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Abstract—Conditions for robust input-output stability of
barrier-based model predictive control of linear systems with
linear and convex nonlinear (hard or soft) constraints are estab-
lished through the construction of integral quadratic constraints
(IQCs). The IQCs can be used to determine sufficient conditions
for global closed-loop stability. In particular conditions for robust
stability can be obtained in the presence of unstructured model
uncertainty. IQCs with both static and dynamic multipliers are
developed and appropriate convex searches for the multipliers
are presented. The effectiveness of the robust stability analysis
is demonstrated through an illustrative numerical example.

I. INTRODUCTION

Model predictive control (MPC) has been widely used to
compute a sequence of control inputs online by optimizing
an objective function with suitable constraints in a receding
horizon manner. Nevertheless, it remains hard to guarantee ro-
bustness without introducing prohibitive complexity [1]. In this
paper we obtain sufficient conditions for global robust stability
for barrier-based MPC with linear or convex nonlinear input
constraints where the plant is open-loop stable, through the
use of IQCs, introduced in [2] to provide a unified framework
for analyzing the robustness of Lur’e type systems. Classic
robust control theory deals with stability and robustness under
unstructured uncertainty, where IQCs are used to represent
nonlinear and uncertain components [3]. Recent studies in-
clude robust stability analysis and perfomance [4] for LPV
[5] and for distributed parameter systems [6]. IQCs can also
be used to analyze the robust stability of anti-windup control
systems with both unstructured uncertainty and nonlineari-
ties [7]. Passivity, dissipativity and IQCs have been explored
to analyze the input-output stability of MPC. IQC-based robust
stability analysis of MPC has been performed in [8]. A robust
output MPC design based on dissipativity for unstructured
uncertainties has been proposed in [9]. More recently, IQCs in
conjunction with dissipativity have been used for multi-model
MPC [10] and later for LPV based MPC [11]. To overcome the
extensive conservatism in MPC stability analysis, the existence
of Zames-Falb (ZF) multipliers, originally proposed in [12],
was shown in [13], for time-invariant linear constraints. In [14]
necessary conditions have been provided for the existence of
ZF multipliers for MIMO nonlinearities. Repeated nonlinear-
ities have been treated through a special class of multipli-
ers [15]. In [7] a unified framework for multiplier search by
LMI optimization was formulated. Recently, a comprehensive
analysis for slope-restricted nonlinearities in discrete time was
proposed [16], [17]. Barrier-based MPC was proposed in [18]
where stability of state feedback MPC can be established
using gradient recentering; its implementation on an edible
oil refining plant was reported in [19]. Fast implementations
of MPC using barriers are reported in [20]. Recently, in a

series of papers [21], [22] barrier-based MPC is developed
to establish stability results for numerically efficient practical
MPC implementations. Innovations of these works include
weight-recentered barriers, analysis of relaxed barriers for soft
constraints and stability results for anytime algorithms (where
the number of Newton steps in the associated optimization
algorithm is small). Additionally, barriers have been applied
in the construction of barrier-based Lyapunov functions [23],
[24] with state constraint satisfaction guarantees.

In this paper, we use recentered barriers for hard constraints
and a relaxed recentered barrier for soft constraints. This
complements the work in [22], [21], [25] which considers
stability of state feedback MPC for soft input and state
constraints. Here, stability analysis allows hard input con-
straints which may be time-variant or nonlinear. We show
that the use of a barrier in the MPC formulation can be
advantageous for computing the closed-loop stability, and we
provide the appropriate analysis to verify this. In the case
of time-invariant constraints, ZF multipliers can be used to
reduce the inherent stability analysis conservatism. Hence, the
search for such multipliers becomes crucial, and we construct
static and dynamic multipliers, exploiting convex searches, for
barrier-based MPC. Then input-to-output stability and robust
analysis are performed, illustrating the advantages of barrier
MPC. A significant benefit of this powerful methodology is
that it can be naturally extended (as in [10]) towards nonlinear
systems with unstructured uncertainty.

In section II the basic notations used in the paper are
provided. In section III the formulation of barrier MPC is
discussed and in section IV, some basic results are presented.
Sections V and VI give our main results. The properties of
barrier MPC are investigated, and the existence of static/
dynamic multipliers is shown. In section VII, a convex
search methodology for efficiently computing multipliers is
presented. In section VIII an illustrative numerical example
is shown, while conclusions are given in IX.

II. NOTATION

Let lm be the space of all real-valued sequences. RH∞ is
the set of rational matrix transfer function matrices without
poles outside the unit circle. Let xk ∈ Rnx be the value of
x∈ lnx at sample k. Let A∗ be the complex conjugate transpose
of matrix A and G∗ the l2-adjoint operator of G. 〈 f ,g〉 is
the inner product of real-valued sequences f and g, defined
as ∑

∞
k=−∞

f ᵀk gk =
1
π

∫
π

−π
f̂ (e jω)ĝ(e jω)dω , f̂ being the Fourier

transform of f .
√
〈 f , f 〉 is the l2 norm ‖ f‖2. The discrete

convolution at time i is ( f ∗ g)i = ∑
∞
k=−∞

fkgi−k. The size of
signal x is nx. I denotes the identity matrix. For a matrix A ∈
Rm×n with rank r we define Ac ∈Rn−r×n such that AcAT = 0,
AcAcT = I, and Ā ∈ Rr×n such that
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Ā =

{
(Ac)c ,when r < n
I ,when r = n.

(1)

Hence, ĀĀT = I and the rows of Ā form an orthonormal basis
of the space spanned by the rows of A. The set of all sub-
gradients of a function f at x is called the subdifferential of f
at x denoted by ∂ f = ∂ f (x). Function φ :Rnx→Rny is defined
for nonlinearity ϕ : lnx

2 → lny
2 such that (ϕx)(t) = φ(x(t)).

III. FORMULATION OF BARRIER MPC

The controller is designed using the nominal LTI model
(without any information for the disturbances):

xk+1 = Axk +Buuk

yk =Cxk,
(2)

where xk ∈ Rnx is the vector of states, uk ∈ Rnu the vector of
manipulated variables, and yk ∈ Rny the vector of measured
output variables. Additionally, we assume that A ∈ Rnx×nx

is Schur stable. The formulation of barrier MPC is deduced
from the nominal constrained problem, hence nominal MPC
is presented first through the relevant control action:

Uk = argmin
ũk

1
2
[

N

∑
i=1

x̂T
k+i|kQx̂k+i|k +

N−1

∑
i=0

ûT
k+i|kRûk+i|k] (3a)

s.t. x̂k|k = xk

x̂k+i|k = Ax̂k+i−1|k +Buûk+i−1|k

ŷk+i−1|k =Cx̂k+i−1|k

(3b)

ũk =
[
ûT

k|k . . . ûT
k+N−1|k

]T
∈ U (3c)

N being the prediction horizon. The compact convex set U⊆
Rnu represents the input constraints, Fi : Rn×nu → R:

U : {Fi(ũ)≤Wi|i ∈ {1, . . . ,n}} , (4)

F being a convex function. For the case of linear inequalities,
the constraints can be written as F(ũ) = L ũ ≤W , assuming
Fi(0) = 0 and Wi ≥ 0. If we add the equality constraints (3b)
to the objective function (3a) we obtain:

Uk = argmin
ũ

1
2

ũT Hũ−θ
T
k ũ

s.t.ũ ∈ U,
(5)

where H,R,Q are defined as in [26] and θ is a linear
function of states (θk =−Sxk). The constrained problem is then
transformed to an unconstrained problem as in [21], [18] using
barrier functions and/or penalty functions (relaxed barrier).

Definition 1. Let U be an open (strictly) convex set which
contains the origin, defined as U := ∩Ui, where Ui =
{ũ : Fi(ũ)≤Wi} in the case of hard constraints or Ui =
RnU for soft constraints. Then B is the set of all twice
continuous differentiable ϑ -self-concordant (strictly) convex
barrier functions over U , B : U → R with B(0) = 0 and
∇B(0) = 0.

In the literature there are two popular barrier functions
utilized. The gradient recentered log-barrier [18]

B(U)=∑
i

Bi =∑
i

(
− ln(Wi−Fi(U))+ ln(Wi)−

∇Fi(U)T

Wi−Fi(0)
U
)

(6)
and the weighted recentered log-barrier [21].

B(U) = ∑
i

Bi = ∑
i
(1+wi)(− ln(Wi−Fi(U))+ ln(Wi)) (7)

with wi > 0. In addition, a relaxed barrier function has been
proposed [21] substituting the natural logarithm in (6) & (7)
with a quadratic function βi when Wi−Fi(U)≤ δi with δi > 0.
The quadratic function is defined so that the properties from
Definition 1 are maintained but the domain of the function Bi
is RnU . The use of a barrier function allows the elimination
of the inequality constraints.

Uk = φ(θk) = argmin
ũ

1
2

ũT Hũ−θ
T
k ũ+µB(ũ). (8)

Let the function φ : RnU → RnU be a family of MPCs,
parametrised by µ (and B) generated by the nominal plant.
The robustness of the system (2) with additional unstructured
uncertainty and controlled by (8) is considered using static and
dynamic multipliers for IQCs for the barrier-based MPC. For a
general U , static multipliers are utilized; if U is time-invariant
(as is often the case) then the map φ is also time-invariant so
dynamic multipliers can be explored.

IV. BACKGROUND

A. Properties of Nonlinear Functions

A multi-valued map φ is sector-bounded in the sense that
there exists some symmetric and positive definite K ∈ Rn×n,
(or equivalently φ belongs to the sector [0,K]) such that

φ(θ)T (K−1
φ(θ)−θ)≤ 0 (9)

for all θ ∈Rn and it is additionally slope-restricted, if there is
S ∈ Rn×n, S > 0 such that for all θx,θy ∈ Rn and φx = φ(θx):

(φy−φx)
T (S−1(φy−φx)− (θy−θx))≤ 0. (10)

Additionally, if φ(0) = 0 then a slope-restricted nonlinearity
is also sector-bounded. Another property that we expoit here
is cyclic monotonocity. A n-cyclic monotone increasing multi-
valued map φ is defined as follows:

Definition 2. ([27]) If φ is a n-cyclic monotone increasing
map and φi = φ(θi) then ∀n

〈θ0−θ1,φ0〉+ 〈θ1−θ2,φ1〉+ ...+ 〈θn−θ0,φn〉 ≥ 0. (11)

The n-cyclic monotone is an extension of the monotone
property. Namely for n = 1, inequality (11) turns into the
monotone increasing property and the existence of a convex
gradient function is summarized in [27].

Theorem IV.1. [27] Let φ be a multi-valued mapping from
Rn→ Rn. In order for a closed proper convex function P on
Rn such that φ(θ) ⊂ ∂P for every θ to exist, it is necessary
and sufficient that φ is cyclically monotone.
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B. Integral Quadratic Constraints

IQC’s provide a way to conveniently represent associations
between nonlinear or possibly unknown processes in frequency
space, ω ∈ [−π,π] [3]. Two signals w ∈ ln

2 and ν ∈ ln
2 (with

Fourier tranforms ŵ and v̂, respectively) are said to satisfy the
IQC defined by a multiplier Π, which is measurable, bounded
and Hermitian, if∫ +π

−π

[
ŵ(e jω)
ν̂(e jω)

]∗
Π(e jω)

[
ŵ(e jω)
ν̂(e jω)

]
dω ≥ 0. (12)

The classic stability theorem presented in [3], assumes that
the interconnection between the system transfer function G
and the augmented nonlinearity ∆ is well-posed. In addition
the feedback interconnection between G and ∆ is stable if there
exists ε > 0 such that[

G(e jω)
I

]∗
Π(e jω)

[
G(e jω)

I

]
≤−εI. (13)

C. Zames-Falb Multipliers

Definition 3. ([14]) The class of discrete-time rational Zames-
Falb multipliers M contains all MIMO rational transfer
functions MZF ∈ RLn×n

∞ such that MZF(z) = Hs−HZF(z). Let
HZF denote an n× n symmetric matrix-valued function with
entries in l1, and also let Hs be an n×n real symmetric matrix
with MZF being symmetric doubly hyper-dominant [28]:

Hsii ≥ ∑
j, j 6=i
|Hsi j |+∑

j
||HZFi j ||1 (14)

with HZFi j and Hsi j being elements of matrices HZF and Hs
respectively. Additionally, the subclass M+ ⊂M requires the
following:

Hsi j ≤ 0,HZF i j ≥ 0. (15)

V. PROPERTIES FOR BARRIER MPC

In this section the properties related to barrier MPC are
explored in the context of IQCs. The next two lemmas are
required to show that φ : θk 7→Uk (8) is slope-restricted, sector-
bounded and cyclic monotone.

Lemma V.1.
1) If B∈B, then ∇B is monotone increasing and there exists

m≥ 0 such that ∇2B≥ m I and UT ∇B−mUTU ≥ 0.
2) If B is also strongly convex then we can find m > 0.

Proof:

1) This is trivial when m = 0 through convexity.
2) If B is strongly convex then we can find m > 0 such that

∇2B−mI ≥ 0. Define B̄= B− 1
2 mUTU . Then B̄ is convex

and the result follows since UT (∇B−mU) =UT ∇B̄≥ 0.

Lemma V.2. If U is an open (strictly) convex set which
contains the origin, given by Definition 1 and is also compact,
B ∈ B and the constraints U are hard or B is relaxed by
a quadratic function βi [21], then the recentered barrier is
strongly convex with m > 0.

Proof: For the set described by Definition 1, there is a
finite positive δe such that bi−Fi(U) = bi−LiU ≤ δe . For a
given U ∈U , the following holds:

∇
2Bi =

LT
i Li

(bi−LiU)2 ≥
LT

i Li

δ 2
e
≥ 0. (16)

It is trivial to show that there exits a B j such that ∇2Bi +
∇2B j > 0.

In the rest of the paper the matrix H̃ is defined as:

H̃ = H +µmI. (17)

Theorem V.3. The nonlinearity φ : RnU → RnU (8) belongs
to the sector [0,H̃−1], with m ≥ 0 from lemma V.1 and V.2,
B ∈B and U is a convex set, if φ(0) = 0.

Proof: Using the KKT conditions of (8) and with φ =
φ(θ) ∈U we have:

Hφ −θ +µ ∇B(φ) = 0. (18)

Since U is convex, multiplying (18) by UT , using lemma V.1
we get:

φ
T (H +µmI)φ −φ

T
θ ≤ 0. (19)

Theorem V.4. The nonlinearity φ : RnU → RnU (8) is addi-
tionally slope-restricted on [0,H̃−1] with m ≥ 0, B ∈B and
U is given by Definition 1.

Proof: Using the KKT conditions of (8) we have the
following for φx = φ(θx) ∈U and φy = φ(θy) ∈U

Hφx−θx +µ ∇B(φx) = 0 (20a)

Hφy−θy +µ ∇B(φy) = 0. (20b)

Subtract (20b) from (20a) and multiply by (φy−φx)
T to get:

(φx−φy)
T (H (φx−φy)− (θx−θy))+

+(φx−φy)
T (µ ∇B(φx)−µ ∇B(φy)) = 0.

(21)

Applying Lemma V.1&V.2:

(φx−φy)
T (H (φx−φy)− (θx−θy)) =

− (φx−φy)
T (µ ∇B(φx)−µ ∇B(φy))≤ µm||φx−φy||2.

(22)

Then (φx−φy)
T ((H +µmI)(φx−φy)− (θx−θy))≤ 0. There-

fore, φ is slope-restricted on [0, H̃−1].
It should be mentioned that for the sector bounded result

there is no requirement for U being time-invariant.

Remark 1. This result shows that inclusion of a barrier can
change the maximum slope of the input-output map of the
controller, which widens the stability region of the closed-loop
system. Here, m depends only on the set of constraints and
not on the design parameter µ . In the numerical examples
below, it will be shown that such a formulation can reduce
conservatism significantly in comparison to [8].

We utilize a simple example to illustrate the effect of barrier-
based MPC on the maximum slope. The nonlinearity is given
by U = (argminu 0.25u2 − θu + µ(−ln(1− u)− ln(2 + u)−
0.5u). Fig. 1 depicts the solution for different values of µ .
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Fig. 1. Simple example showing that if a nonlinearity is parametrized by µ

then its slope varies with µ .

In this case the value of m (and the maximum slope) can be
computed analytically (See Appendix A), namely m = 0.889
and Slopemax = (0.5+ 8/9µ)−1. Fig. 1 shows that the max-
imum slope decreases as µ increases. If m is not computed
(and is e.g. assumed to be m= 0) then the maximum slope will
be overestimated compared to the actual value of the slope,
hence increasing the conservatism of the stability analysis.

Remark 2. The parameter m cannot always be calculated
analytically. The search for m may not be trivial and a signo-
mial programming problem [29] is formulated such that the
minimum eigenvalue of ∇2B is computed through deterministic
methods. In Appendix A it is shown that for the case of
box constraints, m can be calculated analytically. For general
stage constraints the problem can be decomposed to smaller
problems, solved using deterministic global optimization.

The barrier MPC is cyclic monotone when the convex set
U is time-invariant.

Theorem V.5. When B ∈ B and in addition U is a time-
invariant convex set, then the nonlinearity φ : RnU → RnU (8)
is n−cyclic monotone.

Proof: For the barrier MPC the following hold:
n

∑
k=0

φ
T
k (θk−θk+1) =

n

∑
k=0

φ
T
k (H(φk−φk+1)+µ(∇B(φk)−∇B(φk+1))) =[

φ0 φ1 . . . φn
]

Ac
[
φ0 φ1 . . . φn

]T
+

+µ

n

∑
k=0

∇B(φk+1)
T (φk+1−φk),

(23)

where φn+1 = φ0, θn+1 = θ0 and

Ac =
1
2



2H −H 0 · · · 0 −H
−H 2H −H 0

0 −H 2H
...

. . .
...

2H −H 0
0 −H 2H −H
−H 0 · · · 0 −H 2H


.

The matrix Ac is always symmetric diagonally dominant
with positive diagonal elements, thus it is positive semi-
definite according to Gershgorin circle theorem [30], so:[

φ0 φ1 . . . φn
]

Ac
[
φ0 φ1 . . . φn

]T ≥ 0. (24)

Since B is convex its gradient is cyclic monotone:

∇B(φ0)
T (φ0−φn)+∇B(φn)

T (φn−φn−1)+ ...

+∇BT (φ1)(φ1−φ0)≥ 0.
(25)

Thus the non-linearity is cyclic monotone.

VI. MULTIPLIERS FOR BARRIER MPC

IQCs for the barrier MPC will be derived in this section
using the results from Section V.

A. Static Multipliers

Corollary 1. For U being a convex set and B ∈ B, the
nonlinearity ϕ : lNU

2 → lNU
2 (8), ∀θ ∈ lNU

2 satisfies IQC with
the following mulitiplier [

0 I
I −2H̃

]
. (26)

Proof: Immediate from Theorem V.3.

Remark 3. Theorem V.3 introduces an IQC for the barrier
MPC where the constraints are generally convex (as long
as the optimization problem is feasible). This case will be
referred to as general. Nevertheless, by tightening the class of
constraints, less conservative results can be computed.

B. Dynamic Multipliers

Time-invariant constraints can be used next to derive dy-
namic multipliers for less conservative stability analysis. We
prove the existence of ZF multipliers for the case of time-
invariant convex constraints in Lemma VI.1, and of less con-
servative multipliers for box and staged constraints. According
to [13], [14], the existence of ZF multipliers additionally
requires the line integral

∫ B
A φ(x)T dx to be independent of

the path. This property is equivalent to φ being the gradient
of some convex function. When, however, the nonlinearity
is not explicitly given, the above properties are difficult to
be computed. Here we propose to use cyclic monotonicity
in order to prove the existence of the convex function. From
Theorem IV.1, the conditions in [13], [14] can be substituted
by the condition of φ being cyclically monotone. Additionally,
φ is bounded by c if ||φ(θ)|| ≤ c||θ || ∀θ ∈ Rn.

Lemma VI.1. Let φ : Rn → Rn be bounded and cyclic
monotone increasing. Then for any θ ∈ ln

2 we have
∞

∑
t=−∞

θ
T
t+τ φ(θt)≤

∞

∑
t=−∞

θ
T
t φ(θt) (27)

and if φ is odd then∣∣∣∣∣ ∞

∑
t=−∞

θ
T
t+τ φ(θt)

∣∣∣∣∣≤ ∞

∑
t=−∞

θ
T
t φ(θt). (28)

Proof: From Theorem IV.1, it is necessary and sufficient
that the mapping is cyclically monotone, for a closed proper
convex function P ∈ Rn that satisfies ∇P(θ) = φ(θ), P(0) = 0.
Since φ is cyclically monotone non-decreasing,

P(b)−P(a)≤ (b−a)T
φ(b). (29)
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Also φ(θ)∈ ln
2 and P(θ)∈ l1 for all θ ∈ ln

2 . Let b= θt and a=
θt+τ . Summing equation (29) with respect to t over (−∞,+∞),
equation (27) follows. Additionally, if φ(θ) is odd, then P(θ)
is an even function. For a =−θt+τ and b = θt

−
∞

∑
t=−∞

θ
T
t+τ φ(θt)≤

∞

∑
t=−∞

θ
T
t φ(θt) (30)

and equation (28) follows due to (27).
Next, the theorem for the existence of ZF mutipliers is

given:

Theorem VI.2. Let the nonlinearity ϕ:lnU
2 → lnU

2 be bounded,
n-cyclic monotone increasing and slope-restricted, with slope
H̃. Let the SISO multiplier be M ∈M+ (or M ∈M and φ is
additionally odd), then MZF = MI, and ∀θ ∈ lnU

2 , φ satisfies
IQCs with the following multipliers:

Π(z) =
[

0 M∗ZF(z)
MZF(z) −H̃MZF(z)−M∗ZF(z)H̃

]
. (31)

Proof: Use Lemma VI.1 and [13].

Remark 4. If there is no special structure, e.g. repeated
nonlinearities, then SISO multipliers should be used in the
form of MZF = MI with M ∈ MSISO. MSISO (orMSISO+)
contains all SISO rational transfer functions MZF ∈RL∞ that
maintain the properties of Definition 3.

Corollary 2. The nonlinearity φ : RnU → RnU (8) satisfies
IQC with multiplier Π(z) (equation (31)), ∀θ ∈ lNU

2 with U a
time-invariant convex set and B ∈B.

Proof:
(a) The proof is almost identical with the one from [13]. (b)
It follows immediately from Theorem V.5 that φ is cyclic
monotone. (c) It follows immediately from Theorem V.4 that
φ is slope-restricted on [0, H̃−1].

The above results can be exploited to provide ZF multipliers
when (possibly relaxed) barrier MPC is utilized.

C. Multipliers for Box/Staged Constraints

The conservatism can be reduced even further when a
special structure of constraints (linear set) is used and more
general multipliers than SISO ZF can be utilized. The fol-
lowing analysis generalizes the results from [31], extending
them to the case of (possibly relaxed) recentered Barrier MPC.
The key idea is to represent the nonlinear function φ as an
equivalent feedback structure. This structure is then formulated
into a nonlinear program ψ together with a linear feedback
term, which can be separated into several smaller parallel
nonlinear programs νi. Multipliers can then be associated with
each νi. In our results, we show that there is a class of MIMO
ZF multipliers MZF for a special structure of staged and box
constraints. Let ψ : RnU → RnU be the convex program:

U = ψ(θ ′) = argmin
u

1
2

uT u−uT
θ
′+µB(u) (32)

with B ∈B.

Lemma VI.3. If θ ′ is equal to θ +(I− H̃)φ(θ), then U =
φ(θ) and U = ψ(θ ′) are equivalent.

Fig. 2. Equivalent feedback structure

Proof: Substituting θ ′ = θ + (I − H̃)φ(θ) in the KKT
conditions of (32), the result follows immediately.

This equivalent feedback structure is depicted in Fig. 2. A
direct consequence of lemma VI.3 is the following:[

θ ′

U

]
=

[
I I− H̃
0 I

][
θ ′

U

]
. (33)

The rest of the analysis is based on the fact that U = ψ(θ ′)
can be written as many parallel convex programs with U =

∑
NL−1
i=0 ui. To do so, special structures of the constraints are

considered such as limitations between adjacent actuators’
movement (so-called staged constraints) [31] as well as box
constraints. Both cases can be written as:

L =
[
LT

0 . . . LT
NL

]T
= diag(L̃0, . . . , L̃NL−1) (34)

with Li having the following property:

LiLT
j = 0 (35)

for i 6= j. Hence, U = ψ(θ ′) can now be written as a set of
parallel convex programs (ui) for the case of staged and box
constraints, U = ∑i ui with ui being a convex program ψi(θ

′).

Lemma VI.4. The nonlinear convex program U = ψ(θ ′),
given by (32), can equivalently be transformed to U = ∑i ui,
with ui being parallel convex programs and βi j a quadratic
function of the ith convex program (see Lemma V.2):

ui = argmin
u

1
2

uT u−uT
θ
′+µ

(
N0

∑
j=1

B̄i j(u)+ ln(bi j)−
LT

i j

bi j
u

)
s.t. Lc

i u = 0

B̄i j(u) =

{
−ln(bi j−Li ju) f or −Li jU +bi j ≥ δ

βi j(u) elsewhere
.

(36)

Proof: See Appendix B
Now, let L̄i be an orthonormal basis of the space spanned

by the rows of Li and νi(p) be the convex program

νi(p) = argmin
q

1
2

qT q−qT p+µ

(
N0

∑
j=1

B̄i j
(
L̄T

i jq
)
−

L̄i jLT
i j

bi j
q

)
.

(37)
Each νi is bounded, n-cyclic monotone and slope restricted
with slope I. Theorem VI.2 can, therefore, be applied:

Lemma VI.5. Let MZFi ∈M+ be a SISO rational strictly
proper transfer function. Then ∀p ∈ lnp

2 , νi satisfies IQC with
the following multiplier:

Πvi(z) =
[

0 M∗ZFi
MZFi −MZFi−M∗ZFi

]
. (38)
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Proof: νi is bounded, n-cyclic monotone and slope re-
stricted with slope (I). Theorem VI.2 provides the result.

The next lemma shows that each ui can be written as a
function of vi.

Lemma VI.6. Each ui can equivalently be written as

ui = L̄T
i νi(L̄iθ

′). (39)

Proof: See Appendix C
Consequently an IQC for the nonlinear system ψ(θ ′) with

the following multiplier can be formulated:

Πψ(z) =
NL−1

∑
i=0

[
L̄i 0
0 L̄i

]T

Πvi(z)
[

L̄i 0
0 L̄i

]
(40)

Theorem VI.7. Let ϕ:lnU
2 → lnU

2 be bound, n-cyclic monotone
increasing and slope-restricted, with slope H̃ under box or
staged constraints. Let the multiplier MZFi ∈M+ be a SISO
rational strictly proper transfer function,

MZF(z) = diag(MZF0 I, . . . ,MZF(NL−1)I)

then ∀θ ∈ lnU
2 , φ satisfies IQC with the following multiplier:

Π(z) =
[

I I− H̃
0 I

]T

Πψ(z)
[

I I− H̃
0 I

]
=[

0 M∗ZF
MZF −H̃MZF −M∗ZF H̃

] (41)

.

Proof: See Appendix D
This theorem can be further extended for an even tighter

class of box constraints where symmetric bounds are em-
ployed. That is, full-block doubly hyper-dominant multipli-
ers [28] can be applied as it can be proven that ψ can be
written as a linear transformation of repeated nonlinearities.

VII. CONVEX SEARCH FOR MULTIPLIERS

In this section the convex search applied to the stability
analysis is presented. The results in this work allow the use
of static multipliers for a wide class of constraints or dynamic
multipliers for a tighter class of constraints. We revisit [16],
[17] and expand the results from [17], in order to incorporate a
larger class of problems, where the slopes are given by a full-
block matrix. Dynamic multipliers may be non-causal and a
factorization is required since they do not have a state-space
representation. For the ith IQC its multiplier can be written as:

Πi(z) = Ψ∗(z)KiΨ(z) = Ψ∗(z)
[

M11
i M12

i
M12T

i M22
i

]
Ψ(z)

For N IQCs then we can then write:

Π(z) = Ψ
∗(z)KΨ(z), (42)

with K being defined in Appendix F. In this work, finite
impulse response (FIR) type multipliers (43) are used. Their
use can be justified using the phase equivalence argument [32].

MZF =

NZF+

∑
j=−NZF−

R j(1− z j). (43)

Fig. 3. Linear system under uncertainty

Using NZF = max(NZF+ ,NZF−), Ψ can be defined as:

Ψ11 =
[
I (1− z−1)I . . . (1− z−NZF )I

]T (44a)

Ψ = diag(Ψ11,Ψ11). (44b)

The slope-restricted nonlinearities described in this work sat-
isfy IQC multipliers as in (41). The resulting M11

φ
, M11

φ
and

M11
φ

are shown in Appendix E. Therefore, the dynamic system
GΨ(z) has non-singular state-space representation and the LMI
conditions can be constructed with state space realization of
(Aψ ,Bψ ,Cψ ,Dψ ) and Gψ =Cψ(zI−Aψ)

−1Bψ +Dψ :

GΨ(z) = Ψ(z)
[

G(z)
I

]
(45)

Through the KYP lemma [33], inequality (13) can be trans-
formed into the following LMI optimization:

min
λ ,K

λ

s.t.
[

AT
Ψ

PAΨ−P AT
Ψ

PBΨ

BT
Ψ

PAΨ BT
Ψ

PBΨ

]
+[

CΨ DΨ

0 I

]T

K
[
CΨ DΨ

0 I

]
≤−λ I,

and additional constraints f or the multipliers

(46)

The additional constraints depend of the class of the mul-
tipliers (if M ∈M+orM ). For static multipliers, R j can be
set equal to zero for j 6= 0. For diagonal multipliers(for
example when asymmetric box or stage constraints are applied,
C−ZF), then R j ≥ 0 for j 6= 0 and R0 > 0. The condition of
doubly hyper-dominance can be similarly expressed.

VIII. ROBUSTNESS OF BARRIER MPC
Here the robustness of the barrier MPC in terms of input-to-

output stability is considered through an illustrative numerical
example. If the transfer function of the open-loop LTI plant
in (2) is G22, the system under the unstructured uncertainty
∆ : lnν → lnw , which satisfies an IQC, is given by Fig. 3. Then,
the barrier MPC (φ ) can be included in the analysis as in [7]

with ∆ =

[
∆1

φ

]
.

A. Numerical Example

A plant is described as

y(z)
u(z)

=

z4 +1.21z3 +0.0238z2 +(b0−4.76 10−6)z+1.19(b0−8 10−8)

z5−0.69z4−0.25z3−4.66 10−3z2 +9.9×10−7z+1.9×10−3 ,

(47)
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where y and u are the output and input of the plant and
b0 > 0 is an uncertain parameter with maximum value b. In
Figure 5 (a) the Nyquist diagram for different b0 is given. The
behaviour of the plant is standard when model-mismatch is
present [34]. It is assumed that the plant in (47) is a reduced
and separated nominal plant under unstructured uncertainty
∆1 : l→ l which is norm bounded as ||∆1|| ≤ b. The nominal
dynamic system is given by the following equation:

y(z) =
z+1.19

z2−0.71z−0.233
u(z). (48)

For this example the LTI plant has eigenvalues 0.9542, -
0.2442 and zero equal to -1.19. As a result, the system is
non-minimum phase. In addition to the nominal plant, the state
observer is given by

x̂(t) = Ju(z)u(t)+ Jy(z)y(t). (49)

Here a steady-state Kalman filter is used with Ju(z) = (zI−
A+ALC)−1B and Jy = (zI−A+ALC)−1AL. For the numerical
example the observer gain L was calculated via the discrete
algebraic Riccati equation with weighting matrices set equal to
the identity matrix. The linear part of Fig. 4 can be transformed

Fig. 4. Control Scheme

into the augmented linear system Ms

Ms(z) =
[√

b I
−S

][
0 G
Jy Ju + JyG

][√
b I

E

]
(50)

with I and 0 the identity and zero matrix, respectively. Only
the control action is applied and hence E =

[
I 0 · · · 0

]
.

Additionally, the scaled uncertainty is defined as ∆̂1 = b∆1
with ||∆̂1|| ≤ 1 and φ the input-output map of the barrier MPC.
The control action is given by (8), where θ =−S x and B the
gradient re-centered barrier function. As a result two IQCs
can be written: one for the controller and one for the given

unstructured uncertainty. For ∆̂1 we have Π∆1 =

[
I 0
0 −I

]
.

For the controller different multipliers are utilized depending
on the case. All the algorithms presented in this work have
been implemented for µ = 0.8 and sufficiently large NZF . The
constraints added to the manipulated variables are −0.5≤ uk ≤
1.0. The control and prediction horizon are both set equal
to 2 and Q = I. Two problems are investigated: Task 1. A
positive gain κ > 1 is applied to the output of the dynamical
system for b = 0 and the goal is to compute the maximum
stable gain. Task 2 is aimed at finding the smallest positive
parameter r of the objective function for b = 0.25 and also the
largest positive b for r = 0.001 so that the system is guaranteed
stable. The results for task 1 are shown in Table I and the
case of a nominal MPC is explored for comparison purposes.

From Table I, the advantage of barrier MPC compared to
the nominal MPC becomes obvious. The maximum gain for
the case of barrier MPC is 2.913 compared to 1.130 for the
nominal MPC. Additionally, after trial and error, we found
that for κ = 3.4, barrier MPC is destabilized, which is very
close to the the computed value. Additionally, for κ = 2.9,
some simulations have been conducted for various µ . From
Fig. 5 (b) the advantage of the barrier MPC is clear, since
the nominal MPC is unstable as expected since the maximum
computed κ is 1.130.

TABLE I
MAXIMUM κ FOR STABILITY

Nominal Barrier
General - 1.091
ZF (NZF = 10) - 1.091
C-ZF (NZF = 1) 1.130 2.913
C-ZF (NZF = 10) 1.130 2.913

For the next task, the results are depicted in Table II.
The analysis shows that barrier MPC is more robust than
the nominal MPC, for all the different methods applied.
Additionally, C-ZF seems to produce the least conservative
results, predicting the system is stable for all possible r even
for NZF = 1. Next, the design parameter is fixed at r = 0.1

TABLE II
MINIMUM r FOR b = 0.25 (A) AND MAXIMUM b FOR r = 0.1 (B)

(A)
r (for b = 0.25)

(B)
b (for r = 0.1)

Nominal Barrier Nominal Barrier
General 3.994 1.150 − 0.0955
ZF (NZF = 10) 3.568 0.724 − 0.0986
C-ZF (NZF = 10) 0.098 0.0001 0.2510 0.5112
C-ZF (NZF = 20) 0.098 0.0001 0.2610 0.5112

and parameter b of the uncertainty changes. The results are
depicted in Table II (B). For this task, the robustness of the
barrier MPC is again demonstrated, since most of the methods
for nominal MPC failed to predict a stable system. However,
all the stability tests performed for the barrier MPC predict
a stable region. Conservatism can be reduced even further by
including more IQCs with respect to the uncertainty. It should
be noted that there is no constraint violation included in this
example, however there is a theoretical guarantee for constraint
violations when a quadratic function βi is employed [21].

IX. CONCLUSION

In this work input-to-output stability results are developed
the case of barrier MPC. The barrier can improve the robust-
ness of the MPC due to the change in the slope. Additionally,
general convex constraints can be employed. Tighter time-
invariant convex constraints as well as staged constraints are
considered. The tighter the constrained case the less conser-
vative the analysis can become, through the use of dynamic
multipliers. A convex search is presented that allows the
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Fig. 5. (a) Nyquist diagram for the full plant of the numerical example. (b)
Simulations for Task 1, where the output starts to oscillate for small µ .

application of stability criteria using multipliers. An important
benefit of the presented methodology is its applicability to
nonlinear systems that can be represented as piecewise affine
(PWA) systems extending our recent work [35].

All Appendices are available online at [36]
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