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ABSTRACT
The local flow near the edge of a horizontal plate impacting a flat liquid surface is investigated through velocity potential flow theory. The
inner solution is matched with the outer solution. The far field of the inner solution is assumed to be far away from the other edge of the
plate, and thus, its effect can be neglected. The effects of surface tension, viscous friction, and gravity are accounted for in the fully nonlinear
dynamic boundary condition on the free surface. When one of these effects is dominant and the other two can be ignored, it is then possible to
use self-similar variables to describe the local flow if the entry speed varies with time in a corresponding manner. Detailed results for various
self-similar solutions are provided, and the relative importance of the Weber number, Reynolds number, and Froude number is investigated.
Simulations are also undertaken for general non-similar flow, and the comparison with the experimental data is also made.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0013914., s

I. INTRODUCTION

The flow near the plate edge at the initial stage during water
entry has received considerable amount of interest. An accurate
solution not only provides some insight into the complex flow fea-
tures at this stage but also provides a solid foundation for the sub-
sequent simulation for the flow at later stages, and all these have
important practical applications. One example is a high speed craft
in rough seas. Its cross section is often of V-shape, which tends to
a horizontal plate when the deadrise angle is small. Persistent slam-
ming may seriously damage its structure. Thus, understanding the
physical feature of the flow at the plate edge is of high practical rel-
evance. For irrotational flow, when a horizontal plate moves into
water suddenly at time t = 0, the velocity at the plate edge from the
solution of the velocity potential is infinite. To remove the singular-
ity, a local self-similar solution at the plate edge is often introduced
for t > 0.

Using self-similarity for local flow at the initial stage of impact
has been adopted by several authors, usually based on the assump-
tions that viscosity and gravity are not important. Yakimov1 under-
took an experimental study for flow near the corner of a plate
impacting the free surface. He discussed that local flow could be self-
similar and the spatial variables x, y could be combined with time
t in the manner of x/(ct2/3), y/(ct2/3). Iafrati and Korobkin2 used
this principle and undertook detailed analysis through numerical

solution for the local flow near the plate edge. The outer solution
far away from the plate corner was obtained from the initial solution
of the plate impacting the free surface at t = 0. To the inner region,
the form of the outer solution was the same as that of a semi-infinite
plate. The inner solution of the edge was obtained through the self-
similar variables when higher order terms of t were ignored. To
match the outer solution, the exponent 2/3 was chosen for t, as in the
work of Yakimov.1 They provided the free surface near the corner,
including the jet, based on the inner solution. The result was quite
similar to that measured by Yakimov.1 When the surface tension was
included, the scaling of 2/3 could still be used. However, Iafrati and
Korobkin2 encountered some difficulties in numerical computation
of surface tension and results for its effect were not provided. Later,
Iafrati and Korobkin3 matched the inner solution with the higher
order outer solution. Apart from the work mentioned above, the 2/3
scaling has also been used in some similar problems, for example,
the jet formed during the collapse of the surface under the effect
of inertial forces by Zeff et al.,4 flow driven by surface tension by
Keller, Milewski, and Vanden-Broeck,5 capillary pinch-off by Lep-
pinen and Lister,6 the free surface deformation during the early time
for the water entry of a small cylinder by Vella and Li,7 and the splash
wave and crown breakup after the disk impact on a liquid surface by
Peters, van der Meer, and Gordillo.8

Krechetnikov9 suggested that the self-similar flow with 2/3
scaling was not appropriate for studying the limit t → 0 once the
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viscosity effect was taken into account. When such an effect is
important, the inner solution could not be matched with the outer
solution at such a scaling. Instead, the scaling of 1/2 was proposed for
the exponent of t at the initial stage and the viscous effect could be
more important than the others such as surface tension and gravity.
Mayer and Krechetnikov10 undertook an experimental study on the
local flow of a plate impacting on the water surface with moderate
Reynolds and Weber numbers, to investigate the effects of viscos-
ity and surface tension on the velocity field and ejecta evolutions.
They found that their results did not match well with those from
the work of Yakimov1 or Iafrati and Korobkin2 based on 2/3 scaling.
Instead, the scaling of 3/4 was found to match their experimental
data best in some cases, as shown in Fig. 18 of their work, where t is
very small and the Weber number is much smaller than the Reynolds
number.

In reality, for a particular physical problem of a plate impact-
ing the free surface, the scaling of local flow will very much depend
on the relative importance of various physical parameters such as
gravity, surface tension, and viscosity and different stages of the
flow. When a particular scaling related to a particular effect is dom-
inant, it is then possible mathematically to use self-similar variables
to describe the local flow when scaling related to the other effects
is ignored. However, this scaling has to be also compatible with the
outer flow in the mathematical model, which also depends on how
the impact speed changes with time. In this work, we shall consider
the local flow at the edge of a plate with length 2L impacting the
liquid surface with speed V = V0(tV0/L)b. The local solution can
be matched with an outer solution. The far field of the inner solu-
tion is assumed to be far away from the other edge of the plate,
and thus, high order terms of the outer solution can be neglected.
We shall discuss systematically when the self-similar solution would
be possible and what corresponding scaling should be used in the
formulation. Then, we shall consider the inner solution in the time
domain, including the effects of surface tension, viscous friction on
the free surface, and gravity. This is to show that it is not necessary
to limit the inner solution to the self-similar one. The time domain
solution can be used to resolve the singularity at the edge flow.
In fact, it would be more convenient to connect the time domain
solution with the solution at large t, where the solution will not be
self-similar.

In Sec. II, we shall first outline the mathematical model of
the plate impacting the free surface. The governing equation and
boundary conditions are introduced based on the velocity potential
theory. The matching between the local solution and outer solu-
tion, the choice of scaling, and conditions for a self-similar solution
are discussed. In Sec. III, self-similar solutions are first considered
and results are provided. This is followed by time domain solu-
tions, where the comparisons with experimental data are made and
extensive analysis is made.

II. MATHEMATICAL MODEL
Figure 1 shows a plate with length 2L initially floating on the

calm free surface. A Cartesian coordinate system O-xy is defined
so that the x-axis coincides with the undisturbed free surface and
the y-axis points upward and passes the right edge of the plate. It is
assumed that the fluid is inviscid and incompressible, and the fluid

FIG. 1. The sketch of the problem.

motion can be described with potential ϕ, whose gradient is equal to
fluid velocity or v =∇ϕ. The plate moves down suddenly with veloc-
ity V. If we focus on the local flow near the edge of the plate, the
solution for the velocity potential flow at t = 0 can be written as9

ϕ = Φ = Re[iV(z −
√

2zL)], (1)

where z = x + yi and Φ(x, y) = ϕ(x, y, t = 0) is the initial solu-
tion, which is in fact the same as the steady-state solution of a
uniform flow around a plate in an unbounded fluid domain. This
solution gives a singularity of the velocity at z = 0. Therefore, an
inner solution is needed near the region of z ≅ 0.

When t > 0, the governing equation and boundary conditions
for ϕ for the inner solution can be written as

Δϕ = 0 in the fluid domain, (2)

ϕy = −V (x < 0, y = −h), (3)

∂ζ/∂t = ϕy − ζxϕx (y = ζ(x, t), x > 0), (4)

∂ϕ/∂t = −1
2
(ϕ2

x + ϕ2
y) +

σκ
ρ

+ 2νλ − gy (y = ζ(x, t), x > 0), (5)

where ζ is the elevation of the free surface, h = ∫ t
0 Vdτ is the vertical

distance that the plate has traveled, σ is the surface tension coeffi-
cient, ρ is the fluid density, ν is the kinematic viscosity, and g is the
acceleration due to gravity. In Eq. (5), κ = xl0yl0 l0 − yl0xl0 l0 is the cur-
vature,5 where subscript l0 indicates the arc length coordinate along
the free surface and11 λ = [∂ux

∂x n
2
x + (∂ux

∂y + ∂uy
∂x )nxny + ∂uy

∂y n
2
y] is due

to the contribution of the shear force along the surface perpendic-
ular to the free surface, to the balance of force with pressure on the
free surface, with ∇ϕ = (ux, uy) and n = (nx, ny) being the normal
of the free surface. Here, we have included the shear force effect
under the free surface boundary condition but have ignored the vis-
cous effect in the fluid domain. At t = 0, the initial condition can be
written as

ζ(x, t = 0) = 0, (6)

ϕ(x, y, t = 0) = ψ(x, y). (7)
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We may define that (x̃, ỹ)moves with the plate and then introduces
the following transformation:

x = x̃, y = ỹ − h, ζ = ζ̃ − h,

ϕ = ϕ̃ − Vỹ +
1
2 ∫

t

0
V2(τ)dτ + g ∫

t

0
h(τ)dτ.

(8)

The governing equation and boundary conditions can be written as

Δϕ̃ = 0 in the fluid domain, (9)

ϕ̃ỹ = 0 (x̃ < 0, ỹ = 0), (10)

∂ζ̃/∂t = ϕ̃ỹ − ζ̃x̃ϕ̃x̃ (ỹ = ζ̃(x̃, t), x̃ > 0), (11)

∂ϕ̃
∂t
= −1

2
(ϕ̃2

x̃ + ϕ̃2
ỹ)+ V̇ỹ +

σκ
ρ
− gỹ+ 2νλ (ỹ = ζ̃(x̃, t), x̃ > 0). (12)

Correspondingly, the outer solution in Eq. (1) can be written as

ϕ̃ = ψ̃ = −V
√
LRe(i

√
2z̃), (13)

where z̃ = x̃+ỹi. The additive spatial independent constant is ignored
in Eq. (13). The solution of Eqs. (9)–(12) should match the outer
solution away from the edge. Strictly speaking, Eq. (13) is only for
t = 0 or h = 0. For h ≠ 0, we may follow Iafrati and Korobkin3 and
expand the outer solution in terms of h. Using their w0 and w1, we
have near z̃ = 0 the following:

ϕ̃ = VLRe[−i
√

2z̃/L − (h/L)/(2z̃/L) + 2isC/
√

2z̃/L], (14)

where C is a constant. The inner solution may be written in terms of
the local coordinate system. We may write

ϕ̃(x̃, ỹ, t) = LV
√

2sφ(α,β, t), x̃ = Lsα, ỹ = Lsβ, ζ̃ = Lsη. (15)

Let V0 be the characteristic velocity. We may assume that the veloc-
ity V = V0(tV0/L)b and take s = A(tV0/L)a. Substituting Eq. (15) into
(9)–(12), and replacing t with s for the temporal variation, we have

Δφ = 0 in the fluid domain, (16)

φβ = 0 (α < 0,β = 0), (17)

A
b+1
a a√
2

s
3
2− b+1

a ∂sη
∂s

= (φβ − ηαφα) (β = η(α, s),α > 0), (18)

A
b+1
a a√
2

∂s
1
2 + b

a φ

s
2b−2a+1

a ∂s
= −1

2
(φ2

α + φ2
β) +

b
2
A

b+1
a s2− b+1

a β +
A2cs−2cκ̄

2W2
e

+
√

2Acs−c−
1
2 λ̄

Re
− A2cs2−2cβ

2F2
r
(β = η(α, s),α > 0),

(19)

where c = b/a, We = V0
√
ρL/σ is the Weber number, κ̄ = αlβll − βlαll

is the nondimensionalized curvature, Re = V0L/ν is the Reynolds
number, λ̄ = φll − βllφβ − αllφα, and Fr = V0/

√
gL is the Froude

number. The initial free surface elevation is assumed to be zero, or

η(α, 0) = 0 (20)

together with the potential on the free surface,

φ(α, 0, 0) = 0. (21)

The far field boundary condition for the inner solution takes the
form as

φ =
√
r sin(θ/2) − h cos θ/(L2

√
2s3/2r) + C sin(θ/2)/

√
r, r →∞,

(22)

where r =
√
α2 + β2. The first term will be the leading term, provided

h/s3/2 is finite as t → 0 or when a ≤ 2(b + 1)/3.
In the case of a self-similar solution, we must have ∂η

∂s = 0 and
∂φ
∂s = 0. For this to be possible, it is also necessary to have a = 2

3(b+1)
in (18) and (19), which meets the above condition for a. We may also
let A = (

√
2/a)2/3, and then, Eqs. (18) and (19) become

∂sη
∂s
= (φβ − ηαφα) (β = η(α, s),α > 0), (23)

∂s2− 1
a φ

s1− 1
a ∂s
= −1

2
(φ2

α + φ2
β) +

c
√
sβ√
2

+ (
√

2
a
)

4c
3 s−2cκ̄

2W2
e

+(
√

2
a
)

2c
3
√

2s−c−
1
2 λ̄

Re

−(
√

2
a
)

4c
3 s2−2cβ

2F2
r

(β = η(α, s),α > 0). (24)

In such a case, h = L(s/A)3/2/(b + 1) and only the first term in Eq. (22)
needs to be kept. The far field boundary condition becomes

φ =
√
r sin(θ/2), r →∞ (25)

or

φr =
1

2
√
r

sin
θ
2

, r →∞, (26)

and the latter is used in the numerical solution procedure.
In Eq. (24), the last three terms are due to the effects of sur-

face tension, viscosity, and gravity, respectively. If these effects are
all neglected, or We, Re, and Fr all tend to infinity, at an early stage,
the solution may be self-similar when the remaining higher order
term c

√
sβ√
2

is ignored if s is small. In such a case, ηs and φs terms can
be taken as zero and Eqs. (23) and (24) then take the form of

η − αηα = φβ − ηαφα, β = η(α), (27)

(2 − 1
a
)φ − αφα − βφβ = −

1
2
(φ2

α + φ2
β), β = η(α), (28)

which is valid for any a.
In general, if all the terms of We, Re, and Fr are important,

the self-similar solution is not possible even at small s. The relative
importance of each term will depend on their values as well as a and
s. When only one of these effects is important and the other two can
be ignored, a self-similar solution would still be possible. For exam-
ple, when the surface tension is included and viscous and gravity
effects are ignored at b = 0 and a = 2/3, Eq. (24) takes the form of

1
2
φ − αφα − βφβ = −

1
2
(φ2

α + φ2
β) +

κ̄
2W2

e
, β = η(α). (29)
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Equations (27) and (29) are the same as Eqs. (18) and (19) in
the work of Iafrati and Korobkin.2 However, their derivation is
done in the coordinate system O-xy. Then, assumptions are made
through which the first term in Eq. (1) and higher order terms
of t in the dynamic free surface condition are ignored. Here, we
have derived equations based on the moving system O - x̃ỹ and the
transformation in Eq. (8), and therefore, no such assumptions are
made.

If theRe effect is included, andWe and Fr effects can be ignored,
at a = 1/2, Eq. (24) becomes

− αφα − βφβ = −
1
2
(φ2

α + φ2
β) +

λ̄
Re

, β = η(α) (30)

after the
√
s term is ignored at small s. If the Fr effect is included, and

We and Re effects can be ignored, at a = 2, Eq. (24) then becomes

3
2
φ − αφα − βφβ = −

1
2
(φ2

α + φ2
β) −

β
25/3F2

r
, β = η(α) (31)

after the
√
s term is ignored.

We may consider more carefully the flow condition at the cor-
ner. Here, we may assume that both the pressure and velocity are
continuous, similar to the Kutta condition at the trailing edge of an
aero/hydrofoil. In such a case, the relative velocity of the flow leav-
ing the plate edge should be tangential to the plate. In the case of a
self-similar flow, Eq. (27) is always valid. We may apply Eqs. (17)–
(27) at α = 0 and β = 0. This gives ηαφα = 0, which means that either
ηα = 0 or φα = 0. Without the Kutta condition, the fluid can leave the
plate surface in an arbitrary direction and singularity may appear in
the velocity and pressure.

III. NUMERICAL RESULTS AND DISCUSSIONS
The problem is solved using the time stepping method through

s based on the Lagrangian form of the free surface boundary con-
ditions. As the matching condition with the far field has imposed
a ≤ 2(b + 1)/3, we may consider the case a = 2(b + 1)/3 with√

2 = A3/2a. Then, we have

D(sα)
Ds

= φα,
D(sβ)
Ds

= φβ, (32)

Dsφ
Ds
= 1

2
(φ2

α + φ2
β) − (1 −

1
a
)φ +

c
√
sβ√
2

+ (
√

2
a
)

4c
3 s−2cκ̄

2W2
e

+(
√

2
a
)

2c
3
√

2s−c−
1
2 λ̄

Re
− (
√

2
a
)

4c
3 s2−2cβ

2F2
r

. (33)

Here, ds2− 1
a φ

s1− 1
a ds
= (1− 1

a)φ+ dsφ
ds has been used in Eq. (33). The solution

starts from s = 0. If only one of the last three terms on the right-
hand side of (33) is retained with the corresponding a, neglecting
the term c

√
sβ√
2

in Eq. (33), after a period of transition, the solution
will become self-similar, or it no longer changes with s. In practi-
cal solution computations, s will start from an extremely small s0.
Then, as s/s0 increases, the solution tends to be self-similar. In fact,
as observed by Wu and Sun12 in a related problem, it is already suffi-
cient when s/s0 ≥ 10. At each step of s, the Laplace equation is solved

based on the boundary element method used in the work of Sun
et al.,13 which is also used by Wang, Faltinsen, and Lugni14 for a sim-
ilar water entry problem, and the fluid particle is assumed to leave
the plate tangentially because its normal velocity is the same as that
of the plate. When there is a very thin jet, it is treated by the method
in the work of Bao, Wu, and Xu,15 taking into account the surface
tension and viscosity effects on the free surface.

A. Convergence study and comparison
In order to test the numerical stability and accuracy of the

methodology, we first consider the case with the infinite Weber
number, Reynolds number, and Froude number, and a = 2/3 and
b = 0. The half width and depth of the rectangular computational
domain Ld are both set as 50 in the O-αβ system. The calculation
starts with a small initial value s0 = 0.001 and advances through
ds. The step ds varies with time. It starts from a smallest step dsm,
then increases at a fixed ratio δs, and is not allowed to exceed an
upper dsL. Unequal elements are distributed along the fluid bound-
ary. The smallest elements of length lm are used at the edge of plate;
away from the edge, the size of the element increases gradually at
a fixed ratio δl, but is limited by a maximum of 0.5. For the mesh
convergence study, we set lm as 0.01, 0.02, and 0.03 and δl as 1.02.
dsm, δs, and dsL, for the time step is set as 5 × 10−7, 1.0005, and
5 × 10−5, respectively. The free surface profiles with these three
different meshes are shown in Fig. 2(a). They are taken when the
profiles become steady in the self-similar coordinate system. A good
agreement can be seen in this figure, which means that the results
are mesh independent. The comparison of results from two differ-
ent time steps is shown in Fig. 2(b) to verify the convergence with
the time step, with lm = 0.02. The time step in the first case is the
same as that in the mesh convergence study. In the second case, the
corresponding time steps are reduced by half, or dsm = 2.5 × 10−7,
δs = 1.000 25, and dsL = 2.5 × 10−5. It can be seen that the two curves
do not have a visible difference, which shows that the results have
converged with the time step. To test the convergence of the size of
the computational domain, Ld is increased to 200 and good agree-
ment can be seen in Fig. 2(c). The comparison between the present
result and that by Iafrati and Korobkin2 is given in Fig. 2(d). The
good agreement means that the present procedure is accurate.

B. Similarity solutions
1. Results at different a with We = Fr = Re →∞

Figure 3 gives the similarity solutions at different a with infi-
nite Weber numbers, Reynolds numbers, and Froude numbers. This
means that the surface tension, viscosity effect, and gravity effect are
all neglected. If the remaining β term in the dynamic boundary con-
dition is also neglected, a can be arbitrarily chosen and the solution
can be self-similar. As a increases, b also increases, based on the rela-
tion of a = 2

3(b + 1). a = 2/3 corresponds to b = 0 or the impact at
constant speed, while a < 2/3 corresponds to the decelerating impact
and a > 2/3 corresponds to the accelerating impact. In Fig. 3, it can
be seen that the free surface jet points rightward at smaller a. This is
because when a < 2/3 or b < 0, the impact speed at t = 0 is infinite.
The fluid below the plate will be ejected out with high speed. When
0 < b < 1, or 2/3 < a < 4/3, the plate starts motion with zero speed but
infinite acceleration. The jet ejection from the plate becomes weaker,
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FIG. 2. Convergence study of (a) mesh
(dsL = 5 × 10−5 and Ld = 50), (b) time
step (lm = 0.02 and Ld = 50), (c) the size
of the domain (lm = 0.02 and dsL = 5
× 10−5), and (d) the comparison with the
work of Iafrati and Korobkin2 (lm = 0.02,
dsL = 5 × 10−5, and Ld = 50) (W e →∞,
Re →∞, and Fr →∞).

and the ejected jet gradually bends to the left. When b > 1 or a > 4/3,
the motion of the plate starts with both zero speed and zero accel-
eration. As the plate moves down slowly, the fluid is more ready to
move inward or to take the space left by the plate. In fact, at a ≥ 1.5,
the free surface begins to overturn.

2. Results with finite Weber, Reynolds, or Froude
numbers

With the scale of 2/3, the free surfaces at different Weber num-
bers with Re = Fr =∞ are provided in Fig. 4(a). When We ≥ 20, the
curves are no longer notably affected by We. As We decreases, its
most notable effect is near the jet tip, where the free surface has the

FIG. 3. Similarity solutions at different a (W e →∞, Re →∞, and Fr →∞).

largest curvature. The main free surface is not notably affected. As
the Weber number continues to drop to 4, its effects on the other
parts of the free surface also become significant. A crown becomes
visible near the jet tip, which is similar to that in the work of Peters
et al.8 At We = 2, the jet has disappeared and the free surface
becomes much flatter. In fact, as We → 0, the dynamic condition
means that the curvature of the free surface should be zero, and
therefore, it will tend to be a flat surface.

Results at different Reynolds numbers Re and a = 1/2 with
We = Fr = ∞ are provided in Fig. 4(b). The results are not very
much affected by Re when Re ≥ 200. It is of interest to see that at
larger Re, the jet bends to the right side. When Re decreases, the jet
gradually bends to the left. However, it should be noted that in the
present simulations, the effect of the viscosity is accounted for only
in the friction on the free surface and is ignored inside the fluid. This
approximation may not be justified at low Re.

The results at different Froude numbers Fr with a = 2 and
We = Re =∞ are provided in Fig. 4(c). As b = 2 in this case, motion
starts with both zero velocity and acceleration. As discussed in Fig. 3,
with Fr =∞, the fluid in such a case moves inward to take the space
left behind the plate. Figure 4(c) shows when Fr ≥ 5 that the Froude
number does not have a major effect and the result is close to that at
Fr →∞. When Fr = 2, the gravity effect on the main part of the free
surface is still small. Its main effect is to pull the jet further down. As
Fr further drops, the jet tip will touch the plate and a closed cavity
would therefore form, similar to what has been observed in the work
of Semenov, Wu, and Korobkin,16 which is beyond the scope of the
current work. It should be pointed out that the effect of the gravity is
considered in the particular case a = b = 2 with which the flow may
be approximated as self-similar. In other cases, the effect of gravity
may be different.
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FIG. 4. Free surfaces at different (a)
Weber numbers (Re → ∞, Fr → ∞,
a = 2/3, and b = 0), (b) Reynolds num-
bers (W e →∞, Fr →∞, a = 1/2, and
b = −1/4), and (c) Froude numbers (Re

→∞, W e →∞, a = 2, and b = 2).

C. Time domain solutions
In general, the flow may not be self-similar. In the following

case, the simulation starts at a very small s0 or very small initial time
step. Unlike the cases in Sec. III B, where the results were taken when
the solution becomes self-similar, the results here are taken at the
real time instants. When terms of We, Re, and Fr are included in the
dynamic free surface boundary condition in Eq. (33), their impor-
tance will be dependent on their relative values, the values of b and
t. We may focus on the case of b ≥ 0 with a = 2(b + 1)/3 in which
the entry speed will not be infinite at t = 0. In such a case, the We
and Re terms may be important at small s because their exponents
are negative. When 0 ≤ b < 1/2, which gives 0 ≤ c < 1/2, the Re term
can be more important than the We term. This includes the case of
constant speed water entry with b = 0. The effect of the Fr term is
small at small s because its exponent is positive. When b > 1/2, or
c > 1/2, the We term becomes more important than the Re term
at small s. The Fr term will never be more important than the We
term at small s, in terms of the exponents. The Fr term may be more
important at small s when b < −5/2 or c > 5/2. However, this is the
case of infinite initial speed and even infinite initial h and, therefore,
is not considered here.

1. The comparison with the experiment
We consider a case in an experiment undertaken by Mayer

and Krechetnikov10 for a plate falling into water with half width
L = 25 mm and a constant vertical velocity V0 = 0.25 m/s. As in
Fig. 18(a) of their work, we take the surface tension coefficient as
σ = 0.072 N/m2, water density as ρ = 999 kg/m3, the dynamic vis-
cosity coefficient as μ = 1 mPa s, and the acceleration of gravity as
g = 9.8 m/s2. All these give We = 4.658, Re = 6250, and Fr = 0.505.

Strictly speaking, as the experiment was undertaken with constant
speed, we should have b = 0 and a = 2/3. Mayer and Krechetnikov10

plotted measured free surfaces in terms of α and β at different time
instants and found that these curves did not coincide very well. This
suggested that the experimental data did not follow well the self-
similar solution with a = 2/3 and b = 0. They then found that when
they plotted the experimental data in terms of α and β with a = 3/4,
all the curves were most close to each other. This suggested that the
self-similar solution for a = 3/4 might fit the experimental data best.
However, in such a case, the requirement a = 2(b + 1)/3 for a self-
similar solution means that b = 1/8, which is not constant speed.
Nevertheless, b is relatively small. Here, we have run simulations
with different a, including a = 2/3 and 3/4, and found that a = 0.71
(b = 0.065) fitted the experimental data best, as shown in Fig. 5 in
which τ = L/V0. It should be emphasized that when all the terms in
Eq. (33) are retained, the solution is not self-similar and the compar-
ison is, therefore, made in the time domain. It should also be noted
that constant V0 was maintained in the experiment. However, it can
also be noted that when the servo motor in the experiment drove the
plate from air to denser water, more power would be needed to bal-
ance the increased resistance, and then, the plate might experience a
short period of acceleration to reach the constant velocity V0. This
indicates that there might be a short period of time with varying b.
In the present simulation, V varies from t = 0 to t = τ, when b ≠ 0
and V0 is the speed at t = τ. This figure shows that the results are
very sensible to b. A small variation from b = 0 to b = 1/8 makes a
major difference to the numerical result and its comparison with the
measured data.

In another experiment shown in Fig. 19(a) of the work of Mayer
and Krechetnikov,10 the dynamic viscosity coefficients are chosen
as μ = 1 mPa s, 100 mPa s, and 1000 mPa s, respectively. In the
experiment, μ = 1 mPa s is combined with ρ = 999 kg m−3 and
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FIG. 5. The comparison of the free sur-
face shape (dashed lines) with the exper-
imental data (solid lines) by Mayer and
Krechetnikov10 (W e = 4.658, Re = 6250,
and Fr = 0.505): (a) t/τ = 0.006, (b)
t/τ = 0.01, (c) t/τ = 0.015, and (d)
t/τ = 0.019.

σ = 0.072 N m−1, μ = 100 mPa s is combined with ρ = 1150 kg m−3

and σ = 0.065 N m−1, and μ = 1000 mPa s is combined with
ρ = 1250 kg m−3 and σ = 0.063 N m−1. The constant speed is set as
V0 = 0.28 m/s, while the rest of the parameters are kept the same
as those in Fig. 5. In such a case, we have three Weber numbers
We = 5.217, 5.491, and 5.578, three Reynolds numbers Re = 6993,

80.5, and 8.75, and the same Froude number Fr = 0.565. As stated
by Mayer and Krechetnikov,10 the variation of the Weber number
in this case is small. The difference in the results is mainly caused
by the change in Reynolds numbers. Figure 6 gives the compari-
son between the present results at a = 0.71 and the experimental
data shown in Fig. 19(a) of the work of Mayer and Krechetnikov.10

FIG. 6. The comparison of the free sur-
face shape with the experimental data
by Mayer and Krechetnikov10 at different
Reynolds numbers (a = 0.71, b = 0.065,
and Fr = 0.565).
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FIG. 7. The results for (a = 2/3, b = 0)
at different entry distances: (a) s = 0.01
and h/L = 0.004 71, (b) s = 0.05 and
h/L = 0.005 21, and (c) s = 0.1 and
h/L = 0.0149.

The snapshots of the free surface are all taken at t/τ = 0.01. It
can be seen that the present result is in better agreement with the
experimental data at the higher Reynolds number or Re = 6993. At
Re = 80.5, the shape of the free surface is similar to that from
the experiment. However, the free surface at the peak and beyond
the peak is higher than that from the experiment. At Re = 8.75, the

peak value of the free surface elevation is close to the experimen-
tal data, but the location is slightly different. Beyond the peak, the
present result is lower than the experimental data. As discussed pre-
viously, in the present work, the viscous effect is accounted for only
in the friction on the free surface and is ignored inside fluid. It is
a major simplification at small Reynolds numbers. However, the

FIG. 8. The results for (a = 0.84, b = 0.26)
at different entry distances: (a) s = 0.01
and h/L = 0.004 71, (b) s = 0.05 and
h/L = 0.005 21, and (c) s = 0.1 and
h/L = 0.0149.
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approximation still gives a free surface shape very similar to that
measured from the experiment.

2. Impact of the plate into the mixture of water
and glycerin

As discussed at the beginning of Sec. III C, a = 2/3 or b = 0
corresponds to the impact with a constant velocity and the Re term
may be more important than the We term, depending on their val-
ues. We consider the case of the plate impact into the mixture of
water and glycerin (58%). We could set the dynamic viscosity coef-
ficient μ = 10 mPa s, the surface tension coefficient σ = 0.068 N/m2,
and the water density ρ = 1150 kg/m3, which is one of the cases in
the work of Mayer and Krechetnikov.10 The half width of the plate
L = 25 mm, and the initial vertical velocity V0 = 0.25 m/s. In such
a case, we have We = 4.794, Re = 718.75, and Fr = 0.505. Figure 7
gives the results at s = 0.01, 0.05, and 0.1, which corresponds to
h/L = 0.004 71, 0.005 27, and 0.0149. The simulation starts from
s0 = 1 × 10−4, which is much smaller than 0.01, or the first instant
at which the result is taken. As c = 0 in this case, the gravity effect is
of order s2, which is small when s is small unless Fr is very low. This
figure shows that at Fr = 0.505, the gravity effect is insignificant. The
effect of the viscous term is of order s−1/2 and is, therefore, expected
to be significant at small s unless Re is very large. This figure shows
that at Re = 718.75, the effect of the viscosity is to bend the jet to
the left. The effect of the surface tension is of the zeroth order of s.
Its significance will mainly depend on the value of We. This figure
shows that at We = 4.794, the sharp tip of the jet will be blunted with
a crown appearing at the jet. The jet will bend to the right. Figure 7,
therefore, shows that at b = 0, We = 4.794, and Re = 718.75, the sur-
face tension and viscosity effects are equally important at small s.
The gravity effect at Fr = 0.505 on the other hand is small.

We then consider the case with c = 0.31 which corresponds to
a = 0.84 and b = 0.26. The same Re and We numbers as those in Fig. 7
will be used here. Figure 8 gives the free surface at s = 0.01, 0.05, and
0.1. It can be seen that the surface tension has much more significant
effects and the free surface is completely different when it is con-
cluded. The viscous effect on the other hand is negligible, which is in
sharp contrast to that in Fig. 7. We note that the exponents of s for
the Re and We terms in this case are −0.81 and −0.62, respectively,
which are closer than −0.5 and 0 in Fig. 7. As the Reynolds number
is about 150 times the Weber number, the latter will become more
significant, when their exponents of s become closer. In Fig. 7, the
viscous effect is mainly in the jet region. However, in Fig. 8, when
the surface tension is included, the jet has been flattened. In such a
case, the Re term no longer has a major effect.

IV. CONCLUSIONS
The local flow near the edge of a horizontal plate with a length

2L impacting a flat free surface with speed V = V0(tV0/L)b is inves-
tigated through velocity potential flow theory. From the extensive
results obtained, the following conclusions can be drawn:

(1) In the coordinate system (α,β) = (x̃/(tV0/L)a, ỹ/(tV0/L)a)/
(A×L), when a = 2(b + 1)/3, the solution is self-similar at any
a when the Weber number, Reynolds number, and Froude
number are infinite and the effect of the vertical distance h
which the plate has traveled on the free surface is ignored. In

such a case, the shape of the free surface is very sensitive to b.
At small or negative b, fluid will be ejected with a jet bending
toward the right. At larger b, the fluid will move to the left to
fill the space left by the plate.

(2) The solution with the surface tension, viscous effect, and grav-
ity effect can be self-similar when a = 2/3, a = 1/2, and a = 2,
respectively.

(3) Through the comparison with the experiment data under-
taken by Mayer and Krechetnikov,10 it is found that scaling
a = 0.71 and b = 0.065 in our numerical procedure fits the
measured data best when the surface tension effect is domi-
nant. The shape of the free surface matches the experimental
data best still at a = 0.71 and b = 0.065 even when the viscous
effect becomes more important.

(4) The significance of the We, Re, and Fr effects will depend on
their relative values, the value of b, and time t.
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