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Abstract

In this thesis, we investigate various topics regarding the arithmetic of polynomials over

finite fields. In particular, we explore the analogy between the integers and this polyno-

mial ring, and exploit the additional structure of the latter in order to derive arithmetic

statistics which go beyond what can currently be proved in the integer setting.

First, we adapt the Selberg-Delange method to prove an asymptotic formula for counting

polynomials with a given number of prime factors. We then extend this formula to cases in

which these polynomials are restricted first to arithmetic progressions, and then to ‘short

intervals’. In both cases, we obtain better ranges for the associated parameters than in

the integer setting, by using Weil’s Riemann Hypothesis for curves over finite fields.

Then, we investigate highly composite polynomials and the divisor function for polynomi-

als over a finite field, as inspired by Ramanujan’s work on highly composite numbers. We

determine a family of highly composite polynomials which is not too sparse, and use it to

compute the maximum order of the divisor function up to an error which is much smaller

than in the case of integers, even when the Riemann Hypothesis is assumed there.

Afterwards, we take a brief aside to discuss the connection between the Generalised Divisor

Problem and the Lindelöf Hypothesis in the integer setting.

Next, we prove that for a certain set of multiplicative functions on the polynomial ring,

the bound in Halász’s Theorem can be improved. Conversely, we determine a criterion

for when the general bound is actually attained, and construct an example which satisfies

this criterion.

Finally, in the other direction, we develop a formula for the Möbius function of a number

field which is related to Pellet’s Formula for the Möbius function of the polynomial ring.



Impact Statement

Many of the important questions in Number Theory are intrinsically related to the sta-

tistical properties of the integers. Some of these, such as the Riemann Hypothesis, which

is a claim about the distribution of the primes, are long-standing open conjectures whose

proof would have far-reaching consequences for our general understanding.

In the setting of polynomials over finite fields, we are able to answer the analogues of some

of these questions, and thus gain greater insight into the obstacles which prevent us from

doing so in the setting of the integers.

The research presented in this thesis, which is comprised of various problems, follows this

programme in two distinct ways. In Chapters 2, 3 and 5, we prove some results about the

arithmetic statistics of polynomials over finite fields which go beyond what can be proved

in the integer setting; and in Chapter 6, we use a formula to do with polynomials over

finite fields to develop a tool which might be used in the integer setting.

Moreover, as an aside, in Chapter 4 we demonstrate a connection between two major open

conjectures about the integers, with the hope that progress in one may be converted to

progress in the other, and vice-versa.
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Chapter 1

Introduction

1.1 Arithmetic statistics

The study of the arithmetic statistics of the integers is a well-established branch of Analytic

Number Theory, and it begins with a question about the multiplicative building blocks

of the integers, the primes, namely: “how likely is it for a given number to be prime?”

This question was answered in 1896 by Hadamard and de la Valée Poussin, following

the strategy in Riemann’s famous memoir of 1859, and resulting in the Prime Number

Theorem, which gives an asymptotic main term for the prime counting function

π(x) := #{p 6 x : p is prime } ∼
∫ x

2

dt

log t
as x→∞. (1.1)

In other words, the probability that a positive integer near x is prime is asymptotically

1
x

∫ x
2

dt
log t (or roughly 1

log x). The key ingredient in making Riemann’s strategy work is

to demonstrate that the analytic continuation of the Riemann Zeta function, defined for

s ∈ C with Re(s) > 1 by

ζ(s) :=
∑
n>1

1

ns

has no zeros on the line Re(s) = 1. The Prime Number Theorem can also be shown to be

equivalent to a statement about the mean value of the Möbius function, defined by

µ(n) :=


(−1)ω(n) if n is square-free

0 else
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where ω(n) is the number of distinct prime factors of n, namely that

1

x

∑
n6x

µ(n)→ 0 as x→∞

or in other words, that the average value of µ(n) is asymptotically zero. As an aside, we

note that since the proof of the Prime Number Theorem, there has been some focus on

the implicit error term in the asymptotic expansion in equation (1.1). The current best

bound for this error term is O

(
xe
−c (log x)3/5

(log log x)1/5

)
due to Vinogradov in [41] and Korobov

in [26], and the celebrated Riemann Hypothesis conjectures that the error term should in

fact be bounded by O(
√
x log x).

Once one has established the density of the primes in the integers, it is natural to begin

asking questions about the factorisation properties of a ‘typical’ integer. An archetypal

example, which gave birth to the application of techniques from Probability Theory to

Number Theory, is about the number of (distinct) prime factors of a typical positive

integer. This question was resolved by Erdős and Kac in [11], who proved that

1

x

∣∣∣∣{n 6 x :
ω(n)− log log x√

log log x
∈ (a, b)

}∣∣∣∣ −→ ∫ b

a

1√
2π
e−x

2/2dx as x→∞. (1.2)

One method for proving this result is to use the so-called Method of Moments, wherein one

computes the moments of ω(n) (for n up to x) and shows that they tend to the moments of

a normal distribution with mean and variance log log x, in analogy with the classical proof

of the Central Limit Theorem. The use of the Method of Moments, and other tools from

Probability Theory, such as Stein’s Method, has since become prevalent within the study

of arithmetic statistics in Number Theory (see, for example, [21] and [19] respectively).

1.2 Polynomials over finite fields

Let q be a prime power, and let Fq be the finite field of order q. The ring of polynomials

Fq[t] has an arithmetic structure which is very similar to that of the integers, and it has

long been studied in analogy with Z. In particular, if we restrict to M, the set of monic

polynomials in Fq[t], we have that any element inM factorises uniquely into a product of

primes (irreducibles) in M. M is the analogue of the natural numbers, and we can ask
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questions about the arithmetic statistics of M, just as we did for the natural numbers.

Similarly to before, the prototypical question is: “how many primes are there of degree

n?”. This question is much easier to answer than in the case of the integers, and in fact

one can show using a short elementary argument that for Mn = {f ∈M : deg f = n}

π(n) := #{p ∈Mn : p is prime} =
1

n

∑
d|n

µ(d)qn/d.

This Prime Polynomial Theorem is originally due to Gauss, and gives a full asymptotic

expansion for π(n). We see that the main term is of size qn

n , and since there are exactly

qn elements in Mn, this is directly analogous to our result in the integers, whose main

term is roughly x
log x . Moreover, the secondary term is at most of size qn/2

n , which means

that M provably satisfies the analogue of the Riemann Hypothesis. These facts make M

a useful toy model for the natural numbers, because not only are its statistics similar, but

we are able to prove stronger results about it, which can give us an insight as to what

might be going on in the integer setting which we cannot yet prove.

Just as in the integer setting, we can reformulate questions about arithmetic statistics in

Fq[t], like counting primes, in the language of zeta functions. The analogue of the Riemann

Zeta function for M is the function

Z(s) =
∑
f∈M

1

|f |s

where |f | = qdeg f . After the change of variable T = q−s we observe that

Z(T ) =
∑
f∈M

T deg f =
∑
n>0

qnTn =
1

1− qT
.

Now, the Riemann Hypothesis for the integers is equivalent to the claim that ζ(s) has no

(non-trivial) zeros off the line Re(s) = 1/2, and similarly the so-called Riemann Hypothesis

for Fq[t] is equivalent to the fact that Z(T ) has no zeros off the circle |T | = 1√
q . The latter

is, of course, vacuously true since Z(T ) has no zeros at all, which explains why we easily

obtain such an explicit formula for π(n) in the case of M.

Finally, we note that in the setting of Fq[t] there are two possible limits to consider. When

we compute the statistics of Mn, we can either keep q fixed and let n tend to infinity,
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or we can keep n fixed and allow q to tend to infinity. In the following work, we largely

investigate the former, as for us it serves as a more direct analogue of what is happening

in the setting of the integers. However, we do briefly discuss the regime where q tends to

infinity at the end of Chapter 2, and indeed there is a significant amount of contemporary

literature dedicated to analysing this regime (see, for example, [34] for a survey).

1.3 Outline of Thesis

So far, we have outlined the general notion of arithmetic statistics for the integers and for

polynomial rings over finite fields, and we have noted the additional tools available in the

study of the latter. The majority of the subsequent content of this thesis is dedicated to

the study of certain arithmetic questions about Fq[t], where we use the extra structure of

this ring to go beyond what it is possible to prove in the setting of the integers. In order

to present each chapter in a self-contained fashion, each contains its own introduction,

which recalls its context and adds further technical details and background information.

1.3.1 The Selberg Delange Method

An analytic approach to questions about arithmetic statistics is through the use of the

Selberg-Delange Method, which was first used by Selberg in [37] to estimate the asymptotic

order of πk(x) := #{n 6 x : n = p1 . . . pk for some p1, . . . , pk distinct primes}, where the

parameter k is allowed to vary with x up to some height. This result not only generalises

the Prime Number Theorem in equation (1.1), but can also be used to derive the Erdős-

Kac Theorem in equation (1.2) (as demonstrated, for example, in Chapter 7 of [30]). So,

we see that the Selberg-Delange Method is both very powerful and very general: in fact,

it can be used to understand functions of the form

F (s, z) = G(s, z)ζ(s)z

where s, z ∈ C with Re(s) > 1 and F (s, z) =
∑

n>1
an(z)
ns is a Dirichlet series such that

G(s, z) is an entire function in s satisfying certain bounds. If G(s, z) satisfies these condi-

tions, then F (s, z) and ζ(s)z are in some sense ‘close’, and understanding the singularity

of F (s, z) at s = 1, from which we can derive arithmetic information, essentially reduces

to computing the singularity of ζ(s)z at s = 1. For a full account, see Part II, Chapter 5
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of [39], whose notation we have borrowed. In the particular case of πk(x), Selberg takes

F (s, z) =
∑
n>1

µ2(n)zω(n)

ns

and having understood the pole of F (s, z) at s = 1, as described above, he uses Perron’s

Formula to extract the partial sum

Az(x) :=
∑
n6x

µ2(n)zω(n) =
1

2πi

∫ 2+i∞

2−i∞
F (s, z)xs

ds

s
.

Finally, since πk(x) = #{n 6 x : µ2(n) = 1 and ω(n) = k}, he notes that Az(x) can be

re-written as

Az(x) =
∑
k>1

πk(x)zk

and so he can compute πk(x) using Cauchy’s formula

πk(x) =
1

2πi

∮
Az(x)

dz

zk+1
.

In doing so, he is able to get an asymptotic main term for πk(x) for k up to any constant

multiple of log log x, namely that

πk(x) ∼ G
(

k − 1

log log x

)
x

log x

(log log x)k−1

(k − 1)!

where G(z) = 1
Γ(1+z)

∏
p prime(1 + z

p)(1− 1
p)z.

In Chapter 2, we modify the Selberg-Delange method to the setting of Fq[t], and use it to

derive a Sathé-Selberg formula for this setting.

Theorem 1. Let A > 1. Then uniformly for all n > 2 and 1 6 k 6 A log n

πk(n) := #{f ∈Mn : f = p1 . . . pk for some p1, . . . , pk ∈ I distinct}

=
qn

n

(log n)k−1

(k − 1)!

(
G

(
k − 1

log n

)
+OA

(
k

(log n)2

))

where G(z) = F (1/q,z)
Γ(1+z) and F (1/q, z) =

∏
p∈I

(
1 + z

qdeg p

)(
1− 1

qdeg p

)z
, and the error term

is independent of q.

We also demonstrate how to use our Sathé-Selberg formula to prove the analogue of the
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Erdős-Kac formula in this setting.

In addition, we adapt this technique to Dirichlet L-functions in this setting in order to

obtain a Sathé-Selberg formula in the case when our polynomials are restricted to an

arithmetic progression.

Theorem 2. Let g, d ∈ Fq[t] be coprime and m = deg d. Let A > 1, n > 2 and 1 6 k 6

A log n. Then for m 6

(
1
2 −

1+log(1+A
2

)

log q

)
n we have

πk(n; g, d) := #{f ∈Mn f ≡ g mod d : f = p1 . . . pk for some p1, . . . , pk ∈ I distinct}

=
1

Φ(d)

qn

n

(log n)k−1

(k − 1)!

(
Gd

(
k − 1

log n

)
+OA

(
k

(log n)2

))

where Φ(d) =
∣∣(Fq[t]/(d(t)))×

∣∣, and Gd(z) =

(∏
p|d

(
1 + z

qdeg p

)−1
)
G(z) where G(z) is

defined as in the Theorem 1.

In this setting, we define a Dirichlet L-function to be

L(T, χ) :=
∑
f∈M

χ(f)T deg f

where we call the group homomorphism χ : (Fq[t]/(d(t)))× −→ C× a Dirichlet character

modulo d for some d ∈ M (which we call its conductor). These functions, just like

their integer setting counterparts, are used to understand statistics where we restrict to a

particular arithmetic progression, since by the orthogonality of characters we have that

∑
f∈Mn

f≡g mod d

1 =
1

Φ(d)

∑
χ mod d

χ(g)
∑
f∈Mn

χ(f)

is the coefficient of Tn in
1

Φ(d)

∑
χ mod d

χ(g)L(T, χ).

Moreover, the Riemann Hypothesis for these functions is also true - that is, they have no

zeros off the circle |T | = 1√
q - but in this case the result is not elementary. Rather, it is a

consequence of deep result from Algebraic Geometry, namely Weil’s Riemann Hypothesis

for curves over finite fields (Weil’s original proof can be found in [42]).
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Finally, we use an ‘involution trick’ (detailed in Section 2.4.1) to restrict instead to poly-

nomials in a ‘short interval’. In this setting, we define a short interval of length h < n

around a polynomial g ∈Mn to be the set

{f ∈Mn : deg(f − g) 6 h}.

Theorem 3. Let g ∈ Fq[t]. Let A > 1, n > 2 and 1 6 k 6 A log n. Then for h satisfying

n− 1 > h >

(
1
2 +

1+log(1+A
2

)

log q

)
(n+ 1), we have

πk(n; g;h) := #{f ∈Mn deg(f − g) 6 h : f = p1 . . . pk for some p1, . . . , pk ∈ I distinct}

=
qh+1

n

(log n)k−1

(k − 1)!

(
H

(
k − 1

log n

)
+

k − 1

q log n
H

(
k − 2

log(n− 1)

)
+OA

(
k

(log n)2

))

where H(z) = q
q+zG(z) and G(z) is defined as as in Theorem 1.

On account of the Riemann Hypothesis for these Dirichlet L-functions, we are able to get

a better range for the conductor of the arithmetic progression and the length of the short

interval respectively in these variations of the problem. These ranges are analogous to

what one would obtain in the integer setting when one assumes the Generalised Riemann

Hypothesis there.

1.3.2 Divisor Functions

1.3.2.1 Average Estimates

As mentioned, a key ingredient of the Selberg-Delange method is to computing the sin-

gularity of ζ(s)z at s = 1, which is related to another arithmetic statistic of the integers:

the (generalised) divisor function. For z ∈ C, we define the generalised divisor function

dz : N→ C by

ζ(s)z =:
∑
n>1

dz(n)

ns

where s ∈ C such that Re(s) > 1. When z = k is a positive integer, dz(n) = dk(n) is the

number of ways of writing n as a product of exactly k factors, and we can relate its mean

value to ζ(s)k using Perron’s formula

∑
n6x

dk(n) =
1

2πi

∫ 2+i∞

2−i∞
ζ(s)kxs

ds

s
.
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It can be shown, following Dirichlet and his Hyperbola Method in the case of k = 2, that

∑
n6x

dk(n) = xPk−1(log x) +Oε(x
1−1/k+ε) (1.3)

where Pk−1 is a monic polynomial of degree k − 1. In other words, the average value

of dk(n) for n 6 x is asymptotically logk−1 x. In the special case when k = 2, we call

d(n) := d2(n) the divisor function, because it counts the number of divisors of n, and the

result in equation (1.3) says that the average number of divisors of a positive integer n 6 x

is asymptotically log x.

The problem of determining the order of the error term Oε(x
αk+ε) in equation (1.3), which

is conjectured to be Oε(x
1/2−1/2k+ε), is known as the Generalised Divisor Problem. In

Chapter 4, we take a brief aside to discuss the connection between the Generalised Divisor

Problem and the Lindelöf Hypothesis in the integer setting. The Lindelöf Hypothesis is

the conjecture that

µ(1/2) := min{µ | ∀ε > 0 |ζ(1/2 + it)| = Oε(t
µ+ε)} = 0

and it is equivalent to a weak form of the Riemann Hypothesis, namely that almost all

zeros of ζ(s) lie on the critical line Re(s) = 1
2 (see Theorem 13.5 of [40]). We use Perron’s

formula, summation by parts and a tensor-power trick to show how to quantitatively

convert upper bounds from one problem to upper bounds for the other.

Theorem 4. For k > 2, we have that

µ(1/2) 6


1
2k

1
1−αk if αk 6

1
2

1
2αk

(
αk − 1

2 + 1
k

)
if αk >

1
2

.

and

αk 6
1

2
+

(k − 2)µ(1
2)

2(1 + (k − 2)µ(1
2))

.

A well-known corollary of Theorem 4 is that µ(1/2) = 0 if, and only if, αk 6 1
2 for all

k > 2 (see, for example, Theorem 13.4 of [40]).
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1.3.2.2 Pointwise bounds

The divisor function itself fluctuates rather wildly: the estimate for its mean value gives

little information about its extreme values. On the one hand, we know that for any prime

p, no matter how large, d(p) = 2; and on the other hand it was first shown by Wigert that

there is an infinite sequence of positive integers n such that

d(n)�ε 2
(1−ε) logn
log logn .

This led to the study of the maximum order of the divisor function, which is intimately

related to the notion of highly composite numbers: positive integers n such d(n) > d(n′)

for all n > n′. Ramanujan investigated the latter in detail, and used them in [32] to show

that

log2 d(n) 6
∫ logn

2

dt

log t
+O(e−c

√
log logn log n)

where the upper bound is sharp up to the error term. Moreover, assuming the Riemann

Hypothesis, he was able to compute more terms in this asymptotic expansion and reduce

the error term to O
( √

logn
(log logn)3

)
.

In Chapter 3, we investigate highly composite polynomials, in analogy to Ramanujan’s

highly composite numbers, and use them to compute the maximum order of the divisor

function for M, which counts the number of divisors of a polynomial f ∈ M. In partic-

ular, we are able to use the discrete nature of the degree sequence of highly composite

polynomials to construct a relatively dense set of such polynomials, which allows us to

compute the maximum order of the divisor function in this setting to an accuracy signifi-

cantly beyond what is possible in the integer setting, even when the Riemann Hypothesis

is assumed in the latter.

Theorem 5. Let x = s log q
log(1+1/r) for positive integers r and s, and let

ĥ = ĥ(x) =
∏
k>1

∏
p∈Ik

pak where ak = ak(x) =

⌊
1

qk/x − 1

⌋
.

and

h(x) =
ĥ(x)

Pi1 · · ·Piv

where 0 6 v < π(s), Pi1 , · · · , Piv ∈ Is distinct, and deg h(x) = deg ĥ(x)− vs. Let τ(f) be
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the number of monic divisors of f ∈ M and let T (N) := max{τ(f) | f ∈ MN}. Then, if

N = deg h− u with 0 6 u 6 s− 1, we have

log T (N) =


log τ(h) if u = 0

log τ(h)− ε(N) otherwise

where
u

s
log

(
1 +

1

r

)
6 ε(N) 6 log

(
1 +

1

au

)
Moreover, the size of this range for ε(N) is at most log

(
1 + 1

au(au+2)

)
6 log 4

3 .

Theorem 5 uses our classification of the highly composite polynomials h to determine the

value of the divisor function, up to a bounded factor of 4
3 , on highly composite polynomials

at every degree.

1.3.3 Halász’s Theorem

In the examples of arithmetic statistics which we have surveyed so far, a recurring theme

has been of mean values of certain arithmetic functions. In particular, we mentioned

the mean values of µ(n) and of d(n), both of which share the property that they are

multiplicative. We say that an arithmetic function f : N→ C is multiplicative if f(ab) =

f(a)f(b) for all a and b which are coprime, and we study this set of functions in order

to determine what we can deduce from this property alone. For in computing the mean

values of µ(n) and d(n) directly, we make use of the fact that they are connected to the

definition of the Riemann Zeta function ζ(s), and it would be interesting to see how much

we can ascertain just by the fact that they are multiplicative. In light of this, we come to

an important theorem of Halász, originally from [17] and [18]. A modern formulation of

this theorem is that, for a multiplicative function f such that |f(n)| 6 1 for all n, we have

1

x

∑
n6x

f(n)� (1 +Mf )e−Mf +
log log x

log x

where Mf = Mf (x) is defined by

e−Mf log x := max
|t|6(log x)

∣∣∣∣F (1 + 1/ log x+ it)

1 + 1/ log x+ it

∣∣∣∣ .
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and F (s) =
∑

n>1
f(n)
ns is the Dirichlet series associated to f . Halász Theorem gives us a

very general tool for understanding multiplicative functions, and provides another way to

recover results associated to particular cases. Note, for example, that the non-vanishing

of ζ(s) on Re(s) = 1 implies that e−Mµ � 1
log x and so by Halász Theorem we have

1

x

∑
n6x

µ(n)� log log x

log x

which is equivalent to the Prime Number Theorem (albeit with a weak error term).

We can investigate the analogous phenomenon in Fq[t] by considering multiplicative func-

tions f : M → C. For such functions, we define Λf (F ) (the von Mangoldt function

associated to f) by
zF ′

F
(z) =:

∑
F∈M

Λf (F )zdegF

where F(z) =
∑

F∈M f(F )zdegF , and then consider the set C̃(κ) of multiplicative functions

f such that f(1) = 1 and
∣∣∣ 1
qn
∑

F∈Mn
Λf (F )

∣∣∣ 6 κ for all n > 1.

In [14], Granville, Harper and Soundararajan improved the upper bound in Halász’s The-

orem for functions which are supported only on numbers which are x1−ε-smooth. In

Chapter 5, we make the analogous improvement for Halász’s Theorem in Fq[t].

Theorem 6. Let κ > 0 and f ∈ C̃(κ), and for n > 1 define M = M(n) by

e−M (2n)κ := max
|z|=1

exp

Re

n−1∑
j=1

1

qj

∑
F∈Mj

Λf (F )
zj

j

 .

Suppose that, for some δ > 0, we have that
∑

F∈Mj
Λf (F ) = 0 for all j > (1− δ)(n− 1).

Then we get that ∣∣∣∣∣ 1

qn

∑
F∈Mn

f(F )

∣∣∣∣∣�δ κ
2e−M (2n)κ−1.

The upper bound in Halász’s Theorem in Fq[t] is O(κ(κ + M)e−M (2n)κ−1), which is im-

proved for the functions in Theorem 6. However, the former is sometimes actually attained,

and we derive a criterion for when this happens, and construct an example which satisfies

this criterion. In doing so, we exploit the fact that the arithmetic generating functions in
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Fq[t] are power series, rather than Dirichlet series, which leads to some simplifications.

Theorem 7. Let κ > 0, n > 1 and 1
2 −

1
2n > δ > 0. Let f ∈ C̃(κ), and define M = M(n)

as in the Theorem 6. Then given the values of f(P k) for all prime powers P k with

degP k 6 (1− δ)(n− 1), there exists a choice of values of f(P k) for all prime powers P k

with degP k > (1− δ)(n− 1) such that∣∣∣∣∣ 1

qn

∑
F∈Mn

f(F )

∣∣∣∣∣� (1 +M)e−M (2n)κ−1

if, and only if, for all δ � 1 we have

∑
16j61+δ(n−1)

∣∣∣∣∣∣ 1

qj

∑
F∈Mj

f(F )

∣∣∣∣∣∣� (1 +M)e−M (2n)κ.

Theorem 7 follows from Theorem 5.4 and Remark 5.4.

1.3.4 Pellet’s formula

Another perspective on why things are more straightforward in the setting of Fq[t] comes

from Galois Theory. In particular, we note that for any irreducible f ∈Mn we have that

the Galois group of f is

Gal(f) ∼= Gal(Fqn/Fq) ∼= Z/nZ

which is cyclic and generated by the Frobenius automorphism Frobq which sends α to

αq. The simplicity of the Galois Theory of the base field leads, amongst other things, to

a remarkable formula for the analogue of the Möbius function in this setting, which we

define by

µ(f) :=


(−1)k if f = p1 · · · pk distinct primes

0 else

.

This formula, which is known as Pellet’s formula, states that

µ(f) = (−1)deg fχ(discf)

where χ is the quadratic character on Fq, and can be used to prove results about the

statistics of M which are significantly beyond what is possible for the natural numbers.
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For example, Sawin and Shusterman use Pellet’s formula in [36] to prove the analogue

of the Twin Primes Conjecture in this setting, following work of Bary-Soroker in [5] and

Pollack in [31].

We conclude, in Chapter 6, by doing something a little different. We go through a proof of

Pellet’s Formula in which we derive an intermediate formula, which we call Proto-Pellet’s

Formula, and use it as inspiration to construct an analogous formula for the Möbius

function in the setting of number fields (including the usual integer setting).

Theorem 8 (“Proto-Pellet’s Formula” for number fields). Let A/Q be a number field,

let OA be the ring of integers in A and let IA be the set of non-zero ideals in OA. Let

µ : IA → {−1, 0, 1} be the Möbius Function for A/Q and let ν : IA → N be an additive

function. Then there exists a Galois homomorphism σν ∈ Gal(Q/Q) and a family of

polynomials (fI,ν)I∈IA such that, for all I ∈ IA square-free

µA(I) = (−1)ν(I)sign(σν |fI,ν)

where σν |f denotes the action of σν on the roots of f .



Chapter 2

The function field Sathé-Selberg formula

This chapter is based primarily on joint work with Sam Porritt and largely appears, with

the exception of the addition of Section 2.6, in [3].

We use a function field analogue of a method of Selberg to derive an asymptotic formula

for the number of (square-free) monic polynomials in Fq[t] of degree n with precisely k

irreducible factors, in the limit as n tends to infinity. We then adapt this method to count

such polynomials in arithmetic progressions and short intervals, and by making use of

Weil’s ‘Riemann hypothesis’ for curves over Fq, obtain better ranges for these formulae

than are currently known for their analogues in the number field setting. Finally, we

briefly discuss the regime in which q tends to infinity.

2.1 Introduction

One natural generalisation of the problem of counting primes up to x is to count numbers

up to x with exactly k distinct prime divisors. In [35], Sathé proved that for A > 0 an

arbitrary constant we have

πk(x) := #{n 6 x : n = p1 . . . pk for some p1, . . . , pk distinct primes}

∼ G
(

k − 1

log log x

)
x

log x

(log log x)k−1

(k − 1)!

uniformly for x > 3 and 1 6 k 6 A log log x, where G(z) = 1
Γ(1+z)

∏
p prime(1 + z

p)(1− 1
p)z.

In [37], Selberg gave a simpler proof of this result, now known as the “Sathé-Selberg

Formula”. One might ask whether such a formula also holds for numbers restricted to

a given arithmetic progression or short interval. For example, in [38], Spiro showed that

such a formula holds for n 6 x restricted to n ≡ a mod q, provided q does not exceed
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some fixed power of log x.

We begin by proving an asymptotic formula for the number of monic polynomials in Fq[t]

of degree n with exactly k distinct irreducible divisors, using an adaptation of Selberg’s

technique. If we let M = {f ∈ Fq[t] : f monic}, Mn = {f ∈ M : deg f = n} and

I = {p ∈M : p irreducible}, then we get

Theorem 2.1. Let A > 1. Then uniformly for all n > 2 and 1 6 k 6 A log n

πk(n) := #{f ∈Mn : f = p1 . . . pk for some p1, . . . , pk ∈ I distinct}

=
qn

n

(log n)k−1

(k − 1)!

(
G

(
k − 1

log n

)
+OA

(
k

(log n)2

))

where G(z) = F (1/q,z)
Γ(1+z) and F (1/q, z) =

∏
p∈I

(
1 + z

qdeg p

)(
1− 1

qdeg p

)z
.

Theorem 2.1 says that the asymptotic density of square-free polynomials in Mn with k

distinct prime divisors is 1
n

(logn)k−1

(k−1)! G
(
k−1
logn

)
. An asymptotic formula of this form was

first derived by Car in [7], but with an error term which inexplicitly depends on k and q.

Note that, when k is close to its mean log n (see Section 2.6) then G
(
k−1
logn

)
is close to

G(1) = 1− 1
q , which is the density of square-free polynomials in M.

With some additional technical work following Chapters II.5 and II.6 of [39], one could

strengthen Theorem 2.1 to be of an analogous form to Chapter II.6 Theorem 4 of [39],

namely that for any J > 1

πk(n) =
qn

n

 J∑
j=0

Pj,k(log n)

nj
+OA

((
cJ + 1

n

)J+1 (log n)k

k!

)
where Pj,k(x) is a polynomial of degree at most k− 1, J is a non-negative integer, and c is

some absolute constant. Such an improvement could also be carried through to Theorems

2.2 and 2.3 below, to give similarly strengthened versions of what they state.

Next, we apply our method to Dirichlet L-functions for Fq[t], to derive an asymptotic for-

mula for the number of such polynomials in a given arithmetic progression with difference

of degree no bigger than roughly n/2.

Theorem 2.2. Let g, d ∈ Fq[t] be coprime and m = deg d. Let A > 1, n > 2 and
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1 6 k 6 A log n. Then for m 6

(
1
2 −

1+log(1+A
2

)

log q

)
n we have

πk(n; g, d) := #{f ∈Mn f ≡ g mod d : f = p1 . . . pk for some p1, . . . , pk ∈ I distinct}

=
1

Φ(d)

qn

n

(log n)k−1

(k − 1)!

(
Gd

(
k − 1

log n

)
+OA

(
k

(log n)2

))

where Φ(d) =
∣∣(Fq[t]/(d(t)))×

∣∣, and Gd(z) =

(∏
p|d

(
1 + z

qdeg p

)−1
)
G(z) where G(z) is

defined as in Theorem 2.1.

The range on the degree of the difference m in Theorem 2.2 is obtained by our use of Weil’s

‘Riemann Hypothesis’, which allows us to bound the contributions from the non-principal

characters as roughly square-root of the contribution from the principal character. A

better range would require additional cancellation amongst these characters. This range

corresponds to taking the difference up to roughly
√
x in the number field setting, com-

pared to any fixed power of log x as in Theorem 1 of [38].

Finally, by using an ‘involution-trick’, we apply Theorem 2.2 to derive an asymptotic

formula for the number of such polynomials in a given ‘short interval’ of length no shorter

than roughly n/2 (which again corresponds to roughly
√
x in the number field setting).

Theorem 2.3. Let g ∈ Fq[t]. Let A > 1, n > 2 and 1 6 k 6 A log n. Then for h satisfying

n− 1 > h >

(
1
2 +

1+log(1+A
2

)

log q

)
(n+ 1), we have

πk(n; g;h) := #{f ∈Mn deg(f − g) 6 h : f = p1 . . . pk for some p1, . . . , pk ∈ I distinct}

=
qh+1

n

(log n)k−1

(k − 1)!

(
H

(
k − 1

log n

)
+

k − 1

q log n
H

(
k − 2

log(n− 1)

)
+OA

(
k

(log n)2

))

where H(z) = q
q+zG(z) and G(z) is defined as in Theorem 2.1.

The two main terms in Theorem 2.3 come from counting polynomials with non-zero con-

stant term and polynomials with zero constant term separately. In the range where

k � log n, the latter is roughly a factor of q smaller than the former, and so of the

same order of magnitude in the limit as n tends to infinity.

Note that, since G(z), Gd(z) and H(z) are all �A 1 for 0 6 z 6 A, the main terms in

Theorems 2.1, 2.2 and 2.3 are larger than their respective error terms, which additionally

do not depend on q. We briefly discuss the regime in which q →∞ in Section 2.5.
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2.2 The function field Sathé-Selberg formula

2.2.1 Outline

Let ω(f) = #{p ∈ I : p|f} and define the Möbius function on M by

µ(f) =


(−1)ω(f) if f is square-free

0 otherwise

so that µ2 is the indicator function for the square-free polynomials in M and

πk(n) =
∑
f∈Mn

ω(f)=k

µ2(f).

In order to study πk(n), we will consider a two variable zeta function for M which will

serve to count irreducible factors, namely,

A(T, z) =
∑
f∈M

µ2(f)zω(f)T deg f =
∏
p∈I

(1 + zT deg p).

By taking z ∈ C and considering A(T, z) as a power series in T we will derive estimates

for its coefficients, which we denote by Az(n) =
∑

f∈Mn
µ2(f)zω(f). Then we can recover

πk(n) from the identity ∑
k>0

πk(n)zk = Az(n)

using Cauchy’s formula

πk(n) =
1

2πi

∮
Az(n)

zk+1
dz.

This plan will be carried out by first deriving an estimate for the coefficients of the power

series of Z(T )z, where Z(T ) =
∑

f∈M T deg f is the zeta function forM, and then relating

this to the estimate we want. Throughout, A > 1 will be an arbitrary constant and z a

complex variable satisfying |z| 6 A.

2.2.2 Proof of Theorem 1

First note that there are qn polynomials in Mn and that therefore, for |T | < 1/q,

Z(T ) =
∑
f∈M

T deg f =
∑
n>0

qnTn =
1

1− qT
.
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For T in this range, we define Z(T )z = exp(z logZ(T )), where we choose the branch of

the logarithm which is defined on the cut plane C\[−∞, 0) and is real for T real.

Lemma 2.1. If we define Dz(n) for n > 0 via the identity Z(T )z =
∑

n>0Dz(n)Tn, then

we have that

Dz(n) = qn
(
n+ z − 1

n

)
where

(
w
n

)
= 1

n!

∏n−1
j=0 (w − j).

Proof. The binomial theorem gives us

Z(T )z = (1− qT )−z =
∑
n>0

(
n+ z − 1

n

)
qnTn.

Corollary 2.1. For all n > 1 and |z| 6 A,

Dz(n) = qn
nz−1

Γ(z)
+OA

(
qnnRe(z)−2

)
.

Proof. By choosing the implied constant large enough, it is sufficient to prove this for

n > 2A. In this range, we consider two cases. The first is when z is a non-positive integer,

in which case Dz(n) = 0 = qn

Γ(z)n
z−1 . Otherwise we can use the Weierstrass Product

Formula for Γ(z) in the second line below to get

Γ(n+ z)

Γ(n+ 1)
=

1

n+ z

(
n∏
k=1

k + z

k

)
zΓ(z)

=
1

n+ z

(
n∏
k=1

k + z

k

)
e−γz

( ∞∏
k=1

k

k + z
ez/k

)

=
e−γz

n+ z

(
n∏
k=1

ez/k

)( ∞∏
k=n+1

k

k + z
ez/k

)

=
e−γz

n+ z
exp

(
n∑
k=1

z

k

)
exp

( ∞∑
k=n+1

(z
k
− log

(
1 +

z

k

)))

=
e−γz

n+ z
exp

(
z

(
log n+ γ +O

(
1

n

)))
exp

( ∞∑
k=n+1

∞∑
m=2

(−1)m
zm

mkm

)

=
nz

n+ z

(
1 +OA

(
1

n

))
exp

(
OA

(
1

n

))
= nz−1

(
1 +OA

(
1

n

))
.
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From this and Lemma 2.1 we can conclude that

Dz(n) = qn
(
n+ z − 1

n

)
= qn

Γ(n+ z)

Γ(n+ 1)Γ(z)

= qn
nz−1

Γ(z)

(
1 +OA

(
1

n

))
.

It was fairly straightforward to derive an asymptotic formula for Dz(n). The following

technical proposition will allow us to use this result to deduce asymptotic formulae for

the coefficients of more general series provided their behaviour at 1/q is similar to the

singularity of Z(T )z at T = 1/q.

Proposition 2.1. Let C(T, z) =
∑

n>0Cz(n)Tn and M(T, z) =
∑

n>0Mz(n)Tn be power

series with coefficients depending on z satisfying C(T, z) = M(T, z)Z(T )z. Suppose also

that, uniformly for |z| 6 A, ∑
a>0

|Mz(a)|
qa

a2A+2 �A 1. (?)

Then, uniformly for |z| 6 A and n > 1, we have

Cz(n) = qn
nz−1

Γ(z)
M(1/q, z) +OA(qnnRe(z)−2).

Proof. Using our expression for Dz(n) from Corollary 2.1 and that Dz(0) = 1, we get

Cz(n) =
∑

06a6n

Mz(a)Dz(n− a)

= qn

[ ∑
06a<n

Mz(a)

qa
(n− a)z−1

Γ(z)
+OA

( ∑
06a<n

|Mz(a)|
qa

(n− a)Re(z)−2

)
+
Mz(n)

qn

]
.

Here we split the first sum at n/2 and use the fact that

(n− a)z−1 =


nz−1 (1 +OA(a/n)) , if 0 6 a 6 n/2

OA(nA−1), if n/2 < a < n.
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Combining this with (?) we get

∑
06a<n

Mz(a)

qa
(n− a)z−1

Γ(z)
=

∑
06a6n/2

Mz(a)

qa
nz−1

Γ(z)
(1 +OA(a/n))

+OA

 ∑
n/2<a<n

|Mz(a)|
qa

nA−1


=

∑
06a6n/2

Mz(a)

qa
nz−1

Γ(z)

+OA

nRe(z)−2
∑

06a6n/2

|Mz(a)|a
qa

+ nRe(z)−2
∑

n/2<a<n

|Mz(a)|a2A+1

qa


=
nz−1

Γ(z)
M(1/q, z) +OA

nRe(z)−1
∑
a>n/2

|Mz(a)|
qa

+ nRe(z)−2


=
nz−1

Γ(z)
M(1/q, z) +OA

nRe(z)−2
∑
a>n/2

|Mz(a)|a
qa

+ nRe(z)−2


=
nz−1

Γ(z)
M(1/q, z) +OA

(
nRe(z)−2

)
.

Where, in the final term of the second line, we use that nRe(z)−2a2A+1 � n−A−2n2A+1 =

nA−1 for n/2 < a < n. Similarly, for the second sum we get

∑
06a<n

|Mz(a)|
qa

(n− a)Re(z)−2 =
∑

06a6n/2

|Mz(a)|
qa

nRe(z)−2 (1 +OA(a/n))

+OA

 ∑
n/2<a<n

|Mz(a)|
qa

nA−2


�A n

Re(z)−2
∑

06a6n/2

|Mz(a)|
qa

+ nRe(z)−3
∑

06a6n/2

|Mz(a)|a
qa

+ nRe(z)−3
∑

n/2<a<n

|Mz(a)|a2A+1

qa

�A n
Re(z)−2.

Finally, by (?) we have that the last term is

Mz(n)

qn
� nRez−2 |Mz(n)|nA+2

qn
� nRez−2

∑
a>0

|Mz(a)|
qa

aA+2 �A n
Rez−2.

Putting everything together proves the proposition.
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Remark 2.1. This follows the same ideas as Theorem 7.18 of [30].

We will apply the previous proposition with the series F (T, z) =
∑

n>0Bz(n)Tn defined

by

F (T, z) := A(T, z)Z(T )−z =
∏
p∈I

(1 + zT deg p)(1− T deg p)z.

First we check that the conditions of Proposition 2.1 are satisfied.

Proposition 2.2. For |z| 6 A, n > 2 and σ > 1
2

∑
06a6n

|Bz(a)|
qσa

6


cA,σ if σ > 1

2

ncA if σ = 1
2 ,

where cA,σ is a constant depending on A and σ, and cA is a constant depending on A.

Consequently, since a2A+2 6 qa/3 for a sufficiently large, we have for |z| 6 A that

∑
a>0

|Bz(a)|
qa

a2A+2 �A

∑
a>0

|Bz(a)|
q2a/3

�A 1.

Proof. If we let bz(f) be the multiplicative function defined on powers of monic irreducible

polynomials p by the power series identity

1 +
∑
k>1

bz(p
k)Sk = (1 + zS)(1− S)z

then F (T, z) =
∑

f∈M bz(f)T deg f and so Bz(n) =
∑

f∈Mn
bz(f). From this definition, we

see that bz(p) = 0 on irreducible p and, by Cauchy’s inequality after integrating over the

complex circle |S| = 1√
3/2

, that

|bz(pk)| 6 (3/2)k/2MA, for k > 2

where MA = sup|z|6A,|S|6 1√
3/2

|(1 + zS)(1− S)z| is some constant depending on A.
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Therefore, letting M6n = {f ∈M : deg f 6 n} and I6n = {p ∈ I : deg p 6 n}, we have

∑
06a6n

|Bz(a)|
qσa

6
∑

f∈M6n

|bz(f)|
qσ deg f

6
∏
p∈I6n

1 +
∑
k>1

|bz(pk)|
qkσ deg p


6
∏
p∈I6n

1 +MA

∑
k>2

( √
3/2

qσ deg p

)k
=
∏
p∈I6n

(
1 +

3MA/2

qσ deg p(qσ deg p −
√

3/2)

)
.

Taking the logarithm and using the prime polynomial theorem we get

∑
p∈I6n

log

(
1 +

3MA/2

qσ deg p(qσ deg p −
√

3/2)

)
6 6MA

∑
16d6n

qd(1−2σ)

d

6


6MA

q2σ−1−1
if σ > 1

2

12MA log n if σ = 1
2 .

Exponentiating then gives the stated result.

Remark 2.2. Proposition 2.2 also proves that F (1/q, z) is absolutely uniformly convergent

for |z| 6 A and so holomorphic in z for |z| 6 A.

Remark 2.3. This follows the same ideas as the beginning of Chapter II.6 of [39].

Corollary 2.2. Uniformly for |z| 6 A and n > 1, we have

Az(n) = qn
nz−1

Γ(z)
F (1/q, z) +OA(qnnRe(z)−2).

Proof. By Proposition 2.2, this follows from Proposition 2.1 with C(T, z) = A(T, z) and

M(T, z) = F (T, z).

We now turn to the proof of a generalisation of the main result in this section.

Proposition 2.3. Let A > 1, M(z) be a holomorphic function for |z| 6 A, and Cz(n) be

an arithmetic function such that uniformly for |z| 6 A and n > 1

Cz(n) = qn
nz−1

Γ(z)
M(z) +OA(qnnRe(z)−3/2).
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Moreover, for k > 1 an integer, let αk(n) be the arithmetic function defined by

αk(n) =
1

2πi

∮
Cz(n)

zk+1
dz.

Then for N(z) = M(z)
Γ(1+z) , we have that uniformly for all n > 2 and 1 6 k 6 A log n

αk(n) =
qn

n

(log n)k−1

(k − 1)!

(
N

(
k − 1

log n

)
+OA

(
k

(log n)2

))
.

Proof. When k = 1 we integrate around the circle |z| = 1/4 to get

α1(n) =
1

2πi

∮
Cz(n)

z2
dz =

qn

n

(
1

2πi

∮
N(z)nz

z
dz +OA(n−1/4)

)
=
qn

n

(
N(0) +OA(n−1/4)

)
Now assume k > 1. We integrate the around the circle |z| = r = k−1

logn < A so that the

contribution from the error term in Cz(n) is

OA

(
qn
∫
|z|=r

∣∣∣∣∣nRe(z)−3/2dz

zk+1

∣∣∣∣∣
)
�A q

nnr−3/2r−k =
qn

n3/2
ek−1 (log n)k

(k − 1)k
�A

qn

n3/2

(log n)k

(k − 1)!

which is smaller than the error which we are aiming for in the theorem.

The contribution from the main term in Cz(n) is

qn

n

∫
|z|=r

N(z)nz

zk
dz.

Integration by parts gives

∫
|z|=r

nz

zk−1
dz =

k − 1

log n

∫
|z|=r

nz

zk
dz = r

∫
|z|=r

nz

zk
dz =⇒ 1

2πi

∫
|z|=r

(z − r)n
z

zk
dz = 0.

Using this fact to determine that the last term in the following line vanishes, we have

1

2πi

∫
|z|=r

N(z)
nz

zk
dz =

N(r)

2πi

∫
|z|=r

nz

zk
dz +

1

2πi

∫
|z|=r

(
N(z)−N(r)−N ′(r)(z − r)

) nz
zk
dz

=
N(r)

2πi

∫
|z|=r

nz

zk
dz +O

(∣∣∣∣∣
∫
|z|=r

N ′′(r)(z − r)2 nz

zk
dz

∣∣∣∣∣
)

= N(r)
(log n)k−1

(k − 1)!
+OA

(∫
|z|=r

|z − r|2
∣∣∣∣nzzk

∣∣∣∣ |dz|
)
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where N(z) is a composition of holomorphic functions and so holomorphic for |z| 6 A, so

in the final line we can use that N ′′(z) is uniformly bounded for |z| 6 A by a constant

depending on A. We can estimate this last integral as follows

∫
|z|=r

|z − r|2
∣∣∣∣nzzk

∣∣∣∣ |dz| = ∫ 2π

0
r3−k|eiθ − 1|2er cos θ logndθ

= r3−k
∫ π

−π
4 sin2(θ/2)e(k−1) cos θdθ

6 r3−k
∫ π

−π
θ2e(k−1)(1−θ2/5)dθ

6 r3−kek−1

∫ ∞
−∞

θ2e−(k−1)(θ2/5)dθ

� r3−kek−1(k − 1)−3/2.

The error is therefore

�A
qn

n

ek−1

(k − 1)(k−3/2)
(log n)k−3 �A

qn

n

k(log n)k−3

(k − 1)!

by Stirling’s approximation again and the result follows.

Remark 2.4. This follows the same ideas as Theorem 7.19 of [30].

Now, taking M(z) = F (1/q, z), N(z) = G(z), Cz(n) = Az(n) and αk(n) = πk(n) in

Proposition 2.3, and using Remark 2.2 and Corollary 2.2 to verify its hypotheses, we

prove Theorem 2.1.

Remark 2.5. We can also estimate ρk(n) := #{f ∈ Mn : ω(f) = k} by first proving an

analogue of Proposition 2.2 for the power series

F̃ (T, z) := Z(T )−z
∑
f∈M

zω(f)T deg f =
∏
p∈I

(
1 +

zT deg p

1− T deg p

)
(1− T deg p)z

then applying Proposition 2.1 with M(T, z) = F̃ (T, z) and C(T, z) = Ã(T, z) where

Ã(T, z) =
∑
n>0

Ãz(n)Tn :=
∑
f∈M

zω(f)T deg f = F̃ (T, z)Z(T )z

and finally applying Proposition 2.3 with M(z) = F̃ (1/q, z), N(z) = G̃(z) = F̃ (1/q,z)
Γ(1+z) ,
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Cz(n) = Ãz(n) and αk(n) = ρk(n), in order to obtain an analogue of Theorem 2.1, namely

ρk(n) =
qn

n

(log n)k−1

(k − 1)!

(
G̃

(
k − 1

log n

)
+OA

(
k

(log n)2

))

uniformly for all n > 2 and 1 6 k 6 A log n.

Using this, and following Theorem 7.20 and Theorem 7.21 of [30], we can prove the ana-

logue of the Erdős-Kac theorem for Fq[T ], which tells us the mean, variance and limiting

distribution of the function ω. We detail this more explicitly in Section 2.6.

2.3 The Sathé-Selberg formula in arithmetic progressions

We now follow the same strategy, but with Dirichlet L-functions, in order to count poly-

nomials, with a prescribed number of irreducible factors, in arithmetic progressions. In

the next section, we will see how this can then be used to count such polynomials from a

“short interval”.

Let d ∈ M be some polynomial of degree m > 1. Consider the characters χ :

(Fq[t]/(d(t)))× −→ C×, with χ0 being the principal character, and let

L(T, χ) =
∑
f∈M

χ(f)T deg f =
∏
p∈I

(1− χ(p)T deg p)−1

be the associated L-function. As for Z(T )z, we define L(T, χ)z = exp(z logL(T, χ)) for

|T | < 1/q where we choose the branch of the logarithm which is real for T real. Our first

task is to relate the coefficients of Z(T )z and L(T, χ)z. Consider the following identities

which follow from the binomial theorem,

Z(T )z =
∏
p∈I

(1− T deg p)−z =
∏
p∈I

1 +
∑
k>1

(
z + k − 1

k

)
T k deg p



L(T, χ)z =
∏
p∈I

(1− χ(p)T deg p)−z =
∏
p∈I

1 +
∑
k>1

(
z + k − 1

k

)
χ(pk)T k deg p

 .

We see that if dz(f) is the multiplicative function defined on irreducible pow-

ers pk as dz(p
k) =

(
z+k−1
k

)
then Z(T )z =

∑
f∈M dz(f)T deg f and L(T, χ)z =∑

f∈M dz(f)χ(f)T deg f . Hence, Dz(n, χ) :=
∑

f∈Mn
dz(f)χ(f) is the coefficient of Tn
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in L(T, χ)z.

2.3.1 Generalised divisor sums twisted by non-principal characters

Proposition 2.4. For χ 6= χ0, |z| 6 A and n > 1

|Dz(n, χ)| 6 qn/2
(
n+Am− (A+ 1)

n

)
6 qn/2

(
n+Am

n

)
.

Proof. From Proposition 4.3 of [33], we know that for χ 6= χ0 we have

L(T, χ) =
m−1∑
j=1

 ∑
f∈Mj

χ(f)

T j =
m−1∏
j=1

(1− αjT )

where |αj | is 0, 1 or
√
q as a consequence of Weil’s Theorem (the ‘Riemannn Hypothesis’

for curves over Fq). Now, from the binomial theorem we get

L(T, χ)z =
m−1∏
j=1

(1− αjT )z =
∑
n>0

 ∑
r1+...+rm−1=n

(
z

r1

)
. . .

(
z

rm−1

)
αr11 . . . α

rm−1

m−1

 (−1)nTn.

Using that |αj | 6
√
q and |z| 6 A we get that

|Dz(n, χ)| =

∣∣∣∣∣∣
∑

r1+...+rm−1=n

(
z

r1

)
. . .

(
z

rm−1

)
αr11 . . . α

rm−1

m−1

∣∣∣∣∣∣
6

∑
r1+...+rm−1=n

∣∣∣∣( zr1

)∣∣∣∣ . . . ∣∣∣∣( z

rn−1

)∣∣∣∣√qr1+...+rm−1

6 qn/2
∑

r1+...+rm−1=n

(
A+ r1 − 1

r1

)
. . .

(
A+ rm−1 − 1

rm−1

)
.

Now, we recognise the sum as the coefficient of Tn in the expansion of

((1− T )−A)m−1 = (1− T )−A(m−1)

which is also
(
n+A(m−1)−1

n

)
=
(
n+Am−(A+1)

n

)
. Indeed, this shows that the power series

expansion of L(T, χ)z is majorised by that of (1−√qT )−A(m−1). Since m,n > 1 we get

|Dz(n, χ)| 6 qn/2
(
n+Am− (A+ 1)

n

)
6 qn/2

(
n+Am

n

)
.
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2.3.2 Formulae for πk(n, χ)

We are now interested in πk twisted by a character, which we define as

πk(n, χ) :=
∑
f∈Mn

ω(f)=k

µ2(f)χ(f)

which, by analogy to Section 2.2, we relate to the generating function

A(T, z, χ) :=
∑
f∈M

µ2(f)zω(f)χ(f)T deg f =
∏
p∈I

(1 + zχ(p)T deg p)

whose power series coefficients are

Az(n, χ) :=
∑
f∈Mn

µ2(f)χ(f)zω(f)

so that, similarly to before ∑
k>0

πk(n, χ)zk = Az(n, χ)

and by Cauchy’s Theorem

πk(n, χ) =
1

2πi

∮
Az(n, χ)

zk+1
dz.

Moreover, recall that we had

F (T, z) =
∑
f∈M

bz(f)T deg f =
∏
p∈I

(1 + zT deg p)(1− T deg p)z = A(T, z)Z(T )−z

so we naturally define F (T, z, χ) by

F (T, z, χ) :=
∑
f∈M

bz(f)χ(f)T deg f =
∏
p∈I

(1 + χ(p)zT deg p)(1− χ(p)T deg p)z

= A(T, z, χ)L(T, χ)−z

and let Bz(n, χ) :=
∑

f∈Mn
bz(f)χ(f) so that Az(m,χ) =

∑
a+b=mBz(a, χ)Dz(b, χ).

2.3.2.1 Non-principal characters

In this subsection, χ will be a non-principal character.
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Lemma 2.2. For |z| 6 A and n > 2

∑
06a6n

|Bz(a, χ)|
qa/2

6 ncA

where cA is a constant depending on A.

Proof. ∑
06a6n

|Bz(a, χ)|
qa/2

6
∑

f∈M6n

|bz(f)|
qdeg f/2

6 ncA

by the proof of Proposition 2.2.

We can use this to get an estimate for Az(n, χ) as follows:

Proposition 2.5. For A > 1 and n > 2

Az(n, χ) 6 qn/2
(
n+Am

n

)
ncA .

Proof. Using Proposition 2.4 and Lemma 2.2 we get

Az(n;χ) =
∑

06a6n

Bz(a, χ)Dz(n− a, χ)

6 qn/2
∑

06a6n

|Bz(a, χ)|
qa/2

(
n− a+Am

n− a

)
6 qn/2

(
n+Am

n

) ∑
06a6n

|Bz(a, χ)|
qa/2

6 qn/2
(
n+Am

n

)
ncA .

We can now use Cauchy’s Theorem to bound πk(m;χ).

Proposition 2.6. For A > 1 and n > 2

πk(n;χ) 6 qn/2
(
n+Am

n

)
ncA .

Proof. Recall the identity

πk(n;χ) =
1

2πi

∮
Az(n;χ)

zk+1
dz

where we take the contour to be the circle of radius r = 1 centred at 0.
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Then Proposition 2.5 gives us that this is

6 qn/2
(
n+Am

n

)
ncA

1

2π

∮
|dz|
|z|k+1

6 qn/2
(
n+Am

n

)
ncA .

2.3.2.2 The principal character

Definition 2.1. Define Fd, B
d
z and bdz via the following formal power series equalities

Fd(T, z) =
∑
n>0

Bd
z (n)Tn =

∑
f∈M

bdz(f)T deg f =
∏
p-d

(1 + zT deg p)(1− T deg p)z
∏
p|d

(1− T deg p)z.

Lemma 2.3. For |z| 6 A and σ > 2
3

∑
a>0

|Bd
z (a)|
qσa

�A

∏
p|d

(1− q−σ deg p)−A.

Proof. By making a change of variable S = T deg p, we see that the multiplicative coeffi-

cients bdz(f) are defined on prime powers f = pk by the formal power series identity

1 +
∑
k>1

bdz(p
k)Sk =


(1− S)z if p|d

(1 + zS)(1− S)z if p - d.

So if p|d, we have that |bdz(pk)| = |
(
z
k

)
| 6

(
A+k−1

k

)
, and if p - d we have that bdz(p

k) = bz(p).

Therefore, we get

∑
a>0

|Bd
z (a)|
qσa

6
∑
f∈M

|bdz(f)|
qσ deg f

6
∏
p|d

1 +
∑
k>1

|bdz(pk)|
qkσ deg p

∏
p-d

1 +
∑
k>1

|bdz(pk)|
qkσ deg p


6
∏
p|d

∑
k>0

(
A+ k − 1

k

)
q−kσ deg p

∏
p∈I

1 +
∑
k>1

|bz(pk)|
qkσ deg p


=
∏
p|d

(1− q−σ deg p)−A
∑
f∈M

|bz(f)|
qσ deg f

.

Now, by the proof of Proposition 2.2,
∑

f∈M
|bz(f)|
qσ deg f �A 1 for σ > 2

3 , which gives the
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result.

Lemma 2.4. For d ∈ Fq[t] of degree m > 1 and 1 > σ > 1
2 , we have

∏
p|d

(1− q−σ deg p)−1 6 (2 + 2 logm)8(qm)1−σ .

Proof. Arrange the primes p1, . . . , pr dividing d and the primes P1, . . . in M, in order of

degree (where you can order those of the same degree arbitrarily). Then we must have

that degPi 6 deg pi.

Now, for some N ∈ N, we have that
∑

P :degP6N−1 degP < m 6
∑

P :degP6N degP . This

means that d has at most #{P : degP 6 N} prime factors, and so, by the observation in

the paragraph above

∏
p|d

(1− q−σ deg p)−1 6
∏

P :degP6N

(1− q−σ degP )−1.

Taking the logarithm of the right hand side, and using the fact that − log(1 − 1
x) 6 1

x−1

for x > 1, combined with the prime polynomial theorem, we get

∑
P :degP6N

− log(1− q−σ deg p) 6
∑
r6N

π(r)

qσr − 1
6 4

∑
r6N

π(r)

qσr
6 4

∑
r6N

q(1−σ)r

r

6 8q(1−σ)N (log(1 +N))

where π(n) = π1(n) = #{f ∈ Mn : f is prime}. Our choice of N tells us that qN 6 qm

(so N 6 (1 + 2 logm)), since we have from the prime polynomial theorem that

m >
∑

P :degP6N−1

degP =
∑

r6N−1

π(r)r >
∑
r|N−1

π(r)r = qN−1.

Putting everything together we get that

∏
p|d

(1− q−σ deg p)−1 6 exp(8q(1−σ)N (log(1 +N))) 6 (2 + 2 logm)8(qm)1−σ .
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Proposition 2.7. For |z| 6 A we have that

∑
a>0

|Bd
z (a)|
qa

a2A+2 �A (1 + logm)KA

where KA is a constant depending on A.

Proof. When logm < 10A+ 10 it suffices to show that
∑

a>0
|Bdz (a)|
qa a2A+2 �A 1.

This is indeed true in this case, since m �A 1, and so by Lemma 2.3 we have that for

σ > 2
3 ∑

a>0

|Bd
z (a)|
qσa

�A,σ

∏
p|d

(1− q−σ deg p)−A �A,σ (1− q−σ)−Am �A,σ 1

and consequently that
∑

a>0
|Bdz (a)|
qa a2A+2 �A 1.

When logm > 10A+ 10, let τ = 2A+2
logm log q 6 1

5 log 2 6 1
3 so that 1− τ > 2

3 and moreover

a > (logm)2 =⇒ (2A+2)
log a

a
6 (2A+2)

2 log logm

(logm)2
6

2A+ 2

logm
= τ log q =⇒ a2A+2 6 qτa.

So overall we have that a2A+2 6 (logm)4A+4qτa. Using this fact and Lemmas 2.3 and 2.4

we get that

∑
a>0

|Bd
z (a)|
qa

a2A+2 6 (logm)4A+4
∑
a>0

|Bd
z (a)|

q(1−τ)a

�A (logm)4A+4
∏
p|d

(1− q−(1−τ) deg p)−A

�A (logm)4A+4(2(1 + logm))8(qm)τ

�A (1 + logm)KA .

Proposition 2.8. Uniformly for |z| 6 A and n > 1, we have

Az(n, χ0) = qn
nz−1

Γ(z)
Fd(1/q, z) +OA(qnnRe(z)−2(1 + logm)KA)

=

∏
p|d

(
1 +

z

qdeg p

)−1
F (1/q, z)qn

nz−1

Γ(z)
+OA(qnnRe(z)−2(1 + logm)KA).

Proof. The first equality follows from the proof of Proposition 2.1 (carrying throughout
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an additional factor of (1 + logm)KA in the error term) and Proposition 2.7 after noting

that

A(T, z, χ0) =
∏
p∈I

(1 + zχ(p)T deg p) = Z(T )z
∏
p-d

(1 + zT deg p)(1− T deg p)z
∏
p|d

(1− T deg p)z

= Z(T )zFd(T, z).

The second equality follows from the observation that

Fd(T, z) =
∏
p∈I

(1 + zT deg p)(1− T deg p)z
∏
p|d

(1 + zT deg p)−1 = F (T, z)
∏
p|d

(1 + zT deg p)−1.

We now turn to the proof of the main result of this subsection,

Proposition 2.9. Let A > 1,
√
n > (1 + logm)KA and

Gd(z) =

∏
p|d

(
1 +

z

qdeg p

)−1
 F (1/q, z)

Γ(1 + z)
.

Then

πk(n, χ0) =
qn

n

(log n)k−1

(k − 1)!

(
Gd

(
k − 1

log n

)
+OA

(
k

(log n)2

))
uniformly for all n > 2 and 1 6 k 6 A log n.

Proof. For |z| 6 A, by Proposition 2.8 and our condition on n,

Az(n, χ0) =

∏
p|d

(
1 +

z

qdeg p

)−1
F (1/q, z)qnnz−1 +OA(qnnRe(z)−3/2).

Now, we use Proposition 2.3 with M(z) =

(∏
p|d

(
1 + z

qdeg p

)−1
)
F (1/q, z) (which is

holomorphic for |z| 6 A by Remark 2.2), N(z) = Gd(z), Cz(n) = Az(n, χ0) and

αk(n) = πk(n, χ0) to deduce the result.

2.3.3 Proof of Theorem 2.2

We are now ready to present the proof of Theorem 2.2.
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Proof of Theorem 2.2. We begin with the orthogonality of characters,

∑
f∈Mn

f≡g mod d

1 =
1

Φ(d)

∑
f∈Mn

∑
χ

χ̄(g)χ(f)

where the sum is over characters χ :
(
Fq [t]
d(t)

)×
−→ C×, and Φ(d) =

∣∣∣∣(Fq [t]
d(t)

)×∣∣∣∣.
We use this to get that

πk(n; g, d) =
∑
f∈Mn

f≡g mod d
ω(f)=k

µ2(f)

=
1

Φ(d)

∑
χ

χ̄(g)πk(n, χ)

=
1

Φ(d)
πk(n, χ0) +O

 1

Φ(d)

∑
χ 6=χ0

qn/2
(
n+Am

n

)
ncA


=

1

qm
∏
p|d(1−

1
qdeg p

)

qn

n

(log n)k−1

(k − 1)!

(
Gd

(
k − 1

log n

)
+OA

(
k

(log n)2

))
+O

(
qn/2

(
n+Am

n

)
ncA
)

=

∏
p|d

(
1− 1

qdeg p

)−1
 qn−m

n

(log n)k−1

(k − 1)!

(
Gd

(
k − 1

log n

)
+OA

(
k

(log n)2

))

+O

(
qn/2

(
n+Am

n

)
ncA
)

where we use Proposition 2.4 in the third line and Proposition 2.9 (which is applicable

since the condition

(
1
2 −

1+log(1+A
2

)

log q

)
n > m implies the condition

√
n�A (1 + logm)KA)

in the fourth line.

Then note that, using Stirling’s inequalities
√

2πnn+1/2e−n 6 n! 6 enn+1/2e−n we get that

for a, b > 1

(
a+ b

a

)
=

(a+ b)!

a!b!
6
e(a+ b)a+b+1/2e−(a+b)

2πaa+1/2bb+1/2e−(a+b)
6

e

2π

(
1

a
+

1

b

)1/2(
1 +

b

a

)a (
1 +

a

b

)b
6

(
1 +

b

a

)a (
1 +

a

b

)b
.
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Using this and the condition

(
1
2 −

1+log(1+A
2

)

log q

)
n > m we get

qn/2
(
n+Am

n

)
ncA+2 6 qn/2

(
n+ A

2 n

n

)
ncA+2 6 qn/2

(
1 +

A

2

)n(
1 +

2

A

)A
2
n

ncA+2

�A q
n/2

(
1 +

A

2

)n
en 6 qn−m.

From this, we then get that

πk(n; g, d) =

∏
p|d

(
1− 1

qdeg p

)−1
 qn−m

n

(log n)k−1

(k − 1)!

(
Gd

(
k − 1

log n

)
+OA

(
k

(log n)2

))

=
1

Φ(d)

qn

n

(log n)k−1

(k − 1)!

(
Gd

(
k − 1

log n

)
+OA

(
k

(log n)2

))
.

Remark 2.6. It is convenient for our proof of Theorem 2.3 to restate the result of Theorem

2.2 as it appears in the end of the proof, that is (under the same conditions as Theorem

2.2) as

πk(n; g, d) =

∏
p|d

(
1− 1

qdeg p

)−1
 qn−m

n

(log n)k−1

(k − 1)!

(
Gd

(
k − 1

log n

)
+OA

(
k

(log n)2

))
.

2.4 The Sathé-Selberg formula in short intervals

2.4.1 The Involution Trick

As in [24], we define the involution of a polynomial f ∈ Fq[t] to be the polynomial

f∗(t) := tdeg ff(1/t).

The idea that such an involution links arithmetic progressions and short intervals has been

known for a long time (see for example [20]). The following lemma, for example, appears

as Lemma 4.2 in [24].

Lemma 2.5. For f ∈ Fq[t] not divisible by t, ω(f∗) = ω(f) and µ(f∗) = µ(f).
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Proof. First of all, we note that for f, g ∈ Fq[t]

(fg)∗(t) = tdeg fgfg(1/t) = tdeg ff(1/t)tdeg gg(1/t) = f∗(t)g∗(t).

Moreover, if f ∈ Fq[t] is not divisible by t, then deg f∗(t) = deg f(t) so

(f∗)∗(t) = tdeg f∗f∗(1/t) = tdeg f∗t− deg ff(t) = f(t).

Together, these imply that if f = pa11 . . . parr ∈ Fq[t] where pi are distinct irreducibles none

of which are t, then f∗ = (p∗1)a1 . . . (p∗r)
ar where p∗i are distinct irreducibles none of which

are t. So, if f ∈ Fq[t] is not divisible by t, then ω(f∗) = ω(f) and µ(f∗) = µ(f).

In order to apply our result concerning polynomials from an arithmetic progression to prove

one about polynomials belonging to a short interval, we use the following observation.

Lemma 2.6. Let f and g be polynomials of degree n and h an integer 6 n. Then deg(f −

g) 6 h if and only if f∗ ≡ g∗ mod tn−h.

Proof. Write

f(t) = ant
n + . . .+ aht

h + . . .+ a0

g(t) = bnt
n + . . .+ bht

h + . . .+ b0

where an and bn are non-zero. Then

f∗(t) = an + . . .+ aht
n−h + . . .+ a0t

n

g∗(t) = bn + . . .+ bht
n−h + . . .+ b0t

n.

From this we can see that each condition is satisfied if and only if ai = bi for each

i = h+ 1, . . . , n.

Remark 2.7. Notice that f∗ and g∗ have non-zero constant terms.
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2.4.2 Proof of Theorem 2.3

We first split the sum defining πk(n; g;h) into two

πk(n; g;h) =
∑
f∈Mn

deg(f−g)6h
ω(f)=k

µ2(f) =
∑
f∈Mn

deg(f−g)6h
ω(f)=k
f(0)6=0

µ2(f) +
∑
f∈Mn

deg(f−g)6h
ω(f)=k
f(0)=0

µ2(f).

Using Lemma 2.6 on the first sum we get

∑
f∈Mn

f∗≡g∗ mod tn−h

ω(f∗)=k
deg f∗=n

µ2(f∗) =
∑

deg f=n
f≡g∗ mod tn−h

ω(f)=k

µ2(f)

=
∑
a∈F∗q

∑
f∈Mn

f≡a−1g∗ mod tn−h

ω(f)=k

µ2(f)

=
∑
a∈F∗q

πk(n; a−1g∗, tn−h).

Since a−1g∗ has non-zero constant term for each a ∈ F∗q , and from the condition of the

theorem we have that

(
1
2 −

1+log(1+A
2

)

log q

)
n > n− h > 1, we may apply Remark 2.6 to get

(q − 1)
q

q − 1

qh

n

(log n)k−1

(k − 1)!

(
H

(
k − 1

log n

)
+OA

(
k

(log n)2

))
=
qh+1

n

(log n)k−1

(k − 1)!

(
H

(
k − 1

log n

)
+OA

(
k

(log n)2

))
.

Now, we split the second sum into two sums, the latter of which is zero,

∑
f∈Mn−1

deg(tf−g)6h
ω(tf)=k

µ2(tf) =
∑

f∈Mn−1

deg(tf−g)6h
ω(f)=k−1
f(0)6=0

µ2(tf) +
∑

f∈Mn−1

deg(tf−g)6h
ω(f)=k
f(0)=0

µ2(tf)

and then apply Lemma 2.6 to the former to get

∑
deg f=n−1

f≡g∗ mod tn−h

ω(f)=k−1

µ2(f) =
∑
a∈F∗q

∑
f∈Mn−1

f≡a−1g∗ mod tn−h

ω(f)=k−1

µ2(f) =
∑
a∈F∗q

πk−1(n− 1; a−1g∗, tn−h).
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Since a−1g∗ has non-zero constant term and for each a ∈ F∗q , and from the condition of

the theorem we have

(
1
2 −

1+log(1+A
2

)

log q

)
(n − 1) > n − h > 1, we may apply Remark 2.6

again to get

(q − 1)
q

q − 1

qh−1

n− 1

(log(n− 1))k−2

(k − 2)!

(
H

(
k − 2

log(n− 1)

)
+OA

(
k − 1

(log(n− 1))2

))
=
qh

n

(log n)k−2

(k − 2)!

(
H

(
k − 2

log(n− 1)

)
+OA

(
k

(log n)2

))
=
qh+1

n

(log n)k−1

(k − 1)!

(
k − 1

q log n
H

(
k − 2

log(n− 1)

)
+OA

(
k

(log n)2

))
.

Putting everything together proves the theorem.

2.5 The q-limit

We conclude by briefly discussing what happens in the regime in which q tends to infinity.

First, note that

πk(n) =
∑
f∈Mn

ω(f)=k

µ2(f) =
1

k!

∑
p1,...,pk∈I

pairwise distinct
deg(p1...pk)=n

1

=
1

k!


∑

p1,...,pk∈I
deg(p1...pk)=n

1 +O


(
k

2

) ∑
p1,...,pk∈I
pk−1=pk

deg(p1...pk)=n

1




=
1

k!

 ∑
p1,...,pk∈I

deg(p1...pk)=n

1 +O

k2
∑

p1,...,pk−1∈I
deg(p1...pk−1)6n−1

1




where the error term comes from bounding the over count by terms where (at least) two

of the pi are the same. Now, using the prime polynomial theorem, and taking k = O(q)

for the third equality below we get that our sum is

∑
p1,...,pk∈I

deg(p1...pk)=n

1 =
∑

n1+...+nk=n
ni>1

k∏
i=1

1

ni
(qni +O(qbni/2c)) = qn

∑
n1+...+nk=n

ni>1

1

n1 . . . nk
(1 +O(1/q))k
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and on using the fact that n1 + . . .+ nk = n, that

∑
p1,...,pk∈I

deg(p1...pk)=n

1 =
qn

n

∑
n1+...+nk=n

ni>1

n1 + . . .+ nk
n1 . . . nk

(1 +O(k/q))

=
qn

n
k

∑
n1+...+nk−16n−1

ni>1

1

n1 . . . nk−1
(1 +O(k/q)).

Similarly, using the second equality above, and again taking k = O(q), the sum in the

error term is

∑
p1,...,pk−1∈I

deg(p1...pk−1)6n−1

1 =
∑
r6n−1

∑
p1,...,pk−1∈I

deg(p1...pk−1)=r

1

6
∑
r6n−1

qr
∑

n1+...+nk−1=r
ni>1

1

n1 . . . nk−1
(1 +O(1/q))k

6 qn−1
∑

n1+...+nk−16n−1
ni>1

1

n1 . . . nk−1
(1 +O(k/q)).

Putting these results together we get, as long as k = O(q), that

πk(n) =
qn

n

1

(k − 1)!

∑
n1+...+nk−16n−1

ni>1

1

n1 . . . nk−1
(1 +O(kn/q))

which gives us an asymptotic formula for πk(n) as q →∞, as long as k = o(q/n).

Moreover, note that, when k = O(log n/ log log n), we have that

∑
n1+...+nk−16n−1

ni>1

1

n1 . . . nk−1
>

 ∑
r6n−1

k

1

r


k−1

= logk−1 n

(
1 +O

(
k log k

log n

))

and

∑
n1+...+nk−16n−1

ni>1

1

n1 . . . nk−1
6

(∑
r6n

1

r

)k−1

= logk−1 n

(
1 +O

(
k

log n

))
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so that, as long as k = o(log n/ log logn), we get, as n→∞, that

qn

n

1

(k − 1)!

∑
n1+...+nk−16n−1

ni>1

1

n1 . . . nk−1
∼ qn

n

logk−1 n

(k − 1)!
.

This agrees with Theorem 2.1 in this range for k (after noting that G(z) = 1 +O(|z|)).

One can use similar elementary calculations, along with the input of the prime poly-

nomial theorem in arithmetic progressions, to get asymptotic formulae for πk(n; g, d), and

consequently πk(n; g;h) using the involution trick (as in Section 2.4) for the same range

of k.

2.6 The function field Erdős-Kac Theorem

In Remark 2.5, we outlined how to show, uniformly for all n > 2 and 1 6 k 6 A log n,

that

ρk(n) := #{f ∈Mn : ω(f) = k} ∼ qn

n

(log n)k−1

(k − 1)!

(
G̃

(
k − 1

log n

)
+OA

(
k

(log n)2

))

where G̃(z) = F̃ (1/q,z)
Γ(1+z) and F̃ (T, z) =

∏
p∈I

(
1 + zTdeg p

1−Tdeg p

)
(1− T deg p)z.

Now, we will use this result to prove that the limiting distribution of the of the function ω

is normal, with a given mean and variance, which we compute below. This is the analogue

of the Erdős-Kac Theorem for the integers, and can also be proved, both in the setting of

the integers and in the setting of function fields, using the Method of Moments (see, for

example, Example 1 and Example 3 in [27]).

We begin to compute the mean value of ω(f) for f ∈ Mn, using the prime polynomial

theorem, thus

1

qn

∑
f∈Mn

ω(f) =
1

qn

∑
f∈Mn

∑
p∈I:p|f

1 =
∑
p∈I6n

1

qdeg p
=
∑
k6n

π(k)

qk
=
∑
k6n

1

k
+

∑
d|k:d 6=1

µ(d)

kqk(1−1/d)

 .

We observe that the sum over the secondary term tends to a constant with an error of

at most O
(

1
qn/2

)
, and then recall that

∑
k6n

1
k = log n + γ + O

(
1
n

)
, where γ is the
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Euler-Mascheroni constant. Putting this all together, we get that

1

qn

∑
f∈Mn

ω(f) = log n+ β +O

(
1

n

)

where β = γ +
∑

k>1

∑
d|k:d 6=1

µ(d)

kqk(1−1/d) is a constant. So, the mean of ω(f) is about

log deg f . Next we begin computing the variance, as follows

1

qn

∑
f∈Mn

(ω(f)− log deg f)2 =
1

qn

∑
f∈Mn

ω(f)2 − 2
1

qn

∑
f∈Mn

ω(f) log n+ (log n)2

=
1

qn

∑
f∈Mn

ω(f)2 − (log n)2 − 2β log n+O

(
log n

n

)

The first sum can be written as

1

qn

∑
f∈Mn

 ∑
p∈I:p|f

1

2

=
1

qn

∑
p∈I6n

∑
q∈I6n

∑
f∈Mn

p|f,q|f

1.

The terms for which p = q contribute,

∑
p∈I6n

1

qdeg p
= log n+ β +O

(
1

n

)
.

where we recognise the same expression as when we computed the mean. Using this result

again, and recalling that for p 6= q we have p|f and q|f if, and only if, pq|f , the remaining

terms contribute

1

qn

∑
p,q∈I6n
p 6=q

∑
f∈Mn

pq|n

1 =
∑

p,q∈I6n
p 6=q

1

qdeg p+deg q

=

 ∑
p∈I6n

1

qdeg p

2

−
∑
p∈I6n

1

q2 deg p

= (log n)2 + 2β log n+ β2 − δ +O

(
log n

n

)

where, for some constant δ,

∑
p∈I6n

1

q2 deg p
=
∑
k6n

π(k)

q2k
=
∑
k6n

(
1

kqk
+O

(
1

kq3k/2

))
=: δ +O

(
1

qn

)
.



2.6. The function field Erdős-Kac Theorem 49

Putting this together we have

1

qn

∑
f∈Mn

(ω(f)− log deg f)2 = log n+ β2 + β − δ +O

(
log n

n

)
.

So, the variance of ω(f) is also about log deg f . If ω(f) really were distributed randomly

then we would expect that the proportion of ω(f) which differs from the mean by some

multiple of the standard deviation should go to 0 as that multiple tends to infinity. The

next proposition makes a precise statement along these lines.

Proposition 2.10. Let h(n) be any real valued function such that h(n)→∞ as n→∞.

Then for sufficiently large n,

αh(n) :=
1

qn
#{f ∈Mn : |ω(f)− log deg f | > h(n)

√
log deg f} 6 2

h(n)2
.

In particular, αh(n)→ 0 as n→∞.

Proof.

1

qn

∑
f∈Mn

(ω(f)− log deg f)2 >
1

qn

∑
f∈Mn

|ω(f)−log deg f |>h(n)
√

log deg f

(ω(f)− log deg f)2

> αh(x)h(n)2 log n

If instead we had αh(n)h(n)2 > 2 for arbitrarily large n this would contradict the estimate

for the variance of ω derived above.

We will use this result, together with the following lemma (related to the Central Limit

Theorem) and our results for ρk(n) to show that for ω(f) does indeed look like a normally

distributed random variable with mean log deg f and variance log deg f .

Lemma 2.7. Let k be a positive integer and let x be a positive real number such that

|k − x| 6 x2/3. Then

e−xxk−1

(k − 1)!
=
e−

(k−x)2
2x

√
2πx

(
1 +O

(
1√
x

)
+O

(
|k − x|3

x2

))
.

Proof. Let θ = k − x so |θ|3 6 x2 and note that for x > 8 we have |θ|x 6 1
2 so that
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log(1 + θ
x) = θ

x −
θ2

2x2
+O

(
|θ|3
x3

)
. Also note that,

θ2

x2
6
|θ|
x

and moreover, by the AM-GM inequality, we have that:

|θ|
x

=
3

√
|θ|3
x3

6
1

3

(
|θ|3

x2
+

1√
x

+
1√
x

)
6
|θ|3

x2
+

1√
x

We now apply Stirling’s approximation in the form 1
(k−1)! = 1√

2πk
ekk−k+1(1 + O( 1

k )) to

get

e−xxk−1

(k − 1)!
=

1√
2πk

e−xxk−1ekk−k+1

(
1 +O

(
1

k

))
=

1√
2π

exp

(
(x+ θ − 1) log x+ θ − (x+ θ − 1) log(x+ θ)− 1

2
log(x+ θ)

)
×
(

1 +O

(
1

x

))
=

1√
2πx

exp

(
θ −

(
x+ θ − 1

2

)
log

(
1 +

θ

x

))(
1 +O

(
1

x

))
=

1√
2πx

exp

(
θ −

(
x+ θ − 1

2

)(
θ

x
− θ2

2x2
+O

(
|θ|3

x3

)))(
1 +O

(
1

x

))
=

1√
2πx

exp

(
θ −

(
θ +

θ2

2x
− θ

2x
+

θ2

4x2
+O

(
|θ|3

x2

)))(
1 +O

(
1

x

))
=

1√
2πx

exp

(
− θ

2

2x
+O

(
1√
x

)
+O

(
|θ|3

x2

))(
1 +O

(
1

x

))
=

1√
2πx

exp

(
− θ

2

2x

)(
1 +O

(
1√
x

)
+O

(
|θ|3

x2

))

by our observations above.

Theorem 2.4. (Erdős-Kac) For all real λ satisfying λ 6 (log n)1/6 we have

1

qn
#{f ∈Mn : ω(f) 6 log deg f + λ

√
log deg f} =

1√
2π

∫ λ

−∞
e−t

2/2dt+O((log n)−1/3).

Proof. Let λ 6 (log n)1/6 and y = log n. Proposition 2.10, applied with h(n) = (log n)1/6

gives:
1

qn

∑
k6y+λy1/2

ρk(n) =
1

qn

∑
y−y2/36k6y+λy1/2

ρk(n) +O(y−1/3)
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Recall that G̃(z) = 1
Γ(1+z)

∏
p∈I

(
1 + zTdeg p

1−Tdeg p

)
(1− T deg p)z, so that by Taylor expansion,

G̃

(
k − 1

y

)
= G̃(1) +O

(∣∣∣∣k − 1

y
− 1

∣∣∣∣) = 1 +O

(
|k − y|
y

)

and since |k − y| 6 y2/3, just as in the proof of the Lemma 2.7, this is

1 +O

(
1
√
y

)
+O

(
|k − y|3

y2

)
.

Combining our estimate for ρk(x) with the previous lemma then gives

1

qn

∑
y−y2/36k6y+λy1/2

ρk(n) =
∑

y−y2/36k6y+λy1/2

e−yyk−1

(k − 1)!

(
G̃

(
k − 1

y

)
+O(ky−2)

)

=
∑

y−y2/36k6y+λy1/2

e
− (k−y)2

2y

√
2πy

(
1 +O

(
1
√
y

)
+O

(
|k − y|3

y2

))

It is now just a case of approximating these sums with integrals. The summand is mono-

tonic for k < y and for k > y and attains its maximum 1/(2π
√
y) at k = y. Therefore

∑
y−y2/36k6y+λy1/2

e
− (k−y)2

2y

√
2πy

=

∫ y+λy1/2

y−y2/3

e
− (u−y)2

2y

√
2πy

du+O

(
1
√
y

)

=
1√
2π

∫ λ

−y1/6
e−t

2/2dt+O

(
1
√
y

)
=

1√
2π

∫ λ

−∞
e−t

2/2dt+O

(
1
√
y

)

after the substitution u = y +
√
yt. Similarly,

∑
y−y2/36k6y+λy1/2

e
− (k−y)2

2y

√
2πy

|k − y|3

y2
=

∫ y+λy1/2

y−y2/3

e
− (u−y)2

2y

√
2πy

|u− y|3

y2
du+O

(
1
√
y

)

=
1√
2π

∫ λ

−y1/6
e−t

2/2 t
3

√
y

dt+O

(
1
√
y

)
= O

(
1
√
y

)

after the same substitution and the result follows.



Chapter 3

Highly Composite Polynomials in Fq[t]

This chapter is based primarily on and largely appears, with the exception of the

additions of Sections 3.2 and 3.6, in [1].

We investigate the analogues, in Fq[t], of highly composite numbers and the maximum

order of the divisor function, as studied by Ramanujan. In particular, we determine a

family of highly composite polynomials which is not too sparse, and we use it to compute

the logarithm of the maximum of the divisor function at every degree up to an error of a

constant, which is significantly smaller than in the case of the integers, even assuming the

Riemann Hypothesis.

3.1 Introduction

In [32], Ramanujan investigated the divisor function d(n), the number of divisors of n.

Being interested in the maximum order of d(n), he defined highly composite integers n to

be those for which d(n) > d(n′) for all n > n′, so that D(N) := max{d(n) | n 6 N} is

given by d(n′) for the largest highly composite n′ 6 N . He was able to compute logD(N)

up to an error of at most O(e−c
√

log logN logN) unconditionally and O
( √

logN
(log logN)3

)
assum-

ing the Riemann Hypothesis. Ramanujan studied carefully the prime factorisation of the

highly composite integers, and his results were improved by Alaoglu and Erdős in [4], who

determined the exponent of each prime in the factorisation of a highly composite number

up to an error of at most 1.

We consider the question of maximising the divisor function in the function field setting.

Let Fq be a finite field, M = {f ∈ Fq[t] monic}, Mn = {f ∈ M : deg f = n}, I = {f ∈

M irreducible}, In = {f ∈ I : deg f = n}, and π(n) = |I(n)| = 1
n

∑
d|n µ(d)qn/d where
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µ(d) is the Möbius function. For f ∈ M, let τ(f) be the number of monic divisors of f ,

and observe that a generic polynomial f in M is of the form

f =
∏
p∈I

pap with deg f =
∑
p∈I

ap deg p and τ(f) =
∏
p∈I

(1 + ap) (3.1)

where only finitely many ap are non-zero. We wish to understand the polynomials which

maximise the function τ up to a given degree, defined thus:

Definition 3.1. We call f ∈ M a highly composite polynomial of degree n if τ(f) =

max{τ(g) | g ∈
⋃
m6nMm}.

Remark 3.1. Highly composite polynomials of a given degree are not necessarily unique.

For example, all linear polynomials in M1 are highly composite polynomials of degree 1.

Remark 3.2. There is (at least) one new highly composite polynomial at each degree.

Indeed, let f be a highly composite polynomial of degree n and suppose otherwise, so that

deg f = m < n. Then pick some g ∈ Mn−m, so that fg ∈ Mn but τ(fg) = #{d ∈ M :

d|fg} > #({d ∈M : d|f} ∪ {fg}) > τ(f), which is a contradiction.

Remark 3.3. If f =
∏
p∈I p

ap is a highly composite polynomial, then deg pi < deg pj

implies api > apj . Indeed, suppose otherwise and set g = fp
apj−api
i p

api−apj
j , so that τ(g) =

τ(f) but deg g = deg f − (apj − api)(pj − pi) < deg f , which contradicts Remark 3.2.

Remark 3.4. See Section 3.5 for an illustrative table of highly composite polynomials in

F2[t].

In [32], Ramanujan defines n to be a superior highly composite number if for some x > 0

d(n)

n1/x


> d(n′)

n′1/x
if n > n′

> d(n′)
n′1/x

if n < n′
(3.2)

so that d(n) > d(n′) for all n′ < n and therefore n is highly composite. Then, by comparing

the prime factorisation of n with the prime factorisations of n/p and np for each prime

p dividing n, and using equation (3.2), he demonstrates that for each x there is a unique

superior highly composite number

n = n(x) =
∏

p prime

pep where ep = ep(x) =

⌊
1

p1/x − 1

⌋
. (3.3)
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He then uses these numbers to get an upper bound for the divisor function, the analogue

of which we discuss in Section 3.6.

Inspired by Ramanujan’s idea, we first investigate a family of highly composite polynomials

{h(x)}x>0, which we define as follows:

Definition 3.2. Let x > 0. We say that h = h(x) ∈M is an x-superior highly composite

polynomial, or just x-SHC, if for all f ∈M we have

τ(h)

qdeg h/x


> τ(f)

qdeg f/x
if deg h > deg f

> τ(f)

qdeg f/x
if deg h < deg f

(3.4)

and we say that h is an x-semi-superior highly composite polynomial, or x-SSHC, if for

all f ∈M we have
τ(h)

qdeg h/x
>

τ(f)

qdeg f/x
. (3.5)

A polynomial which is x-SHC or x-SSHC for some x > 0 is called superior highly com-

posite or semi-superior highly composite respectively.

Remark 3.5. Clearly, if h ∈M is x-SHC, then it is x-SSHC. Moreover, any polynomial h

which is x-SSHC is highly composite, since if f ∈M with deg f 6 deg h, then by equation

(3.5) we have that

τ(f) 6
τ(h)

q(deg h−deg f)/x
6 τ(h).

After defining a particular set for the parameter x of an x-SSHC:

Definition 3.3. Let

S = Sq :=

{
s log q

log(1 + 1/r)
: s, r > 1

}
.

we are able to determine the structure of the superior highly composite polynomials and

semi-superior highly composite polynomials. Our arguments are based on Ramanujan’s

proof of equation (3.3), and our results have a similar flavour, but we are able to be

more precise on account of the discrete nature of the degree sequence of highly composite

polynomials in this setting. In particular, we consider more precisely the parameter x,

and this leads to

Theorem 3.1. Let x > 0.
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1. There is one, and only one, x-SHC polynomial, namely

ĥ = ĥ(x) =
∏
k>1

∏
p∈Ik

pak where ak = ak(x) =

⌊
1

qk/x − 1

⌋
(3.6)

Moreover, ĥ is the unique highly composite polynomial of its degree.

2. If x′ < x′′ are two consecutive elements of S, then ĥ(x) = ĥ(x′) for all x′ 6 x < x′′.

So, there is a one-to-one correspondence between S and the set of superior highly

composite polynomials, given by x→ ĥ(x).

and

Theorem 3.2. Let x > 0.

1. If x 6∈ S, then there is only one x-SSHC polynomial, namely the polynomial ĥ(x)

defined in equation (3.6).

2. If x = s log q
log(1+1/r) ∈ S, then there are 2π(s) x-SSHC polynomials of the form

h(x) =
ĥ(x)

Pi1 · · ·Piv

where ĥ(x) is as in equation (3.6), 0 6 v 6 π(s), Pi1 , · · · , Piv ∈ Is distinct, and

deg h(x) = deg ĥ(x)−vs. Moreover, the unique polynomials h given by v = π(s) and

v = 0 are two (distinct) consecutive superior highly composite polynomials.

3. If h(x) is x-SSHC and g ∈Mdeg h(x) is a highly composite polynomial, then g is also

x-SSHC.

This family of semi-superior highly composite polynomials is not too sparse, so we can

use it to construct polynomials at every degree which make the divisor function close to

its maximum. In particular, if we let T (N) := max{τ(f) | f ∈MN}, then we are able to

compute log T (N) to within an error of at most log 4
3 :

Theorem 3.3. Let x = s log q
log(1+1/r) ∈ S, ĥ = ĥ(x) and ak = ak(x) be defined as in equation

(3.6), and h be an x-SSHC polynomial of degree deg ĥ(x) − vs with 0 6 v < π(s). Then,
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if N = deg h− u with 0 6 u 6 s− 1, we have

log T (N) =


log τ(h) if u = 0

log τ(h)− ε(N) otherwise

where
u

s
log

(
1 +

1

r

)
6 ε(N) 6 log

(
1 +

1

au

)
.

Moreover, the size of this range for ε(N) is at most log
(

1 + 1
au(au+2)

)
6 log 4

3 .

Remark 3.6. From the final sentence of part 2 of Theorem 3.2, we know that the (dis-

tinct) superior highly composite polynomial ĥ(x′) immediately preceding ĥ(x) has degree

deg ĥ(x′) = deg ĥ(x) − π(s)s. So, the form of N in Theorem 3.3 accounts for all inte-

gers between the degrees of these two consecutive superior highly composite polynomials.

Therefore, for any N > 1, we can find x > 0 so as to express N in the form presented in

Theorem 3.3.

3.2 An elementary upper bound on the divisor function

Before we determine the form of our first family of highly composite polynomials, the

superior highly composite polynomials, we first establish an elementary upper bound for

the divisor function on M.

Proposition 3.1. If f ∈Mn, then for n sufficiently large

logq τ(f) 6
n log 2

log n

(
1 +

1

log n
(3 log log n+ o(1))

)
.

Proof. Write f =
∏

16i6r p
αi
i , where pi are the distinct monic irreducibles dividing f , so

that n =
∑

16i6r αi deg pi and τ(f) =
∏

16i6r(1 + αi). Then, for λ > 0 to be chosen

later, we have τ(f) = qλn
∏

16i6r
1+αi

qλαi deg pi
. The factors in this product with deg pi >

log 2
λ log q

are bounded by 1, since 1 + αi 6 2αi . The other factors, with 1 6 deg pi <
log 2
λ log q , are

bounded by 1+αi
qλαi

6 e
√

2αi−λαi log q 6 e
1

2λ log q (using the fact that 1 + x 6 e
√

2x for x > 0,

and then the AM-GM inequality). We can bound the number of such factors as follows:
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let N = b log 2
λ log q c, then

∑
16m6N

π(m) 6
∑

16m6N

qm

m
6

∑
16m6N/2

qm +
2

N

∑
N/2<m6N

qm

6 q
N
2

(
1 +

1

q − 1

)
+

4

N
qN 6

8

N
qN 6 2

1
λ

8λ log q

log 2

Therefore we have

τ(f) 6 qλn
(
e

1
2λ log q

)2
1
λ 8λ log q

log 2
= q

λn+2
1
λ 4

log 2 log q .

Finally, we set λ = log 2
logn(1 + 3 log logn

logn ) and take the logarithm to get

logq τ(f) 6
n log 2

log n

(
1 + 3

log logn

log n

)
+

4

log 2 log q
n

1

1+3
log logn
logn

=
n log 2

log n

(
1 + 3

log logn

log n

)
+

4n

log 2 log q
e
− 3 log logn

1+3
log logn
logn

=
n log 2

log n

1 +
1

log n

3 log log n+
4

log2 2 log q

(
1

log n

) 1−6
log logn
logn

1+3
log logn
logn


 .

Note that, as n tends to infinity, log logn
logn tends to 0, so

1−6 log logn
logn

1+3 log logn
logn

tends to 1, and

(
1

logn

) 1−6
log logn
logn

1+3
log logn
logn tends to 0.

Remark 3.7. We can see that the main term in Proposition 3.1 is sharp by calculating

τ(f) for the family of monic polynomials fm =
∏
r6m

∏
p∈Ir p . Observe that

n := deg f =
∑

16k6m

kπ(k) >
∑
k|m

kπ(k) = qm

and so

τ(f) = 2
∑

16k6m π(k) > 2
1
m

∑
16k6m kπ(k) = 2

deg f
m > 2

n
logq n = q

n log 2
logn .

However, the error term in Proposition 3.1 is quite crude on account of our naive bound

for π(n).
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3.3 Superior highly composite polynomials

We begin by showing, contingent on some auxiliary lemmas proven subsequently, that

Proposition 3.2. For each x > 0, the function τ(f)

qdeg f/x
is maximised over all f ∈ M by

(at least one) h = h(x) ∈M. Moreover, if we write h =
∏
p∈I p

ap =
∏
p∈I p

ap(x), we have

that

1. If x 6∈ S, then ap(x) =
⌊

1
qdeg p/x−1

⌋
for each p ∈ I and so h is unique.

2. Else, if x = s log q
log(1+1/r) ∈ S, so that r = 1

qs/x−1
, then

ap(x) =


⌊

1
qdeg p/x−1

⌋
if deg p 6= s

r or r − 1 if deg p = s

and so there are 2π(s) such polynomials h.

Proof. From (3.1), we can write

τ(f)

qdeg f/x
=
∏
p∈I

1 + ap

qap deg p/x
= exp

∑
p∈I

log(1 + ap)−
ap deg p log q

x


so that to maximise τ(f)

qdeg f/x
, for each p ∈ I we must maximise the quantity φap :=

log(1 + ap)− αap with α = deg p log q
x .

If x 6∈ S, then α cannot be written as log(1 + 1
j ) for any integer j, so by Lemma 3.1 we

have that φap is maximised if and only if ap =
⌊

1
eα−1

⌋
=
⌊

1
qdeg p/x−1

⌋
.

Otherwise, if x ∈ S, then by Lemma 3.2 there is a unique pair (s, r) such that x =

s log q
log(1+1/r) . Therefore, if deg p 6= s, then α cannot be written as log(1+ 1

j ) for any integer j,

so by Lemma 3.1 we have that φap is maximised if and only if ap =
⌊

1
eα−1

⌋
=
⌊

1
qdeg p/x−1

⌋
.

Else, if deg p = s, then α = log(1+ 1
r ) and so by Lemma 3.1 we have that φap is maximised

if and only if ap = r or r − 1.

Remark 3.8. Notice in both cases that ap(x) is zero for deg p > x log 2
log q , so that the fac-

torisation of h is in fact a finite product.
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This leads us first to the proof of Theorem 3.1:

Proof of Theorem 3.1. For x > 0, let ĥ = ĥ(x) =
∏
k>1

∏
p∈Ik p

ak with ak(x) =
⌊

1
qk/x−1

⌋
,

and for x = s log q
log(1+1/r) ∈ S, let E = E(x) be the set of polynomials defined in part 2 of

Proposition 3.2.

1. If x 6∈ S, then from part 1 of Proposition 3.2, we know that for all f ∈M, we have

τ(ĥ)

qdeg ĥ/x
>

τ(f)

qdeg f/x

and so ĥ is the unique x-SHC. Moreover, if deg f 6 deg ĥ then

τ(ĥ) > τ(f)q(deg ĥ−deg f)/x > τ(f)

and so ĥ is the unique highly composite polynomial of its degree.

Otherwise, if x = s log q
log(1+1/r) ∈ S, so that r = 1

qs/x−1
, we observe that ĥ =

∏
p∈I p

âp

with

âp = âp(x) =

⌊
1

qdeg p/x − 1

⌋
=


⌊

1
qdeg p/x−1

⌋
if deg p 6= s

r if deg p = s

so that ĥ(x) ∈ E. Therefore, by part 2 of Proposition 3.2, we have that

τ(ĥ)

qdeg ĥ/x


= τ(f)

qdeg f/x
if f ∈ E

> τ(f)

qdeg f/x
if f 6∈ E

.

and that for all f ∈ E \ {ĥ}, we have deg f 6 deg ĥ− s < deg ĥ. Therefore ĥ is the

unique x-SHC, and moreover, if deg f 6 deg ĥ then

τ(ĥ)


= τ(f)q(deg ĥ−deg f)/x > τ(f) if f ∈ E

> τ(f)q(deg ĥ−deg f)/x > τ(f) if f 6∈ E

and so ĥ is the unique highly composite polynomial of its degree.

2. Let x′ < x′′ be two consecutive elements of S, and let x̃ = min{x > x′ : ĥ(x) 6=

ĥ(x′)}. Then there is some k̃ such that ak̃(x̃) = m > ak̃(x
′). Therefore we must
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have that

x′ <
k̃ log q

log
(
1 + 1

m

) 6 x̃ <
k̃ log q

log
(

1 + 1
1+m

)
and by the minimality of x̃ we must have that

x̃ =
k̃ log q

log
(
1 + 1

m

) ∈ S.
So, by the minimality of x̃ and the definition of x′′, we conclude that x̃ = x′′, and

therefore that ĥ(x) = ĥ(x′) for all x′ 6 x < x′′. It follows that there is a one-to-one

correspondence between S and the set of superior highly composite polynomials,

given by x→ ĥ(x).

and then to the proof of Theorem 3.2:

Proof of Theorem 3.2. For x > 0, let ĥ = ĥ(x) =
∏
k>1

∏
p∈Ik p

ak with ak(x) =
⌊

1
qk/x−1

⌋
,

and for x = s log q
log(1+1/r) ∈ S, let E = E(x) be the set of polynomials defined in part 2 of

Proposition 3.2.

1. If x 6∈ S, then the result follows from part 1 of Proposition 3.2.

2. If x = s log q
log(1+1/r) ∈ S, then from part 2 of Proposition 3.2, we have that the x-SSHC

polynomials are precisely the 2π(s) polynomials in the set E, which we can rewrite

as

E =

{
h(x) =

ĥ(x)

Pi1 · · ·Piv
: 0 6 v 6 π(s) and Pi1 , · · · , Piv ∈ Is distinct

}
.

When v = 0, h(x) = ĥ(x) is superior highly composite. When v = π(s), h(x) =∏
k>1

∏
p∈Ik p

ãk where

ãk = ãk(x) =


ak(x) if k 6= s

r − 1 if k = s

.
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Now, let y = max{x′ ∈ S : x′ < x} so that, by the definition of x and y, we have

s log q

log
(

1 + 1
r−1

) 6 y < x =
s log q

log
(
1 + 1

r

)
and so ak(y) = r − 1. When k 6= s, by Lemma 3.2, we cannot have that x =

k log q
log(1+1/ak(x)) ∈ S, and so

k log q

log
(

1 + 1
ak(x)

) < x <
k log q

log
(

1 + 1
1+ak(x)

) .
This means that, by the definition of y, we have for k 6= s that

k log q

log
(

1 + 1
ak(x)

) 6 y < x <
k log q

log
(

1 + 1
1+ak(x)

)
and so ak(y) = ak(x). Therefore, we have that ĥ(y) = h(x) and so, by part 2 of The-

orem 3.1, h(x) is the (distinct) superior highly composite polynomial immediately

preceding ĥ(x).

3. Let h(x) be x-SSHC and g ∈Mdeg h(x) be a highly composite polynomial. If x 6∈ S,

then by part 1 of Theorem 3.2, h(x) = ĥ(x), and by part 1 of Theorem 3.1, ĥ(x) is

the unique highly composite polynomial of its degree, so g = ĥ(x) = h(x). Else, if

x ∈ S, then by part 2 of Proposition 3.2, we have that h ∈ E and

τ(h)

qdeg h/x


= τ(f)

qdeg f/x
if f ∈ E

> τ(f)

qdeg f/x
if f 6∈ E

.

Therefore τ(g) = τ(h) if, and only if, g ∈ E which means that g is also x-SSHC.

Finally we conclude by proving the auxiliary lemmas used in the proof of Proposition 3.2,

namely

Lemma 3.1. Let α > 0 and consider the sequence (φn)n>0 defined by φn = log(1+n)−αn.

We have that
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1. If log(1 + 1
j+1) < α < log(1 + 1

j ) for some integer j, then φn is maximised if and

only if n = j =
⌊

1
eα−1

⌋
.

2. Else, if α = log(1 + 1
j ) for some integer j, then φn is maximised if and only if n = j

or j − 1.

Proof. Let ∆n = φn − φn−1 = log(1 + 1
n)− α for n > 1. Then we have that

1. If log(1 + 1
j+1) < α < log(1 + 1

j ), then ∆n > 0 when n 6 j, and ∆n < 0 when n > j.

2. Else, if α = log(1 + 1
j ) then ∆n > 0 when n < j, ∆j = 0 and ∆n < 0 when n > j.

and

Lemma 3.2. Let x ∈ S. Then there is a unique pair (s, r) such that x = s log q
log(1+1/r) .

Proof. Suppose otherwise, so that x = s log q
log(1+1/r) = S log q

log(1+1/R) with (r, s) and (R,S) dis-

tinct. If s = S then r = R, so it must be that s 6= S and in particular we may assume

without loss of generality that S > s so that S
s > 1.

Now s log q
log(1+1/r) = S log q

log(1+1/R) implies
(
1 + 1

R

)s
=
(
1 + 1

r

)S
and therefore (R+1)s

Rs = (r+1)S

rS
.

However, (R+1)s

Rs and (r+1)S

rs are irreducible fractions, so we must have that Rs = rS and

(R + 1)s = (r + 1)S . So, (1 + r)S/s = 1 + R = 1 + rS/s, but (1 + x)α > 1 + xα for x > 0

and α > 1, which is a contradiction.

3.4 The maximum value of the divisor function

Since the family of semi-superior highly composite polynomials is not too sparse, we can

use it to construct polynomials at every degree which make the divisor function close to

its maximum, and thus prove Theorem 3.3:

Proof of Theorem 3.3. If u = 0, then N = deg h, and by Theorem 3.2, h is highly com-

posite, so T (N) = τ(h). Otherwise, if 1 6 u 6 s − 1, we have by Remark 3.3 that

au(x) > as(x) = r > 1. So, if we pick P ∈ Iu and let g = h
P , then g ∈ M with

deg g = deg h− u = N and therefore

T (N) > τ(g) = τ(h)
au

1 + au
=

τ(h)

1 + 1
au

.
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On the other hand, by Theorem 3.2, h is x-SSHC, and so for any f ∈MN , we have

τ(f) 6 τ(h)q(deg f−deg h)/x = τ(h)q−u/x

and therefore

T (N) 6 τ(h)q−u/x = τ(h)

(
1 +

1

r

)−u
s

.

Overall, this gives us that

log qu/x =
u

s
log

(
1 +

1

r

)
6 log τ(h)− log T (N) 6 log

(
1 +

1

au

)
. (3.7)

Now, since

au =

⌊
1

qu/x − 1

⌋
>

1

qu/x − 1
− 1

we have that

qu/x > 1 +
1

1 + au

and so the size of the range in equation (3.7) is at most

log

(
1 +

1

au

)
− log

(
1 +

1

1 + au

)
= log

(
1 +

1

au(au + 2)

)
6 log

4

3
.

3.5 Table of highly composite polynomials in F2[t]

We conclude with a table of highly composite polynomials in F2[t], in which SSHC polyno-

mials are additionally marked with ∗ and SHC polynomials are additionally marked with

∗∗. We denote the monic irreducible polynomials in F2[t] by P1(t), P2(t), · · · in ascending

order of the value which they take on t = 2 (so that, if degPi > degPj , then i > j), and we

write f ∈M in the form f = P a11 P a22 · · · in order to shorten the printing. We have listed

the explicit values of P1(t), · · · , P14(t), which are all of the irreducible polynomials which

appear in the factorisations of polynomials in our table of highly composite polynomials,

in their own table below, along with the values which they take on t = 2.
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Table 3.1: Table of ordered monic irreducible polynomials in F2[t]

i Pi(t) ∈ I degPi Pi(2)

1 t 1 2

2 t+ 1 1 3

3 t2 + t+ 1 2 7

4 t3 + t+ 1 3 11

5 t3 + t2 + 1 3 13

6 t4 + t+ 1 4 19

7 t4 + t3 + 1 4 25

8 t4 + t3 + t2 + t+ 1 4 31

9 t5 + t2 + 1 5 37

10 t5 + t3 + 1 5 41

11 t5 + t3 + t2 + t+ 1 5 47

12 t5 + t4 + t2 + t+ 1 5 55

13 t5 + t4 + t3 + t+ 1 5 59

14 t5 + t4 + t3 + t2 + 1 5 61

The algorithm which we use to compute highly composite polynomials is an adaption of

the algorithm used to compute highly composite numbers in [25]. Though we take q = 2,

it works in the same way for any Fq[t], and we give a brief description as follows.

We first define the setM(k) ⊆M of polynomials whose prime factors are in {P1, · · · , Pk},

and we call f ∈ M(k) a k-highly composite polynomial if τ(f) = max{τ(g) | g ∈

M(k) and deg g 6 deg f}. Then we let HC(k, n) ⊆ M(k) be the set of k-highly com-

posite polynomials of degree exactly n, and make the following observations:

� If f = P a11 P a22 · · ·P
ak−1

k−1 P
ak
k ∈ HC(k, n), then g = P a11 P a22 · · ·P

ak−1

k−1 ∈ HC(k − 1, n−

ak degPk). Otherwise, if we had some h ∈ HC(k−1, n−ak degPk) with τ(h) > τ(g)

then we would have τ(hP akk ) > τ(f) even though hP akk ∈ M
(k) with deg hP akk = n,

which would be a contradiction.

� If f ∈ HC(k, n), and P aii P
aj
j divides f with degPj > degPi, then ai > aj . The proof
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of this is identical to that presented in Remark 3.3.

The first observation allows us to iteratively compute HC(k, n), as long as we know HC(k−

1,m) for all m 6 n. In particular, for each j > 0 with n− j degPk > 0, we pick any (one)

gj ∈ HC(k− 1, n− j degPk), and determine which values of j maximise τ(gjP
j
k ). Once we

have determined such a set J = {j1, · · · , jr} we can conclude that

HC(k, n) = {fjP jk : j ∈ J, fj ∈ HC(k − 1, n− j degPk)}.

It is trivial to observe that the base case HC(1, n) = {Pn1 } for all n > 0, and we proceed

inductively from there.

The second observation allows to note that, if {P1, · · · , Pk} = ∪a6bIa for some b > 1, and

degP1 · · ·Pk > n, then the set HC(k, n) is in fact the set of highly composite polynomials

of degree n. Thus, once we have HC(k, n), by taking k sufficiently large, we are able to

compute the highly composite polynomials of degree n.

Table 3.2: Table of highly composite polynomials in F2[t]

f ∈M deg f τ(f)

∗P 1
1 1 2

∗P 1
2 1 2

∗∗P 1
1P

1
2 2 4

∗P 2
1P

1
2 3 6

∗P 1
1P

2
2 3 6

∗∗P 2
1P

2
2 4 9

P 3
1P

2
2 5 12

P 2
1P

3
2 5 12

P 2
1P

1
2P

1
3 5 12

P 1
1P

2
2P

1
3 5 12

∗∗P 2
1P

2
2P

1
3 6 18

∗P 3
1P

2
2P

1
3 7 24

∗P 2
1P

3
2P

1
3 7 24
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∗∗P 3
1P

3
2P

1
3 8 32

P 4
1P

3
2P

1
3 9 40

P 3
1P

4
2P

1
3 9 40

P 4
1P

4
2P

1
3 10 50

∗P 3
1P

3
2P

1
3P

1
4 11 64

∗P 3
1P

3
2P

1
3P

1
5 11 64

P 4
1P

3
2P

1
3P

1
4 12 80

P 3
1P

4
2P

1
3P

1
4 12 80

P 4
1P

3
2P

1
3P

1
5 12 80

P 3
1P

4
2P

1
3P

1
5 12 80

P 4
1P

4
2P

1
3P

1
4 13 100

P 4
1P

4
2P

1
3P

1
5 13 100

∗∗P 3
1P

3
2P

1
3P

1
4P

1
5 14 128

∗P 4
1P

3
2P

1
3P

1
4P

1
5 15 160

∗P 3
1P

4
2P

1
3P

1
4P

1
5 15 160

∗∗P 4
1P

4
2P

1
3P

1
4P

1
5 16 200

P 5
1P

4
2P

1
3P

1
4P

1
5 17 240

P 4
1P

5
2P

1
3P

1
4P

1
5 17 240

P 4
1P

3
2P

2
3P

1
4P

1
5 17 240

P 3
1P

4
2P

2
3P

1
4P

1
5 17 240

∗∗P 4
1P

4
2P

2
3P

1
4P

1
5 18 300

∗P 5
1P

4
2P

2
3P

1
4P

1
5 19 360

∗P 4
1P

5
2P

2
3P

1
4P

1
5 19 360

∗∗P 5
1P

5
2P

2
3P

1
4P

1
5 20 432

P 6
1P

5
2P

2
3P

1
4P

1
5 21 504

P 5
1P

6
2P

2
3P

1
4P

1
5 21 504

P 4
1P

4
2P

2
3P

1
4P

1
5P

1
6 22 600

P 4
1P

4
2P

2
3P

1
4P

1
5P

1
7 22 600

P 4
1P

4
2P

2
3P

1
4P

1
5P

1
8 22 600

P 5
1P

4
2P

2
3P

1
4P

1
5P

1
6 23 720

P 4
1P

5
2P

2
3P

1
4P

1
5P

1
6 23 720
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P 5
1P

4
2P

2
3P

1
4P

1
5P

1
7 23 720

P 4
1P

5
2P

2
3P

1
4P

1
5P

1
7 23 720

P 5
1P

4
2P

2
3P

1
4P

1
5P

1
8 23 720

P 4
1P

5
2P

2
3P

1
4P

1
5P

1
8 23 720

∗P 5
1P

5
2P

2
3P

1
4P

1
5P

1
6 24 864

∗P 5
1P

5
2P

2
3P

1
4P

1
5P

1
7 24 864

∗P 5
1P

5
2P

2
3P

1
4P

1
5P

1
8 24 864

P 6
1P

5
2P

2
3P

1
4P

1
5P

1
6 25 1008

P 5
1P

6
2P

2
3P

1
4P

1
5P

1
6 25 1008

P 6
1P

5
2P

2
3P

1
4P

1
5P

1
7 25 1008

P 5
1P

6
2P

2
3P

1
4P

1
5P

1
7 25 1008

P 6
1P

5
2P

2
3P

1
4P

1
5P

1
8 25 1008

P 5
1P

6
2P

2
3P

1
4P

1
5P

1
8 25 1008

P 4
1P

4
2P

2
3P

1
4P

1
5P

1
6P

1
7 26 1200

P 4
1P

4
2P

2
3P

1
4P

1
5P

1
6P

1
8 26 1200

P 4
1P

4
2P

2
3P

1
4P

1
5P

1
7P

1
8 26 1200

P 5
1P

4
2P

2
3P

1
4P

1
5P

1
6P

1
7 27 1440

P 4
1P

5
2P

2
3P

1
4P

1
5P

1
6P

1
7 27 1440

P 5
1P

4
2P

2
3P

1
4P

1
5P

1
6P

1
8 27 1440

P 4
1P

5
2P

2
3P

1
4P

1
5P

1
6P

1
8 27 1440

P 5
1P

4
2P

2
3P

1
4P

1
5P

1
7P

1
8 27 1440

P 4
1P

5
2P

2
3P

1
4P

1
5P

1
7P

1
8 27 1440

∗P 5
1P

5
2P

2
3P

1
4P

1
5P

1
6P

1
7 28 1728

∗P 5
1P

5
2P

2
3P

1
4P

1
5P

1
6P

1
8 28 1728

∗P 5
1P

5
2P

2
3P

1
4P

1
5P

1
7P

1
8 28 1728

P 6
1P

5
2P

2
3P

1
4P

1
5P

1
6P

1
7 29 2016

P 5
1P

6
2P

2
3P

1
4P

1
5P

1
6P

1
7 29 2016

P 6
1P

5
2P

2
3P

1
4P

1
5P

1
6P

1
8 29 2016

P 5
1P

6
2P

2
3P

1
4P

1
5P

1
6P

1
8 29 2016

P 6
1P

5
2P

2
3P

1
4P

1
5P

1
7P

1
8 29 2016

P 5
1P

6
2P

2
3P

1
4P

1
5P

1
7P

1
8 29 2016
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P 4
1P

4
2P

2
3P

1
4P

1
5P

1
6P

1
7P

1
8 30 2400

P 5
1P

4
2P

2
3P

1
4P

1
5P

1
6P

1
7P

1
8 31 2880

P 4
1P

5
2P

2
3P

1
4P

1
5P

1
6P

1
7P

1
8 31 2880

∗∗P 5
1P

5
2P

2
3P

1
4P

1
5P

1
6P

1
7P

1
8 32 3456

∗P 6
1P

5
2P

2
3P

1
4P

1
5P

1
6P

1
7P

1
8 33 4032

∗P 5
1P

6
2P

2
3P

1
4P

1
5P

1
6P

1
7P

1
8 33 4032

∗∗P 6
1P

6
2P

2
3P

1
4P

1
5P

1
6P

1
7P

1
8 34 4704

P 7
1P

6
2P

2
3P

1
4P

1
5P

1
6P

1
7P

1
8 35 5376

P 6
1P

7
2P

2
3P

1
4P

1
5P

1
6P

1
7P

1
8 35 5376

P 6
1P

5
2P

3
3P

1
4P

1
5P

1
6P

1
7P

1
8 35 5376

P 5
1P

6
2P

3
3P

1
4P

1
5P

1
6P

1
7P

1
8 35 5376

∗∗P 6
1P

6
2P

3
3P

1
4P

1
5P

1
6P

1
7P

1
8 36 6272

P 7
1P

6
2P

3
3P

1
4P

1
5P

1
6P

1
7P

1
8 37 7168

P 6
1P

7
2P

3
3P

1
4P

1
5P

1
6P

1
7P

1
8 37 7168

P 7
1P

7
2P

3
3P

1
4P

1
5P

1
6P

1
7P

1
8 38 8192

P 6
1P

6
2P

3
3P

2
4P

1
5P

1
6P

1
7P

1
8 39 9408

P 6
1P

6
2P

3
3P

1
4P

2
5P

1
6P

1
7P

1
8 39 9408

P 6
1P

6
2P

2
3P

1
4P

1
5P

1
6P

1
7P

1
8P

1
9 39 9408

P 6
1P

6
2P

2
3P

1
4P

1
5P

1
6P

1
7P

1
8P

1
10 39 9408

P 6
1P

6
2P

2
3P

1
4P

1
5P

1
6P

1
7P

1
8P

1
11 39 9408

P 6
1P

6
2P

2
3P

1
4P

1
5P

1
6P

1
7P

1
8P

1
12 39 9408

P 6
1P

6
2P

2
3P

1
4P

1
5P

1
6P

1
7P

1
8P

1
13 39 9408

P 6
1P

6
2P

2
3P

1
4P

1
5P

1
6P

1
7P

1
8P

1
14 39 9408

Remark 3.9. In F2[t], there are certain degrees at which there is a unique highly composite

polynomial of that degree, but where that polynomial is neither SHC nor SSHC (see degrees

10, 30 and 38 in the table of highly composite polynomials, for example). We leave for

further investigation the question of whether there are infinitely many degrees with this

property.
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3.6 Ramanujan’s upper bound for the divisor function

For the sake of completeness, we add an aside in which we derive an analogue of Ra-

manujan’s explicit upper bound for the divisor function, as in [32]. Ramanujan uses his

expression for superior highly composite numbers in equation (3.3), and the defining prop-

erty of superior highly composite numbers in equation (3.2), to get a sharp upper bound

for the divisor function of the form

log d(n) 6
∑
n>1

π

((
n+ 1

n

)x)
log

(
n+ 1

n

)

where π(m) =
∑

p6m prime 1, and x is defined by

∑
n>1

θ

((
n+ 1

n

)y)
< log n if y < x

> log n if y > x

where θ(m) =
∑

p6m prime log p. Ramanujan’s strategy is essentially identical to the one

which we use below to get the analogous bound in Proposition 3.3. Finally, assuming the

Riemann Hypothesis, he uses a version of Riemann’s explicit formulae

π(x) = Li(x)− 1

2
Li(
√
x)−

∑
ρ:ζ(ρ)=0

Li(xρ) +O(x
1
3 )

and θ(x) = x−
√
x−

∑
ρ:ζ(ρ)=0

xρ

ρ
+O(x

1
3 )

to derive the explicit sharp upper bound

log d(n) 6 Li(log n) log 2 + Li
(

(log n)log( 3
2

)/ log 2
)

log

(
3

2

)
− (log n)log( 3

2
)/ log 2

log logn
log 2

−R(log n) log 2 +O

( √
log n

(log log n)3

)

where Li(x) =
∫ x

2
dt

log t and R(x) = 1
(log x)2

(
2
√
x+

∑
ρ:ζ(ρ)=0

xρ

ρ2

)
. We instead use the

Prime Polynomial Theorem to get an analogous bound in Theorem 3.4.

We begin with a reformulation of our form for an x-SHC, which is the following corollary

of Theorem 3.1:
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Corollary 3.1. If ĥ = ĥ(x) is x-SHC, then we can write it as

ĥ =
∏
n>1

∏
k6cn(x)

∏
p∈Ik

p

where cn(x) = x logq(1 + 1
n).

Proof. From equation (3.6), we know that we have

ĥ(x) =
∏
k>1

∏
p∈Ik

pak where ak = ak(x) =

⌊
1

qk/x − 1

⌋
.

Now, let h̃(x) =
∏
n>1

∏
k6cn(x)

∏
p∈Ik p where cn(x) = x logq(1 + 1

n), so that

h̃(x) =
∏
k>1

∏
p∈Ik

pbk(x)

where

bk(x) = #{n : k 6 cn(x)} = #{n : k 6 x logq(1 + 1
n)} =

⌊
1

qk/x − 1

⌋
= ak(x)

and therefore h̃(x) = ĥ(x).

Remark 3.10. Notice that bcn(x)c is zero for n sufficiently large so that, as expected, this

factorisation is in fact a finite product.

Corollary 3.2. If ĥ = ĥ(x) is x-SHC then we have that deg ĥ =
∑

n>1

∑
16k6cn(x) kπ(k)

and τ(ĥ) =
∏
n>1(1 + 1

n)π1(cn(x)), where π(n) = |In| and π1(n) =
∑

r6n π(r).

Proof. Using Corollary 3.1, the degree of ĥ follows easily, and moreover we have that

τ(ĥ) =
∏
k>1

∏
p∈Ik

(1 + ak(x)) =
∏
n>1

(1 + n)dn(x)

where dn(x) =
∑

k:ak(x)=n π(k). Now, in order to have ak(x) = n, we must have

n 6
1

qk/x − 1
< n+ 1

or equivalently that

cn(x) = x logq

(
1 +

1

n

)
> k > x logq

(
1 +

1

n+ 1

)
= cn+1(x).



3.6. Ramanujan’s upper bound for the divisor function 71

Therefore we conclude that dn(x) = π1(cn(x))− π1(cn+1(x)) and so

τ(ĥ) =
∏
n>1

(1 + n)π1(cn(x))−π1(cn+1(x)) =

∏
n>1(1 + n)π1(cn(x))∏

n>2 n
π1(cn(x))

=
∏
n>1

(1 + 1
n)π1(cn(x)).

We can use x-SHC polynomials to get a sharp upper bound for the number of divisors

of g ∈ MN , which is the analogue of Ramanujan’s result in [32] and improves upon the

elementary bound in Proposition 3.1, as follows:

Proposition 3.3. For all g ∈MN , we have

logq τ(g) 6 FN (x0(N))

where

FN (x) :=
1

x

N +
∑
n>1

∑
16k6cn(x)

π(k) (cn(x)− k)


and

x0(N) := inf{x :
∑
n>1

∑
16k6cn(x)

kπ(k) > N}.

Proof. From equation (3.4) and Corollary 3.2, we have for any x > 0 that

τ(g) 6 qN/x
τ(ĥ(x))

qdeg ĥ(x)/x
= qN/x

∏
n>1

(
(1 + 1

n)π1(cn(x))q−
1
x
∑

16k6cn(x) kπ(k)

)
.

with equality when g = ĥ(x) is x-SHC. After taking the logarithm we get

logq τ(g) 6 FN (x) :=
1

x

N +
∑
n>1

∑
16k6cn(x)

π(k) (cn(x)− k)


=

1

x

N +
∑
n>1

∑
16k6cn(x)

π(k)

∫ cn(x)

k
dt


=

1

x

(
N +

∑
n>1

∫ cn(x)

1
π1(t)dt

)
.

It is clear that FN (x) is continuous. It is also differentiable apart from at points x for
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which cn(x) is an integer for some n. Away from those points we have

F ′N (x) = − 1

x2

(
N +

∑
n>1

∫ cn(x)

1
π1(t)dt

)
+

1

x

∑
n>1

logq(1 + 1
n)π1(cn(x))

= − 1

x2

(
N +

∑
n>1

(∫ cn(x)

1
π1(t)dt− cn(x)π1(cn(x))

))

= − 1

x2

N −∑
n>1

∑
16k6cn(x)

kπ(k)

 .

Now, F ′N (x) is negative for small x and positive for large x, changing sign exactly once.

It follows that the best upper bound for FN (x) is attained by the unique x0(N) defined

by x0(N) := inf{x :
∑

n>1

∑
16k6cn(x) kπ(k) > N}, since by definition, for all x < x0(N),

we have F ′N (x) > 0.

Unfortunately, it seems difficult to give a precise value for x0(N) which is of a nice form.

However, we can show that x0(N) = logN
log 2 +Oq(1) thus

Lemma 3.3. Let α(x,N) = N −
∑

n>1

∑
16k6cn(x) kπ(k). Then

1. x > logN
log 2 + log q

log 2 =⇒ α(x,N) < 0.

2. x 6 logN
log 2 −

(
log2

(
1 + 1

q−1

)
+ log2

(
1 +

logq N

log 2 (3
4)logq N

))
=⇒ α(x,N) > 0.

Proof. We deal with each part of the lemma in turn:

1. When x > logN
log 2 + log q

log 2 we have that c1(x) = x logq 2 > logqN + 1, and so

α(x,N) < N −
∑

16k6c1(x)

kπ(k) < N −
∑

k|bc1(x)c

kπ(k)

= N − qbc1(x)c < N − qlogq N = 0
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2. When x 6 logN
log 2 −

(
log2

(
1 + 1

q−1

)
+ log2

(
1 +

logq N

log 2 (3
4)logq N

))
, we have

α(N) = N −
∑

n6 1
q1/x−1

∑
16k6cn(x)

kπ(k)

> N −
∑

n6 x
log q

∑
16k6cn(x)

qk

> N −
(

1 +
1

q − 1

) ∑
n6 x

log q

qcn(x)

> N −
(

1 +
1

q − 1

)
2x
(

1 + x
log q (3

4)x
)

> N − 2x
(

1 +
1

q − 1

)(
1 +

logq N

log 2 (3
4)logq N

)
> 0

Now that we know a range for x0(N), we can take a value of x = x(N) in this range to

obtain a good upper bound which has a nice expression, giving us the following:

Theorem 3.4. For all g ∈MN , we have

logq τ(g) 6
log 2

log q

N

b logN
log q c

+
q

q − 1

log 2

log q

∫ b logN
log q

c

1

qbtc

t2
dt+

∑
16k6b logN

log q
c log(3/2)

log 2

qk

k
+O(

√
N)

Proof. Using that π(k) = qk

k +O
(
qk/2

k

)
, we have from Proposition 3.3 that for x 6 log2N

logq τ(g) 6 FN (x)

=
N

x
+
∑
n>1

logq(1 + 1
n)

∑
16k6x logq(1+

1
n )

qk

(
1

k
− 1

x logq(1 + 1
n)

)
+O(

√
N)

=
N

x
+
∑
n>1

logq(1 + 1
n)

∫ x logq(1+
1
n )

1

∑
16k6t

qk
dt

t2
+O(

√
N).
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Now, if in particular we take x = log q
log 2b

logN
log q c then we get

logq τ(g) 6
log 2

log q

N

b logN
log q c

+
∑
n>1

log(1 + 1
n)

log q

∫ b logN
log q

c log(1+1/n)
log 2

1

q

q − 1
qbtc +O(1)

dt

t2
+O(

√
N)

=
log 2

log q

N

b logN
log q c

+
q

q − 1

log 2

log q

∫ b logN
log q

c

1

qbtc

t2
dt+

q

q − 1

log 3
2

log q

∫ b logN
log q

c log(3/2)
log 2

1

qbtc

t2
dt

+
∑
n>3

q

q − 1

log(1 + 1
n)

log q

∫ b logN
log q

c log(1+1/n)
log 2

1

qbtc

t2
dt+O(

√
N)

=
log 2

log q

N

b logN
log q c

+
q

q − 1

log 2

log q

∫ b logN
log q

c

1

qbtc

t2
dt+

q

q − 1

log 3
2

log q

∫ b logN
log q

c log(3/2)
log 2

1

qbtc

t2
dt

+O(
√
N)

In going from the first equality to the second we use summation by parts on the inner sum.

In going to the final line we note that, in the sum with terms n > 3, only the terms with

n 6 logN
log 2 log q are non-zero, and for each such n, the integral is O(N log2 4/3) = O(N0.42),

meaning that this sum is absorbed into the O(
√
N) error term.

Remark 3.11. The main term here is N log 2
logN +O( N

log2N
), and the subsequent terms are of

size O( N
log2N

) and O(N
log2(3/2)

log2N
) respectively. This upper bound is attained (up to the error

term O(
√
N)) when g is x-SHC. The lower order main terms can be determined explicitly

from this calculation. In particular, each integral is closely related to the logarithmic

integral and, for N > q we have

1

b logN
log q c

=
log q

logN

(
1

1− log q
logN {

logN
log q }

)
=

log q

logN

∑
j>0

(
log q

logN

{
logN

log q

})j
.

Of course, using the full formula for π(k) and keeping track of more terms in the sum

from the expression for F (x) would give an even more precise upper bound.



Chapter 4

The Generalised Divisor Problem and the

Lindelöf Hypothesis

We observe a connection between the Generalised Divisor Problem and the Lindelöf Hy-

pothesis, using Perron’s formula, summation by parts and a tensor-power trick. In par-

ticular, we show how to quantitatively convert upper bounds from one problem to upper

bounds for the other.

4.1 Introduction

For positive integers k and n, let dk(n) be the the k-fold divisor function of n, which

counts the number of ways that n can be written as the product of exactly k factors. This

generalised divisor function is related to the Riemann Zeta Function ζ(s) by

ζk(s) =
∑
n>1

dk(n)

ns

where s ∈ C with Re(s) > 1. It can be shown (see, for example, Chapter 12 of [40]),

following Dirichlet in the case of k = 2, that

Dk(x) :=
∑
n6x

dk(n) = xPk−1(log x) + ∆k(x)

where Pk−1(y) is a polynomial of degree k − 1, and ∆k(x) = Oε(x
1−1/k+ε). For k > 1, we

let

αk := min{α | ∀ε > 0 ∆k(x) = Oε(x
α+ε)}
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and we call the αk generalised divisor exponents. The Generalised Divisor Problem is the

problem of finding the values of these generalised divisor exponents, and the conjectured

answer to this problem is

Conjecture 4.1 (The Generalised Divisor Problem). For k > 1, αk = 1
2 −

1
2k .

A related problem is that of determining the maximal value of ζ(s) in the critical strip,

where 0 6 Re(s) 6 1. For 0 6 σ 6 1, we define

µ(σ) = min{µ | ∀ε > 0 |ζ(σ + it)| = Oε(t
µ+ε)}.

We are particularly interested in the value of µ(1
2), which we call the Lindelöf exponent.

The best known upper bound is µ(1
2) 6 13

84 due to Bourgain (see [6]), and the conjecture

states that

Conjecture 4.2 (The Lindelöf Hypothesis). µ(1
2) = 0.

Remark 4.1. Let N(σ, T ) denote the number of zeros of ζ(s) with real part at least σ and

imaginary part at most T . It follows from Theorem 9.14 of [40] that

N

(
1

2
, T + 1

)
−N

(
1

2
, T

)
� log T.

The Lindelöf Hypothesis is equivalent to the statement that,

N(σ, T + 1)−N(σ, T ) = o(log T )

for any σ > 1
2 (see Theorem 13.5 of [40]), or in other words, that almost all zeros of ζ(s)

lie on the critical line Re(s) = 1
2 .

In this note, we demonstrate how to use upper bounds for the generalised divisor exponents

αk to determine an upper bound for the Lindelöf exponent µ(1
2), and vice-versa. In the

case of the former, we use analytic continuation by summation by parts to show that

Theorem 4.1. For k > 1, µ(1
2) 6


1
2k

1
1−αk if αk 6

1
2

1
2αk

(
αk − 1

2 + 1
k

)
if αk >

1
2

.

and in the case of the latter, we use Perron’s formula to show that
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Theorem 4.2. For k > 2, αk 6
1
2 +

(k−2)µ( 1
2

)

2(1+(k−2)µ( 1
2

))
.

4.2 Proofs of Theorems 4.1 and 4.2

We begin with by proving an explicit form of the well-known subconvexity estimate for

µ(1
2), which we will use in our proof of Theorem 4.1.

Lemma 4.1 (Subconvexity of µ(σ)). For 0 6 σ 6 1, we have

µ

(
1

2

)
6


1
2
µ(σ)
1−σ if σ 6 1

2

1
2σ

(
σ − 1

2 + µ(σ)
)

if σ > 1
2

Proof. Since ζ(s) converges absolutely for Re(s) > 1, then by the continuity of ζ(s) we

have that µ(1) = 0. Moreover, by the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s)

it follows that µ(0) = 1
2 . Now, by applying the Phragmén-Lindelöf principle to ζ(s), we

can get an upper bound for the value of µ(1
2) by linearly interpolating between µ(σ) and

µ(1) = 0 if σ 6 1
2 , or between µ(σ) and µ(0) = 1

2 if σ > 1
2 . Following this procedure gives

the stated result.

Remark 4.2. Observe the following:

1. By the functional equation for ζ(s), we have µ(σ) = 1
2−σ+µ(1−σ), so the inequalities

in Lemma 4.1 are in fact equivalent.

2. By interpolating between µ(1
2) and µ(1), we can show similarly that µ(σ) 6 2µ(1

2)(1−

σ) for 1
2 6 σ 6 1.

3. In particular, if the Lindelöf hypothesis is true, we can deduce from the previous

points that µ(σ) = 0 for all σ > 1
2 and µ(σ) = 1

2 − σ for all σ 6 1
2 .

Next, we use analytic continuation by summation by parts, the the subconvexity of µ(σ),

and a tensor-power trick to get an upper bound for µ(1
2) depending on αk.
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Proof of Theorem 4.1. Using summation by parts we have, for Re(s) > 1, that

∑
n6X

dk(n)

ns
=
Dk(X)

Xs
+ s

∫ X

1

Pk−1(log x)

xs
+

∆(x)

xs+1
dx

and we can take X →∞ to get

ζk(s) = s

∫ ∞
1

Pk−1(log x)

xs
+

∆(x)

xs+1
dx.

By using integration by parts we note that

∫ ∞
1

logm(x)

xs
dx =

[
logm(x)

(s− 1)xs−1

]1

∞
+

m

s− 1

∫ ∞
1

logm−1(x)

xs
dx =

m

s− 1

∫ ∞
1

logm−1(x)

xs
dx

and so we obtain

ζk(s) = sQk

(
1

s− 1

)
+ s

∫ ∞
1

∆(x)

xs+1
dx

where Qk(y) is a polynomial of degree k. Since ∆k(x) = Oε(x
αk+ε) for all ε > 0, the

integral converges absolutely for Re(s) > αk and therefore, if s = σ + it with αk < σ 6 1

and t > 2, we have

|ζ(s)| � |s|
1
k � |t|

1
k .

This means that µ(σ) < 1
k and so µ(αk) 6 1

k by the continuity of ζ(s). The result now

follows by applying Lemma 4.1.

Moreover, this argument shows that something weaker than the Generalised Divisor Prob-

lem implies the Lindelöf Hypothesis:

Corollary 4.1. If there is a sequence of k → ∞ such that αk 6 1
2 + ok→∞(1), then

µ(1
2) = 0.

Finally, we use Perron’s formula to get an upper bound for αk depending on µ(1
2).

Proof of Theorem 4.2. Using the truncated version of Perron’s formula, we have that

Dk(x) =
1

2πi

∫ 1+ε+iT

1+ε−iT
ζk(s)

xs

s
ds+Oε

(
x1+ε

T

)

Using Cauchy’s Residue Formula for the rectangular contour with points at 1
2±iT, 1+ε±iT
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we get

Dk(x) = ress=1

(
ζk(s)

xs

s

)
+

1

2πi

(∫ 1/2−iT

1+ε−iT
+

∫ 1/2+iT

1/2−iT
+

∫ 1+ε+iT

1/2+iT

)
ζk(s)

xs

s
ds+Oε

(
x1+ε

T

)

First note that ress=1

(
ζk(s)x

s

s

)
= xPk−1(log x) = Dk(x) − ∆k(x). Now, let s = σ + it,

and recall that by Remark 4.2 we have |ζ(s)| �δ t
2µ( 1

2
)(1−σ)+δ for 1

2 6 σ 6 1. Moreover,

when σ > 1, ζ(s) converges absolutely, and so |ζ(s)| � 1. Therefore, we have∣∣∣∣∣
∫ 1+ε±iT

1/2±iT
ζk(s)

xs

s
ds

∣∣∣∣∣�δ
T k(2µ( 1

2
)+δ)

T

∫ 1

1/2

(
x

T 2kµ( 1
2

)

)σ
dσ +

1

T

∫ 1+ε

1
xσdσ

�δ
x

T
T kδ +

x
1
2

T
T k(µ( 1

2
)+δ) +

x1+ε

T

Moreover, as a corollary of Ingham’s asymptotic formula for the second moment of ζ(1
2 +it)

(see [22]), we know that
∫ T
−T |ζ(1

2 + it)|2dt�δ T
1+2δ, and so

∣∣∣∣∣
∫ 1/2+iT

1/2−iT
ζk(s)

xs

s
ds

∣∣∣∣∣� x
1
2T (k−2)(µ( 1

2
)+δ)−1

∫ T

−T

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 dt�δ x
1
2T (k−2)µ( 1

2
)+kδ

Therefore, putting everything together and noting that µ(1
2) 6 1

4 <
1
2 by Lemma 4.1, we

have

∆k(x)�δ,ε
x

T

(
T kδ + xε

)
+ x

1
2

(
T k(µ( 1

2
)+δ)−1 + T (k−2)µ( 1

2
)+kδ

)
� x

T

(
T kδ + xε

)
+ x

1
2T (k−2)µ( 1

2
)+kδ

and then we optimise the error terms (up to ε and δ) by taking T = x
1

2(1+(k−2)µ( 12 )) to get

∆k(x)�δ,ε x
1
2

+
(k−2)µ( 12 )

2(1+(k−2)µ( 12 ))

(
xε + x

kδ

2(1+(k−2)µ( 12 ))

)
.

The result now follows from the definition of αk.

Moreover, this argument leads to a converse of Corollary 4.1, namely that the Lindelöf

Hypothesis implies something slightly weaker than the Generalised Divisor Problem:

Corollary 4.2. If µ(1
2) = 0, then αk 6

1
2 for all k > 2.

Remark 4.3. Corollaries 4.1 and 4.2 are well known: see Theorem 13.4 of [40].



Chapter 5

Halász’s Theorem in Fq[t]

In the setting of the integers, Granville, Harper and Soundararajan showed that the upper

bound in Halász’s Theorem can be improved for smoothly supported functions. We derive

the analogous result for Halász’s Theorem in Fq[t], and then consider the converse question

of when the general upper bound in this version of Halász’s Theorem is actually attained.

5.1 Introduction

5.1.1 Halász’s Theorem for the integers

Let f : N → C be a multiplicative function such that f(1) = 1, with associated Dirichlet

Series and Euler Product (respectively)

F(s) :=
∑
n>1

f(n)

ns
=

∏
p prime

∑
k>0

f(pk)

pks

defined and absolutely convergent for s ∈ C with Re(s) > 1. Then define the Λf (n), the

von Mangoldt function associated to f , by

−F
′

F
(s) =:

∑
n>2

Λf (n)

ns

and consider the set of such functions f such that, for some κ > 0, we have |Λf (n)| 6 κΛ(n)

for all n > 1 (where Λ is the usual von Mangoldt function), which we denote C(κ). In

[15], Granville, Harper and Soundararajan generalise Halász’s Theorem to this class of

functions:

Theorem 5.1 (Halász’s Theorem). Let κ > 0 and f ∈ C(κ), and define M = M(x) by

e−M (log x)κ := max
|t|6(log x)κ

∣∣∣∣F(1 + 1/ log x+ it)

1 + 1/ log x+ it

∣∣∣∣ .
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Then we have that

S(x) :=
1

x

∑
n6x

f(n)�κ (1 +M)e−M (log x)κ−1 +
(log log x)κ

log x
.

Remark 5.1. In the case of f ∈ C(1) the inequality in Theorem 5.1 becomes

S(x)� (1 +M)e−M +
(log log x)

log x
. (5.1)

Now, for simplicity, consider the multiplicative functions f with f(1) = 1 and |f(n)| 6 1

for all n, which form a subset of C(1). For this set, the same authors show that if f is

supported only on primes of size p 6 x1−δ for some δ > 0, then we can improve equation

(5.1) to

S(x)�δ e
−M +

(log log x)

log x
. (5.2)

This observation is presented in Remark 3.2 of [14], albeit with a different set of notation

associated to this simplified setting.

Remark 5.2. The upper bound in (5.2) does not hold for general multiplicative functions.

It has been shown by a variety of authors (see [28], [29] and [16]), following the idea

of Montgomery in [28], that there exists a multiplicative function f with f(1) = 1 and

|f(n)| 6 1 for all n, such that

S(x)� (1 +M)e−M +
(log log x)

log x
. (5.3)

5.1.2 Halász’s Theorem in Fq[t]

We work in the setting of polynomials over a finite field, and set up the quantities analogous

to those in the setting of the integers by following the notation in [13]. Let Fq be a finite

field,M = {F ∈ Fq[t] monic} and I = {P ∈M : P is irreducible}. We define f :M→ C

to be a multiplicative function such that f(1) = 1, and let

F(z) :=
∑
F∈M

f(F )zdegF =
∏
P∈I

∑
k>0

f(P k)zk degP

be the power series associated to f , along with its Euler Product. By taking the logarithmic

derivative of the latter, and multiplying by z, we acquire a new power series through which
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we can define Λf (F ) (the von Mangoldt function associated to f):

zF ′

F
(z) =:

∑
F∈M

Λf (F )zdegF .

Then, we let Mn = {F ∈M : degF = n}, and define

σ(n) = σ(n; f) :=
1

qn

∑
F∈Mn

f(F )

to be the mean value of f over polynomials of degree n and

χ(n) = χ(n; f) :=
1

qn

∑
F∈Mn

Λf (F )

to be the corresponding weighted average over prime powers.

As in the setting of the integers, we consider the set C(κ) of such f such that, for some

κ > 0, we have |Λf (F )| 6 κΛ(F ) for all F ∈M, where

Λ(f) =


degP if F = P k

0 else

.

In particular, given the prime polynomial theorem in the form
∑

F∈Mn
Λf (F ) = qn, for

f ∈ C(κ) we have that

|χ(n)| 6 1

qn

∑
F∈Mn

|Λf (F )| 6 κ

and so we consider the more general set C̃(κ) of f with |χ(j)| = |χ(j; f)| 6 κ for all j > 1.

Finally, we define f⊥ = f⊥,n by setting

Λf⊥(F ) =


Λf (F ) if degF < n

0 else

and then we set F⊥(z) :=
∑

F∈M f⊥(F )zdegF , σ⊥(j) := 1
qj

∑
F∈Mj

f⊥(F ) and χ⊥(j) :=

1
qn
∑

F∈Mj
Λf⊥(F ). We observe that χ⊥(j) = χ(j) if j < n and χ⊥(j) = 0 otherwise, and
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from equation (1.8) of [13] we have

jσ(j) =

j∑
k=1

χ(k)σ(j − k) (5.4)

from which we conclude that σ⊥(j) = σ(j) if j < n and σ⊥(n) = σ(n)− χ(n)
n .

We also note that, from their definitions and our observations above, we have

F
(
z

q

)
=
∑
j>0

σ(j)zj = exp

∑
j>1

χ(j)

j
zj

 (5.5)

and

F⊥
(
z

q

)
=
∑
j>0

σ⊥(j)zj = exp

∑
j>1

χ⊥(j)

j
zj

 = exp

n−1∑
j=1

χ(j)

j
zj

 . (5.6)

With these definitions in place, we are able to formulate the analogue of Halász’s Theorem

in Fq[t], which Granville, Harper and Soundararajan prove in [13]:

Theorem 5.2 (Halász’s Theorem in Fq[t]). Let κ > 0 and f ∈ C̃(κ), and define M = M(n)

by

e−M (2n)κ := max
|z|= 1

q

|F⊥(z)|.

Then we have that

|σ(n)| 6 2κ(κ+ 1 +M)e−M (2n)κ−1. (5.7)

We consider the case analogous to that discussed in Remark 5.1, and show that Halász’s

Theorem can be improved when f has a property related to being smoothly supported:

Theorem 5.3. Let κ > 0 and f ∈ C̃(κ), and define M = M(n) as in Theorem 5.2.

Suppose in addition that, for some δ > 0, we have that χ(j) = χ(j; f) = 0 for all j >

(1− δ)(n− 1). Then we get that

|σ(n)| 6 2κ2e−M (2n)κ−1

1− log
(

1− e−
δ

2
√
1−δ
)

+
1

κ

(
1− eM/κ

2n

)δ(n−1)


�δ κ
2e−M (2n)κ−1.

Remark 5.3. In particular, note that if f is supported only on irreducibles of degree
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degP 6 m, then for j > m we have

χ(j) =
1

qj

∑
F∈Mj

Λf (F ) =
1

qj

∑
k>1

∑
P∈I6m
Pk∈Mj

Λf (P k)� min(q−j/2, qm−j)� q−m/2

and so, when δ > 0 is small and m = b(1− δ)(n− 1)c, then χ(j) is close to zero.

Conversely, we derive a criterion for when the upper bound in equation (5.7) of Halász’s

Theorem is asymptotically attained:

Theorem 5.4. Let κ > 0 and f ∈ C̃(κ), and define M = M(n) as in Theorem 5.2. Then

|σ(n)| � (1 +M)e−M (2n)κ−1

if, and only if, for all δ � 1 we have∣∣∣∣∣∣
∑

(1−δ)(n−1)<j6n

χ(j)σ(n− j)

∣∣∣∣∣∣� (1 +M)e−M (2n)κ.

Moreover, inspired by the idea in the setting of the integers (see [28]), we compute an

example for which the criterion in Theorem 5.4 holds, in the case of κ = 1.

Current work in progress, and future work, is dedicated to using the criterion in Theorem

5.4 to effectively categorise the cases in which the upper bound in Halász’s Theorem is

asymptotically attained.

5.2 Proofs of Theorems 5.3 and 5.4

Let κ > 0, and let f ∈ C̃(κ). From equation (3.3) of [13] we have that

σ(n)− χ(n)

n
=

1

nqn

∫ 1

0

1

2πi

∫
|z|= 1

q
√
t

n−1∑
j=1

χ(j)(qz)j

n−1∑
j=1

χ(j)(qtz)j

F⊥(tz)
dz

zn+1

dt

t
.

(5.8)

We define a new quantity

σm(n) :=
1

nqn

∫ 1

0

1

2πi

∫
|z|= 1

q
√
t

 m∑
j=1

χ(j)(qz)j

n−1∑
j=1

χ(j)(qtz)j

F⊥(tz)
dz

zn+1

dt

t
(5.9)
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so that σn−1(n) = σ(n)− χ(n)
n , and bound it following the strategy in [13].

Proposition 5.1. Let κ > 0, f ∈ C̃(κ) and M = M(n) as in Theorem 5.2. Then for

m < n− 1 we have

σm(n) 6 2κ2e−M (2n)κ−1

1− log

(
1− e

− (n−1)−m
2
√
m(n−1)

)
+

1

κ

(
1− eM/κ

2n

)(n−1)−m


Proof. First we use Cauchy-Schwarz on the inner integral in equation (5.9)∣∣∣∣∣∣ 1

2πi

∫
|z|= 1

q
√
t

 m∑
j=1

χ(j)(qz)j

 n−1∑
j=1

χ(j)(qtz)j

F⊥(tz)
dz

zn+1

∣∣∣∣∣∣
6 (q
√
t)n

(
max
|z|= 1

q
√
t

|F⊥(tz)|

)√
Im

(
1,

1

q
√
t

)
In−1

(
t,

1

q
√
t
,

)

where, for s > 0, we have

Ia(s,R) :=
1

2π

∫
|z|=R

∣∣∣∣∣∣
a∑
j=1

χ(j)(qsz)j

∣∣∣∣∣∣
2

|dz|
|z|

=
a∑
j=1

|χ(j)|2 (qsR)2j 6 κ2
a∑
j=1

(qsR)2j

by Parseval. Using this, we bound the inner integral by the quantity

κ2(q
√
t)n

(
max
|z|= 1

q
√
t

|F⊥(tz)|

) m∑
j=1

t−j

 1
2
n−1∑
j=1

tj

 1
2

= κ2qn

 max
|z|=

√
t
q

|F⊥(z)|

 t
n−m+1

2

(√
(1− tm)(1− tn−1)

1− t

)

and then recall the bound from equation (3.6) of [13], which for t ∈ (0, 1), states that

max
|z|=

√
t
q

|F⊥(z)| 6 min(e−M (2n)κ, (1−
√
t)−κ)

where e−M (2n)κ := max|z|= 1
q
|F⊥(z)|.

Putting this all back into the full integral we get

σm(n) 6
κ2

n

∫ 1

0
min(e−M (2n)κ, (1−

√
t)−κ) t

(n−1)−m
2

(√
(1− tm)(1− tn−1)

1− t

)
dt
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and after the substitution t = (1− u)2 we have

σm(n) 6
κ2

n

∫ 1

0
min(e−M (2n)κ, u−κ) (1− u)(n−1)−m

×min

(√
m(n− 1),

1

u(2− u)

)
2(1− u) du

6
κ2

n

∫ 1

0
min(e−M (2n)κ, u−κ) (1− u)(n−1)−m min

(
2
√
m(n− 1),

1

u

)
du

6
κ2

n

∫ 1

2
√
m(n−1)

0
2
√
m(n− 1)e−M (2n)κdu+

∫ eM/κ

2n

1

2
√
m(n−1)

e−M (2n)κ(1− u)(n−1)−mdu

u

+

∫ 1

eM/κ

2n

(1− u)(n−1)−m du

uκ+1

)
.

=
κ2

n

e−M (2n)κ + e−M (2n)κ
deM/κ

√
m(n−1)

n
−1e∑

j=1

∫ j+1

2
√
m(n−1)

j

2
√
m(n−1)

(1− u)(n−1)−mdu

u

+

(
1− eM/κ

2n

)(n−1)−m ∫ 1

eM/κ

2n

du

uκ+1

 .

When m < n− 1 we get

σm(n) 6 2κ2e−M (2n)κ−1

1 +
∑
j>1

(
1− j

2
√
m(n− 1)

)(n−1)−m

log

(
1 +

1

j

)

+
1

κ

(
1− eM/κ

2n

)(n−1)−m


6 2κ2e−M (2n)κ−1

1 +
∑
j>1

e
− j((n−1)−m)

2
√
m(n−1)

j
+

1

κ

(
1− eM/κ

2n

)(n−1)−m


6 2κ2e−M (2n)κ−1

1− log

(
1− e

− (n−1)−m
2
√
m(n−1)

)
+

1

κ

(
1− eM/κ

2n

)(n−1)−m
 .

Corollary 5.1. Let κ > 0, f ∈ C̃(κ) and M = M(n) as in Theorem 5.2. Then for δ > 0
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and m 6 (1− δ)(n− 1) we have that

σm(n) 6 2κ2e−M (2n)κ−1

1− log
(

1− e−
δ

2
√
1−δ
)

+
1

κ

(
1− eM/κ

2n

)δ(n−1)


�δ κ
2e−M (2n)κ−1.

Then we relate our quantity σm(n) to σ(n) with the following observation

Lemma 5.1.

σ(n) = σm(n) +
1

n

n∑
j=m+1

χ(j)σ(n− j).

Proof. From the definition of σm(n) in equation (5.9), and our observation in equation

(5.6) we have

σm(n) =
1

nqn

∫ 1

0

1

2πi

∫
|z|= 1

q
√
t

 m∑
j=1

χ(j)(qz)j

(n−1∑
k=1

χ(k)(qtz)k

)∑
l>0

σ⊥(l)(qtz)l

 dz

zn+1

dt

t

=
1

nqn

∫ 1

0

1

2πi

∫
|z|= 1

q
√
t

 m∑
j=1

χ(j)(qz)j

(n−1∑
k=1

χ(k)(qtz)k

)(
n−1∑
l=0

σ⊥(l)(qtz)l

)
dz

zn+1

dt

t

=
1

nqn

∫ 1

0

1

2πi

∫
|z|= 1

q
√
t

 m∑
j=1

χ(j)(qz)j

(n−1∑
k=1

χ(k)(qtz)k

)(
n−1∑
l=0

σ(l)(qtz)l

)
dz

zn+1

dt

t

=
1

nqn

∫ 1

0

∑
j+k+l=n
j6m

χ(j)χ(k)σ(l)qj+k+ltk+l dt

t

=
1

n

∑
j+k+l=n
j6m

χ(j)χ(k)σ(l)

k + l

=
1

n

m∑
j=1

χ(j)
1

n− j

n−j∑
k=1

χ(k)σ(n− j − k) =
1

n

m∑
j=1

χ(j)σ(n− j)

where in the third equality we use the fact that σ⊥(j) = σ(j) for j < n, and in the final

equality we use equation (5.4). Finally, using equation (5.4) once more we get that

σ(n) =
1

n

n∑
j=1

χ(j)σ(n− j) = σm(n) +
1

n

n∑
j=m+1

χ(j)σ(n− j).

This bring us to our proof of Theorem 5.3
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Proof of Theorem 5.3. If χ(j) = 0 for all j > (1− δ)(n− 1), then by Lemma 5.1 we have

that σ(n) = σm(n) for m = b(1− δ)(n− 1)c, and so the result follows from Corollary 5.1.

and our proof of Theorem 5.4

Proof of Theorem 5.4. For any δ � 1, let m = b(1 − δ)(n − 1)c, so that, by Lemma 5.1

we have that

σ(n) = σm(n) +
1

n

n∑
j=m+1

χ(j)σ(n− j) = σm(n) +
1

n

∑
(1−δ)(n−1)<j6n

χ(j)σ(n− j).

and from Corollary 5.1 we know that σm(n)� κ2e−M (2n)κ−1. Therefore,

|σ(n)| � (1 +M)e−M (2n)κ−1

if, and only if, ∣∣∣∣∣∣
∑

(1−δ)(n−1)<j6n

χ(j)σ(n− j)

∣∣∣∣∣∣� (1 +M)e−M (2n)κ (5.10)

5.3 A sharp example

We conclude with an example for which the criterion in Theorem 5.4 holds, and thus

which attains the upper bound in Halász’s Theorem.

Remark 5.4. First we observe that, if 0 < δ < 1
2 −

1
2n , then the values taken by σ(n− j)

in equation (5.10) are independent of those taken by χ(j). So, we may for example take

χ(j) = ei(θ−φn−j) where σ(j) =: |σ(j)|eiφj (for some θ ∈ [0, 2π)) for j > (1− δ)(n−1) and

then in this case Theorem 5.4 becomes

σ(n)� (1 +M)e−M (2n)κ−1 ⇔
∑

j<1+δ(n−1)

|σ(j)| � (1 +M)e−M (2n)κ.

For simplicity, we let κ = 1, and we use this observation to construct the following example:
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Example 5.1. For 0 < δ < 1
2 −

1
2n , let

χ(j) =


i if 1 6 j < 1 + δ(n− 1)

0 if 1 + δ(n− 1) 6 j 6 (1− δ)(n− 1)

e−iφn−j if j > (1− δ)(n− 1)

where σ(j) =: |σ(j)|eiφj . Then

∑
j<1+δ(n−1)

|σ(j)| � (1 +M)e−M (2n)κ

and therefore

σ(n)� (1 +M)e−M (2n)κ−1.

Proof. In this case, we have from equation (5.6) that

max
|z|= 1

q

log |F⊥(z)| = max
|z|= 1

q

Re

n−1∑
j=1

χ(j)

j
(qz)j


= max

θ∈[0,2π)

 ∑
16j<1+δ(n−1)

− sin(jθ)

j
+

∑
(1−δ)(n−1)<j6n−1

cos(j(θ − φn−j))
j

 .

Now, we know that uniformly for θ and x,

∣∣∣∣∣∣
∑
j6x

sin(jθ)

j

∣∣∣∣∣∣� 1

and moreover we have that

∣∣∣∣∣∣
∑

(1−δ)(n−1)<j6n−1

cos(j(θ − φn−j))
j

∣∣∣∣∣∣ 6
∑

(1−δ)(n−1)<j6n−1

1

j
� − log(1− δ)� 1.

Therefore, we have that max|z|= 1
q

log |F⊥(z)| � 1, and conversely, by the maximum mod-

ulus principle, max|z|= 1
q
|F⊥(z)| > |F⊥(0)| � 1. This means that

e−M (2n) := max
|z|= 1

q

|F⊥(z)| � 1
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and

M = log(2n)− max
|z|= 1

q

log |F⊥(z)| ∼ log(2n)

so that overall we get have that (1 +M)e−M (2n) � log(2n).

On the other hand, by Cauchy’s Theorem, we have for j < 1 + δ(n− 1) and R < 1 that

σ(j) =
1

qj
1

2πi

∫
|z|=R

q

F(z)
dz

zj+1

σ(j) =
1

2πi

∫
|w|=R

F
(
w

q

)
dw

wj+1

=
1

2πi

∫
|w|=R

exp

∑
k>1

χ(k)

k
wk

 dw

wj+1

=
1

2πi

∫
|w|=R

exp

(
j∑

k=1

χ(k)

k
wk

)
dw

wj+1

=
1

2πi

∫
|w|=R

exp

(
i

j∑
k=1

wk

k

)
dw

wj+1

=
1

2πi

∫
|w|=R

exp

i∑
k>1

wk

k

 dw

wj+1

=
1

2πi

∫
|w|=R

1

(1− w)i
dw

wj+1

=

(
i+ j − 1

j

)
∼ ji−1

Γ(i)

where we use equation (5.6) in the third line, and the final line follows as in the proof of

Corollary 2.1. From this we conclude that

∑
j<1+δ(n−1)

|σ(j)| �
∑

j<1+δ(n−1)

1

j
�δ log n� (1 +M)e−M (2n).



Chapter 6

A “Proto-Pellet’s Formula” for the

Möbius Function

This chapter is based primarily on [2].

We give a short proof of “Pellet’s Formula” for the Möbius Function on Fq[t], deriving an

intermediate formula (which we call “Proto-Pellet’s Formula”) along the way. We then

construct and prove an analogous “Proto-Pellet’s Formula” for the Möbius Function for a

number field (including the usual Möbius function on the integers).

6.1 Introduction

Let q be an odd prime power, and let M = {f ∈ Fq[t] : f monic}. We define the Möbius

Function for f ∈M, in analogy with the usual Möbius Function on the integers, by

µ(f) =


(−1)r if f = p1 · · · pr distinct primes

0 else

.

In M we have the following formula for µ

Theorem 6.1 (“Pellet’s Formula”). Let f ∈ M, and let χ be the quadratic character on

Fq. Then we have that

µ(f) = (−1)deg fχ(discf)

a proof of which can be found, for example, as Lemma 4.1 in [10]. This is an important

ingredient in the setting of Fq[t], and has been used in computing the statistics of Möbius

sums in Fq[t] (see [23]) and in work on Chowla’s conjecture in Fq[t] (see [8] and [36]).
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We give another short proof of this formula, and in proving it, we derive an intermediate

formula, which we call “Proto-Pellet’s Formula”. We believe that this proof, and the

intermediate formula, are known (at least as folklore), but we were not able to find either

stated explicitly in the literature. In order to present the formula, we let Frobq be the

Frobenius element on Fq, which sends α to αq, and then we have

Theorem 6.2 (“Proto-Pellet’s Formula”). Let f ∈M square free, then

µ(f) = (−1)deg f sign(Frobq|f)

where Frobq|f denotes the action of Frobq on the roots of f .

We then construct and prove an analogue of this formula for the Möbius Function for

any number field A/Q, which we define as follows. Let OA be the ring of integers in

A, and let IA be the set of non-zero ideals in OA. Then the Möbius Function for A/Q,

µA : IA → {−1, 0, 1} is defined by

µA(I) =


(−1)r if I = p1 · · · pr distinct prime ideals

0 else

so that µQ = µ is the usual Möbius function on the integers. To do this, we first pick

some arbitrary additive function ν : IA → N to mimic the role of degree in Fq[t], and for

each prime ideal p we construct a polynomial fp,ν whose Galois group is isomorphic to

Z/ν(p)Z and generated by some homomorphism σp,ν . We then lift these homomorphisms

to an appropriate profinite Galois group and compose them to get a homomorphism σν

(which mimics the role of Frobq in Fq[t]), and set fI,ν =
∏

p|I prime fp,ν to prove

Theorem 6.3 (“Proto-Pellet’s Formula” for number fields). Let ν : IA → N be an additive

function. Then there exists a Galois homomorphism σν ∈ Gal(Q/Q) and a family of

polynomials (fI,ν)I∈IA such that, for all I ∈ IA square-free

µA(I) = (−1)ν(I)sign(σν |fI,ν)

where σν |f denotes the action of σν on the roots of f .



6.2. Pellet’s Formula in Fq[t] 93

6.2 Pellet’s Formula in Fq[t]

We begin with a proof of Theorem 6.2:

Proof of Theorem 6.2. For a square-free polynomial f = p1 · · · pr ∈ M, Frobq acts on the

roots of f as a product of cycles τ1, · · · , τr, where τi permutes the roots of pi as a cycle of

length deg pi. Therefore sign(Frobq|f) = (−1)deg p1−1 · · · (−1)deg pr−1 = (−1)deg f−r.

To move from this to Pellet’s formula, we first define

Definition 6.1. For a polynomial f , let Aut(f) be the automorphism group on the roots

of f and let Gal(f) be its Galois closure. Let Sym(f) be the symmetric group, and Alt(f)

the alternating group, on the roots of f .

and then prove an auxiliary result, which is a well known fact from Galois Theory (see for

example Theorem 14.1 in [12]).

Proposition 6.1. Let K be a field with charK 6= 2 and f ∈ K[t] square-free, and let

ρf : Gal(f) ↪→ Sym(f)

be the natural inclusion map. Then ρf (Galf) ⊆ Alt(f) ⇐⇒ discf is a square in K×.

Proof. Let f have roots α1, · · ·αn in K so that discf = discKf =
∏
i<j(αi − αj)2. Then

discf is a square in K× ⇐⇒ ∀σ ∈ Gal(f) σ(
√

discf) =
√

discf

⇐⇒ ∀σ ∈ Gal(f) σ

∏
i<j

(αi − αj)

 =
∏
i<j

(αi − αj)

⇐⇒ ∀σ ∈ Gal(f)
∏
i<j

(αi − αj) =

∏
i<j

σ(αi)− σ(αj)


⇐⇒ ∀σ ∈ Gal(f)

∏
i<j

(αi − αj) = sign(σ)
∏
i<j

(αi − αj)

⇐⇒ ∀σ ∈ Gal(f) sign(σ) = 1.

Corollary 6.1. Let f ∈M square-free, and let χ be the quadratic character on Fq. Then

sign(Frobq|f) = χ(discf)
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Proof. For f ∈M square-free, Gal(f) is generated by Frobq, so by Proposition 6.1

discf is a square in F×q ⇐⇒ sign(Frobq|f) = 1

from which the corollary follows.

So, combining Theorem 6.2 with Corollary 6.1, and noting that the discriminant vanishes

on non-square-free polynomials, we get a proof of Theorem 6.1.

6.3 “Proto-Pellet’s Formula” in number fields

To begin, we pick some additive function ν : IA → N to mimic the role of degree in Fq[t].

Let PA be the set of prime ideals in A, and put some order relation <A on PA: for

example, one can order the prime ideals first by the size of their norm and then order

those with the same norm arbitrarily (since there are only finitely many). For p a prime

ideal, pick q = q(p, ν) to be the minimal prime such that q ≡ 1 mod ν(p) and q 6= q(p′, ν)

for some p′ <A p prime (which is always possible, by Dirichlet’s Theorem for primes in

arithmetic progression). Then consider L = Lp,ν = Q(ζq) where ζq = e2πi/q and note

that Gal(L/Q) ∼= Z/(q − 1)Z. So, since ν(p) divides q − 1, there is some subgroup H of

Gal(L/Q) such that H ∼= Z/ q−1
ν(p)Z. Therefore, if we let K = Kp,ν = LH := {x ∈ L | σ(x) =

x ∀σ ∈ H}, we know by the Galois Correspondence that Gal(K/Q) ∼= Z/ν(p)Z.

Moreover, by the Primitive Element Theorem, there exists some αp,ν ∈ L such that K =

Q(αp,ν). So, if we let fp,ν be the minimal polynomial of αp,ν , then we have that Gal(fp,ν) ∼=

Z/ν(p)Z and is generated by some σp,ν which acts as a ν(p)-cycle on the roots of fp,ν . In

particular, this means that sign(σp,ν |fp,ν) = (−1)ν(p)−1.

Next, let Kν = Q({αp,ν | p ∈ PA}) and extend each σp,ν to a map σp,ν ∈ Gal(Kν/Q) by

σp,ν(αp′,ν) =


σp,ν(αp,ν) if p = p′

αp′,ν if p 6= p′
.

The fact that we can do this follows from Proposition 6.2. Then consider σν ∈ Gal(Kν/Q)

defined by σν(αp,ν) = σp,ν(αp,ν) for all prime ideals p ∈ PA, so that by construction we
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have that sign(σν |fp,ν) = sign(σp,ν |fp,ν). We observe that σν is well-defined by noting that

it is a composition of the σp,ν over all prime ideals p ∈ PA.

We take a brief aside to prove Proposition 6.2 as promised:

Proposition 6.2. Let αp,ν and σp,ν be defined as above. Let {p, p1, · · · , pk} be a set of

distinct prime ideals in PA. Then we can extend σp,ν to a map σ
(k)
p,ν ∈ Gal(Q({αp′,ν | p′ ∈

{p, p1, · · · , pk}})/Q) by

σ
(k)
p,ν (αp′,ν) =


σp,ν(αp,ν) if p′ = p

αp′,ν if p′ ∈ {p1, · · · , pk}

Proof. We proceed by induction and note that the case k = 0 is trivial. Suppose that the

case k = l is true, so that we have constructed our desired function σ
(l)
p,ν on K(l), where

K(m) := Q({αp′,ν | p′ ∈ {p, p1, · · · , pm}}), and we seek to extend this to σ
(l+1)
p,ν on K(l+1).

Let K = Q(αpl+1,ν) so that K(l+1) = K(l)K, and so that, by Theorem 1.1 of [9] there is

an injective homomorphism

ρ : Gal(K(l+1)/Q) = Gal(K(l)K/Q)→ Gal(K(l)/Q)×Gal(K/Q)

given by ρ(σ) = (σ
∣∣
K(l) , σ

∣∣
K

). Moreover, ρ is an isomorphism if, and only if, K(l) and K

are linearly disjoint over Q, or equivalently if K(l) ∩K = Q.

But K(l) ⊆ L(l) := Q({ζq(p′,ν) | p′ ∈ {p, p1, · · · , pl}}) and K ⊆ L := Q(ζq(pl+1,ν)), where

q(p′, ν) is defined as above. So, since {q(p′, ν) | p′ ∈ {p, p1, · · · , pl+1}} is a set of distinct

primes, L(l) ∩ L = Q and therefore K(l) ∩K = Q.

Therefore ρ is an isomorphism, and so we can set σ
(l+1)
p,ν = ρ−1(σ

(l)
p,ν , ι), where ι is the

identity function on K.

To put this all together, for I ∈ IA we define fI,ν =
∏

p∈PA:p|I fp,ν , where the product

counts prime ideals with multiplicity. This allows us to formulate the following analogue

of a “Proto-Pellet’s Formula” for the Möbius function for A:
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Theorem 6.4. Let ν : IA → N be an additive function, and I ∈ IA square-free. Then for

σν and fI,ν as defined above, we have:

µ(I) = (−1)ν(I)sign(σν |fI,ν)

Proof. For I ∈ IA square-free we have that I = p1 · · · pr for some distinct prime ideals

p1, · · · , pr ∈ PA and so

sign(σν |fI,ν) =
∏

p∈PA:p|I

sign(σν |fp,ν) =
∏

p∈PA:p|I

(−1)ν(p)−1 = (−1)ν(I)−r = (−1)ν(n)µ(I).

Theorem 6.3 now follows as an immediate corollary.

Finally, we consider the trivial example as a check

Example 6.1. Let ν = ωA where ωA(I) = #{p ∈ PA distinct : p|I} so that ωA(p) = 1

for all prime ideals p ∈ PA. Then for each p, Gal(fp,ωA) ∼= Z/ωA(p)Z is trivial and

σp,ωA is just the identity map, which means that sign(σp,ωA |fp,ωA) = 1. Therefore, for all

square-free I ∈ IA, we have that sign(σωA |fI,ωA) = 1, which by Theorem 6.4 implies that

µA(I) = (−1)ωA(I), recovering the definition of µA.

Current work in progress, and future work, is dedicated to exploring non-trivial explicit

cases of our formula in Theorem 6.4 for various additive functions ν. In particular, we

seek to find a ν which might serve as an analogue to degree in Fq[t] and to understand the

implications of specialising our formula to such a function ν.
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alités Sci. Ind., no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945). Hermann et

Cie., Paris.


	Introduction
	Arithmetic statistics
	Polynomials over finite fields
	Outline of Thesis

	The function field Sathé-Selberg formula
	Introduction
	The function field Sathé-Selberg formula
	The Sathé-Selberg formula in arithmetic progressions
	The Sathé-Selberg formula in short intervals
	The q-limit
	The function field Erdos-Kac Theorem

	Highly Composite Polynomials in Fq[t]
	Introduction
	An elementary upper bound on the divisor function
	Superior highly composite polynomials
	The maximum value of the divisor function
	Table of highly composite polynomials in F2[t]
	Ramanujan's upper bound for the divisor function

	The Generalised Divisor Problem and the Lindelöf Hypothesis
	Introduction
	Proofs of Theorems 4.1 and 4.2

	Halász's Theorem in Fq[t]
	Introduction
	Proofs of Theorems 5.3 and 5.4
	A sharp example

	A ``Proto-Pellet's Formula" for the Möbius Function
	Introduction
	Pellet's Formula in Fq[t]
	``Proto-Pellet's Formula" in number fields


