
Richardson, R A, et al. 2020 EasyVVUQ: A Library for Verification, Validation
and Uncertainty Quantification in High Performance Computing. Journal of
Open Research Software, 8: 11. DOI: https://doi.org/10.5334/jors.303

Journal of
open research software

SOFTWARE METAPAPER

EasyVVUQ: A Library for Verification, Validation and
Uncertainty Quantification in High Performance Computing
Robin A. Richardson1, David W. Wright1, Wouter Edeling2, Vytautas Jancauskas3,
Jalal Lakhlili4 and Peter V. Coveney1

1 Centre for Computational Science, Department of Chemistry, University College London, UK
2 Centrum Wiskunde and Informatica, Amsterdam, NL
3 Leibniz Supercomputing Centre, Garching, DE
4 Max-Planck Institute for Plasma Physics – Garching, Munich, DE
Corresponding authors: Robin A. Richardson (robin.richardson@ucl.ac.uk); David W. Wright (dave.wright@ucl.ac.uk)

EasyVVUQ is an open source Python library (https://github.com/UCL-CCS/EasyVVUQ) designed to facilitate
verification, validation and uncertainty quantification (VVUQ) for a wide variety of simulations. The goal
of EasyVVUQ is to make it as easy as possible to implement advanced VVUQ techniques for existing
application codes or workflows. Our aim is to expose these features in an accessible way for users of
scientific software, in particular for simulation codes running on high performance computers.

Keywords: Validation; Verification; Uncertainty Quantification; High Performance Computing; Multiscale
Funding statement: We acknowledge funding support from the European Union’s Horizon 2020 research
and innovation programme under grant agreement 800925 (VECMA project, www.vecma.eu) and the UK
Consortium on Mesoscale Engineering Sciences (UK-COMES, http://www.ukcomes.org), EPSRC reference
EP/L00030X/1.

(1) Overview
Introduction
An overarching goal of computational modelling is to
provide insight into questions that otherwise could
only be addressed by costly experimentation, if at all. In
order for the results of computational science to impact
decision making, for example in industrial or clinical
settings, it is vital that they are accompanied by a robust
understanding of their degree of validity. In practice, this
can be decomposed into checks of whether the codes
employed are solving the governing equations correctly
(verification), solving the correct equations to begin with
(validation), and providing estimates that comprehensively
capture uncertainty (uncertainty quantification) [11, 12].
These processes, collectively known as VVUQ, provide the
basis for determining our level of trust in any given model
and the results obtained using it [15].

Recent advances in the scale of computational resources
available, and the algorithms designed to exploit them, mean
that it is increasingly possible to conduct the additional
sampling required by VVUQ even for highly complex
calculations and workflows. EasyVVUQ is being developed
as part of the the VECMA project (www.vecma.eu), whose
goal is to provide an open source toolkit (www.vecma-
toolkit.eu) containing a wide range of tools to facilitate
the use of VVUQ techniques in multiscale, multiphysics

applications [6]. Our aim is to define stable interfaces and
data formats that facilitate VVUQ in the widest range of
applications. This would then provide the platform to
support complex multi-solver workflows. Several software
packages or libraries are already available for performing
VVUQ (such as OpenTurns [2], UQLab [8], Uncertainpy [19],
Chaospy [4], SALib [7], URANIE [5], UQTk [3], etc.), but in
many cases these rely on closed source components and
none of them provide the separation of concerns needed
to allow the analysis of both small local computations and
highly compute intensive kernels (potentially using many
thousands of cores and GPUs on HPC or cloud resources).
Consequently, the design of EasyVVUQ is focused on
making a wide range of VVUQ techniques available for
scientists employing unmodified versions of existing
applications. In particular, key considerations for us are
the ability to support HPC codes, large job counts, and the
robustness and restartability of workflows. Nonetheless,
we have no intention of reinventing the wheel and reuse
existing tools where appropriate to provide robust and
optimized code for sampling and analysis.

Implementation and architecture
EasyVVUQ aims to decouple the implementation of VVUQ
algorithms from the simulation codes to which they will
be applied. In this section we describe the concepts used

https://doi.org/10.5334/jors.303
mailto:dave.wright@ucl.ac.uk
https://github.com/UCL-CCS/EasyVVUQ
http://www.vecma.eu
http://www.ukcomes.org
http://www.vecma.eu
http://www.vecma-toolkit.eu
http://www.vecma-toolkit.eu

Richardson et al: EasyVVUQArt. 11, page 2 of 8

to achieve this and how they are translated into code. We
make use of the idea of computational patterns, which
in this context are defined as “abstractions that describe,
in a non-application and non-domain specific manner,
a workflow or algorithm for conducting validation,
verification, uncertainty quantification or sensitivity
analysis”. Making use of such patterns in practice requires
that they are decomposed into components which can be
flexibly combined to implement a range of algorithms. We
call these components Elements and distinguish two classes:
those which implement generic VVUQ functionality and
those which translate between the requirements of the
VVUQ algorithm and the input and output formats of any
given application. Figure 1 illustrates the decomposition
of a generalized VVUQ workflow into different steps which
are encapsulated by EasyVVUQ elements. EasyVVUQ is
designed around a breakdown of such workflows into
four distinct stages; Sampling, Model Evaluation, result
Collation, and Analysis. In an HPC context the model
evaluation step is generally equivalent to the execution
of a computationally expensive simulation. The actual
simulation execution is beyond the remit of the package
but EasyVVUQ is designed to wrap around simulation
execution, providing functions to generate input (an
Encoder) and to transform simulation output into
common formats for analysis (a Decoder). In this section
we describe in greater detail how each of these Elements
is conceived and implemented.

Parameter Description
The first step in our generalised workflow is a description
of the model parameters and how they might vary in the
sampling phase of the VVUQ pattern. Typically, the user
will specify all numerical parameters, the distributions
from which they should be drawn and physically
acceptable limits on their values.

Campaign
EasyVVUQ workflows are coordinated by an object called
a “Campaign”. This contains a common database, the
“CampaignDB”, which contains information on the appli-
cation(s) being analysed alongside the runs mandated by
the sampling algorithm(s) employed. The “Campaign”
handles all validation and transfers information between
each stage of the workflow.

The run information stored in the “CampaignDB”
includes a status flag which indicates where in the VVUQ
workflow the run is. The recorded steps are when: (1) a set
of parameters for a run are added to the database (NEW),
(2) simulation inputs are generated (ENCODED) and (3)
simulation output is successfully read and prepared for
analysis (COLLATED).

Samplers
A “Sampler” populates the “CampaignDB” with a set of
run specifications based on the parameter description
provided by the user. Each “Sampler” is designed to employ
one of a range of algorithms, such as the Monte Carlo or
Quasi Monte Carlo approaches [16, 18]. They deal with
generic information in the sense that all parameters use
the nomenclature and units provided by the user rather
than anything specific to any application or workflow.

Encoders
The role of an “Encoder” is to convert generic parameter
descriptions into inputs (for example configuration files)
which can be used in a specific application. Included in
the base application is a simple templating system in
which values are substituted into a text input file. For
many applications it is envisioned that specific encoders
will be needed and the framework of EasyVVUQ means
that any class derived from a generic Encoder base class is
picked up and may be used. This enables EasyVVUQ to be
easily extended for new applications by experienced users.

Decoders
The role of a “Decoder” is twofold, to record simulation
completion in the “CampaignDB” and to extract the
output information from the simulation runs. Similarly to
an “Encoder”, a “Decoder” is designed to be user extendable
to facilitate analysis of a wide range of applications.

Collation
“Collation” elements gather “Decoder” output across
multiple runs to provide a combined and generic expre-
ssion of the simulation results for further analysis (for
example, the default is to bring together output from all
simulation runs in a pandas dataframe).

Figure 1: Decomposition of a generalised VVUQ workflow
into different steps. These steps are implemented as
VVUQ Elements in EasyVVUQ. ~ Boxes with straight
corners represent generic ~ Elements which are defined
by the VVUQ workflow. Boxes with rounded corners
are specified by users to tailor general workflows to a
given use case.

Richardson et al: EasyVVUQ Art. 11, page 3 of 8

Analysis
The final goal of any VVUQ workflow is an analysis which
provides information on the simulation output across
a range of runs. Different types of analysis (for example
bootstrapping of multiple runs from varied initial
conditions) are, or will be, provided by EasyVVUQ.

Dataflow
Using these concepts, we may construct the generalized
VVUQ workflow depicted in Figure 1 in terms of VVUQ
elements, as shown in Figure 2. A database is populated
with runs generated by the chosen sampling element.
These generic run descriptions are encoded to their
application specific input formats and executed. A collation
element aggregates the output from finished runs, using
the appropriate decoder to extract the desired information.
Finally one or more analyses can be carried out on this
aggregated data. More runs can subsequently be drawn
from the sampler, executed, and collated into the same
output for analysis.

The workflow is orchestrated via a Campaign object
that stores information such as run descriptions, current
status of a run in the workflow (NEW, ENCODED or
COLLATED), and the collated output in its database,
which we refer to as the CampaignDB. A diagram of the
database structure is shown in Figure 3. Each run stored
in the run table retains the id of the campaign to which
it belongs, the application it is generated for, and the
sampler which generated it. Runs may also be filtered
by their currently recorded status. The collated data is
also stored in the database, although this is not shown in
Figure 3 as the table fields depend on the output being
collated.

The ultimate goal for EasyVVUQ to support complex
multiscale workflows has shaped the design of the Campaign
database, which must facilitate storing information from
multiple applications. In EasyVVUQ an “app” is defined as a
set of parameters (and fixtures which are our term for data
sources where the paths may need to be manipulated by
Encoders), an Encoder and a Decoder.

Installation
EasyVVUQ is available on the Python Package Index (PyPI),
and can be installed using
pip install easyvvuq

for python versions 3.6 and above, with documentation and
tutorials provided at https://easyvvuq.readthedocs.io. The
latest development version can be obtained directly from
the git repository at github.com/UCL-CCS/EasyVVUQ.

Features
The EasyVVUQ library is designed to be easily extended but
already implements a variety of UQ algorithms (frequently
building upon those found in the chaospy library [4]). At
present, Stochastic Collocation, Polynomial Chaos Expansion,
Quasi MonteCarlo, and parameter sweeps are implemented
as sampling elements, some with corresponding analysis
elements. It is envisioned that novel algorithms will be
designed and implemented within the VECMA project and
these integrated with the library, for example semi-intrusive
methods for multiscale applications [10].

Data processing and storage within EasyVVUQ is handled
using well established libraries. pandas dataframes are
used as a ‘standard’ container for collated data, allowing
simpler interfaces to be designed for the Analysis elements.
The package includes an integrated wrapper around

Figure 2: A simple EasyVVUQ workflow for one sampler and one application (simulation code), in terms of VVUQ
elements (shown in blue).

https://easyvvuq.readthedocs.io

Richardson et al: EasyVVUQArt. 11, page 4 of 8

pandas summary statistics, alongside bootstrap statistics
and sampler coupled analysis functions for Stochastic
Collocation and Polynomial Chaos Expansion workflows.
Interaction with databases is via sqlalchemy [9]
(www.sqlalchemy.org), which provides a choice of several
database backends. The use of flexible technology means
that, depending on the application and resource on which
it is to be run, different database choices will provide the
needed performance, scalability and availability.

One of the major motivations behind employing a
database is to allow restarting of the workflow – an important
consideration for HPC workflows involving a large number
of runs, for which the cumulative computational cost may
become very large. Entire Campaigns can be restarted from
the contents of the database, in which VVUQ elements such
as samplers serialize their state. At present this serialized
state is a JSON format string. For more complex objects
this is achieved using the jsonpickle (github.com/
jsonpickle/jsonpickle) library.

Physical range and type checking is performed on all
parameters using the cerberus python library (github.
com/pyeve/cerberus).

Quality control
Testing is carried out with pytest (github.com/pytest-
dev/pytest), using Travis (travis-ci.org/) for Continuous
Integration. The current test suite consists mostly of high
level “integration” style tests where entire workflows
are tested. These are available for most of the software
components, such as samplers, encoders, decoders, etc.

Unit testing is currently being implemented too, with
the more complex classes and methods. For example, the
database and more elaborate sampling techniques. There
will be alpha testing from the project community for the
duration of the VECMA project.

Example application: Cooling coffee cup
In this section, we illustrate the intended EasyVVUQ v0.5
[14] workflow using the following basic example script, a
python implementation of the cooling coffee cup model
used in the uncertainpy documentation (code for which
is in the tests/cooling/subdirectory of the EasyVVUQ
distribution directory). The code takes a small key/value
pair input and outputs a comma separated value (CSV)
file. The model uses Newton’s law of cooling to evolve the
temperature, T, over time (t) in an environment at Tenv:

 ()
(())env

dT t
k T t T

dt
= − − (1)

The constant κ characterizes the rate at which the coffee
cup transfers heat to the environment. In this example
we will analyze this model using the polynomial chaos
expansion (PCE) UQ algorithm. We will use a constant
initial temperature T0 = 95°C, and vary κ and Tenv, sampling
them from a uniform distribution in the ranges 0.025–
0.075 and 15–25 respectively.

Below we provide a commented script that shows how
the Campaign is built up and then employed. We also
provide an outline of how each element is set up:

Figure 3: The structure of the Campaign database.

http://www.sqlalchemy.org
http://github.com/jsonpickle/jsonpickle
http://github.com/jsonpickle/jsonpickle
http://github.com/jsonpickle/jsonpickle
http://github.com/jsonpickle/jsonpickle
http://github.com/pytest-dev/pytest
http://github.com/pytest-dev/pytest
http://travis-ci.org/

Richardson et al: EasyVVUQ Art. 11, page 5 of 8

import easyvvuq as uq
import chaospy as cp

Set up a fresh campaign called "coffee_pce"
my_campaign = uq.Campaign(name='coffee_pce')

Define parameter space
params = {
 "temp_init": {"type": "float", "min": 0.0, "max": 100.0, "default": 95.0},
 "kappa": {"type": "float", "min": 0.0, "max": 0.1, "default": 0.025},
 "t_env": {"type": "float", "min": 0.0, "max": 40.0, "default": 15.0},
 "out_file": {"type": "string", "default": "output.csv"}
}

Create an encoder, decoder and collater for PCE test app
encoder = uq.encoders.GenericEncoder(
 template_fname='cooling.template',
 delimiter='$',
 target_filename='cooling_in.json')

decoder = uq.decoders.SimpleCSV(target_filename="output.csv",
 output_columns=["te"],
 header=0)
collater = uq.collate.AggregateSamples(average=False)

Add the app (automatically set as current app)
my_campaign.add_app(name="cooling",
 params=params,
 encoder=encoder,
 decoder=decoder,
 collater=collater)

Create the sampler
vary = {
 "kappa": cp.Uniform(0.025, 0.075),
 "t_env": cp.Uniform(15, 25)
}
my_sampler = uq.sampling.PCESampler(vary=vary, polynomial_order=3)

Associate the sampler with the campaign
my_campaign.set_sampler(my_sampler)

Will draw all (of the finite set of samples)
my_campaign.draw_samples()

Encode and execute all runs
my_campaign.populate_runs_dir()
my_campaign.apply_for_each_run_sir(uq.actions.ExecuteLocal(
 "cooling_model.py cooling_in.json"))

Aggregate decoded output for all runs
my_campaign.collate()

Post-processing analysis
my_analysis = uq.analysis.PCEAnalysis(sampler=my_sampler, qoi_cols=["te"])
my_campaign.apply_analysis(my_analysis)

Get Descriptive Statistics
results = my_campaign.get_last_analysis()
stats = results['statistical_moments']["te"]
per = results['percentiles']["te"]
sobols = results['sobols_first']["te"]

In the above, the output of the cooling_model is the
temperature, ‘te’ (T at the end of the simulation).

Parameter space definition
The parameter space is defined using a dictionary. Each
entry in the dictionary follows the format:
"parameter_name": {
 "type": "<datatype>",
 "min": <value>,
 "max": <value>,
 "default": <value>
}

with a defined type, minimum and maximum value and
default. If the parameter is not selected to vary in the Sampler
(see below) then the default value is used for every run.

App creation
In this example the GenericEncoder and SimpleCSV,
both included in the core EasyVVUQ library, were
used as the encoder/decoder pair for this application.
GenericEncoder performs simple text substitution into a
supplied template, using a specified delimiter to identify
where parameters should be placed. The template is
shown below (is used as the delimiter). The template
substitution approach is likely to suit most simple
applications but in practice many large applications have
more complex requirements, for example the multiple
input files or the creation of a directory hierarchy. In such
cases, users may write their own encoders by extending
the BaseEncoder class.

Richardson et al: EasyVVUQArt. 11, page 6 of 8

{
 "T0":"temp_init",
 "kappa":"$kappa",
 "t_env":"$t_env",
 "out_file":"$out_file"
}

As can be inferred from its name, SimpleCSV reads CVS
files produced by the cooling model code. Again, many
applications output results in different formats, potentially
requiring bespoke Decoders.

In this workflow all application runs will be analyzed
as individual data points, so we set the collator to Aggre-
gateSamples without averaging. This element simply
extracts information using the assigned decoder and adds
it to a summary dataframe.

The sampler
The user specifies which parameters will vary and their
corresponding distributions. In this case the kappa and
t_env parameters are varied, both according to a uniform
distribution:

vary = {
 "kappa": cp.Uniform(0.025, 0.075),
 "t_env": cp.Uniform(15, 25)
}

Once created, the sampler is associated to the campaign
object using the set_sampler() method. Calling the
campaign’s draw_samples() method will cause the specified
number of samples to be added as runs to the campaign
database, awaiting encoding and execution. If no arguments
are passed to draw_samples() then all samples will be drawn,
unless the sampler is not finite.

Execute runs
Due to the diverse range of execution patterns required
by large HPC workflows, EasyVVUQ does not intend to
handle matters of execution, leaving this instead to the
user’s chosen middleware approach. However, some very
basic methods are provided to aid in local execution for
testing purposes. The populate_runs_dir() method of my_
campaign will create a directory hierarchy containing the

encoded input files for every run that has not yet been
completed. Finally, in this example, a shell command is
executed in each directory to execute the simple test code.
In practice this stage would be best handled using, for
example, a pilot job manager.

Collation and analysis
Calling my_campaign.collate() at any stage causes the
campaign to aggregate decoded simulation output for all
runs which have not yet been collated. This collated data
is stored in the campaign database. An analysis element
can then be applied to the campaign’s collation result.
The output of this analysis is dependent on the type of
analysis element employed.

In the example application described above, we apply
the PCEAnalysis element – the logical counterpart
to the PCESampler used earlier to generate the
samples. The output of this analysis (‘results’ in the
above example script) is a python dict containing the
statistical moments (mean, standard deviation etc.) of
the Quantity of Interest – in this case, the Temperature,
T(‘te’ in the script) – and the associated percentiles of
the distribution. The results dict also contains the Sobol
indices [17], which measure the sensitivity of the model
output (T) to each of the input parameters being varied.
Note that, in the script above, this final temperature is
referred to as ‘te’. In this case the PCE is being carried
out over two inputs, κ and Tenv, so the ‘sobols_first’ dict
entry contains two values.

Here, the only model output was T, so the analysis
element is instructed to operate only on this one output.
In general, however, a model can have multiple outputs.
In such a case the PCEAnalysis output dict would contain
the relevant statistics for each of the outputs, obtainable
through using a variable name other than [“te”] as index.

For illustration purposes, the statistical moments
(mean, standard deviation and 90% prediction interval)
and the first-order Sobol indices for the sensitivity
analysis (SA) of the Cooling Coffee Cup model have been
plotted in Figure 4. As expected, the mean temperature

Figure 4: Descriptive statistics and sensitivity analysis of the cooling coffee cup: on the left we have the mean, variance,
and 90% prediction interval of the cup temperature T, and on the right we have the first order Sobol indices for each
of the uncertain parameters, κ and Tenv.

Richardson et al: EasyVVUQ Art. 11, page 7 of 8

T is decreasing exponentially towards the environment
temperature Tenv. For the SA as can be observed (when
the first Sobol index is close to 1), T is more affected at
the beginning of the simulation by the uncertainty in the
rate κ, while it is exclusively affected at the end by the
uncertainty in Tenv.

(2) Availability
Operating system
Modern Linux (or OSX) with appropriate python version.

Programming language
Python 3.6

Additional system requirements
Memory and disk space dependent on usage case.

Dependencies
Tested with the following:

numpy 1.16.2
pandas 0.25
scipy 1.3.1
chaospy 3.0.17
SALib 1.3.8
pytest 4.3.1
pytest-pep8 1.0.6
SQLAlchemy 1.3.8
sqlalchemy-utils 0.34.2
jsonpickle 1.2
cerberus 1.3.1

List of contributors
In addition to the paper authors, we wish in particular to
acknowledge contributions from the following people:

Bartosz Bosak (Poznań Supercomputing and Networking
Center, Poznań, Poland) for discussions on middleware
and workflow integration.

Derek Groen (Department of Computer Science, Brunel
University London, London, UK), as VECMA project
Technical Manager.

Consult the CONTRIBUTIONS.md file in the code
repository for a more complete listing of contributions.

Software location
Name: EasyVVUQ v0.5
 Persistent identifier: https://doi.org/10.5281/zenodo.
3722092
Licence: LGPLv3
Version published: v0.5
Date published: 13/12/2019

Code repository
Name: EasyVVUQ
 Persistent identifier: https://github.com/UCL-CCS/
EasyVVUQ
Licence: LGPLv3
Date published: 14/12/2018 (date of v0.1 release)

Language
English

(3) Reuse potential
EasyVVUQ provides the tools to enable computational
scientists to add state of the art VVUQ algorithms to their
simulation workflows without modifying the underlying
codebase. The library is intentionally execution method
agnostic, providing the base VVUQ workflow elements
to allow for different execution patterns (such as Pilot
Jobs) facilitated by any choice of middleware solutions.
Within the VECMA project, workflows have been created
which employ PSNC PilotJob Manager, FabSim, RADICAL
Cybertools (see www.vecma-toolkit.eu) and Dask, but
users are free to use other solutions (for example Taverna
or cloud submission tools).

The EasyVVUQ library is intended to provide a platform
to design and evaluate novel VVUQ algorithms and to
be user extensible. As such, more sampling and analysis
options will gradually be made available within the library,
alongside a wider range of application specific wrappers.
The library also provides the foundation for tools that
will help understand the propagation of uncertainty
through complex workflows (such as those underpinning
multiscale simulations).

Through facilitating the use of rigorous VVUQ proce-
dures in computational science we hope EasyVVUQ will
aid the statistical response to the “reproducibility crisis”
in science [1, 13].

Acknowledgements
We are grateful to the VECMA consortium, Scientific
Advisory Board and the VECMAtk alpha users for their
constructive discussions and input around this work.
This work was additionally supported by the Netherlands
eScience Center.

Competing Interests
The authors have no competing interests to declare.

References
1. Baker, M 2016 1,500 scientists lift the lid on

reproducibility. Nature, 533: 452–4. DOI: https://doi.
org/10.1038/533452a

2. Baudin, M, Dutfoy, A, Iooss, B and Popelin, A-L
2017 OpenTURNS: An In dustrial Software for
Uncertainty Quantification in Simulation. In: ‘Hand
book of Uncertainty Quantification’, 2001–2038.
Springer International Publishing. DOI: https://doi.
org/10.1007/978-3-319-12385-1_64

3. Debusschere, B, Sargsyan, K, Safta, C and
Chowdhary, K 2017 Uncertainty Quantification
Toolkit (UQTk). In: ‘Handbook of Uncertainty
Quantification’, 1807–1827. Springer International
Publishing. DOI: https://doi.org/10.1007/978-3-
319-12385-1_56

4. Feinberg, J and Langtangen, H P 2015 ‘Chaospy:
An open source tool for designing methods of
uncertainty quantification’. Journal of Computational
Science, 11: 46–57. DOI: https://doi.org/10.1016/j.
jocs.2015.08.008

5. Gaudier, F 2010 ‘URANIE: The CEA/DEN Uncertainty
and Sensitivity platform’. Procedia – Social and

https://doi.org/10.5281/zenodo.3722092
https://doi.org/10.5281/zenodo.3722092
https://github.com/UCL-CCS/EasyVVUQ
https://github.com/UCL-CCS/EasyVVUQ
http://www.vecma-toolkit.eu
https://doi.org/10.1038/533452a
https://doi.org/10.1038/533452a
https://doi.org/10.1007/978-3-319-12385-1_64
https://doi.org/10.1007/978-3-319-12385-1_64
https://doi.org/10.1007/978-3-319-12385-1_56
https://doi.org/10.1007/978-3-319-12385-1_56
https://doi.org/10.1016/j.jocs.2015.08.008
https://doi.org/10.1016/j.jocs.2015.08.008

Richardson et al: EasyVVUQArt. 11, page 8 of 8

Behavioral Sciences, 2(6): 7660–7661. DOI: https://doi.
org/10.1016/j.sbspro.2010.05.166

6. Groen, D, Richardson, R A, Wright, D W,
Jancauskas, V, Sinclair, R, Karlshoefer, P, Vassaux,
M, Arabnejad, H, Piontek, T, Kopta, P, Bosak, B,
Lakhlili, J, Hoenen, O, Suleimenova, D, Edeling,
W, Crommelin, D, Nikishova, A and Coveney,
P V 2019 Introducing VECMAtk – Verification
Validation and Uncertainty Quantification for
Multiscale and HPC Simulations. In: ‘Lecture Notes in
Computer Science’, 479–492. Springer International
Publishing. DOI: https://doi.org/10.1007/978-3-
030-22747-0_36

7. Herman, J and Usher, W 2017 ‘SALib: An open-
source Python library for Sensitivity Analysis’. The
Journal of Open Source Software, 2(9): 97. DOI: https://
doi.org/10.21105/joss.00097

8. Marelli, S and Sudret, B 2014 UQLab: A Framework
for Uncertainty Quantification in Matlab, in ‘Vulner-
ability Uncertainty, and Risk’. American Society of Civil
Engineers. DOI: https://doi.org/10.1061/9780784413
609.257

9. Myers, J and Copeland, R 2015 Essential SQLAlchemy:
Mapping Python to Databases. O’Reilly Media, Inc.

10. Nikishova, A and Hoekstra, A G 2019 ‘Semi-intrusive
uncertainty propagation for multiscale models’.
Journal of Computational Science, 35: 80–90. DOI:
https://doi.org/10.1016/j.jocs.2019.06.007

11. Oberkampf, W L, DeLand, S M, Rutherford, B
M, Diegert, K V and Alvin, K F 2002 ‘Error and
uncertainty in modeling and simulation’. Reliability
Engineering & System Safety, 75(3): 333–357. DOI:
https://doi.org/10.1016/S0951-8320(01)00120-X

12. Oberkampf, W L and Roy, C J 2010 Verification
and Validation in Scientific Computing. Cambridge
University Press. DOI: https://doi.org/10.1017/CBO
9780511760396

13. Peng, R 2015 ‘The reproducibility crisis in science: A
statistical counterattack’. Significance, 12(3): 30–32. DOI:
https://doi.org/10.1111/j.1740-9713.2015.00827.x

14. Richardson, R A, Wright, D W, Jancauskas, V,
Lakhlili, J and Edeling, W 2019 ‘Easyvvuq v0.5’.
Documentation at https://easyvvuq.readthedocs.io.
DOI: https://doi.org/10.5281/zenodo.3722092

15. Roy, C J and Oberkampf, W L 2011 ‘A comprehensive
framework for verification validation, and uncertainty
quantification in scientific computing’. Computer
Methods in Applied Mechanics and Engineering,
200(25–28): 2131–2144. DOI: https://doi.org/10.
1016/j.cma.2011.03.016

16. Rubinstein, R Y and Kroese, D P 2007 Simulation and
the Monte Carlo Method. John Wiley & Sons Inc. DOI:
https://doi.org/10.1002/9780470230381

17. Saltelli, A, Ratto, M, Andres, T, Campolongo, F,
Cariboni, J, Gatelli, D, Saisana, M and Tarantola, S
2008 Global sensitivity analysis: the primer. John Wiley &
Sons. DOI: https://doi.org/10.1002/9780470725184

18. Sobol, I M 1998 ‘On quasi-Monte Carlo integrations’.
Mathematics and Computers in Simulation, 47(2–5):
103–112. DOI: https://doi.org/10.1016/S0378-4754
(98)00096-2

19. Tennøe, S, Halnes, G and Einevoll, G T 2018
Uncertainpy: A Python Toolbox for Uncertainty Quan-
tification and Sensitivity Analysis in Computational
Neuroscience. Frontiers in Neuroinformatics, 12. DOI:
https://doi.org/10.3389/fninf.2018.00049

How to cite this article: Richardson, R A, Wright, D W, Edeling, W, Jancauskas, V, Lakhlili, J and Coveney, P V 2020 EasyVVUQ:
A Library for Verification, Validation and Uncertainty Quantification in High Performance Computing. Journal of Open Research
Software, 8: 11. DOI: https://doi.org/10.5334/jors.303

Submitted: 27 September 2019 Accepted: 23 March 2020 Published: 29 April 2020

Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

https://doi.org/10.1016/j.sbspro.2010.05.166
https://doi.org/10.1016/j.sbspro.2010.05.166
https://doi.org/10.1007/978-3-030-22747-0_36
https://doi.org/10.1007/978-3-030-22747-0_36
https://doi.org/10.21105/joss.00097
https://doi.org/10.21105/joss.00097
https://doi.org/10.1061/9780784413609.257
https://doi.org/10.1061/9780784413609.257
https://doi.org/10.1016/j.jocs.2019.06.007
https://doi.org/10.1016/S0951-8320(01)00120-X
https://doi.org/10.1017/CBO9780511760396
https://doi.org/10.1017/CBO9780511760396
https://doi.org/10.1111/j.1740-9713.2015.00827.x
https://easyvvuq.readthedocs.io
https://doi.org/10.5281/zenodo.3722092
https://doi.org/10.1016/j.cma.2011.03.016
https://doi.org/10.1016/j.cma.2011.03.016
https://doi.org/10.1002/9780470230381
https://doi.org/10.1002/9780470725184
https://doi.org/10.1016/S0378-4754(98)00096-2
https://doi.org/10.1016/S0378-4754(98)00096-2
https://doi.org/10.3389/fninf.2018.00049
https://doi.org/10.5334/jors.303
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Parameter Description
	Campaign
	Samplers
	Encoders
	Decoders
	Collation
	Analysis
	Dataflow
	Installation
	Features

	Quality control
	Example application: Cooling coffee cup
	Parameter space definition
	App creation
	The sampler
	Execute runs
	Collation and analysis

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Code repository

	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

