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ABSTRACT

Prion diseases are a group of fatal neurodegenerative disorders of mammals that share a central role for prion protein (PrP, gene PRNP) in their pathogenesis. Prions
are infectious agents that account for the observed transmission of prion diseases between humans and animals in certain circumstances. The prion mechanism
invokes a misfolded and multimeric assembly of PrP (a prion) that grows by templating of the normal protein and propagates by fission. Aside from the medical and
public health notoriety of acquired prion diseases, the conditions have attracted interest as it has been realized that common neurodegenerative disorders share so-
called prion-like mechanisms. In this article we will expand on recent evidence for new genetic loci that alter the risk of human prion disease. The most common
human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD), is characterized by the seemingly spontaneous appearance of prions in the brain. Genetic variation
within PRNP is associated with all types of prion diseases, in particular, heterozygous genotypes at codons 129 and 219 have long been known to be strong protective
factors against sCJD. A large number of rare mutations have been described in PRNP that cause autosomal dominant inherited prion diseases. Two loci recently
identified by genome-wide association study increase sCJD risk, including variants in or near to STX6 and GAL3ST1. STX6 encodes syntaxin-6, a component of SNARE
complexes with cellular roles that include the fusion of intracellular vesicles with target membranes. GAL3ST1 encodes cerebroside sulfotransferase, the only enzyme
that sulfates sphingolipids to make sulfatides, a major lipid component of myelin. We discuss how these roles may modify the pathogenesis of prion diseases and their

relevance for other neurodegenerative disorders.

1. Introduction and overview

Prion diseases are invariably fatal, generally rapidly progressive
neurodegenerative diseases characterized neuropathologically by de-
position of abnormal prion protein, spongiform vacuolation, neuronal
loss and astrocyte proliferation (Budka et al., 1995). In humans, the
disease has three aetiological types: sporadic, inherited and acquired. In
animals, prion diseases include scrapie in sheep and goats, chronic
wasting disease (CWD) in cervids and bovine spongiform encephalo-
pathy (BSE) in cattle (recently reviewed (Houston and Androletti,
2019)). Molecular pathogenesis of all types involves misfolding and
aggregation of the cellular prion protein (PrP€) into a number of dis-
ease-associated forms including proteinase K (PK)-resistant scrapie
forms termed PrPs,

PrP€ is a glycosylphosphatidylinositol (GPI)-anchored glycoprotein
ubiquitously expressed in mammals with highest expression in the
central nervous system, but present in most other tissue and cell types
(cellular prion protein biology recently reviewed (Castle and Gill,
2017)). PrP¢ has an apparently unstructured N-terminal domain in
solution, comprising a signal peptide followed by a nonapeptide and
three or four octapeptides, copper-binding repeats, a central hydro-
phobic domain and a predominantly a-helical C-terminal domain that
includes two variably occupied glycosylation sites, a disulphide bridge
and a site for GPI-anchor attachment. Following synthesis, PrP€ is first
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translocated into the endoplasmic reticulum where glycosylation and
addition of a GPI anchor occurs, as well as cleavage of N- and C-
terminal peptides. After correctly folding, the protein is then trafficked
through the Golgi cisternae for further post-translational modifications
of the glycosylation sites and GPI anchor, before being trafficked to the
plasma membrane where most steady-state PrP€ is located. PrP€ is
concentrated in cholesterol rich lipid rafts and is thought to con-
stitutively recycle through the endosomal system.

Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common
human prion disease with 1-2 cases per million population per year,
accounting for approximately 85% of annual incidence in most coun-
tries (Ladogana et al., 2005; NCJDRSU, 2018). Diagnostic criteria sti-
pulate that there is no known genetic aetiology or environmental ex-
posure to prions, instead, the cause is hypothesized to be a stochastic
misfolding event of PrP€ or somatic PRNP mutation in a single or clade
of cells. Due to the transmissibility of prion diseases, several acquired
forms of the disease have been described. The first and to date largest
recognized outbreak, involving over 3000 cases, was kuru, which af-
fected the Fore ethnic group and their neighbours in the Eastern
Highlands Province of Papua New Guinea. Kuru was acquired through
ritual endocannibalism (Collinge et al., 2006). More recently, variant
CJD (vCJD) was caused by dietary transmission of BSE prions, resulting
in a zoonotic outbreak of over 230 confirmed cases (Creutzfeldt-Jakob
Disease International Surveillance Network, 2019; Will et al., 1996).
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Over 450 cases of iatrogenic CJD (iCJD) have also been reported,
mostly related to historical medical treatments using human cadaveric
pituitary growth hormone (hGH), or use of cadaveric dura mater in
surgery (Brown et al., 2012).

The human PRNP gene that encodes PrP€ is located on chromosome
20 and is formed of 2 exons, with the second containing the open
reading frame for the 253 amino acid protein. Up to 70 variants have
been identified in the PRNP gene comprising a variety of single nu-
cleotide polymorphisms (SNPs), missense mutations, alterations in oc-
tapeptide repeat number, premature truncations or rarer frame-shift
mutations, a number of which lead to inherited prion diseases (IPDs)
(see recent review (Mead et al., 2019)) (Minikel et al., 2019). Globally,
IPDs account for approximately 10-15% of annual human prion disease
incidence, although this varies considerably by region. They are gen-
erally classified into groups based on clinical presentation and genetic
aetiology: familial CJD, fatal familial insomnia, Gerstmann-Straussler-
Scheinker disease and PrP systemic amyloidosis. Several variants have
been identified in sCJD patients without a family history. In this case,
causality is much less clear and clinicians should be cautious in how
results are fed-back to patients (Beck et al., 2010; Minikel et al., 2016;
Mok et al., 2018).

PRNP codon 129 is a major genetic modifying factor for all aetio-
logical types of human prion diseases; the genotype at this site influ-
ences age of clinical onset and clinical duration in a subset of IPDs and
kuru and alters risk and clinical duration for sCJD and iCJD (Collinge
et al.,, 2006; Minikel et al., 2019; Collinge et al., 1991; Mead et al.,
2006; Palmer et al., 1991; Webb et al., 2008; Webb et al., 2009).

The modifying effects of codon 129 are complex in that the primary
sequence of PrP determines the permissible prion strains that can pro-
pagate in a host (Collinge, 1999). Prion strains refers to distinct clin-
icopathological phenotypes of prion disease that can be maintained
through transmission of the disease between different hosts or species.
Strains are thought to be encoded in the conformation of abnormal PrP,
the presence of cofactors, or stoichiometry of different glycosylation
states or fragments of PrP. For example, whilst both homozygous gen-
otypes at codon 129 confer increased risk of sCJD, in vCJD, until re-
cently, all cases were methionine homozygous, implying that the valine
homozygous genotype is strongly protective. There is good evidence
from transmission studies in transgenic animals that PrP-129VV, unlike
for sCJD prions, cannot adopt the vCJD prion conformation
(Wadsworth et al., 2004). In 2011 and 2016, two patients were diag-
nosed with vCJD who had a heterozygous genotype at codon 129 (Kaski
et al., 2009; Mok et al., 2017), but it remains unclear whether a more
substantial “second wave” of vCJD with PrP-129MV will arise. Fur-
thermore the frequencies of codon 129 genotypes in hGH-iCJD cases
and their likely incubation times vary significantly between countries,
suggesting the propensity for propagation of different contaminating
prion strains within growth hormone preparations is influenced by host
genotype (Brandel et al., 2003; Rudge et al., 2015). A small number of
additional variants have been associated with non-inherited prion dis-
eases, for example, a valine allele at position 127 is extremely rare
globally, but in kuru is completely protective (Mead et al., 2009a;
Asante et al., 2015) and enriched in women exposed to kuru but sur-
viving to old age. A variant at codon 219 found in east and south Asian
populations is strongly, although not completely, protective against
sCJD but has been seen in patients with acquired and genetic prion
diseases including two patients with vCJD (Shibuya et al., 1998; Lukic
et al., 2010; Nozaki et al., 2010). Alleles 1801 and 232R may increase
sCJD risk in certain populations, but this is not certain (Minikel et al.,
2016; Beck et al., 2012; Qina et al., 2014).

In this article we review genetic modifiers for sCJD risk outside of
the PRNP gene identified through large-scale human genetics studies
and discuss putative roles these may play in disease biology, with
particular focus on two recently identified risk loci that include the
STX6 and GAL3ST1 genes.
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2. Importance of identifying disease modifiers for sCJD

Multiple studies have demonstrated the multi-faceted role of PrP€ in
prion diseases, not only for templated conversion to PrPS but in its
relationship with neurotoxicity and disease incubation time, empha-
sising that PrP¢ is the key target for prion disease therapeutics
(Brandner et al., 1996; Beler et al., 1994; Mallucci et al., 2003). Tar-
geting PrP° at both the mRNA and protein level after prion inoculation
in mouse models is able to reduce PrP5 load and prevent, or even re-
verse, neuropathological changes (White et al., 2003; White et al.,
2008; Raymond et al., 2019); PrP-targeting antibodies and antisense
oligonucleotides are either in human use or being developed (UCLH,
2018). However, it is not yet known whether these programmes will
translate into safe and effective treatments that can be used for patients
and healthy but at-risk individuals. The biological functions of PrP€ are
not yet clear and, although PrP-null mouse models appear to be healthy
with no lethal pathogenic phenotype (most convincing evidence in-
dicates a mild late-onset demyelinating polyneuropathy (Bremer et al.,
2010)), adverse consequences of binding or depleting this protein re-
main possible. Therefore, it could be useful to investigate genetic
modifiers of the disease and evaluate new targets.

Within the last decade the concept of a ‘prion-like’ mechanism in
related neurodegenerative diseases has been increasingly acknowl-
edged (recently reviewed (Jaunmuktane and Brandner, 2019)). A
number of disease-related aggregation-prone proteins have been de-
monstrated to encompass various properties of bona fide prions in-
cluding seeded conversion (amyloid 3, tau, a-synuclein, TDP43) and
propagation of distinct strains (i.e. Alzheimer's disease (AD), pro-
gressive supranuclear palsy (PSP), multiple system atrophy). If the
underlying mechanism for these diseases is similar, then shared genetic
aetiology could be expected, which for at least one locus appears to be
the case (discussed later). An increased understanding of sCJD genetics
may allow identification of common pathways which contribute to
‘prion-like’ protein propagation and thus targets relevant to a me-
chanism that spans multiple neurodegenerative diseases.

3. Human genetic studies of sCJD

Advances in genotyping and sequencing technologies have ac-
celerated human genetics research allowing for large-scale studies.
Over the last decade genome-wide association studies (GWAS) have
proved a powerful tool for detecting genetic associations with both
complex traits and diseases; however, very large sample sizes are re-
quired to achieve sufficient power to overcome the multiplicity of hy-
pothesis testing, and allow for reliable methods to account for biases
related to imperfect matching of ancestries between cases and controls.
This has posed a problem for sCJD research due to the rarity of the
disease limiting sample availability, and consequently a lack of statis-
tically robust non-PRNP associations. Targeted replication of pre-spe-
cified genes and variants identified through GWAS led to proposals of
GRMS8 as associated with sCJD risk, and variants upstream of STMN2
and within CYP4X1 with sCJD age of onset, although none of these
associations have been clearly established (Sanchez-Juan et al., 2014;
Mead et al., 2009b; Poleggi et al., 2018). Similarly a number of can-
didate gene studies have putatively identified genetic risk factors and
disease modifiers however, whilst this work was done out of necessity,
these approaches often lead to false-positive results and thus to date no
robust genome-wide significant associations outside of PRNP have been
identified.

Through international collaboration of most major human prion
disease specialists working in European ancestry populations we re-
cently performed for the first time a well-powered study to identify risk
variants for sCJD (Jones et al., 2020). This two-stage study utilised
5208 cases clinically diagnosed with probable or definite sCJD from 12
European ancestries populations. The work reproducibly identified
SNPs in PRNP (rs1799990), STX6 (rs3747957) and GAL3STI
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(rs2267161) as conferring risk for the disease at genome-wide sig-
nificance. Association in GAL3ST1 comprised two SNPs including a
valine to methionine missense variant at codon 29 (V29M). At the STX6
locus a larger number of SNPs were associated which are also expres-
sion quantitative trait loci (eQTLs) for increased STX6 expression in the
putamen and caudate nuclei with the risk haplotype, brain regions
particularly implicated in sCJD pathogenesis (Zerr et al., 2009); a
screen for co-localisation of eQTLs associated with the GWAS signal
supported this as the most likely mechanism driving the risk at this
locus. Association at a genetic locus cannot definitively prove the role
of a specific gene, as genetic effects can act at a distance, even on other
chromosomes, however these two genes are the lead candidates at each
locus based on follow up investigations.

4. Syntaxin-6 (STX6)

STX6 on human chromosome 1 encodes for syntaxin-6, a member of
the SNARE (soluble NSF (N-ethylmaleimide-sensitive factor) attach-
ment protein receptor) protein family comprised of over 38 proteins,
and is characterized by the presence of a 60 to 70 residue-long con-
served central coiled-coil SNARE motif (Jahn and Scheller, 2006).
SNARE protein complexes are the key components for membrane fusion
during the final step of vesicle transport; proteins located on vesicle
membranes (v-SNARE) and their relevant target (t-SNARE) interact to
form a four-helical coiled-coil which brings membranes in close
proximity and drives membrane fusion. Syntaxin-6 is a t-SNARE located
primarily at the trans-Golgi network (TGN) and early endosomes to
mediate retrograde transport between the two compartments (Bock
et al., 1997). Further classification denotes syntaxin-6 as a Qc-SNARE
due to the presence of a conserved glutamine residue within the SNARE
domain and its homology to the well characterized SNAP-25 protein.
Syntaxin-6 has 255 amino acids and incorporates a C-terminal hydro-
phobic anchor and 2 coiled-coil domains, the more C-terminal of which
contains the SNARE motif (Misura et al., 2002). Syntaxin-6 primarily
forms a canonical SNARE complex with syntaxin-16, Vtila and VAMP4
during retrograde transport (Kreykenbohm et al., 2002).

Intracellular protein trafficking has been intensively studied in the
context of prion diseases, with regards to both the cellular and scrapie
forms, particularly focusing on identification of potential sites of mis-
folding and conversion of PrP€ into PrPS and subsequent degradation
mechanisms (Fig. 1). Both PrP¢ and PrP5¢ are constitutively cycled
between the plasma membrane and endocytic compartments (Goold
et al., 2013a; Shyng et al., 1993). From the plasma membrane PrP€ is
endocytosed via one of multiple possible routes to the early endosome,
where it is either recycled back to the plasma membrane through the
endocytic recycling compartment or via retrograde transport to the
TGN, or trafficked to the late endosomes and lysosomes for degradation
(Ballmer et al., 2017; Campana et al., 2005; Kang et al., 2009; Magalhes
et al., 2002; Peters et al., 2003; Shyng et al., 1994). PrP5¢ follows the
same pathway after endocytosis (the mechanism of which is also con-
tended) for either recycling or lysosomal degradation, with the addi-
tional possibility of diversion between pathways with transport from
the TGN directly to lysosomes (Goold et al., 2013a; Jen et al., 2010; Vey
et al.,, 1996). Additional degradation mechanisms have also been
identified via macroautophagy and the proteasome (Goold et al.,
2013a; Heiseke et al., 2010). Studying trafficking of PrP€ and PrP%¢ is
key to understanding disease biology due to the appreciation that direct
interaction between the cellular form and misfolded protein (including
cofactors) underpins prion conversion and disease progression
(Horiuchi and Caughey, 1999; Telling et al., 1995).

Syntaxin-6 plays a number of different roles in various cell types
which have the potential to influence prion disease biology, leading to
numerous potential hypotheses as to why this gene may be related to
sCJD risk (reviewed in (Jung et al., 2012) and see Fig. 1). The endocytic
pathway has long been hypothesized as a site of prion conversion due to
the localisation of PrPS¢ within various intracellular compartments and
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the effects of acidic pH on prion conformation, stability and in-
tracellular localisation, leading to identification of recycling endosomes
and the multivesicular body as potential sites of particular interest
(Arnold et al., 1995; Borchelt et al., 1992; Hornemann and
Glockshuber, 1998; Marijanovic et al., 2009; Qi et al., 2012; Yim et al.,
2015). As a mediator of early endosome to TGN retrograde transport it
is feasible that modified syntaxin-6 expression could alter the time both
PrP€ and PrP° are retained within the acidic endocytic compartments,
potentially promoting initial prion formation or seeded conversion. A
direct interaction of syntaxin-6 with either PrP€ or prion aggregates is
also possible, especially with presence of all three within a number of
different intracellular membranes including early, late and recycling
endosomes, TGN as well as the plasma membrane depending on cell
type, which could alter protein conformation or misfolding kinetics
(Fig. 1) (Martin-Martin et al., 2000; Schindler et al., 2015; Wade et al.,
2001; Willett et al., 2013).

Prion conversion has been shown to occur on the plasma membrane
within lipid rafts (Goold et al., 2011; Goold et al., 2013b): these
membrane microdomains are thought to be highly important for prion
conversion as demonstrated in both cell models and protein-based ag-
gregation assays (Goold et al., 2011; Abid et al., 2010). Inhibition of
syntaxin-6 function in a fibroblast cell line inhibits transport of lipid-
raft associated proteins to the cell surface. If replicated in neuronal cells
this has the potential to modify the microenvironment for prion con-
version (Choudhury et al., 2006). A proteomic screen in HeLa cells also
identified syntaxin-6 as a cholesterol binding protein, previously shown
to modulate syntaxin-6 function (Hulce et al., 2013; Reverter et al.,
2014). As a key component of plasma membranes and a precursor for a
number of signalling molecules, cholesterol is essential in neuronal
physiology with a role in processes such as synapse formation, synaptic
vesicle exocytosis and neurotransmission (Zhang and Liu, 2015). Cel-
lular cholesterol levels also alter PrP€ folding, internalisation and de-
gradation as well as PrPS¢ synthesis, therefore this lipid may act as an
intermediate relating the two protein functions, through several dif-
ferent potential mechanisms (Marella et al., 2002; Sarnataro et al.,
2004; Taraboulos et al., 1995).

The transport of GPI-anchored proteins to lipid rafts in the plasma
membrane is also regulated by syntaxin-6 (Choudhury et al., 2006).
PrP€ harbours a GPI anchor so it is feasible that syntaxin-6 plays a role
in transport of this protein to these locations; the level of PrP® within
the plasma membrane is important for prion conversion (Enari et al.,
2001). After plasma membrane conversion PrP% is rapidly endocytosed
and directed for lysosomal degradation along with PrP€. Through reg-
ulating the trafficking of proteins to lipid rafts, syntaxin-6 subsequently
modulates caveolae-mediated endocytosis through which internalisa-
tion of both PrP® and PrP5® may occur (Choudhury et al., 2006). Al-
tering PrP® or PrP% internalisation could further alter their plasma
membrane concentrations as well as uptake of seed-competent protein
into cells.

Syntaxin-6 function has been implicated in the lysosomal degrada-
tion pathway through localisation of distinct SNARE complexes in late
endosomes in a melanoma cell line and interaction with ubiquitin li-
gases MARCH-II and MARCH-III in tagging proteins for degradation
(Wade et al., 2001; Fukuda et al., 2006; Nakamura, 2005); ubiquiti-
nation by MARCH-II has been established as a regulatory mechanism
for lysosomal targeting of cystic fibrosis transmembrane conductance
regulator (CFTR) (Cheng and Guggino, 2013). If the same mechanism
occurs through syntaxin-6 interaction with either PrP¢ or PrP¢ it is
possible this provides an additional regulatory step in protein de-
gradation, and modified syntaxin-6 expression could feasibly interfere
with this process. Additionally, alternative targeting of late endosomes
to the plasma membrane for exosome release is a likely method of cell-
to-cell spreading of prions, for which a role of syntaxin-6 has also been
proposed (Peak et al., 2020; Fevrier et al., 2004).

The possibility of a common underlying mechanism in related
neurodegenerative diseases is supported by association of the same
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Fig. 1. Trafficking of PrP5¢ and PrP® through endocytic and secretory pathways and relationship with SNARE protein syntaxin-6. Both PrP¢ and PK-resistant
aggregates (PrP5°) are constitutively trafficked between the plasma membrane (PM) and endocytic compartments in cell models. PrP (yellow arrows) is synthesised
in the ER and trafficked through the Golgi to lipid rafts on the PM. Endocytosis of PrP® occurs via clathrin-, caveolae- or other raft-dependent routes to early
endosomes (EE) where it is either recycled back to the PM via retrograde transport through the trans-Golgi network (TGN) or via recycling endosomes (RE). PrPC is
alternatively trafficked to late endosomes (LE) and lysosomes for degradation. PrP*¢ is primarily formed on the PM (indicated by the star symbol) in association with
lipid rafts before internalisation (red arrows) via caveolae- or clathrin-mediated endocytosis to EE. It can then be recycled to the PM via the TGN or RE (where
additional conversion may occur), or from TGN or EE to LE/multivesicular body (MVB) (another potential conversion site) and lysosomes. Retrotranslocation from
the ER to the cytosol during synthesis may also promote aggregation. Cell-to-cell PrP transmission has been demonstrated through exosomes and tunneling
nanotubes. Syntaxin-6 (STX6) is primarily localised to the TGN and EE but has also been detected on PM, RE and LE. It is further implicated indirectly in exosomal
transport and caveolae-mediated endocytosis. Figure created with Biorender.com. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

sCJD risk variants and direction of effect in the tauopathy progressive
supranuclear palsy (PSP) in a GWAS of 2165 patients, suggesting the
‘prion-like’ aetiology of other diseases may extend to genetic risk
(Hoglinger et al., 2011; Ferrari et al., 2014). Multiple neurodegenera-
tion-associated proteins, including tau, have been shown to induce
templated conversion of cellular protein in a ‘prion-like’ manner,
therefore the previously discussed mechanisms by which syntaxin-6
could contribute to prion conversion and propagation may well in-
crease the propensity of misfolding or templated conversion of addi-
tional aggregation-prone proteins (Jaunmuktane and Brandner, 2019).

Furthermore neurite outgrowth is impacted in models for multiple
neurodegenerative diseases including prion disease, AD and Parkinson's
disease, a process shown to be somewhat mediated by syntaxin-6 in
response to nerve growth factor signalling (Fahnestock et al., 2001; Hu
et al., 2019; Kabayama et al., 2008; Mogi et al., 1999). Syntaxin-6 also
regulates trafficking of insulin-responsive proteins GLUT4 and IRAP
(Kumudu et al., 2003; Watson and Pessin, 2008); insulin-resistance in
the brain is related to cognitive impairment and neurodegeneration and
has been associated with models of prion disease and multiple other
neurodegenerative diseases (Chiu et al., 2008; de Brito et al., 2017;
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Rivera et al., 2005). The possible roles for syntaxin-6 function in prion
biology are numerous and direct investigation of these discussed hy-
potheses will be required to determine any potential relationship.

5. Cerebroside sulfotransferase (GAL3ST1)

Sphingolipids are a major class of membrane lipids. The class
structure is typically based on an 18-carbon amine alcohol, often con-
jugated with a fatty acid and a sugar residue to make a cerebroside
(Fig. 2). Cerebrosides in vertebrates may be sulphated by the cerebro-
side sulfotransferase enzyme (encoded by the GAL3STI1 gene) to make
sulfatide, a dominant component of the myelin sheath in the nervous
system. Abnormal metabolism of sulfatide is directly implicated in
neurological disease as mutations in the enzyme that degrades sulfatide
are associated with metachromic leukodystrophy (MLD), a rare lyso-
somal storage disorder (Platt et al., 2018) (Fig. 2). MLD is caused by
recessive defects in either the arylsufatase A and prosaposin proteins
leading to the accumulation of sulfatides in the lysosome, and conse-
quently ataxia, weakness, loss of speech, behavioural problems and
psychomotor regression and cognitive decline.

There is little specific literature on sulfatides and prion diseases
(zero results from search terms “sulfatide” AND “prion” using PubMed).
However, sulfatide metabolism has been implicated in early
Alzheimer's disease. Severe sulfatide deficiency has been repeatedly
documented in Alzheimer's disease (brain or CSF) (Gonzalez de San
Roman et al., 2017; Han, 2007), which may relate to the transport of

lipids by the protein product of APOE, variants of which are the major
genetic risk factor for typical late onset Alzheimer's disease. The risk
factor identified at GAL3ST1 is not however shared with other neuro-
degenerative disorders (no hits in the GWAS catalogue). In prion dis-
eases, speculation about a possible role for sulfatides must therefore be
indirect.

PrP€ is known to reside on cholesterol- and sphingolipid-rich lipid
rafts (or detergent-resistant membranes), their composition being af-
fected by age, which could in turn lead to changes in the proximity of
PrP€ molecules and risks for conformational reactions that require in-
teractions between proteins (Agostini et al., 2013). Enzymes of sphin-
golipid metabolism (though not including GAL3ST1 specifically) are
altered early in the course of mouse prion disease (Hwang et al., 2009).
Purified prion rods have been found to contain low concentrations of
galactosylceramide and sphingomyelin implicating co-localisation of
prions with these lipids (Klein et al., 1998). In summary, there is a
rationale and some evidence to implicate sphingolipid metabolism in
prion disease pathogenesis, possibly through modification of the com-
position of lipid rafts.

Whilst for STX6 there is evidence that the most common transcripts
are increased in expression in disease-critical brain regions, for
GAL3ST1, and its homodimeric enzyme product, initial follow up
questions will focus on the effects of the V29M polymorphism on en-
zyme activity and localisation. A role for sulfatides or related sphin-
golipid pre-metabolites in lipid rafts and concentration of PrP€ is pos-
sible, but several alternatives might be put forward. For example,
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sulfatides or pre-metabolites might have a direct interaction with or
alter trafficking of PrPC or PrP%. It would be interesting to learn of
whether sulfatides or pre-metabolites are altered in prion diseases in a
similar way to early Alzheimer's disease.

6. Conclusions and future perspectives

Identification of additional genetic modifiers for sCJD has potential
to increase our understanding of prion disease biology. Whilst a pa-
noply of partners and pathways have been identified in the literature,
genetic association implicates a causal effect in humans and therefore a
priority for functional work. Although large-scale genetic studies are
powerful for discovering disease-associated variants, the translation of
these into causal genes and underlying mechanisms is not straightfor-
ward. Statistical fine-mapping and functional annotations are useful for
minimizing potential candidates, however experimental work in re-
levant disease models will now be pivotal.

Future studies might focus on establishing more precisely which
mechanisms at these risk loci are driving the genetic association.
Although it is likely polymorphisms in STX6 increase the expression of
this protein in disease-associated brain regions, without understanding
the consequences of this for prion disease pathogenesis it cannot be
easily translated into therapeutic possibilities. The unusual association
with a coding change at the GAL3ST1 locus is advantageous for eluci-
dating the causal gene, however without an understanding of the ra-
mifications for enzyme function the utility of this is also yet to be de-
termined.

Development of large sample resources and genome-wide genetic
data which are sufficiently powered to detect variants with small effect
sizes provides additional opportunity for further analysis beyond dis-
ease risk. Integration of genetic data with clinical parameters will allow
us to investigate genetic aetiology for other aspects of the disease such
as age of onset and rate of clinical decline; this has the potential for
even greater utility, as disease modifiers acting after onset of symptoms
may pose more realistic therapeutic targets. Furthermore the shared
genetic risk variants with PSP, for which similarities with sCJD can
extend beyond mechanistic to shared symptoms and diagnostic classi-
fication, provides support to a common ‘prion-like’ mechanism under-
lying related neurodegenerative diseases, highlighting the possibility
for shared targets (Josephs et al., 2004).
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