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Bone marrow:
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- Upper respiratory tract infections (83.0%)
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- Bronchiectasis (25.6%)
- Granulomatous-lymphocytic interstitial 

lung disesase (GLILD) (7.4%) 

Gastrointestinal involvement:
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- Autoimmune enteropathy (13.9%)
- Celiac-like disease (9.3%)
- IBD-like disease (5.6%)

- Diarrhea of unknown etiology (8.3%)
- Atrophic gastritis (4.6%)

Cardiovascular system:
- Cardiovascular complications (17.8%)
- Behçet‘s disease (5.6%)
- Vasculitis (4.6%)

Malignancies (16.8%):
- Lymphoma (11.1%)
- Solid organ cancer (4.6%)

Neurological complications (13.9%)
Non-infectious fever (12.0%)

Skin:
- Skin infections (37.7%)
- Rosacea
- Autoimmune (14.9%)
- Psoriasis
- Eczema
- Necrotizing fasciitis

Thyroiditis (6.5%)

Liver:
- Hepatomegaly (24.7%)
- Liver disease (19.5%)

Spleen:
- Splenomegaly (48.5%)
- Splenectomy (11.9%)

Lymphoproliferation:
- Lymphadenopathy (35.3%)

"The phenotype of NFKB1 insu�ciency"

Aphthous ulcerations (17.8%)
Alopecia

Bone/Joints:
- Osteopenia (12.9%)
- Arthritis (10.3%)
- Enthesiopathy



1 

 

Characterization of the clinical and immunological phenotype and management of 157 individuals with 

56 distinct heterozygous NFKB1 mutations 

 

Tiziana Lorenzini, MD1,2, Manfred Fliegauf, PhD1,3, Nils Klammer, cand. med.1, Natalie Frede, MD1, Michele 

Proietti, MD, PhD1, Alla Bulashevska, PhD1, Nadezhda Camacho-Ordonez, MD1, Markku Varjosalo, PhD4, 

Matias Kinnunen, MSc4, Esther de Vries, MD, PhD5, Jos W.M. van der Meer, MD, PhD6, Rohan Ameratunga, 

PhD7, Chaim M. Roifman, MD8, Yael D. Schejter, MD8, Robin Kobbe, MD9, Timo Hautala, MD, PhD10, Faranaz 

Atschekzei, MD, PhD11, RESIST, Reinhold E. Schmidt, MD11, RESIST, Claudia Schröder, MSc11, Polina Stepensky, 

MD12, Bella Shadur, MBBS, BMedSci, FRACP12,13, Luis A. Pedroza, PhD14, Michiel van der Flier, MD, PhD15, 

Mónica Martínez-Gallo, PhD16, Luis Ignacio Gonzalez-Granado, MD17, Luis M. Allende, PhD18, Anna 

Shcherbina, MD, PhD19, Natalia Kuzmenko, MD, PhD19, Victoria Zakharova, PhD20, João Farela Neves, MD21, 

Peter Svec, MD22, Ute Fischer, PhD23, Winnie Ip, MD(Res), FRACP24, Oliver Bartsch, MD, PhD25, Safa Barış, 

MD26, Christoph Klein, MD, PhD27, Raif Geha, MD28, Janet Chou, MD28, Mohammed Alosaimi, MD28, Lauren 

Weintraub, MD29, Kaan Boztug, MD30, Tatjana Hirschmugl, MSc30, Maria Marluce Dos Santos Vilela, MD, 

PhD31, Dirk Holzinger, MD32, Maximilian Seidl, MD33, Vassilios Lougaris, MD2, Alessandro Plebani, MD2, Laia 

Alsina, MD, PhD34, Monica Piquer-Gibert, MD34, Angela Deyà-Martínez, MD, PhD34, Charlotte A. Slade, 

MBBS35, Asghar Aghamohammadi, MD, PhD36, Hassan Abolhassani, MD, PhD36,37, Lennart Hammarström, 

MD, PhD37, Outi Kuismin, MD, PhD38, Merja Helminen, MD, PhD39, Hana Lango Allen, PhD40, James E. 

Thaventhiran, MRCP, FRCPath, PhD41, Alexandra F. Freeman, MD42, Matthew Cook, MBBS, PhD FRACP, 

FRCPA43, Shahrzad Bakhtiar, MD44, Mette Christiansen, PhD45, Charlotte Cunningham-Rundles, MD, PhD46, 

Niraj C. Patel, MD47, William Rae, MRCP48, Tim Niehues, MD49, Nina Brauer, MD49, Jaana Syrjänen, MD, 

PhD50, Mikko R.J. Seppänen, MD, PhD51, Siobhan O. Burns, MRCP, PhD52, Paul Tuijnenburg, MD53, Taco W. 

Kuijpers MD53 on behalf of the NIHR-BioResource – Rare Diseases Consortium54, Klaus Warnatz, MD1, RHEUMA, 

and Bodo Grimbacher, MD3,55,56,57.  

  



2 

 

1. Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of 

Freiburg, Faculty of Medicine, University of Freiburg, Germany. 

2. Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and 

Experimental Sciences, University of Brescia and ASST- Spedali Civili of Brescia, Brescia, Italy. 

3. CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany. 

4. Institute of Biotechnology, University of Helsinki, Helsinki, Finland. 

5. Laboratory for Medical Microbiology and Immunology, Elisabeth Tweesteden Hospital, and Department 

of Tranzo, Tilburg University, Tilburg, The Netherlands. 

6. Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands. 

7. Department of Virology and Immunology and Department of Clinical Immunology, Auckland City 

Hospital, Auckland 1010, New Zealand. 

8. The Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Division of 

Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of 

Toronto, Toronto, Ontario, Canada. 

9. Department of Pediatrics, University Medical Centre Hamburg, Hamburg, Germany. 

10. Department of Internal Medicine, Oulu University Hospital, Oulu, Finland. 

11. Division of Immunology and Rheumatology, Hannover Medical University, Hannover, Germany. 

12. Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, 

Israel.  

13. Department of Immunology, Garvan Institute of Medical Research, and University of New South Wales, 

Graduate Research School, Sydney, Australia. 

14. Colegio de ciencias de la salud-Hospital de los Valles and Instituto de Microbiología, Universidad San 

Francisco de Quito, Quito, Ecuador, and Department of Pediatrics, Section of Immunology, Allergy, and 

Rheumatology, Baylor College of Medicine, Houston, TX, USA.  

15. Department of Pediatric Infectious Diseases & Immunology and Nijmegen Institute for Infection, 

Immunity and Inflammation, Radboud University Medical Centre, Nijmegen, The Netherlands. 



3 

 

16. Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute 

(VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona 

(UAB), Barcelona, Catalonia, Spain; Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, 

Spain. 

17. Primary Immunodeficiencies Unit. Pediatrics. Hospital 12 octubre. School of Medicine, Complutense 

University, 12 de Octubre Health Research Institute (imas12), Madrid 28041, Spain.  

18. Immunology Department. Hospital Universitario 12 de Octubre, Madrid, Spain. 

19. Department of Clinical Immunology, Dmitry Rogachev Federal Research and Clinical Center of Pediatric 

Hematology, Oncology and Immunology, Moscow, Russia. 

20. Department of Hematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical and 

Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia. 

21. Primary Immunodeficiencies Unit, Hospital Dona Estefania, Centro Hospitalar de Lisboa Central, Lisbon, 

Portugal. 

22. Department of Paediatric Haematology and Oncology, Haematopoietic Stem Cell Transplantation Unit, 

Comenius University Children's Hospital, Bratislava, Slovakia. 

23. Department of Paediatric Oncology, Hematology and Clinical Immunology, Center for Child and 

Adolescent Health, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany. 

24. Department of Immunology and Molecular and Cellular Immunology Unit, Great Ormond Street 

Hospital & University College London (UCL) Great Ormond Street Institute of Child Health, London, United 

Kingdom. 

25. Institute of Human Genetics, Medical Centre of the Johannes Gutenberg University, Mainz. 

26. Marmara University School of Medicine, Department of Pediatrics, Division of Allergy and Immunology, 

Istanbul, Turkey. 

27. Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, 

Germany.  



4 

 

28. Division of Immunology, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical 

School, Boston, MA, USA. 

29. Divisions of Pediatric Hematology/Oncology, Albany Medical Center, Albany, NY, USA. 

30. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Ludwig 

Boltzmann Institute for Rare and Undiagnosed Diseases, Department of Pediatrics and Adolescent Medicine 

and St. Anna Kinderspital and Children's Cancer Research Institute, Department of Pediatrics, Medical 

University of Vienna, Vienna, Austria. 

31. Laboratory of Pediatric Immunology, Center for Investigation in Pediatrics, Faculty of Medical Sciences, 

University of Campinas - UNICAMP, Campinas, SP, Brazil. 

32. Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany. 

33. Center for Chronic Immunodeficiency and Molecular Pathology, Department of Pathology, University 

Medical Center, University of Freiburg, Freiburg, Germany. 

34. Pediatric Allergy and Clinical Immunology Department and Institut de Recerca, Hospital Sant Joan de 

Déu, Universitat de Barcelona, Barcelona, Spain. 

35. Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Melbourne, Australia. 

36. Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, 

Tehran University of Medical Science, Tehran, Iran. 

37. Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska 

University Hospital Huddinge, Stockholm, Sweden. 

38. PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu 

and Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland. 

39. Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital, 

Tampere Finland. 

40. Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and 

Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom. 

41. Department of Medicine, University of Cambridge, Cambridge, United Kingdom. 



5 

 

42. Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, 

MD, USA. 

43. Australian National University Medical School and John Curtin School of Medical Research, Australian 

National University, Acton, Australia; Department of Immunology, Canberra Hospital, Canberra, Australia. 

44. Division for Pediatric Stem-Cell Transplantation and Immunology, University Hospital Frankfurt, 

Frankfurt/Main, Germany. 

45. International Center for Immunodeficiency Diseases and Department of Clinical Immunology, Aarhus 

University Hospital Skejby, Aarhus, Denmark. 

46. Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 

47. Department of Pediatrics, Section of Infectious Disease and Immunology, Levine Children's Hospital, 

Atrium Health, Charlotte, NC, USA. 

48. Southampton NIHR Wellcome Trust Clinical Research Facility and NIHR Biomedical Research Centre, 

University Hospital Southampton NHS Foundation Trust, Department of Allergy, Asthma and Clinical 

Immunology, University Hospital Southampton, Southampton, United Kingdom.  

49. Department of Pediatric Hematology and Oncology, Helios Klinikum Krefeld, Krefeld, Germany. 

50. Department of Internal Medicine, Tampere University Hospital, Tampere, Finland. 

51. Rare Disease Center, New Children’s Hospital and Adult immunodeficiency Unit, Inflammation Center, 

University of Helsinki and Helsinki University Hospital, Finland. 

52. Department of Immunology, Royal Free London NHS Foundation Trust, University College London 

Institute of Immunity and Transplantation, London, United Kingdom. 

53. Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Department of Pediatric 

Immunology, Rheumatology and Infectious diseases, Meibergdreef 9, Amsterdam, The Netherlands. 

54. NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, CB2 

0QQ, UK. 

55. Institute of Immunology and Transplantation, Royal Free Hospital and University College London, 

London, UK. 



6 

 

56. DZIF (German Center for Infection Research) Satellite Center Freiburg, Germany. 

57. Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency, Medical Center 

University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.  

58. RESIST – Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany 

 

# Corresponding Author 

Univ.-Prof. Dr. med. B. Grimbacher 

Scientific Director 

CCI-Center for Chronic Immunodeficiency 

UNIVERSITÄTSKLINIKUM FREIBURG 

Breisacher Straße 115, 79106 Freiburg 

Phone: +49 (0)761 270-77731 

bodo.grimbacher@uniklinik-freiburg.de 

 

Acknowledgements and conflict of interest statement 

We thank all patients and their families for participation in this study. We are grateful to Mary Buchta, 

Katrin Hübscher, Pavla Mrovecova and Jessica Rojas-Restrepo for their excellent technical assistance. We 
are grateful to Francisco Bonilla, Isil B. Barlan, Katharine Halligan, Andrew MacGinnitie, and Anna Simon for 

their contribution to the patient recruitment process, and Katharina Thoma for helping with the graphical 

abstract.  

This study was supported by the German Research Foundation (DFG) (DFG; SFB1160 – IMPATH) to B.G., and 

under Germany's Excellence Strategy (CIBSS - EXC-2189 - Project ID 390939984 and RESIST – EXC 2155 – 

Project ID 39087428), by the E-rare program of the EU, managed by the DFG, grant code GR1617/14-

1/iPAD; by the „Netzwerke Seltener Erkrankungen“ of the German Ministry of Education and Research 

(BMBF), grant code: GAIN_ 01GM1910A, and by research funding from the German Ministry of Education 

and Research (BMBF, grants # 01E01303 and 01ZX1306F). Some samples have been taken from the CCI-

biobank, a partner of the Freeze Biobank Freiburg.  
All authors declare that there is no conflict of interest.  



7 

 

Abstract 

BACKGROUND: An increasing number of NFKB1 variants are being identified in patients with 

heterogeneous immunological phenotypes.  

OBJECTIVE: We set out to characterize the clinical and cellular phenotype as well as the management of 

patients with heterozygous NFKB1 mutations. 

METHODS: In a world-wide collaborative effort, we evaluated 231 individuals harboring 105 distinct 

heterozygous NFKB1 variants. To provide evidence for pathogenicity, each variant was assessed in silico; 

additionally, 32 variants were assessed by functional in vitro testing of NF-κB signaling.  

RESULTS: We classified 56 of the 105 distinct NFKB1 variants in 157 individuals from 68 unrelated families 

as pathogenic. Incomplete clinical penetrance (70%) and age-dependent severity of NFKB1-related 

phenotypes were observed. The phenotype included hypogammaglobulinemia (88·9%), reduced switched 

memory B cells (60·3%), and respiratory (83%) and gastrointestinal (28·6%) infections, thus characterizing 

the disorder as primary immunodeficiency. However, the high frequency of autoimmunity (57·4%), 

lymphoproliferation (52·4%), non-infectious enteropathy (23·1%), opportunistic infections (15·7%), 

autoinflammation (29·6%), and malignancy (16·8%) identified NF-κB1-related disease as an inborn error of 

immunity with immune dysregulation, rather than a mere primary immunodeficiency. Current treatment 

includes immunoglobulin replacement and immunosuppressive agents.  

CONCLUSION: We present a comprehensive clinical overview of the NF-κB1-related phenotype, which 

includes immunodeficiency, autoimmunity, autoinflammation, and cancer. Due to its multi-system 

involvement, clinicians from each and every medical discipline need to be made aware of this autosomal-

dominant disease. Hematopoietic stem cell transplantation and NF-κB1 pathway-targeted therapeutic 

strategies should be considered in the future.  
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Clinical implications 

The aim of this work is to aid diagnosis, management, and treatment of patients with NFKB1 mutations. 

Clinical features, complications, current treatment options, and future targeted therapeutic strategies are 

illustrated.  

 

Capsule Summary 

We describe the clinical and immunological features of the to date largest cohort of patients with 

deleterious heterozygous NFKB1 mutations. To provide evidence for pathogenicity, we used a combined in 

silico and in vitro approach. 

  

Key words 

NFKB1 variants and mutations, common variable immunodeficiency, reduced penetrance, variable 

expressivity, autosomal dominant inheritance. 
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INTRODUCTION 

The NF-κB (nuclear factor of kappa light polypeptide gene enhancer in B cells) signaling pathway has been 

implicated in several biological processes, including cell survival and proliferation, inflammation, and the 

adaptive immune response1. Its activation in lymphocytes is triggered by antigens, molecular patterns, and 

cytokines. NF-κB transcription factors can form various homo- or heterodimers containing the following five 

subunits: NF-κB1 (also known as p105 which is processed to p50), NF-κB2 (also known as p100 processed to 

p52), RelA, RelB, and c-Rel.  

In unstimulated cells, p50 predominantly assembles with RelA, and remains inactive in the cytoplasm when 

complexed with the inhibitor NF-kappa-B alpha (IκBα). Upon stimulation of the canonical (NF-κB1) 

pathway, the inhibitory IκBα protein is phosphorylated and degraded by the 26S proteasome, thereby 

releasing the active transcription factor heterodimer p50-RelA, which enters the nucleus and regulates the 

expression of its target genes. The non-canonical (NF-κB2) pathway is activated following the engagement 

of a small group of receptors such as the B-cell activating factor receptor (BAFFR) and CD40; this leads to 

proteasomal processing of p100 to generate p52, which preferentially pairs with RelB. The p52/RelB 

complex is mainly involved in B-cell survival and activation2.  

The NFKB1 gene (MIM: 164011) encodes the precursor p105, which is co-translationally processed into the 

transcriptionally-active p50 subunit3. Heterozygous NFKB1 mutations causing p50 haploinsufficiency have 

previously been associated with common variable immunodeficiency (CVID12 [MIM: 616576])4, 

autoinflammatory, and rheumatologic features such as Behçet's disease5, EBV-driven 

lymphoproliferation6,7, severe gastrointestinal manifestations8, and susceptibility to opportunistic and viral 

infections9,10. However, these reports only covered a few cases each, and an overview and understanding of 

the broader clinical spectrum of this NF-κB1-related condition is still lacking. 

In a world-wide collaborative effort, we identified 231 individuals harboring 105 distinct heterozygous 

NFKB1 variants (Fig. S1). Sequence variants were classified into pathogenicity categories based on genetic 

and molecular criteria (Table S1). Here we describe the clinical and immunological features of the largest to 

date cohort of patients (n=157) with 56 distinct NFKB1 mutations (Table S2 and S3).  
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METHODS 

We analyzed 105 heterozygous NFKB1 variants, identified in 231 individuals, from 129 unrelated families. 

For each variant, the following criteria were assessed: the predicted effect on the resulting protein 

(haploinsufficiency mutations, precursor skipping mutations, missense variants affecting the p105 

precursor and the mature p50, and missense variants probably affecting only the functions of the 

precursor), its localization in a functional domain of NF-κB1, the allele frequency in the Exome Aggregation 

Consortium data set, supportive functional studies, and the inheritance and segregation data (Table S1). 

Detailed clinical and laboratory data can be found in Table S3.  Multiple in silico tools (PolyPhen 2, Sorting 

Intolerant From Tolerant, Combined Annotation Dependent Depletion, Mutation Taster) have been used to 

predict the impact of missense changes. Functional assays evaluated the p105 and/or p50 levels in 

peripheral blood mononuclear leukocytes, neutrophils, or GFP-fused p105 and/or p50 in transfected 

HEK293T cells by Western blotting. In addition, we determined the nuclear localization and transcriptional 

activating function in HEK293T cells following transfection of selected GFP-fused p105 and/or p50-like 

mutant proteins by fluorescence microscopy and by using an NF-κB-responsive fluorescence-based reporter 

assay or a dual luciferase reporter assay, respectively (Table S4). 

 

RESULTS 

Genetic and functional assays 

Of 105 variants, our combined in vitro and in silico assessment identified 56 distinct variants in 157 patients 

from 68 unrelated kindred as damaging. Of these 56 mutations, 28 have already been described4,5,7–13, 

while 28 are novel. Thirty-four variants of the 56 mutations were located in the Rel homology domain 

(RHD), 17 in the central part of p105, while three affected the ankyrin repeat domain (ARD); in addition, 

two large deletions were identified (Fig. 1).  

Generally, a haploinsufficiency mutation may either cause the lack of expression of the respective allele, or 

the expression of a severely-truncated protein, that rapidly undergoes decay. As expected, the novel 

variant p.Ser338Leufs*94 revealed that the mutant p105 and p50 had reduced fluorescence intensity and 
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aberrant localization, whereas wild-type (WT) p105 localized to the cytoplasm and WT p50 to the nucleus 

(Fig. 2A and Table S4).  

Precursor-skipping NFKB1 mutations affect the central part of p105. These truncating mutations cause a 

lack of p105, but lead to the expression of a p50-like protein. Upon transfection of four mutant GFP-fused 

constructs, p50-like proteins localized to the nucleus and were indistinguishable from WT p50, potentially 

interfering with target gene transcription (Fig. 2A and Table S4).  

Transfection of 12 GFP-fused missense variants of p105 (Fig. 2A and B) revealed normal expression and 

cytoplasmic localization of the full-length p105, but one of the tested variants (p.Ile87Ser) showed a 

reduced fluorescence intensity in the cytoplasm and an abnormal accumulation of the signal in high 

intensity spots. After stimulation with Phorbol myristate acetate (PMA)/Ionomycin, a marginal increase in 

nuclear fluorescence was observed in cells transfected with WT p105, indicating increased processing to 

p50 (Fig. 2B). In contrast, the p.Ile87Ser mutant p105 was associated with cytoplasmic clumping upon 

stimulation, indicating accelerated decay (Fig. 2B). Accordingly, Western blot analysis showed a reduced 

expression of the mutant p.Ile87Ser in transfected cells (Fig. 2C). In luciferase reporter assays, two of the 

missense mutations (p.Arg57Cys and p.Ile87Ser, both located in the N-terminal part of the RHD) showed 

reduced promoter activation (Fig. 2D). In agreement with the ACMG classification, the remaining missense 

variants might only cause subtle rather than deleterious effects (Table S4).  

  

Patient characteristics 

Among the 157 mutation carriers, 121 were classified as affected, while 36 were considered healthy (Table 

S2). The median age of the whole cohort at the time of evaluation (June 2018) was 38 years (range 6 

months-79 years). The median age of healthy subjects (21·5 years) was lower than that of affected patients 

(39 years) (P<0.001) (Fig. 3A). As genetic screening could not be performed in all first-degree relatives of 

the affected patients, clinical penetrance was estimated to be 70% (Fig. S2). We found an increasing age-

dependent penetrance (76·7% in individuals aged ≥10 years, 85·7% in individuals aged ≥30 years and 100% 
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in individuals aged ≥ 60 years), suggesting that the disease may manifest over time rather than having a 

bona fide reduced penetrance.  

The median age at which the first characteristic clinical manifestation occurred (mostly infections, 

autoimmune manifestations, and inflammatory symptoms), was 12 years (mean 17·2 years; range birth-69 

years). The median age at NF-κB1-related disease diagnosis was 23 years (mean 27·1 years; range 1 month-

73 years). Primary diagnoses at the time of disease-onset were predominantly antibody deficiency (89·5%), 

diseases primarily characterized by autoimmunity (57·4%) and immune dysregulation (17·8%), and 

autoinflammatory disorders including Behçet's disease (5·6%). The median follow-up time was 9 years 

(mean 11·7 years; range 0 - 50 years). 

At the time of clinical data analysis (June 2018), 17·1% of patients of the affected carriers were deceased 

(Fig. 3B). Mortality rates were higher among males (21·5%) than females (12·9%) (P=0.22). Death occurred 

at a median age of 52 years (range 35-78). The most frequent causes of death were infections on the 

background of a chronic illness (12/20), and complications from malignancies (5/20). 

 

Respiratory involvement 

Upper respiratory tract infections occurred in 83% of the 106 affected mutation carriers with definite 

mutations in NFkB1, on whom we had clinical data: 59·8% had sinusitis, 30·4% otitis, and 16·7% 

pharyngotonsillitis. Chronic sinusitis and nasal polyps led to sinus surgery in 6·9% of patients (Figure 4A and 

C), while recurrent otitis was treated with tympanostomy tube placement in 5·9% of patients. Lower 

respiratory tract infections presented as pneumonia in 59% of patients and as bronchitis in 41·7% (Fig. 5A). 

Recurrent pneumonia (>3 episodes during observation period) occurred in 24·2% of patients with any 

pneumonia; in 4·9% of patients, lung infection was complicated by pleural empyema. In 39·6% of patients, 

chronic lung disease was confirmed by pathological pulmonary function test (PFT) and/or the detection of 

structural abnormalities by radiology or lung biopsy, and was associated with reduced survival (P=0·003) 

(Fig. 4E-J and R). Patients with a history of pneumonia were at increased risk of developing lung disease (OR 

8·9; 95% CI: 3·1-25·9; P<0·001). Bronchiectasis was detected by computed tomography (CT) in 25·6% of 
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patients (Fig. 4G and 5A). Interstitial lung disease had both granulomatous and interstitial histological 

patterns (granulomatous-lymphocytic interstitial lung disease, GLILD) in 7·4% of patients (Fig. 4E and 5A), 

while lung fibrosis and granuloma were detected in 6·4% and 3·2%, respectively. Five patients had 

pulmonary surgery, three patients with bronchiectasis underwent lobectomy, but one pneumonectomy 

was complicated by empyema, the remaining two patients with empyema had lung decortication.  

 

Gastrointestinal involvement 

Diverse gastrointestinal involvement was observed in 54·2% of patients (Fig. 5A). Gastrointestinal infections 

occurred in 28·6% (n=30) of patients. The histopathological analysis of gastrointestinal biopsies, obtained in 

28% of the 107 patients, revealed Herpes esophagitis (1·9%), eosinophilic esophagitis (0·9%), celiac-like 

disease (9·3%), chronic enteropathy mimicking inflammatory bowel disease (5·6%), lymphocytic or 

collagenous colitis (4·6%), and cytomegalovirus (CMV) colitis (0·9%). In 8·3% of patients, no cause for 

chronic diarrhea was identified, despite extensive fecal examination and normal or non-specific intestinal 

biopsies. The liver was involved in 24·1% of patients, with cirrhosis (3·7%), nodular regenerative hyperplasia 

(4·6%), hepatic hemangioma (3·7%) and hepatitis (7·5%) being the major pathologies. Hepatitis was 

classified as autoimmune in three patients (Fig. 4 K-N), as drug-related in three patients or virally-induced in 

two patients (hepatitis A virus-related and hepatitis C virus-related in AD.I.1 and C.II.5, respectively).  

 

Autoimmunity and immune dysregulation 

Autoimmune conditions affected 57·4% of patients (Fig. 5A). The most common autoimmune conditions 

were cytopenia (43·9%), enteropathy (13·9%), skin disease (14·9%, Supplementary appendix 2.II), arthritis 

(10·3%), thyroiditis (6·5%), vasculitis (4·6%), hepatitis (2·8%), pernicious anemia (2·8%), type I diabetes 

(1·8%) and Addison’s disease (0·9%) (Fig. 5A). Autoantibodies against red blood cells or granulocytes were 

detected in 17·6% of patients. Subjects with autoimmune cytopenia were more likely to have 

lymphoproliferation (OR 41·2; 95% CI: 12·3-137·6; P<0·001), splenomegaly (OR 36·4; 95% CI: 12-111; 

P<0·001) or interstitial lung disease (OR 8·3; 95% CI: 0·9-72·2; P=0·05).  
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Lymphoproliferation and malignancies  

Splenomegaly, lymphadenopathy, and hepatomegaly were detected by clinical assessment or 

ultrasonography in 48·5%, 35·3% and 24·7% of patients respectively (Fig. 4B and D, and 5A). Generalized 

expansion of the lymphoid compartment was associated with lung, liver and gastrointestinal tract 

infiltration (OR 9·3; 95% CI: 2·5-34·2; P<0·001). Malignancies occurred in 18 of 107 (16·8%) of patients (Fig. 

5A); non-Hodgkin B-cell lymphomas were the most common, 8 patients (7·5%). Solid organ cancer occurred 

in five patients (4·6% of all patients, including skin, lung and cervical cancer). The median age at diagnosis 

of cancer was 46 years (range 11-77). Death, primarily cancer-related or secondary to sepsis, occurred in 

41·2% of patients with malignancies. Langerhans cell histiocytosis occurred in one child (AF.II.1).  

 

Types of infections 

Pathogenic bacteria, viruses and fungi were identified in 53·7%, 25%, and 12% of patients, respectively (Fig. 

5B). Bacteria were isolated from expectorated sputum samples in 31.5% of patients, with the most 

common being Haemophilus influenzae (23·1%), Streptococcus species (17·6%), Moraxella catarrhalis 

(5·6%), or Pseudomonas species (4·6%). Stool cultures were positive in 18·5% of patients, with Clostridium 

difficile (6·5%), Salmonella species (5·6%) and Campylobacter jejuni (3·7%). Ten patients with NFKB1 

mutations developed sepsis (9·3%), four after surgical procedures, three secondary to pneumonia. Bacteria 

were isolated from blood samples in only three cases (Escherichia coli, Enterococcus faecalis and 

Staphylococcus epidermidis). Five patients were diagnosed with Mycobacterium avium complex (MAC) 

infection, affecting the lungs in four patients and the lymph nodes in one child. Disseminated bacillus 

Calmette-Guérin disease after vaccination and Mycobacterium genavense infection occurred in one patient 

each (W.I.1 and AF.II.1, respectively). In 6·5% of patients with respiratory symptoms, viral pathogens 

(influenza virus, RSV, rhinovirus and adenovirus) were isolated. In stool samples 9·3% of patients had 

norovirus (5·6%), rotavirus (1·9%), adenovirus (0·9%), or HAV (0·9%). EBV infection presented as a low-

grade/reactivating EBV infection (viral load <500 copies/ml) and EBV-associated lymphoproliferative 
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disease (viral load >1,000 copies/ml) in seven and three patients, respectively. CMV reactivation caused 

hepatitis, cytopenia, and retinitis in one patient each. A patient with colitis and diarrhea had a colon biopsy 

that was positive for the CMV antigen (Table S5). JC virus was detected in the cerebrospinal fluid of three 

patients with PML. They had normal levels of CD4 and CD8 T cells, but two of them had B-cell depletion 

therapy (Table S5). PML was the cause of death in one patient (AR.I.4). Candida species were isolated from 

skin swabs, expectorated sputum samples, and stool samples in 5·6% of patients. Dermatophytes 

accounted for noninvasive skin infections in three patients. Undetectable serum IgE (<2 IU/ml) was found in 

54·2% of patients. Respiratory fungal opportunistic infections were caused by Aspergillus species and 

Pneumocystis jirovecii in three patients each; two of these were under immunosuppressive therapy (Table 

S5).  

 

Immunological assessment 

At the time of diagnosis, the majority (88·9%) of symptomatic patients over age 4 years presented with 

serum IgG levels below 5 g/l (median 3·6 g/l, range 0-9·9 g/l), and a marked decrease in at least one of the 

IgA or IgM isotypes (<0·8 g/l and <0·4 g/l, respectively). In 10·7% of patients, all classes of immunoglobulins 

were found to be normal. A poor response to T-dependent (tetanus and diphtheria toxoid) and T-

independent (pneumococcus) antigens was found in 65·2% of individuals. In 50% of patients, the levels of 

circulating B cells were still within the lower normal range of 6%-19%, or 100-500 cells/µL, respectively (Fig. 

S3A). In 60·3% of patients, the percentage of IgM-IgD-CD27+ switched memory B cells was ≤ 2% (normal 

range 6·5%-29·2%) (Fig. S3A). An expansion of CD21lowCD38lowCD19hi B cells to above 10% was found in 

56·1% of affected individuals (normal range 1·1%-6·9%) (Fig. S3A). We observed a significant correlation 

between the expansion of CD21low B cells above 10% and both autoimmune cytopenia (OR 5; 95% CI: 1·1-

22·3; P=0·03) and lymphoproliferation (OR 5·7; 95% CI: 1·4-23·5; P=0·01). Overall, opportunistic infections 

occurred in 15·7% of the patients and were associated with median CD4+ T cell count not as low as 

expected (588/µL), a profound B-cell defect (median B cell count 46/µL), ongoing immunosuppressive 

treatments, and a poor outcome (Table S5). Low numbers of circulating NK cells < 100/µL, found in 33·3% 
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of patients (Fig. S3A), were associated with an increased risk of viral infections (OR 2·8; 95% CI: 1·1-6.9; 

P=0·02). 

 

Treatment 

IgG replacement therapy alone was sufficient to treat 14·5% of the patients who needed medical 

intervention, while 85·5% of the patients required additional therapy. Antibiotic prophylaxis, antifungal 

agents and antiviral drugs were added to treat 44·8%, 12·5%, and 12·4% of the patients, respectively (Fig. 

S4). In addition to IgG replacement, 60·1% of patients with autoimmune cytopenia were treated with 

systemic corticosteroids. For refractory or recurrent cytopenia, 17·4% of the patients had anti-CD20 

monoclonal antibody (rituximab), 15·2% splenectomy, and 8·7% mycophenolate mofetil. GLILD was treated  

with oral corticosteroids alone in five patients, or in combination with immunosuppressive agents 

(cyclophosphamide, mycophenolate mofetil, rituximab and cyclosporine), to which there was only a partial 

response. Non-infectious enteropathy was treated with systemic corticosteroids in 13 of 17 patients, while 

three patients received azathioprine (M.II.1, AH.I.1, and BB.I.1), eliciting a partial response. In addition to 

systemic corticosteroids, three patients with inflammatory bowel disease (IBD)-like exacerbations received 

mesalazine. In patients (84·6%) with oral and genital ulcers, systemic corticosteroids induced a good 

response. Three individuals with lymphoproliferative disease were treated with anti-CD20 (rituximab), 

which led to complete remission. Abatacept, a cytotoxic T lymphocyte antigen 4 (CTLA-4) fusion protein, 

was used to treat one patient with refractory autoimmunity and lymphoproliferation, eliciting a good 

response (Q.I.1). HSCT is currently planned for four patients with EBV-lymphoproliferative disease, 

refractory cytopenia with lymphoproliferation, and mycobacterial disease (AB.II.1, S.I.1, AP.I.1, and BL.II.1). 

 

DISCUSSION 

Heterozygous NFKB1 mutations causing p50 haploinsufficiency have previously been reported to be 

associated with various phenotypes ranging from mere antibody deficiency to multi-organ 

autoinflammatory conditions4-10. However, a comprehensive clinical description of the extended phenotype 
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of the NF-κB1-related phenotype has been lacking. Here, we show that antibody deficiency was the main 

finding in patients with NFKB1 mutations (88·9%). However, this may well present as an ascertainment bias, 

as this survey was initiated by clinical immunology centers of the ESID (European Society for 

Immunodeficiencies). Only 76·9% of patients fulfilled the revised ESID registry criteria for CVID, indicating 

that also patients with normal or only mildly-affected humoral immunity may have an impaired canonical 

NF-κB signaling. The median age was lower in healthy mutation carriers than in affected patients, and 

progressive development of humoral immunodeficiency was observed in some individuals, suggesting an 

age-dependent manifestation and expressivity of NFKB1-related phenotypes. Hypogammaglobulinemia is 

the reason for the high incidence of bacterial infections in our cohort, especially those affecting the upper 

(83%) and lower respiratory tract (59%), the skin (37·7%) and the gastrointestinal tract (28·6%). Notably, 

15·7% of patients developed opportunistic infections, a much higher percentage than expected in CVID14,15. 

The observed difference can be explained by our definition of CVID (https://esid.org/Working-

Parties/Clinical-Working-Party/Resources/Diagnostic-criteria-for-PID2#Q3), which did not exclude patients 

with a T-cell defect16. However, a measurable CD4 T cell defect was observed in some of our patients 

(15·1%), but was not necessarily associated with opportunistic infections (P=0·57)17. Our observations 

suggest that in addition to the NFKB1 mutation, an immunosuppressive treatment may impair the T-cell 

response and, in combination with the lack of B cells, contribute to the pathogenesis of opportunistic 

infections. The clinical phenotype was also dominated by lymphoproliferation, particularly splenomegaly 

(48·5%) and lymphadenopathy (35·3%), and by autoimmunity (mainly cytopenia) (43·9%). Low serum IgA 

and IgM levels, which reflect the loss of switched memory B cells, were associated with an increased risk of 

developing autoimmunity and splenomegaly. Thus, defective isotype switching and somatic hypermutation 

may each account for the increased presence of autoreactive B cells18. Autoimmune cytopenia and 

lymphoproliferation were also associated with an elevated proportion of CD21low B cells (>10%). CD21low B 

cells develop after chronic stimulation and have been found to be enriched in autoreactive clones19. 

Impaired canonical NF-κB signaling has been observed not only in NFKB1-haploinsufficient patients, but 

also in CVID-patients with the CVID 21 low phenotype, thus potentially contributing to the accumulation of 
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CD21low B cells20. Conversely, a Th1-skewed profile in peripheral blood T cells, combined with the 

overexpression of proinflammatory cytokines such as IL-1β and tumor necrosis factor (TNF-α), may 

contribute to the autoinflammatory symptoms6,8. 

Therapeutic strategies for individuals with antibody deficiency include immunoglobulin replacement 

therapy Patients with autoimmunity and immune dysregulation shall be treated with steroids and 

rituximab. However, the beneficial effect has to be weighed against the infectious risk of 

immunosuppression. The CTLA-4 fusion protein abatacept was used to treat one patient with good 

response. Additional therapeutic options that still require evaluation include hematopoietic stem cell 

transplantation (HSCT), and targeted therapeutic strategies such as proteasome inhibitors. The potential 

therapeutic effect of anti-TNF, which inhibits TNF-mediated NF-κB activation, suggests that NF-κB1-related 

diseases result in dysregulated, rather than defective, NF-κB signaling. 

However, immune dysregulation may result not only from a defective, but also from an increased NF-κB 

activation21,22. Indeed, p50 homodimers, stabilized by B cell leukemia 3 protein (Bcl-3), function as 

inhibitory factors for NF-κB1 transcriptional activity because they do not contain the transcriptional 

activation domain that is otherwise exclusively present in RelA (and RelB and c-Rel); however, they do 

compete with p50/RelA heterodimers for binding to DNA23. 

While studying this cohort, it became clear that the development of drugs specifically interfering with the 

NF-κB signaling pathway will be an important step forward not only for the personalized treatment of 

patients with NF-κB-related disease, but also for patients with more common autoimmune or inflammatory 

conditions. 
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Figure legends 

 

Figure 1. Localization of NFKB1 mutations. Numbers indicate amino acid positions. Horizontal black bars 

delineate the location of four different groups of damaging NFKB1 mutations. For each mutation, the 

number of carriers is indicated.  

 

Figure 2. Subcellular localization, expression and activity of distinct types of NFKB1 variants. HEK293T 

cells were transiently transfected with N-terminal GFP-fused constructs, as indicated. Nuclei were stained 

with Hoechst 33342 (blue). (A) Haploinsufficiency mutations caused aberrant signals, whereas p50-like 

proteins (precursor-skipping variants) were localized to the nucleus. Missense variants (introduced into the 

full-length p105) produced signals that were indistinguishable from WT p105. (B) PMA/ionomycin 

treatment caused clumping of the p.Ile87Ser mutant. (C) Western Blot analysis (i) confirmed that 

transfected WT and transfected mutant p105 each underwent processing to p50, and (ii) revealed the 

limited expression of the p.Ile87Ser variant. GAPDH was used as loading control. (D) Loss of luciferase 

reporter activity with p.Arg57Cys and p.Ile87Ser mutants. Relative light units were normalized to co-

transfected Renilla luciferase. Mock not shown. DNA amounts were compensated with non-related plasmid 

DNA. Depicted data represent the results from 2 to 4 experimental repeats, additional data can be found in 

Figure S6. 

 

Figure 3. Clinical course and survival rate of NFKB1 cohort. (A) Cumulative percentage of symptomatic 

patients who developed infections, autoimmunity, lung disease and cancer. (B)  Kaplan-Meier survival curve 

with 95% confidence interval (dotted lines). 

 

Figure 4. Exemplary CT and MRI findings and histopathology in patients with damaging heterozygous 

NFKB1 mutations. (A) and (C) from the same patient polypoid shifting of the ethmoidal cells as well as both 

sinus maxillares. Lower displacement of the frontal sinus and the sphenoid sinus. (B) and (D) from the same 



patient. Hepatosplenomegaly. Multiple liver hemangiomas and small liver cysts. Additional signs of focal 

nodular hyperplasia. Individual cystic lesions of the spleen. Widening of the portal vein due to possible 

portal venous hypertension. (E-J) Several CT scans from different patients showing multiple pulmonary 

nodules, bronchiectasis with inflammatory changes and interstitial lung disease. (K) and (L) Hepatitis with T 

cell dominant lymphocytic inflammation. K) Portal (asterisk) and intralobular (arrowhead) inflammation. L) 

Higher magnification image showing intralobular lymphocytes and epithelioid cells, reminiscent of 

microgranulomas, with apoptosis of hepatocytes (nuclear remnants highlighted by arrowhead). (M) CD3-

positive T-cells encircling an apoptotic hepatocyte, suggestive of T-cell driven damage. (N) Corresponding 

area to (M), showing CD4-positive T cells, few monocytes and intrasinusoidal macrophages (Kupffer cells). 

(O), (P) and (Q) Slightly chronic gastritis with patchy lymphocytic inflammation of the antrum (O, P 

highlighted by arrowhead) and corpus (Q highlighted by arrowhead). (R) Chronic lymphocytic 

peribronchitis. Magnifications indicated by bars. 

 

Figure 5. Main clinical findings in patients with damaging NFKB1 mutations. Percentage distribution of 

clinical manifestations (A), and infection types (B).  
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Figure 3. Cumulative frequency of clinical manifestations and survival rate in NFKB1 cohort.  

 

 

 

 

 

 



1 
 

Figure 4. Exemplary CT and MRI findings and histopathology in patients with damaging heterozygous 

NFKB1 mutations. 
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B 
Bacterial infections 53.7% 
H. influenzae 23.1% 
Streptococcus spp. 17.6% 
C. difficile 6.5% 
Mycobacterium spp. 6.5% 
Moraxella catarrhalis 5.6% 
Salmonella spp. 5.6% 

Pseudomonas spp. 4.6% 
Staphylococcus spp. 4.6% 
C. jejuni 3.7% 
E. coli 3.7% 
Enterococcus spp. 2.8% 

Viral infections 25.0% 
EBV 9.3% 
CMV 6.5% 
Norovirus 5.6% 
JC virus 2.8% 
Influenza virus 2.8% 

RSV 2.8% 
Adenovirus 1.9% 
Rotavirus 1.9% 
Rhinovirus 0.9% 
HAV 0.9% 

Fungal infections 12.0% 
Candida spp. 5.6% 
Aspergillus spp. 2.8% 

Dermatophytes 2.8% 
Pneumocystis spp. 2.8% 

Parasitic infections 4.6% 
Giardia lamblia 3.7% 
Cryptosporidium spp. 0.9% 

 

Figure 5. Main clinical findings in patients with damaging NFKB1 mutations.  
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1. Supplementary Methods  

1.I. Genetic analysis and sequence variant interpretation 

We identified 231 individuals harboring 105 distinct heterozygous NFKB1 variants. The inclusion criteria were: clinical 

diagnosis of CVID according to the European Society for Immunodeficiencies diagnostic criteria for CVID 

(https://esid.org/Working-Parties/Clinical-Working-Party/Resources/Diagnostic-criteria-for-PID2#Q3)1, predominantly 

antibody deficiency, autoimmunity and immune dysregulation, autoinflammatory phenotype, and family history for 

primary immunodeficiency (PID). While 30 variants had previously been described, 75 were novel. NFKB1 variants 

were detected by targeted next generation, whole-exome- or whole-genome sequencing (Fig. S1). Sequence variants 

were classified according to the American College of Medical Genetics and Genomics guidelines3 as pathogenic (39), 

likely pathogenic (17), benign (1), likely benign (4) and of uncertain significance (44) (Fig. S1 and Table S1). Finally, 

157 individuals with the 56 pathogenic or likely pathogenic heterozygous NFKB1 mutations were included into the 

main analysis cohort. Out of 94 subjects with non-pathogenic variants, twenty-nine individuals, carrying variants of 

uncertain significance and with available clinical information, were separately documented and showed a “NF-κB1-

related” phenotype (Table S2 and S3). 

 

1.II. Cohort 

The study cohort included 157 mutation carriers, including 121 affected individuals, and 36 unaffected subjects, i.e. 

relatives without manifestations of PID (Fig. S2). Thirteen relatives of mutation carriers had no available 

gDNA/genotyping but fulfilled the criteria for PID (Tab S2). Three of them, all previously described (NA.II.19, F1.II.1, 

AU.I.2), were added to the cohort of affected individuals, the other 10 were allocated to the group of 14 individuals 

lacking adequate clinical information and were hence only included in the epidemiologic analysis. Ninety-two mutation 

carriers have previously been published4–14. Hence, the present work represents a meta-analysis, spiked with detailed 

clinical information on fourty-four out of 107 novel NFKB1 affected mutation carriers (Table S2 and S3).  

The research was conducted in accordance to the principles of the Helsinki Declaration and following approved 

protocols of the Albert-Ludwigs-Universität Freiburg, Germany. Samples were collected with the written informed 

consent of all study participants, or their parents in the case of minors, under local ethics board-approved protocol 

295/13 version 140782. For all individuals, data were collected by the attending physicians using a detailed 

questionnaire including genetics, clinical history, laboratory values, and treatment. 

The following autoimmune phenomena were detected: autoimmune cytopenia, pernicious anemia, thyroiditis, vitiligo, 

psoriasis, alopecia, enteropathy, arthritis, hepatitis, Addison’s disease and diabetes mellitus. The following infections 
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were defined as opportunistic: invasive mycoses (aspergillosis, candidiasis and pneumocystosis), cytomegalovirus – and 

Epstein-Barr virus (EBV)-associated disease, John Cunningham virus (JC) virus infection, Pseudomonas species 

pneumonia, cryptosporidiosis and atypical mycobacterial infection. 

Laboratory tests included whole blood cell count, serum immunoglobulin levels, vaccine response to tetanus, diphtheria 

toxoid (T-dependent response), and pneumococcus (T-independent response), and flow cytometry analysis of peripheral 

circulating lymphocytes (with T- and B-cell subtypes, if available). Serum immunoglobulin levels under 

immunoglobulin replacement therapy were excluded from analysis. Antibody responses to vaccination were classified 

as impaired if the response to at least one type of antigen was defective. When autoantibodies against platelets, red 

blood cells, or granulocytes were not available, the diagnosis of autoimmune cytopenia was established based on the 

clinical history, physical examination, blood cell analysis, and therapeutic response15. Infections were confirmed by 

direct microscopic examination of the specimen, DNA or RNA identification, culture, or serological screening from 

representative specimens. Complement analysis, lymphocyte mitogen proliferation, bone marrow examination, biopsies 

and radiologic investigations were performed in selected individuals according to clinical indications.  

 

1.III. Statistics 

Statistical analysis was processed using GraphPad Prism software (version 7; GraphPad Software, La Jolla, California) 

and P values of less than 0.05 were considered significant. Log-rank Mantel Cox test was used to compare survival 

curves. 

 

1.IV. Generation of mutation constructs 

The wild-type and mutant NFKB1 full-length coding sequences were subcloned into the expression vector pEGFP-C1 

(Clontech/Takara, Saint-Germain-en-Laye, France) or pTO-GFP-N10 to generate GFP-fusion constructs.  

 

1.V. Cell culture and transfection 

HEK293T cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal calf serum and 1% 

penicillin-streptomycin (all from ThermoScientific, Germany) and seeded in 24-well plates (Greiner, Frickenhausen, 

Germany). Cells were transfected with jetPEI transfection reagent (Polyplus, Illkirch, France), according to the 

suppliers´ recommendations. All cell lines were routinely tested for Mycoplasma. 

 

1.VI. Analysis of nuclear localization 
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Plates with HEK293T cells, seeded onto collagen-coated (Collagen A, Biochrom AG, Berlin) cover slides and 

transfected with wild-type or mutant p105 or p50 were rinsed with phosphate buffered saline (PBS) and cells were fixed 

with 4.0% formaldehyde solution; nuclei were stained with Hoechst33342 (Sigma, Taufkirchen Germany). After 48 

hours, cells have been stimulated with PMA/Ionomycin (100ng/ml and 2μg/ml, respectively) for 30 minutes before 

fixation and staining. Images were taken on Zeiss laser scanning microscope LSM710 equipped with a 63x oil 

immersion objective (Carl Zeiss, Jena, Germany) and evaluated with the Zeiss ZEN black software. 

 

1.VII. Fluorescence-based promoter reporter assay 

To assess the NF-κB1 transcriptional activating function of wildtype and mutant p105/p50, a fluorescence-based 

promoter reporter assay in transfected cells was performed. An expression vector for the red fluorescent protein 

tdTomato under the control of a NF-κB1 responsive promoter, composed of 5xNF-κB binding sites 

[TGGGGACTTTCCAC]5) fused to the CMV minimal promoter, was used as reporter. A vector in which the tdTomato 

sequences were fused to the CMV minimal promoter (lacking specific transcription factor binding sites) was used as 

negative control, while the expression vector in which the full-length CMV promoter drives tdTomato expression was 

used as positive control. Vector constructs for wildtype and/or mutant p100/p50 were transfected together with the 

reporter and a non-fused p65 (providing a transactivation domain) into HEK293T cells. Reporter activity was 

determined with or without activation of NF-κB signaling with TNF-α (25 ng/ml, Abcam, Germany) or 

PMA/ionomycin (50 ng/ml and 1 μg/ml, respectively, Sigma, Taufkirchen Germany). The fluorescence intensity was 

examined as an indicator of reporter activity by the FluoroSpot Analyzer (CTL Immunospot, Bonn, Germany). 

 

1.VIII. Dual luciferase reporter assay  

HEK293T cells were co-transfected with GFP-WT and missense mutant p105, in addition to the NF-κB luciferase and 

the Renilla luciferase control reporter, using JetPEI (Polyplus, Illkirch, France), according to the suppliers´ protocol. 

Increasing amounts of construct DNA were used. Equal expression of constructs was verified by co-transfecting with 

GFP vector. Transfection efficiency (GFP) was controlled in fluorescent microscopy. Cells were lysed with passive 

lysis buffer after 48 hours and transferred to black 96-well plates (Thermo Fisher Scientific, Denmark). The light 

emission was examined as an indicator of reporter activity. After luciferase measurement, the signal was quenched and 

Renilla was measured as internal control. The signal was normalized to mock. This assay was performed on the 

EnVision Multilabel Plate Reader (Perkin Elmer, Bonn, Germany). 
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1.IX. Western blotting 

Transfected HEK293T cells (2.4 x 106), unstimulated or treated with TNF (30 ng/ml for 30 minutes), were washed in 

PBS and lysed on ice (lysis buffer 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 2mM EDTA, 1 μM Na3VO4, 50 mM NaF, 

1.0% Triton X-100; Protease Inhibitor Cocktail). Supernatants were collected and total protein concentrations were 

determined using BCA assay. Twenty µg per sample were loaded and protein size fractionated using a 12% 

polyacrylamide gel. Proteins were transferred onto a PVDF membrane for 90 minutes at 45 V. Membranes were 

incubated in Tris Buffered Saline, with Tween (TBST) with 5% milk overnight and p105/p50 was detected using a 

rabbit primary antibody raised against the N-terminus (#13586; Cell Signaling; Frankfurt, Germany) after two hours of 

incubation. Signals were detected with horseradish-peroxidase-coupled anti-rabbit secondary antibodies using enhanced 

chemiluminescence (LumiGlo; Cell Signaling, and SignalFire Plus; Cell Signaling) after two hours of incubation. 

GAPDH antibody (#G9295; Sigma/Merck; Darmstadt, Germany) was used as a loading control. 

 

2. Supplementary Results 

2.I. Supplementary patients’ characteristics 

One-hundred-nineteen cases were familial, following an autosomal dominant mode of inheritance, and 38 cases were 

sporadic. The penetrance was not significantly higher in male individuals (72·2%) when compared to females (67·2%) 

(P=0·55). The origin of the mutation carriers in our cohort was as follows: 65·1% European, 13·4% mixed ethnicity, 

11·4% Asian, 6% North American, 2% South American, 1·4% Australian and 0·7% African, most likely representing 

an ascertainment bias (Table S2). In a large proportion of patients (39·3%) the disease onset was before 10 years of age; 

29·2% of patients developed symptoms between 10 to 20 years of age. Among patients with CVID, 24·4% had a CVID-

infection only phenotype while 52·5% had a complex phenotype characterized by infections, autoimmunity, 

inflammation and lymphoproliferation. Among 6% of patients with autoinflammatory disorder, 3·4% were classified as 

having Behçet's disease according to the point score system defined in the New International Criteria for Behçet's 

Disease (ICBD)16. 

 

2.III. Skin and mucocutaneous involvement  

Skin disease occurred in 54·6% of patients. Skin infections were observed in 37·7% of patients (Fig. 5A). Viral 

infections occurred in 26·4% and included shingles (14·2%), Herpes simplex virus infections (5·6%), and warts (5·7%). 

Mucocutaneous infections were also common (18·9%). Skin abscesses and cellulitis were more common (16·2%) than 
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folliculitis and furunculosis (3·8%). Autoimmune skin manifestations were found in 14·9% of patients and consisted of 

vitiligo (6·5%), alopecia (6·5%) and psoriasis (0·9%). Oral aphthous ulcerations occurred in 17·8% of patients and 

were associated with genital aphthous ulcers in 5·6% of patients (Fig.5A). Pyoderma gangrenosum and erythema 

nodosum were reported in two patients each (NA.II.16, NA.III.34, and AS.II.1, F1.II.4, respectively). One patient 

developed morphea (BA.II.2).  

 

2.V. Other complications 

Neurological complications occurred in 13·9% of patients and included peripheral neuropathy (4·6%), bacterial and 

idiopathic meningitis (2·8% and 1·8%, respectively) and progressive multifocal leukoencephalopathy (PML) (1·8%). 

Cerebral vasculitis was detected in three patients and resulted in brain ischemia in two. Cardiovascular complications 

were observed in 17·8% of patients and included arteriosclerotic vasculopathy (11·1%), congenital heart defect 

(ventricular septal defect, mitral valve defect and patent ductus arteriosus, 2·8%), atrial arrhythmia (2·8%) and 

myocarditis (1·8%). Osteopenia and osteoporosis were diagnosed in 12·9% of patients by dual-energy X-ray 

absorptiometry (DEXA) measurement of bone mineral density. All but one patient with osteopenia or osteoporosis had 

been treated with corticosteroids. Non-infectious episodes of fever and systemic inflammation were observed in 12% of 

patients (Fig. 5A). Bone marrow analysis was not performed in all the patients, but a significant increase of diffuse and 

nodular CD3+ T-cellular infiltrates, absent plasma cells, but no major abnormalities in the hematopoietic compartment 

was found in five patients; aplastic bone marrow was detected in one case. Early-onset Langerhans cell histiocytosis 

occurred in one child (AF.II.1). Three patients developed portal hypertension following nodular regenerative 

hyperplasia (NRH) of the liver (NZ.II.2 and Z.I.1) and liver cirrhosis (AH.I.1), respectively. One patient was affected 

by idiopathic chronic pancreatitis resulting in an exocrine pancreatic insufficiency (AU.I.2); another patient developed a 

post-operative pancreatitis (F1.II.1).  

 

2.VI. Supplementary treatment 

Nearly all patients with chronic lung disease received IgG replacement therapy (94·9%). Antibiotic prophylaxis was 

used in 78·9% of the patients with bronchiectasis. Pyoderma gangrenosum was treated in one patient with antibiotics, 

surgery and etanercept, with a poor response (NA.II.16), another patient seemed to have responded to IVIG (NA.III.34). 

Patients with arthritis were treated with systemic corticosteroids (n=3) and disease-modifying antirheumatic drugs 

(n=5), including methotrexate, cyclosporine, azathioprine, hydroxychloroquine and sulfasalazine. All patients with 

autoimmune hepatitis (n=3) received systemic steroids. One patient with liver failure but no evidence of autoantibodies 

was treated with steroids and azathioprine and subsequently with an unsuccessful liver transplantation (C.II.3). In 
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11·9% of the patients, splenectomy was necessary due to an enlarged spleen and hypersplenism (n=3), uncontrolled 

autoimmunity (n=7) or malignancy (n=2), with good success. 

 

2.VII. Comparison of the NFKB1 phenotype to the one of general CVID 

Generally, the phenotype of thus far described patients with NFKB1 mutations matches the one of CVID. The 

frequencies of pneumonia, sinusitis and gastrointestinal infections, mostly caused by bacteria and viruses, were very 

similar in NFKB1 patients when compared to CVID cohorts. Pulmonary manifestations, such as bronchitis, 

bronchiectasis and GLILD, showed a lower frequency, but had the same features in NFKB1 patients, in comparison to 

CVID patients. In contrast, non-infectious gastrointestinal disease, including liver disease, was more common than 

documented in CVID, but had the same characteristics of CVID-related enteropathy (sprue-like villous atrophy, 

enteropathy reminiscent of IBD, chronic diarrhea of unknown etiology, NHR). Autoimmunity was more common in 

NFKB1 patients than in CVID cohorts (Table S6). Patients with NFKB1 mutations were twice as likely as CVID 

affected patients to be diagnosed with autoimmune cytopenia, the most common autoimmune manifestation in both 

groups17. In addition, splenomegaly and lymphadenopathy were more common in patients with NFKB1 mutations in 

comparison to CVID cohorts. The incidence of malignancies was similar to that observed in the New York CVID 

cohort study18, but higher than reported in the European cohort of 2,212 patients19. B cell subsets distribution was 

similar in NFKB1 and in CVID patients. However, a stronger expansion of CD21low B cells and transitional B cells was 

found in NFKB1 patients compared to a general CVID cohort 20 (Table S6).  

The comparison of categories of NFKB1 mutations and their clinical presentation was limited because of the unequal 

sample sizes. However, an apparent genotype-phenotype correlation was found (Fig. S5): haploinsufficiency and 

precursor skipping mutations were associated with a higher incidence of infections, lung disease, autoimmunity and 

lymphoproliferation, in comparison to the missense variants in the N-terminal half of p105. Malignancies were more 

common in the cohort of the patients with haploinsufficiency mutations. Conversely, missense variants in the N-

terminal half of p105 were associated with a higher incidence of autoinflammatory manifestations. Missense variants 

affecting the precursor p105 and the mature p50 might not lead to an overall loss of NF-κB function but might variably 

affect downstream events, thus explaining the milder associated phenotype. 

 

3. How to diagnose disease-causing NFKB1 mutations?  

Taking all the above into account, NFKB1 mutations should be suspected in any patient with a CVID phenotype, as 

NFKB1 mutations may manifest as infection-only hypogammaglobulinemia as well as CVID with any autoimmune or 

autoinflammatory complication. However, a normal or mildly affected humoral immunity does not rule out the presence 
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of an NFKB1 mutation. Cases with an autosomal dominant inheritance and rheumatologic features such as seronegative 

arthritis, panniculitis, vasculitis including but not limited to Behçet's disease, clearly increases the suspicion of disease-

causing mutations in NFKB1. The diagnostic procedure involves two steps: first, identification of a variant affecting 

NFKB1, and second, evaluation of the effect of the observed genetic variant, according to probability predictions and 

functional in vitro tests, if indicated. To gain further insight into the biological effect of NFKB1 variants, we ectopically 

(over-)expressed selected mutant NF-κB1 proteins in a standard cell culture system, such as transiently transfected 

HEK293T cells. Western blotting and fluorescence microscopy have been used to test for integrity and subcellular 

localization of the GFP-fused mutant protein. Reporter-based assays have been adopted to evaluate the NF-κB 

transcriptional activation. 

 

4. Differential diagnosis to the NFKB1 phenotype 

Autoinflammatory symptoms, i.e. oral and genital aphthous ulcerations (18·5%), non-infectious episodes of fever and 

systemic inflammation (12%), and vasculitis (4·6%), occurred not infrequently in our cohort, also reported in CVID 

patients due to biallelic loss-of-function mutations in adenosine deaminase 2 (ADA2, formerly cat eye syndrome 

chromosome region, candidate 1, CECR1)21 (MIM: 607575). Like the NFKB1 phenotype, the ADA2 deficiency of can 

also manifest with humoral immunodeficiency due to a deficiency in the B cell compartment, increased susceptibility to 

human Herpesviridae infections, lymphoproliferation and autoimmunity, especially enteropathy and cytopenia22. In 

patients with hypogammaglobulinemia, lymphoproliferation, respiratory and gastrointestinal involvement and 

cytopenia, CTLA-4 (MIM: 123890) and lipopolysaccharide-responsive, beige-like anchor protein (LRBA) (MIM: 

606453) deficiency should also be entertained as differential diagnoses23. Both conditions result in defective CTLA-4 

expression, thus impairing the regulatory T-cell (Treg) function. In our cohort, Treg frequencies were not extensively 

tested, but were found decreased in about one-third of the patients (Fig. S3). Furthermore, Treg functions have 

previously been reported as normal in a small cohort of the patients with NFKB1 mutations10. CTLA-4 insufficiency, 

like NF-κB1-related disease, is an autosomal dominant trait, whereas LRBA and ADA2 deficiencies are autosomal 

recessive. In addition, autosomal dominant STAT3 gain-of-function mutations may cause autoimmune cytopenia and 

multi-organ autoimmunity, lymphoproliferation, hypogammaglobulinemia, infections and short stature. Likewise, 

activated phosphoinositide 3-kinase δ syndromes (APDS) present with infections, lymphoproliferation, 

hypogammaglobulinemia, autoimmunity and malignancies.  

 

5. Selected case vignettes of NFKB1 mutations 



12 

 

5.I. Q.I.1 (c.118+1G>A; IVS3+1G>A, if exon 3 is skipped the consequence is c.40_118del which leads to p. 

Met14Glnfs*9) predicted haploinsufficiency 

This patient is a 17 year-old female born to non-consanguineous parents. She initially came to medical attention at age 

11 months with aphthous stomatitis. From age 22 months, she had a recurrent hemorrhagic rash and nose bleeding, 

despite normal platelets count, regarded as hemorrhagic vasculitis. When she was two years old, she presented with 

idiopathic thrombocytopenic purpura (ITP) and hemolytic anemia, treated with corticosteroids, until remission. 

However, multi-lineage autoimmune cytopenia re-occurred after puberty. She also suffered from recurrent respiratory 

tract infections, including pneumonia and bronchitis. Streptococcus species, Haemophilus influenzae, and Candida 

species were isolated from respiratory specimens. Since her immunoglobulin levels were low (IgG 3·6 g/L, IgA 1·37 

g/L, IgM 0·36 g/L), CVID was diagnosed and immunoglobulin replacement therapy was initiated. Additionally, high-

dose IVIG therapy was used. Splenomegaly and lymphadenopathy were evident by physical examination, while lung 

biopsy showed a non-specific lymphoid hyperplasia. Sirolimus was used for a short period without effect. Rituximab 

and mycophenolate mofetil were then started to treat the refractory autoimmune cytopenia with good effect and 

concomitant B cell lymphopenia. During follow-up, she developed polyarthritis, not responsive to non-steroidal anti-

inflammatory drugs, but to sulfasalazine. At age 16, the CTLA-4 fusion protein abatacept was used, replacing rituximab 

and mycophenolate mofetil, with a good response. 

 

5.II. AJ.III.1 (c.872delA; p.Asn291Metfs*141) predicted haploinsufficiency 

This affected female presented aged 11 with severe pancytopenia. Immunological investigations showed low 

immunoglobulins levels (IgG 2·1 g/L, IgA 0·18 g/L, IgM 0·61 g/L), together with a negative response to diphtheria and 

tetanus vaccinations, reduced class-switched memory B cells (1·3%), and a slightly decreased NK cells (73/μL). 

Treatment with steroids and intravenous immunoglobulins was effective. Autoimmune neutropenia improved under 

granulocyte colony stimulating factor (G-CSF) therapy. Apart from an Influenza virus type B infection and a 

vulvovaginitis caused by Citrobacter and Candida albicans, she did not suffer from significant infections and lung 

disease. She experienced several episodes of abdominal discomfort, but gastrointestinal magnetic resonance (MR) 

imaging and lower endoscopy were normal. Physical examination documented hepatosplenomegaly, and MR imaging 

showed para-aortic and iliac lymphadenopathy, leading to suspected aortic vasculitis. She suffered from recurrent 

genital and mouth ulcerations, with accompanying elevated inflammatory markers but without fever. The patient also 

reported arthralgias and enthesopathy, without swelling. A diagnosis of Behçet's-like disease was established and 

treatment with colchicine was started, however without any effect. Following, azathioprine had to be suspended due to 

hepatopathy, and treatment with anti-TNF adalimumab is currently planned. The same variant was then identified in 
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additional family members: the mother and the brother had hypogammaglobulinemia, but five asymptomatic carriers 

were observed in the same family; the uncle had succumbed to Hodgkin’s B-cell lymphoma prior to immunological and 

genetic testing.  

 

5.III. BF.II.1 (c.1365delT; p.Val456*) predicted precursor skipping (previously described by Lougaris et al. and 

Keller et al.)7,24 

The proband is a 54 year old male. During childhood, two cervical lymph nodes were excised and an episode of 

thrombocytopenia occurred. He did not exhibit other disease manifestations until the age of 38 year, when he started to 

suffer from recurrent respiratory tract infections (pharyngotonsillitis, sinusitis, otitis and bronchitis), which poorly 

responded to repeated antibiotic courses and to nasal septum surgery. At age 43, he had right basal pneumonia lasting 4 

weeks with fever at 39°C but unknown microbiological etiology. On high-resolution chest CT (HRCT) granulomas 

accompanied by lymphoid infiltration appeared, leading to the diagnosis of GLILD. Following pneumonia, the 

detection of hypogammaglobulinemia (IgG 0·08 g/L, IgA 0·05 g/L, IgM 0·05 g/L) hinted at the diagnosis of CVID, and 

immunoglobulin replacement therapy was initiated. Furthermore, he developed autoimmune manifestations including 

vitiligo, seronegative arthritis, and keratoconjunctivitis sicca. He had multiple herpes zoster reactivations and an acute 

Salmonella enteritidis gastroenteritis. Haemophilus influenzae was detected by sputum analysis. At physical 

examination, lymphadenopathy, splenomegaly and hepatomegaly were evident. Nodular regenerative hyperplasia 

(NRH) was identified on hepatic sonography. Bone marrow biopsy showed a lack of plasma cells and nodular 

lymphocytic infiltrates. The patient was treated with steroids and cyclosporine. Lymphocyte immunophenotyping 

displayed reduced frequency of class-switched memory B cells (1·4%) with relatively high frequency of CD21low B 

cells (18·9%) and transitional B cells (27·9%) (EUROclass: B+ smB- 21 lo Tr high). The sister of the index case 

(BF.II.2) presented with ITP, chronic sinusitis, necrotizing tonsillitis, recurrent bronchitis, severe chronic periodontitis 

and pneumonia at the age of 33 years. She was diagnosed with GLILD with bronchiectasis. She had two herpes zoster 

reactivations and CMV viremia with increased liver enzymes and cytopenia requiring systemic antiviral therapy. 

Multiple hepatic hemangiomas were detected by ultrasonography and liver histology revealed a T-cell infiltration 

resulting in cholangitis. Lymphoid hyperplasia, splenomegaly and hepatomegaly were documented. During follow-up, 

an aphthous stomatitis and intermittent arthralgia have been also reported. 
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316.  

Figure S1. Diagnostic flow-chart leading to the identification of 56 damaging NFKB1 mutations in 157 mutation 

carriers, of which 121 considered affected. After the identification and characterization of 105 distinct heterozygous 

NFKB1 variants, 56 were classified as pathogenic according to the American College of Medical Genetics and 

Genomics (ACMG) guidelines.  
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Figure S2. Autosomal dominant inheritance of heterozygous NFKB1 mutations in 30 affected families. The 

pedigrees of 116 out of 119 familial cases were available; 38 cases were sporadic. Circles represent females, squares 

represent males; filled symbols correspond to affected individuals, healthy carriers are designated placing a spot in an 

open symbol. Clear symbols correspond to healthy members with wild-type NFKB1, symbols with a diagonal line are 

used to represent deceased individuals. Genetic analysis has been performed in the indicated family members. 
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Figure S3. Humoral and cellular immunity of patients with NFKB1 mutations. A) B-cell immunophenotyping, NK 

cell values and immunoglobulin levels in patients with NFKB1 mutations are shown. B) T-cell immunophenotyping is 

shown. Reduced absolute numbers or relative percentages are represented in blue, normal values in yellow, and 

increased values in green. Normal ranges are age-related. 
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Figure S4. Treatment of patients with damaging heterozygous NFKB1 mutations. Percentage distribution of type 

of treatments within the cohort of affected NFKB1 mutation carriers. Blue bars indicate antimicrobial prophylaxis, 

green bars indicate immunosuppressive treatment, orange bars indicate surgical treatment. 
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Figure S5. Genotype-phenotype correlation in patients with NFKB1 mutations. Percentage distribution of clinical 

manifestations within the cohort of patients with haploinsufficiency NFKB1 mutations (red), in comparison to the 

cohort of patients with precursor skipping NFKB1 mutations (yellow), and to the cohort of patients with missense 

NFKB1 mutations affecting the p105 precursor and the mature p50 (green). 
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Figure S6. HEK293T cells were transiently transfected with N-terminal GFP-fused constructs in duplicates, as 

indicated. Mutants p.Arg57Cys and p.Ile87Ser showed loss of luciferase reporter activity. WT p105 and variant 

p.Ile553Met showed comparable increase in emitted light. In contrast to WT p105, WT p50 construct light signal 

increased rapidly, emitting even higher signal, to fall down at an amount of DNA between 3.20ng and 12.80ng. 

Consumption of endogenous RelA and inhibitory effect of p50 homodimers might contribute to these results. Relative 

light units were normalized to co-transfected Renilla luciferase. Mock is not shown. DNA amounts were compensated 

with non-related plasmid DNA. Data represent the results from 3 to 4 experimental repeats; p.Ile553Met was done once 

in duplicates.  
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Variant cDNA Protein Type of variant Predicted type of 

change

Affecte

d/healt

hy

SIFT Poliphe

n2

CADD Mutatio

nTaster

ExAC 

freq

ACMG classification Describ

ed

1 del 103370996-

103528207

Large deletion Truncation 1 P(Ia) (PVS1, PS3, 

PM2)

Y
12

2 del 103436974-

103652655

Large deletion Truncation 1 LP(I) (PVS1, PM2) Y
12

3 c.118+1G>A p.Met14Glnfs*9 Splice-site Exon skipping 2 27.2 D P(Ib) (PVS1, PM1, 

PM2)

N

4 c.139delA p.Ile47Tyrfs*2 Deletion Frameshift 1 P(Ia) (PVS1, PS3, 

PM1, PM2, PM6)

Y
5

5 c.160-1G>A p.Arg54_Lys86del Splice-site Exon skipping 3/3 27.3 LP(II) (PS3, PM1, 

PM2)

Y
12

6 c.187delG p.Glu63Lysfs*64 Deletion Frameshift 2 35 P(Ib) (PVS1, PM1, 

PM2, PP1)

Y
12

7 c.250C>T p.Gln84* Nonsense Truncation 1 P (Ib) (PVS1, PM1, 

PM2)

N

8 c.259-4A>G p.Ile87Leufs*16 Splice-site Exon skipping? 1 9.635 8.3E-06 LP(II) (PS1, PM1) Y
9

9 c.259-2A>G p.Ile87Leufs*16 Splice-site Exon skipping? 1 P(Ib) (PVS1, PM1, 

PM2)

N

10 c.285_286delGG p.Lys95Valfs*25 Deletion Frameshift 2 P(Ib) (PVS1, PM1, 

PM2, PP1)

N

11 c.295C>T p.Gln99* Nonsense Truncation 2 22.4 D P(Ib) (PVS1, PM1, 

PM2)

Y
12

12 c.358G>T p.Glu120* Nonsense Truncation 2 22.3 D P(Ib) (PVS1, PM1, 

PM2, PP1)

N

13 c.465dupA p.Ala156Serfs*12 Insertion Frameshift 4/1 P(Ia) (PVS1, PS3, 

PM1, PM2)

Y
4

14 c.469C>T p.Arg157* Nonsense Truncation 4/7 P(Ia) (PVS1, PS3, 

PM1, PM2, PP1)

Y
5

15 c.494delG p.Gly165Alafs*32 Deletion Frameshift 1/1 P(Ia) (PVS1, PS3, 

PM1, PM2)

Y
32

16 c.522_525dupTGAC p.Leu176* Nonsense Truncation 1 P(Ib) (PVS1, PM1, 

PM2)

N

17 c.607C>T p.Gln203* Nonsense Truncation 1 P(Ib) (PVS1, PM1, 

PM2, PP1)

N

18 c.638_641dupTGCG p.Leu215Alafs*11 Insertion Frameshift 1 LP(I) (PVS1, PM2) N

19 c.730+4A>G p.Asp191_Lys244del

insGlu

Splice-site Exon skipping 13/4 P(III) (PS3, PM1, 

PM2, PM4, PP1)

Y
4

20 c.731-13_733del p.Lys244_Asp279del

insAsn or 

p.Lys244Serfs*27

Deletion Exon skipping or 

retained intron

1 P(III) (PM1, PM2, 

PM4)

N

21 c.830dupA p.Lys278Glufs*3 Insertion Frameshift 1 35 P(Ib) (PVS1, PM1, 

PM2)

Y
12

22 c.835+2T>G p.Lys244_Asp279del

insAsn

Splice-site Exon skipping 4/2 25.4 P(III) (PS3, PM1, 

PM2, PM4)

Y
4

23 c.836-3C>T p.Asp279Valfs*11 Splice-site Exon skipping? 1 P(Ib) (PVS1, PM1, 

PM2)

N

24 c.850C>T p.Arg284* Nonsense Truncation 3/3 44 P(Ib) (PVS1, PM1, 

PM2)

Y
12

25 c.872delA p.Asn291Metfs*141 Deletion Frameshift 5/5 P(Ib) (PVS1, PM1, 

PM2)

N

26 c.875delG p.Gly292Valfs*140 Deletion Frameshift 1 P(Ib) (PVS1, PM1, 

PM2)

N

27 c.904dupT p.Ser302Phefs*7 Insertion Frameshift 8 34 8.2E-06 P(Ic) (PVS1, PM1, 

PP1)

Y
11

28 c.950_964delCAAAG

TATAAAGATA (15bp 

del)+c.967A>T

p.Pro317_Ile322deli

nsLeu+p.Asn323Tyr

In-frame 

deletion

Truncation 1 LP(IV) (PM1, PM2, 

PM4, PM6)

N

29 c.957T>A p.Tyr319* Nonsense Truncation 1 36 P(Ib) (PVS1, PM1, 

PM2)

Y
9

30 c.997C>T p.Gln333* Nonsense Truncation 1/1 P(Ib) (PVS1, PM1, 

PM2)

N

31 c.1005delG p.Arg336Glyfs*96 Deletion Frameshift 1 35 P(Ib) (PVS1, PM1, 

PM2)

Y
12

32 c.1012delT p.Ser338Leufs*94 Deletion Frameshift 3/1 P(Ib) (PVS1, PM1, 

PM2)

N

33 c.1066+1G>C p.Phe310Ilefs*76 Splice-site Exon skipping? 2 P(Ib) (PVS1, PM1, 

PM2, PP1)

N

34 c.1066+1G>T p.Phe310Ilefs*76 Splice-site Exon skipping? 2/1 P(Ib) (PVS1, PM1, 

PM2)

N

35 c.1071_1074delAGA

A

p.Glu358Lysfs*73 Deletion Frameshift 1 P(Ib) (PVS1, PM1, 

PM2)

N

36 c.1183delG p.Gly395fs* Deletion Frameshift 1 LP(I) (PVS1, PM2) N

HAPLOINSUFFICIENCY MUTATIONS (typically truncations in the N-terminal "p50" half of p105)
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37 c.1210+1G>A p.Asp356_Pro403de

l

Splice-site Exon skipping? 1 LP(II) (PS3, PM2, 

PM4)

N

38 c.1211_1214dupGGT

A

p.Tyr405* Nonsense Truncation 1 28.1 P(Ib) (PVS1, PM2, 

PM6)

N

39 c.1301-1G>A p.Gly434_Gln498del Splice-site Exon skipping? 2/1 24 LP(IV) (PM1, PM2, 

PM4)

Y
9

40 c.1149delT p.Gly384Glufs*48 Deletion Frameshift 1/1 D P D LP(I) (PVS1, PM2) Y
13

41 c.1245_1246delTG p.Tyr415* Nonsense Truncation 1 LP(I) (PVS1, PM2) N

42 c.1321A>T p.Lys441* Nonsense Truncation 1 P(Ib) (PVS1, PM1, 

PM2)

N

43 c.1365delT p.Val456* Nonsense Truncation 2/1 P(Ia) (PVS1, PS3, 

PM1, PM2, PP1)

Y
7

44 c.1377delT p.Phe459Leufs*26 Deletion Frameshift 1 23.2 P(Ib) (PVS1, PM1, 

PM2)

Y
9

45 c.1423delG p.Ala475Profs*10 Deletion Frameshift 5 15.2 P(Ia) (PVS1, PS3, 

PM1, PM2, PP1)

Y
12

46 c.1517delC p.Ala506Valfs*17 Deletion Frameshift 1 P(Ia) (PVS1, PS3, 

PM1, PM2)

Y
7

47 c.1537_1541delCAT

GC

p.His513Glnfs*28 Deletion Frameshift 2 35 1.7E-05 P(Ic) (PVS1, PM1, 

PP1)

Y
12

48 c.1584dupG p.Leu529Alafs*14 Insertion Frameshift 2/3 P(Ib) (PVS1, PM1, 

PM2)

N

49 c.1621_1622delGA p.Asp541* Nonsense Truncation 1/1 35 3.3E-05 P(Ia) (PVS1, PS3, 

PM1)

Y
12

50 c.1726dupA p.Ile567Asnfs*6 Insertion Frameshift 1 LP(I) (PVS1, PM2) N

51 c.1752+1G>A p.Ser546Argfs*8 Splice-site Exon skipping? 1 LP(I) (PVS1, PM2) N

52 c.169C>T p.Arg57Cys Substitution Missense 2 D D 35 D LP(V) (PS3, PM2, 

PP1, PP3)

N

53 c.199C>T p.His67Tyr Substitution Missense 2 D D 27.7 D LP(V) (PM2, PM5, 

PP1, PP3)

N

54 c.200A>G p.His67Arg Substitution Missense 9 D D 25.8 D LP(II) (PS3, PM2, 

PP1, PP3)

Y
10

55 c.260T>G p.Ile87Ser Substitution Missense 1 D D 31 D LP(II) (PS3, PM2, 

PP3)

Y
12

56 c.293T>A p.Val98Asp Substitution Missense 1 D D 29.3 D U(PM2, PP3) Y
12

57 c.843C>G p.Ile281Met Substitution Missense 1 D D 25.2 D U(PM2, PP3) Y
12

58 c.106G>A p.Ala36Thr Substitution Missense 1 T B 20.8 N U(PM2, PM6) N

59 c.191G>T p.Gly64Val Substitution Missense 2 D D 29 D U(PM2, PP3) N

60 c.269A>C p.Tyr90Ser Substitution Missense 1 D 27.8 D U(PM2, PP3) N

61 c.470G>C p.Arg157Pro Substitution Missense 2 D D 33 D U(PM2, PP1, PP3) N

62 c.508G>A p.Gly170Ser Substitution Missense 1 T P 23.2 D U(PM2) N

63 c.556G>T p.Asp186Tyr Substitution Missense 2 D D 20.6 D 8.2E-06 U(PP1, PP3) N

64 c.592C>T p.Arg198Cys Substitution Missense 1 D D 26.8 D U(PM2, PP3) N

65 c.641G>A p.Arg214Gln Substitution Missense 1 D U(PM2) N

66 c.646A>G p.Met216Val Substitution Missense 1/1 T D 20.2 D U(PM2) N

67 c.689G>A p.Arg230Lys Substitution Missense 4 T P 23 D U(PM2, PP1) N

68 c.734C>T p.Ala245Val Substitution Missense 1 D D 34 D U(PM2, PP3) N

69 c.736C>A p.Pro246Thr Substitution Missense 2 D D 28.9 D U(PM2, PP3) N

70 c.856T>A p.Tyr286Asn Substitution Missense 1 D D 28.8 D U(PM2, PP3) N

71 c.885G>C p.Trp295Cys Substitution Missense 1 D D 29.9 D U(PM2, PP3) N

72 c.978A>C p.Lys326Asp Substitution Missense 2 D D 23.7 D 0.02413 U(PM6, PP3, BS1) N

73 c.1004G>A p.Arg335Gln Substitution Missense 1 0.000157 U N

74 c.1049A>G p.Tyr350Cys Substitution Missense 4 D D 24.6 D U(PM2, PP1, PP3) N

PRECURSOR SKIPPING MUTATIONS (typically in the central part of p105 producing p50-like proteins)

MISSENSE VARIANTS AFFECTING BOTH, THE p105 PRECURSOR AND THE MATURE p50 (localizing in the N-terminal "p50" half of p105)

75 c.1115C>T p.Ser372Leu Substitution Missense 1 T P 22.9 D 8.24E-06 U N

76 c.1126G>A p.Gly376Ser Substitution Missense 1 D P 23.6 D 4.12E-05 U(PP3) N

77 c.1147G>T p.Ala383Ser Substitution Missense 1 T B 14.1 D U(PM2, BP4) N

78 c.1156G>A p.Gly386Arg Substitution Missense 1 D P 25.4 D 1.65E-05 U(PP3) N

79 c.1177G>A p.Gly393Ser Substitution Missense 1 T P 17.8 D 1.65E-05 U(BP4) N

80 c.1659C>G p.Ile553Met Substitution Missense 3 D D 26.3 D LP(II) (PS3, PM2, 

PP1, PP3)

Y
10

81 c.1307T>C p.Met436Thr Substitution Missense 1 T B 5.7 N 4.12E-05 U(BP4) N

82 c.1388T>C p.Ile463Thr Substitution Missense 3 T B 0.002 N 0.000255

3

U(BS4) N

83 c.1424C>G p.Ala475Gly Substitution Missense 2 T B 2.5 N 0.000156

5

U(BP4) N

84 c.1427C>T p.Thr476Ile Substitution Missense 2 T B 0.058 N 9.06E-05 U(BP4) N

85 c.1480A>C p.Ser494Arg Substitution Missense 1 T B 0.461 N 1.65E-05 U(BP4) N

86 c.1519A>G p.Met507Val Substitution Missense 1 T B 4.273 N 0.009727 LB(I) (BS1, BP4) N

MISSENSE VARIANTS PROBABLY AFFECTING ONLY THE FUNCTIONS OF THE PRECURSOR (localizing to the C-terminal half of p105 precursor)
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Table S1. Variants classification. SIFT (Sorting Intolerant From Tolerant) score: the amino acid substitution is 

predicted damaging (D) or tolerated (T). Poliphen2 score: a mutation is classified as benign (B), possibly damaging (P), 

or probably damaging (D). MutationTaster score: a variant is defined as a disease mutation (D) or a harmless 

polymorphism (N). CADD (combined annotation dependent depletion) score ranks genetic variants according to diverse 

genomic features. American College of Medical Genetics and Genomics (ACMG) classification: according to the 

evidence of pathogenicity, a variant is classified as pathogenic (P), likely pathogenic (LP), of uncertain significance 

(U), benign (B), and likely benign (LB). The evidence of pathogenicity or of benign impact is defined as very strong 

(VS), strong (S), moderate (M), and supporting (P). 

  

87 c.1736G>A p.Arg579Lys Substitution Missense 4/3 T D 18.74 D 0.00183 B (BS1, BS4) N

88 c.1845G>T p.Leu615Phe Substitution Missense 6 T B 11.05 N 0.001944 LB(I) (BS1, BP4) N

89 c.1985G>A p.Ser662Asn Substitution Missense 1 T P 23.7 N U(PM2) N

90 c.2136T>G p.His712Gln Substitution Missense 2 D B 11.3 N 0.002126 LB(I) (BS1, BP4) N

91 c.2251A>G p.Thr751Ala Substitution Missense 1 P 23.2 D U(PM2) N

92 c.2326C>G p.Pro776Ala Substitution Missense 1 T D 22.9 D U(PM2, PP3) N

93 c.2378C>G p.Pro793Arg Substitution Missense 1 T D 23.9 D 2.47E-05 U(PP3) N

94 c.2440G>A p.Glu814Lys Substitution Missense 1 T B 18.27 N U(PM2, BP4) N

95 c.2457G>C p.Gln819His Substitution Missense 1 U(PM2) N

96 c.2462A>G p.Tyr821Cys Substitution Missense 1 T B 11.99 D 1.65E-05 U(BP4) N

97 c.2650G>A p.Glu884Lys Substitution Missense 1 D D 24.4 D 1.65E-05 U(PP3) N

98 c.2831C>A P.Thr944Asn Substitution Missense 1 T B 12.3 N 0.000362 LB(BS1,BP4) N

99 c.160-4G>C p.Arg54_Lys86del Splice-site Exon skipping? 1 U(PM2) N

100 c.590-8C>T Splice-site Exon skipping? 2 8.9 U(PM2) N

101 c.1750-10C>G Splice-site Exon skipping? 1 U(PM2) N

102 c.2348G>A p.Trp783* Nonsense Truncation 2 U(PM2) N

103 c.2592+3A>G p.Asp808Leufs*22 Splice-site Frameshift 1 U(PM2) N

104 c.2593-4A>G p.Val865Thrfs*27 Splice-site Exon skipping? 2 5.587 0.001921 U(BS1) N

105 c.2671delG p.Ala891Glnfs*6 Deletion Frameshift 1 U(PM2) N

VARIANTS WITH UNKNOWN EFFECT
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Case No. c.DNA Reference Affected Healthy Sex Age at 

evaluation

/death Δ

Country of 

origin

Age at onset Age at 

diagnosis

First manifestation Diagnosis

I.II.1 del 103370996-

103528207

Tuijnenburg et al. Yes No NA 26 NA 12 18 Infections CVID

K.II.1 del 103436974-

103652655

Tuijnenburg et al. Yes No NA 65 NA NA 44 Infections CVID

Q.I.1 c.118+1G>A Unpublished Yes No F 16 RUS 1 7 Inflammation CVID

R.I.1 c.118+1G>A Unpublished Yes No NA NA DEU NA NA NA NA

S.I.1 c.139delA Schipp et al. Yes No F 27 DEU 14 26 Autoimmunity CVID/ALPS

C.I.2 c.160-1G>A Tuijnenburg et al. Yes No F 79 NA 40 52 Infections  CVID

C.II.3 c.160-1G>A Tuijnenburg et al. Yes No M 36 Δ NA NA 16 Infections  CVID

C.II.5 c.160-1G>A Tuijnenburg et al. Yes No M 39 Δ NA NA 13 Infections  CVID

C.III.1 c.160-1G>A Tuijnenburg et al. No Yes F 18 NA - - - Healthy

C.III.3 c.160-1G>A Tuijnenburg et al. No Yes M 16 NA - - - Healthy

C.III.4 c.160-1G>A Tuijnenburg et al. No Yes M 13 NA - - - Healthy

L.II.1 c.187delG Tuijnenburg et al. Yes No F 48 NA NA 22 Infections  CVID

L.II.2* c.187delG Tuijnenburg et al. Yes No M NA Δ NA NA NA NA Antibody deficiency

T.I.1 c.250C>T Unpublished Yes No F 14 GBR/IND 11 13 Infections CVID

U.I.3 c.259-4A>G Maffucci et al. Yes No M 48 NA 21 NA NA CVID

V.I.1 c.259-2A>G Unpublished Yes No F 41 ESP 2,5 20 Infections  CVID

W.I.1 c.285_286delGG Unpublished Yes No M 49 AUS 12 15 NA CVID

W.II.1 c.285_286delGG Unpublished Yes No F 18 AUS 16 16 Autoimmunity Autoimmunity and 

immune dysregulation

X.I.1 c.295C>T Unpublished Yes No F 60 DEU 30 30 Infections  CVID

O.II.1 c.295C>T Tuijnenburg et al. Yes No F 39 GBR/IND NA 23 Infections CVID

Y.II.1 c.358G>T Unpublished Yes No F 38 DEU 6 6 Family history CVID

Y.I.1* c.358G>T Unpublished Yes No M NA DEU NA NA NA NA

NZ.I.2 c.465dupA Fliegauf et al. Yes No F 76 NZL/EU 12 73 Autoimmunity CVID

NZ.II.1 c.465dupA Fliegauf et al. Yes No M 51 NZL/EU 2 7 Autoimmunity CVID

NZ.II.2 c.465dupA Fliegauf et al. Yes No F 49 Δ NZL/EU 10 15 Infections CVID

NZ.II.3 c.465dupA Fliegauf et al. No Yes M 46 NZL/EU - - - Healthy

NZ.III.1 c.465dupA Unpublished Yes No F 15 NZL/EU NA NA Infections CVID

Z.I.1 c.469C>T Unpublished Yes No M 61 DEU 10 47 Infections CVID

AA.II.2 c.469C>T Schipp et al. Yes No F 20 ISR 11 19 Lymphoproliferation CVID

AA.I.1 c.469C>T Schipp et al. No Yes M 53 ISR - - - Healthy

AA.II.3 c.469C>T Schipp et al. No Yes M 16 ISR - - - Healthy

AA.II.4 c.469C>T Schipp et al. No Yes F 23 ISR - - - Healthy

F3.II.1 c.469C>T Kaustio et al. Yes No M 62 FIN 48 NA Infections Autoinflammatory 

disorder

F3.II.5 c.469C>T Kaustio et al. Yes No M 56 FIN 28 NA Infections Autoinflammatory 

disorder

F3.I.2 c.469C>T Kaustio et al. No Yes F NA FIN - - - Healthy

F3.II.6 c.469C>T Kaustio et al. No Yes F NA FIN - - - Healthy

F3.II.4 c.469C>T Kaustio et al. No Yes M NA FIN - - - Healthy

AB.II.1 c.494delG Boztug et al. Yes No F 18 AUT 2 15 Infections CVID

AB.I.2 c.494delG Boztug et al. No Yes M NA AUT - - - Healthy

AC.I.1 c.522_525dupTGAC Unpublished Yes No F 37 DEU 2,5 19 Infections CVID

AD.I.1 c.607C>T Unpublished Yes No F 29 BRA 16 16 NA CVID/ALPS

AE.I.1 c.638_641dupTGCG Unpublished Yes No NA 0.1 DEU 0,1 0,1 Inflammation Autoinflammatory 

disorder

NA.II.16 c.730+4A>G Fliegauf et al. Yes No F 76 Δ NLD/AUS 29 59 Inflammation CVID

NA.II.18 c.730+4A>G Fliegauf et al. Yes No F 77 Δ NLD/AUS NA 64 Family history CVID

NA.II.19* c.730+4A>G Fliegauf et al. Yes No F 55 Δ NLD/AUS 39 46 Infections CVID

NA.II.21 c.730+4A>G Fliegauf et al. Yes No M 76 Δ NLD/AUS 30 57 Lung disease CVID

NA.III.25 c.730+4A>G Fliegauf et al. Yes No F 66 Δ NLD/AUS 52 NA Lung disease CVID

NA.III.34 c.730+4A>G Fliegauf et al. Yes No M 57 NLD/AUS 44 52 Autoimmunity CVID

NA.III.36 c.730+4A>G Fliegauf et al. Yes No F 56 NLD/AUS 30 30 Infections CVID

NA.III.40 c.730+4A>G Fliegauf et al. Yes No F 51 NLD/AUS 34 45 Infections CVID

NA.III.42 c.730+4A>G Fliegauf et al. No Yes F 49 NLD/AUS - - - Healthy

NA.IV.48 c.730+4A>G Fliegauf et al. No Yes F 32 NLD/AUS - - - Healthy

NA.IV.49 c.730+4A>G Fliegauf et al. Yes No F 31 NLD/AUS 0 1 Infections CVID

NA.V.57 c.730+4A>G Fliegauf et al. Yes No F 56 NLD/AUS NA 39 Infections CVID

NA.V.62 c.730+4A>G Fliegauf et al. Yes No F 32 NLD/AUS NA 30 NA CVID

AF.II.1 c.730+4A>G Unpublished Yes No M NA ESP 0,7 6 Autoimmunity CVID

AF.I.1 c.730+4A>G Unpublished No Yes M NA ESP - - - Healthy

AF.II.2 c.730+4A>G Unpublished No Yes M NA ESP - - - Healthy

AG.I.1 c.731-13_733del Unpublished Yes No M 7 DEU 6,75 7 Autoimmunity CVID

M.II.1 c.830dupA Tuijnenburg et al. Yes No NA 32 NA 24 27 Autoimmunity CVID

F089.I.1 c.835+2T>G Fliegauf et al. Yes No M 71 DEU 15 64 Infections CVID

F089.II.2 c.835+2T>G Fliegauf et al. Yes No F 38 DEU 2,5 16 Infections CVID

F089.III.2 c.835+2T>G Fliegauf et al. No Yes F 8 DEU - - - Healthy

F089.III.4 c.835+2T>G Fliegauf et al. No Yes F 4 DEU - - - Healthy

AH.I.1 c.835+2T>G Unpublished Yes No F 54 DEU 39 39 NA CVID

H.II.1 c.835+2T>G Tuijnenburg et al. Yes No NA 35 Δ NA NA 24 Autoimmunity CVID

AI.I.1 c.836-3C>T Unpublished Yes No M 9 CZE 2 2,5 Autoimmunity Autoimmunity and 

immune dysregulation

A.II.1 c.850C>T Tuijnenburg et al. No Yes F 56 NA - - - Healthy

A.II.4 c.850C>T Tuijnenburg et al. Yes No F 54 NA 49 52 Infections CVID

A.III.2 c.850C>T Tuijnenburg et al. Yes No M 28 NA NA 3 NA Antibody deficiency

A.III.3 c.850C>T Tuijnenburg et al. Yes No M 22 NA 7 10 Infections Antibody deficiency

A.III.7 c.850C>T Tuijnenburg et al. No Yes F 26 NA - - - Healthy

A.III.8 c.850C>T Tuijnenburg et al. No Yes M 24 NA - - - Healthy

AJ.III.1 c.872delA Unpublished Yes No F 13 DEU/TUR 11 12 Inflammation CVID/Behçet's disease
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AJ.II.2 c.872delA Unpublished Yes No F 41 DEU/TUR NA NA NA Antibody deficiency

AJ.III.3 c.872delA Unpublished Yes No M 9 DEU/TUR NA NA NA Antibody deficiency

AJ.II.4 c.872delA Unpublished Yes No M 40 Δ DEU/TUR NA NA NA Autoimmunity and 

immune dysregulation

AJ.III.5 c.872delA Unpublished No Yes F 21 DEU/TUR - - - Healthy

AJ.III.6 c.872delA Unpublished No Yes F 22 DEU/TUR - - - Healthy

AJ.II.9 c.872delA Unpublished No Yes F 47 DEU/TUR - - - Healthy

AJ.III.8 c.872delA Unpublished No Yes M 23 DEU/TUR - - - Healthy

AJ.III.12 c.872delA Unpublished No Yes F 15 DEU/TUR - - - Healthy

AK.I.1 c.872delA Unpublished Yes No F 69 DEU/TUR 69 69 Infections CVID

AL.I.1 c.875delG Unpublished NA NA NA NA DEU/TUR NA NA NA NA

AM.II.1 c.904dupT Unpublished Yes No F 5 NLD 2 2 Infections CVID 

AM.I.1 c.904dupT Unpublished Yes No M 50 NLD 18 49 Infections CVID

AN.II.1 c.904dupT Rae et al. Yes No M 52 GBR 48 50 NA CVID

AN.III.1 c.904dupT Rae et al. Yes No M 15 GBR 10 10 NA CVID

AN.I.1* c.904dupT Rae et al. Yes No M NA Δ GBR NA NA Infections PID

AO.I.1 c.904dupT Unpublished Yes No M 59 RUS 16 37 NA CVID

AP.I.1 c.904dupT Unpublished Yes No M 18 USA 15 16 NA CVID/ALPS

N.II.1 c.904dupT Tuijnenburg et al. Yes No F 58 uk NA 56 Lymphoproliferation CVID

AQ.I.1 c.950_964delCAAAGTA

TAAAGATA (15bp 

del)+c.967A>T

Unpublished Yes No F 48 DNK 43 44 Infections CVID

AR.I.4 c.957T>A Maffucci et al. Yes No F 48 Δ USA 19 NA NA CVID

AS.II.1 c.997C>T Unpublished Yes No M 25 ECU 14 21 Autoimmunity CVID

AS.I.1 c.997C>T Unpublished No Yes F 57 ECU - - - Healthy

P.II.1 c.1005delG Tuijnenburg et al. Yes No NA 56 NA NA 43 Autoimmunity CVID

AT.III.2 c.1012delT Unpublished Yes No M 16 DEU 9 13 Infections CVID

AT.II.4 c.1012delT Unpublished No Yes M 50 DEU - - - Healthy

AT.II.2 c.1012delT Unpublished Yes No M 48 DEU 27 40 NA CVID

AT.II.3 c.1012delT Unpublished Yes No M 54 DEU 51 52 NA CVID

AU.II.3 c.1066+1G>C Unpublished Yes No F 42 DEU 0 27 Infections CVID

AU.I.2* c.1066+1G>C Unpublished Yes No F 53 Δ DEU 41 42 Infections CVID

AV.II.1 c.1066+1G>T Unpublished Yes No F 11 ESP 3 8,3 Infections CVID

AV.I.2 c.1066+1G>T Unpublished Yes No M 45 ESP 18 40 Infections Antibody deficiency

AV.II.2 c.1066+1G>T Unpublished No Yes M 8 ESP - - - Healthy

AW.I.1 c.1071_1074delAGAA Unpublished Yes No M 30 DEU 2,5 15 Infections CVID

AX.I.1 c.1183delG Unpublished Yes No M 10 RUS 1,7 10 Autoimmunity CVID

AY.I.1 c.1210+1G>A Unpublished Yes No F 70 DEU 57 57 Infections CVID

AZ.I.1 c.1211_1214dupGGTA Unpublished Yes No F 38 IRN 26 37 Infections CVID

BA.II.1 c.1301-1G>A Maffucci et al. Yes No M 51 Δ USA 42 NA NA CVID

BA.II.2 c.1301-1G>A Maffucci et al. Yes No F 33 USA 19 NA NA CVID

BA.II.3 c.1301-1G>A Maffucci et al. No Yes NA NA USA - - - Healthy

BB.I.1 c.1149delT Dieli-Crimi et al. Yes No F 33 ESP 7,5 11 Infections CVID

BB.II.1 c.1149delT Dieli-Crimi et al. No Yes F 6 ESP - - - Healthy

BC.I.1 c.1245_1246delTG Unpublished Yes No F 2 RUS 1 1,3 Autoimmunity Antibody deficiency

BD.I.1 c.1321A>T Unpublished Yes No M 13 PRT 10 13 Autoimmunity Autoimmunity and 

immune dysregulation

BF.II.1 c.1365delT Lougaris et al. Yes No M 54 DEU 6 43 Autoimmunity CVID

BF.II.2 c.1365delT Lougaris et al. Yes No F 56 DEU 33 47 Autoimmunity CVID

BF.III.2 c.1365delT Lougaris et al. No Yes F uk DEU - - - Healthy

BM.I.5 c.1377delT Maffucci et al. Yes No F 25 USA 7 NA NA CVID

J.III.2 c.1423delG Tuijnenburg et al. Yes No M 48 GBR NA 35 Infections CVID

J.III.3* c.1423delG Tuijnenburg et al. Yes No M NA GBR NA NA NA CVID/PID

J.II.1* c.1423delG Tuijnenburg et al. Yes No F NA GBR NA NA NA CVID/PID

J.II.3* c.1423delG Tuijnenburg et al. Yes No F NA Δ GBR NA NA NA CVID/PID

J.II.4* c.1423delG Tuijnenburg et al. Yes No M NA Δ GBR NA NA NA CVID/PID

BG.I.1 c.1517delC Lougaris et al. Yes No M 41 ITA 7 7 Infections CVID

B.I.1 c.1537_1541delCATGC Tuijnenburg et al. Yes No M 78 Δ NA 26 28 Infections CVID

B.II.1 c.1537_1541delCATGC Tuijnenburg et al. Yes No F 49 NA 20 43 Autoimmunity CVID

BH.II.2 c.1584dupG Unpublished Yes No M 36 CAN 2 NA Infections CVID

BH.I.1* c.1584dupG Unpublished Yes No F NA CAN NA NA NA CVID

BH.III.1 c.1584dupG Unpublished No Yes F 9 CAN - - - Healthy

BH.III.2 c.1584dupG Unpublished No Yes F 6 CAN - - - Healthy

BH.III.3 c.1584dupG Unpublished No Yes F 3 CAN - - - Healthy

D.I.2 c.1621_1622delGA Tuijnenburg et al. No Yes F 59 NA - - - Healthy

D.II.2 c.1621_1622delGA Tuijnenburg et al. Yes No F 36 NA NA NA Autoimmunity CVID

BI.I.1 c.1726dupA Unpublished Yes No F 59 DEU 42 53 NA CVID

BJ.I.1 c.1752+1G>A Unpublished NA NA NA NA NA NA NA NA NA

F2.III.2 c.1659C>G Kaustio et al. Yes No M 32 FIN 1 18 Infections Antibody deficiency

F2.II.3 c.1659C>G Kaustio et al. Yes No F 61 FIN 2,5 36 Infections Antibody deficiency

F2.I.1* c.1659C>G Kaustio et al. Yes No M 78 Δ FIN NA NA Infections Antibody deficiency

BK.II.1 c.169C>T Unpublished Yes No M 17 DEU 12 12 NA CVID

BK.I.1* c.169C>T Unpublished Yes No M uk DEU NA NA NA NA

BL.I.1 c.199C>T Unpublished Yes No F 36 USA 18 35 Autoimmunity Autoimmunity and 

immune dysregulation

BL.II.1 c.199C>T Unpublished Yes No F 9 USA 6 7 Infections Antibody deficiency

F1.II.1* c.200A>G Kaustio et al. Yes No M 39 Δ FIN 5 39 Infections Autoinflammatory 

disorder

F1.II.4 c.200A>G Kaustio et al. Yes No F 55 FIN 10 44 Infections CVID

F1.III.2 c.200A>G Kaustio et al. Yes No F 49 FIN 28 29 Infections Antibody deficiency

F1.III.3 c.200A>G Kaustio et al. Yes No M 38 FIN 15 25 Infections CVID
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Table S2. Baseline description of heterozygous NFKB1 mutations carriers. *: mutation deferred by family 
segregational analysis, NA: not available, ALPS: autoimmune lymphoproliferative syndrome. 
  

F1.III.6 c.200A>G Kaustio et al. Yes No F 30 FIN 5 NA Infections CVID

F1.III.7 c.200A>G Kaustio et al. Yes No F 29 FIN 2,5 6 Infections Autoinflammatory 

disorder

F1.III.8 c.200A>G Kaustio et al. Yes No F 25 FIN 1 15 Infections CVID/Behçet's disease

F1.IV.1 c.200A>G Kaustio et al. Yes No M 10 FIN 0 10 Infections Antibody deficiency

F1.IV.2 c.200A>G Kaustio et al. Yes No F 7 FIN 0,1 1,7 Infections Antibody deficiency

G.II.1 c.260T>G Tuijnenburg et al. Yes No F 37 GBR NA 21 Infections CVID

F.II.1 c.293T>A Tuijnenburg et al. Yes No F 71 GBR NA 54 Infections CVID

E.II.1 c.843C>G Tuijnenburg et al. Yes No NA 25 GBR NA 7 Autoimmunity Antibody deficiency

BM.I.1 c.106G>A Unpublished Yes No M 12 IRN 2,5 3 Infections CVID

BN.I.1 c.269A>C Unpublished Yes No M 61 DEU NA NA uk CVID

BO.I.1 c.470G>C Unpublished Yes No M 40 DEU 14 39 Infections CVID

BO.I.2 c.470G>C Unpublished Yes No M NA DEU NA NA NA CVID

BP.I.1 c.508G>A Unpublished Yes No F 28 IRN 14 NA Infections CVID

BQ.I.1 c.556G>T Unpublished Yes No F NA NA NA NA Inflammation Autoinflammatory 

disorder

BQ.II.1 c.556G>T Unpublished Yes No F NA NA NA NA Inflammation Autoinflammatory 

disorder

BR.I.1 c.641G>A Unpublished Yes No M 25 DEU 18 23 Infections CVID

BS.I.1 c.646A>G Unpublished No Yes M NA DEU - - - Healthy

BS.II.1 c.646A>G Unpublished Yes No M 6 DEU 1 1 NA Antibody deficiency

BT.II.1 c.689G>A Unpublished Yes No M 11 DEU/TUR 0,5 4 Infections CVID

BT.I.1 c.689G>A Unpublished Yes No F NA DEU/TUR NA NA NA Antibody deficiency

BT.II.2 c.689G>A Unpublished Yes No F 5 DEU/TUR NA NA NA Antibody deficiency

BT.II.3 c.689G>A Unpublished Yes No F 7 DEU/TUR NA NA NA Antibody deficiency

BU.I.1 c.734C>T Unpublished Yes No M 67 DEU NA 63 Infections CVID

BV.I.1 c.736C>A Unpublished Yes No F 57 DEU NA NA NA CVID

BW.I.1 c.736C>A Unpublished Yes No M 41 DEU NA 39 NA CVID

BX.I.1 c.856T>A Unpublished Yes No F 42 DEU NA 26 NA CVID

BY.I.1 c.885G>C Unpublished Yes No M 61 DEU 28 35 NA CVID

BZ.I.1 c.978A>C Unpublished Yes No M 18 IRN 2 8 Infections CVID

CA.I.1 c.978A>C Unpublished Yes No M 13 Δ IRN 0,5 2 Infections Antibody deficiency

CB.I.1 c.1156G>A Unpublished Yes No M 8 ESP NA NA NA Antibody deficiency

CC.I.1 c.2326C>G Unpublished Yes No F 59 TUR 47 NA Infections CVID

CD.I.1 c.2650G>A Unpublished Yes No F 43 DEU 17 22 Autoimmunity CVID

CE.I.1 c.160-4G>C Unpublished Yes No F 11 USA NA NA Inflammation Autoinflammatory 

disorder

CF.I.1 c.1750-10C>G Unpublished Yes No M NA NA 5 NA Lymphoproliferation Autoimmunity and 

immune dysregulation

CG.I.1 c.2592+3A>G Unpublished Yes No M 51 DEU 41 43 Infections CVID

Possible NFKB1  patients
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Case No. Abscesses Skin 

infections

Sepsis Pneumoni

a

URTI GI 

infections

Bronchiec

tasis

Other 

lung 

abnormali

ties

Autoimm

une 

thyroiditi

s

Atrophic 

gastritis

Celiac-like 

disease

IBD Diarrhea 

of 

unknown 

etiology

I.II.1 0 1 0 1 1 0 1 0 0 0 0 0 0

K.II.1 0 0 0 1 1 0 1 0 0 0 0 0 0

Q.I.1 0 1 0 1 1 0 0 1 0 0 0 0 0

S.I.1 0 1 1 1 1 1 1 1 0 0 0 1 0

C.I.2 0 0 0 1 1 0 1 1 0 0 0 0 0

C.II.3 0 0 0 1 1 0 1 0 0 0 0 0 0

C.II.5 0 1 0 0 1 0 1 0 0 0 1 0 0

L.II.1 0 0 0 NA 1 0 0 0 0 0 0 0 0

T.I.1 0 0 0 1 0 0 1 0 0 0 0 0 0

U.I.3 0 0 0 1 1 0 1 0 1 0 0 0 0

V.I.1 1 1 0 0 1 1 0 0 0 0 0 0 0

W.I.1 0 0 0 1 1 0 1 0 0 0 0 0 0

W.II.1 NA NA NA NA NA NA 0 0 0 0 0 0 0

X.I.1 0 1 0 0 1 1 0 0 0 0 1 0 0

O.II.1 0 0 0 0 1 1 0 0 0 0 0 0 0

Y.II.1 0 0 0 1 1 0 NA NA 0 0 0 0 0

NZ.I.2 0 0 0 0 0 0 0 0 0 0 0 0 0

NZ.II.1 0 0 0 0 0 0 0 0 0 0 0 0 0

NZ.II.2 0 1 1 1 1 1 1 0 0 0 0 0 0

NZ.III.1 0 0 0 1 1 0 0 0 0 0 0 0 0

Z.I.1 1 1 0 1 1 1 NA NA 0 1 0 1 0

AA.II.2 0 0 0 1 1 1 1 0 0 0 0 0 0

F3.II.1 1 0 1 1 0 0 0 0 0 0 0 0 0

F3.II.5 1 1 1 0 0 0 0 0 0 0 0 0 0

AB.II.1 1 0 0 0 1 0 0 0 0 0 0 0 0

AC.I.1 1 1 0 1 1 0 NA NA 0 0 1 0 0

AD.I.1 1 1 0 1 1 0 0 0 0 0 0 0 0

NA.II.16 NA 1 1 1 1 1 NA 0 0 1 1 1 0

NA.II.18 0 0 0 1 1 1 NA 0 0 0 0 0 0

NA.II.19 0 0 1 1 1 0 NA 0 0 0 0 0 1

NA.II.21 0 0 0 1 1 0 1 1 0 0 0 0 0

NA.III.25 0 0 0 1 1 0 0 0 0 0 0 0 0

NA.III.34 0 1 0 1 1 0 0 0 1 0 0 0 0

NA.III.36 0 0 0 1 1 1 NA NA 0 0 0 0 0

NA.III.40 0 0 0 1 1 0 0 0 0 0 0 0 0

NA.IV.49 0 1 0 0 1 1 NA NA 0 0 0 0 0

NA.V.57 0 0 0 1 1 0 0 1 0 0 0 0 0

NA.V.62 0 0 0 0 1 NA NA NA 0 0 0 0 0

NA.V.8 0 0 0 0 1 0 0 0 0 0 0 0 0

AF.II.1 0 0 0 1 1 1 0 0 0 0 1 0 0

AG.I.1 0 0 0 0 0 0 0 0 0 0 0 0 0

M.II.1 0 1 0 0 1 1 1 1 0 1 1 0 0

F089.I.1 1 1 0 1 1 0 0 0 0 0 0 0 1

F089.II.2 1 1 0 1 1 1 0 1 0 0 0 0 0

AH.I.1 0 1 0 0 1 0 0 1 0 0 0 0 0

H.II.1 0 0 0 1 1 0 0 0 0 0 1 0 0

AI.I.1 0 0 0 0 1 0 NA NA 0 0 0 0 0

A.II.4 0 0 0 1 1 0 0 0 0 0 0 0 0

A.III.2 0 0 0 1 1 0 0 0 0 0 0 0 0

A.III.3 0 0 0 1 0 0 0 0 0 0 0 0 0

AJ.III.1 0 1 0 0 0 0 NA NA 0 0 0 0 1

AJ.II.2 0 0 0 0 0 0 NA NA 0 0 0 0 0

AJ.III.3 0 0 0 0 0 0 NA NA 0 0 0 0 0

AJ.II.4 0 0 0 0 0 0 NA NA 0 0 0 0 0

AK.I.1 0 1 0 0 0 1 0 0 0 0 0 0 0

AM.II.1 0 0 0 1 1 0 0 0 0 0 0 0 0

AM.I.1 0 1 0 0 1 0 0 0 0 0 0 0 0

AN.II.1 0 0 0 0 1 0 0 1 0 0 0 0 0

AN.III.1 0 1 0 0 1 0 0 0 1 0 0 0 0

AO.I.1 0 0 0 1 1 1 0 0 0 0 0 0 0

AP.I.1 0 1 0 1 1 0 0 0 0 0 0 0 0

N.II.1 0 0 1 0 0 0 0 0 0 0 0 0 0

AQ.I.1 1 0 0 0 1 1 0 0 0 0 0 0 0

AR.I.4 1 0 0 1 0 0 0 0 0 0 0 0 0

AS.II.1 0 1 0 1 1 1 0 0 0 0 0 0 0

P.II.1 0 0 0 1 1 1 1 1 0 0 0 0 0

AT.III.2 1 1 0 0 1 0 0 0 0 0 0 1 0

AT.II.2 0 0 0 0 1 0 0 0 0 0 0 0 0

AT.II.3 0 0 0 0 1 0 0 0 0 0 0 0 0

AU.II.3 0 1 0 0 1 1 NA NA 0 0 0 0 0
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Case No. Abscesses Skin 

infections

Sepsis Pneumoni

a

URTI GI 

infections

Bronchiec

tasis

Other 

lung 

abnormali

ties

Autoimm

une 

thyroiditi

s

Atrophic 

gastritis

Celiac-like 

disease

IBD Diarrhea 

of 

unknown 

etiology

AU.I.2 0 0 1 1 1 1 1 1 0 0 0 0 0

AV.II.1 0 0 0 0 1 0 0 0 0 0 0 0 0

AV.I.2 0 0 0 1 1 0 1 0 0 1 0 0 1

AW.I.1 0 0 0 1 1 1 1 0 0 0 0 1 0

AX.I.1 0 0 0 0 1 0 0 0 0 0 0 0 0

AY.I.1 0 0 0 0 1 0 0 0 0 0 0 0 0

AZ.I.1 0 0 0 0 1 1 NA NA 0 0 1 0 0

BA.II.1 0 1 0 1 1 0 0 1 0 0 0 0 0

BA.II.2 0 1 0 1 1 1 0 0 0 0 0 0 0

BB.I.1 1 1 0 1 1 1 1 0 0 0 0 1 0

BC.I.1 0 0 0 0 1 0 0 0 0 0 0 0 0

BD.I.1 0 0 0 1 1 0 0 0 0 0 0 0 0

BF.II.1 1 1 0 1 1 1 0 1 0 0 0 0 0

BF.II.2 0 1 0 1 1 1 1 1 0 0 0 0 0

BM.I.5 0 1 0 1 1 1 1 0 0 0 0 0 0

J.III.2 0 0 0 1 1 0 1 0 0 0 0 0 1

BG.I.1 0 0 0 1 1 1 0 0 1 0 1 0 0

B.I.1 1 0 0 1 0 0 0 0 0 0 0 0 0

B.II.1 0 0 0 1 0 0 0 0 1 0 0 0 0

BH.II.2 0 1 0 0 1 0 0 0 0 0 0 0 0

D.II.2 0 0 0 1 1 0 0 1 0 0 0 0 0

BI.I.1 0 1 0 1 1 0 0 0 0 0 0 0 0

F2.III.2 0 1 0 1 1 0 0 0 0 0 1 0 0

F2.II.3 0 0 0 1 1 0 1 0 1 0 0 0 1

BK.II.1 0 1 0 1 1 0 0 0 0 0 0 0 0

BL.I.1 0 1 0 1 1 0 0 0 1 1 0 0 0

BL.II.1 1 0 0 0 1 0 0 0 0 0 0 0 0

F1.II.1 1 1 1 1 1 0 NA NA 0 0 0 0 0

F1.II.4 0 1 0 0 1 0 0 0 0 0 0 0 1

F1.III.2 0 0 0 0 1 0 0 0 0 0 0 0 0

F1.III.3 0 0 0 0 1 1 0 0 0 0 0 0 0

F1.III.6 0 0 0 1 1 0 0 0 0 0 0 0 0

F1.III.7 0 0 0 0 1 0 0 0 0 0 0 0 1

F1.III.8 0 1 0 0 1 0 0 0 0 0 0 0 0

F1.IV.1 0 0 1 0 0 0 0 0 0 0 0 0 0

F1.IV.2 0 0 0 0 1 0 0 0 0 0 0 0 0

G.II.1 0 0 0 1 0 0 1 1 0 0 0 0 1

17/105 40/106 10/107 62/105 88/106 30/105 23/90 16/93 7/107 5/107 10/107 6/107 9/107

Possible NFKB1 patients

F.II.1 0 1 0 1 0 0 1 1 1 0 0 0 0

E.II.1 0 0 0 1 1 0 1 0 0 0 0 0 0

BM.I.1 0 0 0 1 1 0 1 0 0 0 1 0 0

BO.I.1 1 0 0 1 1 1 0 0 0 0 0 0 0

BP.I.1 0 1 0 1 1 1 0 0 0 0 0 0 0

BQ.I.1 0 1 0 1 1 0 1 0 0 0 0 0 0

BT.I.1 1 0 0 0 1 1 0 0 0 0 0 0 0

BS.II.1 0 0 0 0 1 0 0 0 0 0 0 0 0

BT.II.1 0 0 0 1 1 uk 0 0 0 0 0 0 0

BU.I.1 0 0 0 1 0 1 0 0 0 0 1 0 0

BV.I.1 0 0 0 1 0 0 1 0 0 1 0 0 0

BW.I.1 0 1 0 0 1 0 0 0 0 0 0 0 0

BX.I.1 1 0 0 0 1 1 0 0 0 1 0 1 0

BY.I.1 0 0 0 0 1 0 1 0 0 1 1 0 0

BZ.I.1 0 0 0 1 1 1 0 0 0 0 1 0 0

CA.I.1 0 0 0 1 1 0 1 0 0 0 0 0 1

CC.I.1 1 1 0 1 0 0 0 0 0 0 0 0 1

CD.I.1 1 1 0 0 1 1 1 0 1 0 0 1 0

CD.I.1 0 0 0 0 0 0 0 0 0 0 0 0 0

CG.I.1 0 1 0 1 1 0 0 1 0 0 0 0 1
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Case No. Autoimm

une 

cytopenia

Autoimm

une skin 

disease

Hepatopa

thy

Apththou

s ulcers

Vasculitis Arthritis Neurologi

cal 

manifesta

tions

Cardiovas

cular 

abnormali

ties

Hepatom

egaly

Splenome

galy

Lymphad

enopathy

Malignan

cies

I.II.1 1 0 0 0 0 0 0 0 0 1 1 0

K.II.1 1 0 0 0 0 0 1 0 0 1 1 1

Q.I.1 1 0 0 1 1 1 0 0 1 1 1 0

S.I.1 1 0 1 1 0 0 1 0 1 1 1 0

C.I.2 0 0 0 0 0 0 0 0 0 0 0 1

C.II.3 0 0 1 0 0 0 0 0 0 1 1 0

C.II.5 0 0 1 1 0 0 1 0 0 0 0 1

L.II.1 1 0 0 0 0 0 0 0 0 0 0 0

T.I.1 0 1 1 0 0 0 0 0 1 1 0 0

U.I.3 0 1 0 0 0 0 0 0 0 0 0 0

V.I.1 0 0 0 1 0 0 1 1 0 1 0 0

W.I.1 1 0 0 0 0 0 0 0 0 1 0 1

W.II.1 1 0 0 0 0 0 0 0 0 0 0 0

X.I.1 1 0 0 0 0 0 0 0 1 0 0 1

O.II.1 0 0 0 0 0 0 0 0 0 0 0 0

Y.II.1 0 1 0 0 0 1 1 0 0 0 0 0

NZ.I.2 1 1 0 0 0 0 0 1 0 0 0 0

NZ.II.1 1 0 0 0 0 0 0 0 0 0 0 0

NZ.II.2 1 1 1 0 0 0 0 0 1 1 1 1

NZ.III.1 0 0 0 0 0 0 0 0 0 0 0 0

Z.I.1 1 0 1 0 0 0 1 1 1 1 1 0

AA.II.2 1 0 0 0 0 0 0 0 1 1 1 0

F3.II.1 0 0 0 0 0 0 0 0 0 0 0 0

F3.II.5 0 0 0 0 0 0 0 0 0 0 0 0

AB.II.1 1 0 0 0 0 0 0 0 1 1 1 1

AC.I.1 1 0 0 0 0 0 0 1 0 1 1 0

AD.I.1 1 0 1 0 0 0 1 0 1 1 0 0

NA.II.16 0 1 0 0 0 0 0 0 0 0 0 1

NA.II.18 1 0 0 0 0 0 0 1 NA 1 1 1

NA.II.19 0 0 0 0 0 0 0 1 0 0 0 0

NA.II.21 0 0 0 0 0 0 0 1 0 0 0 0

NA.III.25 0 0 0 0 0 0 1 1 0 0 0 0

NA.III.34 0 1 0 0 0 0 0 1 0 0 0 0

NA.III.36 0 0 0 0 0 1 0 0 NA NA NA 0

NA.III.40 0 0 0 0 0 0 0 0 0 0 0 0

NA.IV.49 0 0 0 0 0 0 0 1 0 0 0 0

NA.V.57 0 0 0 0 0 0 0 0 0 0 0 0

NA.V.62 0 0 0 0 0 0 0 0 0 0 0 0

NA.V.8 0 0 0 0 0 0 0 0 0 0 0 0

AF.II.1 0 0 0 0 0 0 0 0 1 1 0 1

AG.I.1 1 0 0 0 0 0 0 0 1 1 1 0

M.II.1 1 0 0 0 0 0 0 0 0 1 0 0

F089.I.1 0 0 0 0 0 0 0 0 0 0 0 0

F089.II.2 1 1 1 1 0 0 1 0 1 1 1 0

AH.I.1 1 0 1 0 1 1 1 0 1 1 0 0

H.II.1 1 0 0 0 0 0 0 0 0 1 0 0

AI.I.1 1 0 0 1 0 0 0 0 1 1 1 0

A.II.4 0 0 0 0 0 0 0 0 0 0 0 0

A.III.2 0 0 0 0 0 0 0 0 0 0 0 0

A.III.3 0 0 0 0 0 0 0 0 0 1 1 0

AJ.III.1 1 0 1 1 1 0 1 1 1 1 1 0

AJ.II.2 0 1 0 0 0 0 0 0 0 0 0 0

AJ.III.3 0 0 0 1 0 0 0 0 0 0 0 0

AJ.II.4 0 0 0 0 0 0 1 0 NA NA NA 1

AK.I.1 0 0 0 0 0 0 0 0 0 1 1 0

AM.II.1 1 0 1 1 0 0 0 1 1 1 1 1

AM.I.1 0 0 0 0 0 0 0 0 0 0 0 0

AN.II.1 1 0 0 0 0 1 0 0 0 1 1 0

AN.III.1 1 0 0 0 0 0 0 0 0 0 0 0

AO.I.1 0 0 0 0 0 0 0 1 0 0 1 1

AP.I.1 1 0 0 0 0 0 1 1 1 1 1 0

N.II.1 1 1 0 0 0 0 0 0 0 1 1 1

AQ.I.1 0 0 0 0 0 0 1 0 0 0 0 0

AR.I.4 1 0 0 0 0 0 1 0 NA 1 NA 0

AS.II.1 1 0 0 0 0 0 0 0 0 1 1 0

P.II.1 1 0 1 0 0 1 0 0 0 1 0 0

AT.III.2 1 0 0 1 0 0 0 0 0 1 1 0

AT.II.2 0 0 0 0 0 0 0 0 0 0 0 0

AT.II.3 0 0 0 0 0 0 0 0 0 0 0 0

AU.II.3 1 0 0 0 0 0 1 0 0 1 1 0
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Table S3. Clinical spectrum of patients with damaging heterozygous NFKB1 mutations. NA: not available. 

  

Case No. Autoimm

une 

cytopenia

Autoimm

une skin 

disease

Hepatopa

thy

Apththou

s ulcers

Vasculitis Arthritis Neurologi

cal 

manifesta

tions

Cardiovas

cular 

abnormali

ties

Hepatom

egaly

Splenome

galy

Lymphad

enopathy

Malignan

cies

AU.I.2 1 0 1 0 0 0 0 0 1 1 0 1

AV.II.1 1 0 0 0 0 0 1 0 0 1 1 1

AV.I.2 0 1 0 0 0 0 1 0 0 0 0 0

AW.I.1 0 0 0 0 0 0 0 1 0 1 1 0

AX.I.1 1 0 0 0 0 0 0 0 1 1 1 0

AY.I.1 0 0 0 0 0 0 0 0 0 0 0 0

AZ.I.1 0 1 0 0 0 0 0 0 NA NA NA 0

BA.II.1 1 0 0 1 0 0 0 0 0 1 1 0

BA.II.2 0 1 0 0 0 0 0 0 0 0 0 0

BB.I.1 1 0 1 1 0 0 0 0 1 1 0 0

BC.I.1 1 0 0 0 0 0 1 1 1 1 0 0

BD.I.1 1 1 0 0 0 0 0 0 1 1 0 0

BF.II.1 1 1 0 0 0 1 1 0 1 1 1 0

BF.II.2 1 0 1 1 0 0 1 0 1 1 1 0

BM.I.5 0 0 0 0 0 0 0 0 0 0 0 0

J.III.2 0 0 0 0 0 0 0 0 0 0 0 0

BG.I.1 0 0 0 0 0 0 0 0 0 1 0 0

B.I.1 1 0 0 0 0 0 1 0 1 1 0 1

B.II.1 0 1 0 0 0 0 0 0 0 0 0 0

BH.II.2 1 0 0 0 0 0 0 0 0 1 1 0

D.II.2 1 0 0 0 0 0 0 0 0 1 0 0

BI.I.1 1 0 0 0 0 1 0 0 0 1 1 0

F2.III.2 0 0 0 0 0 0 0 1 0 0 0 0

F2.II.3 0 0 0 0 1 1 0 0 0 0 0 1

BK.II.1 0 0 0 0 0 0 0 0 0 0 0 0

BL.I.1 0 0 0 0 0 0 1 1 0 0 1 0

BL.II.1 0 0 0 0 0 0 0 0 0 0 1 0

F1.II.1 0 0 0 0 0 0 0 0 NA NA NA 0

F1.II.4 0 0 1 1 0 1 0 0 0 0 0 0

F1.III.2 0 0 0 0 0 0 0 0 0 0 0 0

F1.III.3 0 0 0 1 0 0 0 0 0 0 0 0

F1.III.6 0 0 0 1 0 0 0 0 0 0 0 0

F1.III.7 0 0 0 1 0 1 1 1 0 0 0 0

F1.III.8 0 0 0 1 1 0 1 0 0 0 1 0

F1.IV.1 0 0 0 0 0 0 0 0 0 0 0 0

F1.IV.2 0 0 0 1 0 0 0 0 0 0 0 0

G.II.1 0 0 0 0 0 0 0 0 0 1 0 0

47/107 16/107 16/107 19/107 5/107 11/107 25/107 19/107 25/101 50/103 36/102 18/107

Possible NFKB1 patients

F.II.1 0 0 0 0 0 0 0 0 0 0 0 1

E.II.1 1 0 0 0 0 0 0 0 0 1 1 0

BM.I.1 1 0 0 0 0 0 0 0 1 1 1 0

BO.I.1 1 1 1 0 0 0 1 0 0 1 0 0

BP.I.1 0 0 0 0 0 0 0 0 1 1 0 0

BQ.I.1 0 0 0 0 0 0 0 0 0 0 0 0

BT.I.1 0 0 0 0 0 0 0 1 0 0 0 0

BS.II.1 0 0 0 0 0 0 0 0 0 0 1 0

BT.II.1 0 0 0 0 0 0 0 0 0 0 0 0

BU.I.1 0 0 1 0 0 0 0 0 0 0 1 0

BV.I.1 1 0 0 0 0 0 0 1 0 1 0 0

BW.I.1 1 0 0 0 0 0 0 0 0 0 0 0

BX.I.1 0 0 0 0 0 1 0 0 0 1 0 0

BY.I.1 1 1 1 0 0 0 0 0 0 1 1 1

BZ.I.1 0 0 0 0 0 1 1 0 1 1 0 0

CA.I.1 0 0 0 0 0 0 0 0 0 0 1 0

CC.I.1 0 0 0 1 0 0 0 0 0 0 0 0

CD.I.1 1 0 1 0 0 0 0 0 1 1 1 0

CD.I.1 0 0 0 0 0 0 0 0 0 0 0 0

CG.I.1 0 1 1 0 0 1 1 1 1 1 1 0
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cDNA Protein Previously described 
functional tests 

Undescribed functional tests 

HAPLOINSUFFICIENCY MUTATIONS 
del103370996-
103528207 

 WB: reduced NF-κB1 protein 
levels in patient’s cells12. 

 

c.139delA p.Ile47 
Tyrfs*2 

WB: reduced NF-κB1 protein 
levels in patient’s cells5. 

 

c.160-1G>A p.Arg54_ 
Lys86del 

WB: reduced NF-κB1 protein 
levels in patient’s cells12. 

 

c.465dupA p.Ala156 
Serfs*12 

WB: reduced NF-κB1 protein 
levels in patient’s cells4. 

 

c.469C>T p.Arg157* WB: reduced NF-κB1 protein 
levels in patient’s cells5. 
Dual luciferase reporter assay: 
reduced NF-κB activation10. 

 

c.494delG p.Gly165 
Alafs*32 

WB: detectable but severely 
decreased levels of p506. 

 

c.730+4A>G  p.Asp191_ 
Lys244 
delinsGlu 

WB: reduced NF-κB1 protein 
levels in patient’s cells. 
Fluorescence microscopy: 
reduced florescence intensity 
and altered subcellular 
localization of GFP-fused 
mutant proteins4. 

Fluorescence based promoter reporter assay: 
reduced NF-κB activation (data not shown). 

c.835+2T>G p.Lys244_ 
Asp279 
delinsAsn 

WB: reduced NF-κB1 protein 
levels in patient’s cells4. 

 

c.850C>T p.Arg284* WB: reduced NF-κB1 protein 
levels in patient’s cells12. 

 

c.1012delT p.Ser338 
Leufs*94 

 FM: reduced florescence intensity and altered 
subcellular localization of GFP-fused mutant 
proteins (Figure 2A). 

c.1210+1 
G>A  

p.Asp356_ 
Pro403del 

WB: reduced NF-κB1 protein 
levels in patient’s cells12. 

 

PRECURSOR SKIPPING MUTATIONS 
c.1365delT p.Val456*  FM: p50-like protein localizes to the nucleus (data 

not shown). 
c.1423delG p.Ala475 

Profs*10 
WB: reduced NF-κB1 protein 
levels in patient’s cells12. 

FM: p50-like protein localizes to the nucleus 
(Figure 2A). 

c.1517delC p.Ala506 
Valfs*17 

 FM: p50-like protein localizes to the nucleus (data 
not shown). 

c.1537_1541 
delCATGC 

p.His513 
Glnfs*28 

WB: reduced NF-κB1 protein 
levels in patient’s cells12. 

 

c.1621_1622 
delGA 

p.Asp541* WB: reduced NF-κB1 protein 
levels in patient’s cells. 
Presence of mutant p50-like 
protein (with increased 
molecular weight)12. 

FM: p50-like protein localizes to the nucleus (data 
not shown). 

MISSENSE VARIANTS AFFECTING THE p105 PRECURSOR AND THE MATURE p50 
c.169C>T p.Arg57Cys  WB: presence, expected size, and increased ratio 

of mutant p105/p50 (Figure 2C). 
FM: predominant p105 localization in the 
cytoplasm and clumping of fluorescent signal 
after stimulation (Figure 2A and B). 
Dual luciferase reporter assay: reduced NF-κB 
activation (Figure 2D). 

c.200A>G p.His67Arg WB: normal NF-κB1 protein 
levels in patient’s cells. 
Dual luciferase reporter assay: 
reduced NF-κB activation. 
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Immunofluorescence 
microscopy: reduction in 
efficiency of p50 nuclear 
localization10. 

c.260T>G p.Ile87Ser WB: reduced NF-κB1 protein 
levels in patient’s cells12. 

WB: presence and expected size of the p105 
protein (Figure 2C). 
FM: predominant p105 localization in the 
cytoplasm (data not shown). 
Dual luciferase reporter assay: reduced NF-κB 
activation (Figure 2D). 

c.293T>A p.Val98Asp WB: reduced NF-κB1 protein 
levels in patient’s cells12. 

 

c.470G>C p.Arg157 
Pro 

 WB: presence and expected size of the p105 and p50 
proteins. 

c.592C>T p.Arg198 
Cys 

 WB: presence and expected size of the p105 
protein (data not shown). 
FM: predominant p105 localization in the 
cytoplasm (data not shown). 
Dual luciferase reporter assay: normal NF-κB 
activation (data not shown). 

c.641G>A p.Arg214 
Gln 

 WB: presence and expected size of the p105 
protein (data not shown). 
FM: predominant p105 localization in the 
cytoplasm (data not shown). 
Dual luciferase reporter assay: normal NF-κB 
activation (data not shown). 

c.646A>G p.Met216 
Val 

 WB: presence and expected size of the p105 
protein (Figure 2C). 
FM: predominant p105 localization in the 
cytoplasm (data not shown). 
Dual luciferase reporter assay: normal NF-κB 
activation (data not shown). 

c.689G>G p.Arg230 
Lys 

 WB: presence and expected size of the p105 
protein (Figure 2C). 
FM: predominant p105 localization in the 
cytoplasm (data not shown). 
Dual luciferase reporter assay: normal NF-κB 
activation (data not shown). 

c.843C>G p.Ile281 
Met 

WB: reduced NF-κB1 protein 
levels in patient’s cells12. 

WB: presence and expected size of the p105 
protein (Figure 2C). 
FM: predominant p105 localization in the 
cytoplasm (data not shown). 
Dual luciferase reporter assay: normal NF-κB 
activation (data not shown). 

MISSENSE VARIANTS PROBABLY AFFECTING ONLY THE FUNCT IONS OF THE PRECURSOR 
c.1519A>G p.Met507 

Val 
 WB: presence and expected size of the p105 

protein (data not shown). 
FM: predominant p105 localization in the 
cytoplasm (data not shown). 
Dual luciferase reporter assay: normal NF-κB 
activation (data not shown). 

c.1659C>G p.Ile553 
Met 

WB: normal NF-κB1 protein 
levels in patient’s cells. But 
increased p105 degradation, 
with rising TNF concentrations. 
Dual luciferase reporter assay: 
normal NF-κB activation. 
Immunofluorescence 
microscopy: normal p50 
nuclear localization.  
Mass spectrometric analyses: 

WB: presence and expected size of the p105 
protein (Figure 2C). 
FM: predominant p105 localization in the 
cytoplasm (data not shown). 
Dual luciferase reporter assay: normal NF-κB 
activation (data not shown). 
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decreased phosphorylation 
status10. 

c.1736G>A p.Arg579 
Lys 

 WB: presence and expected size of the p105 
protein (data not shown). 
FM: predominant p105 localization in the 
cytoplasm (data not shown). 
Dual luciferase reporter assay: normal NF-κB 
activation (data not shown). 

c.1845G>T p.Leu615 
Phe 

 WB: presence and expected size of the p105 
protein (data not shown). 
FM: predominant p105 localization in the 
cytoplasm (data not shown). 
Dual luciferase reporter assay: normal NF-κB 
activation (data not shown). 

c.2831C>A p.Thr944 
Asn 

 WB: presence and expected size of the p105 
protein (data not shown). 
FM: predominant p105 localization in the 
cytoplasm (data not shown). 
Dual luciferase reporter assay: normal NF-κB 
activation (data not shown). 

VARIANT WITH UNKNOWN EFFECT 
c.2650G>A p.Glu884 

Lys 
 WB: presence and expected size of the p105 

protein (data not shown). 
FM: predominant p105 localization in the 
cytoplasm (data not shown). 
Dual luciferase reporter assay: normal NF-κB 
activation (data not shown). 

Table S4. Assessment of selected NFKB1 variants with four different assays. Mutations assumed to be pathogenic 

are marked in bold. WB: Western blot, FM: fluorescence microscopy.  

Patient Opportunistic 
infection 

CD4+ T 
cells 
(absolute 
number/%) 

Naive CD4 
T cells 

B cells 
(absolute 
number/%) 

Immunosuppressive 
treatment 

Survival 
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Table S5. Clinical spectrum of opportunistic infections in patients with damaging heterozygous NFKB1 

mutations. NA: not available, CHOP: cyclophosphamide, hydroxydaunorubicin, oncovin, prednisone, MMF: 

mycophenolate mofetil, MTX: methotrexate. 

  

NA.II.16 
 

Aspergillus (lung) 
Candida (lung) 

<100 NA 200 Intermittent steroids Died at 76 
y 

Z.I.1 Aspergillus (lung) 
JC virus (CNS) 

810 (49·3) 
 

350 (42·8) 
 

371 (22·6) Intermittent steroids Alive 

C.II.5 
 

Aspergillus (lung) 
 

650 (56·5) NA 42 (3·7) Steroids  
Azathioprin 

Died at 39 
y 

AZ.I.1 
 

Candida (GI tract) 
Cryptosporidium (GI 
tract) 

1234 (64) NA 41(2) Intermittent steroids Alive 

AR.I.4 
 

Pneumocystis (lung), 
MAC (lung) 
JC virus (SCN) 

1177 NA 0 (0) NA Died at 48 
y 

H.II.1 
 

CMV (invasive) 2129 (39) NA 132 (3) No Died at 35 
y 

AO.I.1 
 

CMV (GI tract) 105 (17) NA 6 (1) Intermittent sterois, 
CHOP 

Alive 

BF.II.2 
 

CMV (hepatitis and 
cytopenia) 

1015 (52·1) 90 (9) 98 (6·5) Intermittent steroids Alive 

AB.II.1 
 

EBV 
(lymphoproliferation) 

390-660 140 20-80 Rituximab (to treat 
EBV-related 
lymphoproliferation) 

Alive 

S.I.1 
 

EBV 
(lymphoproliferation) 
Adenovirus (GI tract) 

(40-65)  (7-9) (4-11) Steroids, MMF Alive 

A.III.3 
 

EBV 
(lymphoproliferation) 
JC virus (CNS) 

735 (29·1) 110 (15·5) 0,5 (0) No Alive 

BM.I.5 MAC (lung) 518 NA 0 (0) NA Alive 

BL.II.1 MAC (lymphadenitis) 486 (25·6) 274 (14·4) 509 (26·8) No Alive 

W.I.1 Disseminated BCG 340 (17·8) 200 (59) 130 No Alive 

AF.II.1 
 

Mycobacterium 
genavense (lung) 

860 (26) 160 (19) 480 (11·7) MTX, mercaptopurine, 
vinblastin, steroids 

Alive 

G.II.1 MAC (lung) 449 (43·9) 200 (44) 0 (0) NA Alive 

AU.I.2 Stenotrophomonas 
maltophilia (lung) 
Adenovirus (lung) 

42 (9) NA 1 (0·6) Intermittent steroids, 
CHOP 

Died at 53 
y 
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 Several cohorts of CVID patients Cohort of NFKB1 patients 

Gender 51·1% female, 48·9% male19 56·1% female, 43·9% male 

Onset Two peaks (before age 10 and in the second to 
third decade of life19,25,26) 

Median age 12 years 

Mortality  19·6% (median age of death: 43 years)18 17·1% (median age of death: 52 years) 

Pneumonia 58%27 59% 

Sinusitis 63%27 59·8% 

Gastrointestinal 
infections 

27%27 28·6% 

Bronchitis 69%27 41·7% 

Bronchiectasis 37%27 25·6% 

GLILD 10-20%26 7·4% 

Viral infections 23%27,28 25·0% 

Opportunistic 
infections 

5-6%27,28 15·7% 

Non-infectious 
enteropathy 

9-15·4%18,25,29 23·1% 

Liver disease 9·1% in the New York CVID cohort18, but 
abnormal liver function and NRH in 44% and 
12% of 108 CVID patients, respectively30 

19·5% (4·6% with NRH) 

Autoimmunity 30%18,19,31,32 57·4% 

Autoimmune 
cytopenia 

21%31 43·9% 

Splenomegaly  25-40·5%17,19,20 48·5% 

Lymphadenopathy 26%17,19,20 35·3% 

Malignancy 15%18 16·8% 

Lymphoma 7·4%18 11·1% 

Solid organ cancer 5·6%18 4·6% 

Low levels of 
switched memory B 
cells 

58%20 60·3% 

Expansion of 
CD21low B cells  

42·8%20 56·1% 

Expansion of 
transitional B cells 

15%20 36·8% 

Table S6. Comparison of the NFKB1 phenotype to the one of general CVID. NRH: nodular regenerative 

hyperplasia. 


