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ABSTRACT 

Background: diagnostic biomarkers of epilepsy are objectively measurable variables associated to 

the development of epilepsy or the propensity to generate seizures. Identification of biomarkers 

could be helpful for differential diagnosis and for tailored therapeutic approaches. 

Objective: this review focuses on diagnostic biomarkers of epilepsy, including genetic, serological, 

neuroimaging and electrophysiological variables.  

Methods: references were mainly identified through PubMed search until December 2017 and 

backtracking of references in pertinent studies. 

Results: several promising diagnostic biomarkers of epilepsy exist, with causative value or 

predicting liability to develop seizures after acquired brain injuries. Short non-coding RNAs are 

deregulated in serum and cerebral tissue of epilepsy subjects: these molecules are promising 

diagnostic biomarkers, being easy to assess and reproducible. Advanced imaging techniques may 

allow identification of subtle epileptogenic lesions, often with prognostic value. Novel 

electrophysiological biomarkers of epilepsy include perturbed cortical connectivity and excitability 

induced by transcranial magnetic stimulation, as well as high-frequency oscillations detected by 

intracranial and scalp electroencephalographic recordings. Finally, serological biomarkers may 

support the differential diagnosis between epileptic seizures and non-epileptic events. 

Conclusions: ongoing research on diagnostic biomarkers of epilepsy is promising and future pre-

clinical and clinical studies are warranted. 
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1. INTRODUCTION 

Epilepsy is a highly heterogeneous and multifactorial condition, for which there is a lack of reliable 

and validated biomarkers. Biomarkers are defined as objectively measurable variables of a biologic 

process, either physiologic or pathologic, that provide reliable information on the status of that 

specific process in a specific moment [1]. Since their presence or level correlates with a specific 

aspect of the process, biomarkers can be artificially divided according to their prevalent diagnostic, 

prognostic or therapeutic value. Diagnostic biomarkers of epilepsy are aimed to identify the 

existence and the entity of cerebral tissue propensity to generate seizures or epilepsy and to support 

differential diagnosis of epileptic seizures [2]. In the current review, we focus on diagnostic 

biomarkers of epilepsy, including genetic, serological, neuroimaging and electrophysiological 

variables, and define current unmet needs and future perspectives. 

2. SEARCH STRATEGY 

Publications on diagnostic biomarkers of epilepsy were reviewed. References were identified by 

PubMed and Scopus search until December 2017, with various combinations of the terms 

“epilepsy”, “seizures”, “epileptogenesis", “ictogenesis”, “genetics”, “genes”, “miRNA”, 

“neuroimaging”, “MR”, “hippocampal sclerosis”, “focal cortical dysplasias”, “serological”, 

“prolactine”, “inflammation”, “EEG”, “TMS”, “electrophysiological”, “HFO”, “biomarker”. 

Articles were also identified through searches of the authors’ own files. Only articles published in 

English were reviewed. Selection criteria were novelty, importance, originality, quality, and 

relevance to the scope of this review. 

3. GENETIC BIOMARKERS 

Genetic contribution to epilepsy is increasingly recognized, and consists of a range of different and 

complex mechanisms [3]. Genotype-phenotype correlation is often not straightforward, with both 

gain- and loss-of-function variants causing very similar phenotypes but presumably different 



response to treatment [4,5]. Each person with epilepsy (PWE) has a complex genetic architecture 

where genetic variation may contribute to the epileptic phenotype and to develop epileptic seizures 

(ES) after acquired brain injuries. Some epilepsies have an established genetic etiology, either 

Mendelian or polygenic. Well-recognized Mendelian inheritance causes numerous focal and 

generalized syndromes [6]. De novo pathogenic single gene mutations are identified in 30–50% of 

patients with different epileptic encephalopathies [7]. Epilepsies with polygenic inheritance imply 

the involvement of multiple genes. The most common epilepsy syndromes with recognized or 

suspected polygenic etiology are “idiopathic generalized epilepsies” and “self-limited focal 

epilepsies” [8]. One of the most intriguing topic of ongoing research is the study of the influence of 

multiple genes on epilepsy and their interaction with brain lesions (i.e hippocampal sclerosis, HS, 

focal cortical dysplasia, FCD, etc) or environment (i.e. brain inflammation, trauma, etc). HS is the 

main cause of mesial temporal lobe epilepsy (TLE) [9]. Genetic susceptibility seems associated 

with the occurrence of TLE independent of underlying HS. TLE-susceptibility genetic 

abnormalities include single-nucleotide polymorphisms in the aquaporin-4 gene (Heuser et al, 

2010), potassium channel Kir4.1 gene [10], gamma-amino-butyric acid A and B receptor subunit 

genes [11,12], acid-sensing ion channel 1a gene [13], serotonin-related genes [14-16], calcium 

homeostasis modulator 1 gene [17], and prodynorphin gene promotor [18]. Genetic variants 

sometimes appear to influence susceptibility to TLE depending on gender, as for the prion protein 

gene in males [19], or the neuregulin [20] gene in females. However, none of these findings has 

been replicated in larger studies [21]. Another field of increasing interest is the involvement of 

genes influencing inflammation pathways in epileptogenesis. Functional variants in the promoter of 

the complement C3 gene have been associated with susceptibility to human mesial TLE and febrile 

seizures [22], and a gene-regulatory network analysis has shown that sestrin 3, a stress responsive 

protein, acts as positive regulator of a pro-inflammatory transcriptional program in the human 

epileptic hippocampus [23]. Polymorphisms in pro-inflammatory cytokines genes, such as 

interleukin (IL) 1 α and 1 β, have been associated with TLE, HS, or prolonged febrile convulsions 



[24,25]. A polymorphism of the tissue inhibitor of metalloproteinase 4 gene, encoding for an 

inflammation-induced apoptosis and matrix turnover factor, has been associated with susceptibility 

to focal epilepsy in Asian subjects [26]. Also polymorphisms in kelch-like ECH-associated protein 

1 and nuclear erythroid 2-related factor 2, implicated in neuroprotection due to induction of 

antioxidant enzymes, have been linked to susceptibility to TLE and drug-resistant epilepsy [27]. 

Other genetic variants have been associated to the liability to develop ES or post-traumatic epilepsy. 

Both ex vivo and in vivo models have shown the role of adenosine and its A1 receptor (A1R) in 

modulating the severity of status epilepticus [28] and the development of post-traumatic epilepsy 

[29,30]. Genetic variants in apolipoprotein E [31], glutamic acid decarboxylase 1 [32], neuronal 

high-affinity excitatory amino acid transporter [33], IL-1β [34], and methylenetetrahydrofolate 

reductase [35] genes are associated with increased risk of developing post-traumatic ES or epilepsy 

after traumatic brain injury. Lastly, functional single-nucleotide polymorphisms in the Cluster of 

Differentiation 40 [36] and in the mitochondrial aldehyde dehydrogenase 2 genes have been 

associated with the susceptibility to develop post-stroke epilepsy [37] in single studies. 

Unfortunately, most of these genetic polymorphisms are not yet of proven value as epilepsy 

biomarkers since some results have not been replicated and might be specific to certain populations. 

4. SEROLOGICAL BIOMARKERS 

Serological biomarkers of epilepsy include inflammatory proteins, hormones, enzymes and micro-

RNAs (miRNAs). These biomarkers are appealing, since blood, serum, and plasma are easy to 

obtain. 

4.1 Inflammatory proteins 

Several circulating inflammatory proteins have shown to contribute to ictogenesis in preclinical 

models of epilepsy [2,38]. Although their utility needs to be better clarified, also in consideration of 

their short half-life and low specificity [2], inflammation molecules have been proposed as 

serological biomarkers of epilepsy. In particular, IL-6 levels influence neuromodulation and may 



contribute to neuronal network excitability [39]. IL-6 levels are not only a promising biomarker of 

epilepsy, but may also vary as a function of seizure type and frequency. Indeed, IL-6 blood 

concentrations are chronically increased in epilepsy patients, especially in TLE subjects, compared 

with healthy controls [40,41]. Serum levels of IL-6 are significantly increased (compared to 

baseline) between 3 and 24h after a seizure [42]. Post-ictal peak blood concentration of IL-6 is 

significantly higher after tonic-clonic seizures than after focal seizures, independently from seizure 

duration [42,43]. Among subjects with focal epilepsies, TLE subjects show significantly higher 

post-ictal peak levels of IL-6. In particular, long seizure duration (i.e., >100s), low seizure-

frequency (i.e., < 10 seizures/month), and low baseline (under 5 pg/ml) IL-6 blood levels have been 

associated to higher IL-6 serum concentration within 24-hours after a seizure, in subjects with TLE 

[42]. Significantly increased blood levels of IL-6 and other cytokines (i.e., IL-8, IL-1β) have been 

shown in subjects with drug-resistant focal epilepsy, independently from the time of their last 

seizure, compared to healthy controls [44]. Similarly, altered levels of other cytokines (increased 

IL-8 and epidermal growth factor, lower ratios of IL-1 receptor antagonist (IL-1RA)/IL-1β and IL-

1RA/IL-8) have been shown in children with febrile status epilepticus compared to children with 

fever but not ES [45]. A lower ratio of IL-1RA/IL-6 was a strong predictor (OR 21.5, 95% CI: 

1.17–393) of acute hippocampal injury in children with febrile status epilepticus [45]. A 5-fold 

reduction of blood levels of the anti-inflammatory molecule “telencephalin” in refractory focal 

epilepsy subjects has also been shown [44]. 

4.2 Hormones 

Serum levels of various hormones have been suggested as candidates in the identification of ES. 

Prolactin (PRL) is the most studied and the most promising hormonal diagnostic biomarker, 

although its assessment should be performed very soon after a seizure. Its serum levels rise 10-20 

minutes after ES and remain high for up to 2 hours, as shown by studies on serial post-ictal PRL 

measurements in PWE as compared to patients with psychogenic non-epileptic seizures (PNES), 



and healthy controls [46]. Capillary measurement of PRL supports the differential diagnosis 

between all types of ES and PNES, with an approximate diagnostic sensitivity of 96% [47] and up 

to 100% positive predictive value for ES [48]. It is noteworthy that high PRL values, up to 3-times 

the baseline level, has also been found within 1 hour after vaso-vagal syncope [49,50] and that its 

role as diagnostic biomarker of ES has been questioned [51,52]. 

The role of other hormones (such as cortisol, adrenocorticotropic hormone, growth hormone, and 

thyrotropin-releasing hormone) has been described in methodologically heterogeneous studies 

leading to inconsistent results [53-58].  

4.3 Enzymes 

Enzymes have also been suggested as candidate biomarkers of epilepsy. In particular, creatine 

kinase (CK) blood levels commonly rise after generalized tonic-clonic ES, although elevated CK 

levels should always be interpreted cautiously, after exclusion of other clinical conditions [59,60]. 

Increased CK levels have 75% sensitivity, 86% specificity, 63% positive predictive value, and 91% 

negative predictive value for convulsive ES versus PNES [61-64]. Neuron-specific enolase (NSE) 

can be elevated after different types of febrile and afebrile seizures [65-68], but not after PNES 

[61,69]. Noteworthy, increased NSE levels may be found in other conditions (e.g. hemolytic 

processes) [70,71]. 

4.4 Micro-RNAs 

MiRNAs represent an endogenous class of short noncoding RNA molecules, of about 22 

nucleotides, which may play a key role in epileptogenesis and ictogenesis by regulating neuronal 

excitability, morphology, apoptosis and inflammation [72,73]. MiRNAs negatively control gene 

expression (post-transcriptional gene repression) of target mRNAs [74,75]. They are detected in 

both biological fluids and brain tissue, bound to proteins or encapsulated into extracellular vesicles. 

Circulating miRNAs can also be actively secreted from pathological tissues during a disease, and a 



strong relationship between circulating and tissutal miRNAs does exist. Therefore, miRNAs 

represent non-invasive biomarkers, also in virtue of their stability and simple assessment [74,76-

78]. Up to now, over 100 different miRNAs have been identified in animal models of epilepsy and 

in PWE [73,77-79]. Table 1 summarises recent studies on miRNAs as diagnostic biomarkers of 

epilepsy. Most studies are based on a two-phase approach. The first phase consists of the 

identification of the expression profile of different miRNAs in animal models of epilepsy or in 

small cohorts of PWE in comparison with a control group. Then, a subsequent validation phase on 

larger cohorts of PWE is performed. Wang et al. [80] found serum up-regulation of miR-106b-5p, -

130a-3p and -146a-5p and down-regulation of miR-15a-5p and -194-5p in 117 TLE patients 

(regardless epilepsy etiology), compared to 112 healthy controls, with miR-106b-5p showing the 

highest sensitivity (80.3%) and specificity (81.2%). Sun et al. [81] found significantly higher 

expression of miRNA-129-2-3p in plasma samples from refractory TLE subjects, in comparison to 

healthy controls. Combined serum increased expression of miR-146a and miR-106b has shown a 

higher sensitivity and specificity in comparison to miR-146a or miR-106b alone [82]. Another 

study [83] found significant up-regulation of hsa-miR-4521 in serum samples of patients with 

refractory ES or with FCDs. Despite miRNAs are promising biomarkers of epilepsy, some issues 

need to be further assessed, such as their specificity for epilepsy and their association (causative vs. 

consequential) with seizures. 

4.5 Other serological findings 

The role of neuropeptides (i.e., ghrelin and nesfatin-1) is still questioned. One study [84] reported 

increased serum and salivary nesfatin levels after ES but not after PNES, and lower serum ghrelin 

levels after ES as compared to PNES. However, the levels of these neuropeptides were not assessed 

in healthy subjects. 

5. IMAGING BIOMARKERS 



Since 1990s, brain imaging techniques have been routinely applied in the evaluation of PWE [85]. 

In the last twenty years, a mass of abnormalities has been described in patients with epilepsy, in 

particular, using routine Magnetic Resonance (MRI) with specific epilepsy protocols as well as 

morphometric analysis, magnetic resonance relaxometry, diffusion-weighted imaging, MR 

spectroscopy, volumetry, voxel-based analysis and PET imaging [85-87]. Many of these 

abnormalities could serve as biomarkers of epilepsy [2].  The use of an optimal worldwide imaging 

protocol for PWE represents the basis to look for potential and specific biomarkers. MR scanning 

protocol for PWE must include T1-weighted imaging (for the initial definition of brain anatomy), 

T2-weighted imaging and fluid-attenuated inversion recovery (FLAIR) imaging for the detection of 

specific brain pathologies such as hippocampal sclerosis (HS), and 3-D volume acquisition 

sequences to allow identification of subtle abnormalities, such as malformations of cortical 

development [85-87]. At present, there are no pathognomonic neuroimaging markers of 

epileptogenicity. As an example, HS is not only a diagnostic biomarker of mesial TLE, since it may 

be found in elderly individuals without epilepsy, particularly in those with Alzheimer’s disease 

[88]. The identification of neuroimaging biomarkers might have a high impact on both diagnostic 

and therapeutic work-up. Engel et al. [1] suggested that a first step to identify potential biomarkers 

for pharmacoresistance may be to classify several well-defined epilepsy syndromes that are 

associated with drug resistance but in which there are also patients that are well controlled. In this 

way, the cohort of patients with mild mesial temporal lobe epilepsy (MTLE), a common and often 

unrecognized clinical entity with onset in adulthood and good response to the medications [89], 

symbolizes an ideal epileptic syndrome to be studied with imaging as potential 

diagnostic/prognostic biomarker. We recently showed that mild MTLE remained drug-responsive in 

about three-fourths of patients and became refractory in the remaining one-fourth during a mean 

follow-up > 11 years [90]. In this population, earlier age at onset, history of febrile convulsions and 

the presence of HS on MRI, represented early prognostic biomarkers of drug-refractoriness [89,91]. 

Using advanced MRI technique [92-94], we further showed a significant reduction of fractional 



anisotropy along the white matter of the temporal lobes in drug-resistant MTLE, implying that it as 

a valuable biological marker of refractoriness [95]. Afterwards, we extended these findings and 

showed diffusion abnormalities and reduced cortical thickness of the corpus callosum only in 

patients with refractory MTLE, suggesting that differences in the distribution of such alterations 

might represent a biomarker of refractoriness [96]. Advance of ?Brain imaging has dramatically 

helped to identify subtle and occult epileptogenic lesions and, thus, to define the etiology of 

otherwise “cryptogenic” epilepsies. In particular, MRI has contributed significantly to identify 

cortical malformations and encephaloceles [97-100]. Focal cortical dysplasias (FCDs) are the most 

common developmental pathologies in children with extratemporal ES and MRI can help to 

differentiate among FCD subtypes with diagnostic and prognostic implications [97,99,101]. Small 

encephalocele, which may remain occult without careful investigations, is an increasingly 

recognized cause of epilepsy [98,102]. In a case-control study [100], occult temporal encephalocele 

was found with targeted MRI in 5% of TLE patients and in none of 151 healthy controls, therefore 

representing a promising biomarker of epileptogenicity. 

6. ELECTROPHYSIOLOGICAL BIOMARKERS 

The role of electroencephalogram (EEG) in the diagnosis of ES is well-known [103]. The use of 

transcranial magnetic stimulation (TMS) combined with electromyography as diagnostic biomarker 

of epilepsy has been already described [104-106]. In the following sections, the role of advanced 

electrophysiological analysis (i.e., combined TMS-EEG recordings and identification of high-

frequency oscillations, HFOs) in the diagnostic workup of PWE will be detailed. 

6.1 TMS/EEG 

EEG is an established tool in PWE that can provide useful information on cortical excitability: its 

diagnostic application mainly relies on visual inspection and interpretation. TMS is a non-invasive 

brain stimulation technique that is able to induce local cortical excitation by electromagnetic 

induction at specified locations properly targeted with an integrated navigation system. TMS has 



initially been applied to the primary motor cortex, thus evoking motor-evoked potentials and, 

consequently, the appearance of a stereotyped movement. The development of TMS-compatible 

EEG amplifiers has allowed to record TMS-evoked cortico-cortical potentials, i.e. the electrical 

brain responses to direct cortical stimulation [107]. Although this approach is technically 

challenging [108], it allows to investigate the reactivity (i.e. excitability and connectivity) of the 

whole brain to a focal stimulation delivered over an arbitrary cortical site which can be located 

outside the primary motor cortex [109-112]. A few studies have performed TMS-EEG in patients 

with focal [113,114] or generalized [115,116] epilepsies. Valentin et al. [113] have explored the 

appearance as well as the lateralizing and localizing value of EEG responses to single-pulse TMS 

applied on different scalp regions in 15 patients with focal epilepsies compared to 15 healthy 

volunteers. These authors found that late EEG responses, in terms of single epileptiform 

abnormalities or changes in baseline activity, were evoked in 11/15 PWE and none of the controls 

and were localizing in most subjects, even in those with normal baseline EEG. TMS-EEG was also 

applied to the study of patients with periventricular nodular heterotopia. In those patients, late 

cortical responses were evoked not only in the proximity of lesions, but also in functionally 

connected regions [114]. These data suggest that late responses to magnetic pulses, typically 

registered 100-1000 msec after stimulus, may represent a useful biomarker of increased cortical 

excitability and connectivity in patients with focal epilepsy. TMS-EEG may significantly contribute 

to epilepsy diagnosis and to the localization of epileptogenic focus also in pre-surgical evaluations. 

With regard to generalized epilepsies, a study [115] explored the effect of sleep deprivation on EEG 

activity after TMS in patients with Juvenile Myoclonic Epilepsy and healthy controls. A significant 

increase in late peak amplitudes (100-190 ms after stimulus) in response to single TMS pulses over 

motor areas was observed in patients and controls during the sleep-deprived condition, with 

different topographical distribution (anterior spread) and higher amplitude potentials in patients as 

compared to controls. In another phase II study [116] a paired-pulse TMS-EEG protocol was 

applied at rest, during and after hyperventilation and tested for diagnostic accuracy in 25 patients 



with various idiopathic generalized epilepsies (both drug-responsive and drug-resistant) and 11 

controls. Features extracted from multi-level analyses of EEG allowed a global diagnostic accuracy 

of 0.84 for the classification “patients vs. controls” and 0.76 for the classification “resistant vs. non-

resistant epilepsy”. These studies highlight that TMS-EEG is able to discriminate between healthy 

controls and PWE, so that the role of this technique as a diagnostic biomarker in epilepsy seems 

promising. The main limitations of TMS-EEG are the necessity of a dedicated device combining 

high-density EEG and TMS, technical issues mainly due to handling of artifacts (stimulus artifacts 

and sensory evoked potentials), long duration of experiments and difficulties in elaboration and 

interpretation of EEG responses. So far, these limitations have confined TMS-EEG to research 

laboratories only, preventing its use in clinical practice. Recently, open source software using 

MATLAB language have been developed and are helpful both in artifact removal and in signal 

processing and analysis [117]. The reduction in machinery costs and the overcoming of technical 

issues will hopefully lead to standardization and larger use of this promising technique in the near 

future. 

6.2 HFOs 

HFOs are defined as EEG events characterized by at least four oscillations, which undoubtedly 

stand out from the background activity and having frequency ranging between 80 and 500 Hz. 

HFOs are classified as ripples (from 80 to 250 Hz) and fast ripples (> 250 Hz), depending on the 

HFO frequency range. HFO marking is time consuming and nowadays several automatic detection 

programs are available. To have a complete view on how to record HFOs in epilepsy, refer to 

Zijlmans et al. [118]. The applications of HFOs detection are expanding over the years, ranging 

from the identification of seizure onset zone (SOZ) to the assessment of epilepsy severity and 

monitoring of antiepileptic treatment. According to Jacobs et al. [119], sensitivity in the 

identification of SOZ (using a pre-set threshold of specificity of 95%) is 52% for fast ripples, 37% 

for ripples and 33% for spikes in sleep invasive EEG recordings. Ripples co-occurring with a spike 



may be even more strictly related to the SOZ than ripples without a spike [120,121]. HFOs increase 

just immediately prior or at the onset of a seizure [122,123]. Whereas HFOs are confined to the 

same epileptogenic area during ictal and interictal periods, spikes are more widespread during 

seizures than interictally [124]. Resection of cortical areas with pre-surgical high rate of HFO is 

linked to a better post-surgical outcome than resection of area with low HFO rate [125-129]. HFO 

rate increases after medication reduction suggesting that it is tightly linked to seizure occurrence 

[130]. The role of HFOs in differentiating epileptogenic lesions including HS, FCD, nodular 

heterotopia, polymicrogyria and tuberous sclerosis complex is controversial [131-133]. HFOs can 

also be recorded from scalp EEG. HFOs activity on scalp recordings was described at seizures onset 

in epileptic encephalopathies, such as epileptic spasms in children [134,135] and tonic seizures in 

Lennox–Gastaut syndrome [136]. HFOs were also recorded in children with electrical status 

epilepticus during slow wave sleep [136] and in adults with focal epilepsy [137]. Finally, HFOs 

recorded from scalp EEG may be helpful in the lateralization of the epileptic focus in focal to 

bilateral convulsive seizures, although they do not differentiate between “primary” and “secondary” 

bilateral synchrony [138].  

7. CONCLUSIONS 

Numerous studies demonstrate the existence of promising biomarkers in epilepsy. Susceptibility 

genes are related to polygenic predisposition to epilepsy and represent a new research field in 

genetics of epilepsy. Promising serological biomarkers of epileptogenicity include inflammation 

molecules and miRNAs. Hormones, enzymes and neuropeptides serum levels are easy to assess and 

represent reproducible biomarkers supporting the differential diagnosis between ES and non-

epileptic events. Neuroimaging techniques may allow identification of subtle epileptogenic lesions, 

with diagnostic and prognostic value. Perturbation of cortical connectivity and excitability by TMS 

and detection of HFOs are promising innovative electrophysiological biomarkers of 

epileptogenicity. In addition, they are useful to accurately identify SOZ. Future pre-clinical and 



clinical studies are warranted to strengthen the role of these biomarkers in supporting routine 

clinical practice. 
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Table 1. Recent studies assessing miRNAs as diagnostic biomarkers in epilepsy. 

miRNAs Expression Clinical studies 
Human 

samples 
Preclinical studies 

miR-106b-5p 

[80] 

Up-

regulated 

Multiphase case-

control study on 147 

PWE and 142 

controls 

Serum None 

miR-301a-3p 

[139-141] 

Down-

regulated 

Multiphase case-

control study on 107 

patients with 

refractory epilepsy, 

111 with responsive 

epilepsy and 85 

controls 

Serum 

TLE rat model 

(lithium-

pilocarpine model) 

and status 

epilepticus rat 

model evoked by 

amygdala 

stimulation 

miR-129-2-3p 

[81,140] 

Up-

regulated 

Multiphase case-

control study on 25 

patients with 

refractory TLE and 

25 controls 

Cortical 

brain 

tissue 

and 

plasma 

Sstatus epilepticus 

rat model evoked 

by amygdala 

stimulation 

miR-4521 

[83] 

Up-

regulated 

Randomized 

controlled study on 

9 patients with 

refractory TLE 

(with HS) 8 controls 

Cortical 

brain 

tissue 

and 

serum 

None 

miR-146a and 

miR-106b 

[82,142] 

Up-

regulated 

Case-control study 

on 90 subjects with 

symptomatic, 

idiopathic or 

cryptogenic 

epilepsy and 90 

controls 

Serum 

TLE rat model 

evoked by 

hippocampal 

electrical 

stimulation  

miR-146° 

[142,143] 

Up-

regulated 

Case control study 

on 10 patient with 

refractory TLE (6 

with HS) and 5 

controls 

Cortical 

brain 

tissue 

TLE rat model 

evoked by 

hippocampal 

electrical 

stimulation 

 


