable number of tandem repeat analysis (MLVA)

The MLVA was achieved using five previously described loci by Danin Poleg et al. [23]. Five

loci including VC0147, VC0436-7, VC1650, VC0171 and VC0283 were amplified using the

primers and conditions described by Morita et al. [24]. The PCR products were purified and

sequenced by outsourcing. We cleaned and analysed the generated sequences using the Staden

software package [25]. The numbers of repeats of each VNTR per isolate were digitized and

recorded into Microsoft excel and uploaded into the MIRU-VNTRplus web application

(https://www.miru-vntrplus.org/MIRU/index.faces) for clustering analysis implemented with

a neighbour-joining clustering algorithm. The resulting dendrogram was annotated with

patient demographic information using the ggtree package implemented in R [26].

2.7. Spatial analysis

Spatial analysis was performed using both the MLVA and epidemiological (residential address)

data. The GIS co-ordinates of the residential location of the cases were used to construct a

graphical plot of the distribution of the V. cholerae isolates using ArcMap employed in ArcGIS

v10.1 [27].

Table 1. A list of primers used in this study.

Primer no. Target gene primer Primer Sequence Annealing Temperature Used for PCR Reference

1 ompW forward CACCAAGAAGGTGACTTTATTGTG 59 ˚C [13]

ompW reverse GAACTTATAACCACCCGCG 59 ˚C [13]

2 O1-rfb forward GTTTCACTGAACAGATGGG 54 ˚C [15]

O1-rfb reverse GGTCATCTGTAAGTACAAC 54 ˚C [15]

3 ctxB forward GGTTGCTTCTCATCATCGAACCAC 60 ˚C [16]

ctxB reverse GATACACATAATAGAATTAAGGAT 60 ˚C [16]

4 zot forward GCTATCGATATGCTGTCTCCTCAA 62 ˚C [17]

zot reverse AAAGCCGACCAATACAAAAACCAA 62 ˚C [17]

5 toxR forward ATGTTCGGATTAGGACAC 54 ˚C [18]

toxR reverse TACTCACACACTTTGATGGC 54 ˚C [18]

6 ace forward AGAGCGCTGCATTTATCCTTATTG 64 ˚C [19]

ace reverse AACTCGGTCTCGGCCTCTCGTATC 64 ˚C [19]

7 rtxA forward CTG AAT ATG AGT GGG TGA CTT ACG 64 ˚C [20]

rtxA reverse GTG TAT TGT TCG ATA TCC GCT ACG 64 ˚C [20]

8 rtxC forward CGA CGA AGA TCA TTG ACG AC 58 ˚C [16]

rtxC reverse CAT CGT CGT TAT GTG GTT GC 58 ˚C [16]

9 tagA forward GGTGGTAAGATATTCACTC 57 ˚C [20]

tagA reverse GAGACATCTATAGAATACTGGCTG 57 ˚C [20]

10 tcpA forward CACGATAAGAAAACCGGTCAAGAG 64 ˚C [14]

tcpA reverse ACCAAATGCACGCCGAATGGAGC 64 ˚C [14]

11 tcpP forward ACTCTGTGAATATCATCCTGCC 59 ˚C [21]

tcpP reverse CTGGGTAAGCCAAACATTGG 59 ˚C [21]

12 hlyA-Forward GGC AAA CAG CGA AAC AAA TAC C 62 ˚C [22]

hlyA-Reverse CTC AGC GGG CTA ATA CGG TTT A 62 ˚C [22]

https://doi.org/10.1371/journal.pone.0236016.t001
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2.8. Ethical consideration

Cholera outbreaks are of great public health concern in Ghana; there are control and routine

surveillance measures to reduce the epidemics. To understand the transmission dynamics of

V. cholerae and strategize for subsequent spread of the disease in the sub-region, the National

Public Health and Reference Laboratory (NPHRL) of the Ghana Health Service, requested the

Noguchi Memorial Institute for Medical Research to undertake this study.

3. Results

3.1. Demographic and clinical characteristics of cases

A total of 277 archived isolates were used of which 43.3% (120) were received from the

National Public Health and Reference laboratory, Korle-Bu and the remaining 157 (56.7%)

were isolated from human stool samples at the Bacteriology Department of Noguchi Memorial

Institute for Medical Research (NMIMR). The isolates were obtained from 152 (54.9%) males

and 119 (43.0%) females and 6 (2.1%) with gender not specified. Among the 277 cases, age ran-

ged between 1 month to 84 years; 47 (17.0%), 58 (21.0%) and 170 (61.3%) representing the

paediatric (0-5years), older children (6–17 years) and adult (>17years) age respectively.

While the isolates from the NPHRL (120) were collected across Ghana, the 157 NMIMR

isolates were from selected health facilities in the Greater Accra region specifically, Ga West

Municipal hospital 100 (63.7%), Achimota hospital 15 (9.6%), Korle-Bu Polyclinic 12 (7.6%),

La General Hospital 9 (5.7%), University of Ghana hospital 8 (5.2%), Princess Marie Luis chil-

dren’s hospital 12 (7.6%), and 37 Military hospital 1(0.6%) (Fig 1). Clinical records on cases of

the NMIMR isolates showed that 71 (45.2%) had taken antibiotics, 13 (8.3%) antibiotics and

antimalarial, 17 (10.8%) could not recall medication taken and 56 (35.7%) had not taken any

medication prior to seeking medical care. Clinicians’ provisional diagnosis indicated cholera

139 (88.5%), gastroenteritis 6 (3.8%), gastroenteritis/malaria 3 (1.9%), diarrhoea 8 (5.2%) and

retroviral infection 1 (0.6%).

3.2. Identified species and antimicrobial susceptibility pattern

Of the 277 bacteria revived, 168 (61%) were both phenotypically and genotypically character-

ised as V. cholerae and the remaining 109 (39%) isolates were identified as: Aeromonas sobria:

14 (12.8%), Vibrio parahaemolyticus: 2 (1.8%), Pseudomonas aeruginosa: 7 (6.4%), Enterobacter
cloacae: 16 (14.8%), Enterococci faecalis: 31 (28.4%), Escherichia coli: 26 (23.9%), Klebsiella
pneumonia: 6 (5.5%) and Proteus mirabilis: 7 (6.4%). Since the focus of the study was on V.

cholerae, the other bacteria were not further studied. From the antibiotic susceptibility screen-

ing, we observed increasing antibiotic resistance among the V. cholerae isolates from 2012,

2014 and 2015 cholera outbreak seasons (Fig 2). The 2012 V. cholerae isolates showed high

resistance patterns to sulfamethoxazole-trimethoprim (3/4, 75%) and nalidixic acid (1/4, 25%)

but were susceptible to over 70% of the antibiotics (S1 Table). Among the 2014 isolates Azi-

thromycin and Cotrimoxazole were the most and least effective antibiotics respectively. In

2015, Gentamicin and flucloxacilin were respectively the most and least potent antibiotics.

3.3. Virulence genes distribution among V. cholerae isolates

Genotypic assays confirmed all V. cholerae isolates by the presence of ompW. Of the 168: 151

(89.8%), 3 (1.8%) and 14 (8.3%) were of the Ogawa, Inaba and non-O1/non-O139 serotypes

respectively. The isolates collected in 2014 contained all the three serotypes described in this

study. None of the isolates tested belong to the O139 serogroup. Assaying for the presence or

absence of 10 known virulence genes, we detected 7 virulence genes among the four 2012
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isolates and 9 genes among both the 2014 and 2015 isolates (Table 2). The genes rtxC 165/168

(98%) and tcpP 50/168 (30%) were the most and least detected respectively. All the 14 non-O1/

non-O139 V. cholerae isolates were negative for the ctxB gene. All the 168 isolates harboured at

least one virulence gene: however, we did not detect tagA in any of the isolates.

A cumulative data from the genotypic analysis based on the presence/absence of specific

virulence factors was used to determine clonality among the V. cholerae isolates and depicted

five large distinct clones (Fig 3) based on the presence or absence of encoding genes. Of the 10

virulent factors characterized, 6 (O1-rfb+ctxB+toxR+hlyA+rtxA+rtxC) were common among

Fig 1. A map showing geographical distribution and the number of isolates of V. cholerae.

https://doi.org/10.1371/journal.pone.0236016.g001
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all the 5 clones. The highest number of virulence factors was detected in clone 1 (red) (Fig 3,

Table 3). None of the 14 non-O1/non-O139 V. cholerae isolates clustered with any of the 5

large clones, nor clustered together, but constitute singletons.

3.4. Multi-locus variable number of tandem repeats analysis

Using PCR amplification and DNA sequencing analysis of the five VNTRs (VC0147, VC0436-

7, VC1650, VCA0171 and VCA0283), approximately 83.3% (140/168) of the samples analysed

gave good sequence data for all the five loci analysed and were used in the MLVA. The most

Fig 2. Antimicrobial susceptibility profile of V. cholerae outbreak and non-outbreak isolates by year of disease onset.

https://doi.org/10.1371/journal.pone.0236016.g002
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polymorphic VNTRs were VC0171 and VCA0283 with 9 different copy-numbers among the

isolates whereas VNTRs VC0436-7 and VC1650 were the least polymorphic with 4 distinct

copy-numbers each. Two large unique clusters; cluster A: 50 isolates and cluster B: 59 isolates

were observed from the clustering analysis of the combined MLVA data (Fig 4). These clusters

were independent of age, sex, facility where samples were collected and virulence marker

clonal designations but dependent on the year of isolation. Whereas cluster A was dominated

by isolates from the year 2015 except for 5 isolates in 2014 and 1 in 2012, cluster B was domi-

nated by isolates from 2014 with the exception of 6 isolated in 2015. The two large clones

obtained from the MLVA data were found to be largely distributed within the heart of Greater

Accra region precisely the Accra Metropolitan Assembly (AMA), with a few distributed in the

outskirts of AMA (Fig 5). At least four cases from clone A (3 cases) and clone B (1 case) were

from the Central region. The two clones were distributed in 15 districts/sub-districts with

Ablekuma sub-district of the AMA recording the highest being 22.9% (25/109) followed with

Ga West Municipal (16.5%, 18/109).

4. Discussion

Our study of archived bacterial isolates from patients with diarrhoea during the 2012, 2014

and 2015 cholera outbreaks in Ghana reveals several important findings. Only 61% of the iso-

lates from the presumed cholera cases were confirmed to be caused by V. cholerae O1 and

pathogens other than vibrios were detected. The frequency and diversity of other pathogens

associated with diarrhoea in Ghana, concurs with similar reports from Nigeria, Bangladesh,

Tanzania and Sierra Leone [28–31]. This underscores the need to scale up laboratory-based

surveillance of diarrhoeal diseases so that accurate identification of the specific aetiology of

diarrhoeal diseases can be made using the Integrated Disease Surveillance and Response

(IDSR) approach to effectively identify causative agent to enhance appropriate therapy.

Table 2. Genotypic analysis of V. cholerae isolates by year of disease onset.

Gene targeted 2012 (N = 4) 2014 (N = 92) 2015 (N = 72) Total (N = 168)

N (%) N (%) N (%) N (%)

ompW 4 (100) 92 (100) 72 (100) 168 (100)

O1-rfb 4 (100) 85 (92.0) 65 (90.2) 154 (92)

ctxB 4 (100) 85 (92.0) 65 (90.2) 154 (92)

toxR 4 (100) 84 (91.3) 71 (98.6) 159 (95)

zot 4 (100) 77 (83.7) 49 (68.1) 130 (77)

ace 4 (100) 72 (78.3) 65 (90.2) 141 (84)

tcpA 2 (50.0) 36 (39.1) 62 (86.1) 100 (60)

rtxA 4 (100) 74 (80.4) 67 (93.1) 145 (86)

tcpP 0 (0.0) 22 (23.9) 28 (38.9) 50 (30)

hlyA 4 (100) 81 (88.0) 70 (97.2) 155 (92)

rtxC 4 (100) 90 (97.8) 71 (98.6) 165 (98)

tagA 0 (0) 0 (0.0) 0 (0.0) 0 (0)

ompW-gene encoding outer membrane proteins of Vibrio cholerae, O1-rfb- the rfb genes specific for V. cholerae O1, ctx B-gene encoding the B-subunit of the cholera

toxin, zot- gene encoding zonula occluden toxin, toxR- gene that encodes the central regulatory protein toxR, ace- gene encoding accessory cholera enterotoxin, tcpA-

gene encoding toxin co-regulated pilus A (a colonisation factor), tcpP-gene encoding toxin co-regulated pilus P (a colonisation factor), rtxA- repeat in toxin gene that

encode presumptive cytotoxin RTXA, rtxC- a gene that encode RTX cytotoxin activator RTXC, hlyA-gene encoding hemolysin A, tagA-gene that encode TagA

lipoprote.

https://doi.org/10.1371/journal.pone.0236016.t002
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Our data shows high resistance patterns to first- and second-line antibiotics recommended

by the Ghana Health service for cholera treatment [32], which include nalidixic acid, sulfa-

methoxazole/trimethoprim and erythromycin, and moderate resistance to doxycycline and

chloramphenicol. Similar patterns have been reported from studies in Mozambique and

Ghana [33–36], but are in contrast to reports from India and South Mozambique [37, 38]. We

also recorded high levels of resistance to erythromycin (69% in 2014 and 58% in 2015) an anti-

biotic that was previously considered most potent for cholera treatment [39]. In Ghana, antibi-

otics are easily acquired over-the-counter without prescription and this misuse may be

Fig 3. A phylogenetic tree depicting clonal distribution of V. cholerae isolates based on the distribution of virulence genes. At

least five large clones were observed based on the presence or absence of virulence genes. The tree was constructed using the

neighbour-joining clustering algorithm.

https://doi.org/10.1371/journal.pone.0236016.g003

Table 3. Clonal distribution of virulent factors among 2012, 2014 and 2015 outbreak isolates.

CLONE ID CLONAL PATTERN OF VIRULENT FACTORS

CLONE 1 (RED) ompW+O1-rfb+ctxB+toxR+hlyA+rtxA+rtxC+zot+ace+tcpA+tcpP
CLONE 2 (GREEN) ompW+O1-rfb+ctxB+toxR+hlyA+rtxA+rtxC+zot+ace+tcpA
CLONE 3 (BROWN) ompW+O1-rfb+ctxB+toxR+hlyA+rtxA+rtxC+zot+ace
CLONE 4 (YELLOW) ompW+O1-rfb+ctxB+toxR+hlyA+rtxA+rtxC+zot+ace +tcpP
CLONE 5 (BLUE) ompW+O1-rfb+ctxB+toxR+hlyA+rtxA+rtxC+ace +tcpA+tcpP

https://doi.org/10.1371/journal.pone.0236016.t003
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responsible for the continuing emergence of antibiotic resistant strains [40]. Antibiotics are

commonly used in animal husbandry as growth supplements to prevent infection and to

increase yield. Therefore, residues can readily be passed on to humans when such product is

consumed [41, 42]. We detected an increasingly reduced susceptibility to ciprofloxacin (2012,

2014, and 2015), an observation which is contrary to the report by Kuma et al. [35].

The pathogenesis of cholera is complex involving several factors that aid V. cholerae bacte-

ria to colonize and release enterotoxin (CT) that disrupts ion transport by intestinal epithelial

cells. Although production of CT, encoded by the ctxAB genes, is directly responsible for the

manifestation of diarrhoea [43], cholera pathogenesis relies on the synergistic action of addi-

tional genes. Our findings suggest that 91.7% of the cases were caused by toxigenic V. cholerae
capable of causing highly dehydrating diarrhoea. The ctxAB gene plays a critical role towards

the dehydration caused by toxigenic V. cholerae and is responsible for the pathogenesis. Inter-

estingly, none of the remaining 14 (8.3%) non-O1/O139 V. cholerae isolates which were also

negative for the ctxB gene were part of the large clones. Their inability to be part of large clones

may be due to the absence of the ctxB gene which makes them less virulent. We detected the

tcpA gene which is a colonization factor in 59% of the isolates suggesting that about 40% of the

isolates though may express the cholera toxin might be impaired with their ability to colonize

the host. None of our isolates tested positive for serogroup O139 and this finding is concordant

Fig 4. Phylogenetic tree of multi-locus variable number of tandem-repeat (VNTR) analysis (MLVA) for Vibrio cholerae isolates by age

(inner circle), sex, region isolation year and serotype (outer circle).

https://doi.org/10.1371/journal.pone.0236016.g004
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Fig 5. Spatial distribution of V. cholerae isolates during 2012–2015 outbreak periods. The two large clones obtained from the

MLVA data were found to be largely distributed within the heart of Greater Accra region precisely the Accra Metropolitan Assembly

(AMA), with a few distributed in the outskirts of AMA. At least four cases from clone A (3 cases) and clone B (1 case) were from the

Central region.

https://doi.org/10.1371/journal.pone.0236016.g005
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with earlier reports of unsuccessful detection of this serogroup from geographical areas outside

Asia [44]. We found 14 isolates which tested negative for the serogroup O1 indicating the pres-

ence or emergence of V. cholerae strains other than O1 and O139 causing cholera-like diseases.

This finding is consistent with a recent study by Dutta et al., which found serogroups other

than O1 and O139 causing cholera-like diarrhoea in patients from Kolkata in India [45]. All

the isolates tested were predominantly Ogawa serotype, confirming as the main circulating

serotype in West Africa [33, 46–48]. We however, found three of our isolates to be Inaba sero-

type that is mostly found in Asia. It is possible that these resulted from serotype switch from

Ogawa to Inaba due to potential protective Ogawa antibodies from previous exposure [49].

Alternatively, the Inaba serotype could have been imported. Thus, this calls for more stringent

public health control measures to prevent spread of these virulent strains. Furthermore, our

findings support the current WHO licensed cholera vaccines which include both O1 Inaba

and Ogawa serotypes.

We found non-toxigenic variants that harboured other virulence genes such as hlyA, rtxC,

rtxA, ace and toxR but lacked the ctxB gene that encodes the cholera toxin in the outbreak iso-

lates. These isolates could be more virulent upon acquisition of cholera toxin in the future,

which compares with findings by Eibach et al. [34]. MLVA Clustering analysis based on copy-

numbers of the 5 VNTRs used for the study identified two major clusters (clusters A and B) of

V. cholerae. These clusters were independent of age, sex or geographical location meaning the

only factor that was significantly associated with the clustering was the year of isolation (2014

and 2015). While bacteria of cluster A were mostly responsible for the cholera outbreak in

2015, those of cluster B were responsible for 2014 outbreak cases which suggests an active

transmission of V. cholerae instead of independent cases. Nevertheless, there were few 2014

outbreak genotypes that persisted in 2015 signifying the inefficiency of the control measures

put in place or existence of an unknown environmental reservoir. This data agrees with find-

ings of Eibech et al. [34] and Abana et al. [50], which suggested a potential reservoir in the

environment. Interestingly, the clustering pattern by MLVA was very different from the clonal

distribution derived from the presence/absence of specific virulent factors (Figs 3 and 4). This

highlights the potential confounding due to horizontal gene transfer and the superiority of

MLVA for genotyping compared to PCR detection of virulence genes.

There are variable reports on the distribution of cholera outbreaks in space and in time.

There is the need to distinguish clonal and multi-clonal outbreaks to guide cholera control

measures [51]. Out of the 15 districts within Greater Accra and Central Region (Fig 5), the

strains were mostly clustered in the Accra Metropolis mainly within the Ablekuma sub-dis-

trict. Ablekuma is densely populated and a low socio-economic sub-urban area which may

have accounted for the outbreak [52].

We acknowledge that whole genome sequencing (WGS) and analysis of isolates could add

more information to the findings. We recognize this as a limitation of the study. Nevertheless,

the current study has provided useful information for disease treatment and control, and hope

to build on this in a future study to include WGS.

5. Conclusions

Cholera outbreaks in Ghana are caused by Vibrio cholerae (mostly of the Ogawa serotype). We

detected several virulence genes among the V. cholerae isolates. A high rate of V. cholerae resis-

tant to first- and second-line antibiotics occurs. The identification of several virulence genes

among the two different genotypes of V. cholerae isolates calls for scaleup of preventive strate-

gies to reduce transmission and strengthening of public health laboratories for rapid antimi-

crobial susceptibility testing to guide accurate treatment.
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