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ABSTRACT 1 

Aim: Large trees (≥70 cm DBH) contribute disproportionately to aboveground carbon stocks (AGC) 2 

across the tropics but may be vulnerable to changing climate and human activities. Here we determine 3 

the distribution, drivers, and threats to large trees and high-carbon forest in Central Africa. 4 
Location: Central Africa 5 
Time Period: Current 6 

Major taxa studied: Trees 7 
Methods: Using Gabon’s new National Resource Inventory of 104 field sites, AGC was calculated from 8 

67,466 trees from 578 species and 97 genera. Power and Michaelis-Menten models assessed the 9 

contribution of large trees to AGC. Environmental and anthropogenic drivers of AGC, large trees, and 10 

stand variables were modeled using AIC weights to calculate average regression coefficients for all 11 

possible models.  12 

Results: Mean AGC for trees ≥10 cm diameter-at-breast height in Gabonese forestlands was 141.7 [95% 13 

CI: 1301, 153.3] Mg C ha-1, with an average of 166.6 [150.2, 183.1] Mg C ha-1 in old growth forest, 171.3 14 

[154.8, 187.7] Mg C ha-1 in concession forest, and 96.6 [77.0, 116.2] Mg C ha-1 in secondary forest. High 15 

carbon forests occurred where large trees are most abundant: 31% of AGC was stored in large trees 16 

(2.3% of all stems). Human activities largely drove variation in AGC and large trees, but climate and 17 

edaphic conditions also determined stand variables (basal area, tree height, wood density, stem 18 

density). AGC and large trees increased with distance from human settlements; AGC was 40% lower in 19 

secondary than primary and concession forests and 33% higher in protected than non-managed areas.  20 
Main conclusions: AGC and large trees were negatively associated with human activities, highlighting 21 

the importance of forest management. Redefining large trees as ≥50 cm DBH (4.3% more stems) would 22 

account for 20% more AGC. Efforts to reduce tropical carbon emissions have largely focused on 23 

deforestation and reforestation. This study demonstrates that protecting relatively undisturbed forests 24 

can be disproportionately effective in conserving carbon and suggests that including sustainable 25 

forestry in programs like REDD+ could maintain carbon dense forests in logging concessions that are a 26 

large proportion of remaining Central African forests. 27 

 28 

 29 

 30 

 31 
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INTRODUCTION  33 

 Large trees dominate intact tropical ecosystems, bolstering global biodiversity and carbon 34 

storage (Lewis et al. 2015; Sullivan et al. 2017). Rising above the canopy, they modulate the understory 35 

microclimate and provide habitat and resources for animals, invertebrates, and plants like epiphytes and 36 

lianas (Poulsen et al. 2017), while storing a large fraction of forest carbon (Stegen et al. 2011; ter Steege 37 

et al. 2013; Bastin et al. 2015). The world’s tallest and densest forests are temperate rainforests, but 38 

tropical forests are the most widespread, accounting for two-thirds of all terrestrial biomass (Pan et al. 39 

2013). Large trees, often defined as ≥70 cm diameter-at-breast height (DBH), comprise on average 25-40 

45% of AGC in tropical regions while representing a small fraction of stems (Slik et al. 2013). 41 

Paleotropical forests typically have larger trees than Neotropical forests, with African trees tending to 42 

have larger diameters and Asian trees tending to be taller than South American trees (Banin et al. 2012); 43 

but hotspots of biomass occur regionally, including the Guyana shield, intact forests of Borneo and 44 

Papua New Guinea, and central and western parts of the Congo Basin (Lewis et al. 2013; Slik et al. 45 

2013; Xu et al. 2017). Given the importance of large trees for forest structure and functioning, and their 46 

sensitivity to disturbance, a primary goal of forest ecology is to identify the distribution, drivers, and 47 

threats to the world’s large forests (Lindenmayer et al. 2012).  48 

The influence of large trees on forest structure suggests that variables that affect the abundance 49 

of large stems could strongly influence ecosystem function and carbon storage. Multiple studies 50 

demonstrate that environmental variables, such as climate and soils, drive variation in tropical AGC, and 51 

to a lesser extent numbers of large trees, but their importance varies across regions and contexts. 52 

Forests in Africa, but not other regions, show a negative correlation between temperature and AGC 53 

(Lewis et al. 2013; Slik et al. 2013; Xu et al. 2017). The importance of annual precipitation and rainfall 54 

seasonality for AGC has been highlighted by several studies (Malhi et al. 2006; Slik et al. 2010; Chave et 55 

al. 2014a), including for African forests that often have lower average rainfall than other regions (Lewis et 56 

al. 2013; Slik et al. 2013), although precipitation in the wettest three months may be negatively 57 

associated with AGC above a certain point (Lewis et al. 2013; Xu et al. 2017). The positive effect of 58 

annual precipitation is consistent with reports that large trees are sensitive to water stress (Slik 2004; Van 59 

Nieuwstadt & Sheil 2005) due to a loss of hydraulic conductivity as the water deficit increases (Stegen et 60 

al. 2011). Using tree height as an indicator of large trees and AGC, a comparison of all humid tropical 61 

forests found that dry season precipitation and maximum annual water deficit are important determinants 62 

of height, but surface topography and topsoil texture also correlate strongly with the distribution of large 63 

trees (Yang et al. 2016). Generally, AGC increases with soil fertility in tropical forests (Quesada et al. 64 
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2012), although studies have found weak effects of soils, which have been partially attributed to the poor 65 

data quality of global soil databases (Lewis et al. 2013a; Slik et al. 2013a). 66 

 Rarely tested at large scales (regionally or nationally) in the humid tropics (Berenguer et al. 67 

2014), human activities can have strong effects on large trees and AGC. Deforestation, usually caused 68 

by the conversion of forest to cropland and pasture, reduces the extent and biomass of the entire forest 69 

(Gibbs et al. 2010). Other forms of natural and anthropogenic disturbance disproportionately affect large 70 

trees. Logging is widespread across the tropics, occupying 26% of Central Africa’s remaining forests 71 

and up to 74% of some countries (Bayol et al. 2012). Timber operations harvest the largest most 72 

valuable trees, including many Central African biomass hyperdominants (Bastin et al. 2015). Land 73 

clearing for settlement and subsistence agriculture follows on the heels of logging, resulting in the 74 

intentional removal of large trees (Lindenmayer et al. 2012). While logging and subsistence agriculture 75 

clearly reduce carbon stocks (Medjibe et al. 2013), their effects on large trees and AGC remain mostly 76 

unstudied at the landscape scale. 77 

Here we report on one of the first modern forest inventories of a tropical forested country -- the 78 

Gabonese Republic in Central Africa (Figure 1). Gabon is the second most forested country in the world, 79 

with 87% forest cover, a deforestation rate near zero, and 67% of its forests in timber concessions (Forêt 80 

Ressources Management 2018). For economic development the government seeks increased 81 

investment in industrial agriculture and logging, while committing to reduce greenhouse gas emissions 82 

and preserve ecosystems and biodiversity. We use Gabon’s national resource inventory (NRI) to 83 

characterize forest structure, quantify carbon stocks and identify areas of high carbon as priorities for 84 

conservation. We investigate: (1) the carbon density of forests across Gabon; (2) the contribution of 85 

large trees to AGC; and (3) the relative effects of environmental and anthropogenic variables on forest 86 

structure, with a focus on AGC and large trees. 87 

MATERIALS AND METHODS 88 

Located on the western coast of equatorial Africa, Gabon is part of the Congo Basin forest, 89 

although its waters drain into the Ogooué Basin (Figure 1a). A strong precipitation gradient extends from 90 

the northern coast (3200 mm annually) to the interior (1300 mm) of the country. Land cover is dominated 91 

by rain forest (76%), followed by cropland (10%), grassland and savanna (7%), and flooded broadleaf 92 

forest (5%) (World Resources Institute 2017). Four ecosystem types dominate (Figure 1d). Coastal 93 

evergreen rainforest in the west (0-300 m elevation) includes a mixture of terra firma, mangroves, 94 

flooded forest, and Raphia swamps. Coastal forests have been heavily harvested and reduced to 95 

secondary forest, with exceptions such as the Mondah and Mayumba forests and the Gamba Complex. 96 
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Coastal forest transitions into low elevation central forest, where the sedimentary basin meets older 97 

geological types giving way to the Chaillu mountain chain – a block of sedimentary rock with a maximum 98 

elevation of 1020 m. Central forest (300-1000 m), often dominated by the long-lived pioneer timber 99 

species, Aucoumea klaineana (okoumé), covers most of central Gabon and is indicative of disturbance 100 

in the last 150 years (Born et al. 2011). The northeastern lowland forest (300-1000 m) extends east of the 101 

Aucoumea distribution. This semi-deciduous forest is characterized by a predominance of tree species 102 

such as Terminalia superba (limba), Millettia laurentii (wenge), and Celtis spp. The rest of the county is 103 

covered by savanna that is often interrupted by forest-savanna mosaic, with continuous savanna in the 104 

southwest and southeast.  105 

Gabon’s timber concessions include14.7 million ha of forest, with 74% of the area under 106 

management plans and 16% certified for sustainable management (Forêt Ressources Management 107 

2018). Average harvest intensity is low, but varies with logging technique and history (Medjibe et al. 108 

2013). By contrast, commercial agriculture is currently very limited in scope (Austin et al. 2017; 109 

Tyukavina et al. 2018). Secondary forests recovering from slash-and-burn agriculture or other forms of 110 

deforestation are located near towns and villages and along roads, particularly the paved national roads 111 

connecting regional capitals. Several types of formal land management exist in Gabon: `protected` 112 

refers to areas under strictest management, including national parks, presidential reserves and 113 

arboretums (15 parks, 3.3. million ha); ‘reserve’ designates Ramsar sites with lower levels of protection 114 

than national parks (6 sites, 2,215,954 ha); ‘buffer’ signifies 5-km buffer zones around national parks’; 115 

‘hunting’ signifies designated hunting reserves (5 hunting reserves, 497,500 ha); and, ‘none’ indicates no 116 

formal management. 117 
Inventory Design, Data Collection, and Estimation of AGC 118 

Gabon’s NRI is based on a semi-systematic sample of forestlands. We divided the country into 119 

135 - 50 x 50 km cells and randomly located an inventory site within each cell using the Reverse 120 

Randomized Quadrant-Recursive Raster (RRQRR) algorithm in GIS (Figure 1c). The algorithm uses a 121 

spatially balanced design for sampling that maximizes the spatial independence among sample 122 

locations (Theobald et al. 2007). Stratified sampling is often more efficient than random sampling, but we 123 

lacked rigorous, a priori data for the selection of strata. Our semi-systematic approach does not depend 124 

on external data and samples can be added without disturbing the statistical integrity of the design.  125 

Each inventory site consisted of one 1-ha (100 x 100 m) plot and four 0.16-ha (40 x 40 m) 126 

satellite plots spaced 250 m apart, with two satellite plots located to the east and west of the permanent 127 

plot. We employed this winged design to evaluate local variation in forest structure. Of 135 original 128 
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sampling sites, we discarded 16 located in the ocean and did not sample 15 in savanna unlikely to have 129 

trees ≥10 cm DBH. At 16 sites, fewer than four satellite plots were established because they were in 130 

water bodies, open grassland, or the work was cut short for logistical reasons (e.g. sick field technician). 131 

Between 2012-2014 four field teams of five trained technicians inventoried the trees using standard 132 

protocols for plot establishment and measurement. Each tree ≥10 cm DBH was mapped, measured and 133 

identified. Measured trees in permanent plots, but not satellite plots, were marked with aluminum tags. 134 

Field teams measured tree diameters, D, at a height of 1.3 m from the ground or 50 cm above any 135 

buttresses, stilt roots, or deformities. They measured tree heights with a laser hypsometer (TruPulse 200 136 

Hypsometer, Laser Technology, Inc., Centennial, CO, USA), taking three measurements of 55 randomly 137 

selected trees per site with 10 trees from each of 5 DBH subclasses (10-20 cm, 21-30 cm, 31-40 cm, 41-138 

50 cm, >50 cm) and the five largest trees (e.g., Sullivan et al. 2018). Samples of unidentified trees were 139 

taken to the National Herbarium for identification. Of 67,466 trees, 80.9% were identified to species and 140 

99.4% to genus; of 1572 large trees, 92.1% were identified to species and 99.6% to genus. 141 

We estimate AGC from tree measurements in 104 forest sites by converting tree diameters, D, to 142 

aboveground biomass (AGB) using allometric equations for moist forests (1500-3500 mm precipitation 143 

yr-1) that incorporate terms for wood density, ρ, and tree height, H (Appendix S1 in Supporting 144 

Information). In the case of multi-stemmed trees, we applied the model to each stem. These equations 145 

include the pantropical model (Chave et al. 2014b),  146 

AGB!"# = 0.0673	 × (ρD$H)%.'() (1) 147 

and a Gabon-specific model (Ngomanda et al. 2014), 148 

AGB!"# = exp(−2.5680 + 0.9517(ln(D$ × H)) + 1.1891(ln ρ)). (2) 149 

Other allometric equations exist, but we focus on the pantropic model to facilitate comparison with other 150 

studies and because it is derived from many trees and species including 1429 harvested trees from 151 

Africa. The Gabon-specific allometric model is based on 10 species (101 trees) from a single site in 152 

northeastern Gabon (Ngomanda et al. 2014). Our study includes many families and species from across 153 

Gabon, making the pantropic equation more appropriate.  154 

We used the best taxonomic match of wood density for each stem (Zanne et al. 2009), 155 

substituting the mean wood density of the plot in the absence of species, genus, or family-level 156 

information. Of all inventoried trees, 41.9% had wood density values at the species level, and 24.1%, 157 

12.2%, and 21.9% matched at the genus, family, and plot levels. Of large trees, 63.7% had wood density 158 

values at the species level, and 20.8, 4.5, and 11.0% matched at the genus, family, and plot levels. With 159 

height measurements for 7,036 trees, we built a series of diameter-height (D:H) regression models 160 
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(linear, quadratic and polynomial) for each plot to predict the heights of the unmeasured trees (Beirne et 161 

al. 2019). For two plots without height measurements, we applied a national D:H model fitted to all the 162 

NRI data:  163 

𝐻> = 43.98 − 35.38 × 𝑒*%.%+',	  (3) 164 

AGC was calculated by summing the AGB of all the stems in a plot, dividing by plot area and multiplying 165 

by the assumed carbon content, 47.1%, of AGB (Thomas & Martin 2012). Throughout, we present the 166 

area-weighted carbon density for each site (1-ha plot and satellite plots) as Mg C ha-1. 167 

Importance of Large Trees to AGC 168 

To assess the contribution of large trees to AGC, we applied Bastin et al.'s (2015) model to 169 

estimate plot-level AGB, AGBA-.-, from the AGB of the largest trees, X: 170 

𝐴𝐺𝐵A/0/ = 𝛼1 × 𝑋2!.         (4) 171 

The power model coefficient, α, is predicted from the number, i, of the largest trees using a power 172 

regression model with no intercept: 173 

 𝛼1 = 𝑎+𝑥1
3".          (5) 174 

The exponent, β, is predicted from the number, i, of the largest trees using a Weibull model: 175 

 𝛽1 = 𝑎$ − 𝑏$𝑒
45#∗7!

$#8.         (6) 176 

We fit the models to the entire dataset and each disturbance type separately as forests might 177 

accumulate AGC from large trees at different rates (Appendix S2). To test whether the contribution of 178 

large trees differs among disturbance types, we modeled the relationship between the proportion of 179 

explained variation and cumulative number of trees with the Michaelis-Menten function: 180 

𝑅P$ = 9:	(7!:=)
?(7!:=)

          (7) 181 

where 𝑓, 𝑔, and 𝑗 are fitted parameters. We chose the asymptotic Michaelis-Menten (MONOD) growth 182 

function for its simplicity and use in assessments of biomass growth (McMahon et al. 2010; Zhu et al. 183 

2018). We fitted a single general model to the entire dataset, and then compared its fits to data 184 

subsetted by disturbance type with individual models for each disturbance type using AICc.  185 

Drivers of AGC, Large Trees, and Stand Variables 186 

We downloaded bioclimatic variables from the WORLDCLIM dataset (http://www.worldclim.org/; 187 

Hijmans et al. 2005), defining the center of a plot as its location, and compiling the following: average 188 

annual temperature (° C), temperature of the warmest quarter (° C), temperature of the coldest quarter (° 189 

C), temperature seasonality (standard deviation of temperature), annual rainfall (mm), rainfall in wettest 190 
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quarter (mm), rainfall in the driest quarter (mm), and rainfall seasonality (CV of rainfall). Several climate 191 

variables were strongly correlated (r ≥ 0.70), therefore we used principal components analysis (PCA) to 192 

reduce them to three linearly uncorrelated variables that explained 95.0% of the variance in climate data 193 

(Appendix S3). Climate axis 1 (53.4% variance), Pdryq, was positively correlated with driest quarter and 194 

negatively related to all other variables. Axis 2 (22.2% variance), Pseas, was positively related to 195 

seasonality in temperature and precipitation and negatively related to all other variables. Axis 3 (19.3% 196 

variance), Precip, was strongly positively correlated with total precipitation and rainfall in wettest quarter. 197 

Similarly, we selected 15 soil variables from the UN Food and Agriculture Organization (FAO) 198 

database (see (FAO 2002) for exact definitions of variables). Using PCA, we summarized the soil data in 199 

three independent axes that explained 83.6% of the variance in soil data (Appendix S3). Soil axis 1 200 

(47.1% variance), soil fertility, Sfert, was positively correlated with organic carbon topsoil, organic 201 

carbon subsoil, soil production, cation exchange capacity (CEC) soil and CEC clay. Axis 2 (21.7% 202 

variance), soil depth, Sdepth, was negatively correlated with nitrogen topsoil and C:N ratio topsoil, but 203 

positively correlated with soil depth, available water, and pH topsoil. Axis 3 (14.8% variance), Sdrain, 204 

which we interpret as soil drainage and oxygen availability to roots, was positively correlated with soil 205 

drainage and textural classes of topsoil and subsoil, but negatively correlated to C:N ratio, base 206 

saturation topsoil, and CEC clay topsoil. 207 

We evaluated several indictors of disturbance, including disturbance type (concession, primary, 208 

secondary; Figure 1e), distance from nearest village (km), and presence of human trails. Primary, or old 209 

growth, forest was defined as having no recent obvious signs of disturbance. Concession forest 210 

included sites with obvious logging damage and within timber concessions. Secondary forest was 211 

defined as recovering from slash-and-burn agriculture or other forms of deforestation. Technicians 212 

recorded disturbance type and presence of human trails in the field, whereas the Euclidean distance 213 

from the plot center to the nearest village was calculated in R. Finally, we classified plots into four major 214 

ecosystems (coastal forest, central forest, and northeastern forest, and savanna; Figure 1) and four 215 

habitats (highland, swamp, flooded, and terra firma). 216 

We explored the data by examining bivariate relationships between independent variables and 217 

response variables (AGC, number of large trees, and stand variables; Figure 2). We used linear 218 

regression for all normally distributed response variables and generalized linear models for counts of 219 

large trees, accounting for overdispersion with a quasipoisson model. We then examined multivariate 220 

relationships among the above explanatory variables, standardized to facilitate comparison of effect 221 

sizes, and response variables using model averaging, implemented through the MuMIn package (Barton 222 
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2019). Model averaging executes models for all possible combinations of variables (i.e. 4,095 223 

combinations for our 12 variables) and ranks them from best to worst according to their AICc scores. We 224 

considered all models with ∆ AICc < 4 as equally informative and determined the support for the 225 

explanatory variables by calculating their frequency of occurrence in the models (Galipaud et al. 2017). 226 

We used a cut-off of 60% support in our discussion of variables that drive numbers of large trees and 227 

AGC. Model-averaged regression coefficients based on AICc weights have been shown to be incorrect 228 

estimates of partial effects for individual predictors when there is multicollinearity among predictor 229 

variables (Cade 2015); but, as described above, we minimized multicollinearity by using PCA to reduce 230 

multiple correlated variables to fewer non-correlated predictors. All statistical analyses were conducted 231 

in R version 3.5.0 (R Core Team 2018).  232 

RESULTS 233 

National Assessment of AGC 234 

NRI sites represented the forest types in Gabon (Table 1, Figure 3) and differed in AGC and 235 

stand variables (Appendix S1). Mean AGC across all 104 forestland sites was 141.7 ± 60.4 (SD) Mg C 236 

ha-1 (range: 3.6 to 292.5) (Table 1): the lowest AGC occurred in a coastal swamp, whereas 7 of the 9 237 

lowest AGC sites occurred in savanna forest. Estimates of AGC from satellite plots were marginally less 238 

than adjacent 1-ha plots (lmm: b = 23.9, t = 1.77, p = 0.078). The average distance between NRI sites 239 

was 31.9 km ± 12.6 and site-level AGC was not spatially autocorrelated (Morans I = -0.005, p = 0.787). 240 

When treated as independent replicates, satellite and permanent plots were significantly spatially 241 

autocorrelated (Morans I = 0.306, SD = 0.027, p < 0.001), indicating that AGC is less variable within 242 

sites than among sites and that site is the appropriate level of replication. Primary and concession forest 243 

contained significantly more AGC than secondary forest (Table 1). AGC was highest in the northeast 244 

forest ecosystem and lowest in savanna forest and significantly higher on highlands than swamps and 245 

flooded forests. Protected areas held 46.3% more AGC than non-managed areas, but not significantly 246 

more than buffer zones, hunting zones, or reserves (Figure 3). 247 

The best single predictor of site-level AGC was the AGC of large trees (R2 = 0.728), followed by 248 

basal area (R2 = 0.692), number of large trees (R2 = 0.561) and tree height (R2 = 0.525; Figure 2; 249 

Appendix S1). When combined, basal area, tree height, basal area-weighted wood density, and number 250 

of trees contributed significantly to site-level AGC (F4,99 = 345.8, R2 = 0.931, p < 0.001; see results of 251 

large trees below), accounting for 93.6% of variation in AGC. Basal area, 𝐵𝐴TTTT, had the strongest positive 252 

effect on AGC, followed by mean tree height, 𝐻V, and wood density, ρT; whereas, the number of trees at a 253 
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site, 𝑇,  negatively affected AGC: (𝑦 = 	66.7 + 18.9𝑋@ABBBB + 11.5CD + 5.6ED − 3.9/). High AGC occurred along 254 

the southwest coast of Gabon, stretching along the sedimentary basin from Port Gentil to Mayumba 255 

(𝐴𝐺𝐶TTTTTT= 209.1 Mg C ha-1, N = 8; Figure 4) and in the northeast in and around the Ivindo and Mwagna 256 

National Parks (𝐴𝐺𝐶TTTTTT = 193.8 Mg C ha-1, N = 11; Figure 4). Highest numbers of large trees occurred in 257 

the north and northeast (𝑁VFGHHI = 22, N = 11; Figure 4), whereas plots near the coast contained few large 258 

trees (𝑁VFGHHI = 11.6, N = 9).  259 

Importance of Large Trees to AGC 260 

Most AGC in Gabon’s forests was stored in a limited number of large trees. Small trees (<40cm DBH) 261 

accounted for 88.5% of all trees, but only 36.3% of AGC; whereas large trees (≥70 cm DBH) made up 262 

2.3% of trees and 30.6% of AGC, and the largest trees (>100 cm DBH) represented 0.48% of trees and 263 

12.1% of the AGC (Appendix S2). The proportion of AGC per site increased rapidly with the cumulative 264 

addition of the largest trees, reaching an average of 50% ± 27% for the 30 largest trees (~5% of stems) 265 

and 78% ± 36% for the 100 largest trees (~24% of the stems; Figure 5). The largest 10 and 20 trees 266 

explained 81% and 87% of the variance in AGC (rRSEtop10 = 20%; rRSEtop20 = 16%), and 69 trees, 16.6% 267 

of stems, explained 95% of the variation on average (Appendix S2). The largest 20 trees in a plot 268 

explained different levels of variation in AGC depending on disturbance type (concession = 84%, 269 

primary = 81%, and secondary = 91%). Our Michaelis-Menten models similarly demonstrated that 270 

secondary forest accumulates AGC faster from large trees than primary and concession forest 271 

(Appendix S2).  272 

Thirty-five tree species (6.1% of identified species) made up 50% of total AGC. Species of large 273 

trees varied by ecosystem: Aucoumea klaineana (13-23% of large trees) is the most abundant species in 274 

coastal, central, and savanna forests, whereas Gilbertiodendron dewevrei, Scyphocephalium spp., 275 

Petersianthus macrocarpus and Maranthes glabra make up 18.6% of Congolian forest (Appendix S2).  276 

The composition of large tree species was generally the same across disturbance types, except 277 

secondary forest had significantly higher average numbers of Musanga cecropioides (16.5 stems vs. 3.5 278 

in concession and 1.1 in primary forest) and Aucoumea klaineana (19.2 stems vs. ~5.8 in concession 279 

and primary forest). Biomass hyperdominants included Aucoumea klaineana, Scyphocephalium mannii, 280 

Desbordia glaucescens, Pycnanthus angolensis, and Piptadeniastrum africanum. Aucoumea klaineana, 281 

which comprises 80% of Gabon’s timber exports (Lescuyer et al. 2011), represented 4.7% of total AGC 282 

and 9.1% of the AGC of large trees. Several of the ten most abundant large tree species are harvested 283 

for timber (Appendix S2). 284 
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Drivers of Large Trees and AGC 285 

 Using model averaging to evaluate the leading climatic, environmental, and human determinants 286 

of forest structure (AGC, number of large trees, and stand variables; Figure 6; Appendix S3), the 287 

independent variables most frequently retained in the top models included: distance from village, 288 

disturbance type, (5 response variables), ecosystem type (4 response variables), slope and 289 

precipitation (3 response variables). Human activity negatively affected stand variables. Apart from stem 290 

density, all stand variables had lower values in secondary than primary and concession forest and 291 

increased with distance from village. Annual precipitation positively affected most stand variables, but 292 

wood density decreased with precipitation. Mean wood density and basal area increased with slope, 293 

whereas tree height decreased with slope. Here we focus on AGC and large trees (see Supplementary 3 294 

for other response variables). 295 

Variation in site-level AGC across Gabon was explained by 29 equally likely models (mean R2 = 296 

0.346) and was most frequently positively correlated with distance from village and soil fertility (Figure 6, 297 

Table 3, Appendix S3). Secondary and savanna forests had significantly lower AGC than other 298 

disturbance and ecosystem types 299 

Variation in site-level number of large trees was explained by 51 equally likely models (mean R2 300 

= 0.508). The number of large trees was positively related to distance from village (Figure 6). The 301 

number of large trees was significantly lower in secondary forest (7.8 large trees ha-1) than concession 302 

(12.4 trees ha-1) and primary forest (10.5 trees ha-1). 303 

DISCUSSION 304 

National Assessment of AGC 305 

Gabon has one of the highest densities of aboveground forest carbon among forested nations 306 

(Saatchi et al. 2011), with a national average of 141.7 Mg C ha-1 [95% CI: 130.1, 153.3]. By 307 

comparison, mean AGC of the Democratic Republic of Congo (DRC), also from a systematic sampling of 308 

forests, is 113 ± 9 Mg C ha-1 (Xu et al. 2017). On average, the primary forests of Gabon have a carbon 309 

density (~150 Mg C ha−1) similar to the DRC and much higher than old growth forests in Amazonia and 310 

southeast Asia (Feldpausch et al. 2012; Lewis et al. 2013; Sullivan et al. 2017). Most of Gabon’s AGC is 311 

stored in large trees: trees ≥50 cm DBH account for 6.6% of stems and 51.3% of AGC and trees ≥70 cm 312 

DBH account for 2.3% of trees and 30.6% of AGC. Here, we also establish baseline estimates of old 313 

growth (166.6 Mg C ha-1), concession (171.3 Mg C ha-1), and secondary (96.6 Mg C ha-1) forests (Table 314 

1). Note that mean AGC and AGC in primary terra firma, closed canopy forest (168.6 Mg C ha-1; 95% CI 315 

[151.1, 186.1]) in Gabon are significantly lower than values reported for African humid tropical forests 316 
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from research plots (202 Mg C ha-1; Lewis et al. 2013a). This difference is likely attributable to the NRI’s 317 

probabilistic sampling design (Fig. 1) that captures a combination of intact and partially disturbed 318 

forests, unlike research plots concentrated in undisturbed, old growth forest (e.g. Xu et al. 2017).  319 

Despite being one of the world’s most forested countries, with a very low population density and 320 

deforestation rate, in Gabon human activities are the dominant drivers of variation in AGC and numbers 321 

of large trees. Of environmental variables, only soil fertility positively influenced AGC and no variables 322 

strongly affected numbers of large trees; whereas climate and soils contributed importantly to variation 323 

in mean basal area, tree height, wood density, and stem density. In many tropical countries, tackling 324 

climate change by reducing carbon emissions depends on working at the deforestation front and 325 

promoting reforestation. In Gabon, conservation of its stable, majestic forests ought to be a priority, while 326 

also carefully managing high carbon, degraded forests and promoting regeneration of secondary 327 

forests. Protecting forests that are not already significantly disturbed and that contain abundant large 328 

trees can conserve carbon, biodiversity, and ecosystem services (Funk et al. 2019).  329 

 Gabon’s NRI is one of the most rigorous national inventories of tropical forest to date. The 330 

inventory employs internationally recognized data collection methods, relatively large plots to increase 331 

precision (Chave et al. 2004), and samples forest and disturbance types relative to their representation 332 

while avoiding the ‘majestic forest’ bias. With funding from the Central African Forest Initiative (CAFI), 333 

additional sites are being added to the NRI and the sampling sites reported here are being remeasured 334 

to monitor carbon dynamics over time. The NRI data are important nationally and regionally for reporting 335 

on greenhouse gas emissions. Nations that are parties to the United Nations Framework Convention on 336 

Climate Change (UNFCCC) must report on emissions and removals for climate change mitigation efforts, 337 

and the reducing emissions from deforestation and forest degradation (REDD+) policy framework will 338 

require establishment of reference emission levels for comparison against future emissions measured by 339 

a monitoring, reporting and verification system (MRV). With limited forest monitoring in the tropics, many 340 

countries rely on default values in IPCC guidelines (IPCC 2006) to estimate emissions, rather than 341 

country-specific data (Tier 2) or higher-level methods like repeated measurements of permanent plots 342 

(Tier 3). Gabon’s NRI is on track to achieve Tier 3 reporting and contribute to improving IPCC default 343 

rates (Suarez et al. 2019). By making its data openly accessible, Gabon could advance the development 344 

of regional and global policies to fight climate change.  345 

Importance of Large Trees to AGC 346 

In Gabon, like other tropical forests, large trees are the major constituents of live AGC. Intact 347 

African forests are characterized by their large trees (Feldpausch et al. 2012; Lewis et al. 2013), and we 348 
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found the largest 5% of trees store 50% of AGC on average similar to Central Africa in general (Bastin et 349 

al. 2015). However, the proportional contribution of large trees to AGC varied with disturbance type: 350 

secondary forest, with a lower average AGC, accumulates AGC at a faster rate from large trees than 351 

primary and concession forest. Loss of the largest trees drastically changes forest structure and 352 

diameter distributions; thus understanding the relative importance of large trees to AGC in different 353 

forest types could help characterize forest degradation, which accounts for a large fraction of carbon 354 

loss worldwide (Pan et al. 2013). Large tree biomass in Gabon is also correlated with high densities of 355 

coarse woody debris (Carlson et al. 2017) and large liana biomass (Poulsen et al. 2017); thus, the loss of 356 

large trees could affect multiple pools of carbon.  357 

Large trees are typically defined as having diameters ≥70 cm, but Meyer et al. (2018) 358 

determined that a threshold of >50 cm DBH was more reliable for quantifying the number and 359 

distribution of large trees in old-growth Neotropical forests. Rethinking the definition of large trees could 360 

have several advantages. First, defining only 2.3% of stems as ‘large’ seems extreme. In Gabon, trees 361 

≥50 cm make up 6.6% of all stems and 51.3% of AGC – still a small proportion of trees but ~20% more in 362 

measured AGC. If ‘large trees’ were protected by law in industrial agricultural fields, for example, more 363 

carbon could be preserved with the conservation of only 4.3% more stems. Second, in our study, basal 364 

area and tree height explain AGC; therefore, relaxing the definition of ‘large’ might capture some smaller 365 

diameter, tall trees that contribute to AGC. Third, in Gabon selective logging starts at a minimum cutting 366 

diameter of 40 cm for Diospyros crassiflora, with minimum harvest diameters of 60-90 cm for 60 species 367 

and 70 cm for all others (Ministère des eaux et forêts 2014). Accounting for large trees of ≥50 cm DBH 368 

would more thoroughly capture the effects of logging.  369 

Drivers of Large Trees and AGC 370 

Precipitation, soil types and ecosystems vary spatially across Gabon, yet our results indicate 371 

that anthropogenic disturbance (disturbance type and distance from villages) is the primary driver of 372 

numbers of large trees and AGC and strongly influences other stand variables (Figure 6). Soil fertility 373 

was the only environmental variable to influence AGC. Like previous studies, stand variables including 374 

number of large trees, basal area and tree height explained most of the variation in plot-level AGC. 375 

Interestingly, basal-area weighted wood density also explained a relatively high level of variation in AGC 376 

compared to other studies (Lewis et al. 2013; Bastin et al. 2018). Florist species composition may, 377 

therefore, be an important factor influencing AGC in Gabon. Wood density was marginally correlated 378 

with distance from villages (r = 0.184, df = 102, p = 0.06), suggesting a floristic gradient of pioneer to 379 

old-growth species explained by distance from the road network. 380 

Page 12 of 49Global Ecology and Biogeography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

13 
 

Although environmental variables exerted weak control over large trees and AGC, climate, soil, 381 

and topography influenced stand variables that explain most of the spatial variation in AGC. 382 

Environmental variables can strongly affect stand variables while explaining little overall variation in AGC 383 

because they covary negatively in their responses to climate, soils, and topography (Baraloto et al. 384 

2011). In fact, the environmental variables considered here often differentially affected forest stand 385 

variables. For example, basal area and number of trees increased with slope, whereas tree heights 386 

declined (Figure 6). Because stand variables are components of AGC, identifying the drivers of 387 

individual stand variables is important for understanding the mechanisms of temporal-spatial variation in 388 

AGC (Bastin et al. 2018).  389 

In Gabon, secondary forests have significantly lower carbon stocks than primary forests, but 390 

with an average of 96.6 Mg C ha-1, they are on the high side of AGC estimates from other tropical 391 

countries like Costa Rica (82.2 Mg C ha-1) and Sierra Leone, where old fallows with residual trees have 392 

80 Mg C ha-1 (Fonseca et al. 2011; Cuni Sanchez & Lindsell 2017). In Cameroon, forest fallows contain 393 

50% of the carbon stocks of an old-growth forest (Njomgang et al. 2011), whereas in Gabon they hold 394 

63%. Gabon’s secondary forests have important conservation value because of their relatively high 395 

carbon stocks, as well as for their carbon sequestration potential: secondary forests can uptake carbon 396 

11 times as fast as old growth forests (Poorter et al. 2016).  397 

Regeneration of secondary and disturbed forests to their natural state can sequester more 398 

carbon than agroforestry and plantations (Lewis et al. 2019); thus, highly forested, developing countries 399 

like Gabon must carefully balance development and climate change mitigation. In the Congo Basin, 400 

small-scale, nonmechanized forest clearing for agriculture doubled between 2000 and 2014 (Tyukavina 401 

et al. 2018). Although this type of slash-and-burn farming contributes less to forest clearing in Gabon 402 

than other countries, it undoubtedly explains increasing AGC with distance from villages. Slash-and-burn 403 

farming converts forest to fields every 3-5 years to maintain productivity. Reducing the expansion of 404 

secondary forest, therefore, will require crops with longer rotation times, application of expensive 405 

fertilizers, or a transition to high intensity agriculture. Currently, industrial production of oil palm and 406 

rubber makes up just 0.8% of the land area in Gabon (Tyukavina et al. 2018), but this is projected to 407 

increase as the Congo Basin goes through a new wave of agroindustry development (Feintrenie 2014; 408 

Austin et al. 2017). Most secondary forests in Gabon surpass the carbon threshold (75 Mg C ha-1) above 409 

which the High Carbon Stock approach discourages development (HCS Technical Committee 2015), 410 

indicating that plantation siting must consider AGC, and offsets or other measures may be required to 411 

mitigate planned deforestation (Burton et al. 2017).  412 
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Selective logging, Gabon’s primary land use activity, constitutes 61.6% of forest loss (Tyukavina 413 

et al. 2018). Concession forest contains slightly higher AGC than primary forest even though significant 414 

carbon losses follow conventional and reduced impact logging (Medjibe et al. 2013). Excluding 415 

savanna, swamps and flooded forests, where logging would not occur, primary forests store 166.6 Mg C 416 

ha-1 on average, nearly the same as concession forest (171.3 Mg C ha-1). High AGC in concession 417 

forests is likely a result of grouping all sites that occurred in timber concessions together, whether they 418 

had been logged or not, or possibly by landscape-level high grading, where forests with the largest 419 

trees are selected for timber harvest. Low harvest intensity in Central Africa, rarely exceeding 10-13 m3 420 

per hectare or 4-8% of standing timber volume (Karsenty 2016), might also allow logged forests to 421 

recover rapidly (Rutishauser et al. 2015). If our results hold up under additional study, they argue for 422 

including sustainable forestry in programs like REDD+.  423 

Protected areas worldwide store 15.2% of global terrestrial carbon stocks and reduce carbon 424 

emissions (Bebber & Butt 2017). Gabon’s national parks and reserves, 18.4% of the country’s landmass, 425 

store significantly higher densities of AGC than forests outside of parks. The 49,256 km2 of forested 426 

lands in parks and reserves store approximately 0.84 Gt C or 25.4% of AGC. Gabon’s protected areas, 427 

therefore, are an important component of its climate mitigation strategy. At the same time, most 428 

terrestrial carbon (2.47 Gt C) lies outside of protected areas and requires concerted management as the 429 

government grows its agricultural sector (Austin et al. 2017). Two areas of high carbon density occur 430 

along the southwestern coast and in the northeastern part of the country. Both areas include parks 431 

separated by logging concessions. With careful management, these concessions could contribute to 432 

Gabon’s timber industry, capture carbon through forest regrowth, and conserve biodiversity. 433 
Conclusion 434 

 Based on a rigorous national inventory of forestlands in Gabon, we demonstrate that Central 435 

African forests can hold high densities of AGC in secondary and concession forests, as well as old-436 

growth forests. Combatting climate change, therefore, will require a combined approach that includes 437 

measures for conserving, managing, and regenerating tropical forests. The international community 438 

proposes to pay developing nations to reduce greenhouse gas emissions from deforestation and forest 439 

degradation (REDD+). Additional policies will be necessary. Agricultural development or other activities 440 

that necessitate deforestation should only occur in secondary forests with low AGC. Importantly, 441 

international mechanisms should also include provisions for promoting the permanence of stable, intact 442 

old growth forests like those in Gabon (Funk et al. 2019). Similar attention should be given to logging 443 

concessions in carbon dense forests that represent a large proportion of remaining Central African 444 
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forests. Protecting forests that are not already significantly disturbed will require considerable 445 

international financial assistance to promote low emissions development and policies such as country-446 

wide forest certification. The preservation of the world’s large primary forests will conserve carbon, 447 

biodiversity, and ecosystem services now, and avoid the rush to save the remnants of diminished, low 448 

carbon secondary forest later.  449 
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Table 1. Summary statistics of Gabon’s NRI, including sites consisting of one 1-ha plot and four 0.16-ha 620 

satellite plots (see Methods, 16 sites have fewer than four satellite plots) and 1-ha plots for comparison 621 

with other studies. AGC is calculated with Chave et al.’s (2014) pantropical equation, except Gabon* is 622 

calculated using the Gabon-specific equation that estimated AGC as 26% lower (range = 6.2-48.3%).  623 

Variable NRI Sites 

Mean ha-1 [95% CI] 

NRI 1-ha Plots 

Mean ha-1 [95% CI] 

No. sites 104 104 

Area, ha 164.3 104 

No. plots by size, ha 377 0.16-ha, 104 1-ha 104 1-ha 

No. trees ha-1 407.5 [387.7, 427.2] 415.8 [393.6, 438.0] 

DBH (D), cm 23.3 [22.8, 23.8] 23.5 [22.9, 24.1] 

DBH max, cm 125.2 [118.3, 132.1] 117.6 [111.2, 123.9] 

Wood density (ρ), g cm3 0.628 [0.612, 0.644] 0.630 [0.613, 0.647] 

Height (H), m 20.4 [19.4, 21.5] 20.5 [19.5, 21.6] 

Height max, m 39.7 [37.9, 41.4] 38.9 [37.2, 40.7] 

BA, m2 ha-1 25.3 [23.8, 26.7] 26.0 [24.5, 27.6] 

Aboveground carbon, Mg ha 1  

Gabon 141.7 [130.1, 153.3] 146.4 [133.6, 159.3] 

Gabon* 112.3 [103.1, 121.6] 116.1 [105.9, 126.3] 

Primary forest (n = 43) 151.9 [134.8, 169.0] 156.6 [138.1, 175.2] 

Primary, terra firma forest (n = 27) 166.6 [150.2, 183.1] 168.6 [151.1, 186.1]  

Concession forest (n = 31) 171.3 [154.8, 187.7] 178.5 [158.5, 198.4] 

Secondary forest (n = 30) 96.6 [77.0, 116.2] 98.7 [77.3, 120.0] 

Parks/reserves (n = 21) 170.9 [139.3, 202.4] 174.7 [140.1, 209.4] 

Non-park/reserve forests (n = 83) 134.3 [122.3, 146.4] 139.3 [125.8, 152.7] 

Central forest (n = 51) 144.9 [130.9, 159.0] 148.6 [132.4, 164.7] 

Coastal forest (n = 29) 152.8 [126.2, 179.3] 157.7 [127.9, 187.4] 

Northeast forest (n = 15) 155.1 [132.3, 178.0] 161.9 [137.1, 186.7] 

Savanna forest (n = 9) 65.6 [23.5, 107.7] 72.1 [28.2, 116.1] 

   
 624 
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Figure 1. (a) Map of Gabon (grey polygon) within Africa. (b) Map of national roads (yellow lines) and 625 

national parks and presidential reserves (black polygons). (c) Map of Gabon overlain with a 50 x 50 km 626 

grid, showing the systematic, random location of forest plots (black symbols). (d) Map of Gabon with 627 

major ecosystems (yellow = coastal forest, blue = central forest, brown = northeastern forest, red = 628 

savanna). (e) Location of plot sites, colored by disturbance type (yellow = primary forest, blue = 629 

concession forest, red = secondary forest). 630 
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Figure 2. Aboveground carbon for 104 NRI sites plotted against (a) mean basal area (F1,102 = 232.8, p < 634 

0.001, R2 = 0.692); (b) tree height (F1,102 = 115, p < 0.001, R2 = 0.525);  (c) wood mass density (F1,102 = 635 

74.04, p < 0.001, R2 = 0.415), (d) stem density (F1,102 = 11.48, p = 0.001, R2 = 0.092), (e) total AGC of 636 

large trees at the site (F2,101 = 138.6, p < 0.001, R2 = 0.728); and (f) number of large trees (F1,101 = 132.8, 637 

p < 0.001, R2 = 0.561). Black lines represent the best-fit regression line for all disturbance types with 638 

their 95% confidence intervals (shading), and colored lines are slopes from analyses of covariance 639 

testing the interaction between disturbance type (yellow = primary, blue = concession, red = secondary) 640 

and stand variables on AGC.  641 
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Figure 2: Aboveground carbon plotted against (a) basal area (F1,102 = 232.8, p < 0.001, R
2

= 0.695); (b) tree

height (F1,102 = 115, p < 0.001, R
2

= 0.53); (c) basal area weighted wood mass density (F1,102 = 74.04, p <

0.001, R
2

= 0.421), (d) stem density (F1,102 = 11.5, p = 0.01, R
2

= 0.101), and (e) number of big trees

(F1,102 = 133, p < 0.001, R
2

= 0.561) for the 104 NRI plots. Lines represent the best-fit regression line with

their 95% confidence intervals (shading).
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 644 

 645 
 646 

Figure 3. AGC of NRI sites by (a) Disturbance type: plots in secondary forest have significantly lower 647 

AGC than primary and concession forest (F2,101 = 16.5, p < 0.001); (b) Ecosystem: plots in savanna hold 648 

significantly lower AGC than all other ecosystem types (F3,100 = 8.0, p < 0.001); (c) Forest type: highland 649 

plots contain significantly higher AGC than swamps and flooded forests (F3,97 = 4.04, p = 0.009), and (d) 650 

Management: plots in protected areas contain significantly higher AGC than areas with no management 651 

(F = 2.14,99, p = 0.0865), and plots in protected and reserve areas contain significantly higher AGC than 652 

other management types (F = 6.471,102, p = 0.0125). The number to the right of each boxplot is the 653 

proportion of all sites belonging to that category (e.g. 30% of sites were in concession forests). 654 
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Figure 5: AGC of NRI sites by (a) Disturbance type: plots in secondary forest have significantly lower

AGC than primary and concession forest (F2,101 = 16.5, p < 0.001); (b) Ecosystem: plots in savanna hold

signicantly lower AGC than all other ecosystem types (F3,100 = 8.0, p < 0.001); (c) Forest type: highland

plots contain significantly higher AGC than swamps and flooded forests (F3,97 = 4.04, p = 0.009), and (d)

Management: plots in protected areas contain significantly higher AGC than areas with no management

(F4,99 = 2.1, p = 0.087). Bu�er signifies 5 km bu�er zones around national parks; hunting signifies designated

hunting reserves; none means there is no formal management; protected refers to national parks, presidential

reserves and arboretums; and, reserve represents Ramsar sites that have lower levels of protection compared

to national parks. The number to the right of each boxplot indicates the proportion of all sites belong to that

category (e.g. 30% of sites were situated in concession forests).
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Figure 4. Extrapolation maps showing the predicted distribution of (a) aboveground carbon, Mg ha-1; (b) 657 

mean basal area, m2 ha-1; (c) tree height, m; (d) wood density, g cm-3; (e) numbers of stems, ha-1; and, 658 

(f) numbers of large trees (stems ≥70 cm DBH) in field plots across Gabon. The color scale for each 659 

map is mean-centered so that white areas are average, shades of orange are above and shades of 660 

purple are below average. Forests with high carbon and tall trees occur largely along the coast and 661 

northeastern section of Gabon. Forests with high numbers of large trees also occur in the northeast, 662 

which was opened up relatively late to industrial logging, agriculture, and mining compared to the 663 

western and southern sections of the country. Gabon’s high carbon forests are also relatively isolated 664 

from the national road network along which most villages lie (Figure 1).  665 
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Figure 5. (a) The mean proportion of total AGC represented by the cumulative addition of the largest 668 

trees. Black dashed line shows all data; colored lines depict each disturbance type (yellow = primary 669 

forest, blue = concession forest, red = secondary forest). (inset) AGC of the largest trees versus the total 670 

AGC of 1-ha plots for each disturbance type and all disturbance types combined (black dashed line). 671 

(b) Fits of models predicting variation in total AGC explained by the cumulative addition of large trees: 672 

different forest types have different accumulation curves. 673 
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Figure 3: (a) Accumulation of carbon of the 20 largest trees in 104 plots in Gabon. Black dashed line shows
all data; colored lines depict each forest type (yellow = primary forest, blue = logged forest, red = secondary
forest). (inset) AGC of the largest trees versus the total AGC of 1-ha plots for each forest type and all forest
types combined (black dashed line). (b) Fits of models predicting variation in total AGC explained by the
cumulative addition of large trees. Forest types have di�erent accumulation curves.

2

Page 27 of 49 Global Ecology and Biogeography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

28 
 

Figure 6. Relative effects of independent variables on stand variables, including (a) AGC, Mg ha-1; (b) 676 

basal area, m2 ha-1; (c) tree height, m; (d) wood density g cm-3; (e) number of trees ha-1; and, (f) number 677 

of large trees ha-1. The size of the symbols represents model support for the effects. The position of the 678 

symbols on the x-axis represents the relative effect size of the standardized coefficients, calculated as 679 

𝐸!"#,% = 𝐸% ∑𝐸%⁄ . Independent variables include distance from villages (Vill), slope (Slope), soil fertility 680 

(Sfert), soil drainage (Sdrain), soil depth (Sdepth), savanna (Savanna), seasonality of precipitation 681 

(Pseas), total annual precipitation (Precip), precipitation in the driest quarter (Pdryq), longitude (Lon), 682 

latitude (Lat), secondary forest (DT-Sec), and elevation (Elev). Here we present independent variables 683 

with model support of 0.60 and higher (see Appendix S3 for all independent variables).  684 
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Appendix S1

Here we provide additional information on the distribution of AGC, numbers of large trees, and stand-level
variables (basal area, wood density, tree height, stem density) in Gabon based on 104 NRI sites (Fig. S1.1,
S1.2) and broken down by disturbance type (Fig. S1.3, S1.4). AGC per site varies by disturbance, ecosystem,
habitat, and management (Fig. S1.5). We also demonstrate the relationship between AGC and the other
stand variables (Fig. S1.6).

To verify our calculations of AGC, after completing our analyses (Methods, Calculation of AGC), we used the
R package, BIOMASS, to re-analyze the data (Réjou-Méchain et al. 2017). BIOMASS assigns wood density
values to trees, builds a local D:H allometry from five potential models, and propagates errors associated
with diameter and wood density measurements, tree height predictions, and the allometric model. Results for
plot-level AGC from our approach and the BIOMASS package were very similar (RMSE = 12.96).
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Figure S1.1. Number of trees (No. of trees) by stand characteristics, including: (a) stem density (ha-1) over
DBH (cm) classes (error bars are standard errors); (b) distribution of basal area-weighted wood density (g
cm-3) of all trees; (c) distribution of heights (m) of trees with field-based tree height measurements; and, (d)
distribution of tree AGC (Mg).
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Figure S1.2. Proportion of all NRI sites (Prop. of sites) by stand characteristics, including: (a) mean stem
density (stems ha-1); (b) mean tree height (m ha-1) of trees with field-based tree height measurements; (c)
mean basal area-weighted wood density (g cm-3 ha-1); and, (d) AGC at the site-level (Mg ha-1).
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Figure S1.3. Mean stem densities (ha-1) over the range of DBH (cm) classes (error bars are standard errors)
for each disturbance type.

4

Page 32 of 49Global Ecology and Biogeography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
0.00

0.05

0.10

0.15

0.20

0.2 0.4 0.6 0.8 1.0
Wood densityba, g cm−3

Pr
op

. o
f t

re
es

a

0.00

0.05

0.10

0.15

0.20

0.2 0.4 0.6 0.8 1.0
Wood densityba, g cm−3

Pr
op

. o
f t

re
es

b

0.00

0.05

0.10

0.15

0.20

0.2 0.4 0.6 0.8 1.0
Wood densityba, g cm−3

Pr
op

. o
f t

re
es

c

0.00

0.05

0.10

0.15

0 10 20 30 40 50 60 70
Tree height, m

Pr
op

. o
f t

re
es

d

0.00

0.05

0.10

0.15

0 10 20 30 40 50 60 70
Tree height, m

Pr
op

. o
f t

re
es

e

0.00

0.05

0.10

0.15

0 10 20 30 40 50 60 70
Tree height, m

Pr
op

. o
f t

re
es

f

0.0

0.1

0.2

0.3

0.4

0 100 200 300 400
AGC, Mg ha−1

Pr
op

. o
f s

ite
s

g

0.0

0.1

0.2

0.3

0 100 200 300 400
AGC, Mg ha−1

Pr
op

. o
f s

ite
s

h

0.0

0.1

0.2

0.3

0 100 200 300 400
AGC, Mg ha−1

Pr
op

. o
f s

ite
s

i

Figure S1.4. Proportion of trees (Prop. of trees) in NRI sites by stand characteristics and disturbance
type, including: (a-c) distribution of heights (m) of trees with field-based tree height measurements; (d-f)
distribution of wood density (g cm-3) of all trees; and, (g-i) distribution of AGC at the site-level (Mg ha-1).
Colors represent disturbance types (yellow = primary, blue = concession, and red = secondary).
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Figure S1.5. Aboveground carbon plotted against (a) basal area (F1,102 = 232.8, p < 0.001, R2 = 0.695);
(b) tree height (F1,102 = 115, p < 0.001, R2 = 0.53); (c) basal area weighted wood mass density (F1,102 =
74.04, p < 0.001, R2 = 0.421), (d) stem density (F1,102 = 11.5, p = 0.01, R2 = 0.101), and (e) number of big
trees (F1,102 = 133, p < 0.001, R2 = 0.561) for the 104 NRI plots. Lines represent the best-fit regression line
with their 95% confidence intervals (shading).
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Appendix S2

Here we provide additional information related to large trees and di�erences among disturbance types. Most
of the AGC in Gabon’s forests is concentrated in a small number of large trees (Fig. S2.6).
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Figure S2.6. The mean number of trees per plot by diameter class. Error bars are standard deviations.

Species Primary Forest Concession Forest Secondary Forest
Santiria trimera 18.90 19.10 18.30
Dichostemma glaucescens 16.60 9.60 14.90
Plagiostyles africana 12.90 14.60 15.40
Coelocaryon preussii 7.70 6.80 10.50
Diospyros sp. 7.00 13.00 9.40
Coula edulis 6.50 6.90 3.90
Aucoumea klaineana 5.80 5.70 19.20
Raphia sp. 5.70 0.00 0.00
Cola sp. 5.50 4.20 2.20
Strombosiopsis tetrandra 5.40 7.60 2.00
Heisteria parvifolia 4.50 6.20 3.10
Pentaclethra eetveldeana 4.20 6.00 6.30
Scyphocephalium ochocoa 3.90 6.90 4.50
Garcinia sp. 3.70 6.80 1.20
Staudtia gabonensis 2.80 4.00 5.10
Musanga cecropioides 1.10 3.50 16.50
Nauclea sp. 0.70 3.20 7.20

Table S2.1. Ten most abundant species for each disturbance type. Values are average number of stems ha-1.
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Species Central Forest Coastal Forest Congolian Forest Savannah Forest
Aucoumea klaineana 1.50 2.20 0.00 1.30
Scyphocephalium ochocoa 1.20 0.10 0.30 0.00
Desbordesia glaucescens 0.40 0.60 0.00 0.00
Dacryodes buettneri 0.30 0.20 0.20 0.20
Pycnanthus angolensis 0.30 0.10 0.30 0.50
Pterocarpus soyauxii 0.30 0.20 0.10 0.00
Sinderopsis letestui 0.30 0.10 0.00 0.00
Paraberlinia bifoliolata 0.30 0.00 0.00 0.00
Dialium pachyphyllum 0.20 0.00 0.10 0.00
Piptadeniastrum africanum 0.20 0.40 0.30 0.30
Celtis tessmannii 0.20 0.10 0.00 0.80
Scyphocephalium mannii 0.10 0.10 0.40 0.00
Pentaclethra macrophylla 0.10 0.10 0.30 0.20
Odyendyea gabonensis 0.10 0.40 0.10 0.20
Petersianthus macrocarpus 0.10 0.00 0.30 0.00
Cylicodiscus gabunensis 0.10 0.00 0.30 0.00
Erythrophleum ivorense 0.10 0.10 0.30 0.20
Mytragyna ciliata 0.00 0.20 0.20 0.20
Maranthes glabra 0.00 0.00 0.30 0.00
Gilbertiodendron dewevrei 0.00 0.00 0.50 0.00
Sacoglottis gabonensis 0.00 0.40 0.00 1.00
Rhizophora mangle 0.00 0.20 0.00 0.00
Guibourtia pelleriniana 0.00 0.20 0.00 0.00
Ceiba pentandra 0.00 0.00 0.10 0.30
Sterculia tragacantha 0.00 0.00 0.00 0.30

Table S2.2. Ten most abundant species of large trees for each ecosystem type. Values are average number of
stems ha-1.

Species Primary Forest Concession Forest Secondary Forest
Aucoumea klaineana 1.45 1.55 1.40
Scyphocephalium ochocoa 0.52 0.84 0.72
Sacoglottis gabonensis 0.42 0.03 0.00
Sinderopsis letestui 0.35 0.06 0.00
Odyendyea gabonensis 0.30 0.19 0.04
Piptadeniastrum africanum 0.25 0.39 0.16
Scyphocephalium mannii 0.25 0.10 0.08
Gilbertiodendron dewevrei 0.22 0.00 0.00
Erythrophleum ivorense 0.20 0.10 0.04
Petersianthus macrocarpus 0.20 0.03 0.08
Pycnanthus angolensis 0.18 0.45 0.20
Pterocarpus soyauxii 0.18 0.32 0.12
Desbordesia glaucescens 0.15 0.84 0.16
Dacryodes buettneri 0.15 0.42 0.24
Celtis tessmannii 0.12 0.23 0.20
Staudtia gabonensis 0.08 0.03 0.16
Distemonanthus benthamianus 0.05 0.26 0.12
Paraberlinia bifoliolata 0.02 0.00 0.48

Table S2.3. Ten most abundant species of large trees for each disturbance type. Values are average number
of large stems ha-1.
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Figure S2.7. Distributions of (a) tree AGC (Mg), (b) basal area (m2), and (c) tree heights (m) highlighting
tree diameters Ø 50 cm (yellow) and Ø 70 cm (grey).
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Figure S2.8. AGC of the largest trees versus the total AGC of 1-ha plots for each disturbance type and all
plots combined (black dashed line).
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N – — R2 RMSE rRSE N – — R2 RMSE rRSE
6 453.50 0.59 0.77 68281.00 0.22 28 44.20 0.74 0.89 45769.00 0.15
7 370.40 0.61 0.78 66457.00 0.21 29 41.90 0.75 0.90 45227.00 0.14
8 311.70 0.62 0.79 64901.00 0.21 30 39.90 0.75 0.90 44704.00 0.14
9 264.90 0.63 0.80 63238.00 0.20 31 37.90 0.76 0.90 44185.00 0.14

10 229.20 0.64 0.81 61791.00 0.20 32 36.00 0.76 0.90 43670.00 0.14
11 200.00 0.65 0.82 60421.00 0.19 33 34.20 0.76 0.91 43169.00 0.14
12 174.20 0.65 0.82 58996.00 0.19 34 32.60 0.77 0.91 42680.00 0.14
13 152.80 0.66 0.83 57619.00 0.18 35 31.10 0.77 0.91 42213.00 0.14
14 135.10 0.67 0.84 56420.00 0.18 36 29.80 0.77 0.91 41753.00 0.13
15 120.60 0.68 0.85 55301.00 0.18 37 28.50 0.77 0.91 41306.00 0.13
16 108.10 0.69 0.85 54258.00 0.17 38 27.30 0.78 0.92 40877.00 0.13
17 97.80 0.69 0.86 53315.00 0.17 39 26.10 0.78 0.92 40452.00 0.13
18 89.10 0.70 0.86 52439.00 0.17 40 25.10 0.78 0.92 40034.00 0.13
19 81.40 0.70 0.87 51574.00 0.17 41 24.00 0.79 0.92 39615.00 0.13
20 74.70 0.71 0.87 50739.00 0.16 42 23.10 0.79 0.92 39205.00 0.13
21 69.00 0.72 0.87 50004.00 0.16 43 22.20 0.79 0.92 38813.00 0.12
22 64.00 0.72 0.88 49325.00 0.16 44 21.40 0.79 0.93 38427.00 0.12
23 59.60 0.73 0.88 48672.00 0.16 45 20.60 0.80 0.93 38054.00 0.12
24 55.80 0.73 0.88 48041.00 0.15 46 19.90 0.80 0.93 37683.00 0.12
25 52.50 0.73 0.89 47461.00 0.15 47 19.20 0.80 0.93 37319.00 0.12
26 49.40 0.74 0.89 46893.00 0.15 48 18.50 0.80 0.93 36965.00 0.12
27 46.60 0.74 0.89 46318.00 0.15 49 17.90 0.81 0.93 36624.00 0.12

Table S2.4. Coe�cent values for the Bastin model using the entire dataset, including N , the number of
largest trees, –, —, R2, RMSE (root mean square error), and rRSE (relative root square error).

Model a b c AICc AICc Gabon
Logged 1.03 10.44 25.99 -3572.57 -2444.27
Primary 1.02 7.21 7.50 -3968.68 -2128.15
Secondary 1.01 2.78 6.50 -4117.54 -2363.09

Table S2.5. Comparison of model parameters and AICc scores among di�erent disturbance types and the
general Gabon model, with parameters a = 1.01, b = 4.78 and c = 9.03.
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Appendix S3

Here we provide additional information on the climatic, edaphic and anthropogenic variables that drive
spatial patterns of AGC and large trees in Gabon based on 104 1-ha NRI plots. Results of the principal
components analyses demonstrate our reductions of multiple climatic and edaphic variables to three linearly
uncorrelated variables (Tables S3.6 and S3.7). We also show the bivariate relationships among independent
variables and six response variables (AGC, basal area, wood density, tree height, stem density, and number of
big trees; Figures S3.11 - S3.16). Below we describe the e�ects of environmental and anthropogenic variables
on stand variables and provide the results of model averaging for AGC, numbers of large trees, and all stand
variables (basal area, tree height, wood density, stem density), showing the e�ects of independent variables as
coe�cients and standardized coe�cients (Table S3.8): these results make up Fig. 6 in the main text.

In Gabon’s forests, variation in basal area was most strongly influenced by savanna ecosystems and secondary
forests, both of which are characterized by having few large trees relative to other ecosystem and less disturbed
forest types. Basal area also decreased with annual precipitation. This result di�ers from previous reports
that basal area decreases proportionally to increases in dry season length due to water stress (Malhi et al.
2006; Baraloto et al. 2011). However, like Lewis et al. (2013), ever-wet forests tend to have lower AGC,
implying that excess rainfall either reduces net primary productivity or elevates mortality. Finally, basal area
also increased slightly on slopes, which might reflect a lower abundance of large trees in low-lying swamps
and streams or that large basal area provides better structural support on slopes.

Wood density increased with elevation, which controls soil chemistry and hydrology and can profoundly
influence forest structure (Jucker et al. 2018). Trees on ridges and at higher elevations could have higher
wood density as competition for nutrients and water favors species with life-history traits that maximize
survival rather than rapid growth (Werner and Homeier 2015). However, similar to Lewis et al. (Lewis et al.
2013), we also found that wood density increased with soil fertility contrary to predictions that competitive,
fast-growing species would dominate resource rich sites (Malhi et al. 2006; Gourlet-Fleury et al. 2011).
Annual precipitation negatively a�ected wood density, providing evidence to findings that wood density is
correlated with drought tolerance (Slik 2004). West African rainforest trees also demonstrated a positive
relationship between wood density and precipitation with high wood density possibly providing greater
structural stability and greater resistance against physical damage and pathogens in the shaded understory
(Maharjan et al. 2011).

Tree height tended to be negatively a�ected by slope and especially by seasonality of precipitation. The
decline of tree height with slope is consistent with empirical evidence highlighting strong shifts in carbon
allocation strategies and crown architecture of trees as soil nutrients and water availability become limiting
(Jucker et al. 2018). Soil mineral layers on slopes are likely to be thinner, more waterlogged and generally
less favorable for root development (Quesada et al. 2012), providing little mechanical support for tall trees.
Tall trees are at higher risk of falling or being blown over on slopes as wind speeds increase with altitude on
mountains and proximity to ridges (Woodward 1993). Lawton (1982) found that for a given tree height, trunk
diameter increases with proximity to the ridge-crest (which might also explain increasing basal area with
slope above). In terms of seasonality in precipitation, Feldpausch et al. (2012) found dry-season length was a
key factor influencing height-diameter relationships, with a longer dry season being associated with stouter
trees. Greater stem diameter relative to tree height may serve to increase overall rates of water transport due
to higher sapwood cross-sectional areas (Meinzer, Goldstein, and Andrade 2001).

Stem density was only weakly a�ected by environmental variables, increasing with slope, seasonality of
precipitation, and soil drainage and decreasing with annual precipitation and soil depth. Stem density likely
increases with slope because large trees are limited by soil, water, and mechanical support, opening space for
higher numbers of smaller trees. The e�ects of climate and soil are di�cult to explain. In contrast to our
results, previous studies in the Amazon and Borneo have found stem density to be negatively correlated with
seasonality and positively correlated with annual rainfall (Steege et al. 2013; Slik et al. 2010). In Borneo,
stem density decreased with soil depth like this study, but decreased with better drainage (Slik et al. 2010).
Environmental variables may have a weak e�ect on stem density; Lewis et al. (Lewis et al. 2013) suggested
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that stem density in African old-growth forests is largely an emergent property of a disturbance regime
favoring low stem turnover, long carbon residence times and high ACG.

Table S3.6. Principal components analysis (PCA) factor loadings for the three climate axes.

Factor Axis 1 Axis 2 Axis 3
Mean temp, °C -0.415 -0.2646 -0.2982
Mean temp, warmest quarter, °C -0.4379 -0.1506 -0.2885
Mean temp, coldest quarter, °C -0.3098 -0.5003 -0.299
Seasonality, temp, °C -0.331 0.4999 -0.0428
Annual precip, mm -0.2572 -0.2602 0.6147
Wettest quarter, mm -0.2992 -0.1892 0.5941
Driest quarter, mm 0.3571 -0.3788 0.0205
Seasonality, precip, mm -0.3838 0.4001 0.0738

Table S3.7. Principal components analysis (PCA) factor loadings for the three soil axes.

Factor Axis 1 Axis 2 Axis 3
Base saturation topsoil 0.286 0.29137 -0.28897
CEC clay topsoil 0.33891 0.14668 -0.23572
CEC soil topsoil 0.36488 -0.11283 -0.01124
Organic carbon topsoil 0.37075 -0.16115 -0.02905
Organic carbon subsoil 0.37343 -0.11922 -0.08309
pH topsoil 0.23151 0.42438 -0.00676
Textural class topsoil 0.22994 0.01152 0.4899
Textural class subsoil 0.12939 0.07326 0.3153
Soil drainage 0.11046 -0.18725 0.54331
E�ective soil depth 0.00316 0.50481 0.05653
Easy available water -0.08545 0.49298 0.18522
Nitrogen topsoil 0.32568 -0.20491 0.16721
C:N ratio topsoil 0.0887 -0.24602 -0.39054
Soil production index 0.36966 0.14011 -0.02062
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Figure S3.9. Bivariate plots of AGC versus (a) temperature, top (annual mean temperature, temperature
in warmest quarter, temperature in coldest quarter, standard deviation (SD) of temperature); (b) rainfall,
second row (annual rainfall, rainfall in wettest quarter, rainfall in driest quarter, coe�cient of variation (CV)
of rainfall); (c) soil and elevation, third row (PC axis 1, PC axis 2, PC axis 3, elevation); (d) geography
and disturbance, bottom (latitude, longitude, distance from village, and forest type). Fit lines represent a
significant relationship, and shading is the 95% CI around the line.
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Figure S3.10. Bivariate plots of basal area versus (a) temperature, top (annual mean temperature, temperature
in warmest quarter, temperature in coldest quarter, standard deviation (SD) of temperature); (b) rainfall,
second row (annual rainfall, rainfall in wettest quarter, rainfall in driest quarter, coe�cient of variation (CV)
of rainfall); (c) soil and elevation, third row (PC axis 1, PC axis 2, PC axis 3, elevation); (d) geography
and disturbance, bottom (latitude, longitude, distance from village, and forest type). Fit lines represent a
significant relationship, and shading is the 95% CI around the line.
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Figure S3.11. Bivariate plots of basal area-weighted wood density versus (a) temperature, top (annual mean
temperature, temperature in warmest quarter, temperature in coldest quarter, standard deviation (SD) of
temperature); (b) rainfall, second row (annual rainfall, rainfall in wettest quarter, rainfall in driest quarter,
coe�cient of variation (CV) of rainfall); (c) soil and elevation, third row (PC axis 1, PC axis 2, PC axis
3, elevation); (d) geography and disturbance, bottom (latitude, longitude, distance from village, and forest
type). Fit lines represent a significant relationship, and shading is the 95% CI around the line.
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Figure S3.12. Bivariate plots of tree height versus (a) temperature, top (annual mean temperature, temperature
in warmest quarter, temperature in coldest quarter, standard deviation (SD) of temperature); (b) rainfall,
second row (annual rainfall, rainfall in wettest quarter, rainfall in driest quarter, coe�cient of variation (CV)
of rainfall); (c) soil and elevation, third row (PC axis 1, PC axis 2, PC axis 3, elevation); (d) geography
and disturbance, bottom (latitude, longitude, distance from village, and forest type). Fit lines represent a
significant relationship, and shading is the 95% CI around the line.
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Figure S3.13. Bivariate plots of stem density versus (a) temperature, top (annual mean temperature,
temperature in warmest quarter, temperature in coldest quarter, standard deviation (SD) of temperature);
(b) rainfall, second row (annual rainfall, rainfall in wettest quarter, rainfall in driest quarter, coe�cient of
variation (CV) of rainfall); (c) soil and elevation, third row (PC axis 1, PC axis 2, PC axis 3, elevation); (d)
geography and disturbance, bottom (latitude, longitude, distance from village, and forest type). Fit lines
represent a significant relationship, and shading is the 95% CI around the line.
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Figure S3.14. Bivariate plots of number of large trees (Ø 70 cm dbh) versus (a) temperature, top (annual
mean temperature, temperature in warmest quarter, temperature in coldest quarter, standard deviation (SD)
of temperature); (b) rainfall, second row (annual rainfall, rainfall in wettest quarter, rainfall in driest quarter,
coe�cient of variation (CV) of rainfall); (c) soil and elevation, third row (PC axis 1, PC axis 2, PC axis
3, elevation); (d) geography and disturbance, bottom (latitude, longitude, distance from village, and forest
type). Fit lines represent a significant relationship, and shading is the 95% CI around the line.
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Table S3.8. Results of model averaging for each of six response variables: aboveground carbon, mean basal
area, mean tree height, mean wood density, stem density, and number of big trees. For each response
variable, we provide the following: Var. is a list of abbreviations of independent variables in order of relative
importance; Coef. is the regression or GLM (big trees) coe�cient for the variable; S-Coef. is the standardized
coe�cient for the variable; and, Supp. is the relative support for each independent variable, quantified as the
proportion of models in which the variable occurred.

Aboveground carbon, Mg ha-1 Basal area, m2 ha-1 Tree height, m
Var. Coef. S-Coef. Supp. Var. Coef. S-Coef. Supp. Var. Coef. S-Coef. Supp.

1 DT-Sec -110.01 -106.46 1.00 Vill 2.06 1.87 0.98 DT-Sec -4.13 -4.10 1.00
2 Vill 50.40 45.00 1.00 DT-Sec -5.34 -5.10 0.84 Vill 1.35 1.08 1.00
3 Sfert 14.35 36.53 0.93 Precip -1.57 -1.95 0.79 Slope -0.32 -1.78 1.00
4 Savanna -134.19 -135.46 0.91 Slope 0.26 1.42 0.68 Pseas -1.40 -2.04 0.92
5 Pseas 16.92 22.31 0.50 Savanna -9.09 -9.08 0.65 Savanna -5.58 -5.54 0.83
6 Lat -8.14 -12.34 0.27 Sdepth -0.98 -1.64 0.57 Elev -0.01 -2.71 0.49
7 Sdepth -6.95 -11.34 0.18 Lat -1.85 -2.43 0.46 Sdrain -0.57 -0.78 0.47
8 Sdrain -3.72 -5.90 0.09 Pseas 0.92 1.13 0.21 Lat 1.35 2.00 0.46
9 Slope -0.94 -5.40 0.09 Sfert 0.29 0.75 0.13 Precip -0.87 -1.16 0.35

10 Elev 0.03 2.21 0.09 Pdryq 0.91 1.50 0.12 Lon -0.24 -0.17 0.33
11 Precip 3.06 4.33 0.08 Elev 0.01 1.10 0.12 Pdryq -0.59 -1.40 0.25
12 Pdryq -1.64 -3.11 0.08 Lon 0.20 0.23 0.09 Sdepth -0.33 -0.52 0.25
13 Lon -4.50 -7.36 0.07 Sdrain 0.03 0.14 0.09 Sfert 0.23 0.56 0.18

Wood densityba, g cm-3 Stem density, ha -1 Big trees, ha -1

Var. Coef. S-Coef. Supp. Var. Coef. S-Coef. Supp. Var. Coef. S-Coef. Supp.
1 Precip -0.04 -0.05 1.00 Precip -43.28 -54.42 1.00 DT-Sec -0.45 -0.43 0.88
2 Vill 0.06 0.06 1.00 Savanna -174.47 -174.49 1.00 Vill 0.13 0.13 0.71
3 Sfert 0.02 0.05 0.96 Lat -53.79 -72.43 1.00 Precip -0.06 -0.08 0.29
4 Elev 0.00 0.07 0.90 Slope 5.04 28.27 0.95 Savanna -0.65 -0.66 0.15
5 DT-Sec -0.09 -0.08 0.71 Sdrain 21.27 30.56 0.89 Sdrain -0.03 -0.04 0.13
6 Lon -0.03 -0.04 0.41 Sdepth -16.66 -28.90 0.84 Pdryq 0.04 0.08 0.11
7 Sdrain -0.02 -0.02 0.34 Pseas 29.54 39.51 0.69 Elev 0.00 0.01 0.11
8 Pdryq 0.00 0.01 0.22 Elev 0.18 38.50 0.40 Pseas 0.02 0.03 0.08
9 Lat 0.01 0.01 0.13 Lon 9.99 13.87 0.24 Sfert 0.01 0.04 0.08

10 Sdepth -0.00 -0.01 0.11 Pdryq -7.34 -15.11 0.19 Lon -0.01 -0.02 0.07
11 Pseas -0.01 -0.01 0.11 Sfert -4.66 -12.19 0.14 Sdepth -0.01 -0.01 0.07
12 Slope 0.00 0.00 0.08 Vill 2.58 2.65 0.09 Lat 0.01 0.02 0.07
13 Savanna -0.11 -0.11 0.04 DT-Sec 9.37 9.37 0.01 Slope 0.00 0.01 0.06
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