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One Sentence Summary:  

Multiple pre- and postsynaptic biomarkers were specifically increased in patients with 

Alzheimer’s disease (AD) brain lesions including mild cognitive impairment (MCI) compared to 

controls and non-AD dementia. The levels of these synaptic biomarkers were affected by 

apolipoprotein E genotype. These new biomarkers could be useful for clinical differential 

diagnosis, for monitoring drug effects on synaptic functioning in clinical trials, and for 

understanding the link between the APOE gene and synaptic vulnerability. 
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Abstract  

Objective: To assess the ability of a combination of synaptic CSF biomarkers to separate AD and 

non-AD disorders and to help in the differential diagnosis between neurocognitive diseases.  

Methods: Retrospective cross-sectional monocentric study. All participants explored with CSF 

assessments for neurocognitive decline were invited to participate. After complete clinical and 

imaging evaluations, 243 patients were included. CSF synaptic (GAP-43, neurogranin, SNAP-25 

total, SNAP-25 aa40, synaptotagmin-1) and AD biomarkers were blindly quantified using ELISA 

or mass spectrometry. Statistical analysis compared CSF levels between various groups AD 

dementias n=81, MCI-AD n=30, other MCI n=49, other dementias (OD) n=49, neurological 

controls n=35) as well as their discriminatory powers.  

Results: All synaptic biomarkers were significantly increased in MCI-AD and AD -dementias 

patients compared to other groups. All synaptic biomarkers could efficiently discriminate AD 

dementias from OD (AUC ≥0.80). All but synaptotagmin were also able to discriminate MCI-AD 

from controls (AUC ≥0.85) and AD dementias from controls (AUC ≥0.80). Overall, CSF SNAP 

25aa40 had the highest discriminative power (AUC=0.93) between AD dementias and controls or 

OD, and AUC=0.90 between MCI-AD and controls. Higher levels were associated with two 

alleles of apolipoprotein E (APOE) ε4.  

Conclusion: All synaptic biomarkers tested had a good discriminatory power to distinguish 

patients with AD abnormal CSF from non-AD disorders. SNAP25aa40 demonstrated the highest 

power to discriminate AD CSF positive patients from non-AD patients and neurological controls 

in this cohort.  

Classification of evidence: This retrospective study provides Class II evidence that CSF synaptic 

biomarkers discriminate patients with AD from non-AD patients.  



Introduction 

 

Alzheimer’s disease (AD) is characterized pathologically by the accumulation of extracellular 

aggregation of amyloid-β (Aβ), intraneuronal hyperphosphorylated tau and synaptic and neuronal 

loss (1). According to the amyloid cascade hypothesis, the production of toxic Aβ could lead to 

altered kinase activities inducing tau phosphorylation, neuroinflammation and neurodegeneration 

with synaptic disintegration leading to cognitive decline (2). The abnormal accumulation of these 

proteins may occur several years before the first cognitive symptoms (3) and is accompanied by 

synaptic degeneration (4-10) (11). Several cerebrospinal fluid (CSF) biomarkers are now 

available, including total tau (Tau) and tau phosphorylated on threonine 181 (p-Tau181), 

reflecting neurodegeneration and tau pathology, respectively, and Aβ1-42 reflecting abnormal 

metabolism and deposition of the peptide into amyloid plaques (12, 13). Numerous studies have 

consistently shown a marked increase of CSF Tau and p-Tau181 accompanied by a reduction of 

Aβ1-42 levels in AD and mild cognitive impairment (MCI) due to AD (12, 14). These 

biomarkers help to carry out early AD diagnosis and are currently used in clinical research and 

also in daily clinical practice in a number of countries (15) (16). However, these three biomarkers 

do not give information on synaptic dysfunction or degeneration in the affected patients.  

Pre- and post-synaptic protein expression levels are reduced in post mortem AD brains, and is an 

early neuropathological feature of the disease, and synaptic damage is increasingly recognized as 

a core feature of AD pathophysiology (6-10, 17-19). Synaptic proteins have been detected in the 

CSF of patients and controls (20). Therefore, synaptic biomarkers have been recently evaluated in 

MCI and AD, to assess synaptic dysfunction and degeneration (see below). Recent reports have 

explored CSF neurogranin (Ng), Synaptosomal-associated protein 25 (SNAP-25), growth-

associated protein 43 (GAP-43) and synaptotagmin-1 levels in MCI and AD patients. The CSF 

concentrations of these proteins reflect pre-synaptic and post-synaptic dysfunction.  

 

GAP-43, or neuromodulin, is a protein localized in pre-synaptic terminals and axons of cortical 

neurons. GAP-43 is involved in the maintenance of synapses and in neuritic regeneration (21, 

22). In AD brains, GAP-43 levels are significantly reduced and correlate positively with senile 

plaque load and negatively with the duration of dementia (11, 23, 24). GAP-43 is also found in 

the dystrophic neurites surrounding plaques (11, 25) and is secreted into human CSF (20). 

Studies assessing GAP-43 levels in AD CSF have found correlations with tau levels, but studies 

so far have not settled whether there is a change in AD as compared to controls and to other 



dementias (23, 24). Thus, further studies are needed to clarify the potential value of GAP43 as a 

diagnostic marker in AD.  

 

SNAP-25 has 2 isoforms, with SNAP25A being expressed in embryonic tissues while SNAP25B 

is expressed in adult neural tissue (26). It is an essential pre-synaptic component of the soluble N-

ethylmaleimide-sensitive factor attachment protein receptors (SNARE) complex and is a crucial 

protein for synaptic functions as these proteins initiate the fusion of synaptic vesicles (27). The 

formation of this protein scaffold is a fundamental step in neurotransmitter release and its 

modification could alter the exocytosis of neurotransmitters (28-30). In addition to the central 

function of SNAP-25 in the regulation of neurotransmitter release, new studies have suggested a 

postsynaptic role in receptor trafficking, spine morphogenesis and plasticity (31, 32). We have 

previously shown that SNAP-25 is a promising AD CSF biomarker using an approach of affinity 

purification and mass spectrometry (33). With this approach all soluble forms of SNAP-25 

(SNAP-25tot), as well as the longer soluble forms including at least amino acid 32-40 (SNAP-

25aa40). The same approach has recently been used to investigate changes in CSF levels of both 

SNAP-25tot and SNAP-25aa40 in patients after radiotherapy (34)  

 

Synaptotagmin-1, designated synaptotagmin in this paper, is a pre-synaptic calcium sensor 

indispensable for exocytosis of synaptic vesicles participating in neurotransmitter release in 

hippocampal neurons (35-38). Efficient sustained neurotransmitter release is also dependent on 

reformation of synaptic vesicles after stimulation by endocytosis in which synaptotagmin works 

as an essential vesicle cargo molecule (38). The major function of synaptotagmin is synaptic 

transmission (38-40) suggesting that it is a biomarker candidate reflecting synaptic decline in 

AD. Indeed, synaptotagmin, was detected in the CSF for the first time using a procedure based 

on affinity chromatography, reversed‐phase chromatography, sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS‐PAGE) and chemiluminescence immunoblotting (41). 

Several studies have found a marked reduction of brain synaptotagmin levels in cortical brain 

regions in AD (41-43) and a co-localization of synaptotagmin with neuritic plaques (17). We 

have previously shown that CSF synaptotagmin levels are increased in AD (41), but further 

studies are needed to validate this finding.  

 

Ng is a post-synaptic protein highly expressed in the grey matter of brain regions that are affected 

in AD (cerebral cortex, hippocampus, amygdala) while it is almost absent in the thalamus, 

cerebellum, brainstem and spinal cord (43, 44). This synaptic protein is primarily found in 



excitatory neurons and is concentrated in distal dendrites and dendritic spines (45). Ng is 

involved in synaptic plasticity and in memory consolidation (46) . In AD brains, a marked 

reduction of Ng levels was found in the hippocampus and the frontal cortex (43). Several studies 

have shown that CSF Ng levels are increased in AD compared to controls (47-50) (51). High 

CSF levels predict future rate of cognitive decline (47, 52) and are associated with brain atrophy 

(50). CSF Ng concentrations predict the presence of prodromal AD in MCI (49, 50, 52-54) and 

are also associated with CSF Tau levels. The correlation of CSF Ng and Aβ levels are 

inconsistent in various studies (47, 48, 50, 51, 55-57). In addition, these studies suggest that 

increased CSF Ng levels are early pathophysiological markers of AD related to synaptic loss.  

 

Using a large cohort, we set out to investigate the usefulness of the described pre-synaptic and 

post-synaptic CSF biomarkers, evaluated simultaneously as combined biomarkers in AD 

dementia and in MCI due to AD. We have also performed an assessment of their concentrations 

on diagnostic performance, as well as a possible association with apolipoprotein E (APOE) 

genotype. Our synaptic approach may give a combination of new promising biomarkers that will 

help early detection of neurodegeneration and improve differential diagnosis of neurocognitive 

disorders.  

 

 

Results  
 

CSF concentrations in all groups  

 

The characteristics of the study population are shown in Table 1. The results of all biomarkers are 

presented in Figure 1 and in table 2.  

For all studied synaptic biomarkers, a clear significant difference was detected between the 

following groups: AD versus controls (p<0.001), AD versus other dementia (OD) (p<0.001), AD 

versus MCI not due to AD (Other MCI) (p<0.001), as well as between MCI due to AD (MCI-

AD) and neurological controls (controls) (p<0.001), MCI-AD and other MCI (p<0.001), MCI-

AD and OD (p<0.001). Only SNAP-25aa40 and GAP-43 CSF concentrations were significantly 

different between AD and MCI-AD (p=0.0091 and p=0.041, respectively, Fig. 1A and D), 

SNAP-25 total showed a similar trend for higher concentrations in the dementia than in the MCI 

stage of disease (p=0.07, Fig. 1C) but this trend was insignificant for Ng and synaptotagmin 

(respectively p=0.2, and p=0.95, Fig. 1B and E). Significant difference between OD and controls 



was observed only for synaptotagmin (p= 0.04, Fig 1E). These differences were robust after 

adjustment for age and sex.  

No significant difference in any synaptic biomarker concentration was found between other MCI 

and controls. There was no difference for Ng, SNAP-25aa40, SNAP25 total, GAP-43 

concentrations between OD and controls. 

 

Discriminatory power and sensibility/specificity of explored synaptic biomarkers  

 

Table 3 and Figure 2 present the discriminatory power of CSF synaptic biomarkers. All synaptic 

biomarkers were found to efficiently discriminate AD from OD with an AUC higher than 0.80. 

With the exception of synaptotagmin, they were also able to discriminate MCI-AD from controls 

with AUC higher than 0.85 and AD from controls with AUC higher than 0.80. Overall, the 

highest discriminative power was found for CSF SNAP 25aa40 with an AUC=0.93 to 

discriminate AD from controls and AD from other dementia, and an AUC=0.90 to discriminate 

MCI-AD from controls.  

Table 4 displays the sensitivity, the specificity and the optimum cut-off values of synaptic 

biomarkers between AD and controls. Overall, the sensitivity and specificity were higher than 

70%. GAP-43, Total SNAP 25 and SNAP-25aa40 reach the required characteristics of validated 

biomarkers with a sensitivity and specificity higher than 80%. The optimum cut-off was 279 

pg/ml for Ng, 2430 pg/ml for GAP-43, 78 pM for SNAP-25, 10.9 pM for SNAP-25aa40 and 362 

pM for synaptotagmin: 

Table 5 shows the results of the backward stepwise logistic regression carried out to classify AD 

from non-AD patients and includes all available CSF biomarkers, age, gender, and APOE 4 

status. The only parameters remaining statistically significant in the multivariate model are CSF 

CSF GAP 43 (p=0.05), and CSF SNAP 25 (P=0.02).  

 

Correlation with classical AD CSF Biomarkers and association with APOE genotype 

Table 6 presents the correlations between concentrations of Aβ, Tau, pTau181 and synaptic 

biomarker concentrations in various groups. In controls, MCI-AD and AD groups, all synaptic 

biomarkers are correlated with Aβ40, Tau and pTau181. In the overall population, all synaptic 

biomarkers are positively correlated between them (p<0.0001, r between 0.77 and 0.89, data not 

shown). 

Aβ42 is correlated with all explored synaptic biomarkers in controls, MCI-AD groups but not in 



the AD group. We did not find any other significant correlations between Aβ, Tau, pTau181 and 

synaptic biomarker concentrations in OD and other MCI groups.  

A link between APOE genotypes and CSF synaptic biomarkers was found and is depicted in Fig 

3. A significant increase of synaptic CSF biomarker concentrations was found in APOE 4/4 

patients. The findings were significant for Ng (p=0.004), GAP-43 (p=0.02) and SNAP-25aa40 

(p=0.007) while no statistical significance was found for synaptotagmin and SNAP-25 total. We 

did not find any predictive value for cognitive decline evaluated over a one to eight years period, 

of any synaptic biomarker neither in the overall population nor in all subgroups (AD, MCI-AD, 

other MCI, OD and controls (data not shown).  



Discussion  

 

In this study, we show that all evaluated CSF synaptic biomarkers are significantly increased in 

patients with AD brain lesions (assessed by classical CSF biomarkers) compared to controls, and 

to other MCI or OD. We simultaneously evaluated several pre- and post-synaptic biomarkers in a 

large cohort of patients allowing a valid comparison of their concentrations in several groups of 

diseases, and show that these biomarkers are specifically elevated in AD and MCI-AD and not in 

other neurodegenerative disorders. Further, we demonstrate in living patients that synaptic 

dysfunction is an early event, measurable already in the MCI stage of the disease. Last, we show 

that there is a link between CSF synaptic biomarkers and the APOE 4/4 genotype.  

 

Using a comparison between several synaptic biomarkers, we have revealed that SNAP-25aa40 

seems the best one to discriminate AD from controls and from OD. SNAP-25aa40 also displays 

the best sensitivity and specificity. In AD brain tissue, one study has found that presynaptic 

markers were more affected than post-synaptic markers (58), which matches our finding that 

presynaptic CSF biomarkers (SNAP-25, SNAP-25aa40 and GAP-43) broadly reveal a better 

sensitivity and specificity. However, the results of the discriminatory power between AD and 

controls as well as the sensitivity and specificity of synaptotagmin partially mitigate this 

hypothesis. It is interesting to notice that synaptotagmin is better to discriminate AD from OD 

than Ng. This divergence could be due to the difference between the insoluble form measured in 

the brain and the soluble form evaluated in the CSF. In order to clarify these comparative 

pathophysiological mechanisms, studies evaluating both neuropathological and CSF data are 

needed. 

 

Among CSF synaptic biomarkers, Ng is the well-studied marker while much less data is available 

for the pre-synaptic GAP-43, SNAP-25 and synaptotagmin. Two previous studies evaluating 

GAP-43 in the CSF found somewhat discordant results. In the first paper, Sjogren et al. did not 

find any difference between AD and other neurodegenerative diseases, vascular dementia and 

controls while in the second paper the authors found a small but significant increase similar to 

that observed in our study (23, 24).. The discrepancy compared to earlier studies could be 

explained by the different methods used for quantification, relatively small cohort sizes in those 

studies, as well as the difference between the two recruitment methodologies in the cohorts 

including different diseases and more severe AD patients (23, 24). Also in earlier papers, there 

was a significant correlation between CSF levels of GAP-43 and Tau, which is consistent with 



neuropathological findings describing GAP-43 in neuritic plaques mainly in frontal cortex and 

hippocampus (11, 25) and with our results.  

CSF SNAP-25 was also poorly explored and a few papers have assessed this protein in various 

neurological diseases (59, 60). However, only our previous study has explored CSF SNAP-25 in 

AD patients (33). In this paper, we have shown in several cohorts that SNAP-25 is increased in 

AD CSF compared to controls and MCI-AD (prodromal in AD). There was no cohort effect and 

the best discriminative power was obtained for the longer form SNAP-25aa40 with an AUC at 

0.90 (33). In the present cohort, SNAP-25aa40 displayed the best discriminatory power compared 

to other synaptic biomarkers. Altogether, these results confirm that SNAP-25 or specific forms of 

SNAP-25 could be a very good biomarker. However, future studies comparing all SNAP-25 

forms in various populations are needed to evaluate their comparative value. Finally, the least 

examined synaptic CSF biomarker is synaptotagmin. Only two previous papers have 

demonstrated its detectability in the CSF and a difference between AD, MCI-AD and controls in 

two cohorts (41, 61). The biological profile was the same but the discriminatory power was better 

in the first study and no link with cognitive decline was found (61).  

 

Concerning Ng, one recent study demonstrated in 116 patients a link between CSF Ng levels and 

neuropathological lesions including neuritic plaques and levels of neurofibrillary tangles with 

Braak stages  highlighting the clinical interest of such a biomarker (62). Our study explored one 

of the largest cohort of synaptic biomarkers and has confirmed the increased CSF Ng levels in 

AD patients compared to controls (50, 52, 53, 55, 56) (63-65). More specifically, we demonstrate 

a good discriminatory power between AD and controls, AD and OD and MCI-AD and controls a 

result in line with a previous large study (62), and with findings in three smaller cohorts (53, 56, 

66). The link between Ng and cognitive functions, the predictive value on cognitive decline as 

well as the correlation with Aβ vary somewhat across publications. On the one hand, four studies 

described that CSF Ng predicts the cognitive decline (47, 50, 52, 64), while we could not detect 

such an association, similar to some other studies (51, 53). This discrepancy could be explained 

by the variability of the cohorts, including the smaller cohort sizes in some studies, or by the 

difference of used Ng antibodies. On the other hand, results on the correlation between Ng and 

Aβ42 are variable. Two previous published reports did not find any correlation between these 

two biomarkers neither in AD nor in MCI and nor in controls (47, 49, 52) while one report found 

a correlation within the control group (53) and another one found correlation in AD and other 

neurodegenerative diseases (62). In our study, we show that the link is found in all groups but not 

in AD. In summary, our study has demonstrated that Ng CSF levels are significantly increased 



only in patients with Aβ and tau lesions but without correlations with cognitive decline.  

 

We have observed a link between the APOE 4/4 genotype and the CSF levels of synaptic 

proteins. To our knowledge, this is the first time that a link is found between synaptic dysfunction 

or degeneration and APOE genotype in living patients. This finding is consistent with data from 

neuropathological and basic research. A large neuropathological study found an association 

between APOE genotype and the levels of brain synaptic proteins (58). Several studies using 

APOE 4 human mouse models have found significant synaptic alterations at an early stage of the 

evolution prior to any neuropathological lesions (19, 67). Altogether, these results including our 

findings are in favor of a crucial role of the APOE 4/4 genotype in synaptic fragility that may 

affect the response to injury (58). 

 

Our results raise two questions: i/what is the meaning of the increased CSF synaptic biomarkers? 

Given that synapse degeneration occurs as part of a neurodegenerative process, why are synaptic 

CSF biomarkers specifically increased in AD? Recently, Portelius et al have shown that CSF Ng 

was correlated with a significant reduction in Ng brain levels. Furthermore, a recent PET study 

has demonstrated a significant decrease in SV2A (a synaptic protein) in AD compared to controls 

(68). Altogether, these data support the link between increased CSF synaptic biomarkers and 

synaptic degeneration or loss in the AD brain. However, these studies do not explain the specific 

increases in CSF in AD. One hypothesis could be a potential link between Aβ and tau spreading 

and synaptic loss. In contrast with other dementias, AD display the accumulation of two 

abnormal proteins that are synaptotoxic. Aβ oligomers are formed and transported to synapses 

and oligomeric tau may transmit from one neuron to another along the anatomical connected 

synapses. This double mechanism might explain why the release of synaptic proteins are more 

pronounced in AD than in other neurodegenerative diseases (69). The second hypothesis is the 

influence of ApoE4  on the synaptic trafficking and fragility that could contribute to the 

specifically increased levels of these biomarkers in AD groups. The last explanation is that the 

main brain regions affected in AD (parietal, frontal and temporal cortices amygdala and 

hippocampus) are also the regions with the highest expression of these proteins, contributing to 

the apparent AD specificity of CSF synaptic biomarkers.  

This study has some limitations; this is a retrospective study rather than a prospective one which 

has limited the range of methodological approaches with the same follow-up of the evolution in 

all patients. In some group, the number of APOE genotype was too low to provide useful data for 



statistical analysis per group. The APOE 2/2 genotype is extremely rare and APOE 4/4 is not 

frequent in non-AD group.  

In order to be applied routinely in the clinic, these results need validation in large prospective 

confirmatory cohorts with a precise exploration of potential preanalytical factors. Using these 

biomarkers in practice, clinicians would have i/an early biomarker of the pathophysiological 

process while synaptic alteration is still reversible, ii/a very good differential diagnosis between 

various neurodegenerative diseases, iii/an indirect evaluation of the spreading of synaptic 

toxicity. Fundamentally, these biomarkers could bring about important information on the 

pathophysiological evolution of synapses in living patients and also provide important insights 

into selective neuronal vulnerability in neurodegenerative diseases.  

 



Materials and Methods 

 

This is a retrospective cross-sectional study. CSF samples from subjects with either dementia due 

to AD, MCI-AD, MCI non due to AD (designed as other MCI), and other dementia and from 

neurological Controls (designed as controls) were obtained from the Center of Cognitive 

Neurology at Lariboisière University Paris Diderot Hospital APHP. This department is highly 

experienced in the care management of patients with cognitive disorders and neurodegenerative 

diseases, and has used CSF biomarkers for a long period of time (16, 70-90) . Patients underwent 

a comprehensive clinical examination including personal medical and family histories, 

neurological examination, neuropsychological assessment, lumbar puncture (LP) with CSF 

biomarker analysis, a brain structural imaging study with MRI and a brain PET FDG imaging if 

needed. A consensus diagnosis was made by several clinicians (neurologists, geriatricians), 

neuropsychologists, and biologists who are experts in CSF biomarkers. For each patient, 

diagnosis was made considering CSF results and according to validated clinical diagnostic 

criteria according to the disease. These criteria was also applied to exclude other diseases and to 

specify the Controls. For all patients, diagnoses were validated in a second step by three 

neurologists (CP, EC, JH) and a biochemist (EB-A, KB) before selecting CSF samples. In the 

absence of consensus diagnosis and in cases of disagreement about the final diagnosis, patients 

were not included in the study. According to this method, CSF from patients suffering from AD, 

MCI-AD, other MCI, other dementia and controls were selected. The following cutoff values 

were used to define a biochemical AD signature as supportive criteria for AD (91): Aβ42 (<730 

ng/L), Tau (>300 ng/L), and pTau181 (>58 ng/L).  

 

Disease duration was recorded as the time in months from symptom onset to LP most patients 

underwent mini-Mental State Examination (MMSE) for grading of global cognitive ability. 

 

CSF sampling  

CSF was obtained by LP between the L3/L4 or L4/L5 intervertebral space, using an atraumatic 

24-gauge needle, collected in 10-mL polypropylene tubes centrifuged at 1800 g for 10 min at 

+4◦C. The collected supernatant was aliquoted in 500µl polypropylene tubes and were stored at –

80◦C pending biochemical analysis. Samples were frozen at −80 °C within 1 h after collection 

according to a standardized protocol described in a previous report (16). A small amount of CSF 

was used for routine analysis, including total cell count, bacteriologic examination, and total 

protein and glucose levels. Analysis of CSF biomarkers Aβ42, total tau, and tau phosphorylated 



at threonine 181 (phosphorylated tau) protein measurements were performed using commercially 

available assays from Fujirebio (INNOTEST® Aβ(1-42), INNOTEST® hTAU Ag, and 

INNOTEST® Ptau181) according to the manufacturer’s instructions. For the all sample set, the 

analysis of these biomarkers was performed in a single hospital laboratory (Lariboisère Hospital 

Paris) in two runs and averaged results were used for statistical analyses. The quality of CSF 

evaluations was validated by the Alzheimer’s Association quality control program for CSF 

biomarkers (92) 

 

Immunoassay for CSF Neurogranin (Ng)  

All CSF Ng analyses were performed at the Clinical Neurochemistry Laboratory at the 

Sahlgrenska University Hospital (Mölndal, Sweden) using a previously described analytical 

methodology (49, 62)). The plate was coated with the monoclonal antibody NG 36 (in-house 

developed), covered and put on a shaker at 4°C overnight. Wells were washed three times with 

PBST (10 mM phosphate buffered saline, pH 7.5, 0.05% Tween 20) on a Tecan plate washer, 

followed by incubation for 1 hour with blocking solution consisting in PBST with 1% BSA. 

Plates were washed before the addition in duplicates of samples or standard. The plate was 

covered and shaken for 3 hours at room temperature. After three washing steps, the detection 

antibody (biotinylated Ng 2, in-house developed), diluted in blocking solution, was added and the 

plate was shaken for 1 hour at room temperature. Wells were then washed followed by incubation 

with Streptavidin enhancer diluted in blocking solution for 30 min at room temperature. Wells 

were washed and 100 μL of tetramethylbenzidine substrate (TMB) was added, plates were 

incubated in dark for 20 min, 100 μL of H2SO4 was added and absorbance measured 

immediately at 450 nm, with a 650 nm reference, on a SpektraMax Plus384 microplate reader 

(Molecular Devices). The sigmoidal standard was evaluated with non-linear four-parameter fit 

using SoftMax Pro 5.2 software and sample amounts were obtained using the fitted standard 

curve. Each plate contained dilutions of pooled brain homogenates as internal control. The 

coefficient of variation was less than 20% for acceptance.  

 

 

Immunoassay for CSF GAP-43 

CSF GAP-43 level was determined by ELISA and were performed at the Clinical 

Neurochemistry Laboratory at the Sahlgrenska University Hospital (Mölndal, Sweden)  Plates 

were coated with 100uL of NM4 monoclonal antibody (FUJIRIBIO, Tokyo, Japan) diluted at 

1:3500 in carbonate buffer (pH 9.6) and incubated up to 22 hours at 4°C. Plates were then 



washed with PBST and blocked with a solution of PBST-Casein (10x Casein Blocking buffer 

B6429, Sigma-Aldrich, Missouri, USA) for 1 hour on a shaker at room temperature. After 3 more 

washes, the detection antibody (polyclonal ABB-135, Nordic Biosite, Täby Sweden)) diluted at 

1:7000, samples and calibrators (recombinant GAP-43) diluted in PBST 1% BSA were co-

incubated overnight at 4°C. Plates were washed three times and secondary antibody (anti-rabbit 

IgG HRP, Promega, Wisconsin, USA) diluted at 1:30000 was added and incubated on bench for 

1.5 hours at room temperature.  

Wells were washed and 100 μL of 3,3´,5,5´-tetramethylbenzidine (TMB, KemEnTech 

Diagnostics, Taastrup, Denmark) was added, plates were incubated in dark for 20 min, 100 μL of 

0.2 M H2SO4 was added and absorbance measured immediately at 450 nm, with a 650 nm 

reference, on a SunriseTM microplate absorbance reader (Tecan group, Männedorf, Switzerland). 

The detection limit was 315 pg/ml. 

 

 

In-house SNAP-25/synaptotagmin-1 IP-MS assay 

CSF SNAP 25 and Synaptotagmin analyses were conducted at the Clinical Neurochemistry 

Laboratory at the Sahlgrenska University Hospital (Mölndal, Sweden) following a previously 

established protocol (33, 61) add fernström et al;Mouse monoclonal antibody 41.1 recognizing 

SNAP 25 and mouse monoclonal antibody SMI-81R recognizing Synaptotagmin were used to 

co-immunoprecipitate both proteins with a KingFisher TM Flex System (Thermo Fisher 

Scientific), which uses magnetic rods to move particles through the various binding, mixing, 

washing and elution phases in a 96-well plate format. Immunoprecipitated SNAP-

25/synaptotagmin  from CSF were subsequently digested and analysed on a quadrupole–orbitrap 

mass spectrometer Q Exactive (Thermo Fisher Scientific) coupled to an Ultimate 3000 

chromatography system (Thermo Fisher Scientific). The samples (15 μL) were loaded directly 

onto a Hypersil Gold-C18 column, with 0.1% aqueous FA at 100 μL/min. After 2 min of loading, 

the peptides were eluted off the column using the following linear gradient steps: 0 min 0%B; 4 

min 13%B; 30 min 17%B; 50 min 26%B; 52 min 90%B. The IonMax ion source settings were: 

spray voltage, +4100 V; capillary temperature, +320°C; sheath gas pressure, 25 arbitrary units; 

auxiliary gas pressure, 10 arbitrary units; and heater temperature, +300°C. The instrument was set 

to acquire scheduled pairs of PRM scans in profile mode allowing simultaneous detection of both 

the SNAP 25/Synaptotagmin peptides and the corresponding isotopically labeled peptide 

standards. Data acquisition and analysis were performed with Xcalibar software version 2.2 

SP1.48 (Thermo Fisher Scientific) and Pinpoint 1.3.0.  



 

Statistical analysis.  

Patients' characteristics were described overall and according to their groups (AD, MCI-AD other 

MCI, other dementia and controls). We compared groups using analysis of variance for 

continuous measures and χ2 test for proportions (in adjusted and unadjusted models). We first 

analyzed the Spearman correlation coefficients of the synaptic biomarkers between them, and 

with the usual biomarkers (CSF Aβ42, CSF Tau) overall and stratified by groups of patients. 

Then we performed ROC curves analysis to investigate the ability of the various synaptic 

biomarkers to discriminate between groups of patients (AD vs controls, MCI-AD vs controls, and 

AD vs other dementia), and to establish the optimum cut-offs defined by the highest Youden 

index. 

To investigate which parameters were independently predictive of the AD status among our 

population of patients, we ran a backward stepwise logistic regression models including all the 

CSF synaptic biomarkers, and other potential confounders: age, sex, APOE status. The cut-off for 

exclusions of the variable was fixed at p=0.10 in the stepwise procedure. 

Finally, we investigated the association between CSF biomarkers and the longitudinal cognitive 

decline (repeated MMSE scores) among AD patients by using linear mixed models. The intercept 

and slope (time) were treated as random effects, allowing them to vary between individuals. Time 

in years from baseline was included as a continuous linear term after verification that a quadratic 

term did not improve model fit.  

All P values were two tailed, and P≤0.05 was considered to be significant. All analyses were 

performed using SAS 9.3 (SAS Institute, Cary, North Carolina, USA). 
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Figures:  

Fig. 1. Comparison of synaptic CSF biomarker condentrations in control, MCI, AD and other 

dementia patients 

 
Figure 1 illustrate the quantification of the CSF synaptic biomarkers in Controls, Other MCI, 

MCI due to AD, AD and Other Dementia.  

 

 



Fig. 2. Comparison of synaptic CSF biomarker levels in control, MCI, AD and other dementia 

patients 

 
Figure 2 display the discriminatory power curves. On the left, the ROC for AD versus Controls, 

on the right, the ROC curve for AD versus Other Dementia. SNAP24 (1-40) display the best 

discriminatory power..  

 



Fig. 3. Illustration of the link between Apolipoprotein genotype and synaptic CSF biomarker 

levels 

 

 

Figure 3: The CSF level of neurogranin, GAP-43 and SNAP25 (1-40) are significantly higher in 

the APOE 4: 4 genotype group. 



Tables  
 

Table 1. Characteristics of the population study. 

 

                  

  Overall   Controls AD MCI due to AD Other MCI Other dementia   

Characteristics (N=246)   (N=35) (N=81) (N=30) (N=49) (N=51) P value 

Age, years,  mean (SD) 67.1 (9.1)   60.7 (8.3) 69.3 (7.5) 70.6 (8.1) 63.3 (10.5) 69.5 (7.5) <0.001 

Women, n (%) 138 (56.1)   29 (82.9) 49 (60.5) 19 (63.3) 20 (40.8) 21 (41.2) <0.001 

MMSE, mean (SD) 23.7 (4.9)   26.6 (2.6) 20.4 (4.9) 27.0 (1.6) 25.3 (3.5) 22.9 (5.3) <0.001 

APOE ε4 carriers, n(%) 90 (40.9)   5 (15.6) 44 (57.9) 14 (51.9) 11 (27.5) 16 (35.6) <0.001 

CSF biomarkers, pg/mL, mean (SD)               

CSF Aβ42 751.3 (321.9)   981.3 (276.5) 530.4 (153.5) 609.7 (260.7) 921.1 (284.9) 864.6 (362.5) <0.001 

CSF Aβ40 12181 (5849)   11357 (5481) 14278 (6326) 14239 (6945) 11121 (4757) 9363 (3952) <0.001 

CSF Tau 400.8 (280.5)   199.3 (79.9) 667.9 (293.2) 458.1 (155.2) 214.9 (86.4) 259.7 (149.3) <0.001 

CSF p-Tau 181 61.8 (34.1)   36.0 (13.3) 93.6 (32.7) 75.6 (18.3) 40.5 (14.6) 41.2 (19.5) <0.001 

                  

 



 

Table 2. Synaptic biomarkers according to patients’ groups. 

              

Synaptic biomarkers Controls AD MCI due to AD Other MCI Other dementia P value 

CSF Neurogranin 207.2 (87.4) 366.4 (108.9) 337.3 (98.2) 221.5 (87.4) 212.7 (114.7) <0.001 

CSF GAP 43 1790.4 (770.8) 3767.2 (1310.0) 3202.8 (1080.4) 1990.6 (867.7) 2186.9 (1325.8) <0.001 

CSF total SNAP-25 61.3 (28.4) 99.7 (27.9) 87.9 (23.3) 60.5 (20.4) 55.0 (20.5) <0.001 

CSF SNAP-25aa40 7.3 (3.6) 16.1 (4.9) 13.2 (3.3) 7.4 (2.9) 7.7 (3.8) <0.001 

CSF synaptotagmin 309.9 (159.8) 483.7 (220.8) 480.5 (248.3) 297.5 (93.0) 242.4 (103.8) <0.001 

 

 

 

 

 

 

 

 

 

 

Table 3. Discriminatory power of CSF synaptic biomarkers.  (Area under the curve) 

              

    

    AD vs   MCI due to AD vs   AD vs 

CSF biomarkers   Controls   Controls   other dementia 

Neurogranin   0.88 (0.03)   0.84 (0.05)   0.86 (0.04) 

GAP 43   0.92 (0.03)   0.86 (0.05)   0.84 (0.04) 

Total SNAP-25   0.85 (0.05)   0.81 (0.06)   0.91 (0.03) 

SNAP-25aa40   0.93 (0.03)   0.90 (0.05)   0.93 (0.03) 

Synaptotagmin   0.77 (0.06)   0.75 (0.07)   0.88 (0.04) 

 

 

 



 

 

 

 

Table 4. Optimum cut-offs to discriminate between AD patients and Controls  

 

          

CSF biomarkers Cut-off Sensitivity Specificity Youden index 

Neurogranin 279 0.77 0.8 0.57 

GAP 43 2430 0.88 0.82 0.71 

Total SNAP25 78 0.81 0.82 0.63 

SNAP-25aa40 10.9 0.86 0.89 0.75 

Synaptotagmin 362 0.74 0.71 0.45 

 
 
 
 
 
 
 
 
 

Table 5. Outcome of backward stepwise logistic regression to classify AD from non-AD 

patients 

 
 

      

Predictors Estimates (SE) P-value 

   

   

CSF  GAP 43 2.6 (1.4) 0.05 

CSF SNAP-25aa40 2.2 (0.9) 0.02 

Outcome of backward stepwise logistic regression, cut-off for exclusion p = 0.10.  
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Table 6. Correlation between synaptic biomarkers and Aβ/tau biomarkers 
 
 
           

  Spearman correlation coefficients (P value) 

CSF synaptic biomarkers Neurogranin GAP 43 Total SNAP-25 SNAP-25aa40 Synaptotagmin 

Controls           
Aβ42 0.52 (0.001) 0.56 (<0.001) 0.64 (<0.001) 0.65 (<0.001) 0.64 (<0.001) 
Aβ40 0.46 (0.006) 0.59 (<0.001) 0.72 (<0.001) 0.66 (<0.001) 0.66 (<0.001) 
Tau 0.78 (<0.001) 0.83 (<0.001) 0.70 (<0.001) 0.84 (<0.001) 0.64 (<0.001) 
p-Tau 181 0.77 (<0.001) 0.78 (<0.001) 0.64 (<0.001) 0.72 (<0.001) 0.59 (<0.001) 

MCI due to AD           
Aβ42 0.42 (0.02) 0.48 (0.008) 0.54 (0.007) 0.39 (0.07) 0.59 (0.003) 
Aβ40 0.45 (0.02) 0.62 (<0.001) 0.76 (<0.001) 0.55 (0.01) 0.62 (0.004) 
Tau 0.64 (<0.001) 0.75 (<0.001) 0.59 (0.003) 0.76 (<0.001) 0.35 (0.10) 
p-Tau 181 0.84 (<0.001) 0.86 (<0.001) 0.74 (<0.001) 0.61 (0.002) 0.63 (0.001) 

AD           
Aβ42 0.10 (0.40) 0.14 (0.22) 0.22 (0.10) 0.13 (0.35) 0.17 (0.21) 
Aβ40 0.37 (0.002) 0.50 (<0.001) 0.54 (<0.001) 0.44 (0.002) 0.63 (<0.001) 
Tau 0.75 (<0.001) 0.77 (<0.001) 0.74 (<0.001) 0.83 (<0.001) 0.53 (<0.001) 
p-Tau 181 0.74 (<0.001) 0.79 (<0.001) 0.79 (<0.001) 0.83 (<0.001) 0.61 (<0.001) 

            

 


