
k-Dispatch: A Workflow Management System for the Automated
Execution of Biomedical Ultrasound Simulations on Remote

Computing Resources
Marta Jaros∗

Brno University of Technology, Faculty of Information
Technology, Centre of Excellence IT4Innovations

Brno, Czech Republic
martajaros@fit.vutbr.cz

Bradley E. Treeby
University College London, Medical Physics and

Biomedical Engineering, Biomedical Ultrasound Group
London, United Kingdom

b.treeby@ucl.ac.uk

Panayiotis Georgiou
University College London, Medical Physics and

Biomedical Engineering, Biomedical Ultrasound Group
London, United Kingdom
p.s.georgiou@ucl.ac.uk

Jiri Jaros
Brno University of Technology, Faculty of Information

Technology, Centre of Excellence IT4Innovations
Brno, Czech Republic
jarosjir@fit.vutbr.cz

ABSTRACT
Therapeutic ultrasound is increasingly being used for applications
in oncology, drug delivery, and neurostimulation. In order to adapt
the treatment procedures to patient needs, complex physical models
have to be evaluated prior to the treatment. These models, however,
require intensive computations that can only be satisfied by cloud
and HPC facilities. Unfortunately, employing these facilities and
executing the required computations is not straightforward even
for experienced developers.

k-Dispatch is a novel workflow management system aimed at
modelling biomedical ultrasound procedures using the open-source
k-Wave acoustic toolbox. It allows ultrasound procedures to be
uploaded with a single click and provides a notification when the
result is ready for download. Inside k-Dispatch, there is a com-
plex workflow management system which decodes the workflow
graph, optimizes the workflow execution parameters, submits jobs
to remote computing facilities, monitors their progress, and logs
the consumed core hours. In this paper, the architecture and de-
ployment of k-Dispatch are discussed, including the approach used
for workflow optimization. A key innovation is the use of previ-
ous performance data to automatically select the utilised hardware
and execution parameters. A review of related work is also given,
including workflow management systems, batch schedulers, and
cluster simulators.

KEYWORDS
Workflow management system, middleware, HPC as a service,
biomedical workflows, automation, container, personalisedmedicine.

ACM Reference Format:
Marta Jaros, Bradley E. Treeby, Panayiotis Georgiou, and Jiri Jaros. . k-
Dispatch: A Workflow Management System for the Automated Execution
of Biomedical Ultrasound Simulations on Remote Computing Resources. In
Proceedings of . ACM, New York, NY, USA, 10 pages.

∗corresponding author.

,
2020.

1 INTRODUCTION
Personalised medicine is an emerging approach to patient care in
which an individual’s characteristics guide clinical decisions aiming
for the right treatment for the right patient at the right time [24].
Personalised medicine is particularly important in oncology, where
there is an increased emphasis on prevention and precise surgical
strategies. Appropriate selection of treatment for patients, to max-
imise efficacy and minimise toxicity, has long been a fundamental
part of routine clinical practice, but until recently clinicians had
had limited tools to determine benefits and potential threats.

The applications of biomedical ultrasound sit at the heart of
rapidly emerging cancer diagnosis and treatment procedures. In
comparison to conventional cancer diagnosis and treatment modal-
ities, such as biopsy, open surgery, radio- and chemo-therapy, ultra-
sound is non-invasive, non-ionising, and has fewer complications
after treatment. When talking about high-intensity focused ultra-
sound (HIFU) surgery, over 250,000 patients have been treated
throughout the world with great success [17]. The number of pa-
tients being screened by ultrasound is countless.

In order to adapt therapeutic ultrasound procedures to the pa-
tient needs, complex physical models have to be evaluated prior to
the treatment to tailor treatment parameters and estimate the treat-
ment outcome. These models can also be used during the treatment
to monitor the procedure progress, and after the treatment to evalu-
ate the treatment outcome and predict further disease development.
One physical model widely used in the international community
is the open source k-Wave toolbox designed for the time-domain
simulation of acoustic waves propagating in tissues in 1, 2, or 3 di-
mensions [45]. The toolbox has a wide range of functionality, but at
its heart is an advanced numerical model that can account for both
linear and nonlinear wave propagation, an arbitrary distribution of
heterogeneous material parameters, power law acoustic absorption,
and the heating induced in tissue.

Over the last decade, k-Wave has attracted a lot of interest
amongst biomedical physicists, ultrasonographers, neurologists,
oncologists and other clinicians. Numerous applications of k-Wave
have been reported, including in photoacoustic breast screening



, Marta Jaros, Bradley E. Treeby, Panayiotis Georgiou, and Jiri Jaros

[27], transcranial brain imaging [30], or small animal imaging [35].
k-Wave has also been used for exciting applications in HIFU, in-
cluding treatment planning of kidney [1, 43], liver [20] and prostate
tumour ablations [44], ultrasound neurosurgery and targeted drug
delivery [36], and neurostimulation [8].

All these applications, however, require very complex and in-
tensive computations that generally cannot be performed using
desktop computers or small servers. Thus, it is essential to offload
the computational work to cloud or HPC clusters. Unfortunately,
using these facilities and composing the processing workflow is
complex even for experienced developers. Therefore, it is crucial to
offer clinical end-users a middleware layer that allows a treatment
setup and other data to be uploaded using a simple interface (e.g.,
web page, medical GUI, etc.) and automate the hard work behind
the scenes. k-Dispatch is such a tool.

2 K-DISPATCH MISSION
The mission of k-Dispatch is to make HPC and cloud computational
resources accessible as a service to clinical end-users with no prior
expertise in computational science. On the other hand, k-Dispatch
has to remain flexible enough to cover typical ultrasound simulation
workflows, ensure a certain level of fault-tolerance, quality of ser-
vice, and medical data protection. It must also enable user, system
and data management, monitoring and accounting. Generally, there
are two kinds of k-Dispatch users: (1) ordinary users who want to
have their job computed in the simplest possible way, and (2) ad-
ministrators who manage the software installation, computational
services and accounting.

Since treatment planning applications built on k-Wave are con-
sidered software as a medical device, strict quality and risk man-
agement policies apply to all software used. The users are thus not
allowed to use their own binaries but have to use certified ones
installed by authorized personnel. This restriction has a dramatic
impact on the k-Dispatch philosophy and makes it different from
other workflow management systems, see Sec. 6.

Ordinary users are only allowed to create a medical procedure
using predefined templates, e.g., HIFU treatment planning, neu-
rostimulation, etc. The file describing the selected procedure along
with other data is consequently submitted to k-Dispatch. The first
step for k-Dispatch is to decode the procedure and assemble a
computational workflow. Next, the true magic comes. k-Dispatch
inspects the list of available HPC resources and finds a suitable
one. Then it selects the best binaries for given tasks according
to the input data size and available hardware. Since the binaries
are a priori known and their performance scaling well described,
k-Dispatch can optimize the amount of computational resources
assigned to particular tasks to minimize several objectives such as
computational time, computational cost or waiting times in pro-
cessing queues. After submission into the computational queues,
k-Dispatch periodically monitors all running jobs and detects per-
formance anomalies such as frozen jobs to recover from typical
faults. After the complete workflow has been computed, the results
are downloaded from the HPC resource back to k-Dispatch and the
user is notified that the result is available for download.

The main benefit of k-Dispatch is that ordinary users are com-
pletely hidden from the complexity of the HPC or cloud resources.

They do not have to know anything about the cluster submission
system, job batch schedulers, queues and their policies. Moreover,
they do not have to set the number of compute nodes and cores,
choose between CPUs and GPUs, or estimate the computation time.
Everything is done automatically.

From the perspective of administrators, k-Dispatch collects per-
formance statistics about the executed workflows and learns their
performance scaling, logs the usage for different HPC or cloud re-
sources, and detects offline resources and automatically forwards
computations to available ones. On the other hand, the administra-
tors are responsible for user management, introducing new work-
flow templates, installing new software or computational resources,
setting up the policies and user priorities, etc.

k-Dispatch is highly optimized for efficient execution of a rel-
atively small number of different workflow templates. Although
modifications to the workflow structure are straightforward, intro-
duction of a new task type and/or binaries requires collection of a
relatively large performance dataset necessary for optimization of
the execution parameters. Therefore, the workflows are currently
hard-coded in simple Python classes. In the future, this part may
be extended to support a common syntax such as CWL [3] to allow
other experienced users or administrators to deploy their codes
using k-Dispatch. There is a possibility the optimization core will
be released as a plug-in for existing WMS such as Pegasus. Three
typical workflows are described below and in Fig. 1:

• HIFU treatment planning. HIFU treatments use multiple
sonications to ablate the diseased tissue as a single sonica-
tion can only cover a volume about the size of a grain of
rice. These sonications are displayed in Fig. 1a as columns.
The goal is to precisely set the transducer focal positions
and the sonication parameters such as the intensity and son-
ication duration. For every sonication, an acoustic model
is evaluated to calculate the energy deposition using a dis-
tributed CPU or GPU implementation, typically spanning
across 16-32 computing nodes and running for several hours.
If time reversal focusing is used, multiple invocations of the
acoustic model may be necessary for each sonication. Next,
the thermal model is executed to calculate the temperature
rise and thermal dose. This typically requires a single GPU
for a few minutes.

• Neurostimulation. The example neurostimulation work-
flow, shown in Fig. 1b, is similar to the HIFU workflow ex-
cept the sonications use much lower intensities such that the
wave propagation is linear. The goal is to stimulate the brain
but any thermal or mechanical damage must be prevented.
In this workflow, the sonications are independent and the
thermal model is used to calculate safety metrics, rather than
dose quantities. The acoustic models are typically complex
due to the skull and large simulation domains.

• Photoacoustic imaging. The example workflow for pho-
toacoustic image reconstruction consists of an a priori known
number of iterations of the forward and adjoint acoustic
models that reconstruct the tissue structure based on the
ultrasound signals sampled at the detectors placed at the
surface of the tissue, e.g., breast. The simulations are usually
very large and require at least 8 GPUs or 256 computer cores



,

Figure 2: Simplified architecture of k-Dispatch showing
three basic modules and their connection to user applica-
tions and computational resources.

for a few hours. In between the iterations, a simple gradient
descent method is executed.

3 SYSTEM ARCHITECTURE
The overall architecture of k-Dispatch is shown in Fig. 2. k-Dispatch
consists of three main modules: Web server, Dispatch database and
Dispatch core. The user applications, e.g., a stand-alonemedical GUI,
web app, or Matlab interface, communicate with the Web server us-
ing the secured HTTPS protocol and REST API. The Dispatch data-
base holds all the necessary information about the users, submitted
workflows, particular jobs, computational resources, available bina-
ries, etc. The Dispatch core is responsible for planning, executing
and monitoring submitted workflows. The communication with
HPC and cloud facilities is done via SSH and RSYNC protocols.

The architecture of k-Dispatch is generic and modular to enable
easy system extensions by adding new workflows, computational

resources, interfaces to different job schedulers, etc. Currently, k-
Dispatch supports several predefined workflows hard-coded in the
structure of the input file and parsing Python classes. Nevertheless,
the file structure is open and the file format is based on the widely
adopted HDF5 file format easily readable from Matlab, Octave,
Python and other scientific software [15].

3.1 Web Server and Dispatch Database
The Web server module is based on the Python Flask technology
[39] and represents the only entry point to k-Dispatch. The web
server communicates with the Dispatch database and with the local
storage. The input files with new workflows to compute are stored
in the local storage and a new record is made in the database. If
the user asks about the status of their workflows, the web server
reads appropriate data from the database and reports back to the
user. Analogously, when the results are ready for download, the
web server sends the result file to the user, updates the database
record and clears local storage.

The Dispatch database and the database server is based on the
PostgreSQL 10 technology [18]. The database holds all the necessary
information for planing, executing and monitoring the workflows
on remote computational facilities. A simplified entity relationship
(ER) diagram of the Dispatch database is shown in Fig 3.

The database tables are divided into four groups. The red group
is related to user management. Users form user groups based on
their affiliation to companies, hospitals, departments, etc. Users
may have different roles and permissions while groups may hold
different licenses for k-Dispatch (which includes usage permissions

DPL

Acoustic

DPL

Acoustic

DPL

DPL

Simulation

Simulation

*DPL = Data Processing Layer

Thermal

DPL

DPL

Simulation

Result 
File

*
DPL

Acoustic

DPL

Acoustic

DPL

DPL

Simulation

Simulation

File

*
DPL

Acoustic

DPL

Acoustic

DPL

DPL

Simulation

Simulation

*

Input 

(a) An example of HIFU treatment planning workflow.

DPL

Acoustic

DPL

Thermal

DPL

DPL

Simulation

Simulation

DPL

Acoustic

DPL

Thermal

DPL

DPL

Simulation

Simulation

File

DPL

Acoustic

DPL

Thermal

DPL

DPL

Simulation

Simulation

Result 
File

Result 
File

Result 
File

Input 

(b) An example of neurostimulation workflow.

Figure 1: Two generic templates of different ultrasound workflows. The input file holds the patient specific data and simu-
lation parameters, e.g., transducer positions. The star-marked gray blocks may be replicated multiple-times to extend the
fundamental workflow structure. DPL blocks denote data processing layers. The procedure results are stored in the result file,
usually as an archive with multiple files including essential program logs.



, Marta Jaros, Bradley E. Treeby, Panayiotis Georgiou, and Jiri Jaros

and expiry dates). User groups usually purchase some computa-
tional core hours which may be split into several allocations on
various computational facilities. The invoices are then stored in the
Purchase table.

The green group representsworkflows and their execution.When
the input data file is parsed, a Workflow record is created together
with its Job and Job Dependency records reflecting the workflow ex-
ecution structure. If a job fails during execution, the job is restarted
and a new record in the Restarted Jobs table is created to keep track
of faulty jobs and the number of attempts to restart them. All file
links used by the job, i.e., submission script, input, output, and log
files are stored in the File table.

The blue group reflects supported computer facilities, task types
and associated binaries. The information retrieved from these tables
is used in the workflow execution optimization.

HPC, HPC Queue and Allocation tables identify the computing
facility and the amount of core hours that may be consumed. The
Task Type table holds the information about admissible task types,
recall the building blocks in Fig. 1, while the Run table specifies
available implementations (binaries) for particular task types along
with the recipe to generate submission scripts. Let us note that
every task type can have several implementations, e.g., a GPU
version, a single node version (OpenMP), and a distributed version
(MPI). The additional parameters for particular binaries are stored
in the Implementation Detail table. Finally, the Allowed Code table
specifies where the binary can be executed (which HPC, which
queue) and what software modules need to be loaded prior to the
execution.

The gray table group comprises information about the perfor-
mance scaling of particular binaries. The Scaling table collects the
performance data about each successfully completed task. This data
consists of the binary, HPC and queue identifiers, number of nodes,
cores and GPU employed, the size of the simulation domain, basic
medium and wave propagation parameters, number of simulation
time steps, and execution wallclock time. This data is integral to the
workflow execution optimization. In order to provide accounting,
the HPC Queue, Allocation and Job tables are used to calculate the

Job Workflow

File
Job 

Dependency
Restarted

Jobs

User Group

License

AllocationPurchase

HPC ScalingRun

Implement.
Details

HPC Queue

Allowed 
Code

Task Type

1
1 1

1

1..* 0..* 0..*

0..* 10..*

1

0..*

0..*

1

11..*

0..*

10..*

0..*

1

1

0..*

1 0..*

1

0..*0..*

0..*

0..*0..*

0..*

0..*

1

0..*0..*
1

1

0..*

0..*

1

1

0..*

0..* 1

Figure 3: Simplified entity relationship diagram (ERD) for
the Dispatch database.

Daemon Module

Monitor Module 
Checking

Logging

Monitor Module

Task Monitoring

Invokation of the Dispatch 
and Transfer Module 

Dispatch & Transfer Module

File 
Transfers

Workflow 
Assembly 

Optimization 
Heuristics 

Accounting 
& Security

Workflow 
Submission 

Input 
Processing

Unified Access to 
Computational Resources

Remote Jobs and 
Data Management

Web Server

Requests Processing

Reporting

Results Delivery

Dispatch Database

Tables, Views, Procedures

Dispatch Corek-Dispatch

Figure 4: The architecture of k-Dispatch composed of three
modules and numerous submodules.

amount of consumed core hours and their price, and to update the
available group budget.

3.2 Dispatch Core
The Dispatch core is composed of the Daemon module, Monitor
module, and the Dispatch and Transfer (D&T) module, each of
which is implemented as a Python class. The functionality of these
modules is shown in Fig. 4. The Daemonmodule enables k-Dispatch
to be registered as a service in the operating system. The Monitor
module periodically scans particular database records and invokes
the D&Tmodule to, e.g., plan and submit a newworkflow, terminate
calculations and delete a workflow, get the status of current jobs,
etc. The Monitor module also updates the database records with
progress information.

The heart of k-Dispatch lies in the Dispatch and Transfer module.
This module unifies the access to different computational resources
and their schedulers. This module performs the following opera-
tions:

• parses the input file and stores important data for the work-
flow submission,

• assembles the workflow task graph based on the input data
file using predefined Python classes representing a particular
workflow structure and its tasks,

• optimizes the workflow execution by finding a suitable al-
location on one of the remote computational facilities and
assigns appropriate binaries and execution parameters to
particular tasks,

• generates HPC-specific job scripts using the Python jinja2
library [37],

• provides data transfers between remote computational facil-
ities and k-Dispatch using the Python fabric library [12],

• (re-)submits, deletes and monitors remote jobs using the
fabric library and the batch scheduler commands,

• detects failures on the remote computational facilities and
restarts jobs (restarts only theminimal and necessary amount
of dependant jobs, not the whole workflow),

• collects performance scaling data,
• provides accounting by retrieving the amount of consumed
core hours directly from the cluster scheduler and multiply-
ing by a price per hour stored in the database, and

• creates and modifies records in the Dispatch database.



,

Application Server
(Flask + 

GUnicorn/uWSGI)

Web Server
(Nginx)

Dispatch Database
(PostgreSQL)

Dispatch Core
(Python)

HTTP HTTPS

Reverse Proxy

Database 
Data

0.0.0.0:15432 -> 
5432/tcp

0.0.0.0:8000 -> 
8000/tcp

0.0.0.0:10443 -> 
10443/tcp

9000/tcp

Source Codes
+

SSH Credentials

+

Requests
+

Responses

Figure 5: k-Dispatch architecture wrapped into Docker con-
tainers and volumes. The text descriptions below individual
rectangles show network port mappings used in the current
solution.

3.3 Deployment Using Docker
To simplify the deployment process, maintenance, fault tolerance
and data safety of k-Dispatch, a container-based approach using
Docker is adopted. Docker [6] is an open-source project based on
Linux containers which has undergone significant development
and become widespread amongst programmers in recent years. The
biggest advantage of this solution is the isolation of k-Dispatch and
its dependencies into self-contained units that can run anywhere.

k-Dispatch is split into four Docker containers and three volumes
connected via a Docker network deployed by the docker-compose
tool, see Fig. 5. These containers individually encapsulate the Dis-
patch database (depicted in yellow), the Dispatch core and the
k-Dispatch’s application server Web Server (depicted in pink), and
additionally, an Nginx [14] based web server acting as an entry-
point for user requests (depicted in green). The Dispatch database
stores all persistent data in a dedicated volume. The remaining
volumes store k-Dispatch Python source codes and ssh credentials
to remote computational facilities, respectively. These volumes are
shared between the Dispatch core and the application server to
enable easy data updates. The application web server employing
the Flask framework cannot be run in the production version with-
out another gateway, e.g., GUnicorn1 or other uWSGI2 hosting
services, since they only offer HTTP communication. The Nginx
container thus adds the required security by providing HTTPS
communication.

4 WORKFLOW EXECUTION OPTIMIZATION
This section explains the workflow execution optimization. The
goal is to find the best execution parameters for particular tasks
to minimize the overall execution time, computational cost and
waiting times in the job submission queues. The execution parame-
ters typically only cover the type and the amount of computational
resources along with an expected execution time, but can also in-
clude the most appropriate queue, desired processor and memory
frequencies and other hardware parameters in the future. This in-
formation is then written into a submission script and handed over

1https://gunicorn.org/
2https://flask.palletsprojects.com/en/1.0.x/deploying/uwsgi/

to the HPC or cloud batch scheduler which orchestrates the execu-
tion itself. This optimization is only possible thanks to historical
performance data collected for the a priori known binaries.

4.1 Workflow Definition and Execution Model
The most natural way to define a workflow is to use a Directed
Acyclic Graph (DAG), often reffered to as a Task Graph [38], whose
nodes are the tasks and the edges are the precedence constraints
and data dependencies between tasks. The nodes also encapsulate
the task type, input and output files, and the execution parameters.

k-Dispatch allows both task- and data-driven workflows [26]
and a static acyclic execution model (see Fig. 6). After the workflow
assembly and submission, no conditional behaviors, i.e., dynamic
task generation or while loops with an unknown number of itera-
tions, are supported. Since the ultrasound workflows may contain
subgraphs that may be either omitted or repeated multiple times,
this has to be determined during the planning phase while the final
workflow is being assembled.

4.2 Optimization of Execution Parameters
The execution planning process that every HPC job scheduler
solves, can be described as a mapping of tasks from the workflow
to free time slots and computational resources, see Eq. (1):

Q → (T ′ × R′),T ′ ⊆ T ∧ R′ ⊆ R, (1)

where Q is a set of all tasks in the workflow, T and T ′ are finite
sets of all and available time slots, respectively, and R and R′ are
finite sets of all and idle computation resources at given time slots,
respectively. Based on the scheduling policy, each scheduler tries
to maximize the cluster utilization while guaranteeing quality of
service at some level.

HPC and cloud systems often differ in hardware (type of nodes
and accelerators, number of cores per node, interconnection, etc.)
and software equipment (scheduler and their policy, tools, compil-
ers, etc.). In order to create a favorable execution schedule, the type
and amount of resources along with the execution time must be

A Workflow To 
Be Submitted

Computational Flow Of The Submitted Workflow

k-Dispatch Remote HPC System
Running Finished Queued/Hold

Figure 6: k-Dispatch’s execution model. The blue workflow
on the left hand side reveals the concurrency and dependen-
cies between tasks. Subgraphs in the red rectangles can be
executed concurrently since there are no dependencies be-
tween them, however, the tasks inside them have to be exe-
cuted sequentially. The task in the yellow rectangle has to
wait until all red rectangles have finished. The workflows
on the right hand side show a possible execution flow on
the remote computational machine. The order of the task
execution is clearly visible.



, Marta Jaros, Bradley E. Treeby, Panayiotis Georgiou, and Jiri Jaros

carefully chosen. In many other workflow management systems
(WMSs), the end user is responsible for providing this information.
This is, however, not viable in our approach and k-Dispatch must
automatically find suitable workflow execution parameters. We con-
sider this optimization as the biggest challenge in the development
of k-Dispatch.

Since k-Dispatch does not implement its own job scheduler but
relies on those used by supported HPC systems, there is a need for
cooperation between k-Dispatch and the HPC job scheduler, e.g.,
PBS Pro or Slurm. The execution parameters are dependent on the
current cluster utilization and the list of other queued jobs waiting
for execution. Therefore, before the optimization, the current cluster
utilization is downloaded along with the actual user priorities, e.g.,
fairshare priority. This information then guides the optimization
process and helps to reduce the queuing times.

There are two approaches to create a heuristic for choosing ap-
propriate execution parameters for particular tasks in the workflow.
This heuristic may either be rigid, which always uses predefined
default values for the execution parameters of a given simulation
code, or adaptive, which takes into account current cluster utiliza-
tion, code performance scaling and the complexity of the current
input data. At the time of writing this paper, only a rigid heuris-
tic has been fully tested. This method always works, however, the
throughput and effectiveness of the submission may be limited. The
adaptive heuristic, currently under development, can be classified
as local or global. The local approach searches for optimal execution
parameters of particular tasks independently. While the parameter
setting may be suboptimal, the optimization time complexity is
linear. On the other hand, the global approach takes into account
the dependencies between tasks and can produce better parameters,
however, the optimization complexity can become exponential [40].

In both cases, the optimization heuristics assign a specific binary
and a set of execution parameters to each task (see Fig. 7) in order to
minimize computational time, or cost while not exceeding specified
time constraints. The selection of execution parameters is based
on the collected performance scaling data. For every task, the size

?

??

?

?

Computational Resources 
(e.g., #nodes)

Ti
m

e
 S

lo
ts

Current Workload

Unused 
Resources

?

What binary to use?

Can GPUs be used?

Ti
m

e
 S

lo
ts

Computational Resources 
(e.g., #nodes)

Current Workload

Unused 
Resources

What amount of resources?

Figure 7: Two examples of the workflow mapping to com-
putational resources and time slots under different execu-
tion parameters. Colors show resources occupied by partic-
ular tasks. Both mappings take 7 time units to complete.
Themapping on the left-hand side is, however, a bit cheaper
since it consumes 29 work units while the second one 31.
The influence of other jobs coming into the system is not
considered.

and complexity of the execution can be deduced from the input
file. This information can be projected into graphs of strong and
weak scaling constructed from the performance data collected for
a candidate binary. Finally, the estimated queuing time is taken
into account. The workflow with assigned execution parameters is
then sent for evaluation either to a simulator or the job scheduler
that can provide a more accurate estimation of the launch time. If
suitable parameters are found, the workflow is submitted to the
job scheduler. The use of adaptive heuristic opens a lot of research
questions summarized in Sec. 5. A one-pass local optimization
method which uses linear and cubic spline interpolations to find
the most suitable amount of computer resources is currently being
investigated. Preliminary results show that a cubic spline is a very
good model for the strong and weak scaling performance of k-Wave,
with errors in the execution time on the order of one percent.

5 CURRENTWORK AND OPEN QUESTIONS
The development of adaptive heuristics for execution parameter
optimization opens many new issues. They form the challenges we
have been attempting to address and which are described below.

5.1 Data Collection and Processing
The first issue is the collection of performance data. The execu-
tion time and cost are defined by strong [2] and weak scaling [22].
However, constructing the scaling for every possible binary, type
of resources, and inputs is impossible due to the extreme number
of combinations. Therefore, we limited ourselves to only select a
small subset of simulation parameters that have the most influence
on the computational complexity, e.g., domain size, wave propaga-
tion mode, heterogeneity and absorption of the medium. For these
parameters we select the most typical values and run benchmark
simulations to initially populate the Scaling table. In production,
every successfully executed job is used to update this table.

The open question is how to adapt to unseen inputs (e.g., domain
sizes), performance fluctuations caused by cluster overloading, or
changes in the software and hardware configuration, etc. Both
problems can be solved by combinatorial optimization. Having a
workflow with a number of tasks (sonications) of the same type
and size, the execution parameters can be deliberately perturbed to
explore the local neighbourhood of currently optimal parameters.
The collected performance data can be also filtered by its age to
get the actual state. If a task is encountered that has not been seen
before, the optimal parameters can be chosen using interpolation
or machine learning.

So far, a set of performance data has been collected for ultrasound
simulations and typical domain sizes, various numbers of resources
(e.g., number of cores), code implementations (e.g., OpenMP, MPI)
and code-specific parameters using the IT4Innovations clusters.
Currently, metrics defining the relevance of the records are being
developed considering the age and distance from the investigated
simulation size and type.

5.2 Dynamic Cluster Behaviour
As already mentioned, the current HPC utilization may have a
strong influence on the optimal values of the workflow execution
parameters. Although it does not affect the computational time



,

or cost itself, it may strongly affect the queuing time and lead to
exceeding the timespanwhich users arewilling towait. Usually, jobs
asking for small numbers of compute nodes are executed sooner
than those asking for a huge portion of the cluster. Of course, this
is queue dependent and there may be another queue promoting
large jobs.

Another issue is how often to monitor the HPC cluster utiliza-
tion. The possibility being used now is to take a snapshot before
the execution parameter optimization. Nevertheless, what happens
if the cluster utilization dramatically changes, e.g., by a burst of
high priority jobs from privileged users, or lodging a reservation?
The cluster scheduler will recalculate the job priorities and may
postpone their execution. If such a situation is detected, the execu-
tion parameters of already queued jobs are obsolete and should be
altered. The questions under investigation now is how to detect or
predict these dramatic changes, how to find some patterns, how to
estimate the delay caused, and decide whether it pays off to alter
the parameters or not.

5.3 Workflow Parameters Evaluation
Due to many reasons such as the cost of resources, reliability and
varying background load, the experimental evaluation of the adap-
tive heuristics cannot be easily performed on production HPC sys-
tems. Moreover, to obtain sensible results, multiple workflows with
various execution parameters need to be evaluated under the same
and controllable conditions that simulate different real-life scenar-
ios. This is, however, often unachievable.

Therefore, a job scheduling simulator emulating production HPC
environments can be used. A short review of the latest simulators
is given in Sec. 6. These simulators can provide relatively good
estimations of the queuing times. The other alternative is to use
dedicated resources (a dedicated queue) and do the experiments
there. Nonetheless, this may become quite costly.

6 RELATEDWORK
The area of task execution in distributed and heterogeneous sys-
tems has been studied for the last decade. There have been many
middleware projects developed focusing on running various types
of computational workflows on HPC facilities, clouds and grids.
We focus mainly on Workflow Management Systems (WMSs) for
offloading the task computations to HPC clusters.

The majority of WMSs have been created to address a phenom-
ena called workflow decay. Workflow decay refers to poor repro-
ducibility of scientific workflows which were designed to solve com-
plex scientific problems and accelerate scientific progress. However,
scientists often find it difficult to reuse others’ workflows. [28]

To characterize WMSs, the following properties may be consid-
ered: computational infrastructure (e.g., grids, clouds, HPC clus-
ters), workflow design (e.g., DAG) and means of its composition
(e.g., graphical desktop application, web page, command-line tool,
programmable interface), types of parallelism, and so on. A novel
characterization ofWMSswas introduced in [13]. This work uses (1)
workflow execution models, (2) heterogeneous computing environ-
ments, and (3) data access methods to characterize the workflows.
Moreover, the paper classifies 15 state-of-the-art WMSs into an

easy-to-use lookup table containing a feature checklist for each
WMS.

We especially distinguish WMSs based on the application (type
of tasks – long- and short-running) and users’ perspective. Many
WMSs introduced in this section think about users as scientists
or developers. In the daily practice of various user communities,
this is simply not the case. WMSs can be deployed in multiple
scenarios to serve the needs of various users which places different
requirements on the WMS.

Although, not being perfect, WMSs still offer a formal way to
define, automate, and repeat multi-step computational procedures.
They usually provide services for resource monitoring and manage-
ment, security and file management, and help scientists to share
computing power, databases, tools, etc.

6.1 Workflow Management Systems and
Processing Frameworks

Widely used data processing frameworks, especially for big data
analytics, include Hadoop [41], a MapReduce-based system for
parallel data processing, Apache Spark [47], a system for concur-
rent processing of heterogeneous data streams, Apache Storm [4],
for real-time streaming data processing, and HTCondor [23], for
managing compute-intensive jobs. These tools do not allow inter-
task dependencies to be specified. Sometimes, such frameworks
are implemented within more general WMSs (for example HTCon-
dor/DAGMan [23] and the Pegasus [11] WMS) to schedule and
offload the tasks.

When speaking about short-running tasks (one-core, < 1 second),
examples of applicableWMSs includeDask [10] andHyperLoom [9].
Since the time needed for resource allocation may create a signifi-
cant scheduling overhead, these tools usually implement their own
scheduling mechanism and heuristics.

Dask handles short running tasks and allows the filesystem usage
to be reduced. However, it does not support native pipelining of
third-party applications. Dask offers both high-level (e.g., NumPy
objects) and low-level programming user interfaces.

HyperLoom is a platform for defining and executing scientific
workflows in large-scale high performance computing systems. Its
goal is to minimize the overall workflow execution time respecting
resource constraints of the tasks and environments. HyperLoom
implements an optimized dynamic scheduler that schedules the
tasks reactively with a low overhead since the execution time of
individual tasks is not known in advance. Moreover, the scheduler
respects task dependencies and prioritizes placements that induce
the smallest possible inter-node data transfer. Data produced by
tasks are kept directly in memory and can be accessed by any other
task without additional overhead. HyperLoom allows chaining and
execution of third-party applications. HyperLoom enables users
to define and execute workflows using its client application. Al-
though HyperLoom was originally designed to be used within HPC
infrastructures, these infrastructures may be unavailable or too
expensive especially for small to medium workloads. Therefore,
HyperLoom developers started to aim at public cloud providers
since performance of their machines is comparable to those in HPC
systems. However, the network solutions used in HPC systems



, Marta Jaros, Bradley E. Treeby, Panayiotis Georgiou, and Jiri Jaros

offer much higher inter-node throughput. HyperLoom focuses on
experienced users as well.

Today’sWMSs allow users to compose customworkflows (DAGs)
by providing graphical or programmable user interfaces. This de-
termines the potential user of the system. Those WMSs often rely
on traditional resource schedulers that are optimized for coarse-
grained long-running tasks. The inter-task data transfers are usually
performed using a shared distributed filesystem.

FabSim [21] shares functionality with middleware toolkits such
as Globus [16] or gLite [19]. However, FabSim is aimed at the ex-
perienced computational scientist. The only supported interface is
a command line tool which is easy to extend for developers. The
key strength of FabSim is its focus on simplifying and accelerating
development activities. It simplifies the execution of previously
defined workflows as well as the creation of new ones. FabSim does
not provide decision-making in terms of planning and monitoring.
Its main goal is to simplify researchers’ daily tasks.

Taverna [46] is bringing together a range of features to make it
easier for users to find, design and execute complex workflows and
share them with other people. Therefore, Taverna integrates myEx-
periment [31] and BioCatalogue [5] and creates an interface to work
with these tools. Taverna enables workflows to be run on the user’s
computer (using TavernaWorkbench), on the Taverna server, clouds
(for example, on Amazon cloud) and grids, using its own Workflow
Management System. Taverna has a huge domain of usage, e.g., in
bioinformatics and biology, chemistry, annotation, arts (compos-
ing music), astronomy, data mining and analysis, engineering, and
so on. Similarly to Taverna, Kepler [26] allows computations over
computer clusters and grids. Both provide a graphical environment
to help users to perform complex simulation workflows. Kepler
is used by projects that operate in bioinformatics, ecological and
environmental research, and weather and climate analysis. Both
Taverna and Kepler focus on researchers and well-informed users.

Pegasus encompasses a set of technologies that help workflow-
based applications execute in a number of different environments
including desktops, campus clusters, grids, and clouds. Pegasus
bridges the scientific domain and the execution environment by
automatically mapping high-level workflow descriptions onto dis-
tributed resources. It automatically locates the necessary input data
and computational resources necessary for workflow execution.
Pegasus enables scientists to construct workflows in abstract terms
without worrying about the details of the underlying execution
environment. Pegasus has been used in a number of scientific do-
mains including astronomy, bioinformatics, earthquake science,
and others. To recover from error, Pegasus provides workflow-level
checkpointing.

6.2 Cluster Batch Schedulers
Supercomputing facilities use commercial or open-source job sched-
ulers that contain job scheduling algorithms developed in the past,
e.g., backfilling, first come first served (FCFS), etc. For instance,
Portable Batch System (PBS) uses the backfilling scheduling algo-
rithm, and considers user and group priorities, and fair-share cluster
policies. The IT4Innovations3 supercomputing center’s PBS sched-
uler gives each job an execution priority first, and then uses this

3Czech national supercomputing center, https://www.it4i.cz/

job execution priority to select which job(s) to run. Job execution
priority is determined by the queue priority, fairshare priority and
eligible time, where the queue priority has the biggest impact. The
fair-share priority is calculated on the recent usage of resources per
project. Eligible time is the amount of eligible time the job accrued
while waiting to run and has the least impact on execution priority.
Jobs with higher eligible time gain higher priority. Overall, it is
very beneficial to specify the walltime when submitting jobs as this
enables better scheduling and better resource usage. Backfilling is
an FCFS approach that is improved by increasing the utilization of
the system resources and by decreasing the average waiting time
in the queue. Backfilling fits smaller jobs in front of higher-priority
jobs if it is possible, in such a way that the higher-priority jobs are
not delayed. This prevents resources from becoming idle when the
top job (job with the highest execution priority) cannot run. [42] A
backfilling scheduling algorithm is used by IT4Innovations’ clus-
ters.

Another widely employed workload manager is Slurm used by,
e.g., Chinese Sunway TaihuLight or Swiss Piz Daint. Slurm performs
a best-fit algorithm based on Hilbert curve scheduling or fat tree
network topology in order to optimize the locality of task assign-
ments on parallel computers [34]. However, as mentioned before,
developers of WMSs sometimes implement their own schedulers,
operating above those used in supercomputing centers. Another
example is the NCSA (National Center for Supercomputing Appli-
cations at the University of Illinois) scheduler tool [32] designed for
Blue Waters and other HPC systems. Many HPC facilities limit the
number of jobs per user to prevent queues from becoming cumber-
some. The NCSA scheduler allows users to aggregate single-core
jobs as a single batch and jobs share the node between applications
using a simple configuration file. The scheduler allows queuing
jobs and manages efficiently independent single-core jobs, can bun-
dle OpenMP (Open Multi-Processing) single-node jobs but cannot
bundle MPI (Message Passing Interface) jobs.

6.3 Cluster Simulators
The following text gives a short review of job scheduling simulators.
Due to many reasons such as the cost of resources, the reliability,
the varying background load or the dynamic cluster behaviour,
experimental evaluation generally cannot be performed on real
systems. Moreover, to obtain reliable results, multiple workflows
with various run configurations need to be performed using the
same and controllable conditions that simulate different real-life
scenarios which is, however, often not possible.

Simple job scheduler simulators often provide a detailed model
of the queuing behaviour as the jobs arrive at the system upon
submission, wait for available resources, start their execution, and
eventually leave the system upon their completion.

For example, PySS [29] is a trace-driven scheduler simulator. It
implements a number of scheduling algorithms, including several
backfilling ones. The problem with simple simulators is that they
do not really model the target HPC system or the runtime behavior
of the applications. PySS takes the job runtime directly from the
job trace, although in reality a job’s runtime is affected by the
specific resources allocated to the job and by the application’s
runtime behavior, which can be affected by other jobs running



,

simultaneously [33]. Thus, more sophisticated simulators need to
be used instead.

Alea 4 [25] is an event-based grid and cluster scheduling sim-
ulator that uses the GridSim toolkit [7]. The simulator is able to
deal with common problems related to job scheduling like the het-
erogeneity of jobs, resources, and dynamic runtime changes such
as the arrival of new jobs or resource failures and restarts. The
main part of the simulator is a complex scheduler which incorpo-
rates several common scheduling algorithms working either on the
queue or the schedule (plan) based principle. The latest version
of Alea uses a dynamic workload adjustment technique enabling
user-to-system interactions to be modeled properly. The input is
still a static workload (historical workload traces extracted from
the HPC system itself, or from a public workload trace repository)
but transformed into a dynamic one afterwards.

Performance Prediction Toolkit (PPT) [33] is a full-scale HPC
simulator. It can use synthetic workload models or adopt job traces
from existing HPC workload archives. The simulator implements
several commonly used scheduling algorithms, however, it does
not include backfilling algorithms.

Other complex frameworks for studying grids, clouds, HPC or
peer-to-peer systems have been developed. However, the majority
of these projects seem to be inactive or abandoned. [25]

6.4 Summary
After a detailed review of current WMSs, k-Dispatch seems to be
unique in several aspects. Unlike many other low level WMSs, it
does not require the end users to have personal access to remote
computational facilities (user accounts). k-Dispatch uses its own
credentials to access several computing facilities and provides ac-
counting for the end users.

k-Dispatch is also oriented towards workflows composed of large
long running jobs. For these jobs, the optimization of execution
parameters is crucial to reduce the computation cost, minimize
queuing times and offer some estimation of the delivery time. Since
the set of possible binaries is limited, statistically relevant perfor-
mance data can be captured and consequently used for estimations.
As far as we have seen, there are no similar tools available, and
instead users are generally responsible for providing appropriate
parameters themselves.

For the job submission and execution, the PBS and Slurm inter-
faces provide enough functionality. However, for the evaluation of
hundreds of jobs per second, they may be too slow. As a suitable
tool for quick execution parameter evaluation, the ALEA simula-
tor appears to be a good candidate and has already been under
evaluation.

7 CONCLUSIONS AND FUTUREWORK
Over the last few decades, numerous middleware projects have
been developed focusing on running user-defined workflows on
various computational platforms including local desktop computers,
middle-sized servers up to huge and heterogeneous supercomputing
facilities and clouds. These tools are developed as stand-alone desk-
top applications, web applications or importable libraries which
determines the level of interactivity with end users.

Unfortunately, all these tools focus primarily on experienced
users from various scientific domains. Despite the orchestration,

monitoring and data management being provided by the tools, the
users have to compose their own workflows, specify the execution
parameters and provide their own binaries manually. This is, how-
ever, unfeasible in medical applications where the level of HPC
experience is much lower and the computation software has to
undergo a strict certification process. Since our search for a suit-
able tool was not successful, we decided to develop a brand new
workflow management system called k-Dispatch.

k-Dispatch is a Python middleware layer bridging clinical end-
users with large computing facilities such as clouds or HPC clusters.
k-Dispatch offers a list of generic biomedical ultrasound workflows
that execute optimized binaries. The users are able to upload treat-
ment parameters and patient specific data using a simple interface
and do not have to consider the execution planning, submission,
and monitoring of simulations. Furthermore, k-Dispatch provides
data management, accounting, reporting, fault tolerance, and most
importantly, optimizes the execution parameters and the amount
of computational resources to reduce computational time or cost.

We have successfully deployed k-Dispatch using Docker contain-
ers. Currently, the predefined workflows may be submitted using
a user-friendly web interface. The workflows are executed by the
HPC clusters at the IT4Innovations supercomputing center.

7.1 Future Work
The development of k-Dispatch has reached a point where the
system is up and running, however, there are several issues to be
solved. First, we would like to implement advanced techniques for
performance data mining. Next, we would like to adapt HPC cluster
simulators to provide us with reliable evaluation of the workflow
execution parameters. We would like to investigate adaptive op-
timization heuristics for execution parameters and also consider
dynamically changing HPC utilization. Finally, we would like to
develop a graphical user interface for k-Dispatch administrators
and advanced clinical users.

8 ACKNOWLEDGEMENT
This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme H2020 ICT 2016-2017
under grant agreement No 732411 and is an initiative of the Photon-
ics Public Private Partnership. This workwas supported by TheMin-
istry of Education, Youth and Sports from the Large Infrastructures
for Research, Experimental Development and Innovations project
IT4Innovations National Supercomputing Center - LM2015070".
This work was supported by the Engineering and Physical Sciences
Research Council, United Kingdom, grant numbers EP/L020262/1,
EP/M011119/1, EP/P008860/1, and EP/S026371/1.

REFERENCES
[1] Magda A. Abbas, Constatin C. Coussios, and Robin O. Cleveland. 2018. Patient

specific simulation of HIFU kidney tumour ablation. Conference proceedings: IEEE
Engineering in Medicine and Biology Society. 2018, 5709–5712. https://doi.org/10.
1109/EMBC.2018.8513647

[2] Gene M. Amdahl. 1967. Validity of the single processor approach to achieving
large scale computing capabilities. Proceedings of the April 1820 1967 spring
joint computer conference 23, 4 (1967), 483–485. https://doi.org/10.1145/1465482.
1465560

[3] Peter Amstutz, Michael R. Crusoe, Nebojsa Tijanic, Brad Chapman, John
Chilton, Michael Heuer, Andrey Kartashov, Dan Leehr, Herve Menager, Maya

https://doi.org/10.1109/EMBC.2018.8513647
https://doi.org/10.1109/EMBC.2018.8513647
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560


, Marta Jaros, Bradley E. Treeby, Panayiotis Georgiou, and Jiri Jaros

Nedeljkovich, and et al. 2016. Common workflow language, v1.0. https:
//doi.org/10.6084/m9.figshare.3115156.v2

[4] Apache. 2019. Apache Storm. http://storm.apache.org/
[5] Jiten Bhagat, Franck Tanoh, Eric Nzuobontane, Thomas Laurent, Jerzy Orlowski,

Marco Roos, Katy Wolstencroft, Sergejs Aleksejevs, Robert Stevens, Steve Pettifer,
Rodrigo Lopez, and Carole A. Goble. 2010. BioCatalogue: a universal catalogue
of web services for the life sciences. Nucleic Acids Research 38, suppl_2 (05 2010),
W689-W694. https://doi.org/10.1093/nar/gkq394

[6] Carl Boettiger. 2015. An introduction to Docker for reproducible research. ACM
SIGOPS Operating Systems Review 49, 1 (jan 2015), 71–79. https://doi.org/10.
1145/2723872.2723882

[7] Rajkumar Buyya and Manzur Murshed. 2002. GridSim: a toolkit for the modeling
and simulation of distributed resource management and scheduling for Grid
computing. Concurrency Computat.: Pract. Exper. 14 (2002), 1175–1220. https:
//doi.org/10.1002/cpe.710

[8] Vandiver Chaplin, Marshal Phipps, and Charles Caskey. 2017. A random phased-
array for MR-guided transcranial ultrasound neuromodulation in non-human
primates. Physics in Medicine and Biology 10 (12 2017), 105016. https://doi.org/
10.1088/1361-6560/aabeff

[9] Vojtěch Cima, Stanislav Böhm, Jan Martinovič, Jiří Dvorský, Kateřina Janurová,
Tom V. Aa, Thomas J. Ashby, and Vladimir Chupakhin. 2018. HyperLoom: A plat-
form for defining and executing scientific pipelines in distributed environments.
In Proceedings of the 9th Workshop and 7th Workshop on Parallel Programming and
RunTime Management Techniques for Manycore Architectures and Design Tools
and Architectures for Multicore Embedded Computing Platforms. ACM, 1–6.

[10] Dask. 2019. Dask natively scales Python. https://dask.org/
[11] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J.

Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny,
and Kent Wenger. 2014. Pegasus: a Workflow Management System for Science
Automation. Future Generation Computer Systems (2014).

[12] Fabric. 2020. Fabric – Pythonic Remote Execution. https://www.fabfile.org/
[13] Rafael Ferreira da Silva, Rosa Filgueira, Ilia Pietri, Ming Jiang, Rizos Sakellariou,

and Ewa Deelman. 2017. A characterization of workflow management systems
for extreme-scale applications. Future Generation Computer Systems 75 (oct 2017),
228–238.

[14] Martin Fjordvald and Clement Nedelcu. 2018. Nginx HTTP Server - Fourth Edition:
Harness the Power of Nginx to Make the Most of Your Infrastructure and Serve Pages
Faster Than Ever Before (4th ed.). Packt Publishing.

[15] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. 2011.
An overview of the HDF5 technology suite and its applications. In Proceedings of
the EDBT/ICDT 2011 Workshop on Array Databases - AD ’11. https://doi.org/10.
1145/1966895.1966900

[16] Ian Foster. 2006. Globus toolkit version 4: Software for service-oriented systems.
Journal of Computer Science and Technology 21, 4 (jul 2006), 513–520. https:
//doi.org/10.1007/s11390-006-0513-y

[17] Focused Ultrasound Foundation. 2019. 2019 state of the field report. Technical
Report. 1230 Cedars Court, Suite 206.

[18] Lutz Fröhlich. 2018. PostgreSQL 10. In PostgreSQL 10. Carl Hanser Verlag GmbH
& Co. KG, München, I–X. https://doi.org/10.3139/9783446456419.fm

[19] gLite. 2013. gLite introduction. http://grid-deployment.web.cern.ch/grid-
deployment/glite-web/introduction

[20] Anthony Grisey, Sylvain Yon, Véronique Letort, and Pauline Lafitte. 2016. Simu-
lation of high-intensity focused ultrasound lesions in presence of boiling. Journal
of Therapeutic Ultrasound (2016). https://doi.org/10.1186/S40349-016-0056-9

[21] Derek Groen, Agastya P. Bhati, James Suter, James Hetherington, Stefan J. Zasada,
and Peter V. Coveney. 2016. FabSim: Facilitating computational research through
automation on large-scale and distributed e-infrastructures. Computer Physics
Communications 207 (2016), 375–385. https://doi.org/10.1016/j.cpc.2016.05.020
arXiv:1512.02194

[22] John L. Gustafson. 1988. Reevaluating Amdahl’s law. Commun. ACM 31, 5 (may
1988), 532–533. https://doi.org/10.1145/42411.42415

[23] HTCondor. 2019. HTCondor – High Throughput Computing. https://research.
cs.wisc.edu/htcondor/

[24] Sarah E. Jackson and John D. Chester. 2015. Personalised cancer medicine.
https://doi.org/10.1002/ijc.28940

[25] Dalibor Klusacek, Simon Toth, and Gabriela Podolnikova. 2017. Complex Job
Scheduling Simulations with Alea 4. CEUR Workshop Proceedings 1828 (2017),
53–59. https://doi.org/10.1145/1235 arXiv:arXiv:1603.07016v1

[26] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao. 2006. Scientific workflow

management and the Kepler system. Concurrency and Computation: Practice and
Experience 18, 10 (aug 2006), 1039–1065. https://doi.org/10.1002/cpe.994

[27] Srirang Manohar and Maura Dantuma. 2019. Current and future trends in
photoacoustic breast imaging. Photoacoustics 16 (1 12 2019). https://doi.org/10.
1016/j.pacs.2019.04.004

[28] Haiyan Meng and Douglas Thain. 2017. Facilitating the reproducibility of scien-
tific workflows with execution environment specifications. Procedia Computer
Science 108 (2017), 705–714. https://doi.org/10.1016/j.procs.2017.05.116 Interna-
tional Conference on Computational Science, ICCS 2017, 12-14 June 2017, Zurich,
Switzerland.

[29] TomMens, Alexandre Decan, and Nikolaos Spanoudakis. 2018. A method for test-
ing and validating executable statechart models. Software and Systems Modeling
(2018). https://doi.org/10.1007/s10270-018-0676-3

[30] Leila Mohammadi, Hamid Behnam, Jahan Tavakkoli, and Mohammad R.N.
Avanaki. 2019. Skull’s photoacoustic attenuation and dispersionmodelingwith de-
terministic ray-tracing: Towards real-time aberration correction. Sensors (Switzer-
land) (2019). https://doi.org/10.3390/s19020345

[31] myExperiment. 2018. myExperiment Home. https://www.myexperiment.org/
home

[32] NCSA. 2019. GitHub - ncsa/Scheduler: The aggregate job launcher of single-core
or single-node applications on HPC sites. https://github.com/ncsa/Scheduler

[33] Mohammad A. Obaida and Jason Liu. 2017. Simulation of HPC job scheduling
and large-scale parallel workloads. In 2017 Winter Simulation Conference (WSC).
IEEE, 920–931. https://doi.org/10.1109/WSC.2017.8247843

[34] Jose A. Pascual, Javier Navaridas, and Jose Miguel-Alonso. 2009. Job Scheduling
Strategies for Parallel Processing. In JSSPP 2009. Lecture Notes in Computer Sci-
ence, vol. 5798, Uwe Frachtenberg, Eitan Schwiegelshohn (Ed.). Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-04633-9_8

[35] Joemini Poudel, Yang Lou, and Mark A. Anastasio. 2019. A survey of computa-
tional frameworks for solving the acoustic inverse problem in three-dimensional
photoacoustic computed tomography. Physics in Medicine and Biology (may 2019).
https://doi.org/10.1088/1361-6560/ab2017 arXiv:1905.03881

[36] Antonios Pouliopoulos, Shih-YingWu, Mark Burgess, Maria Karakatsani, Hermes
Kamimura, and Elisa Konofagou. 2019. A Clinical System for Non-invasive Blood-
Brain Barrier Opening Using a Neuronavigation-Guided Single-Element Focused
Ultrasound Transducer. Ultrasound in Medicine and Biology 46 (10 2019), 73–89.
https://doi.org/10.1016/j.ultrasmedbio.2019.09.010

[37] The Pallets Projects. 2020. Jinja. https://palletsprojects.com/p/jinja/
[38] Yves Robert. 2011. Task graph scheduling. Springer US, Boston, MA, 2013–2025.

https://doi.org/10.1007/978-0-387-09766-4_42
[39] Armin Ronacher. 2013. Flask (A PythonMicroframework). http://flask.pocoo.org/
[40] Vivek Sarkar. 1989. Partitioning and Scheduling Parallel Programs for Multiproces-

sors. MIT Press, Cambridge. 101–154 pages.
[41] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.

The Hadoop distributed file system. In Proceedings of the 2010 IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies (MSST) (MSST ’10). IEEE Computer
Society, Washington, DC, USA, 1–10. https://doi.org/10.1109/MSST.2010.5496972

[42] Priya Singh, Zafruddin Quadri, and Anuj Kumar. 2016. Comparative Study of
Parallel Scheduling Algorithm for Parallel Job. International Journal of Computer
Applications 134, 10 (2016), 10–14.

[43] Visa Suomi, Jiri Jaros, Bradley Treeby, and Robin Cleveland. 2016. Nonlinear
3-D simulation of high-intensity focused ultrasound therapy in the Kidney. IEEE,
5648–5651. https://doi.org/10.1109/EMBC.2016.7592008

[44] Visa Suomi, Bradley Treeby, Jiri Jaros, Pietari Makela, Mikael Anttinen, Jani
Saunavaara, Teija Sainio, Aida Kiviniemi, and Roberto Blanco. 2018. Transurethral
ultrasound therapy of the prostate in the presence of calcifications: A simulation
study. Medical physics 45 (9 2018), 4793–4805. https://doi.org/10.1002/mp.13183

[45] Bradley E. Treeby and Ben T. Cox. 2010. k-Wave: MATLAB toolbox for the
simulation and reconstruction of photoacoustic wave-fields. Journal of Biomedical
Optics 15, 2 (Mar-Apr 2010), 021314. https://doi.org/10.1117/1.3360308

[46] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David
Withers, Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic,
Paul Fisher, Jiten Bhagat, Khalid Belhajjame, Finn Bacall, Alex Hardisty, Abraham
Nieva de la Hidalga, Maria P. Balcazar Vargas, Shoaib Sufi, and Carole Goble.
2013. The Taverna workflow suite: designing and executing workflows of Web
Services on the desktop, web or in the cloud. Nucleic Acids Research 41, W1 (5
2013), W557–W561. https://doi.org/10.1093/nar/gkt328

[47] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster computing with working sets. Technical Report.

https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.6084/m9.figshare.3115156.v2
http://storm.apache.org/
https://doi.org/10.1093/nar/gkq394
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1002/cpe.710
https://doi.org/10.1002/cpe.710
https://doi.org/10.1088/1361-6560/aabeff
https://doi.org/10.1088/1361-6560/aabeff
https://dask.org/
https://www.fabfile.org/
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1007/s11390-006-0513-y
https://doi.org/10.1007/s11390-006-0513-y
https://doi.org/10.3139/9783446456419.fm
http://grid-deployment.web.cern.ch/grid-deployment/glite-web/introduction
http://grid-deployment.web.cern.ch/grid-deployment/glite-web/introduction
https://doi.org/10.1186/S40349-016-0056-9
https://doi.org/10.1016/j.cpc.2016.05.020
http://arxiv.org/abs/1512.02194
https://doi.org/10.1145/42411.42415
https://research.cs.wisc.edu/htcondor/
https://research.cs.wisc.edu/htcondor/
https://doi.org/10.1002/ijc.28940
https://doi.org/10.1145/1235
http://arxiv.org/abs/arXiv:1603.07016v1
https://doi.org/10.1002/cpe.994
https://doi.org/10.1016/j.pacs.2019.04.004
https://doi.org/10.1016/j.pacs.2019.04.004
https://doi.org/10.1016/j.procs.2017.05.116
https://doi.org/10.1007/s10270-018-0676-3
https://doi.org/10.3390/s19020345
https://www.myexperiment.org/home
https://www.myexperiment.org/home
https://github.com/ncsa/Scheduler
https://doi.org/10.1109/WSC.2017.8247843
https://doi.org/10.1007/978-3-642-04633-9_8
https://doi.org/10.1088/1361-6560/ab2017
http://arxiv.org/abs/1905.03881
https://doi.org/10.1016/j.ultrasmedbio.2019.09.010
https://palletsprojects.com/p/jinja/
https://doi.org/10.1007/978-0-387-09766-4_42
http://flask.pocoo.org/
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/EMBC.2016.7592008
https://doi.org/10.1002/mp.13183
https://doi.org/10.1117/1.3360308
https://doi.org/10.1093/nar/gkt328

	Abstract
	1 Introduction
	2 k-Dispatch mission
	3 System Architecture
	3.1 Web Server and Dispatch Database
	3.2 Dispatch Core
	3.3 Deployment Using Docker

	4 Workflow execution optimization
	4.1 Workflow Definition and Execution Model
	4.2 Optimization of Execution Parameters

	5 Current Work and Open Questions
	5.1 Data Collection and Processing
	5.2 Dynamic Cluster Behaviour
	5.3 Workflow Parameters Evaluation

	6 Related Work
	6.1 Workflow Management Systems and Processing Frameworks
	6.2 Cluster Batch Schedulers
	6.3 Cluster Simulators
	6.4 Summary

	7 Conclusions and Future Work
	7.1 Future Work

	8 Acknowledgement
	References

