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Background.  This study aims to explore relationships between baseline demographic covariates, plasma antibiotic exposure, 
sputum bacillary load, and clinical outcome data to help improve future tuberculosis (TB) treatment response predictions.

Methods.  Data were available from a longitudinal cohort study in Malawian drug-sensitive TB patients on standard therapy, 
including steady-state plasma antibiotic exposure (154 patients), sputum bacillary load (102 patients), final outcome (95 patients), 
and clinical details. Population pharmacokinetic and pharmacokinetic-pharmacodynamic models were developed in the software 
package NONMEM. Outcome data were analyzed using univariate logistic regression and Cox proportional hazard models in R, a 
free software for statistical computing.

Results.  Higher isoniazid exposure correlated with increased bacillary killing in sputum (P < .01). Bacillary killing in sputum 
remained fast, with later progression to biphasic decline, in patients with higher rifampicin area under the curve (AUC)0-24 (P < .01). 
Serial sputum colony counting negativity at month 2 (P < .05), isoniazid CMAX (P < .05), isoniazid CMAX/minimum inhibitory con-
centration ([MIC] P < .01), and isoniazid AUC0-24/MIC (P < .01) correlated with treatment success but not with remaining free of 
TB. Slower bacillary killing (P < .05) and earlier progression to biphasic bacillary decline (P < .01) both correlate with treatment 
failure. Posttreatment recurrence only correlated with slower bacillary killing (P < .05).

Conclusions.  Patterns of early bacillary clearance matter. Static measurements such as month 2 sputum conversion and phar-
macokinetic parameters such as CMAX/MIC and AUC0-24/MIC were predictive of treatment failure, but modeling of quantitative lon-
gitudinal data was required to assess the risk of recurrence. Pooled individual patient data analyses from larger datasets are needed 
to confirm these findings.

Keywords.   outcome; pharmacokinetics; pharmacodynamics; standard treatment; tuberculosis.

Tuberculosis (TB) caused an estimated 1.2 million deaths 
worldwide from 10 million clinical cases in 2018 [1]. There is an 
urgent need for short, effective treatment. The current standard 
treatment of drug-sensitive TB remains long at 6 months, and 
efforts to shorten standard TB treatment have been unsuc-
cessful [2–4]. Potent early antibacterial activity from short-
course moxifloxacin-containing regimens did not translate into 
noninferior treatment success rates compared with standard of 

care regimens in Phase III clinical trials [2]. Ongoing efforts to 
tackle the problem include new trials of novel drug combinations 
(eg, SimpliciTB; ClinicalTrials.gov Identifier NCT03338621) 
and consideration of treatment individualization or strati-
fication, targeting shorter treatment to the patients who are 
most likely to be cured (eg, TRUNCATE-TB; ClinicalTrials.
gov Identifier NCT03474198). Both approaches would ben-
efit from a biomarker that predicts final treatment outcome 
during the early weeks of treatment. This currently does not 
exist and treatment stratification is currently focused on base-
line measurements. Progress would be accelerated by improved 
understanding of relationships between antibiotic exposure for 
individual antimicrobial drugs, serial quantitative bacterial load 
measurements, and clinical outcomes. Statistical and mathe-
matical modeling has already enhanced our understanding of 
the aforementioned relationships [5–7]. Several pharmacody-
namic (PD) and pharmacokinetic-pharmacodynamic (PKPD) 
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models have been developed to study the correlation between 
drug concentrations and the bactericidal effect of treatment 
[6–11]. These models enable prediction of early drug effect, but 
analyses become difficult when bacterial loads fall below the 
limit of quantification. Month 2 and month 3 culture sputum 
culture conversion have been proposed as moderately good pre-
dictors of long-term treatment failure or relapse risk between 
treatment arms of early phase clinical trials [5]. However, the 
predictive value of culture conversion is weak for individual pa-
tient care [12], hampering robust translation to drug develop-
ment and clinical programs.

Our overarching hypothesis is that integrating models 
describing correlations between individual antibiotic expo-
sure and early antibacterial effect with models relating early 
antibacterial effect to treatment outcome will improve our un-
derstanding of treatment response and contribute to improved 
outcome predictions. The aim of this study was to explore pre-
dictors for treatment outcome using baseline demographic, 
steady-state plasma antibiotic exposure and serial sputum bac-
illary load data from drug-sensitive TB patients. Specific goals 
were to (1) fit pharmacokinetic (PK) models to concentration-
time data for each of the first-line anti-TB drugs, (2) fit a pop-
ulation PKPD model to sputum bacterial load-time data, and 
(3) explore associations between early bacillary clearance from 
sputum and treatment success and recurrence of TB.

MATERIALS AND METHODS

Study Population and Study Design

Data from patients recruited to a longitudinal cohort study 
of clinical, pharmacological, and bacteriological responses to 
TB therapy conducted in Queen Elizabeth Central Hospital 
in Blantyre, Malawi were analyzed. The Liverpool School of 
Tropical Medicine and the College of Medicine Research Ethics 
Committee, University of Malawi gave ethical approval for this 
study. Longitudinal PD and outcome data from this patient co-
hort have been published [13]. The current study extends that 
work with PKPD analyses.

Consenting adults aged 16–65  years with sputum smear-
positive pulmonary TB were eligible. Exclusion criteria in-
cluded hemoglobin <6  g/dL, creatinine >177  μmol/L, total 
bilirubin >51 μmol/L, alanine transaminase >200 IU/L, clinical 
status suggestive of imminent mortality, pregnancy, prior TB 
treatment within 5 years, and concurrent corticosteroid therapy 
or baseline resistance to rifampicin and isoniazid using the 
Genotype MTBDRplus 2.0 line probe assay ([LPA] Hain Life 
Sciences). Patient characteristics have been reported previously 
[13]. Alcohol consumption (any beer or spirits) and smoking 
were reported as binary covariates based on practice at the 
time of study recruitment. Percentage of abnormal lung-field 
observed on baseline chest radiographs (CXR) was assessed by 
consensus of 2 independent readers. On binary variables (eg, 

presence/absence of cavities), the reviewers met to reach con-
sensus on any discrepancies. On continuous variables (eg, per-
centage of lung-field affected), an average of the 2 scores was 
taken. Participants received daily fixed-dose combination tab-
lets containing a standard first-line World Health Organization-
approved regimen according to the Malawi Ministry of Health 
National TB Control Programme Manual, 6th Edition, 2007. 
The details are as follows: for the intensive phase of therapy, 
fixed-dose RZHE tablets (rifampicin 150 mg, isoniazid 75 mg, 
pyrazinamide 400 mg, ethambutol 275 mg) were used. For the 
continuation phase, RH tablets (rifampicin 150  mg, isoniazid 
75 mg) were used. Weight bands for both phases were as fol-
lows: 2 tablets, 30–37 kg; 3 tablets, 37–54 kg; 4 tablets, 54–74 kg; 
and 5 tablets, >74 kg. Adherence was monitored by direct ques-
tioning and pill counts. All patients had point-of-care human 
immunodeficiency virus (HIV) serology. Antiretroviral therapy 
was provided per national protocols.

Clinical Endpoint Definitions

An endpoint of stable cure was reported for patients who were 
clinically well with 2 consecutive negative sputum cultures by 
the end of treatment (EOT) and no TB recurrence in the sub-
sequent 12 months. Treatment failure was reported for patients 
with positive sputum culture at EOT. Tuberculosis recurrence 
was reported for patients who appeared to be cured at EOT 
but re-presented with TB disease, ie, reinfection or relapse, in 
the next 12 months. The LPA was repeated on positive EOT or 
posttreatment Mycobacterium tuberculosis (Mtb) isolates from 
treatment failures or TB recurrences, respectively.

Bacterial Load Measurement

Patients had overnight sputum samples collected on day 0, 2, 4, 
7, 14, 28, 49, and 56 of treatment. Auramine-phenol microscopy 
was done on direct and concentrated sputum smears at all time 
points. Two 1-mL aliquots were used for sputum bacillary load 
measurement on solid (serial sputum colony counting [SSCC]) 
and liquid (Mycobacterial Growth Indicator Tube [MGIT]) cul-
ture. All patients submitted spot sputum samples after 5 months 
of therapy (EOT samples) to assess bacteriological cure. Those 
with ongoing or recurrent symptoms submitted posttreatment 
samples to test for relapse. Standard bacteriological methods for 
SSCC (results reported as log10 colony-forming units [CFU]/
mL) and MGIT (results reported as days-to-positivity but ana-
lyzed in this paper as a binary positive/negative result at month 
1 and 2) were as previously described [13]. Only patients who 
contributed at least 2 bacterial load measurements could be 
included in PKPD models, because a bacterial clearance rate 
cannot be calculated from a single measurement.

Minimum Inhibitory Concentration Assays

Mycobacterium tuberculosis isolates from baseline sputum cul-
tures of all patients were stored at −70oC for bioanalysis on 
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UKMYC Sensititre plates (Thermo Fisher Scientific). Plates for 
this project were custom-configured by the manufacturer; the 
wells contained dry microdilutions of lyophilized antibiotics 
across concentrations, which allowed careful MIC titration 
within the drug-susceptible range (2 antibiotic-free control 
wells; doubling dilutions from 16 to 0.015  mg/L for rifam-
picin and isoniazid; doubling dilutions from 8 to 0.25 mg/L for 
ethambutol).

Mycobacterium tuberculosis isolates were revived in 
Middlebrook 7H9 broth, then subcultured onto Middlebrook 
7H11 agar. Colonies were emulsified in 0.2% saline-tween with 
glass beads and vortexed for 30 seconds. Turbidity was adjusted 
to 0.5 McFarland Standard. One hundred microliters from each 
suspension were transferred into 11  mL Middlebrook 7H9 
broth, supplemented with oleic acid-albumin-dextrose-catalase, 
to give an inoculum of 105 CFU/mL. One hundred microliters 
of this material from each isolate were inoculated, in duplicate, 
into plate wells covering all concentrations of all drugs. Plates 
were covered with permanent plastic seals and incubated at 
37°C in 5% CO2. Plates were checked for contamination at 24 
and 48 hours, then monitored at 10, 14, and 21 days. Results 
were read when growth was clearly visible in the antibiotic-free 
control wells. For each antibiotic, the lowest concentration with 
no visible growth was considered to be the MIC. Each plate was 
read by 2 independent readers. The MIC result recorded by the 
first reader was the test result. The second reader’s result was 
used to assess interreader agreement.

Antibiotic Plasma Concentration Measurement

Blood collections to measure steady-state isoniazid, rifam-
picin, pyrazinamide, and ethambutol concentrations were 
undertaken on day 14 or 21 of treatment. Patients attended the 
study clinic at 7:30 am, after an overnight fast. Samples were 
collected predose and then 2 and 6 hours after medication. To 
allow patients to return home before nightfall, 6 hours postdose 
was the latest sampling timepoint. Similar field-based clinical 
studies in southern Africa [14] have deployed similar collection 
strategies. Plasma was separated by centrifugation and stored 
at −70°C until batched analysis. Rifampicin, isoniazid, and 
ethambutol concentrations were determined using previously 
published liquid chromatographic/tandem mass spectrometry 
methods [15, 16] with appropriate internal standards validated 
to internationally recognized acceptance criteria as previously 
described [17]. Pyrazinamide concentrations were measured by 
high-performance liquid chromatography using an ultraviolet 
visible absorption detector.

Pharmacokinetics

Population PK models were developed using the Stochastic 
Approximation Expectation Method in the Fortran-based 
software package NONMEM [18] with a g95 Fortran com-
piler. Empirical Bayes area under the curve (AUC)0-24 and CMAX 

estimates were derived for each patient and evaluated as pre-
dictors on bacillary clearance and treatment outcome. Details 
on PK model building can be found in the Supplementary 
Materials.

Pharmacokinetics-Pharmacodynamics

Bacillary clearance from sputum can be captured using 
monophasic (Figure 2, profile A) or biphasic models (Figure 2, 
profile B and C). Our PKPD model used the parameter LAM 
to represent the slope of a monophasic bacterial decay curve 
or the first phase of a biphasic bacterial decay curve (Figure 2). 
For biphasic clearance, the magnitude of decline in bacterial 
clearance was parameterized in this model by BETA, and the 
time it takes to switch from fast killing to slow killing was 
parameterized using the parameter t1/2 (Figure 2). Details on 
PKPD model building can be found in the Supplementary 
Materials.

P values of .05 and .01 were used as cutoffs in the forward 
inclusion and backward elimination step of stepwise covariate 
model building. Covariates, to be evaluated on PKPD model 
parameters, were selected based on physiological plausibility 
and a correlation matrix with post hoc pharmacodynamic 
parameter estimates from the baseline model. The following 
parameters were consequently evaluated on baseline sputum 
bacillary load using an exponential relationship: age, body 
mass index (BMI), percentage of abnormal lung-field on 
CXR, and baseline bilirubin and creatinine concentrations. 
Isoniazid and rifampicin AUC0-24 and CMAX, BMI, baseline 
serum bilirubin and creatinine concentrations, HIV infection, 
current alcohol consumption, and treatment adherence were 
evaluated on θLAM. The AUC0-24 and CMAX of all 4 study drugs, 
age, BMI, percentage of abnormal lung-field on CXR, baseline 
bilirubin, and baseline creatinine were evaluated on θt1/2. The 
AUC0-24 and CMAX of all 4 study drugs, age, BMI, percentage 
of abnormal lung-field on CXR, baseline bilirubin, and cre-
atinine concentrations were evaluated on θBETA. The MIC-
adjusted isoniazid and rifampicin AUC0-24 were evaluated on a 
subset of patients with available MIC data. The AUC0-24/MIC 
was substituted for AUC0-24 equivalents in the final model, and 
statistical significance was tested using a backward elimina-
tion approach.

Empirical Bayes estimates for parameters LAM, BETA, and 
t1/2 were derived for each patient and evaluated as predictors for 
treatment outcome.

Study Outcome

Univariate logistic regression was used to investigate the 
role of clinical, PK, and bacteriological factors as explan-
atory variables to predict stable cure and failure. A  Cox-
proportional hazard model was used to investigate the role 
of clinical, PK, and bacteriological factors as explanatory 
variables to predict recurrence among patients who had 
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stable cure at EOT. Bacteriological factors were categorized 
as static measurements (eg, sputum smear and culture [SSCC 
or MGIT] conversion to negative at end of month 1 or 2) or 
dynamic PKPD-model-derived parameters (eg, LAM, t1/2, 
and BETA). Correlations between MIC-adjusted isoniazid, 
rifampicin, or ethambutol exposure (CMAX or AUC0-24) and 
outcome (failure or recurrence) were evaluated on patients 
with available MIC data.

RESULTS

Plasma antibiotic concentration-time data were available 
from 154 patients (Table  1). Fifty-two patients contrib-
uted fewer than 2 bacterial load samples leaving 102 for the 
PKPD analysis. Seven patients withdrew from the study be-
fore reaching EOT, 3 upon the patients’ request, 3 according 
protocol, and 1 patient was lost to follow-up, leaving 95 pa-
tients for the treatment failure outcome analysis. Five pa-
tients failed treatment. Among the 90 successfully treated 
patients, 1 withdrew from the study immediately after EOT 

and consequently did not participate in the follow-up phase, 
leaving 89 patients for recurrence outcome analysis. Among 
these patients, 78 remained TB free and 4 had recurrent in-
fection. Seven patients were censored as 5 were lost to fol-
low-up, and 2 died of non-TB causes during posttreatment 
follow-up (Supplementary S1 Figure).

Ninety percent of patients reported no missed treatment 
doses, 13 patients reported missed doses and 2 patients had 
missing adherence information. All patients had rifampicin- 
and isoniazid-susceptible TB at baseline. The MICs for isoni-
azid, rifampicin, and ethambutol, available from 47 patients 
with clinical outcome data, confirmed that the Mtb isolates 
were extremely sensitive to the antibiotics used (Table 1). Of the 
5 treatment failures, 1 had isoniazid and rifampicin resistance 
detected on LPA at EOT, suggesting acquisition of multidrug-
resistant TB during therapy. Of the 4 TB recurrences, 1 had 
isoniazid monoresistance detected at symptomatic re-presenta-
tion, suggesting either acquisition of resistance on treatment or 
reinfection with an isoniazid monoresistant strain. A baseline 
profile of the study cohort is shown in (Table 1).

Table 1.  Demographic Summary of the Pharmacokinetic, Pharmacodynamic, and Outcome Data in Median (Range)

Pharmacokinetic Data Pharmacodynamic Data Outcome Data; Cure vs. Failure/Recurrence

Sample size (n) [failure/recurrence] 154 102 95 [5]/89 [4]

Age (years) 30 [17–61] 30 [17–60] 30 [17–51]/31 [17–51]

Body weight (kg) 52 [34–74] 53 [35–74] 52 [35–74]/52 [35–74]

Height (m) 1.675 [1.5–1.84] 1.675 [1.5–1.82] 1.67 [1.5–1.82]/1.66 [1.5–1.82]

BMI (kg/m2) 18.505 [13.17–29.27] 18.94 [13.17–25] 18.37 [13.17–25]/18.36 [13.17–25]

CD4 (cells/mm3) 168 [6–783] 185.5 [6–616] 198 [6–539]/198 [8–539]

Haemoglobin (g/dl) 10.9 [5.9–18.7] 10.6 [5.9–18.7] 10.45 [5.9–18.7]/10.45 [5.9–18.7]

White blood cell count (cells/mm3) 6.5 [1.4–21.4] 6.9 [2.5–14] 6.9 [2.5–14]/7 [2.5–14]

Platelets (cells/mm3) 339 [44–922] 374 [109–922] 373 [109–922]/373 [109–922]

Urea (umol/l) 3.35 [1.9–21.9] 3.3 [1.9–9.2] 3.35 [1.9–9.2]/3.35 [1.9–9.2]

Creatinine (umol/l) 59.5 [29–117] 60 [29–111] 59 [29–111]/59 [29–111]

Bilirubin (umol/l) 8 [1–50] 7.5 [1–32] 7.65 [1–32]/7.65 [1–32]

Alatinine (IU/l) 20 [7–190] 19 [7–190] 19 [7–190]/19 [7–190]

Male (n) [%] 107 [69] 75 [74] 69 [73]/63 [71]

HIV (n) [%] 89 [58] 59 [58] 54 [57]/50 [56]

Alcohol (n) [%] 49 [32] 33 [32] 30 [32]/27 [30]

Smoking (n) [%] 17 [11] 14 [14] 13 [14]/11 [12]

No missed doses (n) [%] 139 [90] 94 [92] 89 [94]/84 [94]

Missed doses (n) [%] 13 [8] 7 [7] 6 [6]/5 [6]

Missing adherence information (n) [%] 2 [1] 1 [1] 0 [0]/0 [0]

MGIT status negative at Month 2 (n) [%] 88 [57] 56 [55] 53 [52]/50 [68]

MGIT status missing at month 2 (n) [%] 32 [21] 17 [17] 15 [15]/15 [20]

SSCC status negative at month 2 (n) [%] 108 [70] 74 [73] 71 [70]/69 [96]

SSCC status missing at month 2 (n) [%] 39 [25] 21 [21] 17 [17]/17 [24]

Smear status negative at month 2 (n) [%] 115 [75] 79 [77] 74 [73]/69 [83]

Smear status missing at month 2 (n) [%] 18 [12] 8 [8] 6 [6]/6 [7]

MIC (n) [%] 65 [42] 50 [49] 47 [49]/42 [47]

Isoniazid (mg/l) 0.015 [0.015–0.06] 0.015 [0.015–0.06] 0.015 [0.015–0.06]/0.015 [0.015–0.03]

Rifampicin (mg/l) 0.015 [0.015–0.06] 0.015 [0.015–0.06] 0.015 [0.015–0.06]/0.015 [0.015–0.06]

Ethambutol (mg/l) 0.5 [0.5–2] 0.5 [0.5–2] 0.5 [0.5–2]/0.5 [0.5–2]

MGIT, Mycobacteria growth indicator tube; SSCC, Serial Sputum Colony Counting; MIC, Minimum Inhibitory Concentration.
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Figure 1.  Simulation based (n = 2000) visual predictive checks for isoniazid (top left), rifampicin (top right), pyrazinamide (bottom left), and ethambutol (bottom right). Open 
circles represent observations, solid and dashed black lines represent observed 2.5, 50th, and 97.5 percentiles. Shaded areas represent the 90% confidence intervals around 
the simulated 2.5, 50th, and 97.5 percentiles.
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Pharmacokinetics

Visual predictive checks and goodness-of-fit diagnostics for 
the isoniazid, rifampicin, pyrazinamide, and ethambutol 
models showed adequate predictive performance (Figure  1, 
Supplementary S2 and S3 Figures and S1 Table). Model-
derived median CMAX estimates and ranges for the study 
cohort were as follows: isoniazid, 3.24 (2.19–5.50) mg/L; ri-
fampicin, 4.35 (2.30–12.30) mg/L; pyrazinamide, 40 (25–63) 
mg/L; and ethambutol, 2.30 (1.43–4.40) mg/L. Median AUC0-

24 estimates and ranges were as follows: isoniazid, 18.83 (6.97–
71.20) hxmg/L; rifampicin, 29.10 (14.50–119.00) hxmg/L; 
pyrazinamide, 419 (210–2014) hxmg/L; and ethambutol 18.50 
(12.80–38.50) hxmg/L.

Pharmacokinetics-Pharmacodynamics

Isoniazid AUC0-24 at steady state and baseline serum bili-
rubin concentrations positively correlated (P < .01) in an ex-
ponential relation with LAM (Figure 2) in the PKPD model 
(Figure 3, Supplementary S4 and S5 Figures), resulting in a 
steeper bacillary kill-curve in sputum with higher isoniazid 
exposures and baseline bilirubin concentrations (Figure  4, 
Supplementary S2 Table). Rifampicin AUC0-24 at steady state 
in an exponential relation positively correlated (P < .01) 

with t1/2 (Figure  2), resulting in more pronounced biphasic 
kill-curves with lower rifampicin concentrations (Figure  4, 
Supplementary S2 Table). Alcohol consumption correlated 
with a slower LAM, resulting in a steeper bacillary kill-curve 
in sputum in nonalcohol consuming patients (Figure  4, 
Supplementary S2 Table).

Stepwise backward exclusion of isoniazid AUC0-24/MIC, 
when replacing AUC0-24, as covariate on LAM resulted in signif-
icant worsening of the model fit on a subset of the patients that 
had MICs reported (Supplementary S6 Figure and S3 Table). 
Stepwise backward exclusion of rifampicin AUC0-24/MIC, when 
replacing AUC0-24, as covariate on t1/2 resulted in a model that 
did not converge on the same subset of patients (Supplementary 
S6 Figure and S3 Table). As per protocol, MIC-adjusted PK 
parameters for ethambutol were not evaluated here because 
neither MIC unadjusted ethambutol AUC0-24 nor CMAX was sig-
nificantly correlated with LAM, t1/2, or BETA.

Study Outcome

From the static bacteriological treatment response measure-
ments, only SSCC negativity at month 2 correlated with the 
likelihood of treatment success at EOT (Tables 2). Among the 
PK variables, higher isoniazid CMAX, CMAX/MIC, and AUC0-24/
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Figure 2.  Visualization of pharmacokinetic-pharmacodynamic model characteristics. The solid line (A) illustrates monophasic bacillary clearance from sputum with a 
clearance rate represented by LAM. The dashed (B) and dotted (C) lines illustrate biphasic bacillary clearance trajectories; LAM represents the initial clearance rate (faster 
in B than C line), BETA represents the magnitude of decreased bacillary clearance (larger in C than B), and t1/2 represents the time it takes to switch from fast to slow killing 
(earlier in B than C). CFU, colony-forming units.
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Figure 3.  Simulation-based (n = 2000) visual predictive checks for the pharmacokinetic-pharmacodynamic model. Open circles in the top panel represent observations, 
and solid and dashed black lines represent observed 50th and 97.5 percentiles, respectively. Shaded areas in the top panel represent the 90% confidence intervals around 
the simulated 2.5, 50th, and 97.5 percentiles. The dots and solid line in the bottom panel represent the observed proportion of samples below the limit of quantification, and 
the shaded area represents the corresponding 90% confidence interval of proportion samples below limit of quantification produced by the model. Bars at the bottom of the 
lower panel indicate the binning windows. CFU, colony-forming units; LLOQ, lower limit of quantification.
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MIC correlated with treatment success at EOT (Tables 2 and 3). 
The MIC-adjusted correlations were stronger when compared 
with MIC-unadjusted equivalents (Table 3).

From the dynamic measurements of treatment response, 
lower model-derived LAM and higher model-derived BETA 
correlated with failure at EOT (P < .05) on univariate general-
ized logistic regression (Table 2). Lower LAM was also the only 
variable from any analysis that associated with TB recurrence 
(P < .05) (Tables 2 and 3).

DISCUSSION

The CMAX and AUC0-24 estimates for each drug from our 
PK models were consistent with prior studies in African 

populations [14, 19–21]. Rifampicin exposure was low, sup-
porting the ongoing case for increasing current rifampicin 
dosages for TB treatment [22]. Our PKPD model adequately 
captured the typical bacillary clearance profile and demon-
strated that interindividual variability in antibiotic exposure 
influences treatment response. Early bacterial clearance (char-
acterized by the LAM parameter) is faster with higher isoni-
azid AUC0-24, and bacillary clearance remains rapid, with later 
progression to biphasic decline, with higher rifampicin AUC0-24. 
These findings are consistent with prior reports that the bacte-
ricidal effect of isoniazid is enhanced by coadministration with 
rifampicin [6]. Although the model structure was rather empir-
ical in its description of decreasing bactericidal effect over time, 
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Figure 4.  Visualization pharmacokinetic-pharmacodynamic covariate effects (baseline bilirubin-LAM; isoniazid-LAM; rifampicin-t1/2 and alcohol consumption-LAM]). High 
and low exposure refers to highest and lowest values in the study population: 1–32 μmol/L, 54.9–515 hrxμmol/L, and 19.9–145 hrxμmol/L for baseline bilirubin, isoniazid, 
and rifampicin, respectively. CFU, colony-forming units.
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we did not consider more complex mechanistic PKPD models 
to avoid over parameterization [23].

Elevated serum bilirubin levels have previously been re-
ported with prolongation of isoniazid clearance [24] and may 

also correlate with higher exposure of the other 2 hepatically 
cleared drugs rifampicin and pyrazinamide. This may be con-
sidered as a partial measure of the ability of the body to clear 
these antibiotics.

Table 2.  Univariate Generalized Logistic Regression for Treatment Failure (Left Columns) and Cox-Proportional Hazard for Recurrence (Right Columns)

Treatment Failure Recurrence

 N OR 2.5% 97.5% P-value N OR 2.5% 97.5% P-value

Clinical covariates

  Adherence 95 4.25e+00 1.98e-01 3.66e+01 .287000 89 0.00000 0.00e+00 Inf .9990

  Age 95 1.00e+00 8.86e-01 1.12e+00 .955000 89 0.95600 8.38e-01 1.09e+00 .5090

  Body weight 92 1.12e+00 9.85e-01 1.29e+00 .084600 86 1.00000 8.68e-01 1.15e+00 .9950

  Sex 95 2.46e+07 0.00e+00 NA .069200 89 1.30000 1.35e-01 1.25e+01 .8190

  HIV 95 1.15e+00 1.82e-01 9.03e+00 .883000 89 2.37000 2.47e-01 2.28e+01 .4550

  Alcohol 95 1.48e+00 1.87e-01 9.39e+00 .683000 89 2.46000 3.46e-01 1.75e+01 .3680

  Smoking 95 4.79e+00 5.83e-01 3.22e+01 .131000 89 2.74000 2.85e-01 2.64e+01 .3820

Pharmacokinetic covariates

  log(Isoniazid AUC0–24) 95 8.88e-02 4.80e-03 1.10e+00 .060400 89 0.77400 7.26e-02 8.25e+00 .8320

  log(Isoniazid CMAX) 95 1.02e-03 7.00e-07 4.45e-01 .025000 89 0.20900 6.25e-04 7.00e+01 .5980

  log(Rifampicin AUC0–24) 95 8.95e-02 1.70e-03 1.86e+00 .130000 89 3.69000 4.15e-01 3.28e+01 .2420

  log(Rifampicin CMAX) 95 7.95e-01 1.69e-02 2.38e+01 .902000 89 1.09000 2.50e-02 4.75e+01 .9640

  log(Pyrazinamide AUC0–24) 95 1.30e-01 1.98e-03 4.45e+00 .277000 89 1.95000 6.65e-02 5.69e+01 .6990

  log(Pyrazinamide CMAX) 95 8.10e-02 1.85e-04 2.28e+01 .393000 89 2.20000 6.25e-03 7.77e+02 .7920

  log(Ethambutol AUC0–24) 95 2.57e-03 1.00e-06 1.22e+00 .058600 89 6.12000 2.71e-02 1.38e+03 .5120

  log(Ethambutol CMAX) 95 3.51e-02 1.22e-04 4.01e+00 .174000 89 0.04480 1.53e-04 1.32e+01 .2840

Static bacteriological covariates

  log10(Observed baseline sputum bacillary load [CFU/ml]) 91 1.68e+00 9.00e-01 3.87e+00 .109000 85 0.85700 4.82e-01 1.52e+00 .5990

  MGIT negativity (month 2) 80 3.19e+00 4.97e-01 2.54e+01 .215000 74 6.54000 6.80e-01 6.29e+01 .1040

  Serial Sputum Colony Counting negativity (month 2) 78 9.33e+01 1.03e+01 2.19e+03 .000036 72 0.00000 0.00e+00 Inf .9990

  Smear negativity (month 2) 89 1.25e+00 6.14e-02 9.28e+00 .850000 83 0.00000 0.00e+00 Inf .9990

PKPD treatment response parameters

  iLAM (10e-02) 95 1.73e-02 2.64e-04 4.96e-01 .016200 89 0.00216 1.64e-05 2.85e-01 .0137

  iT12 95 9.83e-01 9.49e-01 9.98e-01 .074800 89 1.00000 9.98e-01 1.00e+00 .9420

  iBETA 95 1.13e+06 1.09e+02 6.70e+11 .001400 89 43.40000 1.40e-02 1.35e+05 .3580

iLAM, individual estimated LAM (10e-02); iBETA, individual estimated BETA; iT12, individual estimated T12.

Table 3.  AUC/MIC and CMAX/MIC Univariate Generalized Logistic Regression for Treatment Failure (Left Columns) and Cox-Proportional Hazard for 
Recurrence (Right Columns)

Treatment Failure Recurrence

 N OR 2.5% 97.5% P-value N OR 2.5% 97.5% P-value

MIC adjusted pharmacokinetic covariates

  log(Isoniazid AUC0–24/MIC) 47 0.01740 1.25e-04 0.2840 .001410 42 4.07000 1.44e-01 115 .410

  log(Isoniazid CMAX/MIC) 47 0.00040 0.00e+00 0.0833 .000293 42 9.19000 1.49e-02 5660 .499

  log(Rifampicin AUC0–24/MIC) 47 0.25100 3.99e-02 1.3000 .099900 42 8.12000 4.41e-01 149 .159

  log(Rifampicin CMAX/MIC) 47 0.37300 6.18e-02 2.0500 .248000 42 3.16000 5.57e-02 179 .577

  log(Ethambutol AUC0–24/MIC) 47 0.34200 2.85e-02 4.0600 .377000 42 34.60000 7.60e-03 157000 .410

  log(Ethambutol CMAX/MIC) 47 0.23900 2.01e-02 2.6000 .227000 42 1.30000 9.43e-03 179 .917

Pharmacokinetic covariates

  log(Isoniazid AUC0–24) 47 0.08300 2.01e-03 1.4000 .089500 42 2.34000 4.63e-02 118 .671

  log(Isoniazid CMAX) 47 0.00132 5.00e-07 0.7050 .037800 42 0.72100 1.57e-05 33200 .952

  log(Rifampicin AUC0–24) 47 0.35700 7.33e-03 5.0600 .499000 42 7.54000 2.68e-01 212 .235

  log(Rifampicin CMAX) 47 1.79000 2.18e-02 62.3000 .770000 42 1.50000 1.47e-03 1530 .909

  log(Ethambutol AUC0–24) 47 0.01630 4.20e-06 9.6900 .220000 42 12.90000 2.24e-04 742000 .648

  log(Ethambutol CMAX) 47 0.00267 8.00e-07 1.1500 .056000 42 0.00015 0.00e+00 495 .250

D
ow

nloaded from
 https://academ

ic.oup.com
/ofid/article-abstract/7/7/ofaa218/5854288 by U

C
L, London user on 03 August 2020



10  •  ofid  •  Kloprogge et al

Static bacteriological measurements (eg, sputum smear 
or culture conversion at month 1 or 2)  are commonly used 
to monitor TB treatment response in clinical practice, and 
early phase clinical trials and in this study SSCC at month 2 
predicted final outcome. Some larger analyses of pooled in-
dividual patient data have described a similar relationship be-
tween month 2 culture results and outcome, although it has 
also been noted that correlations are not predictive at indi-
vidual patient level [5, 12].

The MIC-adjusted PK estimates, ie, AUC0-24/MIC or CMAX/
MIC, have been reported as marker of the sterilizing effect of 
anti-TB drugs; in line with these findings, our PKPD model 
displayed significant correlations in a subset of patients 
(Supplementary S3 Table) [25]. It showed significant correl-
ations between isoniazid CMAX, CMAX/MIC, and AUC0-24/MIC 
and treatment success at EOT, but not with remaining free of 
TB (Table 3).

Caution is required when interpreting the findings that iso-
niazid CMAX correlates separately with LAM and with treatment 
failure; colinearity between explanatory variables on univar-
iate analyses could bias interpretation of the results where 
isoniazid drives early bacillary clearance from sputum, which 
subsequently correlates with treatment failure. Multivariate re-
gression sometimes resolves such issues, but it was not feasible 
in this dataset of 95 patients with only 5 failures. Overall, de-
lineation of a relationship between antibiotic PK and treatment 
response remains noteworthy. It underlines the role of PK data 
in explaining trial results and indicates that treatment short-
ening decisions for individual patients require consideration of 
antibiotic exposure at steady state, eg, 2 months. A large recent 
meta-analysis seeking to define an “easy-to-treat” patient phe-
notype explicitly commented on the lack of PK data for assess-
ment [26].

Our dynamic, model-derived, parameters of bacterial clear-
ance over the first 8 weeks of treatment correlated with treat-
ment failure at EOT (LAM and BETA) and recurrence (LAM). 
These results indicate that the pattern of early bacillary clear-
ance matters. The finding that LAM was the only predictor of 
relapse suggests that efficient use of quantitative longitudinal 
data at the level of individual patients may be preferable to re-
liance on traditional static measurements of bacteriological re-
sponse [27].

Our study has limitations. Isolates from recurrent TB infec-
tions were not sequenced and consequently it remained un-
clear whether these were reinfections or relapses. Moreover, 
the PKPD model remains descriptive rather than predictive, 
due to the inability to split data into training and test batches. 
Antimicrobial concentration ranges were restricted by standard 
dosing guidelines, yet a concentration-effect relationship could 
be characterized. However, the model is not suitable for ex-
trapolations and dose optimizations due to the absence of a 
concentration-effect relationship that was characterized over an 

extended concentration range. The MIC data were not available 
for every patient and were not available at all for pyrazinamide, 
hindering efforts to account for the variability added to PKPD 
models by incorporating MIC measurements to indices such 
as AUC0-24/MIC or CMAX/MIC [25]. More comprehensive MIC 
data may be of particular importance in global settings where 
clinical Mtb isolates are less uniformly antibiotic sensitive than 
in Malawi.

A large pooled individual patient data analysis, ideally with 
dose escalating studies, would enable further characterization 
of early bacillary clearance from sputum and provide improved 
statistical power to correlate early bacillary clearance with treat-
ment failure at EOT and recurrence. Nonetheless, the data pre-
sented here illustrate the value of PKPD and dynamic bacillary 
clearance modeling techniques that could be applicable beyond 
the drug combination used in this study. A more extensive use 
of this approach may improve regimen evaluation in clinical 
trials. Moreover, it could help generate algorithms to assist with 
clinical decision making for individualized or stratified treat-
ment strategies. These algorithms can take into account how 
well the patient is doing during early phases of treatment rather 
than just baseline measures on how well the patients is before 
treatment starts.

CONCLUSIONS

In conclusion, isoniazid and rifampicin exposure correlate with 
bacillary clearance from sputum during the first 8 weeks of 
treatment for pulmonary TB, and bacillary clearance correlates 
with clinical outcome. A pooled individual patient data analysis 
is needed to validate the range of early PK and sputum bacillary 
clearance effects that predict treatment failure and relapse.
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