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A bstract

The problem of carry-over in cross-over trials has driven research activity for 

many decades. Depending on the assumptions made concerning carry-over effect 

in the 2x2 design, the GROS or the PAR estim ator is selected for estim ating 

treatm ent effect. The two stage procedure, selecting GROS with probability p 

and PAR with probability 1-p, achieves lower power and higher type I error-rate 

when compared to GROS. A corrected scheme, which achieves the nominal type 

I error-rate, proves inferior to alternative schemes regarding power and Mean 

Square Error Estim ation rate. When baseline measurements are included in the 

analysis of the 2x2 design, a three-stage procedure emerges with similar properties 

to the two-stage one.

The optim um  plan for designing a cross-over study in families with more than  two 

periods and /o r sequences, depends on the assumptions made for the carry-over 

effects and the optim ality criterion chosen. Best plans for two treatm ents, when 

model mis-specihcation occurs in both the systematic and /or random part of the 

model assumed to have generated the observed data, are derived. W hen three 

or more treatm ents are compared, optimum cyclic plans are chosen under a wide 

range of assumptions concerning carry-over activity.
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Chapter 1 

Introduction: Practical Issues in 

Cross-over Clinical Trials

1.1 P reliminar ies

In a cross-over study each patient acts as his own control by trying all available 

treatm ents. As in all other types of clinical studies, patients are followed-up for 

some pre-specified time period and data  are collected on them  at pre-defined time 

points within th a t period. In an ideal world all patients would join the study at 

the same calendar date and follow-up measurements would be taken at identical 

time points after the entry date. In addition for cross-over studies switches to 

alternative therapies should be scheduled at similar tim e windows for each pa­

tient. This is rarely the case though. Each patient has his own trial history. The 

entry date defines time zero for each patient. The interval between two consecu­

tive treatm ent periods, if it exists, constitutes the wash-out period for cross-over 

studies. At wash-out intervals, baseline and other background information is typ­

ically collected in order to assess patien t’s physical condition before entering the 

next treatm ent phase.

Occasions exist where there is no standard therapy on the market, and a clinical 

trial is set up in order to provide the population at risk with such therapy. In 

th a t case the control group will receive no active treatm ent, or equivalently they 

receive placebo. If the baseline characteristics of the active and the control group 

are similar at wash-out periods, then any statistically im portant difference be­
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tween the two groups during the next treatm ent phase can be a ttributed  to the 

effect of treatm ent under study. For ethical purposes all participants in a clinical 

study are on concomitant therapies prescribed by others (GP) and participants 

are usually advised to avoid certain medications th a t may prevent the treatm ent 

showing its effect. The way specific medications may interact with treatm ents 

under study in a cross-over trial, may generate research questions of interest to 

the medical community.

In what follows, reference will be made to a set of guidelines prepared during the 

International Conference on Harmonisation (ICH) of technical requirements for 

registration of pharmaceuticals for human use. These guidelines have been pre­

pared by the appropriate ICH working group and has been subject to consultation 

by the regulatory authorities.

1.2 Phases of drug development

A typical drug-development exercise involves several phases of clinical research 

before the drug hits the market. Much thought is devoted to the design of the 

various phases, since poorly designed and conducted trials can offer misleading 

findings, in sharp contrast with current scientific knowledge. The real purpose of 

well-planned trials is to influence clinical practice to an appreciable extent.

1.2.1 Phase I

This is the area in pharmaceutical research where cross-over designs enjoy wide 

applicability. Phase I studies help the scientific community to understand the 

biological activity of a test compound on the human body. A small number 

of volunteers receive the new therapy so th a t the dose-range expected to be 

studied in later phases can be determined (see ICH E8 guidelines). From the 

pharmacology point of view, unacceptable doses can lead to toxicity problems, 

which in turn cause adverse reactions. In some experiments compounds are tried 

on animals first and then the maximum animal tolerated dose is extrapolated 

to humans. The design adopted to determine the boundaries of toxicity are 

simple step-up/step-down schemes, i.e. a cross-over study with a special design.
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Patients s tart with a quite low dose which gradually increases until toxicity is 

observed. Modern Bayesian design theory can provide the experim enter with 

sampling schemes th a t if used properly, can allow the location of the maximum 

tolerable dose to be assessed accurately (see Atkinson [1] or Pilz [70]). Once the 

data  have been collected a dose response curve is fitted and then the maximum 

tolerable dose is determined by solving the dose-response equation w ith respect 

to dose for a given value of the response. There are other study-types in Phase 

I, where the cross-over design has been used successfully. Some are listed below:

• bio-availability studies where the level of drug absorbed by the body at 

various doses is considered

• bio-equivalence studies for the comparison of two formulations in term s of 

safety and efficacy

• pharmacokinetic (PK) studies, where drug absorption, d istribution and 

elimination around the body is the main concern

• pharmacodynamic (PD) studies, where the relationship between the drug 

concentration at the site of action with pharmacologic response, is eval­

uated. These studies are useful indicators for early determ ination of the 

safety and the efficacy profile of the compound under study (see ICH E8 

guidelines)

•  interaction studies, where the extent to which the PK profile of the drug 

under study is affected by the presence of other drugs is the focus of interest

•  safety studies, where maximum tolerable dose is established. Animal studies 

may be relevant to th a t type of clinical trial

Note tha t in a typical Phase I study no formal sample size evaluation takes place. 

The number of participants can vary from 12 up to 50 depending on resources 

and type of compound under study.

1.2.2 Phase II

Based on the phase I results, at phase II an initial assessment of drug effective­

ness, but also of drug safety is established. Usually, phase I studies provide the
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experimenter with a range of acceptable doses. If the dose adm inistered is lower 

than the lower limit of th a t range then the drug is completely ineffective, while 

doses beyond the upper limit may cause toxicity and increase the possibility of 

adverse events being present. Phase II studies offer the opportunity  to decide 

more accurately the dose(s) th a t are worth further atten tion  and might be stud­

ied in subsequent phases. This assessment can be carried-out using a cross-over 

experiment. The number of participants in th a t phase ranges from small to  mod­

erate.

A part from determining optimum dose for a specific compound, the sponsor is in 

a position to assess patien t’s responsiveness to com peting therapies or to make 

comparisons with baseline status (see ICH E8). In both  scenarios the use of cross­

over trial is appropriate. It is worth noting th a t the analysis variable(s) during 

th a t period, may not be the same as the analysis variable(s) in later phases. Also 

the study-population at th a t stage are selected by narrow criteria (see ICH E8), 

though the Phase II population may have different characteristics compared to 

population recruited in phase HI. This trial period is nothing more than  an ex­

ploratory phase, which gives the sponsor the opportunity  to determ ine clinical 

queries worth pursuing at later stages.

1.2.3 Phase III or Parallel versus Cross-over design

The knowledge accumulated from the two previous phases is used for the design 

of th a t phase, where the effectiveness of the new compound is firmly established, 

but in addition knowledge on safety is also collected, so th a t the role of the new 

therapy in clinical practice is fully evaluated. Usually phase HI involves long 

term  studies, since a deeper understanding of w hat affects recovery from the dis­

ease and of what disease complications the patient will suffer from, needs to be 

clarified. Obviously, phase HI studies need to be of sufficient size and follow-up 

measurements are taken at carefully selected tim e points, so th a t the therapeutic 

activity of the test compound is clearly dem onstrated. According to  ICH E8 

guidelines, a t phase HI sponsors may explore dose-response relationships, drug’s 

use in wider populations or drug’s effectiveness a t different states of disease. How 

appropriate are cross-over plans for running a Phase HI study? Since detailed
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evaluation of the new therapy requires long term  surveillance, cross-over plans 

where the test compound is observed at a large number of successive treatm ent 

periods may be appropriate. This type of cross-over design may prove problem­

atic though, especially if the alternative therapy is placebo. This is one reason 

for favoring parallel studies during th a t stage of drug development.

The preparation needed to set-up a phase III study is quite enormous. The in­

vestigators involved need to have minimal knowledge regarding the safety of the 

therapy and have the necessary infrastructure to  run the study. In addition, since 

phase III studies are usually of appreciable m agnitude and of high cost, sponsors 

should have convincing evidence of the therapy’s effectiveness to w arrant the ef­

fort and expenses involved. From a cost-benefit perspective, cross-over plans are 

economic solutions, since fewer participants will need to be recruited compared 

to a parallel group study, in order to detect a pre-defined treatm ent difference. 

Regulatory authorities on the other hand, require firm evidence of the new ther­

apy’s effectiveness based on data  derived from relatively large study populations, 

since this evidence is used for marketing approval (see ICH E8 document). So, 

from a regulator’s perspective a parallel group study is more appropriate for use 

in Phase III programs.

Furthermore, the timing of running the phase III study is crucial for the success 

of the medical program. If the standard therapy has been in use for many years 

and has been widely accepted as efficacious for some indications by the scientific 

community, then as long as a newly discovered therapy achieves a remarkable im­

provement on the same condition, the phase III study should commence as soon 

as possible. On the other hand, if ongoing research continuously improves the 

standard therapy, then by the time a long phase III program  ends, the proposed 

therapy will be outdated. It is under the second scenario th a t cross-over trials 

may be of some use to sponsors. If a quick comparison of the current standard 

therapy versus the new treatm ent is needed, then a cross-over trial with a lim­

ited number of participants can be set up to provide sponsors w ith the necessary 

answers.

In all phases of drug development a document th a t describes the objectives, de­

sign and procedures the investigator should follow during the course of the trial.

17



must be prepared. This document is the clinical protocol and defines a set of 

rules th a t facilitates communication between all working parties involved in the 

study. The protocol should be signed-oflP before recruitm ent s tarts  and only minor 

updates may be allowed while the study is ongoing. The protocol in any phase III 

study, usually contains information about the clinical study-background, clinical 

objectives, prim ary and secondary analysis variable(s), study populations, sam­

ple size assumptions, inclusion/ exclusion criteria, baseline exam ination, follow-up 

assessments, da ta  analysis strategies (interim, final, stopping rules) and any other 

information th a t affects the running of the study. The protocol of a cross-over 

study may look more complicated, since special preparations may need to be un­

dertaken during a wash-out interval before the patient enters the next treatm ent 

period. Finally note th a t for drug approval purposes, different studies are run 

with their own specific objectives. Each study’s objective is described in a sep­

arate protocol. During a FDA hearing meeting, a document th a t describes the 

common features of the studies as well as the contribution made by each study 

separately should be prepared (see ICH E9 guidelines).

In all clinical phases. Phase III included, the prim ary question the investigators 

are most interested in, should be defined. This question is usually stated  in a 

hypothesis testing format and is usually by taking measurements on the prim ary 

variable (endpoint). Based on these measurements inference is drawn for the 

population param eter of interest. As it is stated  in the ICH E9 guidelines the 

primary endpoint should be the variable capable of providing the m ost clinically 

relevant and convincing evidence directly related to the prim ary objective of the 

tr ia l . There may be secondary questions of a statistical ra ther than  a clinical na­

ture, closely related to the prim ary one. The secondary question(s) are tackled by 

collecting measurements on the secondary variables which are either supportive 

measurements related to the primary objective or measurements of effects related 

to the secondary objectives (ICH E9). A good example of a secondary question 

for a cross-over study might be the presence of carry-over, i.e. the persistence of 

the current treatm ent activity to subsequent treatm ent intervals. O ther examples 

from the same field concern presence of time trends with treatm ent, especially in 

multi-period cross-over designs. A typical example of a prim ary question drawn
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from parallel group trials, is the reduction in m ortality rate  caused by the new 

therapy. A secondary question of interest then might be how risk factors causing 

death differ between the competing therapies. A nother type of secondary ques­

tion, relevant to both  cross-over and parallel group trials, concerns treatm ent 

effectiveness across different sub-groups. Methodological issues arise if lots of 

statistical tests are performed on various sub-groups, since some of these tests 

will incorrectly show a statistically im portant treatm ent effect. This is the is­

sue of multiplicity, and is usually tackled by making appropriate adjustments 

(e.g. Bonferonni) a t the significance level the various tests are performed. Note 

th a t studying treatm ent effect across sub-groups is only appropriate when these 

sub-groups are adequately represented in the study population. The ICH E9 

guidelines suggest th a t in most trials sub-group analysis or a statistical model 

th a t include interactions should be exploratory and any conclusion of treatm ent 

efficacy based solely on sub-group analysis should be avoided.

Although the prim ary and secondary efficacy questions in phase III are clearly 

specified, the same does not hold for the safety aspect of the trial. Recall tha t 

safety information is usually collected at Phase II, where a cross-over design may 

be used. Additional safety information, like adverse events and other labora­

tory measurements are collected during Phase III under a parallel design scheme. 

Most of the compounds tested at phase III using a parallel study, have already 

dem onstrated safety during phase II using a cross-over study. This is a reason 

why safety comparisons are dealt less formally a t phase III. Although the efficacy 

part of any study is a well-control experiment, adverse events or other safety 

measurements are of an observational nature. Adverse events occur in an unpre­

dictable way, what causes them  is unknown and their relation to the treatm ent, 

if any, is often difficult to understand.

Different types of prim ary response variables may be encountered in practice. The 

most common one, met in parallel studies rather than  in cross-over ones, is the 

incidence of a specific event. The incidence of an event is a dichotomous variable, 

i.e. in statistical term s a factor with two levels. This type can be easily extended 

to factor variables with more than two numerical levels, which can be ordered or 

nominal. A third type of response is the continuous one, widely used in hyperten­
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sion and asthm a cross-over trials. The use of a single outcome variable to answer 

the prim ary question is favored in all types of clinical experiments (see ICH E9), 

since in the situation where inconsistent results are provided by the analysis of 

more than  one outcome variable, interpretation of trial findings becomes diffi­

cult. In parallel group trials, combining events to make up a response variable is 

a typical practice, especially when component events rarely occur. As stated  in 

the ICH E9 document, this approach addresses the multiplicity problem w ithout 

requiring adjustm ent to the Type I error rate. Difficulties with th a t practice arise 

when component-event analysis, if a t all possible, give different results compared 

to the combined-event one. An hierarchy of the component events, established 

in advance, could be the answer to the problem. Aggregation of measurements 

in cross-over studies is a w ithin-subject process, and usually occurs only when 

repeated observations are made within a given treatm ent period. Aggregation of 

measurements across subjects is not commonly met in the cross-over literature. 

Cross-over trials are not appropriate for diseases where the primary measurement 

is death, diseases where a long treatm ent period is needed, diseases where the 

effect of treatm ent is irreversible or diseases where gradual deterioration in pa­

tien t’s health is observed. In some clinical trials, the therapeutic ability of the 

tested compound is quantified by obtaining measurements closely related with the 

drug activity at the site of action (receptor). For example in asthm a trials peak 

expiratory flow, a measurement of lung function, is compared between competing 

therapies. In the m ajority of clinical studies, either cross-over or parallel group 

ones, instead of studying the clinical endpoint of most interest another response 

variable, called a surrogate variable, w ith strong predictive ability for the prim ary 

clinical endpoint, is measured. A good example is HIV trials, where m onitoring 

the incidence of AIDS is commonly replaced by measuring the change in CD4 

cell-counts. According to the ICH E9 guidelines surrogate variables can only be 

used, if the biological plausibility of the surrogate and the clinical outcome has 

been dem onstrated, or if there is conclusive evidence from epidemiological stud­

ies th a t the prognostic value of the surrogate variable on the clinical outcome 

is high, or other trials have shown th a t treatm ent effects on the surrogate mea­

surement correspond to effects on the clinical outcome. If a surrogate variable
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is used, investigators have to make sure tha t the surrogate measurements can 

be taken accurately and reliably, w ithout the need for expensive equipment and 

highly trained staff. Finally, trial participants should feel comfortable with the 

procedures undertaken during the measurement process.

Phase III results are the main information subm itted to regulatory authorities 

for licensing a drug to the market. Usually these results may change the current 

clinical practice and long-term surveillance of the proposed therapy is absolutely 

a necessity. Parallel group studies are favored by sponsors and regulators during 

this stage.

1.2.4 Phase IV

During phase III the investigator assess not only the clinical benefit of the new 

therapy on the population at risk, but also any unwanted effects. This informa­

tion helps regulatory bodies to decide under what circumstances the new therapy 

should be recommended for use. The cost of the proposed therapy to the general 

public is a further dimension of the decision making process. The general public 

will not be willing to pay for highly expensive agents, especially when they are 

of limited clinical benefit compared to existing treatm ents. Currently cost eval­

uation is not an integral part of the marketing approval process, though ICH E9 

guidelines suggest th a t Phase IV studies are useful for optimizing drug’s use in a 

subject-level bu t also in society.

The cost of treatm ent to the general public should not be the only factor to 

be considered for licensing or not a compound. Improvements on the quality 

of life of study participants is another dimension th a t regulatory bodies should 

consider. A cross-over trial can be used for assessing improvements in various 

quality of life dimensions between the standard and the newly proposed therapy, 

since patients try  all available treatm ents at least once. There are various di­

mensions to the ” quality of life” concept though. To begin with, the individual’s 

ability to perform daily life activities (e.g. bathing, dressing) is referred to as 

the ’’physical” dimension. Next comes the ’’psychological” component, referring 

to emotional and mental well-being. The new treatm ent may cause side effects 

such as depression or anxiety affecting in a negative way a partic ipan t’s daily life.
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Finally, there is the ’’social” component, i.e. the person’s willingness to partici­

pate in family or other social activities, m aintenance of any working obligations 

a t a satisfactory level and the way one interacts with the community in general. 

Further dimensions of quality of life, of secondary im portance, include the ef­

fect of treatm ent on the cognitive abilities of a participant (memory, recognition, 

e.t.c), sleep patterns, pain related to specific physical activities, failure to form 

and m aintain personal relationships e.t.c.

It has to be mentioned tha t such life-quality assessments may not only be collected 

at phase IV. On some occasions they might be the prim ary response variable in a 

phase III program, where a parallel group study is used for assessing the primary 

question. Personally, I have been involved in a parallel group phase III study for 

comparing a newly form compound against placebo for stroke patients. The pri­

m ary outcome variable was the Barthel index, a measure of physical functioning 

and independence. On the other hand, if the prim ary outcome at phase III is of 

a clinical nature (e.g. a new anesthetic for use in surgery), then quality of life 

measurements may be collected at a post-surgical phase (phase IV). A cross-over 

plan might be used to tha t purpose.

Medical life-quality data related to either financial or personal costs, are collected 

either from interviews or questionnaires sent by post. Questionnaires have the 

advantage of being a cost-effective data collection process and it is also more likely 

to derive answers to sensitive questions. However, face-to-face interviews tend 

to provide investigators with complete information th a t can be used for further 

analysis. Special attention needs to be given to accurate collection of life-quality 

data, since in the majority of clinical studies investigators collect cautiously all 

clinical information relevant to the treatm ent under study, but this is unlikely 

for non-clinical data. Quality of life data  are not used in regulatory submissions 

and th a t is why investigators are often careless in collecting them. If a cross-over 

design is used for conducting a phase IV trial, then inform ation from the sub­

ject with incomplete set of measurements will contribute to the overall treatm ent 

assessment. This would have not be the case if a parallel design had been used 

instead.

A score is usually attached to each dimension of health life-quality data. For
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example, the physical functioning score could be the sum of scores on various 

daily activities. The same principle applies to scores in other dimensions. This 

is an example, where methodologies for the analysis of ordinal categorical data 

in cross-over trials become relevant. A review of th a t literature is given in the 

next chapter. From the statistical perspective, difficulties arise in interpreting 

differences between sub-groups on a given scale. For example, does the observed 

change in the physical functioning score reflect a clinically im portant improve­

ment in a participant’s life? Lack of interpretation may lead to difficulties in 

evaluating the size of a trial, if the physical functioning score is the prim ary out­

come. In summary, lo t’s of research effort needs to be placed in incorporating 

health related quality of life measurements smoothly into current clinical trial 

practice.

1.3 Selecting an appropriate population

The information presented in this section is relevant for both parallel and cross­

over studies.

In the m ajority of clinical experiments, the compound under study is working for 

the population it has been tested. Participants randomized into the treatm ent 

phase (study sample) are a subset of the study population, i.e. patients th a t base­

line characteristics obtained but failed to enroll into treatm ent phase for various 

reasons. The study population is in tu rn  a subset of a wider population consisting 

of patients with the medical condition under study, but not eligible to enter the 

trial. Generalizing results found on the study sample to the study population 

is legitimate, as long as the study sample is a representative sub-sample of the 

study population (see ICH E9). The eligibility criteria th a t separate the study 

population from the population with the medical condition under study present, 

should not be excessively restricted, since difficulties in getting sufficient number 

of participants will arise. On the other hand, if loose inclusion/exclusion criteria 

are set beforehand, inappropriate participants may be adm itted into the study, 

the sample size will rapidly increase but the probability of observing the prim ary 

response outcome will decrease. ICH E9 guidelines suggest th a t a confirmatory
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trial may be helpful for selecting the patient population for which the drug will 

eventually be indicated.

The entrance criteria are easier to set if the mechanism of action of treatm ent 

is known to some extent and the investigator is able to identify a relatively ho­

mogeneous population likely to respond to th a t treatm ent. On the other hand, 

treatm ent efficacy should be demonstrated on a study population where mem­

bers may differ on one or more aspects of the medical condition under study 

(e.g. severity of disease). In th a t case, a heterogeneous group of participants will 

be collected. In large clinical trials it is more likely to have an heterogeneous 

rather than a homogeneous group of patients. Cross-over trials have a distinct 

advantage compared to a parallel design for comparison of treatm ent effectiveness 

across various sub-groups in an heterogeneous population. This is because within 

a sub-group, say males, treatm ent effect is assessed more precisely since within 

patient information is utilized. This results in a more accurate assessment across 

sub-groups (males vs females). It has to be mentioned though th a t even for a 

cross-over trial, if treatm ent effect within sub-group(s) is of interest, the number 

of patients recruited to adequately power such a study can be enormous.

1.4 Procedures needed to be followed before a 

study starts

Once the experimenter selects the study-design the next step is to assign the 

chosen study-population to the various sequences of the chosen cross-over de­

sign. The allocation process should be unpredictable, so th a t experimental bias 

is avoided. Experim ental bias simply means th a t the decision to randomize or not 

a subject in a given treatm ent sequence depends upon this sequence. Obviously, 

no randomization scheme can guarantee perfect balance on other risk/prognostic 

factors, but the larger the study is, the more likely the imbalance issue to be 

resolved for various factors (see ICH E9 guidelines).

There are various ways to randomize patients into a cross-over study. The sim­

plest scheme assigns participants to the various sequences with equal probability. 

The real advantage of th a t scheme is ease of implementation, though in groups
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with different demographic or other characteristics not adequately represented, 

substantial imbalance across sequences may occur. Block randomization ensures 

th a t imbalance will not be large at any time during the randomization process. 

The idea is to split the number of eligible subjects into blocks of size equal to 

a multiple of the number of sequences of the cross-over plan adopted and then 

within each block equal allocation of patients to sequences occurs. The main 

advantage with block randomization is th a t each sequence will be approximately 

equally represented, if the trial is term inated early for any reason, or type of par­

ticipants changes during recruitment (e.g. males recruited earlier than females). 

The investigators though should be blinded to the block size or, if th a t is not pos­

sible, the block size should vary as recruitm ent continues. As ICH E9 guidelines 

suggest block sizes should be sufficiently small to avoid possible imbalance, but 

should be sufficiently large to avoid predictability of treatm ent sequences towards 

the end of the randomization process within a block. Blocking maintains balance 

representation of the various sequences and it is usually taken into consideration 

in the statistical analysis.

Stratified randomization involves performing sequence randomization within s tra ta  

defined by selected prognostic or risk factors. Usually the chosen factors are ex­

pected to correlate highly with the prim ary response variable. Simple or blocked 

sequence randomization is performed within each stratum , although the blocking 

strategy is usually preferred so tha t less sequence imbalance occurs in s tra ta  with 

fewer participants. Obviously, as the number of risk factors of interest increase 

and the levels within factors grow, the number of s tra ta  expands rapidly. Only 

im portant risk factors should be chosen, so th a t the number of s tra ta  is kept to a 

minimum (see ICH E9 document). Factors used to perform a stratified random­

ization should be included in any statistical model thereafter, but one should 

keep in mind th a t these factors affect estimates of between subject contrasts 

rather within subject comparisons. A special example of a study where stratified 

random ization occurs is the multi-center trial. In th a t case ICH E9 guidelines 

recommend th a t several whole blocks of treatm ent sequences should be assigned 

to each center, while randomization procedures should be organized centrally. 

Modern randomization schemes have been proposed, though they are of limited
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practical use. A famous one, originally suggested by Efron (see [10]), assigns 

treatm ents within sequences sequentially as the trial progresses. Assignment of 

the next treatm ent regime is based upon previous treatm ent assignments for th a t 

subject, but not on his responses already observed. The allocation probability 

p  to group A  (or B ) within a sequence is adjusted continuously, so th a t next 

treatm ent assignment is more likely to occur to the treatm ent group with fewer 

past appearances on th a t subject. Randomization strategy should be taken into 

consideration during the analysis, otherwise the p-value reported will be slightly 

larger than if the correct analysis was performed. More advanced adaptive ran­

domization schemes make use even of the past responses collected on a subject, in 

order to decide the treatm ent allocation in the next period. The play-the-winner 

rule assigns a subject to the same treatm ent group as in the previous period, if 

th a t treatm ent has been successful on the previous period; otherwise the partic­

ipant is assigned to the other treatm ent group. These schemes were m otivated 

by ethical concerns, since one may wishes to maximize the num ber of times a 

patient receives the superior treatm ent. A major obstacle in implementing these 

schemes is tha t response may no be immediately available and it is not yet clear 

to the statistical community how to take into account the random ization process, 

in the analysis.

One of the main pre-cautions taken to reduce bias is to keep both  patients and 

investigators blinded to treatm ent. Most of the efficacy trials are double-blinded 

ones. If investigator ignores the treatm ent a patient is receiving, then he is 

expecting to act in a similar way regardless of the treatm ent the patient is re­

ceiving within a treatm ent period. Double-blind trials are usually more difficult 

to carry-out than  trials where a simpler blinded scheme is adopted. The key to 

truly blind a study is to have medications with similar appearance. This may 

not be possible, unless interference with the treatm ents occurs to an apprecia­

ble extent. The technique of double dummies is then used, where placebos with 

similar appearance to the products under study are administered simultaneously 

with the treatm ents (ICH E9 glossary). Both investigators and patients may try  

to discover drug’s identity. For cross-over studies where patients try  both  medi­

cations, matching drug appearance is crucial, since patients can make their own
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comparisons. Appearance is one of the many characteristic th a t agents should 

be matched, taste and weight are two others. Finally, a procedure should always 

be in place to unblind quickly for any individual a t any time, if th a t is necessary. 

In summary, both randomization and blinding contribute to the quality of the 

collected data  and validate conclusions drawn from the analysis of the study. As 

ICH E9 guidelines suggest randomization and blinding should be normal features 

of any controlled clinical trial intended to be included in a m arketing application.

1.5 Quality Recruitment

This section contains m aterial tha t is applicable to both  parallel and cross-over 

studies.

In any clinical study, obtaining sufficient number of participants within a reason­

able time period is the key for successful completion of the program  as a whole. 

First of all, the time the recruitment period lasts should be set well in advance. 

Investigators must make every effort to enroll participants in a timely fashion. 

Extending the recruitment beyond the originally planned period increases costs 

and decreases participant’s and investigator’s morale. Inadequate planning, fail­

ure to start on time and under-estimating the im portance of factors th a t may 

have accelerated the recruitment process if considered promptly, are a few of the 

primary reasons for recruitment failure.

Realistic estimates of the potential number of participants can only be made by 

tracking hospital or physicians records. Making the trial publicly known through 

scientific meetings or media campaigns may increase participation rates. If da ta  

sources concerning recruitment are difficult to obtain, then a pilot study (or con­

firmatory study as mentioned in the ICH E9 guidelines) can be set-up to provide 

valuable information on best recruitment techniques and yield estim ates of po­

tential participants.

There are various strategies to recruit subjects to a clinical study. The strategy 

chosen, usually depends upon the type of the trial (single or multi-center), the 

length of the available time and the general setting. The first step in a traditional 

recruitment process is to identify groups of potential participants in hospitals.
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patients of physicians or employees in various organizations. After passing an 

initial screening test, patients are formally invited to undertake a further eligi­

bility evaluation. An alternative strategy is to bypass the initial testing process 

and directly invite patients into the program. Sponsors should always remem­

ber th a t techniques achieving high recruitm ent rates w ithin a geographical area, 

may completely fail in doing so in other areas. Modifications to the recruitm ent 

strategy should be made where necessary. For cross-over studies the length of 

wash-out period between successive active treatm ent periods should be carefully 

chosen so th a t higher drop-out rates are avoided.

If recruitment is delayed, reasons should be identified why this is the case. In 

multi-center studies, cites th a t perform poorly can learn from cites where recruit­

ment performance is excellent. Graphs showing actual recruitm ent compared to 

originally planned are useful tools for identification of potential problems. If a 

center cannot contribute enough participants then it is highly likely to drop-out 

from the study. For cross-over studies there might be specific treatm ent intervals 

where withdrawal rates are high. The knowledge of th a t information may result 

in improving the design of future cross-over trials.

One way of tackling lagged recruitm ent is by relaxing inclusion/exclusion crite­

ria. This will increase the study-population, but the incidence rate of the prim ary 

outcome in the new participant-type may not be as large as in the original partic­

ipants. ICH E9 guidelines suggest th a t changes in the inclusion/ exclusion criteria 

may be appropriate when knowledge from outside the trial or from interim  anal­

yses indicate th a t this is the right course of action. A nother viable solution is to 

extend the recruitment time or add more recruiting sites. Obviously this increases 

the overall study-cost and it will inevitably delay publication of study-results. A 

further approach to the problem is to recycle potential patients, i.e. giving per­

sons who are interested in participating in the study a second chance. Sometimes, 

accepting a smaller number of patients is the right course of action. Reducing 

sample size deliberately, has the effect of lowering the power of the study. If 

on the other hand, treatm ent effect is higher than  originally anticipated, this 

solution will provide comparable power. On the other hand ICH E9 guidelines 

suggest th a t if sample size calculations have been performed using uncertain in-
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formation, a revised sample size may be calculated using modified assumptions. 

This change though, should be documented both  in a protocol am endm ent and 

in the final study report.

1.6 Collecting Quality D ata

Problems in da ta  collection for cross-over studies can be of several sorts. Ex­

amples include incorrect data, missing da ta  or d a ta  w ith greater variability than 

expected. It is essential th a t inferences from the study are based on accurate 

and valid data. Key data, like baseline characteristics, prim ary and secondary 

outcome measures, should be error-free. Missing da ta  usually arise from inabil­

ity of physicians or participants to complete questionnaires. Missing da ta  are 

commonly found in late follow-up measurements, since as the trial progresses 

participants fail to meet the standards of adherence as established by the in­

vestigator. This point is especially relevant to m ulti-period cross-over studies. 

Patients with incomplete information still contribute to the overall assessment 

of various term s in cross-over studies. It has to be noted th a t the higher the 

percentage of missing d a ta  the less credible are the conclusions drawn from the 

study. Universally accepted m ethods for handling missing d a ta  cannot be recom­

mended, though ICH E9 guidelines suggest th a t methods of dealing with missing 

values should be pre-defined in the protocol and the sensitivity of the results of 

analysis to the method of handling missing values should be examined.

Incorrect data, on the other hand, are not easily recognized. They usually arise as 

measurements obtained by clinical staff or technicians using a different definition 

than the one described in the protocol. Once the error has been spotted, feedback 

to the personnel responsible for collecting the da ta  should be given immediately, 

so th a t the correct value identified and entered into the database. Incorrect da ta  

usually appear in a statistical analysis as outliers. The definition of an outlier is 

arbitrary. Characterization of a value as an outlier should be justified both  med­

ically and statistically (ICH E9 document). Regulator bodies favors testing the 

influence of outliers on the final results, by performing at least two analyses; one 

with the actual values and another one which eliminates or reduces the outlier
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effect. For cross-over studies the presence of outliers generates spurious interac­

tions. Jones and Kenward (see [39]) gives an example where an incorrect value 

for a subject generated a statistically significant treatm ent by period interaction, 

which in the 2 x 2 case is equivalent to the carry-over effect.

The m ajority of clinical trials are repeated measurements studies. The variabil­

ity between repeated assessments on a subject can be of system atic or random 

nature. In cross-over studies systematic variation can be a ttribu ted  to different 

treatm ents assigned at different time points, while random  variation may rep­

resent the physical condition of the patient, errors due to the instrum ent used 

for the measurement or errors of the clinical staff responsible for da ta  collection. 

Clinical staff get more experienced with trial procedures as study progresses and 

this accounts for intra-observer variability. However, depending on level of knowl­

edge and expertise, people will perform the same task differently within the same 

working environment. This will account for inter-observer variation. Inconsistent 

behavior of the same clinician or of clinical staff working in the same team, may 

alert to the need for thorough checking of the collected data.

Certain steps have to be taken in order to minimize the collection of poor quality 

data. A m anual of operations is usually prepared for any clinical trial, where de­

tailed description of partic ipan t’s visit and the procedures followed during these 

visits can be found. Questionnaire forms should always derive the key infor­

mation, being well-organized and have a logical sequence. Standardization of 

interviewing techniques, laboratory tests and other procedures are crucial to the 

success of any large study. Finally a typical technique to reduce variability is to 

repeat the assessment, if a t all possible. For example, blood pressure could be 

measured twice and the average reported.

Monitoring the areas most im portant for the study, is the key action to obtain 

high-quality data. Clinical staff, on a regular basis, should receive reports of 

weaknesses or errors blinded to treatm ent. Personal experience, suggests tha t 

date of event(s) is unlikely to  be the same, if reported in two different forms. In 

follow-up assessments, especially in cross-over designs, it may be the case tha t 

missing or late participant visits may be associated with the treatm ent adminis­

tered. If th a t is the case, then the final conclusions drawn from the study will
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be biased. Laboratory measurements are good examples where extreme values 

can be mistakenly recorded. Laboratories should make sure th a t equipment has 

been tested, been well-calibrated and appropriate adjustm ents in scales have been 

made where necessary. Finally, auditing sites may improve data  quality and trial 

conclusions.

W hat really can make a difference in collecting quality data, is the adherence 

of the study-participants to the protocol. Participants may not be willing to  be 

compliant with the study procedures for various reasons, for example they ex­

perience unpleasant side effects, or compliance with protocol requires changes in 

their daily lives, or they may mis-interpret instructions given to them, or their 

health deteriorates during the study-course regardless the treatm ent group they 

have been assigned to. Obviously, shorter studies has greater advantages over 

longer ones. Also, hospital-based trials tend to have less non-adherence problems 

than home-based ones. In addition, keeping dose-regimen as simple as possible 

helps in the derivation of complete data.

1.7 M onitoring large studies

This section concern monitoring of Phase III studies, which are not conducted 

using a cross-over design, as has already been mentioned. For purposes of com­

pleteness though some account of my personal involvement in such studies will 

be given.

The credibility of a trial is enhanced if the persons who m onitor the efficacy and 

safety variables have no formal involvement with either the participants or the 

investigators. D ata monitoring requires collection and processing of the relevant 

information in a timely fashion, otherwise m onitoring would be of limited value 

if carried out a t a stage where the m ajority of the data  have been collected. In­

vestigators cannot have the monitoring responsibility, since they may discover 

th a t treatm ent A is more effective than  treatm ent B, while participants are still 

enrolled into the study. Interim  analysis results are used to decide whether to con­

tinue, term inate or modify the design of an ongoing study. I have been personally 

involved in the safety and executive committees of an ongoing diabetes study and
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the form at used during these meetings involves an open and a closed session. In 

the open session, recruitm ent status, da ta  quality and other issues th a t affect the 

outcome of the trial are considered. In the closed session, baseline characteristics, 

prim ary and secondary outcome variables, adverse events and other safety mea­

surements are compared by treatm ent groups. In the closed session, key members 

of the committee only decide continuation or prem ature term ination of the study, 

based on careful review of the interim analysis results presented to them. Ac­

cording to the ICH E9 guidelines, the monitoring committee is responsible for 

setting operating procedures and m aintain records of all its meetings, while the 

role of each member of th a t committee (sponsor staff inclusive) should be clearly 

defined.

An issue th a t needs to be resolved is how the results of any interim  analysis will 

be presented to the members of the committee. Early in the trial, where the 

two treatm ents are expected to be equally efficient (or inefficient), there is no 

reason to identify the two groups in each table or figure of the report. W hen 

one of the two competing therapies show its superiority the committee-members 

should have full knowledge of the group identities. Usually annual reviews of 

study-progress suffice to resolve any issues, while in other occasions meetings are 

scheduled when a specific proportion of the outcome variable has been observed 

(e.g. 25% of deaths). From a statistical perspective, if the null hypothesis of 

no difference between the two treatm ent groups is tested a t the same level of 

significance using accumulated data, then the probability of incorrectly rejecting 

the null will be higher than  the nominal level. Group sequential methods, de­

scribed by Jennison and Turnbull (see [35]), where the number of interim  looks 

is taken into consideration for setting the significance level a t each look as data  

accumulate, ensure th a t the overall significance level for the trial remains at the 

desired level.

The decision to term inate/ continue a study will be based on various factors. The 

extent to which the new therapy is beneficial is one determ inant factor. The 

incidence of serious adverse events in the two treatm ent groups may force early 

term ination for safety reasons (see ICH E9 guidelines). If in one of the latest 

interim  looks it becomes clear th a t it is impossible to see a beneficial effect if the
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trial continues to the end, then terminating the study has financial advantages 

for the sponsor (see ICH E9 guidelines). Finally, logistical problems not foreseen 

during the design phase, may suggest th a t study continuation is not feasible. In 

the interim  analysis results, possible differences of various prognostic factors at 

baseline between the two treatm ent groups should be considered. In addition 

the im pact of missing data  on the analysis should also be evaluated. Secondary 

response variables should be analyzed along with the prim ary ones. Consistency 

of results across dominant sub-groups or across different centers should be ex­

amined. The decision to term inate a study should not be based on unexpected 

results in small sub-groups.

1.8 Concluding remarks - Thesis outline

In this chapter I have tried to summarize my three-year involvement in designing 

and analyzing clinical trials. A lot of topics have not been discussed. For exam­

ple, different type of designs tha t can be used to run a study, different sample 

size formulas the statistician can use depending on the type of the prim ary re­

sponse variable, the issue of using baseline measurements as part of the response 

or as covariate trying to explain variability in the response, setting significance 

levels for repeating testing, sub-group analyses, comparison of multiple primary 

response variables, m eta analysis, multi-center trials, reporting and interpreta­

tion of trial results and many more.

This thesis concerns cross-over studies. A full review of the cross-over literature is 

provided in the next chapter. In chapter three, the 2x2 cross-over design is stud­

ied in depth. Properties of treatm ent effect estimates under different carry-over 

assum ptions are presented and a newly proposed treatm ent estim ate is stud­

ied. The two-stage procedure is discussed in detail and properties of a corrected 

two-stage scheme are presented. A trial in asthm a is then analyzed using both 

Frequentist and Bayesian methodology. The use of baselines as part of the re­

sponse leads to a three stage scheme for comparing two treatm ents, the properties 

of which are fully evaluated. The baseline measurements enrich the assumptions 

th a t can be made for carry-over term(s) and analysis of the same 2 x 2 trial in
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asthm a with baselines now incorporated is presented. Bayesian and frequentist 

analysis when baselines are considered as covariates are also discussed. The im­

pact of covariates on the cross-over trials is also evaluated in some depth. Finally, 

a non-linear model, where carry-over is modeled as a proportion of treatm ent ef­

fect is presented and the same trial in asthm a is analyzed using th a t model. A 

model selection exercise using the AIC criterion is performed, for comparing lin­

ear and non-linear approaches.

In chapters four and five attention focuses on selecting the best design for run­

ning a cross-over study under different assumptions concerning residual effects. 

In chapter four, clinical justification for the carry-over assumptions made is pre­

sented. Assumptions in both the systematic and random part of the model are 

reviewed and optim al plans are presented for comparing two treatm ents for de­

sign families with limited number of periods and sequences. The impact of model 

mis-specification in designing a cross-over study is fully evaluated. More specifi­

cally, the model used to design the study may be different from the one used to 

perform the analysis. Optimum plans, where not only the systematic but also the 

random part of the model is mis-specified, are given. Finally, analysis of a cross­

over study with seven treatm ents where carry-over effects depend on the type of 

treatm ents administered in the current and previous period is also presented. An 

account of the design literature for repeated measurements studies concludes the 

chapter. In the fifth chapter, optimum plans for the comparison of two and more 

than  two treatm ents are presented under different carry-over assumptions. Cross­

over plans with m oderate number of periods and sequences are studied using an 

optim ality criterion widely encountered in practical applications. W hen three or 

more treatm ents are compared, cyclic designs are only considered. Finally, opti­

mum plans for the non-linear model studied in chapter four are derived. In the 

final chapter, conclusions of the whole thesis are presented and future research 

directions are given.
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Chapter 2

Cross-Over Trials - A R eview

2.1 Types of Clinical Trials

The most common type of clinical trial is the randomized control study, where 

participants are assigned randomly to a treated or a control group. Most tests 

used for the analysis of this experiment, like the t-test, can be justified on a 

random ization argument only, w ithout further assumptions needed to be made 

on the measured variables. The m ajority of clinical investigators feel th a t pa­

tients should receive the newly proposed therapy, regardless if th a t therapy has 

dem onstrated its effectiveness in real life situations. These investigators will not 

be willing to participate in a trial. From an ethical point of view, investigators 

who are in doubt about which therapy is superior can possibly participate in the 

study to settle the question.

In some studies, randomization does not take place. Participants are assigned to 

the two treatm ent groups w ithout use of a random allocation scheme. For exam­

ple, da ta  on the success of a new surgical procedure will only be collected a t the 

institu tion the new method was applied. Results will then be compared with pa­

tients in other hospitals, where a more traditional medical care was implemented. 

In these studies, patients in the two groups are matched by key characteristics. 

M atching on some of the im portant prognostic factors may be impractical, while 

evaluation of the impact of other equally im portant characteristics on the out­

come response may not be possible.

Another well-known type of study is the withdrawal ones, where patients are
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taken off therapy in order to evaluate the duration of benefit of the treatm ent. 

Study-population consists of patients who have experienced a treatm ent benefit 

for several years.

The purpose of setting-up a factorial design is to evaluate three or more trea t­

ments in one experiment. This will reduce the cost and the effort required to 

compare competing therapies in separate experiments. The only disadvantage 

with this type of study is the possibility of interactions being present, i.e. trea t­

ment A  has a lower response when administered in conjunction with treatm ent 

B  ra ther than  with treatm ent C. The power for testing for interactions is always 

lower than  for testing main effects. A factorial study adequately powered to de­

tect interactions would require number of participants equal to the sum of the 

participants of the separate studies. ICH E9 guidelines mention another example 

of a factorial design; the dose-response trial. In this type of study, a number of 

m  doses of drug A (placebo inclusive) and similarly a number of n doses of the 

alternative therapy B (placebo inclusive) are selected. Patients are randomized 

in one of the m x n  possible treatm ent groups. The da ta  collected are used to give 

an estim ate of the response surface and then an appropriate combination of doses 

of A and B is identified for clinical use. In other trials the basic sampling units 

are groups rather than individuals. In these plans, called cluster randomization 

designs, a whole group of individuals (e.g. center) is randomized to one of the 

two treatm ent groups. Types of clinical trials, where cross-over design is used 

extensively, have been presented in the previous chapter. For an extensive review 

see Senn [80].

2.2 Cross-Over Plans

The 2 x 2 cross-over trial will be properly studied in the next chapter, though some 

account of the existing literature will be presented in this chapter as well. In this 

type of trial each participant receives some or all of the competing therapies. 

The order in which treatm ents are administered to participants is randomized. 

This type of trial has some appeal to the medical community, since each par­

ticipant is used more than once and comparisons between different treatm ents
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are individual-based. The carry-over effect, i.e. treatm ent activity in the current 

period persisting in subsequent periods, has played a key role in evaluating the 

usefulness of a cross-over plan in medical practice. As ICH E9 guidelines suggest, 

when a cross-over design is used it is im portant to  avoid carry-over by allowing for 

sufficiently long wash-out periods. Loss of subjects can be an additional problem 

in using a cross-over study. An area where the 2x2 design has been successfully 

applied is to dem onstrate the bio-equivalence of two formulations of the same 

medication.

2.2.1 Parallel vs Cross-over design

Brown (see [3]) was the first to compare the 2x2 cross-over design (2  measurements 

per participant) with a parallel group study (1  measurement per participant) in 

term s of cost-effectiveness. He assumes th a t the model generating the data for 

the cross-over experiment, contains a term for the mean, period, treatm ent and 

carry-over effect, while the subject effect is taken as random. If n  subjects are 

randomized in each sequence of the cross-over experiment, while m  in each group 

of the parallel study, then the two treatm ent estim ates derived from the two 

trials will be equally efficient, if the following relationship is satisfied between the 

sample sizes:

n  =  ( I - P ) y  (2.1)

where p is the correlation between measurements on a subject in the cross-over 

experiment. Now, let S q be the cost of recruiting a new participant and 5i the 

cost of treating and measuring the patient in a given period. Then the relative 

cost of the cross-over relative to the parallel group study is:

*  = ('-"me
From th a t equation. Brown concludes tha t if recruiting a patient is more costly 

than  obtaining follow-up measurements and /o r there is large between subject 

variability, then cross-over is a more economic solution compared to the paral­

lel group study. Brown’s approach was interesting, since the two designs were 

compared on economic rather than statistical grounds.
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2.2.2 M ulti-stage procedures in the 2x2 case

The problem with the carry-over in the 2x2 case is usually tackled by proposing 

multi-stage procedures. Two of them, Grizzle’s (see [30]) and Kenward-Jones’s 

(see [42]) are studied in the next chapter. Lehmacher (see [55]) suggests another 

two stage scheme, which is a modification of Grizzle’s proposal. More specifi­

cally, if T and A are the treatm ent and carry-over effects respectively, then the 

joint hypothesis H q : r  = X = 0 is tested at level a using Hotelling’s T^-test. If 

it is significant then four separate hypotheses about treatm ent, carry-over, bias 

of treatm ent estim ate (r  — A/2) and second period difference (r  — A), are all 

simultaneously tested at level a. Lehmacher argues th a t his multiple test pro­

cedure preserves the nominal level of significance for treatm ent difference, but 

the power of the scheme was not evaluated in the original paper. Lehmacher’s 

approach can be seen as an updated version of W illan’s statistic (see [91]), where 

the maximum of two treatm ent estimates (GROS, PAR) is used for testing trea t­

ment difference at half of the nominal significance level. Jones and Lewis (see 

[40]), by using a simulation based approach, compares the power of Grizzle’s, 

W illan’s and Lehmacher’s procedures and concludes th a t Grizzle’s is the best 

while Lehmacher’s the worst. The Type I error rate is not reported for any of 

the above schemes though. Willan (see [91]) argues th a t his procedure achieves 

the nominal significance level, and his treatm ent estim ate compares favorably 

to the GROS estim ate in term s of power and MSB, when carry-over is a small 

proportion of the treatm ent effect.

2.3 The 2x2 case with baselines

2.3.1 Baselines as part of the response

In the 2x2 case a ” run-in” and a ” wash-out” period are included and measure­

ments are collected during these intervals. On other occasions, a wash-out period 

is not possible and the baseline measurements obtained in the run-in interval 

can be used as covariates in the analysis. Four repeated measurements can be 

collected on each subject and Kenward with Jones (see [42]) provide an extensive
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account of the covariance structure th a t can be assumed on the vector of obser­

vations on a particular subject.

One of the special forms this structure can take, is a stationary first order auto­

regressive (A R(1 )), where correlation between repeated measurements depends 

on their distance in time, plus a random subject effect. The length of the wash­

out interval can be incorporated into th a t structure. Kenward with Jones did 

a detailed investigation on what particular structure could be recommended for 

future use, by analyzing d a ta  on 2 x 2  cross-over studies where baseline measure­

ments were available. Unfortunately no particular structure emerged and in a few 

cases none of the structures considered fit the data  particularly well. Kenward 

with Jones go even further proposing a three stage procedure for the analysis 

of cross-over d a ta  with baselines. Jones and Lewis (see [40]) using a simulation 

based approach studies the properties of the three stage procedure without re­

porting the Type I error rate. An analytical approach is used instead in the next 

chapter to study th a t procedure and the Type I error rate is also evaluated. The 

interesting point in Kenward and Jones’s work is th a t GLS estimates of parame­

ters are equivalent to their OLS counterparts, appropriately adjusted for baseline 

readings.

2.3.2 Baselines as a covariate

Chi (see [6 ]) discusses the recovery of inter-block information in cross-over trials, 

without restricting the arguments to the 2x2 case only. He considers the simple 

carry-over model where subject is taken as a random effect. This model in a 

m atrix notation can be partitioned into a fixed and a random  part as follows:

y  =  (7 (4 -6  (2 J^

where p  contains overall mean, period, treatm ent and carry-over effects, while (  

is the vector of patient (or block) effect. In both the fixed an d /o r the random part 

baseline measurements can be easily incorporated. Chi derives the CLS estimate 

as a combined estim ate of intra and inter-block analysis. More specifically, the 

intra-block analysis offers as the following solution:

ftntra =  ( /  -  C (C ^ C )- 'C ^ )  ( /  -  C (C ^ C ) - ^ C ^ )  Y  (2.4)
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with

t i n t r a  OC ( /  -  C (C ^ C )- 'C '^ )  X ) ~ '  . (2.5)

The inter-block analysis offers the following estimate

=  [ X ' ^ C C ' ^ X )  X ' ^ C C ' ^ Y  (2.6)

with

Sj„,er oc { X ' ^ C C F x y ^  (2.7)

If Antra and Winter are independent, the combined analysis gives the following 

estimate of

P g LS — ( ^ in tr a  "b ^ in te r^  (^ in tr a ^ in tr a  +  ^ in te r^ in te r ^  (2-8)

which is the same as:

0 G L S  =  (X  W ( K ) ‘ ‘x )  X ^ v a r \ v ) ~ W  (2.9)

Chi concludes tha t when missing data  are available, recovering the inter-block 

information may not be worth while, although he does not report any conditions, 

under which recovering such information may prove beneficial.

Senn (see [75]), discusses the use of baselines in asthm a trials. He argues against 

the idea of correcting for baseline by subtracting the baseline m easurem ent from 

the measurements obtained during the tria l’s active treatm ent period. This ac­

tion has the benefit of reducing the variability in the analysis variable, though it 

creates spurious correlation between the analysis variable and the baseline read­

ing. Senn seems to favor an analysis of covariance m ethod, where instead of 

subtracting the baseline measurement an estimated fraction of it is subtracted.

2.4 Simple extensions of the 2x2 design

Laird et al (see [50]) derive treatm ent effect estimates for two period designs by 

extending the number of sequences. Balaam ’s design is a four-sequence cross­

over plan (AA, BB, AB, BA), where carry-over effect can be estim ated using 

within subject information and a treatm ent by carry-over interaction can also be
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considered. If n  subjects are allocated in each sequence group, then the treatm ent 

estim ate has variance

where a  and p are estim ated as shown in the previous section.

Koch’s design is a six-sequence two-period plan for the comparison of three tre a t­

ments. Two of them  are active compounds (labeled A, B) while the th ird  is the 

standard therapy, S. Interest is focused on the comparison of the two active tre a t­

ments. So, if n  subjects are allocated in each one of the sequence groups (AS, 

SA, BS, SB), then n m  allocated in each one of AB and BA. This is an incomplete 

block design where sequences are not equally replicated. The simple carry-over 

model assumed throughout may not be appropriate for this design, especially if 

the standard therapy is placebo. Laird et al derive expression for the efficiency of 

the contrast — Tg, although he notes tha t Koch’s may not be an appropriate 

design for efficiently estim ating carry-over effects.

E bbutt (see [9]) was one of the first to analyze data  on three-period cross-over 

plans for comparing two treatm ents. He. considers a design with two sequences 

(ABB/dual) and a design with four sequences (ABB, ABA, duals). The two 

sequence design has been proved to be universal optimal for estim ating trea t­

ment effect (Laska et al, see [52]), irrespective if one includes carry-over effects 

or not in the model, and whether or not baseline measurements are available. 

E bbutt defends the four-sequence plan on the grounds tha t treatm ent by period 

interactions are now estimable, although he does not include such a term  into 

his model. In addition it would be more difficult for the investigators to  break 

the randomization code, if the four sequence plan is used. In the four-sequence 

design, n subjects are allocated in each sequence group, while 2n subjects are 

assigned in each sequence of the two-sequence plan. The simple carry-over model 

w ith fixed subject effects is assumed throughout. The two plans are roughly 

equally efficient for estim ating treatm ent and carry-over differences, though the 

two-sequence plan has the additional advantage th a t treatm ent and carry-over 

estim ates are orthogonal to  each other. A more detailed investigation of these 

and other plans, under various model assumptions is provided in the next chap­

ter.
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Hafner et al (see [32]) analyze data  on two group of mice under different exper­

imental conditions. From each group, equal num ber of mice are randomly allo­

cated to one of the two sequences of the following cross-over plan: AB A /dual. 

Hafner et al assume random mouse effects, and his analysis is based on trans­

forming the 3x1 vector of original responses to  a new response, by multiplying 

it with a 3a:l vector of coefficients of an appropriately selected w ithin-subject 

linear function. The summary response, is then analyzed using a typical ANOVA 

method or a Wilcoxon rank sum test. The interesting point about th a t work, 

is th a t more than one linear function could be available for estim ating the same 

effect and the most efficient one should be used. Senn and Hildebrand (see [81]) 

considers a similar approach to th a t of Hafner et al, by analyzing a three-period 

three-treatm ent cross-over trial in asthm a. The 3x1 vector Yij of the patient 

in the sequence is modeled as follows:

Yij =  A l̂sxi +  Sijl^xi +  P  +  TiT 4- 6ij (2.11)

where /x the overall mean, Sij the random subject effect, P  the period m atrix, Ti 

the treatm ent matrix and Eij the error vector. Contrasts, defined on each subject, 

estimating treatm ent or other effects of interest can be expressed as:

%  =  (2 .12)

All six possible treatm ent sequences are used in this study. Treatm ent effect is 

estim ated orthogonally to the carry-over one for this design.

The problem of demonstrating equivalence between a reference (R) and a test 

product (T) has a long history. Vuorinen and Turunen (see [89]) propose a three- 

stage procedure for bioequivalence assessment using the two period cross-over 

model. As usual, the Type I error rate and the power of the proposed scheme 

are not reported. The model assumed, allows not only means but also variances

to depend on the treatm ent administered a t a specific period. For a subject who

has been randomized in either treatm ent-sequence, it is assumed th a t

yx N  {̂ fiT =  M +  Ttj (Jj- =  -i- CTĝ -) (2.13)

Vr ^  N  (/ii? =  /i +  Tiî, cr^ =  cr| +  cjg^) (2.14)

where cr̂  is the intersubject variance, while the intrasubject ones for

the two therapies. The correlation between m easurements on the same subject
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will be p =  The three stage scheme is based on hypothesis test­

ing procedures for three key parameters: 9 = fix/fJ'R,  =  ^ t I ^ r  p. If 

9 E (0.80,1.25), i f  G (0.70^,1.43^) and p > 0.5 then one can claim individual 

bioequivalence. If the hypothesis on p is rejected, then one can claim population 

bioequivalence. If both the hypothesis on p and rf' are rejected, then one claims 

average bioequivalence. All tests are performed at level a. The param etric ver­

sion of the scheme is based on appropriately defined t-sta tistics for performing 

the various tests, while the non-param etric one is based on the M ann-W hitney 

statistic.

Shumaker and Metzler (see [8 6 ]) criticize the above scheme, by arguing th a t there 

are no data to question the average bioequivalence criteria set by FDA. In ad­

dition, the three stage scheme requires defining the range of r f  and p and these 

choices usually are not based on scientific knowledge. To prove the point, Shu­

maker and Metzler analyze data  on a four period tw o-treatm ent study, where 

the design RTTR/TRR T has been used. Two analysis variables are considered; 

area under the curve (AUC) and maximum concentration (CMAX). Surprisingly 

enough, the authors consider the four-period plan as two replicates of the two- 

period cross-over (RT/TR) design. The main reason for doing so, is to assess 

more accurately the within and between-subject variances, though the original 

four period plan is used to tha t purpose as well. They conclude th a t average bio­

equivalence criteria set by FDA, would have provided us w ith identical results 

compared to the individual based criteria, i.e. three stage scheme.

2.5 Bayesian approaches

2.5.1 2x2 case with baselines

Grieve (see [26]) performed the Bayesian analysis for the two-period cross-over 

design w ithout baseline measurements initially. Inclusion of baselines raised the 

question of how period effect is modeled, since four m easurements are collected 

per subject (Grieve, see [27]). Some authors modeled the period effect in the 

run-in and first treatm ent period using a common term  (W illan and Pater, see 

[92]). Similarly, in the early years, it was assumed th a t carry-over from the first
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treatm ent period to the wash-out interval is the same as the carry-over from first 

treatm ent to second treatm ent period (Chi, see [7]). Grieve follows Kenward and 

Jones’s model, where four distinct term s are used to describe period effects and 

two term s are used for modeling residual effects (A and 9). In Grieve’s analysis 

the four measurements per subject have assumed to follow a multivariate normal 

distribution with a common uniform covariance m atrix. Following Box and Tiao 

(see [2 ]) an ignorance prior for the model param eters is assumed, i.e.:

7 ,  7Ti, 7T2, 7T3, T, A, 6>, p) OC ^ 2 ^  _ ^ ) ( l + 3 p )  (215)

where 7  is the sequence effect and p the intra-subject correlation coefficient. 

Grieve initially derives the conditional distribution of the mean parameters given 

the variance components. From this result, the conditional distribution of each 

mean param eter given the other mean param eters and the variance components 

can be easily evaluated. These distributions are the building blocks of an MCMC 

scheme, which is implemented in the next chapter. M arginal posterior densities 

of T, A and 9 turn-out to be t-distributions, appropriately shifted and scaled. 

This model (M2) assumes th a t 9 and A are unrestricted. Grieve, considers three 

further possibilities: 9 = 0 (model M u), A =  0 (model M 12) and A =  0 =  0 (model 

Mo). Posterior distribution of the treatm ent effect is also derived for the three 

new models and a cross-over trial in angina is analyzed for all four possibilities. A 

model-selection exercise using the Bayes factor approach is performed, and Grieve 

concludes th a t the models M 12 and M q are the most likely to  have generated the 

observed data. In other words, inclusion of the first-order carry-over term  is 

feasible, while presence of the second order carry-over effect is unlikely.

2.5.2 2x2 case with missing data

Grieve (see [28]) develops the Bayesian approach to  take account of missing data  

in the 2x2 cross-over trial w ithout baseline measurements. For sequence z, where 

i =  1 , 2 , rii subjects have complete data, rin subjects have data  for the first 

period only and rii2 subjects have data  for the second period only. D ata are 

assumed to be missing at random. Uniform within-subject covariance m atrix is 

assumed as before. Grieve derives the conditional distribution of the treatm ent
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and carry-over effect given the variance components and the posterior density of 

the variance components. For the derivation of the posterior distribution for r , 

can be easily integrated out from p(r|cr^, p, data), bu t numerical methods need 

to be employed in order to get rid of p.

Grieve, then investigates the value of recovering missing d a ta  information in the 

2x2 case. To th a t purpose, he evaluates the variance of the treatm ent effect esti­

m ate under three scenarios: missing values included in the analysis, completely 

ignore patients with missing data  and finally assume th a t da ta  have been avail­

able on all participants. It turns-out th a t missing d a ta  play an im portant role 

for drawing inference for the carry-over rather than for the treatm ent difference. 

A Bayes factor approach is implemented for choosing between two competing 

models, the one with carry-over term  (M i) against the model w ith no carry-over 

term  { M q ) .  Grieve concludes th a t Bayes factor when missing d a ta  are considered, 

is close to the Bayes factor when da ta  are available on all participants.

2.6 Frequentist M issing Data Solutions

Frequentist approaches to the missing data  problem, includes the work of Patel 

(see [6 8 ]), who argues th a t taking into consideration patients with incomplete 

da ta  in the 2 x 2  case enhances the power of the test for various interactions, like 

the treatm ent by period one, which is equivalent to the carry-over effect for the 

2 x2  design. Only second period data  are allowed to be missing in P a te l’s work. 

Patel also assumes th a t no more than  40% of the study-participants are allowed 

to have missing values in the second period. The first period measurements, for 

patients with missing second period data, have the same mean and variance as 

the first period d a ta  in the complete cases. If u is the vector of first period data 

for complete and incomplete cases and v the second period d a ta  for the complete 

cases, then the likelihood function can be w ritten as f{u)g{v\u).  MLE is used 

to estim ate treatm ent and carry-over effects under the following scenarios: sub­

jects with incomplete d a ta  are included in the analysis, subjects with incomplete 

da ta  are discarded. Simulation is performed to compare the empirical with the 

nominal Type I error rate and to evaluate the power of the test statistics pro­
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posed for the carry-over and the treatm ent effect, under these scenarios. These 

statistics have a ^-distribution with appropriate number of degrees of freedom. 

Simulations assumed a small number of study-participants, up to 2 0 , and a pos­

itive intra-subject correlation coefficient. When incomplete cases are included, 

Patel concludes th a t the nominal and empirical Type I error rate agree closely 

and do not seem to depend on sample size. In addition, the power of the test for 

carry-over is higher compared to the power of the test where only complete pairs 

are used. For the treatm ent effect this phenomenon is less evident.

More recent work on missing data, includes th a t of Richardson and Flack (see 

[71]), who use the design ABB/BAA to compare a newly proposed im putation 

approach with other established methodologies. Richardson and Flack follow 

closely Little and Rubin (see [57]) or Schafer (see [72]) in defining missing data  

mechanisms. One of them  is MCAR where missing observations are a random 

sub-sample of the originally planned sample. A refinement of th a t scheme, MAR, 

is one where the missingness depends on the already observed values but not on 

the missing values themselves. Another possibility where missing mechanism de­

pends on the missing values but not on the already observed values, NMAR-1, 

is also considered. Finally, both observed and missing values could drive the 

drop-out mechanism; the NMAR-2 type of missingness. Four analysis methods 

are compared; Complete Case analysis (CC), Maximum Likelihood (ML) of com­

plete and incomplete cases. Residual Draw method with one and three im puted 

values (R D I, RD3). The residual draw method imputes conditional predictive 

mean with additional noise. Richardson and Flack consider sample sizes of ap­

preciable m agnitude, up to 80. The percentage of missing d a ta  in the second 

period is always lower than  the third period one and may depend on the tre a t­

ment administered. Compound symmetry or A R (1 ) structure is assumed for the 

w ithin-subject covariance structure.

Richardson and Flack conclude th a t bias of treatm ent effect estim ate is always 

lower than  the carry-over estim ate over all analysis methods. The CC method 

has the worst performance in terms of bias for both treatm ent and carry-over 

effect over all missing data  mechanisms. The other three analysis m ethods are 

comparable in terms of bias. In terms of variance estim ation, empirical signifi-
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cance levels and power, the RD-3 and ML give comparable results closer to the 

nominal levels and recommended by the authors as the appropriate m ethods for 

analyzing cross-over designs with missing data. The authors, finally, recognize 

the im portance of becoming aware of the missing data  mechanism, although they 

suggest th a t investigators have information which can help in identifying reasons 

for patient dropout.

Another approach of analyzing cross-over experiments with missing da ta  is the 

one suggested by Jones and Kenward (see [39]). Separate estim ates from the 

complete and incomplete d a ta  for the param eter of interest are first derived and 

then combined using the inverse of the estimated variances as weights.

2.7 Categorical Data

Binary data  are modeled by Jones and Kenward (see [38]) by using a log-linear 

model, where w ithin-subject dependence is taken into consideration. Their m ethod­

ology can easily be extended, when the prim ary outcome is categorical. Suppose 

th a t a cross-over study in s sequences and p periods is used to compare t tre a t­

ments. Assume the prim ary response is categorical with c category levels. For 

the number of subjects {rïiijk) who fall in the response category within the 

sequence in the period, the following log-linear model can be considered:

mean category -f sequence 4- period 4- treatm ent +  carry-over (2.16)

In this model successive responses on the same sequence are independent from 

each other. By introducing appropriate interaction terms, associations between 

adjacent cells in the same sequence are generated. The revised model looks as 

follows:

mean 4- category 4- sequence 4- period 4-
(2.17)

terms at the sequence by period level 4- period by period interactions

The first term  in the second line of the equation above is composed of terms like 

treatm ent and carry-over effects, while the ’’period by period” interaction term  

introduces associations between observations taken on the same sequence. This 

is simply a log-linear model where the joint distribution of the sequence’s counts
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is considered. From the above equation marginal probabilities can be derived, 

though their analytical expressions are awkward. Jones and Kenward (see [39]) 

discuss the association between log-linear model for cross-over da ta  with log-linear 

models for contingency tables. Essentially, d a ta  within a sequence-period cell, can 

be classified according to the levels of various outcome variables (e.g. response 

category). Observed marginal totals can be fixed by fitting the corresponding 

term  in a log-linear model, as illustrated in McGullaph and Nelder (see [6 6 ]) or 

Everitt (see [1 1 ]). Jones and Kenward (see [39]) conclude th a t tests concerning 

the statistical significance of various terms can be seen as a special case of a 

likelihood ratio statistic.

Instead of collapsing individual-based data  into counts, an alternative approach 

would be to model subject-based data  directly. Conditionally upon the subject 

effect, Sik, measurements on the same subject are independent. If it is assumed 

that:

logit {pijk — lj\sik) = intercept for category Ij -j- Sik +

effects from cell (i,j) for subject k (2.18)

where I define the categories of the response variable, then from the conditional 

independent assumption, the following relationship holds:

PiUilk l\ . • - yipk PiVilk l̂l' îfc) • • -PiVipk ^p\^ik^ (2.19)

Now, if a probability function g{s) is assumed for the subject effect, then the 

joint distribution of the data-vector for a specific subject is as follows:

piuilk — l\ ■ ■ - yipk — ^p) — j  p{ynk — - - yipk — ^p|'5ifc)^(s) ds (2 .2 0 )

Ordered categorical data  can be easily incorporated into the log-linear modeling 

framework. To th a t purpose, a regression is used on the category scores, where 

higher order terms (quadratic, cubic e.t.c) can be included in the model. Ezzet 

and W hitehead (see [1 2 ]) use a random effects approach to model ordinal data 

in the 2 x2 design. Ezzet and W hitehead explain how an ordinal variable can be 

derived by discretizing a continuous latent variable which follows a logistic dis­

tribution. Ezzet and W hitehead illustrate the subject-based model by analyzing 

d a ta  for the comparison of two inhalation devices, using a four-category ordinal
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scale response. In their discussion, the authors point out th a t treating the out­

come variable as continuous may lead to biased results and the real treatm ent 

effect may not be recovered.

A third  way to analyze categorical data, is by modeling linear contrasts or directly 

marginal probabilities in period j  of sequence i. Under this approach recovery of 

the within-subject dependence structure is impossible, unless higher order joint 

probabilities are modeled as well. Fidler (see [15]) illustrates an approach where 

a model with six terms is used for the analysis of binary data  in the 2 x 2 design: 

sequence, period, treatm ent, carry-over, overall success probability and correla­

tion between responses on the same subject. McNemar’s and C art's  tests are 

special cases of Fidler’s model.

2.8 Other types of cross-over data

2.8.1 M ultivariate D ata

The analysis of the 2x2 design from a m ultivariate perspective was first presented 

by Zimmermann and Rahlfs (see [93]). The authors argue th a t the multivari­

ate approach has certain advantages over the univariate one, since simultaneous 

testing of hypothesis of interest are possible, while restrictive assumptions on 

the within-subject covariance structure can be avoided. The authors assume a 

simple carry-over model with a general w ithin-subject covariance structure. A 

simultaneous hypothesis concerning treatm ent and carry-over effect is first per­

formed. This hypothesis is usually rejected a t conventional significance levels 

and this leads to a test for examining the im portance of carry-over difference. If 

carry-over effect is shown to be different from zero, then only first period da ta  

are used for testing treatm ent effect, while in the case where residual effect is 

statistically unim portant then all four cell means are used for drawing infer­

ence for treatm ent effect. This work is extended in the case of the cyclic design 

(ABC,BCA,CAB) where carry-over effect in the th ird period represents residual 

effect from the second and the first period. A similar multi-stage procedure to 

the 2x2 case for testing treatm ent effect is proposed. The authors conclude th a t 

for the 2 x2  design the univariate approach gives identical results to the multivari­
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ate one. For multi-period designs different hypothesis can be tested under the 

two approaches, though the multivariate procedures has the advantage th a t less 

restrictive assumptions are imposed. A hybrid procedure is finally recommended 

which uses the advantages of both approaches.

In m ulti-period multi-sequence cross-over trials a single outcome variable is usu­

ally of interest. There are occasions however, where two or more outcome vari­

ables may be observed within a treatm ent period. This is simply a cross-over 

design with multivariate observations and can be analyzed using standard m ulti­

variate techniques, see M ardia et al [60] or Kraznowski [46]. Grender and Johnson 

(see [24]) discuss an example of a cross-over trial with a bivariate response, where 

the effect of caffeine on stress reactions was studied by measuring systolic and di­

astolic blood pressures before performing a task and after administering caffeine 

or placebo. An adequate wash-out period was allowed in this study.

Let yijk be the response vector of the subject within the period who has 

been randomized in the sequence. The model can be expressed in m atrix 

notation as follows;

E  iVijk) =  /i  +  7Tj-l-T-t-A (2 .21)

where fi, ttj, r , A are vectors corresponding to the overall mean, period, treatm ent 

and carry-over effects. Note th a t Grender and Johnson do not include a sequence 

effect, since even in the multivariate 2 x2 case tha t term  is confounded with the 

carry-over effect. The above model can be presented in a concise form as follows:

E { Y )  = A(j) (2 .2 2 )

where each row of Y  corresponds to responses of each individual. All multivariate 

cross-over hypothesis can be written in the form:

C(f)M =  0 (2.23)

and an appropriately constructed F-test can be used to test the hypothesis above. 

Surprisingly enough Grender and Johnson propose a multi-variate analogue of the 

two stage procedure to test the hypothesis of treatm ent effect. Obviously the def- 

ficiencies of th a t scheme are well known, when one outcome variable is measured 

in each period, but it is my view the same defficiences will be evident in the
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m ultivariate case as well. A common covariance m atrix E is assumed for the 

observations taken on a subject across responses.

Grender and Johnson extend the above work to accommodate analysis of two or 

more responses taken repeatedly across time. For example, in the previous trial, 

diastolic and systolic blood pressure can be measured more than once within a 

period. In such circumstances, the interaction of time with period, treatm ent and 

carry-over should be tested and if not im portant then one can average responses 

over time points and use the analysis outlined above. More specifically, Grender 

and Johnson propose a three stage procedure, where the time by carry-over in­

teraction is tested first, followed by a test of no carry-over differences. Based on 

the outcome of the test for carry-over, either da ta  from both periods are used or 

only the first period data considered for analysis purposes. The Wilks likelihood 

ratio criterion, which transforms to a F-statistic for the 2 x2 cross-over case, is 

used for the hypothesis testing of various effects.

In a subsequent paper (see [25]), Grender and Johnson fit polynomial models for 

a 2 x2  cross-over design where several responses are measured within a period, 

repeatedly over time. W ith such data, a m ulti-variate test of equality of means 

at time points within sequence by period cells, is first performed. This hypothesis 

is usually rejected at conventional levels of significance and the next step is try  to 

claim parallelism of mean profiles across groups defined by the sequence by pe­

riod cells. If th a t hypothesis accepted, then averaging response(s) across time is 

the way forward. However, if the parallelism hypothesis is rejected, then the aim 

might be to discover how mean profiles across sequence by period groups differ. 

To th a t purpose, a polynomial model can be fitted to subject specific data. The 

estim ated param eters of the polynomial model are subsequently analyzed using 

appropriate techniques for cross-over plans. Grender and Johnson illustrate the 

technique by fitting second order polynomials in a study which investigates the 

effect of eating onions on triglyceride levels of patients with heart disease.

2.8.2 Survival Data

The analysis of survival data  in the cross-over literature is one of the areas th a t 

has been under-developed. France et al (see [20]) are one of the few authors who
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describe different approaches for the analysis of survival d a ta  in the 2 x2  case. The 

trial used to illustrate the methods concerns treatm ent of angina pectoris. A well 

established therapy is compared to the combination of th a t therapy w ith a newly 

proposed treatm ent. There is a 4-week run-in period followed by two active four- 

week treatm ent periods. No wash-out interval is allowed. France et al initially 

analyze the data  using standard methods of analysis, like analysis of variance 

or Wilcoxon rank sum test. None of the above methods, take into account the 

correct underlying data-distribution or the censoring mechanism. Because of 

tha t, treatm ent effect estimates derived from these m ethods are biased. France’s 

et al survival method follows closely Cox’s proportional hazards regression model. 

Each patient has a separate baseline hazard function appropriately shifted to 

allow for treatm ent and period effects. France et al do not include a carry-over 

term  in their analysis. For the patient the hazard function is:

hi(t, period, treatm ent) =  hoi{t)exp{pi * treatm ent +  /?2 * period) (2.24)

The treatm ent and period effect can be estim ated by m axim ization of the partial 

likelihood and depends only on the number of treatm ent preferences in the two 

sequence groups. Treatment A is preferred to treatm ent B, if the survival time 

on A is longer than tha t on treatm ent B. If ni/i, Mig, 7%2A, ^ 2 5  are the number of 

preferences of A and B in the two groups, then

Â  =  (2.25)

A similar, though more elaborate, expression holds for the variance of Pi. France 

et al, are in a position to extent their methodology to  a three-period cross-over 

trial. They do not manage though to extend their work to  include cross-over 

designs with unlimited number of sequences/periods and for comparison of more 

than two treatm ents.

Feingold and Gillespie (see [14]) propose an alternative m ethod for the analysis 

of cross-over survival data, easily applied to many different experim ental designs 

under various censoring mechanisms. In Feingold and Gillespie’s method, each 

observation is replaced by a score and then standard  statistical techniques ap­

plied (e.g. ANOVA) to the derived scores. Feingold and Gillespie use the Gehan
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score, defined differently for censored and uncensored observations. An alterna­

tive way of analysis is to use medians or other quantiles obtained from the survivor 

curve from each sequence/period combination and then apply the GROS weights 

to these summary statistics. Feingold and Gillespie seem to favor the average- 

quantile statistic, which is simply the average distance of each survivor curve from 

the origin calculated over a quantile range where all survivor curves are defined. 

The asymptotic variance of th a t statistic is difficult to calculate and bootstraping 

could be used to th a t purpose. Both approaches are illustrated w ith an exam­

ple of the protective value of two types of helicopter passenger immersion suits. 

Simulation methodology is used to compare score transform ation m ethod (ST) 

with France’s et al (FLK) procedure. Overall the ST m ethod seems to perform 

better in terms of power and bias for treatm ent effect estim ation regardless of 

the censoring rate. The analysis of time failure cross-over d a ta  can be carried out 

using standard survival analysis software, where treatm ent, period and carry-over 

effect are time dependent covariates.

2.8.3 Classical and modern non-parametric approaches

For many years the use of classical non-parametric procedures, like Wilcoxon rank 

sum test, have dominated the analysis of cross-over data  where the distributional 

assumptions (e.g. normality) have been violated. This approach is illustrated in 

Koch (see [45]) for the 2x2 design. Koch assumes the simple carry-over model 

with a random subject effect. For estimating treatm ent effect, the w ithin subject 

differences are calculated and the Wilcoxon rank sum test is applied to these 

differences. Similarly for testing the hypothesis of no residual effects, the within 

subject sums are first evaluated and then the Wilcoxon test is applied to these 

sums.

McHugh and Gomez-Marin (see [67]) examine and compare a random ization 

model for analyzing the 2 x2  cross-over design with the simple carry-over model. 

An additivity assumption is then introduced in the random ization model and a 

new comparison with the simple carry-over model is performed. The random iza­

tion model assumes that the test and reference products can be tried only on a 

finite population of size N.  Conceptually each of the N  experim ental subjects can
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be allocated to any one of the four possible sequence by period combinations, gen­

erating a hypothesized AN  responses, which can be used to describe the observed 

responses. It turns out th a t the treatm ent estim ator based on the random ization 

argument alone, has a distinct different variance from the treatm ent estim ator 

under the simple carry-over model. The additivity assumption, introduced next, 

simply assumes th a t the 4A  ̂ conceptually responses are composed of a subject, a 

treatm ent and a carry-over effect. The results of the random ization model with 

the additivity condition are comparable to  the results of the simple-carry-over 

model, as far as the precision of the treatm ent effect estim ate is concerned.

Tsai and Patel (see [8 8 ]) were one of the first to  apply m odern non-param etric 

approaches to the analysis of the 2x2 trial with baselines. Tsai and Patel imple­

ment these methods to a 2 x2  design th a t includes a placebo run-in period and a 

wash-out interval of adequate length between the two active treatm ent periods. 

Baseline measurements are taken both during the run-in and wash-out periods. 

Tsai and Patel, consider a similar approach to th a t of Jones and Kenward for the 

management of carry-over effects. A test for the significance of the residual effect 

from the first treatm ent period to the wash-out interval is first performed, by 

taking the differences between the two baseline measurements and then applying 

a Wilcoxon rank sum test to the derived data  from the two sequence groups. 

Where Tsai and Patel’s work differs from conventional approaches, is the way 

they test for residual effect from the first to the second treatm ent period, and the 

way they test for treatm ent effect. Before testing for treatm ent and carry-over 

effects, Tsai and Patel remove the effect of baselines. D ata from first and second 

treatm ent period are modeled separately. A linear regression is performed, with 

treatm ent period data  as response and corresponding baseline measurement as 

covariate. These models are not fitted by minimizing the sum of the squares of 

the difference between the response and its expected value, but ra ther a slightly 

complicated function of th a t difference is optimized. Robust linear fit minimizes 

for each period j ,  where j  = 1 , 2 , the following function:

(f> {{Vijk — Oij — PjXijk) / Oj) (2.26)
i,k

Note tha t a common regression coefficient is assumed for both sequences within a 

period. The function 4>{x) is H uber’s function (see [34]), and param eter estimates
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are derived by solving a system of nonlinear equations simultaneously. The above 

equation also implies a different variance param eter for the two period groups. 

An alternative way to identify a relationship between two continuous variables, 

is by fitting a locally weighted robust regression curve. Cleveland (see [8]) was 

the first to introduce the idea, which allows us to  use neighborhood points of a 

given point {x,y)  to obtain a fitted value for y. W ith these points, a weighted 

least squares fit is performed, where the weighted function is symmetric about x  

and decreases to zero as the distance from x  increases. As before, this m ethod is 

applied separately to the d a ta  from the two periods.

Using either of the above approaches, a pair of residuals {rnk,ri2k) can be cal­

culated for each subject, and the hypothesis of no carry-over effect from first to 

second treatm ent period or of no treatm ent difference is based on these residual 

pairs. A Wilcoxon rank sum test is applied to the sets { r m + r u i , . . .  , rn„^4-ri2ni) 

and (r2ii + f 22i, • • • , 7'2in2 + ^ 22712) for carry-over testing, where rii and ri2 are num­

ber of subjects randomized to  the two sequence groups. For the comparison of 

treatm ents a Wilcoxon rank sum test is performed on the differences rnk — Vi^k-

2.8.4 Poisson Data

There is an extensive literature covering generalized linear model approaches for 

modeling purposes in repeated measures settings (see [56]). One of the few pa­

pers paying special attention to the analysis of count cross-over d a ta  is the one 

by Layard and Arvesen (see [54]). The authors suggest th a t cross-over experi­

ment should be avoided if it is thought th a t carry-over effects could occur. So, 

a Poisson distribution is assumed for the count data, while a log-link relates the 

mean of tha t distribution to  the linear predictor. The linear predictor contains 

terms for subject, period and treatm ent only. Layard-Aversen’s analysis condi­

tions upon subject totals. In this way testing for drug by period interactions 

is not feasible, though for tackling this problem they recommend an alternative 

procedure based on a t-test for appropriately transform ed patient data. They 

illustrate their approach using two examples, where a 2x2 design was used to run 

the trials.

The authors extend their methods to m ulti-period designs using the 3x3 Latin
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square for illustrative purposes. The approach based on conditioning on the sub­

ject to ta l suffers from the fact th a t pairwise comparisons among treatm ents are 

not easily performed. An alternative route where da ta  are first appropriately 

transform ed and then a weighted linear regression is performed on the trans­

formed values, w ith weights determined beforehand, is recommended.

2.9 Variance Com ponents Estim ation

Laird et al (see [50]) propose an interesting m ethod of estim ating the variance 

components, when compound symmetry structure (i.e. random subject effects) 

is assumed for the responses on a subject, in two period cross-over studies. More 

specifically, if denotes the difference and the sum of the two responses on 

the subject, then the following two models are fitted,

d =  (2^!7)

s =■ -A5/3 -}- 6s (2.28)

where Xd  and Xg denote the design matrices for the sum and difference vector. 

From these models two mean square errors, M S  Ed and M S  Eg, are derived and 

the covariance/ correlation param eters are estim ated as follows:

=  {M SEs  + M S E i ) /4 :  (2.29)

p = { M S E , -  M S E i ) !  {M SEs  + M S E i )  (2.30)

Laird et al combine the estimates of j3 derived from equations (2.27) and (2.28) to 

derive the  GLS estimate. Obviously this m ethod generalizes in a straightforward 

way, when baseline measurements are included as covariates.

M atthews (see [63]) considers the estim ation of the dispersion param eters in the 

general case of a p-period cross-over trial with a continuous outcome, where n  

subjects are recruited. The model assumed, includes subject, period and trea t­

ment effects (all fixed), while carry-over term  is not considered. The linear model 

can be summarized in the following equation

y = ( I n ®  lp ) s  +  (In <S> /p)7T + T t  +  6 =  Z a  + 6 (2.31)
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where y  is an T ip -d im e n s io n a l vector, 5, tt, t  is the subject, period and treatm ent 

effect respectively. The variance m atrix of the error-vector e has a block diagonal 

form

W  =  ® V  (2.32)

where the m atrix  Vpxp describes the intra-subject correlation structure. This 

structure takes the form of a stationary first-order autoregressive process, with 

its element equal to (1 — M atthews removes the nuisance

param eters, subject and period terms, by pre-multiplying both  sides of the above 

equation with an appropriate matrix. The model for the transformed response 

looks as follows:

z  = A t  + €* (2.33)

This model contains only the param eters we are interested in, r, p and The 

author then applies ordinary maximum likelihood and derives an analytic ex­

pression for the correlation coefficient p. The above approach, called restricted 

maximum likelihood, is equivalent to integrating out the nuisance parameters 

from the full likelihood function. M atthews compares the above method with 

a conditional profile likelihood approach, where a likelihood function containing 

only the param eter of interest, p, can be w ritten down explicitly. Simulation 

studies are used to compare the two inference methods plus the standard maxi­

mum likelihood approach. The designs used are a four-sequence three-period one 

(ABB, AAB, duals) and a four-sequence four-period one (ABBA, AABB, duals), 

where 1 2  subjects are allocated in each sequence. M atthews concludes th a t both 

conditional and restricted likelihood approaches perform better than the standard 

maximum likelihood in term s of bias, though the restricted likelihood approach 

is to be preferred because it can easily be generalized to the case where in tra­

subject covariance structure is described by more than  one parameter. Standard 

weighted least squares can be used to estim ate r ,  the treatm ent effect, with p 

replaced by its estimate. Uncertainty concerning the estim ation of p can safely 

be ignored in our inferences for r ,  since p and r  are orthogonaly estimated. 

Guilbaud (see [31]) estimates variance components in the 2 x2 case, assuming 

th a t variances under the two treatm ent regimes are different. Interest centers
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on drawing inference for the ratio 6 =  which measures the relative vari­

ability within subjects under the two treatm ents. Guilbaud derives initially the 

exact distribution of the following quantity 7  =  (cr^ — c r |) / (cr^ -f <7 | ) , from which 

inferences about Q can be made. As before, the key statistic  is based on the 

w ithin-subject sum and difference pair {sik,dik), where k indexes subject and i 

sequence group. The author proves th a t (7 * — j ) / s *  follows a t-distribution on 

n — 3 degrees of freedom, where n  is the to tal number of participants recruited in 

the study. The value of 7 * equals the common slope of two parallel lines fitted to 

the two sequence groups by ordinary least squares, with the dik treated  as fixed 

predictor, while the Sik treated as the response. The s* is simply the standard 

error of th a t slope.

2.10 Choosing the right design

2.10.1 Theoretical results on repeated measures designs

Kunert (see [47]) deviates from conventional approaches to identify optimal plans 

for repeated measurements designs, a special case of which are cross-over plans. 

Special restrictions are usually imposed on a plan to be optim al under a pre­

defined model. For example, number of treatm ents should appear equally often 

in each sequence and period. This work is presented in Ch4.

Kunert proves an orthogonality condition which ensures th a t the information 

matrices for the estimation of the same effects in two models are equal. Note 

th a t for the two models it is assumed tha t one of them  is nested within the other.

The author discriminates the set of param eters the experimenter is primarily

interested in ( 77) ,  from the parameters th a t are of secondary im portance (^). The 

following model is assumed:

Y  = Ar]-^BÇ + e (2.34)

where the error vector has uncorrelated components with common variance. The 

information m atrix for the parameters of interest rj is:

C =  (2.35)
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The responses on the nested model are generated according to the following 

model:

T  =  A t] +  Bi<l) +  e (2.36)

Obviously B  = [Bi\B2 ], with an information m atrix for the param eters of interest 

T] given by an expression similar to the one described in equation (2.35). The 

information matrices in the two models will be equal if the following orthogonality 

condition is satisfied:

( l  -  (B f B i) B f  ) B 2 =  0 (2.37)

So, if one can find an optimum design for the model described by equation (2.36), 

which at the same time satisfies the orthogonality condition described by equa­

tion (2.37), then this design is optimum for the more elaborated model described 

by equation (2.34).

In K unert’s work simple carry-over is assumed throughout. The author consid­

ers cross-over designs where residual effect is allowed even in the first period. 

From a practical standpoint, this assumption is not as unreasonable as it sounds, 

since in most clinical trials participants are already on a standard therapy and 

if th a t therapy is compared to a newly proposed treatm ent, then carry-over in 

the first period may exist. Of course, Kunert also considers cross-over plans with 

no residual terms in the first period. Optimum results claimed for the family of 

generalized latin square (GLS) designs, where both  num ber of subjects (n) ran­

domized and number of periods (p) used are a multiple of number of treatm ents 

(t) compared, and treatm ents appear equally often in each sequence and on each 

period. If these conditions are satisfied, then any design made of sequences where 

a treatm ent is followed equally often by all other treatm ents (including itself) is 

optimum for the estimation of treatm ent effects in th a t family. In th a t paper, 

K unert replaces the strong assumption tha t number of subjects recruited must 

be a multiple of number of treatm ents, with a weaker one th a t relates the num­

ber of times a treatm ent i is followed by treatm ent j  with the number of times 

treatm ents i and j  appear in period k. In a similar fashion the assumption tha t 

number of periods must be proportional to the number of treatm ents can also be
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replaced with a weaker one. Similar results for efficient estim ation of the carry­

over effects are also presented.

In a subsequent paper, K unert (see [48]), deals with the situation where number 

of periods equals number of treatm ents {p = t). Balance uniform designs (i.e. 

n cc t, treatm ents appear equally often in each period/sequence, each treatm ent 

is followed equally often by other treatm ents, but never by itself) are optimum 

for estim ating treatm ent differences, when the number of subjects equals or is 

twice as high the number of treatm ents. Whenever n = 2t this result is true 

only when more than six treatm ents are compared. In case where the subjects 

recruited is a multiple of the number of treatm ents greater than two, then the 

efficiency of a balance uniform design is greater than

{t -  1)2 -  2(1 -  1)1-1 +  j-2  i

The equation above implies, th a t as the number of treatm ent grows balance uni­

form designs are almost optimum. In tha t work, K unert extends these results 

by providing conditions for efficient estimation of residual effects when p = t. In 

these conditions, it is assumed th a t n = t(t — 1) and the experimenter is in a 

position to find a uniform balanced design where each pair of treatm ents appears 

equally often in the last and second to last period. Then if the last period is 

replaced with the second to last one, the resulting plan will be optimum for es­

tim ation of residual terms.

Kunert (see [49]) extends the results above, in the situation where repeated mea­

surements taken on the same subject are related according to an AR(1) process. 

As before, number of treatm ents equal number of periods. In th a t paper terms for 

the mean, subject, period and treatm ent effect are only fitted. Carry-over terms 

are not allowed. The sum-to-zero param eterization is used for the treatm ent ef­

fect. K unert’s model is exactly the same as the one described in equation (2.31) 

with a covariance m atrix for the error vector given in equation (2.32). Now, if we 

consider the m atrix with the property A V A ^  =  / ,  then by pre-multiplying 

both  sides of equation (2.31) with In A  the resulting error vactor has uncorre­

lated components. Let B =  [1„ 0  A\In 0  Alp], then the information m atrix for
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the treatm ent effect estimates m atrix is:

c  =  {In ® A^) { l - B  (S ^ B ) {In ® A) T  (2.39)

The family of designs where each treatm ent appears equally often in each sequence 

and each period, followed equally often by other treatm ents (including itself), is 

considered. In addition, each pair of treatm ents should appear equally often in 

the first and last period. K unert calls this set of plans ’’W illiams design with 

balance end-pairs” . The main conclusion of K unert’s work, is th a t a Williams 

design with balance end pairs is optimum for estimation of treatm ent effects, 

irrespective of the value of the AR(1) coefficient p, over the family of designs 

where treatm ents appear equally often in each sequence. Furthermore, Williams 

designs with balanced end-pairs are optim al for estimating treatm ent effect over 

the whole design family under study, when p = t = 3. W hen p = t > 3, then 

Williams design with balanced end-pairs is optimum for treatm ent effects over 

the whole design family, only when the AR(1) coefficient p is greater than

A general note on K unert’s optim ality criterion is in order. The optimality 

criterion has been used throughout. Let Â , (z =  1 , . . .  , k  = rank[C))  be the non­

zero eigenvalues of the information m atrix C  for the parameters we are interested 

in. Then for every a , where 0 < a  <  oo, the following criterion can be defined:

I /o

(2.41)

K unert’s results are valid for all values of a. When a  =  0 the D-criterion, widely 

used in subsequent chapters, is recovered. The criterion corresponds to the 

well-known A-criterion. Universal optimality, described in Ch4, is a more general 

concept than 4>a optimality, though most of K unert’s results are valid under the 

universal optim ality criterion as well.

2.10.2 Practical results on repeated measures designs

In an impressive review paper, M atthews (see [65]) questions the conventional 

approaches to identifying optimum plans. His main criticism concentrates on how
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appropriate is the simple carry-over model, a model widely used for derivation 

of optimum designs, and proposes alternative solutions. Before proceeding to 

th a t debate, Matthews is critical about considering carry-over term s in the first 

period. M agda’s work (see [59]) is based heavily on this assumption, where a 

hypothesized pre-period interval with the same treatm ents adm inistered as in the 

last period, is used. So, carry-over in the first period is determined by treatm ents 

administered in the final period. The data  collected during the pre-period interval 

are not used in the analysis stage, and this is the point where this scenario may 

sound unreasonable to the practical user of the cross-over trial. The modeling of 

the carry-over term  has been criticized by Fleiss (see [18]). According to Fleiss 

carry-over plan, a treatm ent carries-over to all other treatm ents, except itself. 

This type of carry-over with some extensions is studied in subsequent chapters. 

For two treatm ent comparison, Matthews expresses the Fleiss model as follows:

Vijk =  M -I- TTj 4- rd i j  4- - X d i j - i  (1 — d i jd i j - i )  Cijk (2.42)

where dij  is the treatm ent (A or B) administered to sequence i in period j .  

Assuming independent errors and all other term  in the above equation fixed, 

M atthews derives optimum dual sequence plans for the Fleiss type of carry-over, 

where unequal number of subjects may be allocated to each sequence pair. The 

author presents best designs in the three or four-period families and concludes 

tha t these designs are highly efficient under the simple carry-over model. W orth 

noting th a t in Matthews work, sequences like AAA/BBB or AAAA/BBBB are 

candidates for inclusion in the proposed plans. The author also points out th a t 

since the type of carry-over is not known in the planning stage, designs which are 

robust to model mis-specihcation in terms of efficiency and/or bias are worthwhile 

to be derived. Results to th a t direction are provided in Ch4.

In a subsequent paper, M atthews (see [64]), studies the problem of how efficient 

Ordinary Least Squares (GLS) treatm ent estim ate is, when the responses on the 

same subject are stochastically dependent and this dependence is captured by an 

unknown param eter p. If p was known a-priori, then Generalized Least Squares 

(GLS) would have been fully efficient. The fact th a t p is estim ated forces the 

analyst to use a practical alternative, the empirical GLS (EGLS), which will 

not always be more efficient than GLS. Matthews points out th a t the choice
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of estim ate heavily depends on the design selected to run the trial. Designs, 

where the OLS estimate is highly efficient even when repeated measures on a 

subject are correlated, may be preferred for running the trial during the planning 

stage. M atthews investigation, compares OLS with GLS when p is known. If the 

efficiency of OLS is 90% or more over all plausible values of p, then the extra 

complexity of the GLS analysis may not be justified.

More specifically if p is known, then the estimate of the variance for the fixed 

effects using GLS would be:

var(aGLs) = a'^{Z'^W-^Z)-'^ (2.43)

The OLS estim ate is simply [Z^Z)~^Z'^y  with variance:

var,rue(aoLs) = <T^{Z'^Z)-\Z^WZ)(Z'^Z)- '^  (2.44)

The estim ated variance from a typical OLS analysis would be:

varanaiysisiaoLs) = o-q{Z'^Z)~'^ (2.45)

where dg is the OLS estimate of Matthews compares the expected values of 

the variance estimates provided in the last two equations under the GLS model. 

Although he includes a carry-over effect in his model, attention is focused on how 

misleadingly the variance of the treatm ent effect is estim ated using OLS, when 

GLS should be used instead. For the intra-subject covariance structure, either 

a first order autoregressive or a first order moving average model is assumed. 

The author concludes tha t designs where the OLS estimate can be used without 

much loss of efficiency are (ABB,AAB,duals) and (ABB,ABA.duals) from the 

four-sequence three-period family, while for the two-sequence four-period family 

good choices are (ABBA, dual) and (ABBB, dual).

M atthews then questions the sensitivity of not equal allocation of available pa­

tients to each sequence. The author illustrates his point using a dose-escalating 

design for the comparison of three doses (1,2,3) and placebo (P), where the pro­

portion of subjects randomized to each sequence are not necessarily equal. The 

four-period design used, consists of the following four sequences: P123,1P23,12P3 

and 123P. It turns out th a t the efficiency of equireplicate designs is over 90% and 

this is true over a wide range of optimality criteria (A-, D-, E-criterion).
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A further point raised by Matthews concerns the modeling of period effect. This 

term  is typically incorporated in any modeling exercise. Since every patient has 

his own trial history, the statistical interpretation of the period effect is unclear. 

It is my view th a t data collected on a subject is part of a stochastic process and 

effects believed to influence patien t’s response a t a given tim e point should be 

included as terms in his mean response a t th a t time. An alternative way of in­

corporating period effects in an analysis, is to describe stochastic dependence on 

observations taken within subjects or across groups. In th a t respect, M atthews 

proposes a solution where period is considered as a random  effect. Sensitivity of 

optim ality results when period term  is excluded from the model is a potential re­

search direction according to the author. Finally, M atthews raises the point th a t 

treatm ent by subject interaction may be worth investigating from both  sponsor’s 

and G P ’s perspective.

2.10.3 Results on special design families

In a different mode. Pigeon and Raghavarao (see [69]), propose designs for com­

paring u test treatm ents (0 , . . .  , u —1) with a control x. The authors are interested 

in efficient estimation of the contrasts of treatm ent and carry-over effects of the u 

test treatm ents versus the control treatm ent. Designs where the variance m atrix 

of the contrasts of interest is completely symmetric tend to be optimum. Control 

balance residual effect designs found to have this property and being equally effi­

cient as incomplete block solutions, for estim ating contrasts of interest. A control 

balance residual effect design possesses the following properties: each treatm ent 

appears at most once in each subject, control and test treatm ents occur the same 

number of times in each period {to times for the control and ti times for the 

test), control treatm ent occurs with each test treatm ent in Aq subjects and each 

test treatm ent occurs with every other test treatm ent in Ai subjects, the pre­

mentioned property also holds if the last period is deleted, the ordered pair of 

treatm ents (x,i) occur in successive periods in vq subjects and the ordered pair 

(i,j) occur in successive periods in Vi subjects. Finally, for every treatm ent pair 

(0,0) the number of subjects where 9 occurs with 0 in the last period equals the 

number of subjects where 0 occurs with 6 in the last period. The author provides

64



rules for the construction of such a design.

An interesting paper, close to tha t of Matthews, is Lasserre’s work (see [53]) 

on determining optimum plans for the comparison of two treatm ents when two, 

three and four period design-families are considered. Three models studied and 

subject is considered as a random effect throughout. In the first model, overall 

mean, period and treatm ent terms are included. The second model contains all 

terms included in the first plus carry-over of the simple type. The third one is 

an extension of the second, where treatm ent by period interaction is also fitted. 

A first result in Lasserre’s work is th a t the estim ate of the period effect is in­

dependent from the between subject variability. Variance of treatm ent effect or 

other param eters of interest, are presented in term s of the ratio  where cr̂  is

the subject error variance and cr̂  the error variance. For the two-period designs 

all possible sequences are considered (AA,AB,BA,BB) and if rin , rii2 , ri2 i and 7222 

subjects allocated in each one of them, the following restrictions m ust be satisfied 

Mil =  M22 and Mi2 =  M21 . The same principle applies to three and four-period 

families. The variance of the treatm ent effect estim ate is minimized under model 

1 when equal number of subjects are allocated to the sequences (AB,AB). For 

the other two models, equal niimber of patients should be allocated in all four 

possible sequences. For the three-period two-sequence family anyone of the three 

possible designs can be recommended for use under model 1. Under the same 

model, in the three-period four-sequence family the plan (AAB, ABA, duals) is 

optimum. Surprisingly enough for model 2 the same design estim ates efficiently 

both treatm ent and carry-over effects: A BB/dual. For model 3, two six-sequence 

designs are recommended. When four-periods are used, then under model 1 the 

number of designs the experimenter can choose from to run his study is much 

higher, compared to the number of plans for the other two models.

Two-period cross-over designs where more than  two treatm ents are compared are 

studied by Carrière and Reinsel (see [4]). Number of randomized subjects [N) 

should be a multiple of t or t being the number of treatm ents under considera­

tion. The authors derive first the information m atrix  jointly for the treatm ent and 

carry-over effects and then the information m atrix for the treatm ent effect alone, 

adjusted for all the other terms in the model, carry-over inclusive. Carrière and
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Reinsel prove th a t a two-period design where treatm ents appear equally often in 

each period and the number of subjects receiving the treatm ent pair (z, j )  equals 

the number of subjects receiving the pair (j, i) ,  is optim al for estim ating trea t­

ment effects among all two-period repeated measurement designs, when N  

The covariance m atrix  for any treatm ent effect contrast is also evaluated.

Up till now we have not touched upon Bayesian methodologies for deriving opti­

mum plans for cross-over trials. The application of Bayesian ideas becomes more 

relevant when non-linear term s included in the model, see Ch5 for further de­

tails. Both Atkinson and Donev (see [1]) or Fedorov and Hackl (see [13]) provide 

a thorough account of Bayesian experimental design theory. An interesting paper 

on Bayesian design of experiments for linear models in the presence of variance 

components is th a t by Lohr (see [58]). The paper is not related to cross-over 

experiments particularly, bu t the ideas presented there can be applied easily to 

th a t area as well. Any cross-over model can take the following form:

Vijk =  f îj +  3ik +  Cijk (2.46)

where Sik ~  N { 0 , a ‘̂) and Cijk ~  A"(0, a^). The question of interest is identifying 

best plans for variance component estimation. A reasonable guess is needed for 

the variance components, in fact for the ratio 7  =  cr^/cr^, which will be translated 

to a proper prior distribution for th a t param eter. Two Bayesian design criteria 

considered in Lohr’s work: the expected value of the log of the determ inant of 

the information m atrix is maximized (extension of D -optim ality), the average 

variance of a linear combination of the param eters is minimized (extension of 

A -optim ality). After deriving the Fisher information m atrix  for the variance 

components, the number of measurements per sequence is estim ated and a fur­

ther condition needs to be satisfied for the design to be D-optim um . All these 

conditions depend heavily on the prior distribution for 7 . Results between the 

two criteria differ, when the prior belief is th a t 7  is small.

2.11  Concluding remarks

The m ajority of the methodologies concerning the analysis of cross-over da ta  has 

been developed with the 2 x 2 design in mind. Extensions of these analysis methods
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to higher order designs are under-developed. Obviously, there is an extensive 

literature on the analysis of repeated measurement experiments, a special case 

of which is the cross-over experiment. Lindsey (see [56]) provides over 50 pages 

of references for analyzing repeated measurement data. W orth investigating, 

if extended 2 x2  analysis strategies to more general settings lead to techniques 

already known for analyzing repeated measures.

Concerning the identification of optimum plans, attention has been focused on 

the simple carry-over model. Results for other carry-over types are provided in 

subsequent chapters. These results apply to cross-over plans with lim ited number 

of sequences and periods. Generalization of these results to  higher order designs 

require further research effort.
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Chapter 3

The 2x2 Cross-Over Trial

3.1 Cross-over and Parallel Group Trials

A cross-over trial is an a ttem pt to make a fair comparison between two or more 

treatm ents on a group of patients. Patients are divided into two or more groups, 

and each group receives a sequence of treatm ents. The time period a trial lasts 

is divided into sub-periods. At the beginning of each sub-period one and only 

one treatm ent is administered to each patient and the effect of the treatm ent is 

assessed a t the end of it.

The main advantage of conducting a cross-over trial in medical research, is the 

ability of making treatm ent estimates based on within-subject measurements 

(see Senn [77]). This simply means th a t the variance of the proposed treatm ent- 

estim ator is lower compared to the one of a parallel group trial. Moreover patients 

through their measurements, provide their own judgement about the performance 

of the therapies and i t ’s the combination of these judgements th a t forms the final 

picture concerning effectiveness of different treatm ent regimes. On the contrary if 

we use a parallel trial to compare therapies, then each group of patients receives 

only a specific treatm ent and then comparisons are made between groups to assess 

treatment-effect. Obviously a significant difference between two treatm ents in a 

parallel study, might be caused because of differences in groups and not of any 

real treatm ent effect. However random ization arguments exclude the possibility 

of a significant group effect.

A main disadvantage with the cross-over trial is the carry-over effect. This simply
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means th a t the effect of a treatm ent in a given period is present a t the beginning 

of subsequent periods. As a result other im portant effects of interest, like the 

treatm ent by period interaction in the 2 x2  case, are intrinsically aliased with the 

carry-over effect. A solution to the problem is to allow for adequate wash-out 

period between any two active periods, so that the effect of the treatm ent in the 

present period is eliminated a t the s tart of subsequent periods. A drawback of this 

solution is th a t the time-period a trial lasts is extended considerably, increasing 

at the same tim e substantially the possibility of drop-outs.

3.2 The model

A response obtained on a patient participating in a cross-over study a t a specific 

treatm ent period is affected by a number of factors, some of which are listed 

below (see Jones and Kenward [39]):

•  Physical condition of the patient at the time the measurement has been 

taken (subject effect).

•  Effect of the period in which the measurement was taken. This corresponds 

to time trend effects, probably affecting the trial as a whole. For example 

measurements taken in W inter might be substantially lower than  measure­

ments taken in Summer, no m atter which treatm ent is adm inistered to the 

patient. But the statistician should always keep in mind th a t patients are 

not recruited simultaneously. For example two patients who have been 

assigned to the sequence AB might visit the clinic for the first tim e in dif­

ferent dates. This raises the im portant question of how the period (time) 

effect should be defined and modeled, though M atthews (see [65]) proposes 

several approaches to this query.

•  Effect of the treatm ent given to the patient at th a t period. This simply 

counts the improvement (if any) in patien t’s health by the specific tre a t­

ment, when this improvement is compared to the normal condition of the 

patient. Usually the model is over-parameterized if a different term  is al­

lowed for each treatm ent effect. Contrasts of treatm ents are usually in­
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eluded in the model. A standard param eterisation is the one in which each 

treatm ent is compared to a standard therapy.

•  Effect of treatm ents administered in previous periods. This is simply the 

well-known carry-over (residual) effect of previous treatm ents administered 

to  patients during the course of the study. The presence of carry-over effect, 

not only biases the estimated treatm ent effect, but also creates problems 

on the choice of best design at the early stages of the trial-design phase. 

As a result, adjusting for those residual effects is of questionable value for 

assessing the real effect of the current treatm ent. But the question raised 

is if carry-over effect is present at all in a well-planned clinical trial.

•  Random fluctuation counts for errors which cannot be controlled or ex­

plained by the trialist. The effects of explanatory variables th a t may influ­

ence the response but have not been measured during the study period, are 

also included in th a t term.

The above additive effects if w ritten in an equation form, give the linear model 

for cross-over trials described below:

Vijk =  M +  SiA: +  Tî’j +  'Td{i,j) +  +  ^ijk (3.1)

where

•  : a. general overall mean.

•  Sik : The effect of subject k  in the i sequence group.

•  TTj : The period effect.

•  Td{ij) : Effect of treatm ent given to sequence i, at period j .

• ^d{i,j-i) : Residual effect of treatm ent given to sequence i, at period j  — I.

Note th a t carry-over effect lasts only for one period and depends on the preceding 

treatm ent and not on the current one. For th a t reason the model described in

(3.1) is called ’simple carry-over’ model. It is possible to include higher order

carry-over term s in the previous model, but this may create identification prob­

lems during the estim ation process. Furthermore, it is highly unlikely in practice
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th a t carry-over terms of higher order will be present a t all.

Two im portant statistical points are in order. To begin with, in the classical linear 

model set-up it is always assumed th a t Cijk ~  N  (0, where cr^ stands for the 

w ithin-patient error variance. A question of interest is if the subject effect should 

be considered as fixed or random  (see Chi [6 ]). From the s tatistic ian’s perspec­

tive, inferences should be drawn for the population with the medical condition 

as a whole, rather than  for the trial participants only. This calls for considering 

the subject effect as random  variable. In addition with random  subject effect, 

the number of param eters needed to describe th a t effect does not increase with 

the number of subjects. Finally, variability for which one has no explanatory 

variables to explain, or for which one wishes to allow w ithout trying to explain 

can be described by a random  subject effect. For all the above reasons, the as­

sumption Sik ~  N  (0 , cr|) seems a realistic one.

Secondly, in the model described in (3.1), no interaction effects were included. 

In a cross-over trial it is not possible to test all multi-way interactions, although 

some of them might be of interest in specific settings. For example the treatm ent 

effect might be a function of time. In the classical linear model setting this im­

plies a statistically significant treatm ent by period interaction. Another similar 

example is the patient by treatm ent interaction, which simply indicates th a t the 

treatm ent is highly beneficial for one group of patients, but less so for another. 

The availability of th a t information is of great interest to pharm aceutical com­

panies, as it would show the sub-population(s) for which the development of a 

compound is worthwhile. This information is available only a t the later phases 

of drug development.

In the examples th a t follow the statistical significance of some of the interaction 

term s will be examined. In most cases it will be concluded th a t the inclusion of 

such terms in the model is hardly necessary.

3.3 The 2x2 case

In the simplest of the cross-over designs, where two treatm ents are tested in 

two periods, half of the recruited patients are randomly allocated to one of the
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two sequence treatm ent groups; namely AB and BA. The four group by period 

observed means are sufficient for drawing inference about the treatm ent effect. 

The treatm ent estim ator is simply a weighted average of these means; namely

f  — wiyii  +  W2yi2 T  W3Î/21 +  w^y22 (3.2)

where =  0. The first two moments of the four sequence by period means

vector, assuming random subject effect, can be expressed for the simple carry-over 

model as follows:

E

 ̂ÿn A - 1  - 1  0  ''

ÿi2 1 1 1 - 1 7T

ÿ2i 1 - 1 1 0 T

^ V22 j ( 1  1 - 1  i j U J
(3.3)

and.

V

 ̂ ÿn \
m ni 0 0 \

ÿi2 £ ini m 0 0

ÿ2i 0 0 ri2
A
ri2

V22 j 0 0 2 i712 712 /

(3.4)

In equation (3.4), it has implicitly been assumed th a t between subject measure­

ments are uncorrelated, so the variance-covariance m atrix  is a block-diagonal one. 

Our goal is to determine the weights in (3.2). S tandard statistical techniques, like 

generalized least squares (GLS), provide the following estim ates for the treatm ent 

difference 2 r:

•  If carry-over is not present in the model, then:

[Wi ,W2,Wz,W4,Y =  ( —| ,  5 , " 2 )^

• But if carry-over is included, then:

[WuW2, W3 , =  ( - 1 , 0 , 1 , 0 )^

It is assumed th a t rii,i = 1,2 patients allocated in each one of the two sequence 

groups, while n = rii ri2 is the to ta l number of patients recruited in the trial.
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Note th a t when carry-over term  is included in the model, the proposed weights 

do not depend on the d a ta  from the second period.

The above estim ators can be w ritten in a more concise form as follows:

CROS =  —- ÿ n  +  -ÿi2  +  2^21  — 2^ 22  (3.5)

when carry-over param eter is not included in the model, and

PAR =  ÿ 2 i — ÿ n  (3.6)

when carry-over param eter is included in the model.

The proposed treatm ent-estim ators as expressed in (3.5) and (3.6) have a simple 

interpretation: if the trialist can be reasonably confident th a t residual effects from 

first period therapy are not present a t the s tart of the second period, then he can 

use the whole of his data  to extract information about the treatm ent differences; 

on the contrary if he strongly believes th a t residual effects are still in existence at 

the beginning of the second period, then inference about the treatm ent difference 

should be based only on the first period data, which are free from any residual 

effects. In the second case 50% on average of the available information (second 

period data) is discarded.

In conclusion, if you include a carry-over term, then you should throw away half 

of your data  in order to derive a statistically optimal treatm ent estim ator.

3.3.1 W hat if CROS is used when we should use PA R  in 

the simple carry-over model

From the discussion so far, it is clear th a t inclusion of a carry-over term  in the 

2 x 2  case leads to a treatm ent estim ator which sacrifices a lot of the available in­

formation, in order to retain good statistical properties (MVUE). One may argue 

th a t da ta  from both periods should be used to estimate treatm ent differences, no 

m atter if carry-over effect is included in the model or not. In the more general 

case, where the carry-over term  is included, although PAR estim ates unbiasedly 

the treatm ent difference 2 r  it has higher variance since it is a between-patient es­

tim ator. On the other hand CROS is a biased estimator, but w ith lower variance, 

since it utilizes within-patient information to estimate treatm ent effect. Bias and
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variance of the proposed estim ators are presented below:

BiaspAR =  0 VpAR =  {(Jw +  ^g)(— +  ~ )  (3-7)

BiascRO S =  ^  V cRO S =  (3.8)

From (3.7) and (3.8), it is not difficult to evaluate the Mean Square Error (MSB) 

of the proposed estim ators and try  to figure out under which circumstances we 

should use the w ithin-patient estim ator CROS instead of the less precise between- 

patient estim ator PAR. Since:

M SEpAR =  (cr^ +  ^ b ){—  +  “ ) (3.9)

m s e c r o s  =  +  ;!;) +  %  (^.lo)

the required condition for selecting CROS instead of PAR is easily proved to be:

— <  (o-^ +  2 a | ) ( — H-— ) (3.11)
Z Tl\ 712

In the special case where equal number of patients are allocated to the two se­

quence groups, i.e ni =  7i2 =  n, the previous condition takes the simpler form:

$  < (3 ,2 )
A n

By studying more carefully (3.12) we see th a t our final decision about which 

estim ator is the best one to be used in the analysis, depends on the magnitude of 

the unknown residual effect. Generally speaking, the carry-over effect might be 

expected to be small, smaller than  the combination of the within and between 

patient variance stated in the right-hand side of (3.12). As a result we are more 

likely to select the CROS estim ator instead of the PAR, in real-life situations.

3.3.2 Combining the two estim ators - Frequentist approach

The statistical properties of CROS and PAR have been extensively studied in 

the previous section. A typical medical statistician will be tem pted to linearly 

combine the two estim ators in order to improve upon them. Our new treatm ent 

effect estim ator takes the following form:

fc =  wCROS +  (1  -  w )FA R  (3.13)
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In order to investigate the properties of the combined estim ator, the joint distri­

bution of PAR and CROS under the simple carry-over model is needed and it is 

provided below. It is assumed th a t equal number of patients are allocated to the 

sequence groups.

1 I 2 ( a ^  +  o-|)PAR f T
~ N  I

CROS V r - A / 2 n 'w 'w

Note th a t Cov(PAR, CROS) =  a property which greatly simplifies the

expressions for the first and second order moments of f^. We would like to choose 

the weight w in (3.13), so th a t to minimize the MSE of fg. To th a t purpose, a 

new between-patient estim ator has to be defined as follows;

SEQ =  2 (PAR — CROS) =  (^21 +  ^22) — (ÿi2 +  ÿii) (3.14)

This estim ator plays a key role for drawing inference about carry-over effect, since 

its expectation is simply th a t eflPect, while its variance is:

(3.15)SEQ n

There is an easy clinical interpretation for the SEQ estimator: The sum of the 

responses are calculated for each patient and the averages of those sums are 

obtained for each sequence group. Those averages are compared between groups, 

and this difference forms an unbiased carry-over effect estimator. SEQ is being 

used for testing statistical significance of any residual effects under the simple 

carry-over model.

The optim al weight for minimizing the MSE of the combined estim ator is as 

follows:

^S E Q  1
"'frequentist (3.16)

^S E Q  +  1 + T \
where is the t-statistic for testing A =  0. The above expression has been

derived by Jones and Wang (see [41]), who also report a simulation study for 

a range of values of A and cr^ which shows th a t the combined estim ator has 

worse performance in term s of MSE when compared to CROS and the two stage 

procedure (presented in the next section). Equation (3.16) simply confirms tha t 

when the carry-over effect is negligible, more weight is put on the within-patient 

CROS estimator, while in the unlike alternative scenario of a huge carry-over 

effect the between-patient PAR estim ator gets more credit.
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3.3.3 Combining the two estimators - Bayesian approach

Grieve (see [26]) considers in his Bayesian analysis of the simple carry-over model, 

the problem of model selection. In our set-up, a discrete set of competing models 

(simple and no carry-over) is proposed and the Bayes factor is used for selecting 

a single model. For the 2 x2 cross-over trial, the Bayes factor is simply the ratio of 

the marginal likelihood under the no carry-over model, to the marginal likelihood 

under the simple carry-over model. Grieve evaluates the Bayes factor against a 

carry-over effect as follows:

Boi =  V 3 ^ [ l  +  F / ( 2 n - 2 ) ] ‘ " (3.17)

where, F  is the statistic for assessing significance of the carry-over effect, while 

n  is the number of subjects recruited in each sequence. Grieve reports th a t the 

maximum value for B qi occurs when F  = 0. Although the observed F  value 

rarely is identical to zero, in the example tha t will be shortly analyzed, but also 

in the trial considered by Grieve, the ratio F/{2n  — 2 ) does seem to approach 

zero. If this assumption is made, then the Bayes factor simplifies to:

>01 \ / W 4  (3.18)

A general use of the Bayes factor is to form posterior estim ates of param eters 

of interest by averaging over a discrete set of quantities derived from posterior 

distributions under different model assumptions. Grieve implements this idea, by 

combining CROS and PAR using the following weight on CROS:

  ^-^01 / Q  ..

-  1 +  ttBoi  ̂ ^
where, tt is the prior odds against a carry-over effect. If we are indifferent a-priori 

to the choice of a model, then we can assume tha t tt =  1 . Substituting equation 

(3.18) into equation (3.19), the Bayesian weight on CROS takes the following 

form:

"'bayes =  2 +

Obviously the Frequentist approach assigns a weight in GROS th a t results in the 

smallest possible MSE for treatm ent effect estimation. The question, how close
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is the Bayesian combined estimator when compared to its Frequentist competitor 

over a range of A values, is raised. Figure (3.1) reveals tha t for moderate values 

of the carry-over difference the two approaches are indistinguishable, while the 

Bayesian is out-performed considerably by the Frequentist solution for low and 

high values of A. The Bayesian solution though, has the distinct advantage 

that the weight assigned to CROS depends only on the sample size and not 

on unknown parameters.

Combining CROS with PAR

Frequentist
Bayesian

CO —

LOo
LU
O)
(5ocrco
c
03
03

CO

52 3 40 1

Lambda

Figure 3.1; Combining the two treatm ent estimators
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3.4 The two stage procedure

In our discussion so far, it is clear th a t residual effect plays a key role in drawing 

inferences about the treatm ent difference. Of course clinical knowledge could rule 

out carry-over occurring in any appreciable degree, but it is quite unlikely, under 

either the Frequentist or even the Bayesian point of view, to be in a position to 

incorporate any knowledge about the residual effect of a treatm ent without ac­

curate knowledge of the treatm ent effect itself. Usually such knowledge becomes 

partially available at the early stages of a clinical trial (Phase I) where drugs 

are tested on healthy volunteers, but statisticians face difficulty in incorporating

tha t piece of information at the later stages of either planning or analyzing the

outcome of a cross-over or a parallel group trial.

A first a ttem pt to tackle this problem was the solution proposed by Grizzle (see 

[30]). The idea was to test formally for the presence of carry-over effect, rather 

than relying on subjective opinions provided by medical doctors for its existence. 

His procedure composed of two stages. At the first stage the significance of carry­

over was decided by comparing the means of the two sequences (SEQ estimator). 

It has to be said tha t this test for carry-over is under-powered, as noted by Senn 

(see [74]). At the second stage the treatm ent effect estim ate is based on the in­

formation provided about the residual effect a t the first stage. Schematically the 

procedure is displayed in Figure (3.2).

The detailed proposed scheme is as follows;

•  S tag e  1 : Use the between-patient carry-over estim ator, SEQ, to test the 

significance of carry-over effect a t 1 0 % level.

•  S tag e  2: If test for carry-over is significant use the between-patient PAR 

estim ator to evaluate the extend of the treatm ent difference at 5% level, 

otherwise the within-patient treatm ent estim ator, CROS, should be used 

for drawing inference about treatm ent, again at 5% level.

A mixed effects model is assumed throughout, since subject effects are considered 

as random. At first sight the two stage procedure seems to be the correct one for 

analyzing data  from cross-over experiments, since the minimum variance unbiased 

(MVU) treatm ent estimator is the recommended one for inferential purposes,
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Check A =  0 
using SEQ

Use CR O S  for 
testing r  =  0

Use P A R  for 
testing r  =  0

Figure 3.2: Flow diagram of the two stage procedure
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irrespective of the significance or not of the residual effect. Before proceeding

further it would be helpful at this point to present the marginal distributions

of treatm ent and carry-over estimators, useful for evaluating the performance of 

the two stage procedure under the simple carry-over model with random subject 

effects. These are:

SEQ ~  iV(A,4((T^ +  2 a | ) / n )  (3.21)

PAR -  iV (r, 2 ((7^  +  4 ) /n )  (3.22)

CROS ~  / V ( t - A/2 ,c r^ /n )  (3.23)

Evaluation of Type I and Type II error rates of the two stage procedure require the 

distribution of the treatm ent estim ator used at the second stage of the procedure, 

conditional on the value taken by the carry-over estim ator used at the first stage. 

These are:

PAR|SEQ N ( T - A / 2  4-5'EQ/2,cr^/7%) (3.24)

CROS|SEQ -  N (T -A /2 ,< 7 ^ /y i)  (3.25)

As shown by Freeman (see [21]), the scheme suffers from many deficiencies the

consequences of which will be soon demonstrated. The m ajority of these defi­

ciencies stem from the high correlation between SEQ and PAR. It is not difficult 

to show that:

C orr(PA R ,SEQ ) =  ^ ( 4  +  2 cr|) /  (2 ^  +  2ct| )  (3.26)

but,

Corr(CROS,SEQ) =  0 (3.27)

This simply implies tha t although the PAR estim ator is unbiased for estimating 

the treatm ent effect under the simple carry-over model, it is highly biased if 

carried out having seen the value of the SEQ estim ator (see Senn [78]). More 

specifically:

E(PAR|SEQ) =  r  +  ~  ^ (3.28)
2

V(PAR|SEQ) =  V cRO S =  ^  (329)
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A further implication of the high correlation between PAR and SEQ, is th a t if 

the PAR estim ator is chosen at the second stage, then the size of the test for 

investigating a treatm ent difference using PAR, should not be set a t the conven­

tional 5% level, but at a much lower level, such as 0.5% (see Wang and Hung [90] 

or Senn [79]). This ensures th a t the overall Type I error rate  of the procedure is 

kept at the nominal 5% level.

Another way of looking at the deficiency of the two stage procedure is by not­

ing th a t conditionally on SEQ, CROS and PAR are both  biased; the first by an 

amount of —A/2, while the second by (SEQ — A)/2. Note th a t the conditional 

distribution of GROS | SEQ is identical to th a t of CROS since the two estim ators 

are statistically independent. So PAR|SEQ is biased regardless of the presence of 

carry-over effect, on the other hand CROS (or equivalently CROS |SEQ) is biased 

only in the presence of carry-over (see Senn [78]). Furthermore CROS and PAR 

have the same conditional variance given SEQ. As a consequence the treatm ent 

estim ator with the smallest conditional bias (in absolute terms) should be chosen 

by the procedure at the second stage. But when the PAR estim ator is chosen 

from the procedure for testing treatm ent effect, the difference SEQ — A must be 

large enough so th a t the carry-over effect is statistically different from zero. From 

the discussion above the PAR estim ator will have higher conditional bias than 

its competitor CROS (or CROS|SEQ) and the same conditional variance, but 

the two stage procedure will select PAR instead of the more efficient CROS. In 

conclusion PAR is selected when it should not by the two stage procedure.

A thorough investigation of the performance of the two stage procedure was a t­

tem pted 25 years later after Grizzle proposed this scheme, by Freeman (see [2 1 ]). 

Trialists who had analyzed d a ta  from cross-over experiments using the two stage 

procedure for many years, had implicitly assumed th a t PAR and SEQ were inde­

pendent, so th a t they were incorrectly thinking th a t the overall Type I error of 

the procedure was 5%. Because of the high correlation between PAR and SEQ 

the real Type I error is 8.7% in the absence of any residual effect. In the case 

where carry-over effect is a small fraction of the treatm ent effect the CROS es­

tim ator is more powerful when compared to the two stage procedure, as will be 

soon demonstrated. The two stage procedure is superior to the CROS estim ator.
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in terms of power, only in the unlike case where carry-over effect is a substantial 

fraction of the treatm ent effect.

Before attem pting a more detailed investigation of the two stage procedure a basic 

notation will now be introduced. Let as stand for the size of the test for carry­

over, while Up and Oc represent the size of the test for treatm ent when PAR or 

CROS are used respectively. Moreover / s e q ( ^ ) ’-/*FAr(^) •^CROS(^) denote

the marginal densities, while V ggQ ,V p^j^ and Vq j^q S the unconditional

variances of the estimators indicated in the subscripts. Finally Za is the value 

which cuts-off the upper a% of the standard normal distribution, $ (x ) is the cu­

mulative density of the same distribution, while Cg,Cp and Cc are the critical values 

for testing the hypothesis of significance for carry-over or treatm ent effect and de­

fined as follows: Cs = ~  ^ap/2 >/VpAR Cc =  ^oc/2 x A ^cp ^S -

More specifically, following Senn (see [78]), according to the plan of the two stage 

procedure the following treatm ent estimator is used:

tts =
CROS, i f  iSEQI < z ., /2 y/V sEQ  

PAR, i f  ISEQI > z ., /2 y V g E Q

The evaluation of the power of the two stage procedure, requires first the calcu­

lation of the power for each arm; the left one which points to the use of CROS 

and the right one where PAR is used as tool for estim ating treatm ent effect. The 

unconditional power of each arm is more easily evaluated by considering first the 

conditional power of each treatm ent estimator upon the possible values of the 

carry-over estim ator (SEQ) th a t gave rise to tha t treatm ent estim ator. Because 

CROS and SEQ are independent it is obvious that:

Power(CROS|SEQ) =  Power(CROS) =

1 -  ^{Zac/2-----ÿ = = ^ = )  +  ^ { -Z a c /2 ----- , ^ - )

On the contrary, because PAR and SEQ are highly correlated, in order to work 

out the power of tha t arm we have to evaluate first the power of PAR|SEQ =  T, 

which as a function of SEQ will then be integrated out over the values of SEQ 

for which PAR is selected at the second stage of the procedure, as follows:

Power (PAR) =  J  / g p q ( 2:) (Power (PAR| SEQ =  x)) dx

|ll>C5
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where,

^»p/2  V^^PAR ”  +  2: /2 )Power (PAR I SEQ =  x) =  1 — 0

+  <ï>

y^^PA R|SEQ  

~'^ap/2 \ / V p ^  -  ( r  -  A/2 +  x /2)

^ ’̂ PARISEQ

By combining all the above we can evaluate the power of the TS procedure as 

follows:

Power (TS) =  prob (CROS is selected) Power (CROS | CROS is selected)

+  prob (PAR is selected) Power (PAR|PAR is selected)

where,

prob(PAR is selected) =  prob(reject A =  0) =  prob(|SEQ| > 2 a,/2 y^Vg;gQ)

To illustrate the performance of the two stage procedure, suppose tha t the real 

treatm ent difference is 2 r =  5, while the carry-over difference can be set at 

any value in the interval (0 ,2 r). By assuming the w ithin-patient variance to be 

half the between-patient variance (for example suppose th a t = 48, so tha t 

cr| =  96) and by requiring the power of the CROS test to be 90%, the number 

of patients in each sequence group can easily be estim ated to be n =  22. Those 

values are the same as those used by Jones and Lewis (see [40]) on their discussion 

of the usefulness of the cross-over experiments a t the third phase of clinical trials. 

The results comparing the power of the two stage procedure with th a t of CROS 

and PAR are presented in Table 3.1.

As far as the bias is concerned the argument goes as follows:

E 't s  —  J  ^  (CROS I SEQ =  x) / s e q ( 2 )̂ dx
|x|<Cs

+  f  E  (PAR|SEQ =  x) / s e q ( ^ )
|x |>c

+

SEQ

J  (r  -  A/ 2  +  x/2)  /sE Q  {^) dx
X > C j
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where the independence of CROS and SEQ estim ators has been exploited once 

more. Turning now to the assessment of the variance of the procedure, we apply 

the following tower property regarding variances;

=  y (^(C R O S |S E Q )) +  E (y(C R O S |SE Q ))

+  y (E (P A R |S E Q )) +  E (y (P A R |S E Q )) (3.31)

The above expressions can be evaluated by using the appropriate conditional 

moments:
2

£?(y(CROS|SEQ)) =  ^ p ro 6 ( s e le c t  CROS)

R(E(CRGS|SEQ)) =  0 (3.32)
2

E(R(PA R |SEQ )) =  ^ ( 1 -p ro 6 (se lec t CROS)) 

y(E (PA R |SE Q )) =  iv g E Q

4 ^ / s e q W<^^
/| x | > C s  \ | l | > C s  J

The tower property of the expectation and variance operators has been used to 

evaluate the first and second order moments of the two-stage procedure. From 

Table 3.1 it is clear th a t the power of both CROS and the two stage procedure 

(TS) decrease as the carry-over difference increases. The reverse argum ent is true 

as far as the bias and variance of the above estim ators are concerned. Regarding 

the PAR estim ator one can easily notice th a t the values of the power, bias and 

variance do not depend at all on the carry-over difference.

The prime interest to the statistician involved in the analysis of a cross-over clin­

ical trial is always which estim ator should be used for the statistical analysis and 

unfortunately no ultim ate decision can be reached towards th a t end. Note th a t 

only in the case when carry-over is 50% or more of the real treatm ent effect is 

the two stage procedure superior to the CROS estim ator in term s of power. The 

PAR estim ator has always the lower power compared to the other two estim a­

tors and should never be used. However the TS procedure has lower bias when 

compared to the CROS estim ator but has substantially higher variance along the 

whole range of values for the carry-over difference. If one now computes the mean 

square error (MSE) of the two estim ators the CROS estim ator will be preferred as
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Table 3.1: Properties of the three treatm ent estim ators when r  =  5

Power Type 1 Bias Variance

A CROS TS PAR CROS TS PAR CROS TS PAR CROS TS PAR

0.0 0.922 0.881 0.282 0.050 0.087 0.05 0.000 0.000 0.000 2.182 6.974 13.091

0.5 0.895 0.863 0.282 0.053 0.089 0.05 -0.250 -0.139 0.000 2.182 7.018 13.091

1.0 0.861 0.839 0.282 0.063 0.098 0.05 -0.500 -0.278 0.000 2.182 7.149 13.091

1.5 0.820 0.809 0.282 0.080 0.112 0.05 -0.750 -0.414 0.000 2.182 7.368 13.091

2.0 0.772 0.772 0.282 0.104 0.131 0.05 -1.000 -0.546 0.000 2.182 7.672 13.091

2.5 0.718 0.730 0.282 0.135 0.157 0.05 -1.250 -0.673 0.000 2.182 8.059 13.091

3.0 0.658 0.683 0.282 0.174 0.187 0.05 -1.500 -0.794 0.000 2.182 8.527 13.091

3.5 0.594 0.635 0.282 0.220 0.223 0.05 -1.750 -0.908 0.000 2.182 9.070 13.091

4.0 0.528 0.584 0.282 0.273 0.263 0.05 -2.000 -1.013 0.000 2.182 9.684 13.091

4.5 0.460 0.535 0.282 0.331 0.306 0.05 -2.250 -1.110 0.000 2.182 10.363 13.091

5.0 0.394 0.488 0.282 0.395 0.349 0.05 -2.500 -1.196 0.000 2.182 11.100 13.091

having the lower MSE. Once more the PAR estim ator has the worst performance 

in terms of MSE.

Since in most cases any residual effect from previous treatm ents is negligible, 

Table 3.1 shows th a t we should be quite confident in using most of the time the 

CROS estim ator without pre-testing for carry-over effect. However in the un­

likely case of a statistically significant carry-over difference the TS procedure is a 

viable alternative in terms of power but still inferior to CROS in term s of MSE. 

Note here th a t the comparison based on the power performance is not a fair one, 

because the size of the test for treatm ent for the TS procedure when A =  0 is 

8.7%, while for the other two alternatives the corresponding figure is 5%. The 

question of adjusting the size of TS so th a t the nominal 5% level is achieved, will 

be discussed in the next section.

3.4.1 Can we improve the two stage procedure?

The answer to tha t question lies in the percentage of time th a t PAR is selected 

by the two stage procedure. The original scheme, as proposed by Grizzle, selects 

PAR 10% of the time under the null. It is obvious th a t if TS is modified such tha t 

the size of the test for PAR is lowered, then it would be possible to fix the Type
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I error rate at the nominal 5% level, bu t it is not clear at all if tha t alteration 

will improve the power of the procedure and make it superior to CROS. One way 

to adjust the TS procedure is by keeping fixed the size of the test for carry-over 

and the size of the test for treatm ent (when CROS is selected) at their original 

values, but adjusting the size of PAR. To illustrate the idea, suppose th a t the 

unconditional size of the test for PAR [üpar )̂  is set according to the relation;

(1 — üseq) ôcros +  f^PAR — 0 05 (3.33)

This relationship is approximately valid, since if P(SEQ,PAR) defines the prob­

ability th a t PAR and SEQ are jointly significant, then by requiring Type I error 

rate of the procedure to be 5% the following exact relation holds:

(1 — c l s e q ) ^ c r o s  +  P  (PAR, SEQ) =  0.05 (3.34)

Because P (PAR, SEQ) < üpar we conclude th a t

(1 — asEç) ciCROs +  O'PAR <  0.05 (3.35)

where equality holds when PAR and SEQ are perfectly correlated (see Senn [79]). 

This expression will be close to equality for the sorts of Corr (PAR, SEQ) com­

monly encountered in practice.

Equation (3.33) implies th a t the original scheme could be corrected in two dif­

ferent ways. According to the first plan the investigator might wish to test the 

significance of the treatm ent diflPerence at the same pre-specified level (say 5%) 

irrespectively of which treatm ent estim ator is chosen by the procedure at the

second stage (i.e a c R o s  = c l p a r )- This approach requires re-setting the level of

carry-over testing, but keeps the sizes of CROS and PAR equal. If we target 

Type I error a t 5% then the permissible range of values for the common size of 

the test for the treatm ent difference lies in the interval (2.5%, 5.0%).

An alternative way of amending the procedure requires fixing the size of the test 

for carry-over difference at the traditional 10% level, while altering simultaneously 

the sizes of CROS and PAR so th a t equation (3.33) is satisfied. As it is obvious 

from th a t equation an increase in the size of CROS should be accompanied by 

a decrease in the size of PAR, if th a t plan is followed. This approach may have 

im plem entation difficulties, since the analyst has to decide different significance
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Table 3.2: Performance of the corrected two stage procedure

Type I error Power

Plan 1 Plan 2 Plan 1 Plan 2

O'SEQ 7.6% 14.8% 10.0% 7.6% 14.8% 10.0%

O-CROS

A 2.6% 2.7% 4.5% 5.0% 5.5% 2.6% 2.7% 4.5% 5.0% 5.5%

0.0 0.047 0.049 0.050 0.050 0.050 0.848 0.821 0.870 0.871 0.852

0.5 0.049 0.051 0.053 0.053 0.053 0.818 0.798 0.849 0.850 0.828

1.0 0.055 0.056 0.061 0.062 0.062 0.782 0.768 0.821 0.821 0.797

1.5 0.064 0.066 0.075 0.076 0.078 0.740 0.731 0.785 0.785 0.758

2.0 0.079 0.079 0.094 0.097 0.099 0.692 0.688 0.742 0.741 0.712

2.5 0.098 0.097 0.119 0.123 0.127 0.640 0.641 0.693 0.691 0.659

3.0 0.122 0.119 0.150 0.155 0.160 0.586 0.591 0.638 0.635 0.601

3.5 0.151 0.145 0.185 0.192 0.199 0.531 0.540 0.581 0.575 0.539

4.0 0.186 0.176 0.225 0.233 0.241 0.477 0.489 0.521 0.513 0.475

4.5 0.224 0.209 0.268 0.277 0.285 0.426 0.440 0.462 0.451 0.410

5.0 0.266 0.245 0.312 0.322 0.331 0.380 0.396 0.405 0.391 0.348

levels for the testing of the treatm ent effect, depending on the treatm ent estima­

tor chosen a t the first stage of the procedure. In tha t case the maximum value 

tha t acRos  can be set at is 5.5%, while the corresponding range of acceptable 

values for ürar is from 0% to 5%.

Applying the first correction scheme leads to an improvement of the power of 

the procedure, as the size for testing the treatm ent difference decreases, con­

trary to the Type I error rate which looks to deviate from the desired 5% level. 

In Table 3.2 both  power and Type I error rate for Plan 1 are displayed, when 

o^CROs = CLpAR = 2.6% (or 2.7%). From equation (3.33) it can easily be derived 

tha t the size of the test for carry-over should be set at 7.6% and 14.8% respec­

tively. Those values were chosen on the grounds of providing best power values, 

while keeping the Type I error rate close to 5%.

Moving on now and studying more carefully the performance of the second cor­

rection scheme, it can be seen th a t power initially increases as ü c r o s  varies from
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0% to 5% but decreases afterwards. Type I error rate gets closer and closer to 

5% as acRos  moves from 0% to 5.5%. Once more the values chosen to illustrate 

the performance of the second correction plan give the highest power values. It is 

worth mentioning here th a t the first correction plan alters the bias and variance 

of the procedure, while the second one leave them  unchanged. Comparison of the 

two plans performance show th a t correction Plan 1 is less effective in improving 

the power of the procedure if the Type I error rate is set a t about the same level 

for both.

In conclusion all attem pts to improve the two stage procedure have failed for the 

whole range of carry-over values. This indicates th a t this procedure is rather of 

historical rather than actual value and by no means should be used in the future 

by the analyst of the cross-over experiment.

3.4.2 Another two-stage procedure

Equation (3.12) implies th a t the following treatm ent estim ator can be defined:

C R O S, i f  ISEQI <  2 v 1 4 ^ + 2 a | ) 7 n
'^TS2 — \  ----------------------

P A R , i f  ISEQI >  +  2 a % ) / n

An investigation similar to the one followed for studying the two stage procedure, 

reveals th a t the new scheme is worse in terms of power from CROS and the two 

stage procedure. More specifically, for the most interesting case where r  = X = 0, 

the Type I error rate is evaluated at 8.4% while the power is as low as 78%. This 

result shows th a t another a ttem pt to define the two-stage scheme in a more 

rational way, has failed.

3.5 A 2x2 trial in asthma

Salbutamol is a well established bronchodilator for patients suffering from mod­

erate or severe asthma. A recently developed bronchodilator, called formoterol, 

is tested against the old method in a 2x2 cross-over trial conducted on 13 chil­

dren. The response measurement was peak expiratory flow (FEE). Let A denote 

formoterol and B salbutamol, respectively. Children were randomized to one of 

the two sequence groups, such tha t 7 of them were allocated to the sequence



group AB, and the rest to the dual group BA. After their first visit in the clinic a 

wash-out period of at least one day followed before their second visit. These data  

can be found in Grieve and Senn (see [29]). A graphical display of the asthm a 

trial da ta  is presented in figure (3.3). A simple ANOVA analysis where the to ta l 

Sum of Squares (SS) has been split up into two components, a between and a 

w ithin patient SS, is shown in Table (3.3).

Overall the new treatm ent gives higher mean peak expiratory flow than the old 

one, although the improvement seems to be higher when salbutamol is adm inister 

to the patient before formoterol. This indicates th a t a carry-over effect (or equiv­

alently a treatm ent by period interaction) may be present. If carry-over effect is 

there this simply means th a t the persistence of salbutamol is longer when com­

pared to th a t of formoterol. A clinical explanation to this phenomenon is th a t 

pa tien t’s body has been addicted to the old treatm ent, so th a t its effect dies out 

slowly. As a result a longer wash-out period will be needed before the residual 

effect of salbutamol will have completely disappeared.

But is there a carry-over effect? ANOVA Table (3.3) indicates tha t the carry­

over effect is negligible. The improvement in PEF in favour of formoterol in 

the sequence BA was twice as much as tha t in the sequence AB. This was not 

because of a carry-over effect as the ANOVA table revealed, but it was due to 

a peculiar observation for subject 13. Particularly for this subject his first ac­

tive period measurement (treated with salbutamol) was extremely low (only 90), 

when compared to the mean of PEF from subjects in the same sequence group 

and at the same period (mean=322). In the same way his second measurement 

(220), when treated with formoterol, although it looks more similar to the mea­

surements taken on patients in the same sequence group and at the same period 

(mean=371), it is still substantial lower. The between and within subject stu- 

dentized residuals are shown in figure (3.4). The outlier values observed in this 

figure, correspond to subject 13.

In addition, fitting ’’patient” as a random effect, a typical analysis of the re­

sulting mixed effects model using restricted maximum likelihood (REML) as the 

m ethod of estimation for the variance components (see Searle [73]), evaluates the 

between-patient component at dg =  66.52 more than two times larger compared
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Figure 3.3: Graphical summary of the asthm a trial (without baselines)
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91



Table 3.3: Analysis Of Variance (ANOVA) table

Source DF Sum of Squares Mean Square F-value p-value

Between subjects

Carry-over 1 335.19 335.19 0.03 0 .8 6

BS Residual 11 114878.30 10443.48

Within Subjects

Period 1 984.62 984.62 1.31 0.27

Treatment 1 14035.92 14035.92 18.70 0 .0 0

WS Residual 11 8254.46 750.41

to the estim ated within-patient component âw = 27.39. Evaluation of the tre a t­

ment effect shows that, we expect in a future patient an increment in PE F by 

46.60 (10.77), when the patient is treated with formoterol compared to being 

treated with salbutamol.

3.5.1 The Bayesian Approach

The power of this approach lies on the ability of the analyst to report not only an 

estim ate of treatm ent (or carry-over) difference accompanied with its standard 

error, but the whole distribution of it, making easier the task to answer further 

queries of interest about these parameters. The first to present a Bayesian anal­

ysis of the cross-over experiment was Grieve (see [26]), who was able to derive 

explicitly the joint posterior distribution of treatm ent and carry-over effect, as 

well as, the marginal posterior distribution of the carry-over effect. Marginal in­

ference for the treatm ent effect, which is the main purpose for running the clinical 

trial, was not possible to be evaluated analytically, but Grieve (see [27]) was able 

to provide a very good approximation to it, based on P a til’s approximation to a 

Behrens-Fisher type distribution. Also the constrain cr^ < was considered in 

the analysis, but it turned out to make very little difference to the final conclu­

sions.

Our approach will be based on graphical modeling theory for expressing qualita­

tive relationships between data and unknown parameters, and on Gibbs sampling 

for performing the necessary computations to derive the posterior quantities of
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interest. The presentation of a statistical problem using graphs, where nodes rep­

resent random  quantities and missing links represent conditional independence 

assumptions, has the main advantage of breaking a complex model to simpler 

ones. This implies th a t the structure of the problem is easier to  communicate 

and furthermore the graph provides the basis for the com putation task (Gibbs 

sampling, see Gilks et al [2 2 ]).

In the 2x2 cross-over trial examined here, recall th a t responses [yij) on a specific 

patient are independent conditional on their mean jiij and the within-subject 

component of variance Each pa tien t’s mean is a linear function of four pa­

rameters ; patient, period, treatm ent and carry-over effect. Each one of these 

parameters is considered as a random variable and a prior d istribution is assigned 

to it. Note th a t in the frequentist approach only the ’’subject effect” is taken as 

random, with the rest of the param eters regarded as fixed quantities. This model 

is known in the frequentist literature as the random intercept model. 

Schematically the situation is presented in Figure (3.5). In th a t diagram  logical 

links (dashed arrows) have been used for represented determ inistic relationships, 

while solid arrows represent stochastic dependencies. The Gibbs sampler now 

generates a Markov chain for each variable. The chain is produced by using the 

conditional distribution of each unobserved node in the graph given the rest. In 

the long run the generated draws compose a sample from the posterior d istri­

bution of th a t variable. The diagram  indicates the way in which a sample of 

a random variable is linked with random  draws of other variables, so th a t the 

statistical restrictions of the model are satisfied (see Spiegelhalter [87]).

The likelihood function can be expressed as the product of the following terms:

l / i jk ~  ^

fJ'ijk =  +  7Tj H- Td{ i j ) +  A d ( ij _ i )

Sik -  N  (0, ( j |)

Fully Bayesian analysis requires the specification of prior distributions for all un­

known param eters appearing in the above equations. If inform ation regarding 

those param eters was available from previous cross-over trials this could be in­

corporated at th a t stage. In the absence of any prior knowledge the influence of 

the prior distributions in the final conclusions should be minimal. In our case the
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Figure 3.5: Graphical representation of the simple carryover model
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following least-informative priors were chosen:

~  Gamma (lO~®, 1 0 "®)

The starting  values chosen to  initiate the Gibbs sampler set the location param ­

eters a t zero, while the variance components at one. A long chain was run, so 

th a t conclusions are insensitive to initial values and most im portantly to  ensure 

th a t the chain has converged to its limited distribution. In this example, conver­

gence monitoring was also performed by generating five simulated sequences with 

different starting  points and using CODA software to evaluate Gelm an-Rubin’s 

R -statistic for treatm ent and carry-over effect. The R-values were almost identi­

cally equal to 1 , re-assuring th a t convergence occurred. For each variable 15000 

values were generated and only the last 5000 values used for drawing inference. 

The sampled values used for drawing inference for the various param eters are 

displayed graphically in Figure (3.6). All calculations were performed using the 

BUGS software. BUGS code is provided at the end of this chapter.

The posterior distribution of carry-over has mean 13.30 with variance 85.70. We 

conclude th a t carry-over must be negligible, although the 95% equal-tailed confi­

dence interval for th a t effect is (-141.00,201.00) indicating a wide range of possible 

values for the carry-over difference. This is expected since carry-over is estim ated 

using between-patient information, which implies tha t no m atter if either a Fre­

quentist 95% confidence interval is formed or a 95% Bayesian HPD region is 

calculated the interval looks always wide. Note here tha t because of the sym­

m etry of the posterior distributions for all location parameters, 95% equal-tailed 

intervals or 95% HPD regions lead to similar inferential conclusions.

O ther posterior quantities of interest for both models, not only for treatm ent and 

carry-over difference, but also for the within and between patient variability are 

summarized in Table (3.4).

The advantage of the Bayesian approach is th a t we can form an idea of the most 

likely values of treatm ent (carry-over) effect. In Figure (3.7), the posterior d istri­

bution of 2A indicates th a t the probability of th a t param eter lying in a symmetric 

interval around zero is really high. In the same figure the posterior distribution 

for the treatm ent difference suggests th a t under the simple carry-over model it is
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Figure 3.6: Sampled values for treatm ent and carry-over effect under various 

assumptions concerning the carry-over term
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Posterior distribution of residual effect for ttie simple carryover model
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Figure 3.7; Upper half: Posterior for residual effect under simple carry-over 

model. Lower half: Posterior for treatm ent effect under model with no carry­

over (solid line) and model with simple carry-over (dashed line)
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more likely formoterol to give higher PEF measurements than  salbutam ol, i.e

p ro b (r  >  Oly) >  p ro b (r  <  0 |î/).

although the possibility of a negligible treatm ent effect cannot be ruled out, as the 

posterior distribution of 2 r confirms. However this is not the most likely scenario 

for th a t effect. A further model th a t can be fitted, is the one where no carry-over

Table 3.4: Posterior quantities for param eters of interest
M odel w ith  carry-over term M odel w ithout carryover term

Param eter Mean SD 95% LL 95% UL Mean SD 95% LL 95% UL

2 f 53.10 44.60 -28.10 150.00 46.50 17.60 21.30 70.00

2Â 13.30 85.70 -141.00 201.00

âs 74:10 19.50 44.60 120.00 69.80 17.60 43.10 112.00

âw 30.00 7.52 19.50 48.70 30.00 7.44 19.50 47.90

term  is considered. Figure (3.7) shows the posterior density p(r|A  =  0,data). l t  is 

clear now th a t, although the mean posterior treatm ent difference is slightly lower 

compared to the corresponding estim ate under the simple carry-over model, the 

standard  error of this difference is substantially lower as well in the simpler model. 

The 95% HPD region of the simpler model leaves no doubt about the superiority 

of the new treatm ent.

The posterior quantities for the within and between patient variability are also 

affected to some extend by the presence or not of the carry-over term  in the 

model. Both the posterior mean and SD for dg are inflated when carry-over 

term  is included in the model. This is due to the fact th a t A and cr^ utilize simi­

lar between subject information for inferential purposes and absence of anyone of 

the two param eters affects our estim ate for the other. On the contrary the effect 

on âw  seems to  be smaller. Finally the data  does not exclude the possibility of 

the w ithin-patient variance being larger than the between-patient one, although 

looking at the posterior means of the variance components the posterior proba­

bility of th a t scenario is expected to be small.

In conclusion, the Bayesian analysis of our 2x2 cross-over trial w ithout baselines 

support the conclusions drawn from the Frequentist approach. Further insight 

on how treatm ent and carry-over effect affect each other, is also gained.
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3.6 The use of baselines

In the basic 2x2 cross-over experiment, already considered, it is quite common 

in practice for measurements to be taken on patients just before the s ta rt of the 

first treatm ent period, and after the completion of the first treatm ent period and 

prior to the s tart of the second treatm ent period, i.e at the end of the wash-out 

interval. Let [ynk,yi2k,yi3kjyi4k\ denote the four measurements collected on the 

patient randomized in the sequence group. The two baseline measurements 

provide information about the physical condition of the patient before the start 

of each treatm ent period, but they do not help a t all in assessing the treatm ents 

themselves. Note here th a t the second baseline measurement might have been 

influenced by the treatm ent adm inistered in the first period due to a first order 

carry-over effect, denoted as Of course carry-over from the first treatm ent 

period, might be present when the second treatm ent measurement is taken and 

this will be referred to as the second order carry-over effect, and denoted as A 

in what follows. An adequate wash-out period would suffice to eliminate both 

carry-over terms. The linear model adopted here is:

yijk =  +  7 t  +  SiA: +  7Tj +  T d ( i j )  +  +  ^d{i,j-2) +  Cijk (3.36)

where,

Sik ~  AT(0, o-|) and eijk ~  N{0, a ^ )

and,

d̂(z,o) =  ^̂ (̂2,0) =  =  0  for i = 1...r i i j  = I . .A , k  = 1,2.

Similar notation to the one used in the 2 x2  cross-over experiment w ithout base­

lines is utilized throughout. For example, carry-over from the first active trea t­

ment period to the second active treatm ent period is denoted by A, while a new 

symbol is used to refer to carry-over from first active treatm ent to wash-out 

period; namely 9. Once more the second order carry-over term  is confounded 

with the treatm ent by period interaction. As in the simple carry-over model the 

conventional uniform covariance structure is implied for observations taken on a
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subject, while observations from different subjects are assumed independent. A 

further term  introduced in the model is tha t of the sequence effect 7 .̂ Its inclu­

sion ensures th a t treatm ent and carry-over terms will be estim ated using within 

subject contrasts.

One way to handle baseline measurements is tha t proposed by Kenward (see [42]). 

They use OLS estimators, as they are optimal under uniform covariance struc­

ture. These estim ators have the form Ci — C2 , where q  is a contrast of the four 

cell means [ÿn., ÿis., ÿi4.j in sequence i. A treatm ent or carry-over estim ator is 

completely determined once the weights in those contrasts are explicitly defined. 

A three stage procedure for drawing inference about the treatm ent difference al­

lowing at the same time for any adjustments caused by the presence of carry-over 

term s is now described. Schematically strategy 2 is presented in Figure (3.8).

•  S te p  1  : Test the significance of the first order carry-over difference a t 10% 

level, by comparing the two baseline measurement on each subject. Least 

squares analysis points to the use of the following set of weights:

• S te p  2  : If the first order carry-over term is found statistically  significant 

from zero then keep th a t term  in the model and check for the significance 

of the second order carry-over term  at 1 0 % level, by comparing the first 

baseline measurement with the average of the two treatm ent measurements 

for each patient. The proposed set of weights in th a t occasion is:

On the other hand if the test for the first order carry-over term  allows 

the deletion of th a t term  from the model, then the test for the second 

order carry-over term  (at 1 0 % level again) is based on the comparison of 

the average of the baseline measurements to the average of the treatm ent 

measurements for each patient, suggesting the following scheme of weights:

_ . 1  1 1 Ix
"^^1 - ( 2 ' " 2 ^2 ' " 2 )
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Check if 0 =  0 
using 9

Test if A =  0 
using Ai

Test if A =  0 
using Ag

Yes Yes

Use fi 
(GROS)

Use fi 
(GROS)

Use T4 

(PAR)

Figure 3.8: Flow diagram of the three stage procedure (staregy2). Strategy 1 is 

described by a similar diagram by eliminating the third path in the above figure
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•  S te p  3 : The set of weights for the treatm ent difference depends upon which 

carry-over terms have been deleted and which have been kept so far in the 

model, before entering this final step of analysis. In the most likely case 

where both carry-over term s have been dropped or only the first order carry­

over is still retained in the model, the difference between the treatm ent 

measurements for each patient determine the treatm ent estim ator. Note 

th a t the baseline measurements are completely ignored in th a t occasion. 

This estim ator is similar to CROS, used in the analysis of the 2 x2  cross­

over trial without baselines and without carry-over effect. Each patien t’s 

readings are weighted as follows:

^ fi =  =  (0 , 0 , - )

In the least favorable and quite unlikely case of keeping both carry-over 

terms in the model the treatm ent estim ator is based on the difference be­

tween the first baseline and the first treatm ent measurement for each sub­

ject, i.e. the baseline and treatm ent measurements from the second period 

are wasted. The weights, presented below, are similar to the ones used on 

estim ating the treatm ent difference in the classical 2 x2 case with carry-over 

(PAR estimator).

=  ( 2 ’

Turning now to the final and most unreasonable possibility of deleting the 

first order carry-over term  but keeping the second one, the difference be­

tween the average of baseline measurements and first treatm ent measure­

ment for each patient forms the treatm ent estimator. In th a t case only 

the second treatm ent reading is discarded for each patient, pointing to the 

following scheme of weights:

All the above tests for the treatm ent difference are carried out a t 5% level.

The above scheme will be called strategy 2 . An alternative, simpler scheme, 

called strategy 1 , differs from the previous one in the way th a t handles the dele­

tion of carry-over terms. More specifically according to strategy 1, if the first
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order carry-over term  is removed from the model then this autom atically implies 

tha t the second one is dropped as well (see Kenward [42]). On the contrary in 

strategy 2 it is feasible to keep the second order carry-over term  w ithout includ­

ing in the model the first one. Because of the more reasonable way of handling 

carry-over terms, strategy 1 is expected to have a be tter performance compared 

to strategy 2  in terms of power or MSE, as would be soon dem onstrated.

Before tha t, a comparison of the treatm ent estim ators proposed in the cross-over 

experiment with and without baselines is in order. In both  cases the estim ator 

used when no carry-over terms retained in the model or when only the first order 

carry-over is present in the cross-over with baselines, are biased but w ith lower 

variance, compared to the estim ator used when the full set of carry-over term s is 

included in either case. A reasonable query at th a t point is raised. Are the defi­

ciencies of the two stage procedure inherited to the three stage procedure as well? 

The estim ators used in each stage to decide the significance or not of the corre­

sponding term s are highly correlated, and this might force the power of the three 

stage procedure to be lower than the power of fi (CROS), which corresponds 

to the treatm ent estim ator without pre-testing for carry-over effects at all. A 

thorough investigation of both strategies requires marginal and conditional prob­

ability distributions of various estimators. These are displayed in Table (3.5). A

 Table 3.5: Three stage procedure______
Marginals of treatment and carryover estimators

0 ~  iV (0, a ^ / n )  fi, T3  ~  iV ( r  -  A/2, cr^ /(4n))

Âi ~  iV (A -  0 ,2 a ^ / n )  T2  ~  iV (r  -  # /2 ,3c j^ /(4n ))

\ 2 ^  N  (A, 3 a ^ / n )  f 4  ~  iV (r, a ^ / n )

Conditionals of 2"^ order carryover given 1̂ * order carryover estimators 

and of treatment estimators given and 2"^ order carryover estimators

Âi|ê ~  JV (A -  9 , 2(j^ /n )  Â2 |ê ~  TV ( a  -  e +  0 ,2<r^ /n )

T1IÂ1, ê ~  AT ( t  -  A/2, <r^/(4n)) T2 IÂ2 , 1 ~  iV ( t  -  A/2 +  Âi/2, (r^ /(4 » ))

T3 |A2 , ^ ^  ~  A/2,a ^ / { 4 n ) )  T4 IÂ2 , ^ ^  N  — A/2 +  Â2 / 2 , o~^/(4n)^

worth emphasizing property of either strategy is th a t the treatm ent effect estim a­

tor is independent from the first order carry-over effect estim ator, conditionally
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upon the second order carry-over difference estimator.

According to th a t flow diagram three distinct treatm ent estim ators are proposed 

at the end of each of the four paths. One of them  f i  (similar to CROS) is used 

twice, while T4 (similar to PAR) only once. This is an early indication th a t this 

procedure might have a good performance in terms of power and MSE, depending 

upon the proportion of time 74 is used. But the crucial question is if the three 

stage procedure is superior than using directly fi. To answer tha t question a 

similar approach to the one used at the investigation of the two stage procedure 

will be used for the evaluation of power, bias and variance of both strategies as 

follows;

Power (Strategy 2 ) =  ^  prob ( |f |  > Cf\6 = x , \  = v)

E (Strategy 2 ) = J  ^ = v) fê:xî ŷ)
V (S tra te g y 2 ) =  (3.37)

where the sum m ation is over the four paths, while the estimators and the lim­

its of the integrals used for each path are decided according to the plan of the 

strategy. Assuming tha t the real treatm ent difference is 5, the first carry-over 

difference is a fraction of the treatm ent difference and finally th a t the second 

order carry-over difference is a fraction of the first one, the performance of both 

strategies is summarized in Table (3.6). In the first third of Table (3.6) the sec­

ond order carry-over difference has always been kept a t zero, while the first one is 

increased gradually by 10%, reaching finally the treatm ent effect. In the second 

and final part of th a t table, the first order carry-over was taken two and four 

times respectively higher than the m agnitude of the second one.

The most interesting message from th a t investigation is th a t when both carry­

over terms are negligible (first line of Table (3.6)) the Type I error rate is about 

6 % for strategy 1, while the corresponding figure for strategy 2 raises to 8.5% 

similar to the Type I error of the two stage procedure without baselines. More­

over the power of strategy 1 is very close to th a t of the CROS estim ator in the 

classical 2x2 cross-over, while tha t of strategy 2 is slightly lower. A simple expla­

nation for the better behaviour of strategy 1 is th a t more than 8 8 % of the time
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Table 3.6: Performance of strategies 1 and 2

Strateg y 2 Strategy 1

e A Type 1 Power Bias Var Type 1 Power Bias Var

0 . 0 0 0 . 0 0 0.084 0.872 0 . 0 0 0 4.861 0.059 0.910 0 . 0 0 0 3.136

0.50 0 . 0 0 0.085 0.861 -0.062 4.900 0.060 0.910 0.037 3.144

1 .0 0 0 . 0 0 0.088 0.847 -0.125 5.014 0.060 0.910 0.072 3.167

1.50 0 . 0 0 0.091 0.832 -0.189 5.194 0.060 0.909 0.106 3.202

2 . 0 0 0 . 0 0 0.096 0.817 -0.252 5.425 0.061 0.908 0.136 3.248

2.50 0 . 0 0 0 . 1 0 2 0.802 -0.318 5.690 0.062 0.907 0.162 3.300

3.00 0 . 0 0 0.108 0.788 -0.379 5.970 0.063 0.906 0.184 3.356

3.50 0 . 0 0 0.114 0.775 -0.434 6.245 0.064 0.905 0 . 2 0 1 3.415

4.00 0 . 0 0 0 . 1 2 0 0.766 -0.478 6.497 0.065 0.904 0.214 3.475

4.50 0 . 0 0 0.124 0.760 -0.510 6.711 0.065 0.902 0 . 2 2 1 3.537

5.00 0 . 0 0 0.128 0.757 -0.526 6.876 0.066 0.901 0.223 3.604

1 .0 0 0.50 0.090 0.839 -0.246 4.976 0.067 0.885 -0.149 3.248

2 . 0 0 1 . 0 0 0.105 0.800 -0.478 5.298 0.076 0.854 -0.292 3.568

3.00 1.50 0.128 0.760 -0.675 5.768 0.095 0.817 -0.425 4.056

4.00 2 . 0 0 0.155 0.722 -0.832 6.307 0.119 0.777 -0.542 4.657

5.00 2.50 0.184 0 . 6 8 6 -0.947 6.846 0.147 0.735 -0.652 5.321

1 . 0 0 0.25 0.088 0.844 -0.186 4.983 0.061 0.898 -0.039 3.205

2 . 0 0 0.50 0.098 0.813 -0.362 5.314 0.066 0.884 -0.079 3.396

3.00 0.75 0.113 0.783 -0.521 5.764 0.072 0.867 -0.124 3.670

4.00 1 . 0 0 0.129 0.758 -0.649 6.218 0.081 0.850 -0.178 3.985

5.00 1.25 0.142 0.742 -0.737 6.578 0.090 0.833 -0.240 4.309
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the treatm ent estim ator similar to CROS (fi) is used while less than  3% of the 

time the inefficient similar to PAR (f^) estim ator is chosen by the procedure. On 

the contrary strategy 2 selects f i only 81% of the time, less than  3% while the 

rest of the tim e T2 is chosen.

On those grounds strategy 1 can be considered as an improved version of the 

two stage procedure a t the cost of obtaining two further measurements on each 

patient. Moreover strategy 1 has Type I error rate and power similar to tha t 

of CROS for the whole range of first order carry-over values, provided th a t the 

second order carry-over term  is kept a t zero. This indicates th a t as long as carry­

over terms are handled in a rational way, their inclusion into the model does 

not affect to a large extend the quality of the estim ation procedure concerning 

treatm ent effect.

It is also clear from the first third of Table (3.6) th a t strategy 1 overestimates 

the real treatm ent difference, while strategy 2 under-estim ates it. However both 

strategies underestim ate the treatm ent difference in the rest of the cases. Overall 

in absolute terms, strategy 2 has higher bias and variance compared to strategy 1 , 

and worst performance in term s of Type I error and power, over the whole range 

of first and second order carry-over combinations considered here. So, strategy 

1 should be preferred to strategy 2  for analyzing data  from cross-over trials with 

baselines, although both are inferior compared to using always CROS. In con­

clusion the incorporation of carry-over terms in the model adversely affects the 

properties of the final treatm ent estim ator proposed, regardless of the availability 

of baselines measurements.

3.6.1 A 2x2 cross-over trial w ith baselines

In the cross-over experiment, already examined, further information was available 

on each child, i.e. two baseline measurements were taken before the s ta rt of each 

treatm ent period. A graphical summary of these d a ta  is provided in Figure

(3.9). The models considered in this subsection include various combinations of 

carry-over terms. In addition results from analysis w ithout baselines are also 

reported. This will help to assess the predictive ability of baseline measurements 

in evaluating treatm ent and carry-over effects. Following Grieve’s notation (see
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[27]) four models are fitted:

•  M 2  : The saturated model in which carry-over effects of both kinds are 

included. The trialist, most of the time, allows wash-out and treatm ent 

periods to be of the same tim e length. As a consequence it is quite unlikely 

for the second order carry-over term  to be present at all, unless there is 

a treatm ent by period interaction. In our example the second treatm ent 

measurement was taken two days after the first one, so th a t a significant 

treatm ent by period interaction is quite unlikely. Overall there is a small 

chance for this model to have generated our data.

•  M i l  : In this model only the second order carry-over term  is fitted. This 

might look unreasonable since if the wash-out has been chosen long enough 

to eliminate the first order carry-over, why should the second order carry­

over be present? In fact carry-over here represents a psychological carry­

over. This simply means th a t some patients suffered discomfort during the 

first treatm ent period (probably they were given placebo which does not 

relieve pain) and they feel unhappy in entering the second treatm ent period. 

This feeling might influence the measurement of the second treatm ent. An 

alternative motivation (as in model M2) for considering the second order 

carry-over but excluding the first one, is the presence of a treatm ent by 

period interaction.

• M 1 2  : Only first order carry-over term  is now considered, i.e the wash­

out period prevent the residual effect of the first active treatm ent period 

to be present when the second active treatm ent measurement was taken, 

but it was not long enough to eliminate the first trea tm ent’s residual effect 

at the time second baseline measurement was obtained. This model is 

in accordance with the statistical hierarchy the analyst should follow in a 

backwards elimination procedure, i.e. second order carry-over is considered 

for elimination before the first one. Among all the models considered this 

is the only one th a t handles carry-over term s in a rational way.

• MO : No carry-over terms are now included. The statistician in collabo­

ration with the trialist have already agreed in advance th a t the proposed
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length of the wash-out period is long enough to eliminate any residual effects 

from the first treatm ent in all subsequent periods. This model is mostly 

favored by the practical-oriented data  analysts.

If patient effect is taken as random and both carry-over term s are included in the 

model while REML is the estimation method for the variance components, then 

formoterol gives higher PE F measurements by an amount of 49.76 (30.26) units 

when compared to salbutamol (see Table 3.7). Also both carry-over effects are 

negligible. The between-children variability is twice as high as the within one. 

W hen both carry-over terms are removed from the model, treatm ent effect is 

estim ated at about the same level as before, but with a much smaller standard 

error, 2 r =  46.60(15.09). By keeping both carry-over terms the treatm ent effect 

is obscured. However when these terms are removed the new treatm ent shows 

its superiority. The inclusion of carry-over term s influences to an appreciable 

extend our inference about treatm ent effect, even when baselines are used in the 

analysis. In some circumstances the collection of baseline measurements might

Table 3.7: Frequentist analysis of a 2 x2 trial with and w ithout baselines

Models with baseline measurements

Model MO M12 MU M2

2f 46.60 (15.09) 46.60 (14.91) 65.41 (26.23) 49.76 (30.26)

2Â -----        37.61 (42.84) 6.30 (52.41)

29     -33.41 (24.34)     -31.30 (30.26)

gb 60.57 60.65 60.55 60.56

dw 38.37 37.90 38.50 38.46

Models without baseline measurements

Model No carryover Simple carryover

2f 46.60 (10.77) 53.80 (41.62)

2Â     14.40 (80.40)

as  66.52 69.61

Gw 27.39 27.39

influence the precision with which treatm ent effect is estimated, although it is
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unclear how the estimation of carry-over terms is affected.

In this specific example it seems th a t the availability of baseline measurements has 

some effect, not only on the m agnitude of the treatm ent or carry-over difference, 

but most im portantly in their estim ated standard errors. In absolute terms, 

estim ated carry-over effect from first active to second active treatm ent period for 

the model with baselines is double when compared to the corresponding figure 

of the model without baselines, while its standard error is about half. As far as 

the treatm ent effect is concerned, the estimates along with their standard errors 

from both models are comparable.

Note th a t the sequence effect is always included in the above models. In addition 

the precision with which the treatm ent effect is estim ated gets higher as carry­

over terms are eliminated from the full model. For purpose of completeness only, 

it is worth noting that the correlation between any two measurements on a child 

(intra-class correlation coefficient) is estim ated at 0.71, regardless if any carry­

over terms are included or not in the model and if baselines are used or not in 

the analysis.

3.6.2 The Bayesian Solution

The set of models studied here are identical to the ones considered in the previ­

ous section, but perceived from a Bayesian perspective. Least-informative priors, 

similar to the ones used for the analysis of the same dataset w ithout baselines, 

were assigned to each unknown quantity and Gibbs sampling was used for the 

derivation of the relevant posterior distributions. Kernel estimates for the pos­

terior density of the treatm ent and the carry-over term s are displayed in Figure

(3.10). Posterior summaries for the param eters of interest, are presented in Table 

(3.8),

Once more it is confirmed th a t if both carry-over terms are included in the model 

then there is a non negligible posterior probability for the treatm ent difference to 

lie in a symmetric interval around zero. On the contrary the elimination of any 

residual term  (first or second) in the model seems to produce stronger evidence 

th a t formoterol gives on average higher PEF measurements than salbutamol. 

More specifically the irrational model M il indicates th a t formoterol is superior
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Figure 3.10: Bayesian analysis with baselines.
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Table 3.8: Bayesian analysis allowing for baseline effect
Model M2 Model M il Model M12 Model MO

Mean SD Mean SD Mean SD Mean SD

2t 51.00 32.10 65.50 27.00 46.80 15.40 46.70 15.50

2 A 8.17 56.00 37.40 44.20

2(9 -30.70 32.20 -33.70 24.80

dg 64.90 17.40 64.90 17.40 65.00 17.40 64.40 16.60

â\v 39.70 5.16 39.40 4.95 38.80 4.89 39.40 5.09

to salbutam ol by 65.50 (27.00) units, while for models M12 and MO the corre­

sponding figure is about 20 units lower (46.80 or 46.70) with half standard error 

(15.40 or 15.50). Posterior inference for the first order carry-over is not affected 

considerably from the presence of the second order carry-over term in the model 

and vice-versa (see Figure 3.10).

Finally, in this case, although the posterior distribution of the second order carry­

over difference is centered around zero, the same is not true for the first order 

carry-over effect (see Figure (3.10)). Baseline measurements taken after admin­

istration of salbutam ol give lower PEF values than baselines taken after admin­

istration of formoterol. On subjective grounds it seems th a t model M 1 2  is the 

most coherent with the observed data, though model MO is an equally good al­

ternative. Which one of the two is the best choice, will be formally investigated 

by using appropriate model selection techniques.

3.6.3 A nother use of baselines

If we take a more careful look at the data  it is clear th a t higher baseline mea­

surements tend to  be followed by higher treatm ent outcomes no m atter which 

treatm ent has been administered to the patient. This implies a patient trend 

effect affecting both baselines and outcome measurements. If this hypothesis is 

true, then baseline measurements convey useful information not accounted for by 

patient or period effects. If we denote by yijk, Xijk the treatm ent outcome and 

baseline measurement respectively at the sequence group, in the period,
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Posterior distribution of treatment effect when baselines are used as covariates
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on the patient, then the model adopted here is:

Vijk =  /̂  +  SjJt +  7Tj +  Td{i,j) +  Ad(ij-I) +  P(Xijk — Æ...) +  6ijk (3.38)

where, as usual, S{k ~  N{0,a%)  and eijk ~  N { 0 , a ^ ) .  A graphical summary of 

the association between active treatm ent measurements and baseline readings, is 

displayed in Figure (3.11). Both Bayesian and Frequentist approaches, with and 

without carry-over terms have been considered and the results are presented in 

Table (3.9). Model checking graphical summaries for the Frequentist approach 

is provided in Figure (3.11). Running the Gibbs sampler, 15000 values were 

generated for each variable, but only the last 5000 ones were used for drawing 

inference. Posterior distributions for param eters of prim ary interest are displayed 

in Figure (3.12).

Note th a t in equation (3.38) baseline measurements have been standardized by 

subtracting their mean. This strategy is typical in regression problems since it 

achieves orthogonality between the standardized variable and the constant term. 

The ideal situation is when the estim ated param eters are orthogonal to each 

other. This is hardly achieved when an unbalanced design is used, but in re­

gression problems the standardization of covariates stabilizes considerably the 

estim ation process. Param eterization issues are common in MCMC methodology 

as well, and usually tackled in a similar fashion. Convergence of the Markov chain 

to the posterior distribution is highly accelerated by using a balanced design or 

appropriately transform ing the original param eters in the unbalanced case.

Here we have another close agreement, as far as the usefulness of the baseline 

measurements is concerned. In both Bayesian and Frequentist analysis baseline 

measurements have a strong predictive value for the response, i.e. higher baseline 

measurements tend to be followed by higher response outcomes (see upper half of 

Figure (3.11) and lower part of Figure (3.12)). Our main question is always the 

clinical effectiveness of the new treatm ent against the old one. As in all previous 

models considered, when carry-over is included, both the Frequentist and the 

Bayesian statistician  will agree th a t no treatm ent difference is evident from the 

data, although the Bayesian will stresses th a t the superiority of formoterol is the 

more likely scenario (see upper part of Figure (3.12)). Both will agree th a t in 

the absence of carry-over from the model there is strong evidence for suggesting
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formoterol in a future patient as the best treatm ent regime.

Table 3.9: Results of model fitting w ith baselines as covariates
Frequentist viewpoint Bayesian viewpoint

Model with A Model without A Model with A Model without A

Mean SD Mean SD Mean SD Mean SD

2 f

2Â

/3

dg

ow

51.37

28.39

0.60

49.64

25.23

30.99

58.83

0.16

37.16

0.60

47.78

25.21

10.25

0.16

49.50 34.10

25.60 63.30

0.61 0.18 

51.30 

28.00

37.10

0.60

48.30

28.80

12.10

0.18

The practical implication from the discussion above is th a t the collection of base­

line measurements during the course of a cross-over trial hardly alters the conclu­

sions about treatm ent effect, already drawn from previous analysis where base­

lines were completely ignored. This statem ent is true no m atter if baselines are 

considered as part of the response or fitted as a covariate. It might be the case 

tha t if baselines perform poor in explaining variability of the treatm ent outcome, 

then their inclusion in the model might increase the variance with which the 

treatm ent effect is estimated. In our example this seems to be true when carry­

over term  is included in the model, bu t not when an adequate wash-out period 

prohibits the consideration of such term  in the model.

3.7 Covariates

In most clinical trials, either cross-over or parallel, demographic information is 

usually available for the patients participating in the study, such as age, sex, 

weight etc. Two kinds of covariates commonly m et are: continuous or categori­

cal. An example of a continuous covariate is the baseline measurement already 

studied in the previous section. In the form oterol/salbutam ol example patients 2 , 

3 , 6  and 11  are female, the rest being male. Patient profiles for male and female 

patients are displayed in Figure (3.13).

In th a t case the main concern is if drug acts differently on various patient sub­
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groups. If it does then treatm ent effect should be studied separately for each level 

of the covariate. On the other hand if treatm ent effect is not related to the levels 

of the covariate then the inclusion of it might explain a substantial proportion 

of the between-subject variability, implying a reduction in the between-subject 

residual sum of squares. In th a t case more precise statem ents could be derived 

for the carry-over difference, since the investigation of its statistical significance 

relies upon between subject information. On the contrary treatm ent or other 

effects which are usually estim ated using within subject contrasts will not be af­

fected by the inclusion or not of the covariate in the model. The introduction of 

a further factor (gender) into our model generalizes the ANOVA table as follows; 

(Table (3.10)).

Table 3.10: Extended ANOVA table after incorporation of covariates
Source of variation DF Sum of Squares Mean Square F-value p-value

Between Subjects

carryover 1 335.19 335.19 0.03 0 .8 6

gender 1 18482.80 18482.80 1.76 0 .2 1

carryoverigender 1 1991.72 1991.72 0.18 0.67

Residuals 9 94403.75 10489.31

Within Subjects

period 1 984.62 984.62 1.16 0.30

treatment 1 14035.92 14035.92 16.65 0 .0 0

period:gender 1 621.06 621.06 0.73 0.41

treatmentigender 1 49.66 49.66 0.05 0.81

Residuals 9 7583.75 824.64

According to the analysis above there is no strong evidence th a t the effect of drugs 

on PE F measurements depends on the gender of the child. On the other hand 

the covariate has accounted for more than 2 0 % of the between subject variability, 

but carry-over effect is still far from statistical significance. An idea about the 

variability explained by treatm ent, carry-over effect and their interactions with 

other terms is also summarized in Table (3.10). The model fitted here treats pa­

tient effect as the only random parameter, while the fixed param eters allowed for
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Posterior distribution of the treatment effect when ’gender’ included in the model
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are: period, gender, treatm ent, and carry-over. Two-way interactions between 

’’gender” and each one of the fixed effects are also considered.

One of the less discussed issues in the cross-over literature, but of high practi­

cal importance, is the treatm ent by patient interaction term . Modern statistical 

thinking (implemented in widely used commercial software packages like SAS or 

S-h) allow the inclusion of th a t term  in either the fixed an d /o r the random  part 

of our model. This term  implies not only tha t the mean treatm ent effect but 

also the volatility of the response are patient dependent. Irrespective of the way 

this interaction term  is treated, an enormous number of new param eters will be 

introduced to describe it. A typical way to overcome estim ation-related problems 

is via modern Bayesian techniques. More specifically both  the treatm ent effect 

and the variability of the observations for each patient could be modeled as a 

random sample from a population distribution, characterized by a set of hyper­

parameters. Finally the implication of this hierarchical modeling structure on 

the choice of the optim al design for running cross-over experiment have not been 

fully investigated.

In our example we have only 13 participants, not enough information to estim ate 

accurately the hyper-parameters. This is true not only for the patient by trea t­

ment interaction but also for any interaction between the random  component 

(’’patien t”) and any fixed term. As a result considering a two-way interaction 

between a fixed and a random effect was ruled out for th a t analysis. On the 

contrary interactions between ’’gender” (the covariate of interest in this section) 

and any fixed param eter require only one degree of freedom to model it. It was 

felt th a t adequate information was available to include these terms. Results are 

summarized in Table (3.11)

There is no statistical evidence th a t average PEF measurements on male patients 

differ significantly from the female ones. Both approaches confirm th a t treatm ent 

effect is the same irrespective of the gender of the child (i.e negligible treatm ent 

by gender interaction, see lower part of Figure (3.14)). The estim ates along with 

the standard errors of all the parameters presented above decrease (in absolute 

terms) when carry-over term  is removed from the model. There seems to  be a 

fairly close agreement concerning param eter estim ation under either Frequentist
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Table 3.11: Summary statistics when a covariate is included in the model
Frequentist viewpoint Bayesian viewpoint

W ith A No A W ith A No A

Parameters Estim ate (SD)

Gender 

Treatment 

Carryover 

Treatment ; Gender 

Carryover : Gender

58.50 (43.60) 57.29 (39.90) 

51.00 (45.32) 48.25 (12.35) 

5.50 (87.20)

-8.00 (22.66) 1.50 ( 6.17) 

-19.00 (43.60)

60.10 (47.00) 51.00 (41.20) 

49.00 (48.60) 48.30 (14.60) 

2.33 (92.90)

-9.23 (25.00) 1.41 ( 7.29) 

-21.10 (47.70)

or Bayesian point of view.

Overall, inclusion of carry-over terms affect to an appreciable expend our infer­

ences regarding treatm ent differences (see Figure (3.14)). Results are not altered 

by the incorporation of a covariate in the model; a similar conclusion was drawn 

for baselines as well.

3.8 A Non-Linear approach to the carry-over

Our modeling approach till now, is based on the assumption that carry-over and 

treatm ent effects are mathem atically unrelated. The majority of the medical 

investigators, involved in a cross-over study, would implicitly assume th a t the 

residual effect, if it exists, is a small proportion of the treatm ent effect and should 

be modeled as such. A typical medical statistician would object to the idea of 

modeling carry-over effect by incorporating a non-linear term into his model, 

simply because on one hand it adds unnecessary complexity to the problem and 

on the other hand computationally can be quite difficult to be tackled by widely 

used statistical software. In my view, any statistician keen on modeling residual 

effects, should consider this approach as the only pragmatic one, which in addition 

provides reasonable results for the treatm ent effect. There is no doubt th a t there 

is limited information in estim ating the unknown proportion of treatm ent th a t 

carries over to the next period. This causes problems in the estimation process 

for th a t non-linear term, but as soon as more patients are recruited per sequence.
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this lim itation is largely removed.

The model considered in this section is a slight modified version of the simple 

carry-over model and can be w ritten as follows:

^  iVijk) =  /i +  H- Td{ij) +  Td{ij-i)p (3.39)

where notation is similar to the one used in previous sections. W hen baseline 

measurements are considered as part of the response, the mean function can be 

specified as follows:

^  iUijk) =  M +  7 i  -f- 7Tj +  ' d̂{i,j) +  Td{i,j-l)P +  '^d{i,j-2)pl^ (3.40)

Terms introduced in this non-linear form of the simple carry-over model with 

baselines, are closely linked with the ones considered in the linear case. More 

specifically the following relations hold:

^d{i,j) — '^d{i,j-l)P (3-41)

^d{i,j) — '^d{i,j-2)PI^

= Od{i,j-i)K, (3.42)

where p,K G (0,1). W ith this param eterization residual effect dies out as time 

progresses, i.e. | Xd{i,j) |< | ^d{i,j) |< | I- According to the above model, the 

proportion of treatm ent th a t carries over from period i to period z -f- 1 is p, while 

tha t from z to z -t- 2 is pK. The two terms added, although it may reflect drug 

activity more realistically, it can lead to problems during the estim ation process. 

Following our modeling philosophy so far, the within subject variance-covariance 

m atrix will be of the form a'^R[a). Simple correlation structures (compound 

symmetry) will be considered in the sequel, since a limited number of repeated 

measurements are available per subject. Generalized least squares principle will 

be used to accommodate simultaneous estim ation of mean and covariance param ­

eters. Details of the estim ation scheme are as follows:

• Step 1 : Estim ate a  using a preliminary fit to our data, like the typical 

Ordinary Least Squares fit.

• Step 2 : Using the value of a  from Step 1 , an estimate for the mean param ­

eters can be derived by minimizing the following quadratic form:

( y - E { y ) f  R - \ a ) { y - E ( y ) )  (3.43)
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•  Step 3: Using the estimates from Step 2 , re-estim ation of the covariance 

param eters takes place, by minimizing with respect to and a  the pseudo­

likelihood function below:

log \a ‘̂R{o() \ +  (2/ -  E{y))'^ R ~ \ a )  {y -  E{y))  /cr^ (3.44)

The final estim ate of cr̂  is:

à ^ = [ y -  Ê { y ) Y  R - \ â )  (y  -  Ê{ y ) )  / ( N  -  p) (3.45)

where N  is the number of patients recruited in the trial, while p the number of 

estim ated mean parameters. An estimate of the approxim ate covariance m atrix 

for the mean parameters is:

(3.46)

where X is the N x p  m atrix of partial derivatives of the mean function with respect 

to the mean parameters, evaluated at the final estim ates of these parameters.

3.8.1 Frequentist approach w ithout baselines

In the non-linear case the treatm ent estimate is 53.54(39.08) in favor of the new 

treatm ent (formoterol). The carry-over effect from the first to the second active 

treatm ent period is estimated at 15.95(55.47). The proportion of treatm ent tha t 

carries-over to the next period is 29.79%. These results are in agreement with 

the linear approach, in which the carry-over effect is modeled independently of 

the treatm ent difference, since in either case both  treatm ent and carry-over effect 

are statistically non-significant. It is worth noting th a t bo th  estim ates and their 

standard errors for treatm ent and carry-over difference are similar in the non­

linear case compared to the linear approach. The mean function is described in 

equation (3.39). A compound symmetry covariance structure has been assumed 

for the repeated measurements obtained in each subject, w ith an estim ated in tra­

subject correlation coefficient of 0.07. In order to obtain the above estimates 

for the mean parameters and variance components, the following function was 

optimized by following the steps 1-3 described before:

2nln{a^) +  n ln{l -  pi) + (y -  E(y))'^  [/„ ® 1/“ '] {y -  E(y) )  (3.47)

123



This is simply minus twice the log-likelihood function and it was minimized using 

S+ routines. Relevant S+ code is given at the end of the chapter. Regarding 

notation, n  is the number of patients recruited for the study (13 in our case), 

P* — I ^ w )  being the intra-subject correlation coefficient, + cfw,

while

—1 I 1 " Ay - '  =  I I (3.48)
—p* 1

3.8.2 Frequentist approach with baselines

Turning now to the case where baselines are incorporated into the analysis and 

both first and second order carry-over terms enter into the model (M2) as de­

scribed in equation (3.40), the estim ated proportion of treatm ent effect th a t car­

ries over from first treatm ent period to first wash-out period is identical to  zero. 

This implies tha t the proportion of treatm ent tha t carries over from first tre a t­

ment to second treatm ent period must be zero as well. Since, p =  0  and « =  0, 

the m atrix is non-invertible and an estimate of the standard error

of the treatm ent effect cannot be derived. The treatm ent difference itself is esti­

m ated at 46.61. These findings are in close agreement with the linear approach, 

where both Bayesian and Frequentist approaches indicate tha t carry-over of any 

order is unlikely to be present. Due to the linear nature of the latter approach, 

standard errors for the parameters of interest are available in this case.

If we omit anyone of the carry-over terms but retain the other one, then tre a t­

ment effect is still statistically insignificant, but the estim ate of the retained 

residual effect is zero in either case. More specifically when the second order 

carry-over term  is eliminated from the model (M12), then the treatm ent esti­

m ate is 46.61(26.12) in favor of formoterol, while in the case where the first order 

carry-over is omitted (M il), then the corresponding treatm ent estimates raises 

at 65.42(45.13). In conclusion, in both linear and non-linear analysis the only 

model th a t is highly supported by the data  is the one with no carry-over terms. 

All the above conclusions are drawn under the assumption th a t repeated m ea­

surements within a subject are related via a compound symmetry error structure.
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The function minimized for inferential purposes looks as follows:

Znln[a‘̂ )  +  nln{a ‘̂  +  4o-|) + {y -  E{y))'^ [in 0  V~'^] {y -  E[y))  (3.49)

where E(y)  is described by equation (3.40) or any of its variants depending on 

which carry-over term s included in the model, while

Once more n  is the number of subjects recruited in our trial, I  is the identity 

m atrix and J  is a square m atrix  having every element equal to  unity. For illus­

trative purposes, S-f- code used to optimize the function described in equation 

(3.49) when only the first order carry-over is included in the model, is provided 

at the end of the chapter.

3.8.3 Bayesian approach without baselines

In the Bayesian analysis w ithout baselines, the only added complication is the 

specification of a prior distribution for p. Since this param eter is constrained to 

the interval (0 , 1 ), a natural family of distributions from which this prior could 

be chosen from is the Beta{a, b) one. The param eters a, b can be modified to 

reflect opinion of medical experts, or experience gained from similar studies in 

the past. In practice, hardly such information exists, and a useful starting  point 

is the B e ta ( l,l)  distribution (or equivalently the Uniform distribution in the 

(0 ,1 ) interval). After a 10000 iteration burn-in, a further 5000 iterations confirm 

the superiority of the new compound compared to the old one. According to 

this analysis a typical user of formoterol will have his P E F  measurement raised 

by 51.30(14.40) units compared to salbutamol. The 95% HPD for treatm ent 

effect is (21.70, 79.50). The point estim ate of the treatm ent effect from the non­

linear analysis is in close agreement to the one derived under the linear case, 

where carry-over and treatm ent term s were unrelated. Posterior kernel density 

estimates of the treatm ent difference under both linear and non-linear approaches 

are presented in Figure (3.15). The estim ated standard  error of the treatm ent 

effect is about three times smaller in the non-linear analysis when compared 

to the corresponding figure in the linear case. This implies th a t the posterior
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Figure 3.15: Posterior distribution of various param eters of interest of the asthm a 

trial w ithout baselines under the simple carry-over model

126



probability of the treatm ent effect lying in a symmetric interval around zero is 

far less in the non-linear case compared to the linear one. Both analysis though, 

indicate clearly th a t formoterol is the appropriate therapy for asthm a.

It is worth noting th a t the estim ated carry-over effect in the non-linear case is 

24.2(17.7). The posterior density of the carry-over difference is slightly skewed 

to the left in the non-linear case, contrary to the density resulted from the linear 

analysis which looks symmetric. This is because carry-over effect is calculated 

as the product of the treatm ent effect with the proportion of drug remaining in 

the body from the previous treatm ent assignment. The point estim ates of the 

carry-over effect closely agree in the linear and non-linear analysis, though the 

standard error in the linear analysis is about four times higher when compared 

to the non-linear case (see Figure (3.15). Both analysis agree th a t presence of 

carry-over is highly unlikely.

3.8.4 Bayesian approach with baselines

Similar conclusions were drawn when baseline measurements were incorporated 

as part of the response into the analysis. As before, Beta{l,  1 ), has been chosen as 

the prior distribution for these extra parameters. Analysts might be tem pted to 

consider informative prior inputs, although clinical justification for these choices 

should be provided.

The model th a t includes first and second order carry-over term s (M2 ), gives a 

treatm ent estim ate of 44.30(17.30) in favour of formoterol. Only 28.3% of the 

treatm ent effect persists from first active to first wash-out period, while the cor­

responding figure from first active to second active treatm ent period is 14.7%. 

Similar results are derived when the model under which only one carry-over term , 

th a t from first active to first baseline period is allowed for (M12). The estim ated 

treatm ent effect slightly lowers to 41.30(16.80), but a similar proportion of ac­

tive treatm ent persists to the next period, 28.4%. Finally, the irrational model 

(M il)  where second order carry-over is fitted in the absence of the first one, gives 

an inflated but significant treatm ent estimate: 63.80(22.70). This estim ate may 

reflect not only real treatm ent difference but also first or higher order residual 

effects, which have been eliminated from our model. Posterior d istribution of
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Figure 3.16: Posterior distribution of treatm ent effect of the asthm a trial with 

baselines under models M2, M12 and M il
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carry-over proportion under all models considered is displayed in Figure (3.17). 

Note th a t the linear and non-linear Bayesian analysis provide comparable results 

concerning estim ation of the treatm ent difference (see Figure (3.16)), as long as 

the same assumptions are made for the carry-over effect. The effectiveness of the 

new treatm ent is unquestionable. The posterior distribution of carry-over effects 

of any order, show clearly th a t inclusion of such terms in the model is unnec­

essary. This is true in either linear or non-linear approach. It is worth noting 

th a t posterior densities of carry-over terms are slightly skewed to the left in the 

non-linear case, contrary to the linear approach where a rather symmetric shape 

is observed.

In conclusion the Frequentist analysis (linear or non-linear) of this cross-over trial 

strongly rejects the inclusion of any residual terms, while treatm ent difference is 

masked when carry-over terms are included into the model. The Bayesian ap­

proach (linear or non-linear) supports the superiority of the new treatm ent regime 

under different carry-over schemes. Note tha t for the Frequentist approach, a 

constrained non-linear optimization problem was solved using S-t- routines.

3.8.5 M odel checking

A more formal way is normally required for the selection of the best among 

competing models. Obviously in the class of models fitted, some are nested within 

others, which implies th a t a likelihood ratio approach for choosing between them  

is valid. But if a selection is required between a linear an a non-linear model 

then the final decision should be based on a criterion th a t rewards a good fit but 

punishes for model complexity. One such criterion is the Akaike’s Information 

Criterion (AIC) defined as follows:

A I C  = —2 /ri(likelihood) -f 2 (number of estim ated param eters)

Although AIC has received some criticism as a model selection tool (especially 

in the time series literature), it is still the most popular criterion used by prac­

titioners. In a Bayesian analysis, the posterior distribution of AIC is evaluated 

and model choice is based on a summary statistic of th a t distribution. In what 

follows the posterior mean of AIC calculated from the last 1000 MCMC runs is
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compared among competing models and summarized in Table (3.12),

Table 3.12: Posterior Mean of AIC
M2 M il M12 MO

Linear -238.705 -240.433 -239.853 -242.096

Non-linear -238.693 -240.115 -240.876

The model which has the lowest value of AIC is selected as the best one. Following 

tha t principle the model with no carry-over terms (MO) is the preferable one. For 

model M 12  the non-linear fit gives slightly better results when compared to its lin­

ear counterpart. The reverse argument is true for models M il  and M2. In the lin­

ear case AIC gives the following model ordering: MO -< M i l  -< M12 -< M 2 , while 

in the non-linear context we get the more sound result MO -< M12 -< M i l  -< M2. 

The operator -< means tha t the model on the left hand side provides a better fit 

compared to the right hand side one. In conclusion the non-linear approach gives 

sensible results for treatm ent effect irrespective of the type of residual term  (if 

any) fitted in the model. Moreover it tends to provide accurate outcome during 

the model selection process.

3.9 Conclusions

In the 2x2 cross-over trial, the performance of various treatm ent estim ators 

(CROS, PAR, TS) has been studied in some detail. In summary CROS should be 

the preferable treatm ent estim ator, no m atter if carry-over is included or not in 

the model. The alternative (TS procedure), where CROS is selected with proba­

bility p and PAR with probability 1 — p, should be avoided, because it has lower 

power and higher MSE when compared to CROS. If the analyst insists in using 

the two stage procedure then one can replace the original scheme with a new one 

in which, the sizes of the tests for carry-over and treatm ent difference are set so 

tha t the overall size of the procedure is 5%. Unfortunately the improved plan 

does not perform better when compared to CROS in term s of power, or MSE. 

This investigation leads to the conclusion tha t TS procedure should be gradually 

abandoned by the analyst of the cross-over experiment.
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Based on a representative example of a cross-over trial in asthm a, both Bayesian 

and Frequentist analysis suggest th a t carry-over is very unlikely to be present 

in a well-planned trial. The use of baselines or covariates hardly affect our con­

clusions about treatm ent difference, although their incorporation might increase 

precision for inferences about carry-over effect. In conclusion magnitude and 

standard  error of treatm ent difference are affected by the presence of carry-over 

terms. Treatm ent effect tends to be statistically unim portant when carry-over is 

incorporated in the final model, while in the absence of it treatm ent difference 

is highly significant. The trialist should carefully investigate the potential for 

pharmacological carry-over and choose the appropriate length of the wash-out 

period for eliminating such an effect. Once this precaution has been taken the 

analysis model should not include carry-over term s of any kind.

3.10 BUGS and S +  code used for the derivation 

of the results in this chapter

3.10.1 BUG S code for the linear Bayesian analysis w ith­

out baselines - subsection 3.5.1

Bayesian analysis of simple carry-over m odel w ithout baselines

model pefl; 

const

N=13, number of patients 

P=2; number of periods

var

pef[N,P], response matrix 

carryover, parameter for carryover 

carryover.effect, real carryover effect 

carry[N,P], carry-over matrix 

treatm ent, parameter for treatment 

treatment.effect, real treatment effect 

treat[N,P], treatment matrix
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pi, period effect

period[N,P], period matrix

intercept, intercept of the model

mu[N,P], mean of the response

subject[N], random subject effect

precision.within, within patient precision

precision.between, between patient precision

sigma.within within patient standard deviation

sigma.between; between patient standard deviation

Next we simply read data and set initial values for the parameters in our model 

d a ta  period, treat, carry, pef in ’’agsc.dat” ; 

inits in ’’agsc.in” ;

Priors for the parameters in our model 

{
intercept ~  dnorm(0,1.0E-06); pi ~  dnorm(0,1.0E-06);

treatm ent ~  dnorm(0,1.0E-06); carryover ~  dnorm(0,1.0E-06);

precision.within ~  dgamma(1.0E-06,1.0E-06);

precision.between ~  dgamma(1.0E-06,1.0E-06);

treatment.effect <- 2 *treatment; carryover.effect <- 2 *carryover;

sigma.within < sq rt (1  / precision.within) ;

sigma.between < sq rt(1 / precision.between) ;

Next we simply define our model 

for (i in 1:N) {

subject[i]~dnorm (0 ,precision.between); 

for (j in 1:P) {

pef[i,j]~dnorm(mu[i,j],precision.within); 

mu[i,j]<-intercept+pi*period[i,j]+treatm ent*treat[i,j] +  

carryover*carry[i,j]+subject[i]; } }

}

133



3.10.2 BUG S code for the linear Bayesian analysis with  

Baselines as part of the response (model M2) - 

subsection 3.6.2

model pefl; 

const

N=13, number of patients 

P=4; number of periods

var

pef[N,P],

theta, first.carry, carryl[N,P], 

lambda, second.carry, carry2[N,P], 

tan, treatm ent, treat[N,P], 

pil,pi2,pi3,pi4,

periodl[N,P], period2 [N,P], period3[N,P], period4[N,P],

sequence, seq[N,P], intercept, mu[N,P], subject[N],

precision.within, precision.between, sigma.within, sigma.between;

Reading data and initial values for the Gibbs sampler 

data  periodl, period2, period3, period4, 

treat, carry 1 , carry2 , seq, pef in ’’nagm 2 .dat” ; 

inits in ”nagm 2 .in” ;

Defining priors 

{
intercept ~  dnorm(0,1.0E-06);

p il ~  dnorm(0,1.0E-06); pi2 ~  dnorm(0,1.0E-06); pi3~dnorm(0,1.0E-06);

treatm ent ~  dnorm(0,1.0E-06); first.carry~dnorm(0,1.0E-06);

second.carry ~  dnorm(0,1.0E-06); sequence~dnorm(0,1.0E-06);

precision.within ~  dgamma(1.0E-06,1.0E-06);

precision.between ~  dgamma(1.0E-06,1.0E-06);

th e ta < -2 *first.carry; lam bda<-2 *second.carry; ta u < -2 *treatment;
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sigma. w ithin<-l/precision, within; 

sigm a.between<-l /  precision.between;

Model definition 

for (i in 1 :N) {

subject [i]~dnorm(0 ,precision.between); 

for (j in 1 :P) {

pef[i,j] ~  dnorm(mu[i,j],precision.within);

mu[i,j]<-intercept+subject[i]+sequence*seq[i,j]+

pil*periodl[i,j]+pi2*period2[i,j]+pi3*period3[i,j]+

(pil+pi2+pi3)*period4[i,j]+

treatm ent*treat[i,j]+first.carry*carryl[i,j]+second.carry*carry2 [i,j]; }}

}
Similar code has been applied for fitting models M il  and M12.

3.10.3 S +  code for the Non-linear Frequentist analysis 

without baselines -subsection 3.8.1

Reading the data-set

d a ta i<-read.table(”agsc.dat” ); d a ta i< -data .fram e(datal) 

data< -as.m atrix (data l)

period.data<-data[, 1 : 2 ]; period.col<-m atrix(period.data,2 *nrow (data),l) 

treatm ent.data<-data[, 3 ; 4]; treatm ent.co l< -m atrix(treatm ent.data,2*nrow (data),l) 

carryover.data<-data[, 5 : 6 ]; carryover.col<-m atrix(carryover.data,2*nrow (data),l) 

response.data<-data[, 7 : 8 ]; response.col<-m atrix(response.data,2*nrow (data),l) 

no.param <-4; no.times<-2; no.subj<-nrow (data) 

ones<-m atrix( 1,26,1); epsilon<-l.OE-06 

var.param eters.old<-c(1 0 ,0 ) 

m ean.param eters.old<-c(l, 1,1,0.5)

Mean Function

mean.estimation<-function(mean. vector)

{
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x<-mean.vector[l] ; y<-mean.vector[2 ]

z<-mean.vector[3]; w<-mean.vector[4]

inv.vl<-(l/(l-p^))*matrix(c(l,-prP)l)j2,2)

inv.sigm al<-kronecker(diag(nrow(data)),inv.vl)

meanl<-x*ones+y*period.col+z*treatment.col+z*w*carryover.col

likelihoodl.value<-t (response.col-meanl)%*%inv.sigmal%*%(response.col-meanl)

return(likelihoodl. value)

}

Variance function

var.estiination<-function(var. vector)

{
a<-var.vector[l]

b<-var.vector[2 ]

inv.v2 < - ( l / ( l - 6^))*m atrix(c(l,-b ,-b ,l),2 ,2 )

inv.sigma2 <-kronecker(diag(nrow(data)),inv.v2 )

m ean2<-m u*ones+period*period.coI+tau*treatm ent.col+tau*theta*carryover.col

likeIihood2.value<-2*nrow(data)*log(a)+

nrow (data)*log(l-6^)+

( l /a )* ( t  (response.col-mean2 )%*%inv.sigma2 %*%(response.col-mean2 )) 

return(likelihood2 . value)

}

Here is where the estimation process starts 

p <-var.parameters.old[2 ]

meanlikeIihood.old<-mean.estimation(mean.parameters.old)

m ean.nonlinear.list<-nlm inb(start=m ean.param eters.old, objective=m ean.estim ation, 

lower=c(-lnf,-lnf,-lnf,0), upper=c( Inf, Inf, Inf,l)) 

mean.parameters.new<-mean.nonlinear.list$parameters 

meanlikelihood.new<-mean.nonlinear.list$objective

while (abs(meanlikelihood.new-meanlikelihood.old)>epsilon)
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{
m u<-m ean.param eters.new[l]; period<-m ean.param eters.new [2 ] 

tau<-m ean.param eters.new[3]; theta<-m ean.param eters.new[4] 

var.nonlinear.list<-nlm inb(start=var.param eters.old, 

objective=var.estim ation, lower=c(0 ,-l) , upper=c(Inf,l)) 

var.param eters.new<-var.nonlinear.list$param eters 

m ean.param eters.old<-m ean.param eters.new 

var.param eters.old<-var.param eters.new 

meanlikelihood.old<-meanlikelihood.new 

p <-var.param eters.old[2 ]

mean.nonlinear.list <-nlm inb(start=m ean.param eters.old, 

objective=m ean.estim ation, lower=c(-lnf,-lnf,-lnf,0), upper=c( Inf, Inf, Inf,l)) 

m ean.param eters.new<-m ean.nonlinear.list$param eters 

meanlikelihood.new<-mean.nonlinear.listSobjective

}
Final estimation steps 

)U.final<-mean.parameters.new[l] 

period.final<-mean.param eters.new[2 ] 

r.final<-mean.parameters.new[3]

^.final<-mean.parameters.new[4]

A.final<-r.final*0.final 

sigtot.final<-var.parameters.new[l] 

p.final<-var.parameters.new[2 ] 

mean.final<-/.i.final*ones+period.final*period.col+ 

r.final*treatment.col+A.final*carryover.col

inv.varcov.ind<-(l/(l-p .final^))*(l/sigtot.final)*m atrix(c(l,-p .final,-/9 .final,l),2 ,2 ) 

inv.sigma.all<-kronecker(diag(nrow(data)),inv.varcov.ind) 

derivative.m atrix<-cbind(ones,period.col,treatm ent.col+ 

0 .final*carryover.col,r.final*carryover.col)

corr.fixed.effects<-solve(t(derivative.matrix)%*%inv.sigma.all%*%derivative.matrix) 

r.se< -sq roo t(t(c(0 ,0 , l , 0 ))%*%corr.fixed.effects%*%c(0 ,0 ,1 ,0 )) 

A.se<-sqroot(t(c(O,O,0.final,r.final))%*% corr.fixed.effects%*% c(0 ,0,0.final,r.final))
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11.T <-r.final-qt(0.975,(no.tim es*no.subj-no.param ))*r.se 

u l.r  <-r.final+qt(0.975,(no.tim es*no.subj-no.param ))*r.se 

11.A <-A.final-qt(0.975,(no.times*no.subj-no.param))*A.se 

ul.A <-A.final+qt(0.975,(no.times*no.subj-no.param))*A.se

3.10.4 S +  code for the Non-linear Frequentist analysis 

with baselines (model M 12) -subsection 3.8.2

Reading the data-set

d a ta i<-read.table(”nagm 2 .dat” ); d a ta i< -data .fram e(datal) 

da ta< -as.m atrix (data l)

period l.data< -data[, 1 : 4]; period2.data<-data[, 5 : 8 ] 

periods.data<-data[, 9 : 12]; period4.data<-data[, 13 : 16] 

treatm ent.data<-data[, 17 : 20]

carry l.data< -data[, 21 : 24]; carry2.data<-data[, 25 : 28] 

sequence.data<-data[, 29 : 32]; response.data<-data[, 33 : 36] 

periodl.col<-m atrix(periodl.data,4*nrow (data),l) 

period2.col<-m atrix(period2.data,4*nrow (data),l) 

periods.col<-m atrix(period3.data,4*nrow (data),l) 

period4.col<-m atrix(period4.data,4*nrow (data),l) 

treatm ent.col< -m atrix(treatm ent.data,4*nrow (data),l) 

carryl.col<-m atrix(carryl.data,4*nrow (data),l) 

carry2.col<-m atrix(carry2.data,4*nrow (data),l) 

sequence.col<-m atrix(sequence.data,4*nrow(data),l) 

response.col<-m atrix(response.data,4*nrow(data),l) 

no.param <-7; no.times<-4; no.subj<-nrow (data) 

ones<-m atrix(l,4*nrow (data), 1 ); epsilon<-l.OE-06 

m ean.param eters.old<-c(l,1 ,1 ,1 ,1 ,1 ,0 .5) 

var.param eters.old<-c(1 0 ,1 0 )

Mean function

mean.estim ation<-function(m ean. vector)

{
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xl< -m ean.vector[l]; x2 <-mean.vector[2 ] 

x3<-mean.vector[3]; x4<-mean.vector[4] 

x5<-mean.vector[5]; x6 <-mean.vector[6 ] 

x7 <-m ean. vector[7]

v l < -pi *diag(no. tim es)+p2*m atrix(l,no.times,no.times)

i n v . v l < - ( l / p i ) * ( d i a g ( n o . t i m e s ) - ( p 2 / ( p i + 4 * P 2 ) ) * n i a t r i x ( l , n o . t i m e s , n o . t i m e s ) )

i n v . s i g m a l < - k r o n e c k e r ( d i a g ( n r o w ( d a t a ) ) , i n v . v l )

m eanl < -x l*ones+ x 2 *sequence.col+

x3*periodl.col+x4*period2.col+x5*period3.col+(x3+x4+x5)*period4.col+

x6*treatm ent.col+x6*x7*carryl.col

likelihoodl.value<-t(response.col-meanl)% *% inv.sigmal% *% (response.col-meanl) 

return(likelihoodl. value)

}

Variance function

var.estim ation<-function(var. vector)

{
a<-var.vector[l] ; b<-var.vector[2 ]

v2 <-a*diag(no.tim es)+b*m atrix(l,no.tim es,no.tim es)

inv. v2<-(l/a)*(diag(no.tim es)-(b/(a+4*b))*m atrix(l,no .tim es,no.tim es))

inv.sigma2 <-kronecker(diag(nrow(data)),inv.v2 )

mean2 <-/i*ones+sequence*sequence.col+

periodl*periodl.coI+period2*period2.col+period3*period3.col+

(periodH-period2+period3)*period4.col+

r* treatm ent.co l+ r*carry l*carry l.co l

Iikelihood2.value<-3*nrow(data)*Iog(a)+nrow(data)*log(a+4*b) +  

(t(response.col-mean2 )%*%inv.sigma2 %*%(response.col-mean2 )) 

return(likelihood2 . value)

}

Estiamtion process 

Pi <-var.parameters.oId[l]
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p2 <-var.param eters.old[2 ]

meanlikelihood.old<-mean.estimation(mean.parameters.old)

m ean.nonlinear.list<-nlm inb(start=m ean.param eters.old, objective=m ean.estim ation, 

lower=c(-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,0), upper=c( Inf, Inf, Inf, Inf, Inf,Inf,l)) 

m ean.param eters.new<-m ean.nonlinear.listSparam eters 

meanlikelihood.new<-mean.nonlinear.list$objective

while (abs(meanlikelihood.new-meanlikelihood.old)>epsilon)

{
pL <-mean.parameters.new[l]; sequence <-m ean.param eters.new[2 ] 

periodl<-m ean.param eters.new[3]; period2<-mean.parameters.new[4] 

periods <-mean.parameters.new[5]

T <-mean.parameters.new[6 ]; carryl<-m ean.param eters.new[7]

var.nonlinear.list<-nlm inb(start=var.param eters.old, objective=var.estim ation,

lower=c(0 ,0 ), upper=c(Inf,Inf))

var.param eters.new<-var.nonlinear.list$param eters

m ean.par ameters.old<-mean.param eters.new

var.param eters.old<-var.param eters.new

meanlikelihood.old<-meanlikelihood.new

pi <-var.param eters.old[l]; p2 <-var.param eters.old[2 ]

m ean.nonlinear.list<-nlm inb(start=m ean.param eters.old, objective=m ean.estim ation, 

Iower=c(-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,0), upper=c( Inf, Inf, Inf, Inf, Inf, Inf,l)) 

m ean.param eters.new<-m ean.nonlinear.list$param eters 

meanlikelihood.new<-mean.nonlinear.list$objective

}

/z.final<-mean.parameters.new[l] 

sequence.final<-mean.parameters.new[2 ] 

periodl.final<-mean.parameters.new[3] 

period2.final<-mean.parameters.new[4] 

periods.final<-mean.parameters.new[5] 

r.final<-m ean.param eters.new[6 ]
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carryl.final<-mean.parameters.new[7]

0 .final<-r .final*carry 1 .final 

P i  .final<-var.parameters.new[l] 

p2 .final<-var.parameters.new[2 ]

mean.final<-/i.final*ones+sequence.final*sequence.col+ 

periodl.final*periodl.col+period2.final*period2.col+period3.final*period3.col+ 

(periodl .finaI+period2.final+period3.final) *period4.col+ 

r.final*treatm ent.col+T.final*carryl.final*carryl.col

inv.varcov.ind<-(l/pi.final)*(diag(no.tim es)- 

(p2 -final/(pi.final+4 *p2 -final))*m atrix(l,no.tim es,no.tim es))

inv.sigma.all<-kronecker(diag(nrow(data)),inv.varcov.ind) 

derivative.matrix<-cbind(ones,sequence.col,

periodl.col+period4.col,period2.col+period4.col,period3.col+period4.col, 

treatm ent.col+carryl.final*carryl.col,r.final*carryl.col)

corr.fixed.effects<-solve(t(derivative.matrix)%*% inv.sigma.all%*% derivative.matrix) 

r.se< -sq roo t(t(c(0 ,0 ,0 ,0 ,0 , l ,0 ))%*%corr.fixed.effects%*%c(0 ,0 ,0 ,0 ,0 ,1 ,0 )) 

^ .se<-sqroot(t(c(0 ,0 ,0 ,0 ,0 ,carryl.final,r.final))%*%corr.fixed.effects%*% 

c(0 ,0 ,0 ,0 ,0 ,carryl.final,r.final))

11.T < -r.final-q t(0.975,(no.tim es*no.subj-no.param ))*r.se 

u l.r  <-r.final+qt(0.975,(no.tim es*no.subj-no.param ))*r.se 

W.6 <-0.final-qt(O.975,(no.times*no.subj-no.param))*0.se 

ul.0 <-0.final+qt(O.975,(no.times*no.subj-no.param))*0.se 

Similar code has been w ritten for fitting models M2 and M il.

3.10.5 BUG S code for the non-linear Bayesian analysis 

w ithout baselines - subsection 3.8.3

model pefl; 

const
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N =13, P=2;

Defining parameters 

var

pef(N,P],

rho, carryover.effect, carry[N,P], 

treatm ent, treatment.effect, treat[N,P], 

pi, period[N,P], 

intercept, mu[N,P], subject[N],

precision.within, precision.between, sigma.within, sigma.between; 

Reading data-set

data  period, treat, carry, pef in ’’agsc.dat” ; 

inits in ’’coragsc.in” ;

Defining priors 

{

intercept~dnorm (0,1.0E-06); pi~dnorm(0,1.0E-06);

treatm ent~dnorm (0,1.0E-06); rh o ~ d b e ta (l,l);

precision. w ith in~dgam m a(l .OE-06,1 .OE-06) ;

precision.between~dgamma(1.0E-06,1.0E-06);

treatm ent.effect<-2 *treatment; carryover.effect<-2 *treatm ent*rho;

sigma. w ith in<-l/precision, within;

sigm a.between<-l/precision.between;

The model 

for (i in 1:N) {

subject [i]~dnorm (0 ,precision.between); 

for (j in 1 :P)

pef [i ,j ] ~dnorm  (mu [i,j ], precision. within) ; 

m u[i,j]<-intercept+pi*period[i,j]+treatm ent*treat[i,j] +  

treatment*rho*carry[i,j]+subject[i]; } }
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}

3.10.6 BUG S code for the non-linear Bayesian analysis 

with baselines (model M2) - subsection 3.8.4

model pefl; 

const

N=13, P=4;

Defining model parameters 

var

pef[N,P],

rho l, first.carry, carryl[N,P],

rho2, kappa, second.carry, carry2[N,P],

treatment.effect, treatm ent, treat[N,P],

pil,pi2,pi3, periodl[N,P], period2[N,P], period3[N,P], period4[N,P],

sequence, seq[N,P],

intercept, mu[N,P], subject[N],

precision.within, precision.between,

sigma.within, sigma.between;

Reading data-set

data  periodl, period2, period3, period4, 

treat, carryl, carry2 , seq, pef in ’’nagm 2 .dat” ; 

inits in ”coragm 2 .in” ;

Defining priors 

{

intercept~dnorm(0,1.0E-06);

pil~dnorm (0,1.0E-06); pi2~dnorm(0,1.0E-06); pi3~dnorm (0,1.0E-06); 

rh o l~ d b e ta ( l,l) ;  kapp a~ d b e ta (l,l) ; rho2 <-rhol*kappa; 

treatm ent~dnorm (0,1.0E-06); sequence~dnorm(0,1.0E-06); 

precision. within~dgamma(1.0E-06,1.0E-06);
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precision.between~dgamma(1.0E-06,1.0E-06); 

treatment.efFect<-2 *treatment;

first.carry<-2 *treatm ent*rhol; second.carry<-2 *treatm ent*rho2 ; 

sigma. w ithin<-l/precision.w ithin; 

sigma.between<-l/precision.between;

The model 

for (i in 1 :N) {

subject[i]~dnorm (0 ,precision.between); 

for (j in 1 ;P) {

pef[i,j]~dnorm(mu[i,j],precision, within) ;

mu[i,j]<-intercept+sequence*seq[i,j]+

pil*periodl[i,j]+pi2*period2[i,j]+pi3*period3[i,j]+

(pil+pi2+pi3)*period4[i,j]+

treatm ent*treat[i,j]+

treatm ent*rhol*carryl[i,j]+

treatm ent*rhol*kappa*carry2 [i,j]+

subject[i]; } }

}

Similar code has been applied for fitting models M12 and M il
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Chapter 4 

M ulti-period, m ulti-sequence 

designs for two treatm ents

4.1 General considerations

W hen a clinical trial is conducted, the number of periods used is usually chosen to 

be equal the number of treatm ents the trialist is prepared to compare. This need 

stems from the limited time horizon within which the trial must be completed, 

but also from limited financial resources. A direct implication of th a t restriction 

is th a t when only two treatm ents are compared, no more than two periods will 

be used.

There are a number of advantages when higher-order designs are used for compar­

ing two treatm ents. By higher-order we mean th a t in the clinical trial plan either 

multi-period designs are allowed for, or more than two sequence groups are used, 

or both. To begin with, better insight for the treatm ent difference can be gained 

for each patient, if a multi-period trial is preferred to a conventional 2 x2  solution. 

Imagine for the moment th a t the treatm ent sequence ARAB... is administered 

to a patient. In th a t case the treatm ent difference A-B can be evaluated more 

than once, and assuming negligible time trends, a more accurate patient-based 

estim ate for the treatm ent effect is possible. By combining these individual-based 

treatm ent estimates a better overall picture for the superiority or not of the newly 

proposed treatm ent (A) compared to the old one (B) can be obtained. Further­

more, if subject effect is modeled as a fixed parameter, multi-period designs offer
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the opportunity  to estim ate carry-over differences using within subject contrasts. 

On the contrary in the 2x2 case carry-over effect is estim ated by utilizing only 

between subject information. Finally in multi-sequence, m ulti-period cross-over 

clinical trials treatm ent by period interaction and carry-over difference are sepa­

rately estimable. In the 2x2 case these effects are intrinsically aliased.

Another im portant issue, which can be investigated using the m ulti-period de­

signs, is the statistical significance or not of the treatm ent-by-carryover interac­

tion. Till now it has been assumed tha t residual effects depends on the previous 

treatm ent and not at all on the current one. A well-known alternative to tha t 

scenario (see Fleiss [17]) proposes a scheme under which carry-over from A to 

A might be negligible, but the one from A to B might be present. On phar­

macological grounds this might be the case if the two compounds have similar 

but not identical therapeutic activity and react to each other. In clinical trials 

(cross-over or parallel group ones) when a prespecified dose is adm inistered to 

the patient the clinician allows the drug to reach its pharmacological peak effect 

(known from P K /P D  studies) before the measurement is taken. Therefore, when 

the wash-out period is not long enough between successive measurements of the 

same compound, the residual effect from the previous period will force the cur­

rent measurement to reach its asymptote value earlier, implying th a t the final 

current measurement will be similar to the one obtained as if no residual effect 

is present a t all. On the contrary between successive m easurements of different 

compounds, which might react chemically, the effect of the previous compound 

to the current measurement might be influential in determ ining the final current 

treatm ent outcome. This type of residual effect is called Fleiss (or steady-state) 

carry-over (see Fleiss [17]).

Overall three models can be considered by the analyst during the design phase 

for choosing the optim al plan: the simple carryover, the Fleiss-carryover type 

model, and finally the model with no carryover term s a t all. A question worth 

consideration, is what are the losses in estimating the treatm ent difference using 

anyone of the models mentioned before, but in reality any of the other two has 

produced the observed data.

Although more statistical issues are possible to be tackled in a m ulti-period setup.
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there are some practical disadvantages in conducting such a trial worth consid­

ering in more detail. To begin with, the trialist should always keep in mind th a t 

sources and time for drug development are limited. As a consequence if more 

than two treatm ent periods are used, the time a trial lasts will be extended sub­

stantially and the possibility of drop-outs from the study becomes significantly 

higher. If the time length of wash-out periods is added to th a t of treatm ent 

periods then use of multi-period designs might be strictly  cost-prohibited. Fur­

thermore, in cases where a complicated multi-period design is used, clinicians will 

find difficult to administer treatm ents according to the protocol of the trial, while 

statisticians will face difficulties in communicating results from the final analysis. 

Overall we have to weight carefully the advantages for conducting such a trial, 

which should be in agreement with the objectives of the study, before we prefer 

the more complicated design from the conventional 2 x2  solution.

4.2 The approach considered here

Suppose th a t a multi-period cross-over design consisting of s sequence groups 

and p periods is to be used. The statistician responsible for choosing the opti­

mal within a family of designs, exploits the fact th a t any treatm ent difference 

estim ator can be expressed as a weighted average of the ps sequence by period 

means. This assumption will be adopted in what follows. Note here th a t it is 

quite common in practice repeated measurements are collected on each subject 

within a treatm ent period. It is debatable if the mean of these measurements 

is the appropriate statistic for summarizing pa tien t’s response at th a t specific 

period. An interesting query of how results altered when a different summary 

measure is chosen, or alternatively when the repeated measurements are used 

without any attem pt to summarize them, is raised.

In a typical ANOVA table, where the results of the analysis of a cross-over trial 

will be summarized, the total number of available degrees of freedom (df) is s p—l. 

Now, s — 1 of them will be used for estim ating sequence effects (if fitted as fixed 

effects), p — 1 for period effects, while the rest, (s — l)(p  — 1 ), will be partitioned 

for assessing treatm ent and carry-over difference as well as any other estimable
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interactions of interest. This implies tha t the number of periods, number of se­

quences and number of patients allocated in each sequence, should provide the 

analyst with adequate information to estimate these parameters. In some trials 

the treatm ent effect (s) on sub-group of patients with specific demographic char­

acteristics (e.g. males, aged 50-60) can be of interest. This information can be 

used by the GP to individualize the treatm ent regime. For such a trial not only 

is the choice of the treatm ent sequences under question, but also the proportion 

of males/females allocated to different sequences is controversial. On the other 

hand, in other types of clinical trials (e.g P K /P D  studies) the long-term effect 

of the compound on a target subpopulation might be the focus of attention; if 

th a t is the case, the way the to ta l study-completion time is divided into sub­

periods is debatable. The statistician, in close collaboration with the clinician, 

should choose the appropriate sub-period length so th a t the possibility of carry­

over presence diminishes, while the proportion of patients who drop-out from the 

study is kept to a minimum level.

In most studies, both the number of periods and sequences used, are usually fixed 

in advance by relying mostly not on statistical methodologies but on practical 

needs. We follow the same policy here by restricting the number of periods and 

sequences at low levels, so th a t the whole set of designs for th a t family can be 

easily listed. The statistically optim al designs for the simple carry-over model 

have been derived under the assumption of fixed subject effects (or equivalently 

fixed sequence effects) and independent within-subject errors. For a full review 

of these results, see Kershner and Federer [43].

An attem pt to relax both assumptions has already been reported in the literature, 

for example determining optim um  design plans assuming random  subject effects 

(see, Laska and Meisner [51]). If the subject effects are considered as random 

quantities, then the sequence effect which is the average effect of the subjects 

allocated to th a t sequence should be random as well. Results under different 

kinds of carry-over (e.g. Fleiss) will be presented. More specifically, the model 

considered here is:

ÿ i j  =  ^  4- 4- TTj -b Td(i j ) +  Ad(îj-lj) +  ëi j  (4.1)
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where

Si ~  N{0,a%/n) and ëij ~  N { 0 ,a ^ / n )  (4.2)

Note th a t the residual treatm ent effect (Xd{i,j-i,j)) depends on the current and 

previous period treatm ent in an unspecified way. This equation includes simple, 

Fleiss and no-carryover model as special cases. If patients are followed up for 

a long time, within-subject error structure can be safely assumed to follow a 

stationary first-order auto-regressive process. The (j,k) element of the variance- 

covariance m atrix for the subject’s error vector is:

Cov(ëy, êi*) =  (4.3)

where n  is the number of patients per sequence. In equation (4.1) a serially 

correlated error structure and a random subject effect are considered simultane­

ously. This implies th a t correlation decays with increasing time difference and 

approaches a limit th a t is greater than zero for large tim e differences. This limit 

is the between subject variance. If tha t model is adopted for designing a study, 

knowledge in advanced of this variance component is necessary. Because tha t in­

formation is not readily available, the random sequence effect is removed from the 

model, leaving the AR(1) structure to describe stochastic dependence between 

measurements made on a subject.

The ds optim ality criterion is used for determining the optimum plan, regardless 

of the assumptions made for the fixed or the random part of the model. More 

specifically the design plan under which the treatm ent effect is estim ated with 

minimum MSE, will be declared as optimum. Note th a t the optimum design for 

estim ating treatm ent difference might be sub-optimum for estim ating carry-over 

difference or any other interaction terms and vice versa. A further restriction on 

the class of designs studied is tha t of dual balance i.e. if a treatm ent sequence (e.g. 

AABB) is present, then its dual (BBAA) should be present as well. In addition, 

equal proportion of patients are allocated to th a t pair of sequences. The concept 

of duality for treatm ent sequences is meaningful only when two treatm ents are 

compared in the study (e.g placebo-control). In the case where more than two 

treatm ents are examined, the duality concept applies to the design as a whole, 

bu t not to individual treatm ent sequences. The main reason for considering this

149



special family of designs stems from a result proved by Laska and Meisner (see 

[51]), under which optimal designs are not necessarily dual balanced, but a dual 

balance design always exists in the family of best plans.

4.2.1 Three period-two sequence designs

The only possible design plans in this case are listed in Table (4.1). In any de­

sign presentation each sequence is accompanied by its dual. Following standard 

notation introduced by Jones and Kenward (see [39]) the above plans will be 

referred to as 3.2.1, 3.2.2 and 3.2.3, where the first number reflects the number 

of periods, the second stands for the number of sequences, while the final one is 

an index to distinguish between different designs. The efficiency of a design for a 

prespecified effect (e.g treatm ent or carry-over difference) is defined as the ratio 

of the variance of the treatm ent or carry-over estim ator at the optimum over the 

corresponding figure for the design in question. The efficiency of three-period 

two-sequence designs for the treatm ent as well as the carry-over difference have 

been evaluated over a range of possibilities concerning the modeling of the carry­

over effect and the within-subject covariance structure. It is well-known th a t

Table 4.1: Two, four sequence three-period designs
3.2.1 3.2.2 3.2.3 3.4.12 3.4.13 3.4.23

A B B A B A A A B A B B A B B A B A

B A A B A B B B A B A A B A A B A B

A B A A A B A A B

B A B B B A B B A

under fixed subject effects and independent within-subject errors (see, Jones and 

Kenward [39] or Kershner and Federer [43]), design 3.2.1 gives minimum variance 

unbiased estim ator both for the treatm ent and carry-over effect under the simple 

carry-over model. If no-carryover is assumed and A R (1 ) error structure is used, 

design 3 .2 . 2  estimates treatm ent difference most efficiently over the positive range 

of the correlation coefficient (p). Under Simple (Fleiss) type of carryover design 

3 .2 . 3  (3 .2 .1 ) is the optimum for estim ating treatm ent effect this time, while all 

designs are equally efficient for th a t effect when a second order carry-over term
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is added to the first one (second order carry-over model). Sim ilar results are 

given by M atthews (see [61]). The majority of the results presented above, are 

valid when the assumption of a uniform covariance structure is made, with the 

exception th a t all designs are equally efficient in the case of no-carryover while

3.2.1 instead of 3.2.3 is the optimum under simple carry-over model.

In the cross-over literature, designs which estimate efficiently not only the tre a t­

ment but also the carry-over difference are preferred. Design 3.2.1 is optimum 

for estim ating carry-over difference for both Simple and Fleiss type of carry-over. 

This is true irrespective of the covariance structure assumed, although for the 

Fleiss type of carry-over and under uniform structure 3.2.2 is an equally efficient 

alternative.

Overall design 3.2.1 seems to have a good performance for estim ating both the 

treatm ent and residual effect no m atter the within-subject error structure as­

sumed, while for those with a special interest on the treatm ent effect, design 3.2.3 

is an excellent alternative. Under no circumstances design 3.2.2 should be used 

(unless no carry-over is assumed), while for all designs variance of the treatm ent 

and carry-over effect decreases as intra-class correlation increases. Sensitivity of 

best plans under different model assumptions, show th a t it is easier to propose 

robust solutions for the residual effect rather than for the treatm ent effect.

4.2.2 Three period-four sequence designs

The possible design plans in th a t occasion are listed in the right half of Table 

(4.1). The available degrees of freedom for the group by period interaction in 

the three period two sequence designs are (p — l) (s  — 1 ) =  2  allowing only the 

estimation of treatm ent and first-order (or Fleiss) residual effects. In all these 

designs first-order carry-over is aliased with treatm ent by period interaction, while 

the assumption of carry-over being dependent not only upon previous treatm ent 

but also upon the current one (treatm ent by first-order carry-over interaction) 

cannot be tested.

A way to overcome this problem is to allow for more sequences an d /o r more 

periods in the design. Here the first possibility is only considered and the two- 

sequence three-period designs presented in the previous section, are combined
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in pairs giving four-sequence three-period designs. For example, by combining

3.2.i with 3.2.j the three-period four-sequence design 3.4.ij is generated. The three 

possibilities, labeled 3.4.12, 3.4.13 and 3.4.23, are given in Table (4.1). In this way 

we increase the available degrees of freedom for the group by period interaction 

from two to six. If we include treatm ent, first-order and second-order carry­

over term s then two d.f remain for estim ating uninteresting sequence by period 

interaction terms. Note th a t the 2 d.f of the treatm ent by period interaction are 

aliased with first and second order carry-over effects, as for the 2x2 case. Under 

uniform or AR(1) within-error structure four models will be studied:

• M l  : Inclusion of residual terms of any kind is not considered based on 

knowledge about the pharmacological effect of the drug on humans. Only 

treatm ent effect (r) is fitted.

• M 2  : F irst order carry-over effect added to model M l (simple carry-over 

model).

•  M 3 : A second order carry-over effect further added to the simple carry­

over model (second order carry-over model).

•  M 4 : A special type of treatm ent by first-order carry-over interaction is 

fitted in addition to the treatm ent term  (Fleiss model).

It was concluded tha t under model M l and A R (1 ) error structure designs 3.4.12 

and 3.4.23 are equally efficient for estim ating treatm ent difference, while under 

the simple carry-over model the ideal choice is 3.4.13. In the Fleiss model, the 

optimum decision depends upon the correlation coefficient. More specifically de­

sign 3.4.13 is preferred for small values of p, while for the larger values 3.4.12 

becomes the favored one. Finally under the completely unrealistic model M3, 

design 3.4.23 is the best choice. Similar results for the simple carry-over model 

are proven by M atthews (see [61]).

If now uniform covariance structure is assumed under model M l all designs are 

equally good for assessing treatm ent effect, whereas for the Fleiss and second 

order carry-over model, optimum decision depends again upon p. For the simple 

carry-over model, optimum design does not depend on the assumed covariance
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Table 4.2: Optimum three period four sequence designs for r  and A

Upper half : A R(1) structure - B ottom  half : Uniform structure

Optimum for r  (3.4.index) O ptim um  for A (3.4.index)

M l M2 M3 M4 M2 M3 M4

.12 or 

.23 Vp

.13 Vp .23 Vp .13 if p G (0,0.6] 

.12 if p G (0 .6 ,1)

.13 Vp .13 Vp .12 Vp

.12 or 

.13 or 

.23 Vp

.13 Vp 23 if p G (0,0.8] 

12 if p G (0 .8 ,1)

.13 i f p G  (0,0.5] 

.12 i f p G  (0 .5 ,1)

.13 i f p G  (0,0.2] 

.12 if p G (0 .2 ,1)

.13 Vp .12 Vp

structure.

Turning now to the issue of estim ating efficiently the residual effect designs 3.4.12 

and 3.4.13 are preferred in all the cases (AR(1) error structure), but in other oc­

casions the unknown value of p plays a key role in the final choice (Uniform error 

structure). Results are shown in Table (4.2).

Obviously if the number of sequences used in the trial is increased, then the pre­

cision with which we estim ate treatm ent or residual term s will be increased as 

well. This implies th a t four sequence designs should be preferred for running a 

cross-over study than  two sequence ones. But a four sequence design is normally 

more expensive to conduct and requires the managem ent of four groups of pa­

tients. In conclusion, if the experimenter decides to run a four sequence design 

then 3.4.13 is a good choice as it has good performance for estim ating treatm ent 

difference when carry-over term s are included in the model, irrespective of the 

covariance structure assumed.

4.3 Using more periods

In th a t section designs made of four treatm ent periods in either two, four or 

six treatm ent sequence groups are considered. Only designs made up of dual 

balanced treatm ent sequences are investigated. The logistics of running such a 

study are far more complicated from the study-designs considered so far. If we

153



assume th a t the experimenter keeps the completion tim e of the trial fixed, then 

sub-dividing this time into four equal time-intervals (instead of three or two), 

may cause difficulties in collecting the amount of information required for regu­

latory or other authorities. In addition the cost for conducting such study might 

not be negligible. From the statistical point of view, by using more periods it is 

expected th a t all the effects of interest will be estim ated more precisely, but also 

non-estimable effects in two or three period plans become estimable in the four 

period family. As in the previous section treatm ent, first-order and second-order 

residual effects will be included in the model, but also the best design plan when 

different carry-over types (e.g. Fleiss) assumed, will be presented.

The optimum design will be the one which estim ates treatm ent (or carry-over) 

difference w ith minimum variance. It is obvious th a t other functions could be 

considered to optimize, but these choices depend upon the interests of the exper­

imenter. For example minimizing the variance of the overall treatm ent effect (i.e. 

treatm ent plus residual component) or the to tal study cost are two such func­

tions. As before, both uniform and AR(1) within error structure will be assumed 

throughout. Finally note th a t when Fleiss type of carry-over is incorporated into 

the analysis, second order carry-over of the same type is not included, because 

it is quite unlikely in practice to occur. The same argument can be pu t forward 

for the simple carry-over model, bu t the reason for considering such a term  here, 

is simply to study the sensitivity of optimum plan when higher order carry-over 

terms are considered. Third, fourth or higher order residual term s will not bother 

us in what follows. There are seven different four period dual-sequence designs, 

listed in Table (4.3).

By allowing more periods, the set of estimable interactions increases, bu t some 

of them  like the treatm ent by carry-over one (rA) are still not estimable. Un­

der the A R (1 ) within-error structure when treatm ent and all carry-over terms 

are included (M3), designs 4.2.6 and 4.2.7 are the optimum ones for estim ating 

treatm ent effect but the decision depends on intra-class correlation, while in the 

case of the simple carry-over model (M2) design 4.2.3 is the preferable one. If 

the Fleiss type of carry-over holds then 4.2.1 and 4.2.6 are equally efficient for 

small values of p, but 4.2.3 is the optimum for the large ones. Finally if the
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trialist is confident enough th a t no residual term s should be present because an 

adequate wash-out period has been allowed for, then the advisable design is the

4.2.2. These results are also comhrmed by M atthews (see [61]). From the above

Table 4.3: Two-sequence, four-period designs
4.2.1 4.2.2 4.2.3 4.2.4

A A B B A B A B A B B A A B A A

B B A A B A B A B A A B B A B B

4.2.5 4.2.6 4.2.7

A A B A A B B B A A A B

B B A B B A A A B B B A

discussion it can be concluded th a t if a model with elaborated carry-over term s is 

used, then optim um  designs are made of sequences with non-equal replication of 

A’s and B’s (designs 4.2.6 or 4.2.7), while as residual term s are removed gradually 

from the model then equal number of A ’s and B’s appear in each sequence for the 

optimum plan. This is the price we have to pay for including carry-over terms. 

The dangers from administered the same drug in a number of adjacent periods is 

to bias the clinician’s assessment of the subject’s response, as the randomization 

code could be easily broken. More im portantly if one of the treatm ents is placebo 

and design 4.2.6 (or 4.2.7) is used, then a group of patients will suffer discomfort 

for a long period and be willing to  abandon the trial. All the above shows th a t a 

lot of conflicting objectives have to  be reconciled, one of which is the statistical 

efficiency, before a specific design is chosen. Under uniform covariance structure 

similar conclusions derived when compared to the A R (1 ) case.

Turning now to the optimum estim ation of carry-over effect design 4.2.6 seems to 

have good performance over the range of the models studied and irrespective of 

the covariance structure assumed. Generally speaking it is easier to find a robust 

plan for estim ating carry-over ra ther than  treatm ent effect.

By combining two-sequence four-period generic designs in pairs we form 21 dis­

tinct four-period four-sequence designs, each one referred to as 4.4.ab if designs

4.2 .a and 4.2.b are joined together. C ontrast to  the two sequence plans, stud­

ied before, the treatm ent by first order carry-over interaction is now estimable.
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Under uniform covariance structure and when the full set of carry-over terms 

is present (model M3), designs 4.4.12 and 4.4.14 estimate r  optimaly, but the 

decision which one to use depends on p. For the simple carry-over model design 

4.4.13 is our best choice, while 4.4.16 is the favorite one for the Fleiss type of 

carry-over, irrespective of the value of p. In the absence of any residual term s any 

combination of 4.2.1, 4.2.2 and 4.2.3 in pairs can be used to estim ate optim aly the 

treatm ent difference. From the above discussion the major two-sequence design 

for constructing the optimum four-sequence plan is 4.2.1. If the A R (1 ) structure 

is assumed and model M l (no-carryover) is used for analysis purposes then 4.2.2 

is the m ajor building block for the optimum four-sequence design, while design 

4.2.3 plays th a t role for the simple and Fleiss type of carryover; for more details 

see Table (4.4). This family of plans has also been studied by M atthews (see [61], 

[62]) and similar conclusions were derived.

Table 4.4: Optimum four-period designs for treatm ent effect
Upper:Two sequences-MiddlerFour sequences-Lower : S ix sequences 

AR(1) w ithin-subject error structure assumed

M l M2 M3 M4

.2 Vp .3 Vp .6 i f p G  (0.0,0.4] 

.7 if p G (0.4,1.0)

.1 or .6 i f p G  (0.0,0.5] 

.3 i f p G (0.5,1.0)

.23 or .24

or .25 Vp

.13 i f p G  (0.0,0.7] 

.35 if p G (0.7,1.0)

.56 or .47 if pG  (0.0,0.1] 

.47 i f p G  (0.1,0.4]

.12 i f p G  (0.4,1.0)

.16 i f p G  (0.0,0.5]

.13 or .36 i f p G  (0.5,0.7] 

.34 i f p G  (0 .7 ,1 .0)

.235 or .245 

.234 Vp

.134 i f p G  (0.0,0.2] 

.135 if p G (0.2,1.0)

.126 i f p G  (0.0,0.5] 

.127 if p G (0.5,1.0)

.167 i f p G  (0.0,0.2]

.136 i f p G  (0.2,0.8]

.134 or .346 i f p G  (0 .8 ,1 .0)

Following the same principle, combining any three two-sequence four-period de­

signs, a six-sequence four-period design is produced. There are 35 distinct designs 

in th a t family and the optimum combination for estim ating r  is presented again 

in Table (4.4). Note here th a t the 35 distinct designs produced in th a t way in 

two treatm ents constitute all the members for th a t family. The strategy of pro­

ducing more complicated designs by combining generic ones can be extended to
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the situation where more than two treatm ents are compared. W orth noting tha t 

the plans generated in th a t way constitute a new design family the size of which 

grows too fast. Identification of subsets with high probability of containing plans 

with optimum properties is highly desirable. Formal proof th a t the optimum 

plan for the subset is the optimum for the family as well, or a t least th a t the 

efficiency of the former is quite high, could be difficult to derive. Efficient subset 

construction could considerably simplify the design search for the original family. 

It should be noted th a t the optim ality conclusions drawn so far do depend upon 

the intra-class correlation coefficient p.

A related work by J.N.S M atthews (see [61]) in which the simple carry-over 

model with fixed subject effects and AR(1) within-error structure is assumed as 

the model generated the da ta  a t hand, manages to determine m athem atically 

the optimum design. This work restricts attention on three and four-period de­

sign families. Under these assumptions, negative correlation between successive 

measurements on a patient is possible. Matthews concludes th a t the final de­

cision concerning the design to use is highly affected not only by the value of 

p, bu t also the proportion of patients allocated in each sequence group. This 

is an uninteresting result since p is unknown in practice while equal number of 

patients are usually allocated to the sequence groups. Being aware of these facts, 

M atthews goes even further and examines the robustness of various designs con­

sidered before. He deduces th a t over the full range of p and under the simple 

carry-over model a design with good performance for estim ating treatm ent and 

residual effect is 4.4.13 in our notation. Unfortunately our results do not suggest 

a specific design with good properties over the range of models studied. This is 

an indication th a t this line of research will be difficult (if a t all possible) to be 

taken any further.

4.4 M odel mis-specification

A wide range of different criteria have been proposed in the literature for choosing 

the optimum design. In the cross-over set-up the assumed carry-over effect is 

crucial in deciding the best design for the analysis. Types of carry-over, already
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discussed, make this term  depending upon current and previous treatm ent regime 

(Fleiss carryover). These ideas can be further extended in various directions, 

producing more elaborated carry-over schemes, although the validity of those 

plans in real life problems has been questioned a lot in the past (see Matthews 

[62] and Fleiss [18]). One such direction allows the current pa tien t’s response to 

depend on the whole treatm ent history of th a t patient, i.e the residual effect at 

tim e Ms a function of all treatm ent effects up to and including time t. Although 

such a scenario assumes tha t carry-over from current treatm ent is present in all (or 

some) subsequent treatm ent periods, it is extremely unlikely to be encountered 

in practical applications.

A more general scheme, can be described as follows: if carry-over from treatm ent 

A to treatm ent B (or from B to A) is denoted by A, then carry-over from A to A 

(or from B to B) will be (f)X for some 0 <  0 <  1. This will be referred to as the 

mixed carry-over model in the sequel. Essentially it is an interm ediate scenario 

between simple and Fleiss type of carry-over, since when 0 =  0 (0 =  1) then the 

Fleiss model (simple carry-over model) is recovered. Note th a t even under tha t 

new scheme, residual effect from previous treatm ent lasts for one period only.

An analyst might feel insecure in using either the Simple or the Fleiss type of 

carry-over as his analysis model, so he may prefer to let the data  decide upon the 

value of (j). In other words, his analysis model should allow for all possibilities. On 

the other hand if ’’nature” decides th a t the observed data  are generated by the 

Simple (or Fleiss) carryover model, and th a t information is not captured by the 

analysis model, then the analyst would be interested to know which design gives 

the minimum mean square error (MSE) for estim ating treatm ent effect under 

model mis-specification. In other words, if Model 1 is used for the analysis, but 

Model 2  is the correct one and should have been used instead, which design plan 

recovers the real treatm ent difference. In all the above, only two treatm ents are 

compared, the within-error structure is assumed known and only dual balanced 

designs in two, four or six sequence groups and four periods will be considered. 

The above question can be extended in the case where not only the systematic 

part, but also the within-patient error structure of the model has been mis- 

specihed; for example although the analyst is using the OLS treatm ent estim ator
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which is optimal if one assumes uniform within-subject covariance structure, the 

same estim ator might be sub-optimal and should be modified, if the structure 

adequately describing the correlation between successive observations in a patient 

is the A R (1 ).

Some minimal notation will now be introduced. The design matrices for the 

’’analysis” and the ’’true” model will be denoted by X i  and X 2 respectively. 

Following Laird-W are’s notation for models with fixed and random effects, both 

the true and analysis model can be described as follows:

y =  XiP J s  6 2 =  1,2 (4 .4)

where (5 includes overall mean, period, treatm ent and carryover effect (if present), 

all fixed, while s ~  7V(0, cr^) being the random sequence effect and J  is a vector of 

ones. The equation above, implies a uniform covariance m atrix E for the vector of 

repeated measurements on a particular subject. The A R(1 ) structure cannot be 

expressed using a random effects model, but usually is presented in the following 

form:

y =  Xif3 +  e 2 =  1, 2 (4 .5)

where e ~  A” (0, E) and E^j =  The correlation coefficient is assumed

positive throughout, in agreement with the findings in most practical applications. 

The generalized least squares estim ator for the fixed effects under the ’’analysis” 

model will be:

^analysis =  XlY.-^y (4.6)

Note tha t the model used for ”analysis” differ from the ’’true” only in their 

systematic part, and more specifically on the type of carryover assumed. Under 

the ’’true” model we have:

E  (y) =  X 2 I3

so that:

E  [P^nalysis] =  (4.7)
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It is easy now to evaluate the bias and the variance m atrix  of the fixed effects as 

follows:

B îas(Â nai,.i,) =  ^  (4.8)

V 0 a n a , y s i s )  =  (X j’S - 'X i ) ” '  (4.9)

’’True” model candidates includes the model with no carry-over terms, the Sim­

ple and the Fleiss-type carry-over model. Similarly ” analysis” model candidates 

includes all the ’’true” model nominees plus the mixed carry-over type with 0  

ranging from 0 to 1. In what follows the real treatm ent difference is assumed to 

be 5 units, while the carry-over effect is taken as a proportion of the treatm ent 

effect. Both treatm ent and carry-over terms enter linearly into the model and are 

m athem atically unrelated. To facilitate results presentation the ratio A /r and the 

correlation coefficient p are classified as follows : low (0.1-0.3), medium (0.4-0.6 ) 

and high (0.7-0.9) range of values. In practice 20% or less (low range) of the 

real treatm ent effect carries over to the next period, while the correlation among 

successive measurements on the same subject is usually estim ated at about 0.7 

(high range). Optimum plans under these restrictions will mainly be discussed 

in the sequel.

As expected the design used for running the trial depends upon the statistician’s 

choice for the ” analysis” model. For example, in the quite likely case, where 

the model with no residual term s is the ’’true” model and statistician 1 uses 

the Simple carry-over, while statistician 2  uses the Fleiss type of carry-over as 

his ” analysis” model respectively, when it comes to design selection they will 

choose differently. If we restrict a ttention to four-sequence four-period designs, 

then statistician 2  should be running his trial using the design (AABB, ABBB, 

duals) while statistician 1 can choose any one of the about equally efficient plans 

(AABB, ABBA, duals) and (AABB, AAAB, duals). The two statisticians will 

disagree on which design should be used to run the trial, even when the Simple 

or Fleiss carryover schemes are the models responsible for generating our data  

(’’true” model), as long as they pick up different ”analysis” models.

General recommendations on the choice of the best design cannot be made; a no­

table exception to th a t rule might be when the family of two-sequence four-period 

designs is decided to be used from the outset. If th a t is the case a design with
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good performance on estimating treatm ent effect with minimum MSE, irrespec­

tive of the ’’true” or ”analysis” model assumed, is ABBA/BAAB. Unfortunately 

this argument does not hold when designs with more than  two sequences are 

considered. The set of optimum designs, under various scenarios, are summa­

rized in Tables (4.9), (4.10) and (4.11). Each design is identified by a number 

pre-assigned to it. The key to tha t index is presented in Table (4.12).

From the statistician’s point of view, the robustness of the chosen design to ’’na­

tu re ’s” choices is the ultim ate goal. Suppose for the moment that a statistician 

after reviewing the cross-over literature feels comfortable in using the simple 

carry-over model as his analysis model. If he had to choose a six-sequence plan, 

normally he would choose the design as if the ’’true” and ”analysis” model co­

incide. Suppose now tha t ’’nature” disappoints his expectations and chooses the 

model with no carry-over terms as the one responsible for generating the observed 

data. If th a t is the case, design 22 (see index) should be used for running the 

study, while in the alternative case where ’’nature” chooses as ’’true” model the 

one with the Fleiss type of carry-over, design 15 becomes his best choice. The 

wise statistician would prefer a design with high efficiency over a wide range of 

’’na tu re’s” choices. This design usually is not the optimum under anyone of the 

’’true” models, but it has good performance (efficiency more than 90%) over the 

range of ’’natu re’s” choices. Some of these designs will now be presented when 

six sequences are used. We still assume that A =  0 .2 r  and p = 0.7.

• A down-to-earth statistician decides to use for his analysis model the one 

with no residual terms. In th a t case, design 3 has 97% efficiency under the 

Simple carry-over model, while it is nearly optim um  under the Fleiss type 

of carry-over (efficiency more than  99%).

•  A conservative choice could be to use in the analysis phase the simple carry­

over model. If th a t is the case, designs th a t are highly efficient when the 

’’true” model is the Fleiss one, tend to be of low efficiency under the no­

carryover scheme. A design with reasonably good performance under either 

of these ’’true” model candidates, is design 33 (ABBA, ABBB, AAAB, 

duals), which has efficiency of 58% under no-carryover model and only 50% 

under the Fleiss type of carryover.
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• In the unlikely case where the statistician chooses the Fleiss type of carry­

over for his analysis model, then design 12 has 94% efficiency if ’’true” 

model is the one without residual terms, while it has only 80% efficiency if 

’’nature” selects the Fleiss type of carry-over as the ’’true” model.

If we are given ’’true” , ”analysis” models, correlation coefficient p, and it is as­

sumed that residual elfect is a small proportion of the treatm ent effect, then the 

set of designs the analyst can choose from to run his trial is wider than  the cor­

responding set when A is a substantial proportion of r . On the other hand, given 

” true” , ” analysis” models and proportion of treatm ent effect carrying over to the 

next period, the set of designs the analyst can choose from is similar across pos­

sible values of the correlation coefficient. To illustrate the point suppose th a t the 

practitioner decides to use a four-sequence design. On pharmacological grounds, 

he decides to use for his analysis model the Mixed one with 0 =  0 .2 . ’’N ature” 

on the other hand produces the observed data using the Fleiss model. W hich is 

the best design to use, so th a t the MSE of estimating treatm ent effect is mini­

mized, if correlation among successive measurements on a subject is high? The 

answer, of-course, depends on the true value of A. If A is in the low range then 

the statistician is free to choose any one of the four designs (5,6,13,14). He has 

two alternatives if A lies in the middle range (designs 5,14) and only one choice 

(design 5) when A is in the high range. In other words the analyst should worry 

more to capture correctly residual difference, rather than the way observations 

are related within subjects.

In our discussion so far it has been assumed tha t if the Mixed carry-over model 

is used the proportionality coefficient ÿ is known. This is a strong assum ption 

to be made and one would expect this quantity to be estim ated from the data. 

If tha t is the case then we are dealing with a non-linear model w ith respect to 

0 and A. Usually not sufficient data  are available in practice to estim ate both 

(j) and A. To prove the point, suppose th a t the two-sequence three-period design 

AAB/BBA is used. If n  patients are allocated in each sequence, then only the 

second period data will be used to estimate (f). Given th a t the num ber of patients 

recruited in a typical cross-over trial is usually low to moderate, the estim ation 

of (j) and its standard error will be unstable. As a consequence, ÿ will be assumed
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known throughout, implying a linear model in the unknown param eters. 

Furthermore the situation in which not only the system atic part, bu t also the ran­

dom part of the model is mis-specified by the analyst will be discussed in some 

detail. The m ajority of the analysts cannot express any prior opinion about sec­

ond order behaviour of their data without actually analyzing these data; usually 

they are much more confident in modeling first order properties. L et’s assume 

for the moment th a t the analyst uses uniform correlation structure to  model the 

w ithin-patient dispersion matrix, while the appropriate one for the d a ta  actually 

observed is the AR(1). Recall here tha t the family of designs studied so far has 

at most four periods. In such occasion, the uniform structure sounds a sensible 

choice, unless the observations on a subject are quite d istant apart in time, in 

which case the A R (1 ) is a viable alternative. It is further assumed th a t each 

subject offers a complete set of measurements, obtained under an agreed therapy 

tim e-table common to all subjects (e.g each patient has his second measurement 

taken one week after the first one). On the other hand patients can visit the 

clinic at different dates. Finally intervals between successive measurements are 

assumed to be similar across subjects. Those assum ptions are crucial when sec­

ond order structure is modeled.

Under those circumstances, the bias vector for the fixed effect param eters is pro­

vided by a similar relation to the one used when only the system atic part of 

the model is mis-specified. The variance-covariance m atrix  for the same set of 

param eters is as follows:

V  {0,n.lysis) = BT,2 B ^  (4.10)

where:

B  = X f T , ï ^  (4.11)

and El is the dispersion m atrix used in the analysis model (uniform in our case),

while E 2 is the true error structure (AR(1 )) which the analyst fails to correctly

identify. It seems tha t the error-structure chosen for the ” analysis” model in­

fluences to a greater extend the chosen design, compared to  the error-structure 

chosen for the ’’true” model. This can be seen from the bias and variance equa­

tions above, which depend more heavily on E% rather than  on E 2 .

163



Optimum designs derived under mis-specification of the system atic part, tend to 

be highly efficient even in the case where both system atic and random  part are 

wrongly modeled. For the six-sequence family of designs, in the case of practical 

importance where no carry-over is present, but the analyst insists on incorporat­

ing residual term(s) (of some kind) into his model, designs 1 2  and 31 (see index) 

are still the best choices. The same set of designs, along with design 9, have 

high efficiency under the Fleiss carry-over model. W hen the simple carry-over 

model become the ’’true” model, then design (ABAB, ABBA, ABBB, duals) has 

excellent performance over the whole range of (f>, p and A.

The logic behind the strategy for choosing the design which gives the minimum 

variance for the treatm ent estim ator when systematic an d /o r random  part of the 

model is mis-specified is quite artificial. The statistician  has to select his analy­

sis model based on his intuition, experience and background information about 

the nature and objectives of the study (see Senn and Lambrou [82]). In practice 

though this intuition is built after experiments with similar set-ups have been ana­

lyzed and sometimes after combining results from various studies (m eta-analysis). 

In this way information is obtained not only about the nature and m agnitude of 

residual terms, but also about secondary param eters, such as intra-class correla­

tion. The effective planning of future trials highly depends on the quality of this 

background information. It is exactly this experience used throughout in this 

section concerning plausible values of p and A /r. If the analyst feels th a t not 

enough information is available to  justify his choice on key param eters, then a 

Bayesian approach could be adopted to incorporate this uncertainty. Results of 

optimum designs under the Bayesian perspective are very limited in the cross-over 

literature, mainly due to com putational difficulties th a t frequently arise during 

the implementation phase.

4.5 W hat makes a good plan

To understand why some designs estim ate treatm ent effect more accurately than  

others under specific model assumptions, it is wise to take a closer look at the 

treatm ent estimators proposed under these plans. Recall th a t treatm ent estim a­
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tor is a weighted average of the ps  sequence by period cell means. The expectation 

of this estim ator is free of period, sequence and residual terms.

The procedure followed for the specification of the weights has already been con­

sidered in the 2 x2  case, and will be further illustrated here using the four period, 

two sequence design AABB/BBAA. Following Senn (see [77]), we first eliminate 

sequence and period effects. This implies th a t for a given column (row) the 

weights must add up to zero. This results in the scheme displayed in Table (4.5). 

Note th a t only those two constrains reduce the number of unknown weights from 

eight to three. An estim ator of the difference between the effect of treatm ent 

A and the effect of treatm ent B would require th a t if weights summed over the 

symbol A the result should be 1 , while summed over the symbol B the result 

ought to be -1 . This imposes the further constraint: Wi + W2 = 1 / 2 . Suppose

Table 4.5: Weights after eliminating sequence and period effects
A A B B

Wi W2 W3 - ( W l  + W 2  +  W3 )

B B A A

—W\ —W2 - W 3 Wi + W 2 +  Wz

now th a t three experts express three different opinions about the type of carry­

over occurred during the study. The first expert after considering the half-lives 

of the drugs involved and the length of the wash-out period used, he strongly 

supports the opinion th a t the presence of carry-over is high unlikely (no carry­

over). The second expert believes th a t no m atter the serious a ttem p t made to 

eliminate residual effects, there will still be a carry-over of meaningful size (simple 

carry-over). Finally, the th ird  one who do not feel so confident th a t the wash-out 

period used excludes in all cases the possibility of residual term  being present, 

he combines the opinions of the other two and suggests th a t residual effect is not 

possible when a treatm ent is followed by itself, bu t it might be possible in other 

scenarios (Fleiss carry-over).

The next step is to eliminating residual effects form the treatm ent estim ator. The 

weights produced, shown in the three lay-outs below, correspond to the the three 

carry-over types; no carry-over, simple carry-over and Fleiss carry-over.

165



Simple carryover scheme Fleiss carryover scheme

A Aa Ba Bb A A Ba B

1 4- 2iu - 1 / 2 -2 w w - 1 / 2 - w 1/ 2 - w w 0 -1 /2

B Bb Ab Aa B B A/3 A

— l — 2w 1/2 +  2w —w 1/2 4- w — 1/2 4- w —w 0 1/2

As far as the notation is concerned, English lowercase letters correspond to sim­

ple carry-over effect, while Greek ones to the Fleiss-type carry-over. Note that 

the associate weights for either letters add up to zero, a fact which ensures the 

elimination of the residual term, when the expectation of the treatm ent estima­

tor is evaluated. In order to obtain a unique set of weights in each case further

No carryover scheme

A A B B

1/2 -  W2 W2 m — 1/2 — W3

B B A A

— 1/2 +  W2 - W 2 - W 3 1 / 2  4- IÜ3

constrains are needed. For those who include carry-over term  of any kind in their 

model only one weight is still unknown, but for the model w ithout residual terms 

two weights need specification. To keep things simple, we assume th a t observa­

tions are independent. In th a t case, the variance of the treatm ent estim ator is 

proportional to the sum of squares of the weights for each scheme. One way of 

selecting the unknown weight(s) is by minimizing th a t variance.

Applying th a t rule, the following set of weights is derived, under the three models 

considered:

/  5 _ 5 _ 5 _ 5
Tl =

“ 20

/  6 _ 4 . 7 3
T2 =

+  20^ ' - 20

/  5 _ 5 . 0 _ 10
T3 = 20

20

6 .  4 7 3 y
^ î /5  -  +  ^yr  +

5 5 0 _ 10
+  ^ î/7  +  ^!/8
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where fi,T2 and fg estim ate the treatm ent effect under the model with no carry­

over terms, Simple and Fleiss type of carry-over respectively. Note th a t f \  (the 

estim ator with all weights equal in absolute terms) has the smallest variance of 

the three. Another scheme of weights could have resulted if the statistician tried 

to eliminate both  Simple and Fleiss-type carryover, or Simple and second order 

carryover simultaneously.

The above approach is applied to decide the optimum six sequence, four period 

dual balanced design, assuming AR(1) within error structure with p =  0.7. The 

new element added here is th a t a different proportion of the available patients 

is allocated in each dual sequence group. Three dual sequences are involved in 

the family of designs considered, which implies th a t a proportion p of them  is 

allocated to the first one, a proportion q to the second one, while the rest (1-p-q) 

to the th ird  one. In th a t case the precision with which the treatm ent effect is 

estim ated, will be affected not only by the auto-correlation coefficient (known 

here), but also by the allocation scheme. The weights are chosen so th a t Simple, 

Fleiss and Mixed type of carry-over are eliminated from the treatm ent estim ator 

in the corresponding model. Varying p will not qualitatively alter our conclu­

sions. Similar work has been done by Matthews (see [65]).

In the m ajority of reported clinical trials there is an equal allocation of patients 

to the sequence groups, usually controlled by a central randomization system. 

Obviously this is the optimal allocation of patients in a longitudinal study, if the 

serial observations on each subject are assumed independent or equally corre­

lated. Under more elaborated error structures this might not be the case. There 

are also other practical needs to study the efficiency of designs with non-equally 

replicated sequences. For example, in a multi-center study small centers will be 

running part of the planned sequences with a m oderate number of subjects ran­

domized in each one, while larger medical units have the infrastructure to recruit 

an adequate number of subjects equally allocated in each sequence. P u tting  these 

facts together, inevitably one concludes th a t equal proportions per sequence is 

the exception rather than  the rule in real life applications.

Results concerning the optim al plan along with the optim al allocation of subjects 

to sequences for th a t plan, over the six-sequence, four-period family of designs
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are presented in Table (4.6). As it is expected the highest proportion of the 

Table 4.6: Optimum 6 -sequence, 4-period designs
AR(1) within-subject error structure with p =  0.7. 

Unequal proportion of patients is allowed in each dual sequence. 

No model mis-specification is allowed for

Model Design Proportion

ABAB ABBA ABAA /  duals 0.8 0.1 0.1

No carryover ABAB ABBA AABA /  duals 0.8 0.1 0.1

ABAB ABAA AABA /  duals 0.8 0.1 0.1

Simple carryover AABB ABBA AABA /  duals 0.1 0.8 0.1

Fleiss carryover AABB ABBA ABAA /  duals 0.1 0.8 0.1

ABBA ABAA ABBB /  duals 0.8 0.1 0.1

Mixed with (f) =  0.2 AABB ABBA ABBB /  duals 0.1 0.8 0.1

Mixed with 0 = 0.5 AABB ABBA ABBB /  duals 0.1 0.8 0.1

Mixed with 4> = 0.8 AABB ABBA AABA /  duals 0.1 0.8 0.1

recruited patients is assigned to the optimal two-sequence plan in the family of 

two-sequence, four-period designs. For example, for the model free of carry-over 

terms 80% is allocated to the dual sequence ABAB/BABA (40% in each single 

sequence), while under any model which includes residual term  of any kind, the 

same percentage of subjects is now allocated to the dual sequence ABBA/BAAB. 

In design theory both the selection of sequences and the proportion of the avail­

able resources assigned to each one of them are treated as unknown quantities. 

The optimization problem need to be solved is considerably simplified when the 

assumption of equal allocation of subjects to sequences is made. The implication 

of tha t assumption is hard to be assessed in practice. Note th a t the optim ality 

criterion has to be slightly modified, in the case where non-equal num ber of pa­

tients is allowed for in each sequence. More specifically if Xg denotes the design 

m atrix of the sequence, then the information m atrix, i.e. the inverse of the 

covariance m atrix for the fixed effects, for any design plan is:

(4.12)

168



where Ps is the proportion of subjects allocated to the sequence and E stands 

for the within-subject error structure (AR(1 ) here). In the case of a balance 

allocation of subjects to sequences, the information m atrix  is similar to the un­

balanced case one presented above, with the Ps term s removed.

4.6 A cross-over clinical trial in 7 treatm ents

A cross-over trial was carried out for comparing two different formulations of 

a compound, called formoterol, used to trea t patients suffering from asthma. 

The old formulation was a dry powder of formoterol delivered from a single dose 

device, called ISF, while the new one was a multi-dose inhaller named MT&A and 

developed by a pharmaceutical company. This was a m ulti-center clinical trial 

carried out in four different countries under the close supervision and assistance 

of people at company’s headquarters. The data  were kindly provided by Senn et 

al (see [83]).

An im portant query needed to be tackled at the planning stage of the trial was 

the number and level of different doses for each formulation. Three doses of 

MT&A (6 , 12  and 24mg per puff) and three of ISF (6 , 12 and 24mg per puff) are 

to be compared. One of the study-objectives was to determine the time-response 

curve at each dose for each formulation. For ethical reasons placebo was also 

given during the course of the study. This implies seven treatm ents altogether. 

The response variable was force expiratory volume in one second (FEV). The 

recommended treatm ent regime for each patient was one or two puffs daily. Each 

patient was followed for a time period of five days and according to well-known 

P K /P D  properties of formoterol, a wash-out period of a t least two days would 

eliminate any residual effect. A four-day wash-out period between successive 

active treatm ent periods was agreed. This ensures th a t carryover should not be 

a consideration for the statisticians involved, neither in the design choice nor in 

the analysis. The design plan was produced by cycling the sequences:

(MT&A6 , Placebo, ISF24, MT&A24, ISF6 , MT&A12, ISF12)

(MT&A6 , ISF24, ISF6 , ISF12, Placebo, MT&A24, MT&A12)

(MT&A6 , MT&A24, ISF12, ISF24, M T&A1 2 , Placebo, ISF6 )
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until a 7x7 latin square is produced from each one of them. In th a t way a cross­

over design of 21 sequences in 7 periods is generated. If we delete periods 6  and 

7, a 21-sequence, 5-period cross-over plan is finally produced.

The above design may not be the optimal one for minimizing the variance of 

treatm ent contrasts on which the trial investigators were interested, but it is a 

reasonable choice given the tim e constraints faced by the statisticians involved. 

Although the precaution of an adequate wash-out period to eliminate the pos­

sibilities of presence of carry-over effect of any kind were taken, an interesting 

query of how this optimal plan may change if we assume the existence of certain 

forms of carry-over, like the Simple or the Fleiss one, is now raised. Note th a t a 

baseline measurement was taken before each treatm ent measurement. It turned 

out th a t baseline measurements had a tremendous explanatory power for the re­

sponse variable, which in our case is the logarithm of FEV measurements.

This is an incomplete block design and estimation of treatm ent contrasts can 

be done in various ways depending on how the patient effect is treated. If a 

fixed patient effect is assumed then all treatm ent comparisons are made using 

within patient differences. On the contrary by modeling patient effect as a ran­

dom component some inter-block information can be recovered, i.e. a weighted 

combination of between and within patient differences forms now the treatm ent 

estim ator. Both cases will be covered.

W ith 7 treatm ents a set of a t most 6  treatm ent contrasts is estimable. The or­

thogonal set of treatm ent contrasts chosen by the authors (see [83]) were the 

following: the first one compares the average treatm ent effect to the placebo one. 

The second one addresses the question for which the trial was set up, i.e. does 

the new treatm ent formulation of formoterol (MT&A) gives on average higher 

FEV measurements compared to the old one (ISF) or not? The th ird  contrast, 

(’’slope” ), examines the linear effect of dose level on the response aggregated over 

formulations, while the ”curvature” contrast tests for a similar quadratic effect. 

The next contrast checks whether or not the linear eflfect of MT&A is parallel to 

the linear effect of ISF, while the final one examines if the vertical distance of the 

average reading at 1 2 mg from the line joining the average readings a t 6 mg and 

24mg is the same for the two formulations. For simplicity the last two contrasts
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will be referred as ’’Parallelism” and ”Opposite Curvature” in what follows. 

Only the first three contrasts were found statistically significant at 5% level, after 

fitting a variety of models. The first model excludes residual terms of any kind, 

in agreement with the investigator’s beliefs. The second model is a simplification 

of the Simple carry-over scheme, in which only active agents effect can persist to 

the next period, while placebo’s residual effect is negligible. In our final model 

the am ount of dose th a t carries-over to the next period depends not only on the 

current dose level and type of formulation, but also on the type of formulation 

of the next period. This new type of carry-over, a special case of the Fleiss 

type, will be referred to as the ” proportional” type of carry-over in the sequel 

and is presented in Table (4.7). Note th a t from the 161 patients participating 

in the trial, only 148 provided complete sequence of 5 measurements. Overall 

158 patients were available for analysis. Those who discontinued for any reason 

gave 31 measurements. The incomplete sequences were taken into account at 

the analysis stage. Frequentist analysis in which subject effect is considered as

Table 4.7: Fleiss type of carry-over for the 7 treatm ent trial
ISF6 ISF12 ISF24 A MT&A6 -4 MT&A12, MT&A24 At

ISF12 -4- ISF6, ISF24 2A MT&A12 -> MT&A6, MT&A24 2fi

ISF24 ->• ISF6, ISF12 3A MT&A24 ->• MT&A6, MT&A12 Z(i

either fixed or random will be discussed for all three models. Bayesian analysis 

with random  subject effect is also covered. Results are presented in Table (4.8). 

For sake of presentation M l refers to the model with no-carryover terms, M2 to 

the simple carry-over model, while M3 to the proportional type of carry-over. 

The im portant message though, is th a t the dose-log(response) curve for ISF can 

be derived from the corresponding curve for MT&A by a vertical shift upwards 

of about 0.01. Unfortunately the new formulation proved unsuccessful and this 

conclusion stays valid irrespective of the inclusion or not of any residual effect in 

the model, or the way the patient effect is treated (fixed or random).

The analysis of th a t multi-period, m ulti-treatm ent trial points out th a t carry­

over effect of any kind, if fitted, does not alter the conclusions concerning the 

treatm ent effect in a substantial way, if the precaution of eliminating residual
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Table 4.8: Analysis of the 7 treatment cross-over trial (x 10

Model Drug vs ISF vs Slope Baseline cr^ 

Placebo MT&A effect

Frequentist with fixed subject effect

Ml

M2

M3

12.15 (0.71) 9.98 (0.93) 5.40 (0.76) 46.01 (3.87) 7.67 

12.27 (0.82) 10.04 (0.99) 4.62 (0.91) 45.71 (3.89) 7.68 

12.09 (0.73) 10.06 (1.04) 5.45 (0.77) 46.00 (3.88) 7.68

Frequentist with random subject effect

Ml

M2

M3

12.43 (0.74) 10.10 (0.97) 6.01 (0.79) 78.40 (2.19) 1.04 (0.15) 0.68 (0.03) 

12.20 (0.88) 10.24 (1.04) 5.52 (0.94) 78.54 (2.19) 1.03 (0.15) 0.65 (0.03) 

12.41 (0.76) 10.31 (1.10) 6.03 (0.80) 78.46 (2.19) 1.04 (0.15) 0.65 (0.03)

Bayesian with random subject effect

Ml

M2

M3

12.40 (0.75) 10.10 (0.97) 6.00 (0.79) 77.90 (3.26) 1.09 (0.18) 0.65 (0.04) 

12.20 (0.88) 10.20 (1.05) 5.50 (0.94) 78.20 (2.93) 1.07 (0.16) 0.66 (0.03)

12.40 (0.76) 10.30 (1.12) 6.02 (0.81) 78.30 (2.91) 1.07 (0.16) 0.65 (0.04)

effect a t the design phase has been taken.

4.7 Discussion and other related results

As has already been explained there are many reasons to use more than  two 

periods in a cross-over trial. For the clinicians who use those designs in practice 

a reasonable question arises: what is the optimal design to use if the number of 

periods, number of sequences and number of treatm ents one decides to compare 

are provided. Furthermore what is the optimal allocation of the available number 

of patients to each sequence group? For notation’s sake a cross-over designs in 

t treatm ents, n  subjects (units), and p periods, will be denoted as co(t,n,p). 

In the m ajority of optimality results drawn so far in the literature, the simple 

carry-over model is assumed with independent within-subject error structure. 

The optim ality criterion used is universal optimality, which implies A-,D- and E- 

optim ality criteria. A design is universal optimal if its information m atrix, C, 

satisfies the following conditions, as described by Kiefer (see [44]):
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•  The rows of C sum to zero.

•  The diagonal elements of C are equal as well as the off diagonal elements.

• C has maximal trace over the family of designs which universal optim ality 

is claimed.

Most of the optimum designs possess certain characteristics; they are uniform 

balance designs. A design is uniform if each treatm ent appears the same number 

of times in each period and is administered the same number of times in each 

subject. This implies th a t both the number of periods and the number of sub­

jects must be a multiple of the number of treatm ents the trialist is prepared to 

compare. The balance property requires tha t each treatm ent is proceeded equally 

often by any other treatm ent and never by itself. The ’’strongly balanced” prop­

erty ensures th a t each treatm ent follows any other treatm ent the same number 

of times including itself.

The first im portant optimality result for cross-over designs was derived by He- 

dayat and Afsarinejad (see [33]), who proved tha t uniform balance designs are 

optimal for estim ating treatm ent and carry-over effects over the class of uniform 

designs, when the number of periods used is the same as the number of trea t­

ments. Cheng and Wu (see [5]) were able to relax the uniformity assum ption and 

prove th a t uniform balance cross-over designs are optimal for estim ating only the 

carry-over effect over all co(t,At,t) designs. To be able to extent this result for 

the treatm ent effect as well, a uniformity assumption need to  be imposed over 

the family of designs in which optimality is claimed. More specifically, if the 

class of designs which are uniform on units and uniform on the last period only is 

considered, then uniform balance designs are optimum for the estim ation of the 

treatm ent and carry-over effect over this class.

From results in previous sections it is evident th a t the three-period, two-sequence 

design ABB/BAA is optimal (or near optimal) under various model assumptions. 

This design results, if the last period of the classical 2x2 design (A B/BA ) is 

repeated. More generally Cheng and Wu proved th a t if in a  balance uniform 

co(t,At,t) design, the last period is repeated, then a universally optim al design 

for the treatm ent and carryover effect is obtained over the designs in co(t,A t,t-|-l).
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An even more general result, proved again by Cheng and Wu (see [5]) and raises 

further restrictions is the following: A s tro n g ly  balanced uniform design is uni­

versal optimal for the estimation of treatm ent and carry-over effect over all designs 

in co(t,n,p). The practical difficulty in implementing th a t result stems from the 

fact th a t strongly balance uniform desigiis are more restricted than  balance uni­

form designs. As a consequence it is more difficult for the statistician  to  suggest 

a strongly balance uniform design than a balance uniform one.

In the case where only two treatm ents are compared, optim ality results were 

derived by Laska and Meisner (see [51]), who were the first including random 

subject effects in their model, so tha t the covariance m atrix  of each subject’s 

response is the uniform one. They proved tha t when the number of periods p 

is even, then a strongly balance uniform design always exists and it is optim al 

for estimating treatm ent and carry-over effect over all co(2,Ap,p) designs. If the 

number of periods used is odd, then the optim al design for the estim ation of 

treatm ent and carry-over effect consists of a strongly balance uniform design in 

the first p- 1  periods, while the last period is a repetition of the (p — 1 )*̂  period. 

This result is valid even in the case where baseline m easurements are available. 

Unfortunately Laska and Meisner were not able to provide an analytical result 

if an A R(1 ) within-error structure with positive correlation assumed for the co- 

variance m atrix of each subject’s response, but a com puter program was used 

to search all possible designs and find the optimum for p= 3  and p=4. Conclu­

sions depend upon the correlation coefficient. If more than  two treatm ents are 

compared and an A R (1 ) within-error structure is assumed then Gill and Shukla 

(see [23]) suggest th a t if p <  0 then the optim al design should change over the 

treatm ents as little as possible, whereas if p >  0  then in the optim um  design each 

treatm ent should be preceded and followed by other treatm ents.

4.8 Suggestions-Conclusions-Future D irections

The results presented in this chapter, provide a be tte r insight why the two stage 

procedure (presented in the previous chapter) performs worse than  the GROS 

estimator under any performance criterion we consider. It is clear th a t lack of
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information concerning residual effect results in highly inefficient two stage pro­

cedure. Furthermore, treatm ent effect is estim ated better when designs made 

of sequences where treatm ents appear equally often in each sequence are used, 

whereas designs made of sequences with un-equal repetitions of A and B are per­

forming better when estim ation of residual term s is under consideration. It was 

pointed out th a t the inclusion of more periods an d /o r sequences may improve 

the power with which residual effects of any kind are detected, but the best de­

sign plans used for testing carry-over term s may prove bad choices for detecting 

treatm ent differences.

In the Bayesian analysis of the cross-over example in the previous chapter, we 

modeled the residual effect as a proportion of the treatm ent difference. It was 

assumed th a t if a% of treatm ent A carries over to treatm ent B, then the same 

proportion carries over from B to A. At first glance this argum ent may sound 

un-reasonable, but bearing in-mind th a t the two asthm a drugs we try  to compare 

have similar pharmacokinetic profiles, then this assum ption may be justified. In 

practice, any analyst would like to hypothesize th a t the fraction of treatm ent 

tha t carries over from A to B is different from the fraction th a t carries over from 

B to A. Then, it would make sense to  explore how our design choice changes, 

if th a t non-linear model, or any modification of it, is considered as the ’’true” 

expected to generate the data. A first a ttem pt to tackle this question is made in 

the next chapter.

Another im portant issue, not well-explored in the cross-over literature, is the use 

of N-of- 1  trials. In such a trial individual patients are given repeated adminis­

tration of at least two treatm ents w ith the objective to learn something about 

the effect of the drug in a given patient rather than  for patients in general. This 

requires th a t patients must be willing to be treated  a t least three times, although 

the possibility of using 6  to 8  periods is reasonable. A further study objective 

would be to investigate the variation of individual response to treatm ent. O pti­

mum plans for this scenario would be quite useful to be derived.
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Table 4.9: Optimum two, four and six sequence designs

Only the systematic part of the model is mis-specified. 

True modehNo carryover. Within error structure:AR(1).

Correlation Coefficient (p)

Low Medium High

A Low Med High Low Med High Low Med High

Analysis model:Simple Carryover

Two 3,6 6 6 3,7 7 7 3,7 7 7

Four2 2,21 2,21 2,11,16,21 11,16,21 11,16,21 2,16 16 16

Six 12,22,34 12,22,34 12,22,34 22,31 22,31 31 22,31 22,31 22,31

Analysis modehFleiss Carryover

Two 1,6 1,6 1,6 1,3,6 1,6 1,6 1,3,6 1,6 1,6

Four 11 11 11 11 11 11 11 11 11

Six 31 31 31 31 31 31 12,31 31 31

Analysis modehMixed with 0 =  0.2

Two 1 1 1 1,3 1 1 1,3 1 1

Four 11 11 11 11 11 11 2, 16 16 16

Six 31 31 31 31 31 31 22, 31 31 31

Analysis modehMixed with 0 =  0.5

Two 1 1 1 1, 3 1 1 1,3 1 1

Four 11 11 11 16 16 16 16 16 16

Six 31 31 31 31 31 31 22,31 22,31 22,31

Analysis modehMixed with 0 =  0.8

Two 3,6,7 6,7 6,7 1,3,7 1,7 1,7 1,3 1 1

Four 2,21 2,21 21 2,16 16 16 2,16 16 16

Six 12,22,31 12,31 12,31 22,31 31 31 22,31 22,31 22,31
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Table 4.10: Optimum two, four and six sequence designs

Only the systematic part of the model is mis-specified. 

True modehSimple carryover. Within error structure:AR(l).

Correlation Coefficient (p)

Low Medium High

A Low Med High Low Med High Low Med High

Analysis modehNo carryover

Two 3 3 3 3 3 3 3 3 3

Four 2 2 2 2 2 2 9 9 9

Six 3,6 3,6 3,6 6 6 6 6 6 6

Analysis modehFleiss carryover

Two 3,6 2 2 3,6 2 2 2,3,6 2 2

Four 5,13 5 5 5,13,14 5 5 12,13,14 5,12 5,12

Six 4,15,16 4 4 15,16 15 15 15,16 15 15

Analysis modehMixed with 4> = 0 .2

Two 3,6 2 ,6 2 3,6 2,6 2 2,3,6 2 ,6 2

Four 5,13 5 5 5,13,14 5 5 12,13,14 12 5,12

Six 4,16 4 4 15,16 15 15 15,16 15 15

Analysis modehMixed with 0 == 0.5

Two 3 6 2 ,6 3 6  2,6 3,6 2 ,6 2

Four 13 5,13 5 6,13,14 5,14 5 6,13,14 12,14 12

Six 4,16 4,15 4 15,16 15 15 15,16 15 15

Analysis modehMixed with cf> == 0 .8

Two 3 3 3,6 3 3 3,6 3 3,6 6

Four 2,13 13 13 2,6,13 13 13,146,13 13,14 12,14

Six 3,16 16 4,15,16 3,16 16 15,16 3,16 15,16 15
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Table 4.11: Optimum two, four and six sequence designs

Only the systematic part of the model is mis-specified.

True modehFleiss carryover. Within error structure:AR(1).

Correlation Coefficient (p)

Low Medium High

X Low Med High Low Med High Low Med High

Analysis modehNo carryover

Two 1,6 1,6 1,6 1,3,6 1,3,6 1,3,6 3 3 3

Four 11 11 11 2,11,13 2,11,13 2,11,13 2,6,13 2,6,13 2,6,13

Six 12,31 12,31 12,31 12 12 12 3,12,16 3,12,16 3,12,16

Analysis modehSimple carryover

Two 2,6 2 2 2,6 2 2 2,4 2 2

Four 5,6,8,12 8 8 5,12 5,8 8 5 5 5

Six 4,9 9 9 4,9,15 9,15 9,15 15 15 15

Analysis modehMixed with (f> =  0.2

Two 6 6 4 3,6 4,6 2,4 3,6 2,4,6 2,4

Four 11,14 5,6,12,14 5 11,13,14 5,12,14 5 5,6,13,14 5,14 5

Six 12,16,31 4,15 4 12,16 4,15 4,15 15,16 15 15

Analysis modehMixed with 0 =  0.5

Two 4,6 2 2 4,6 2 2 2,3,4,6 2 2

Four5,6,11,12 5,8 8 5,12,13,14 5 5,8 5,14 5 5

Six 4,14,16,31 4,9 9 4,15,16 9,15 9,15 15,16 15 15

Analysis modehMixed with (j> = 0.8

Two 2,4,6 2 2 2,4,6 2 2 2,4,6 2 2

Four 5,14 8 8 5,14 5,8 5,8 5,14 5 5

Six 4,9,15 9 9 4,9,15 9,15 9,15 15 15 15
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Key to the four sequence designs

2 5 6 8

AABB/BBAA ABAB/BABA ABBA/BAAB ABAB/BABA

ABBA/BAAB ABAA/BABB ABAA/BABB AABA/BBAB

9 11 12 13

ABBA/BAAB AABB/BBAA ABAB/BABA ABBA/BAAB

AABA/BBAB ABBB/BAAA ABBB/BAAA ABBB/BAAA

14 16 21

ABAA/BABB AABB/BBAA ABBB/BAAA

ABBB/BAAA AAAB/BBBA AAAB/BBBA

Key to the six sequence designs

3 4 6 9

AABB/BBAA ABAB/BABA AABB/BBAA ABAB/BABA

ABBA/BAAB ABBA/BAAB ABBA/BAAB ABAA/BABB

ABAA/BABB ABAA/BABB AABA/BBAB AABA/BBAB

12 14 15 16

AABB/BBAA AABB/BBAA ABAB/BABA ABBA/BAAB

ABBA/BAAB ABAA/BABB ABAA/BABB ABAA/BABB

ABBB/BAAA ABBB/BAAA ABBB/BAAA ABBB/BAAA

22 31 34

AABB/BBAA AABB/BBAA ABAA/BABB

ABBA/BAAB ABBB/BAAA ABBB/BAAA

AAAB/BBBA AAAB/BBBA AAAB/BBBA
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Chapter 5 

M ulti-period, m ulti-sequence  

designs in general

5.1 Designing for a purpose

The aim of any clinical trial, cross-over or parallel one, is to compare two or more 

treatm ents on the basis of experimental data. The confidence with which the ef­

fects of the various treatm ents will be assessed, depends to a large extent on the 

plan chosen to conduct the trial. A typical 2x2 cross-over experiment can be seen 

as a randomized block design with 2 blocks (AB, BA), in which n experimental 

units randomly allocated in each block. Similarly any cross-over experiment in s 

sequences and p periods, can be seen as a randomized design with s blocks. The 

allocation of treatm ents to these blocks should be carried out in such a way th a t 

treatm ent contrasts of direct interest are estim ated with the highest precision.

A good plan usually depends on the number of times a treatm ent appears in each 

sequence. In a cross-over trial, each patient should try  all available treatm ents 

at least once. This implies th a t if t treatm ents are compared, then the number 

of repeated measurements collected from each patient should be a t least t. Al­

lowance of adequate wash-out intervals is essential to ensure high data  quality in 

these circumstances. If p > t  then replication of treatm ents in each sequence is 

inevitable, leading to more efficient treatm ent estim ates, especially for two trea t­

ment comparison as illustrated in the previous chapter.

On other occasions, due to situation restrictions, it is not possible to have a single
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replication of every treatm ent into each sequence, in other words the num ber of 

periods used is less than  the number of compounds compared. This type of design 

known as ’’incomplete block design” , is a popular choice in the industry, though 

more sequences might be required to achieve similar treatm ent effect accuracy as 

in a design where each treatm ent appears at least once in each sequence. The 

clinical m anagement of such a study might be difficult as well. In the ’’incom­

plete block designs” the number of times treatm ents appear in each sequence is 

crucial in the precision with which pair-wise treatm ent comparisons are made. 

An excellent review of these type of designs can be found in Fisher and Yates 

(see [16]).

In a typical analysis of a cross-over trial, treatm ent comparisons are based on 

weighted averages of within-sequence treatm ent estimates. O ptim al plans are 

selected on the basis th a t both the chosen sequences and the weights attached 

to the treatm ent estimates derived from them, provide the best overall picture of 

drug activity. In any cross-over design though, treatm ent comparisons can also 

be evaluated using between-sequence information, although such estim ates are 

given less credibility because of the high between-sequence variability. Combina­

tion of these two pieces of information, known widely as ” recovery of inter-block 

inform ation” in the statistical literature, is being routinely implemented in ev­

eryday statistical analysis.

Recovering the inter-block information will make sense only if the ’’sequence” 

effect fails to achieve a marked reduction in the error mean square. If th a t is 

the case, then the amount of information regarding treatm ent activity recovered 

from the inter-block analysis will alter conclusions to an appreciable extent. On 

the other hand i f ’’sequence” effects are large, then inter-sequence treatm ent in­

formation could be safely ignored.

The families studied in this chapter, are usually composed of m ulti-period designs 

(number of periods > =  5). For long-period families it makes sense to assume th a t 

the within-sequence error structure is described by an AR(1) process. It will be 

shown th a t the A R (1 ) correlation coefficient plays a key role in determ ining the 

optim al plan under specific carry-over schemes. Recovering inter-block infor­

m ation, implying compound symmetry covariance structure, is appropriate for
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cross-over plans with short sequences (see previous chapter).

5.2 Setting the scene

In the previous chapter cross-over plans for the comparison of two treatm ents 

only were considered. In the current chapter up to  six treatm ents are compared 

under different assumptions made for the carry-over term . A typical user of 

cross-over plans would require each patient to act as his own control, trying all 

available treatm ents. This implies, tha t all treatm ents appear a t least once in 

each sequence (i.e. p > t).

The full model used throughout for comparing two treatm ents contains term s for 

the general mean, period, treatm ent and first-order carry-over effects. For the 

comparison of three or more treatm ents a fixed sequence effect is added to the 

previous model. The reason a fixed sequence effect is not included for the compar­

ison of two treatm ents is because it leads to non-estimable treatm ent effect under 

specific carry-over schemes (e.g. simple carry-over and design AAAAB/BBBBA). 

In addition, it is assumed th a t there is a standard treatm ent (labeled A) and the 

contrasts we are interested in estimating with the highest precision are the ones 

th a t compare each of the newly proposed treatm ents with the standard  one. This 

implies th a t comparisons between the new treatm ents may have lower precision. 

Furthermore, designs for efficient comparison of carry-over differences will not 

bother us in the sequel, since carry-over terms are of less im portance.

5.2.1 Comparing two-treatm ents

Best plans were derived under different carry-over assumptions. More specifically 

for two treatm ent comparison the following type of residual effects have been 

studied;

• No carry-over terms included.

• Simple carry-over model (described in detail elsewhere).

• Fleiss carry-over, i.e a treatm ent can carry-over to any other treatm ent but 

not to itself.
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• Mixed carry-over, i.e if A carries over to B A units, then B carries over 

to A (f)X units where 0 <  0 <  1. Three values of (j) are considered:

0.2,0.5 and 0.8.

The within-sequence covariance structure is the stationary auto-regressive of or­

der one. Negative values of p, the correlation between adjacent measurements, 

are not considered. The sensitivity of the optim al plan to positive values of p 

is studied. Three values for the correlation coefficient (p =  0 .2 ,0.5 and 0.8) are 

considered, reflecting the different spacing (long, medium and short, respectively) 

of the repeated measurements collected within sequences th a t may occur during 

the course of the cross-over experiment.

5.2.2 Comparing more than two treatm ents

More possibilities arise in th a t occasion, due to  the larger number of treatm ent 

contrasts likely to be tested. It is also easier to consider more elaborate carry­

over schemes, which in the tw o-treatm ent case are not applicable. Simple and 

Fleiss carry-over schemes are extended in a natural way to the m ulti-treatm ent 

case. Mixed carry-over scheme is impractical here, since different values of 0 

could be assumed for different pairs of treatm ents. For ethical reasons, placebo 

is typically one of the treatm ents in this type of trials. If th a t is the case, it 

is assumed th a t carry-over from placebo to any other treatm ent is nonexistent. 

Furthermore, there is no placebo treatm ent effect. For sake of argument this type 

of model refers to as ”Simple2 ” in what follows.

Finally in most pharmacological studies, treatm ents are adm inistered in increas­

ing doses. The aim of these experiments is to  discover the dose with the highest 

response. In a typical study three doses of each compound are considered. The 

doses are chosen in the low, medium and high part of the dose-response curve. 

It is assumed here, tha t increasing the dose by a factor k would increase the 

pharmacological response by the same factor. A similar argum ent applies to the 

carry-over effect as well. The typical objection against this approach is th a t dou­

bling dose will not necessarily double the response, since if both doses are close 

to the asym ptote of the dose-response curve then similar responses will be gen­

erated. However, it may be the case th a t the middle p a rt of the dose-response
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curve is studied and our three doses have been selected from th a t range. Under 

these circumstances, the proportionality argum ent on treatm ent and carry-over 

effect may be valid. This type of model will be referred to as ’’proportional” 

carry-over model in the sequel.

5.3 Optimality Criteria

For the comparison of two treatm ents, minimizing the variance of the treatm ent 

estimate is of direct interest to all parties involved in the study. There are always 

parameters of secondary im portance (nuisance param eters), the estim ation of 

which affects to a smaller or a larger extent the precision w ith which treatm ent 

effect is estimated. One such param eter is the carry-over effect, which affects the 

mean of our response. Another example is the variance components describing 

second order properties of a subject’s repeated m easurements vector. Adjusting 

for all secondary parameters is a typical precaution taken in all experimental 

design exercises.

The choice of optimality criterion becomes more laborious when more than two 

treatm ents are compared. Recall th a t if three treatm ents are studied, we are 

interested in estimating as precisely as possible the pair-wise differences B  — A  

and C — A, where A  is the standard  treatm ent and B, C  the newly proposed 

therapies. The criterion used to decide the best design is th a t of Dg-optimality, 

in which the determinant of the relevant part of the variance-covariance m atrix  

of the fixed model param eters is minimized. This criterion is a variant of the 

B -optim ality rule, widely used in applications. Following Atkinson and Donev’s 

or Fedorov and Hackl’s notation (see [1],[13]), if we denote by /(^ ) the variance- 

covariance m atrix (inverse of the information m atrix) of the fixed param eters in 

our regression model for a given plan then this m atrix  could be partitioned as 

follows:

' '" < «  ' “ ®  'l (5,1)
hM)  fe(S) j

where l u { 0  is the variance m atrix  for the treatm ent contrasts of interest. The 

objective is to find the plan ^ th a t minimizes det (7n(^)). This is the rule used
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throughout for the derivation of the best design plans presented in subsequent 

sections.

An alternative criterion is the one th a t minimizes the average variance of the pair­

wise treatm ent contrasts. This is a special case of what is known as L-optim ality 

criterion, a variant of the A-otimality rule. According to  the L  criterion designs 

tha t minimize the variance of linear combination(s) of the model param eters are 

declared optimum.

The previously presented criteria are the most widely used for practical appli­

cations. Many more criteria are available in the literature serving different pur­

poses. The estim ated variance-covariance m atrix is the key element in all these 

optimization exercises. Both D  and A-optimality criteria can be expressed in 

terms of the eigenvalues of the variance-covariance m atrix. The D  criterion is 

the product, while the A  criterion is the sum of these eigenvalues. In both  criteria 

the covariance between param eters of prim ary interest, as well as the covariance 

between prim ary and secondary model parameters, are taken into consideration 

during the optim ization process. The geometric interpretation of the D  criterion 

is to provide the experimenter with a confidence region of minimum content for 

the treatm ent contrasts of interest, while the A  optim ality criterion is mostly con­

cerned with the length of the axes of th a t confidence region. It should be noted 

the A  criterion gives more flexibility to the experimenter regarding the degree 

of interest he/she places to the various treatm ent comparisons (see, Jones and 

Donev [37]). For example, in a three-treatm ent cross-over trial m inimizing the 

weighted average of the pair-wise treatm ent variances, w ith weights determ ined 

by the experim enter’s interests, could lead to a different optim um  plan, when 

compared to the situation where the average of pair-wise variances is minimized. 

A com putational note is in order. The results presented in subsequent sections 

have been derived by a full search over the design family where optim ality is 

claimed. Some discussion of other search methods for finding best plans will be 

provided at the end of this chapter. Optimum experimental design results de­

pend heavily on the assumed model and particularly on the type of carry-over 

for cross-over trials. O ptim ality criterion is a further dimension affecting our 

final decision. In this chapter, the sensitivity of results in accurately estim ating
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treatm ent contrasts of interest to changes in the type of carry-over assumed, is 

studied.

5.4 Two-treatm ent results

The m ajority of the cross-over examples reported in the literature deal with the 

comparison of two treatm ents. The typical 2 x 2  plan is widely used for tha t 

purpose, which explains away the fact th a t most research effort has been put 

into the study of th a t design. However, E bbutt (see [9]) reports the results of 

a three-period cross-over experiment for the comparison of two treatm ents in 

asthm a. Drug development sponsors have shown a strong interest in running 

two-sequence m ulti-period designs for comparing two treatm ents.

In th a t section designs th a t made up of dual sequences are only considered. 

Equal number of subjects are allocated in each sequence. Results in which dif­

ferent treatm ent sequences receive unequal number of subjects are provided in 

Laska and Meisner (see [51]), for relatively small design families. Optimum plans 

in two, four and six sequences are only presented. Four sequence designs are gen­

erated by different pairings of two-sequence plans. In a similar fashion by joining 

together two-sequence designs in triplets, six-sequence plans are produced. In or­

der to make clearer the number of switches between A’s and B ’s, design families 

with long treatm ent sequences are considered. For the two, four and six sequence 

plans up to ten, eight and six periods respectively are studied. Note, tha t three 

and four period designs will not bother us in what follows.

The com putational effort needed to  extend these results to larger families in­

creases exponentially as the number of periods and /o r sequences gets larger. To 

illustrate the point, suppose th a t cross-over designs in p periods are compared. 

There are k, = — 1 possible design plans. If combined in pairs, (^) four

sequence designs are generated, while (3) six-sequence designs produced, if com­

bined in triplets. To get a feel for the com putational burden involved in the 

search for the optim al plan as the num ber of sequences an d /o r period grows, the 

following table provides the number of distinct designs for various combinations 

of sequences and periods. Bolded are the families for which optim al plans are
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provided at the end of the chapter.

Ta ffe 5.1: Number of distinct designs

Sequences/Periods 5 6 7 8 9 1 0

2 15 31 63 127 255 511

4 105 465 1953 8001 32385 130305

6 455 4495 39711 333375 2731135 22108415

5.4.1 Practitioners’s favourite m odel - No carry-over scheme

Most cross-over studies have been analyzed using th a t model, but it is not clear 

to me if this model has also been used for choosing the best plan as well. W hen 

there are no residual terms into the model, the optimum plan does not depend 

on the value of the correlation coefficient.

Looking at Table (5.2) the optim um  design utilizes sequences in which switches 

between A ’s and B ’s are as frequent as possible, in fact the maximum num ber of 

switches occur in these designs. The design efficiency is unaffected by the cor­

relation coefficient a t the absence of any residual terms, although under anyone 

of the other carryover schemes higher treatm ent efficiency is achieved the closest 

the repeated measurements on each subject are collected. This may cut short 

the time a trial lasts but one has to bear in mind tha t if successive m easure­

ments are close in time, then the possibility of carry-over being present increases 

substantially, though the type of residual activity would be difficult to identify. 

Under the no carry-over scenario the fact th a t in the two sequence optim um  plans 

frequent exchange between alternative treatm ents occurs, necessitates the need 

for formal testing for the presence of residual effects. Although regulatory bodies 

have recently argued unfavorably to  the use of the 2 x2  plan as lacking power for 

detecting carry-over effects (see W ang and Hung [90]), this should not be the 

case when more than  two periods are used. Carry-over effects are now estim ated 

with higher precision than in the 2 x 2  case, since within-sequence inform ation 

is utilized. The last argument is in favor of using longer sequences when two 

treatm ents are compared, instead of avoiding running a cross-over experim ent
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altogether.

The optimum four and six sequence plans are made up of the best two sequence 

plan in conjunction with sequences, where again frequent switches between the 

two treatm ents occur. Note th a t if the experimenter decides to divide the trial 

time into six rather than  five sub-period intervals then higher treatm ent preci­

sion is achieved. Similar argument is true if designs with six ra ther than  four 

sequences are used. In other words by making our trial bigger, in either direc­

tion, more information is collected concerning efficacy of the two therapies and 

tha t would inevitably lead to more accurate treatm ent estimates. In the extreme 

scenarios the number of sequences ranges from one to the number of patients 

recruited to participate in the study. Similarly the number of periods could be 

made arbitrarily  large by sub-dividing the trial-tim e into small tim e windows. 

The running of such studies is not recommended on financial grounds but also on 

difficulties concerning the management of large groups of people for long time.

5.4.2 Naive approaches for modeling residual activity - 

Simple Carry-over

This model has caused too much controversy in the cross-over literature, although 

carry-over effect is not really a major problem in cross-over trials (see Senn [76]). 

The additive carry-over term  is difficult to be justified using pharmacological 

argument. Suppose in a typical trial the half life of the active compound is 

known to be T  tim e units from Phase I studies. The clinical team  has to make 

sure th a t the patient will be treated at time intervals of length a t least 2T, so 

tha t the possibility of carry-over being present diminishes. These scheduled visit 

arrangements are based purely on scientific reasons. However, it may be the case 

tha t the patient may scheduled his next visit in less than  2T tim e units. In tha t 

case, the carry-over effect to the next visit would be a known proportion of the 

previous-visit treatm ent effect and could be modeled as such. To keep track of the 

various patients visits and appropriately adjusting for any residual effects, would 

be an enormous task hardly affecting our treatm ent estim ate. As a consequence 

the typical analyst models carry-over activity (if any) with a simple additive 

term, which most of the time is proved statistically unim portant and removed
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from the model. We have already modeled residual effect as a proportion of the 

treatm ent one, and it seems to be the case th a t the non-linear model recovers 

treatm ent effect even under unrealistic carry-over assumptions.

Should this model being used for designing a study though? Clearly not in the 2 x 2 

case, since imprecise first period data  will only be used to generate a much larger 

sample size than  it is actually needed (see Brown [3]). This may not be the case 

with longer sequences though. Results concerning optimum plans are presented 

in Tables (5.3)-(5.5). Correlation coefficient plays a minor role in deciding the 

best plan to go for. The number of switches between A ’s and B ’s are not th a t 

frequent as they were when no residual effect was present. In fact switches to the 

alternative therapy need only to be made every third measurement, instead of 

every second measurement as it was the case in the ”no carry-over” scenario. For 

specific combinations of sequences and periods the number of optim al plans the 

experimenter has to choose from to run his trial, increases with the correlation 

coefficient. For example, in the 7-period 2-sequence family there is only one good 

plan when the correlation between successive measurements is low, while the 

number of optimum designs increases to three for medium or large values of p. 

Similarly for the 8 -period 4-sequence family, the number of best designs for large 

values of p is twice as high as the number of designs when p takes values in the 

sm all/m edium  range.

5.4.3 Pharmacology m atters - Fleiss carry-over

Under this type of carry-over scenario, the optimum plan depends heavily on the 

value of the auto-correlation coefficient p. The interesting result (see Table (5.6)) 

comes in the situation where repeated measurements on a subject are nearly un­

correlated {p =  0.2). The best treatm ent sequences are made of a long series of 

A’s followed by a long series of B ’s. For instance, the subset of optimum plans in 

p-period cross-over families is made of pi series of A’s followed by p — pi series of 

B ’s, where 2  <  pi <  (p — 1 ). In these designs the minimum number of switches 

(i.e. one) occurs between the two competing therapies. Interestingly enough the 

four and six sequence best plans consists of all the possible combinations of two- 

sequence plans in pairs and triplets respectively.
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Reasons have already been provided elsewhere why the use of such treatm ent se­

quences may be inappropriate to run a study. Firstly, if one of the two therapies 

is placebo, then it will be unethical to keep a patient untreated for such a long 

time. Secondly, the proposed treatm ent sequences and their duals are equivalent 

to an AB/BA design, the inefficiency of which have well been explored in the 

cross-over literature. To dem onstrate the last point, suppose th a t an eight-week 

cross-over trial will be used to run a study. If the statistician believes th a t the 

most likely form of carry-over to  be present is the Fleiss one, then one of the 

designs he could propose for running the study is the AAAABBBB and its dual. 

Repeated measurement will be obtained at weekly intervals. This is exactly the 

same as running an A B/BA design, where the total study-period has been di­

vided into two four-week sub-periods. In the AB/BA case, measurements may 

be obtained on each subject on a weekly basis, but an appropriate summary for 

every four consecutive measurements, e.g. the mean, will be used as the analysis 

variable.

The real question is if there are any experiments met in practice where trea t­

ment sequences, like AAAABBBB, are used. The answer is affirmative. The 

multiple-dosage regimen studies are good examples, where prolonged therapeutic 

activity is sought in order to achieve maximal clinical effectiveness. In these stud­

ies, drugs are released into the body by intravenous (IV) infusion a t a constant 

rate. A loading dose (or bolus dose) usually precedes the IV infusion in order 

to obtain steady state  concentrations as quickly as possible. If only one IV dose 

is administered, the time required to reach the steady-state drug-concentration 

in the plasma depends on the elimination rate of the drug from the body, but 

also on the half-life of the compound. For most drugs, the estim ated tim e to 

reach 99% of the steady-state drug concentration after a single IV infusion is 6 . 6  

half-lives. To get a deeper understanding for the drug concentration in plasma 

as a function of tim e after a single IV dose, the corresponding equation looks as 

follows (see, Shargel and Yu [84]):

Cp{t)= V̂pk
(5.2)

where a, b are known constants, R  is the rate of infusion, k is the overall elimina­

tion constant and Vp is the volume of drug in plasma. It has been assumed that
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our drug follow a two-compartment kinetic model. As time goes by (i.e. t  —)> oo) 

then the steady state  concentration is:

c . ,  =  —  (5.3)

The above equation can predict a t any time after the s ta rt of the IV dose the 

plasma drug concentration. In multiple-dosage regimes studies, it is assumed 

tha t earlier doses will not have an effect on later ones. This is the principle of 

superposition and essentially it makes sure tha t the pharmacokinetic profile of 

the repeated doses remains the same throughout the study. Obviously the size of 

the dose and the dose interval have been determined in such a way th a t the drug 

level in the blood increases at the end of each dose. In summary, the to tal plasma 

drug concentration would be equal to the sum of the residual drug concentrations 

of all the previous doses. The amount of drug in the body will increase and finally 

will reach a plateau. One should not wrongly assume th a t the steady-state drug 

concentration remains constant for the whole study period. In fact, depending 

on the type of the compound, it can fluctuate considerably between two values, 

which for sake of argument will be referred to as Cmin and Cmax in what follows. 

It is exactly this fluctuation th a t can generate the Fleiss and the Mixed types of 

carry-over, discussed in this and the next section respectively.

In a typical multiple-dosage study, which most of the time is a 2x2 cross-over 

study comparing equal doses of a test and reference products, patients usually 

maintained on the drug since the use of a wash-out period could place them  at 

substantial risk. The patient continues on his own medication and blood samples 

are repeatedly collected at equal time-intervals. Once this process is completed 

the patient switches to the alternative therapy, where time is again allowed for 

the compound to reach its steady-state. Assume now, th a t the plasma drug 

concentration fluctuation at steady state is different for the two therapies. In 

tha t case, if multiple doses of a compound are followed by multiple doses of the 

same compound, then carry-over effect could be safely assumed to be negligible 

especially if the difference Cmax ~  Cmin is small. But if repeated doses of the 

first therapy (A) are followed by repeated doses of the second one (B), then what 

remains from A may play a crucial role in deciding the response of B at steady 

state. One may argue th a t adequate time must be allowed, so th a t by the time
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the second product reach his plateau level therapy A is completely eliminated 

from the body. However, one has to remember tha t the two therapies may react 

w ith each other and complete elimination of anyone of them may not be reached 

within the trial period.

The above reasoning justifies to some extent the point th a t using Fleiss carry-over 

model for designing purposes is a viable possibility, although considerable input 

may be required from the Phase I clinical team. The discussion for multiple- 

dosage studies was motivated by the fact th a t treatm ent sequences made by long 

series of A ’s (or B’s) are optimum under the Fleiss carry-over model, when p is 

small. This does not seem to be the case when p lies in the middle or high range 

of its plausible values (see Tables (5.7)-(5.8)). If p lies in its middle range, designs 

made up of relatively short sequences, with three on average consecutive repeti­

tions of A ’s (or B ’s), are the optimum ones. Most of these plans are optimum or 

have high efficiency under the simple carry-over scheme as well. When repeated 

measurements on the patients are highly correlated, then optimum plans are 

made up of even shorter sequences of the two therapies. Once more the proposed 

plans have excellent properties under the simple carry-over model. For a specific 

combination of sequences and periods the number of optimum plans decreases as 

p increases under the Fleiss carry-over model, contrary to the simple carry-over 

scheme.

In conclusion, designing a study with Fleiss carry-over in mind is equivalent to de­

signing a study assuming th a t simple carry-over scheme applies, for the m ajority 

of the p values encountered in practice. For small values of p optimum plans are 

essentially multiple-dosage studies, widely used in bio-equivalence applications. 

Justification of Fleiss carry-over in practice is difficult, if not impossible, bu t ex­

am ination of its applicability leads to  a deeper understanding of the com pound’s 

activity in the human body.

5.4.4 Further pharmacology in action - M ixed Carry-over

This type of residual effect has already been introduced in the previous chapter 

as an interm ediate scenario between the simple and the Fleiss type of carry-over. 

Recall th a t under this scheme, a treatm ent carries over to itself only a proportion
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of what carries over to alternative therapies. This proportion is assumed constant 

for all treatm ents under study. If tha t proportion (0) is high, then the simple 

carry-over model is recovered, while for small values of the same param eter the 

Fleiss carry-over model is retrieved.

A similar reasoning could possibly justify the mixed residual effect, although 

the introduction of an extra parameter to describe residual treatm ent activity 

makes the use of such a model, for both analysis and design purposes, difficult. 

Such a residual effect could possibly be met in multiple dosage studies. Suppose 

th a t the two therapies we are about to compare are compounds with similar 

pharmacological properties; a good example is when a low and a high dose of the 

same compound are compared. A direct consequence of th a t assum ption could be 

th a t the therapeutic windows of the small dose is contained within the therapeutic 

window of the higher one. Suppose tha t when the higher dose precedes the lower 

one, then the carry-over effect is 10%. A fraction of th a t 10% would remain as 

residual effect when the order of administration for the two therapies is reversed, 

since the lower dose has a narrower therapeutic window compared to  the higher 

one.

Comparing now the family of optimum plans for the mixed carry-over model 

when 0 =  0 . 2  (see Tables (5.9)-(5.13)) with the corresponding family for the 

Fleiss model, there seems to be some difference between the two families for 

small values of p. Recall th a t in the Fleiss model best treatm ent sequences were 

made up of long series of A ’s followed by long series of B ’s, in contrast to the 

mixed type model with </> =  0 .2 , where the two-sequence plans contain frequent 

switches between the two therapies. However, in the four/six sequence optim um  

plans sequences th a t contain three or even four consecutive repetitions of the same 

therapy may be found. For other values of p the two models seem to propose 

designs which are not identical but have similar structure.

Comparing now designs among the simple carry-over model and the mixed model 

w ith (f) =  0 .8 , it seems to be the case tha t designs which are optim um  in one model 

are also highly efficient under the alternative model. This finding is consistent 

over the whole range of p values. In summary, designing a cross-over study 

with the simple carry-over model in mind gives robust answers to  model mis-
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specification, if th a t model mis-specification is adequately described by the mixed 

model. This is not true for the Fleiss model. Note th a t the num ber of best plans 

under the mixed model for all values of (f) and p is quite lim ited (usually one or 

two), contrary to the Simple and Fleiss model. Our purpose here is rather to 

explore similarities in the structure and efficiency of the best designs from the 

one end of the spectrum (Fleiss model) to the other end (Simple model), rather 

than using mixed model for designing a study.

5.5 More than two treatm ents

It is quite common in clinical trials to set-up a study for the comparison of three 

or more treatm ents. The analysis of a seven treatm ent cross-over study, for the 

comparison of three formulations of two asthm a drugs and placebo, has already 

been presented.

Another example of such trials can be found in the pharm aceutical industry and 

it concerns the testing of combination of drugs. Common therapeutic  area of ap­

plication is HIV trials. Combination trials are set-up to explore how two or more 

factors affect a clinical response (see, Fletcher et al [19]). In the simplest situa­

tion where a low and a high dose of two drugs are considered, the four factorial 

combinations can be tested on each subject in four successive treatm ent peri­

ods. This calls for the use of a cross-over design for running the study. Medical 

researchers use the simple carry-over model for designing and analyzing combi­

nation studies. This is another example where residual effects a t tim e T  4- 1 , if 

present, should depend on the treatm ents administered at times T  and T-t-1. It is 

questionable if simple carry-over model is appropriate for modeling such residual 

effects, but even the Fleiss one may not be suitable for tackling the problem. The 

introduction of distinct carry-over terms depending on the order of treatm ents 

administered may be the appropriate course of action. For example, if we label 

the four combinations by A, B, C, D, and the carry-over from A to B is denoted 

by Ai2 , then carry-over from B to A is A21, where A12 ^  A21 . Introducing a large 

number of residual terms may lead to param eter identification problems at the 

analysis stage. Appropriate parameter restrictions on these residual terms, based
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on clinical knowledge, may overcome such problems.

W ith factorial experiments, like combination trials, the testing of treatm ent by 

treatm ent interactions is commonly reported in practice, regardless of any as­

sumptions concerning residual terms. The analyst could also check the statistical 

significance of any carry-over by carry-over interactions, since in multiple se­

quence/period trials such term s are estimable. The testing of any im portant 

treatm ent by carry-over is usually overlooked. It is a similar situation to the one 

where the statistician includes fourth order term s in his linear model, w ithout 

including third orders ones. Although in practice the presence of the above inter­

actions is extremely unlikely, any model with carry-over by carry-over interactions 

should include treatm ent by carry-over ones as well.

5.6 Three treatm ent results

The design families considered in this section have at least three sequences and 

three periods, so tha t in a sxp  arrangem ent each treatm ent occurs at least once 

in each row and at least once in each column. The within-subject covariance 

structure is A R (1 ) with p = 0.7 throughout. The sensitivity of results to depar­

tures from the chosen value of p is not studied, since this value is commonly met 

in practical applications.

Recall th a t we concentrate on the simultaneous comparison of several new ther­

apies (B,C,...) to a control therapy (A) using the D -optim ality criterion. A lter­

natively we might be interested in efficiently estim ating all pair-wise treatm ent 

comparisons, although this will not be the case in w hat follows. For three-period 

designs, D-optim um  plans are selected by performing a detailed search over the 

full listing of all possible distinct designs for th a t family. Due to the com puta­

tional burden involved as the number of periods and sequences grows, in families 

with more than three periods our search has been restricted to the distinct cyclic 

designs for th a t family. Recall also th a t five carry-over schemes are studied: No 

carry-over. Simple, Fleiss, Simple2 and Proportional. In the Simple2 scheme one 

of our treatm ents (A) is Placebo with no treatm ent or residual effect. In th a t 

case our interest is focused on the comparison between the standard  therapy (B)
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and the new proposed treatm ents (C,...). Under the Proportional scheme mul­

tiple doses of a compound with proportional treatm ent and residual effects are 

administered to the study participants. Note th a t if the num ber of periods equal 

the number of treatm ents studied, then Fleiss carry-over does not apply, since 

each treatm ent should appear at least once in each treatm ent sequence implying 

tha t no treatm ent replication occurs.

In the three-period, three-sequence family there is a variety of good plans un­

der the simple carry-over scheme (see Table (5.14)). Under the ” Simple2 ” and 

’’Proportional” type of carry-over, optimum plans are identical with equal vari­

ances. These designs are optim um  even when no carry-over term s included into 

the model, but with 90% lower variance for the estim ation of contrasts of inter­

est. This implies th a t in order to achieve a given treatm ent precision level, fewer 

patients need to be recruited under the model with no residual terms, compared 

to any model th a t contains carry-over effects.

By extending the number of sequences while keeping the number of periods fixed, 

the number of distinct designs is reduced. This makes easier the task for se­

lecting a good plan, since the com putational effort required is reduced. In the 

four-sequence three-period plans, not only the variance of the treatm ent con­

trasts reaches its lower value under the no-carryover model, bu t also the number 

of available plans under th a t scenario is at least twice as high as the number of 

plans under any model w ith residual terms. Note in passing th a t there are six 

treatm ent sequences in three periods, as a result of which only six five-sequence 

three-period plans exist. All of these plans are equally efficient for designing a 

study under the simple and the no-carryover scheme, while only five of them  can 

be used under the two alternative residual-effect patterns.

The reader may wonder why the efficiency of designs with more sequences than  

periods are considered. It is the case th a t clinical trials are conducted in many 

different large recruitm ent centers all over the world. Assigning a treatm ent 

sequence to all subjects of a specific center is common practice. Under th a t sce­

nario center and sequence effects are not separately estimable, the problem can 

be overcome by assigning more than  one treatm ent sequence to the patients of 

any center. In other words, practical needs require the rate a t which sequences
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grow to be higher than  the corresponding rate for periods and this necessitates 

special attention to designs with s > p .

5.7 Cyclic Designs

Suppose now th a t patients are scheduled to come to the clinic in six visits, al­

though only three treatm ents will be tried on them. Due to the large number of 

distinct designs th a t can be chosen to run the study, attention will be restricted 

to cyclic designs. Although no formal m athem atical proof has been given, a cyclic 

design must exist in the subset of best plans under any carry-over effect scenario. 

This conjecture is true in the three-period family but it is unclear if it can be 

extended to families with more than  three periods. Generally speaking, cyclic 

plans tend to be highly efficient.Computer generation of such plans is straight­

forward. For example, a three-sequence cyclic design in three treatm ents and p 

periods can be generated from an initial treatm ent sequence by adding one and 

two to each element of th a t sequence and reducing modulo 3 when necessary. Up 

to eight period plans have been studied in three treatm ents. In th a t way the 

set of distinct treatm ent sequences is divided to m utual exclusive and exhaustive 

sub-families made of triplets of treatm ent sequences. The com putational effort 

to search over the cyclic sub-families instead of searching over the range of all 

possible triplets is reduced considerably. In the presentation of results, only the 

initial sequence of the best cyclic plans are displayed. Incomplete block designs 

are good examples of designs produced by cyclic generation of an initial sequence. 

One can easily generate incomplete block designs for any num ber of sequences, 

periods and treatm ents. Special restrictions have to be imposed to the above pa­

ram eters in order to get a balanced incomplete block design, in which pair-wise 

treatm ent comparisons are made with the same accuracy.

Further properties of cyclic designs can be found in John and W illiams (see [36]). 

M athem atically speaking, when no residual term s are included and the error 

term s are uncorrelated with zero mean and constant variance, cyclic designs are 

a ttractive because both the information m atrix  and its inverse can be expressed 

as a linear combination of circulant matrices. A circulant is a symmetric m atrix
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having 1 in one of its minor diagonal and zero elsewhere. The eigenvalues of such 

matrices can be w ritten down explicitly, allowing the variances of pair-wise trea t­

ment contrasts to be expressed analytically. This facilitates the task of deciding 

the properties a plan should possess in order to be optimum, but unfortunately it 

does not pick-up a good plan for the person who designs the study. A further key 

property of cyclic designs is the special form the concurrence m atrix can take. 

This is a t x t  symmetric m atrix  {t being the number of treatm ents compared) 

with its element equals the number of sequences the treatm ent pair {i, j)

appears.

Cyclic plans can be further classified and the concurrence m atrix can take a 

special form in each case. One example are resolvable block designs, which are 

incomplete block designs where treatm ent sequences can be grouped so th a t each 

treatm ent appears once in each group. This type of designs can be quite helpful in 

multi-center studies, since groups of treatm ent sequences could be assigned into 

different centers. This implies th a t even in the scenario where some centers w ith­

drawn from the study all treatm ents will have occurred equally often. Resolvable 

designs are good examples where recovery of inter-block information could re­

sult in more efficient treatm ent estimates. Another category of cyclic plans are 

the row-column designs. In such plans, the number of times each treatm ent can 

appear in each row/column can vary. In the special case where each treatm ent 

appears once in each row and once in each column the row-column plan is called 

Latin square. All cross-over experiments can be seen as row-column plans with 

row representing sequences while columns periods. Treatm ents comparisons are 

available form both rows and columns, but its the comparisons made within rows 

and columns th a t are expected to be of highest precision. W hen no residual terms 

included into the model, treatm ent effects can sometimes be independently esti­

m ated of any row/column effects. W hen residual term s of any sort are included, 

the orthogonality property is lost in the m ajority of the cases. Recall th a t lack 

of orthogonality between treatm ent and carry-over effects in the 2 x 2  case is the 

main reason for the deficiency of the two stage procedure.

Back to our results for three treatm ent plans, where three-sequence in more than 

three-period designs are examined (see Table (5.15)). A striking feature is the
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fact th a t when residual term s excluded from the model, the num ber of best plans 

available for design purposes are much higher compared to  the corresponding 

number of plans under models th a t include carry-over term  of any kind. In ad­

dition under Simple2  and Proportional carry-over schemes, optim um  plans are 

identical w ith the same efficiency. In these plans the design structure is quite 

interesting; for example the six period best plans are made of replicates of three 

period plans. For the Fleiss carry-over model there is a frequent exchange be­

tween the three treatm ents, on the contrary under simple carry-over model best 

treatm ent sequences are made of short successive repetitions of the same treat­

ment. In fact, under the simple carry-over model, a six period plan is made of 

a three period plan followed by the same plan in reversed order. Furthermore 

the difference in efficiency between any model than contain residual term s and 

the model with no carry-over terms decreases with increasing number of periods 

used. Generally speaking, good plans under the model w ith no residual terms 

are not optim um  under models with carry-over terms, in other words proposing 

robust solutions when analysis model is mis-specified becomes a difficult task. 

Obviously these observations generate hypothesis for future research. Finally, it 

has been reported tha t under the simple carry-over with additional restrictions in 

the design structure and model assumptions, a t -f 1-period design can be made 

of a ^-period optimum plan by repeating the treatm ent of the last period. This 

rule does not seem to be justified in our case. Further research may be needed 

to find out under which circumstances the previous statem ent is true.

Practical experience suggests th a t routine follow-up can be easily implemented 

and it is not as costly as patient recruitment. In conclusion designs with many 

periods could be the future of cross-over trials. W orth noting th a t reporting of 

cross-over studies with few periods but with repeated m easurements collected 

within each period is frequently met in practice.

5.8 Four, five and six treatm ent results

The use of cross-over plans for the comparison of more than  three treatm ents is 

not currently favored neither by sponsors nor by regulatory authorities. Dose-
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ranging trials are good examples of experiments where a large number of trea t­

ments are tested in a single trial. Such studies are usually conducted at later 

stages of drug development in order to determine the clinical effectiveness of 

a series of doses and appropriate adjustments to current dosage regimes made 

where necessary. Surprisingly enough, parallel designs are used for running such 

studies, implying th a t information on individual dose-response parameters is not 

recovered. This information will be available if a cross-over plan had been used 

instead, where several doses are tested on each subject. The problem with a 

cross-over study for dose ranging is not th a t of carry-over but rather the dose 

tim etable. This timetable has to be chosen so th a t toxicity problems are avoided. 

Sheiner et al (see [85]), describe simulation studies where a t each period the dose 

level is increased as long as the response remains above a threshold level and 

there is no toxicity. During the first period placebo is administered to all sub­

jects. Obviously these strict guidelines not only reduces the number of available 

plans, but also decreases the number of observations offered from each subject. 

Modern statistical methodology can easily predict missing values of follow-up 

(i.e. measurements typically collected if we had continued to monitor the subject 

for the entire study duration), but in addition these predictions can be used for 

drawing inference about population parameters.

Despite the questionable usefulness of these studies, due to the practical limi­

tations discussed above, results will be presented for cyclic families only. For 

the four treatm ent comparison, designs up to seven periods are tested (see Ta­

ble (5.16)). The initial intention was to generate and compare up to ten-period 

cyclic plans, but the upper bound of available com putational memory was soon 

reached, and the idea abandoned. Nevertheless, insight into the structure of opti­

mum plans when more than seven periods are used, can still be gained. As ever, 

treatm ent effects are more precisely estim ated when residual terms of any kind 

are excluded from the model. A nice property of the four-period, four-sequence 

family is th a t the same set of designs are optimum irrespective of any assumptions 

made concerning the carry-over effect. In the five period plans the above property 

is valid under all carry-over schemes, but a different set of designs are optimum 

when presence of carry-over is ruled out. W hen we move on to six periods, the
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simple and Fleiss carry-over model offer identical and equally efficient plans for 

running a study. This is evidence supporting a conjecture made by M atthews 

(see [65]) th a t optimum plans under simple carry-over model are usually good 

choices under the Fleiss model as well. This property is also justified for the six 

and seven period families. Generalization of th a t conjecture to p-period families 

for comparing four treatm ents is worth investigating. Six and seven period fam­

ilies, offer one of the few occasions where the Simple2  and Proportional schemes 

provide us with different solutions for designing a study. The Simple2  scheme 

seems to propose the same designs, as Simple and Fleiss models do in the 6 -period 

family. This is not the case for the seven period family though.

Once more com putational restrictions did not allow the study of long treatm ent 

sequences when five or six treatm ents are compared (see Table (5.17)). All carry­

over scenarios seem to agree on the set of best plans, apart from the Proprtional 

scheme. Also the Proportional scheme offers a limited number of solutions com­

pared to the other carry-over scenarios. As has been noted in other occasions, 

the number of proposed plans when carry-over terms are not included is a t least 

twice as high as the number of plans when carry-over terms included. In con­

clusion some interesting hypotheses have been generated by comparing plans in 

families where more than two treatm ent compared, although it is a difficult task 

to provide theoretical justification for these hypotheses.

5.9 Non-linear Designs for two treatm ents

Cross-over trials have been widely used for the comparison of hypertension or 

asthm a drugs. In such studies wash-out periods are not allowed for ethical rea­

sons. Under these circumstances, presence of residual effects are likely. In the 

m ajority of cross-over studies treatm ent periods are usually long tim e windows. 

So, depending on the time each measurement is collected, the carry-over effect to 

the next period, is usually a proportion of the treatm ent activity in the current 

period. For the sequence AB, which might be part of a longer treatm ent sequence, 

carry-over from A to B can be w ritten as =  taPa and similarly from B to 

A is Xb =  t bPe - This is the Simple carry-over model with two additional non­
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linear terms. In the sequel it will be assumed th a t pA = Pb - D ata have already 

been analyzed using this model and it has been shown th a t treatm ent effect can 

tru ly  be recovered irrespective of inclusion or not of any residual terms in the 

model. The assumption th a t the two treatm ents carry-over the same proportion 

can be defended on the basis th a t similar pharmacological properties govern the 

therapeutic activity of two beta blockers, two ace inhibitors, or any other agents 

belonging to the same group from a pharmacological point of view.

A further assumption made, w ithout explicitly stated, is th a t proportion of trea t­

ment persisted to the next period is assumed constant throughout the whole 

study duration. Violation of th a t assumption can frequently be met when differ­

ent doses administered a t different treatm ent periods. Higher doses expected to 

carry-over more than  lower ones. But even if the same dose is administered for 

each compound (say lOmg), fluctuation around this value (e.g. overdose) may 

result to different proportion of treatm ent persisted to the next period.

Recall in the 2x2 case th a t the treatm ent effect estim ate is biased by half the dif­

ference of the unknown residual effect (A =  Xa — ^ b ) between the two treatm ents. 

Introducing the non-linear term  makes this bias dependent on the unknown trea t­

ment effect (A =  p r). The consequence of tha t assumption for designing a study 

is minimal. In fact, for two treatm ent comparison and when two sequence de­

signs are considered, results are similar regardless if residual term  is a non-linear 

function or completely unrelated to the treatm ent effect. This result cannot 

be extended in the four and six sequence design families. For example, in the 

seven-period four-sequence family, under the simple carry-over model in which 

carry-over is modeled using a non-linear term, the optimum plan is (ABBAABB, 

ABBAABA, duals). Similar argument holds for the Fleiss carry-over model.

It is also true in the non-linear case th a t the efficiency of the various plans do not 

depend on the proportion of treatm ent persisted to the next period. Obviously 

things would change if the assumption p a  = Pb  is  removed. But how easy is 

to assume otherwise? For designing a study plausible values of pa,Pb  have to 

be provided. Physicians are usually unaware of such information, though results 

from previous studies could help in the derivation of any unknown quantities. 

Uncertainty of this kind can also be incorporated into the design problem by
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using the Bayesian approach, although implementation of this method can be 

difficult. This is because priors imposed on unknown param eters affect results 

to some extent. Robust designs to the choice of prior are desirable. Finally the 

assumption P a  =  Pb  does not make much sense if more than two treatm ents 

are compared. This is why there is a lack of research attention to this kind of 

problem.

The mathem atics for tackling the non-linear design problem is a direct extension 

of the linear approach. More specifically the choice of best design depends on 

a number of unknown parameters. In our case, this is the unknown treatm ent 

effect T and the proportion of treatm ent p th a t carries over to the next period. 

It is assumed tha t r  =  2.5 and p ranges from zero to one. The nonlinear mean 

response can be expressed as follows:

^  i Vi j k )  = Td(ij) +  T d { i J - l ) p  (5.4)

where the mean p  includes overall mean, period or any other effects that distin­

guish among cells of the cross-over plan. A modified version of this equation has 

already been used at chapter 3 and explanation of the d{i , j  — 1) and the other 

subscripts is given there. To derive an expression for the dispersion m atrix of 

contrasts of interest, the m atrix of partial derivatives of the mean response equa­

tion with respect to all parameters needs to be evaluated at the selected values

of p and r . Because all other terms, apart from p and r ,  enter linearly into the

model, specification of other parameters is not necessary. The partial derivatives 

of interest are:

l  +  ( 5 , 5 )
dTd[i,j) 9Td{ij)

=  Ti(ij-i) (5.6)

In case where the two treatm ents carry-over a different proportion to the next 

period the mean equation can be w ritten as:

E  { l / i jk)  =  P  'T'd{i,j) T - \ ) P d { i , j —l)
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and the partial derivatives with respect to and pd{i,j) are:

f£f - 
■«iSf ■

Note th a t mean response expressed by equation (5.4) is a special case of the mean 

response model described by equation (5.7). Model (5.7) covers all possibilities,

i.e. the carry-over effects of the two treatm ents may be equal (equation (5.4)), 

or related in some m athem atical way, or completely unrelated. Results when the 

mean response is described by equation (5.7) are not given due to the lack of 

information concerning Pd{i,j)- Contrary, results for the first scenario (equation 

(5.4)) are straightforward to derive and have already be presented.

Assume there are n  study participants, in a p period cross-over study. Assume 

further th a t our model has k unknown parameters (in our case k = p +  2 ). 

Once the vector of partial derivatives of the mean response with respect to  every 

unknown param eter has been evaluated, these vectors are joined together in a 

npxk  matrix, denoted as for sake of reference. The variance m atrix  is simply

y = ( X j E - % ) “ '  (5.10)

where E is a block diagonal npxnp  matrix, each block being an A R (1 ) type 

correlation matrix. The variance m atrix for any set of linear/nonlinear contrasts 

(a good example of a non-linear contrast is the overall treatm ent effect r  pr) 

is given by:

Va = A V A ^  (5.11)

where the row of A is a vector of partial derivatives of the contrast with 

respect to the unknown model parameters evaluated at specific values of these 

param eters where necessary.

5.10 Computational approaches in searching for 

optimum plans

It has already be mentioned tha t current computing lim itations do not allow 

fast detection of the best cross-over design for any number of sequences and
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periods. In the results presented so far, we had to  confine our search to  special 

sub-families (cyclic plans), but even then only for m oderate values of the number 

of sequences/periods exact results were derived. Special numerical algorithms 

have been devised in order to tackle the high-dimensional optim ization problem, 

in the case where p  (number of periods) and s (number of sequences) are large. 

Our problem can be expressed in a straightforward manner: in a set of s Ixp  

vectors, select the best subset consisting of I such vectors {I can vary from 2 to 

s — 1 ). The winning subset will be the one th a t minimizes some function defined 

by the needs of the experimenter. An initial a ttem pt to solve the problem is to 

identify a smaller group of highly efficient designs and then search within th a t sub­

family. Theoretical results can limit the number of designs under consideration, 

but usually easily programmed counting rules are more efficient in finding plans 

worth further attention. An example of such a rule is to minimize the sum of 

squares

EE 4 (5-12)
i 3

where Xij is the number of treatm ent sequences containing both and trea t­

ments. Note though, tha t this rule may produce a large sub-class of plans. O ther 

rules need to be implemented in tha t sub-class so th a t further reduction in the 

candidate design set is achieved.

Once the experimenter defines both the dimension of the problem (i.e. p  and s), 

and the sub-family of plans selected from his screening procedure is deemed ap­

propriate, then he can either do a full search or use one of the interchange (or 

exchange) algorithms to find the best plan. Assume for the moment th a t there 

are Ncand candidate treatm ent sequences and we are interested for the best triplet. 

Any exchange algorithm usually start the search from a design th a t is optim um  in 

a family with fewer number of periods than the family we are interested in. This 

may not necessarily be the case and the starting point can be a design random ly 

chosen from the family under consideration. The next step of the algorithm  is 

to improve the starting design by exchanging treatm ent sequences of th a t design 

with treatm ent sequences th a t they belong to the candidate set but they are not 

included in the starting design. The first sequence is exchanged w ith the one 

from the candidate set tha t leads to the greatest reduction in the determ inant of
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the variance m atrix for the contrasts of interest. The same process is repeated 

for the second and third sequence of the starting  plan and at the end of th a t 

cycle a new starting design is proposed. The process s ta rts  all over again and at 

the end of each cycle a new starting point is reached, far more efficient than  the 

one recommended at the beginning of the cycle. The process term inates when no 

further exchanges can be made th a t will improve upon the design a t the end of 

the current cycle.

Various modifications of the above algorithm  are available. For example instead 

of doing the best current exchange we could simply update  the design w ith any 

exchange th a t improves its efficiency as soon as it is discovered. Another mod­

ification is to accept an exchange th a t may not improve the objective function 

with small probability. One should always remember th a t all these modifications 

are made in order to increase our chances of locating the global rather than  a 

local optimum plan. There are currently routines available for generation of all 

possible treatm ent sequences for any number of periods and sequences and also 

it is not difficult to program an algorithm  for listing all I possible subsets of these 

sequences. As computational power increases rapidly, exact results can be made 

possible as s and p grow. This will not replace the use of exchange algorithms 

but will probably improve their performance as well as the accuracy of results 

they provide.
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Table 5.2: Optimum two-treatment designs. Model: No carry-over

Periods Designs (Variance xlO  ̂ when p — 0.2,0.5,0.8)

Two Sequence Designs

5

6

7

8

9

10

ABABA (7.44, 5.12, 3.75) 

ABABAB (6.12, 4.16, 3.02) 

ABABABA (5.20, 3.50, 2.52) 

ABABABAB (4.52, 3.03, 2.17) 

ABABABABA (4.00, 2.66, 1.90) 

ABABABABAB (3.59, 2.38, 1.69)

Four Sequence Designs

ABABA with any of: ABAAB, AABAB, ABBAB, ABABB 

Variances; 3.95, 2.85, 2.13

ABABAB with any of: ABABAA, ABAABA, AABABA, ABBABA, ABABBA 

Variances: 3.22, 2.27, 1.67

ABABABA with any of AB ABAAB, AB AABAB, AABABAB, ABBABAB, 

ABABBAB, ABABABB 

Variances: 2.71, 1.88, 1.37

ABABABAB with any of ABABABAA, AB ABAABA, ABAABABA, 

AABABABA, ABBABABA, ABABBABA, ABABABBA 

Variances 2.34, 1.61, 1.16

Six Sequence Designs

Define: 5=ABABA, 9=ABAAB, 10=AABAB, 11=ABBAB, 13=ABABB 

The following triplets are optimal:

(5 9 10), (5 9 11), (5 10 11), (5 9 13), (5 10 13), (5 11 13)

Variances: 2.69, 1.98, 1.48

Define: 5=ABABAA, 9=ABAABA, 10=AABABA, 11=ABBABA, 

13=ABABBA, 21=ABABAB. The following triplels are optimal:

(5 9 21), (5 10 21), (9 10 21), (5 11 21), (9 11 21), (10 11 21),

(5 13 21), (9 13 21), (10 13 21), (11 13 21)

Variances: 2.18, 1.56, 1.24
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Table 5.3: Optimum two-treatment designs. Model: Simple carry-over. Within-

subject error structure AR(1) (p =  0.2)

Periods Design 1 Design 2 Design 3 Design 4

Two Sequence Designs (Variance xlO

5 AABBA (9.77)

6 ABBAAB (7.96)

7 AABBAAB (6.94)

8 ABBAABBA (5.92)

9 ABBAABBAB (5.38) ABBAABAAB ABAABBAAB ABBABBAAB

10 ABBAABBAAB (4.73)

Four Sequence Designs (Variance a: 10

5 ABBAA

AABBA (4.89)

6 ABBAAB ABBAAB

ABAABB (4.04) ABBABB

7 AABBAAB AABBAAB AABBAAB

ABBAABA (3.43) ABAABBA ABBABBA

8 ABBAABBA ABBAABBA ABBAABBA

AABBAABA (2.98) AABAABBA AABBABBA

Six Sequence Designs (Variance xlO

5 ABBAA ABBAA

AABBA AABBA

ABAAB (3.23) ABBAB

6 AABBAA AABBAA

ABBAAB ABBAAB

AABAAB (2.68) AABBAB
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Table 5.4: Optimum two-treatment designs. Model: Simple carry-over. W ithin-

subject error structure AR(1) (p =  0.5)

Periods Design 1 Design 2 Design 3 Design 4

Two Sequence Designs (Variance a; 10

5 AABBA (8.72)

6 ABBAAB (6.55)

7 ABAABBA (5.85) ABBAABA ABBABBA

8 ABBAABBA (4.88)

9 ABBAABBAB (4.36) ABBAABAAB ABAABBAAB ABBABBAAB

10 ABBAABBAAB (3.90)

Four Sequence Designs (Variance xlO

5 AABBA 

ABAAB (4.23)

AABBA

ABBAB

6 ABBAAB 

AABAAB (3.40)

ABBAAB

AABBAB

7 AABBAAB AABBAAB AABBAAB

ABBAABA (2.87) ABAABBA ABBABBA

8 ABBAABBA ABBAABBA ABBAABBA

AABBAABA (2.49) AABAABBA AABBABBA

Six Sequence Designs (Variance a; 10

5 ABBAA 

AABBA 

ABAAB (2.81)

ABBAA

AABBA

ABBAB

6 AABAAB 

ABBAAB 

AABBAB (2.30)
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Table 5.5: Optimum two-treatment designs. Model: Simple carry-over. W ithin-

subject error structure AR(1) {p — 0.8)

Periods Design 1 Design 2 Design 3 Design 4

Two Sequence Designs (Variance a;10

5 AABBA (7.23)

6 ABBAAB (5.13)

7 ABAABBA (4.52) ABBAABA ABBABBA

8 ABBAABBA (3.80)

9 ABBAABBAB (3.36) ABBAABAAB ABAABBAAB ABBABBAAB

10 ABBAABBAAB (3.03)

Four Sequence Designs (Variance xlO

5 AABBA AABBA

ABAAB (3.38) ABBAB

6 ABBAAB ABBAAB

AABAAB (2.69) AABBAB

7 AABBAAB AABBAAB AABBAAB

ABBAABA (2.25) ABAABBA ABBABBA

8 ABBAABBA ABBAABBA ABBAABBA ABBAABBA

AB AABAAB (1.92) ABBABAAB ABABBAAB ABBAABAB

S(con’t) ABBAABBA ABBAABBA

ABAABBAB ABBABBAB

Six Sequence Designs (Variance a;10

5 ABBAA

AABBA

ABAAB (2.29)

6 AABAAB

ABBAAB

AABBAB (1.83)
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Table 5.6: Optimum two-treatment designs. Model: Fleiss carry-over. Within-

subject error structure AR(1) (p =  0.2)

Periods Design 1 Design 2 Design 3 Design 4

Two Sequence Designs (Variance xlO

5 AAABB (15.2) AABBB ABBBB

6 AAAABB (12.7) AAABBB AABBBB ABBBBB

7 AAAAABB (10.9) AAAABBB AAABBBB AABBBBB

7 (con’t) ABBBBBB

8 AAAAAABB (9.61) AAAAABBB AAAABBBB AAABBBBB

8 (con’t) AABBBBBB ABBBBBBB

9 AAAAAAABB (8.56) AAAAAABBB AAAAABBBB AAAABBBBB

9 (con’t) AAABBBBBB AABBBBBBB ABBBBBBBB

10 AAAAAAAABB (7.71) AAAAAAABBB AAAAAABBBB AAAAABBBBB

10  (con’t) AAAABBBBBB AAABBBBBBB AABBBBBBBB ABBBBBBBBB

Four Sequence Designs (Variance rlO )̂

Ail possible combinations in pairs of 5-period 2-sequence designs, are optimal 

Number of optimal designs: 3 - Variance: 7.61

AU possible combinations in pairs of 6 -period 2-sequence designs, are optimal 

Number of optimal designs: 6 - Variance: 6.37

Ail possible combinations in pairs of 7-period 2-sequence designs, are optimal 

Number of optimal designs: 10 - Variance: 5.48

AU possible combinations in pairs of 8 -period 2-sequence designs, are optimal 

Number of optimal designs: 15 - Variance: 4.80

Six Sequence Designs (Variance rlO

AU possible combinations in triplets of 5-period 2-sequence designs, are optimal 

Number of optimal designs: 1 - Variance: 5.08

AU possible combinations in triplets of 6 -period 2-sequence designs, are optimal 

Number of optimal designs: 4 - Variance: 4.25
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Table 5.7: Optimum two-treatment designs. Model: Fleiss carry-over. W ithin-

subject error structure AR(1) (p =  0.5)

Periods Design 1 Design 2 Design 3 Design 4

Two Sequence Designs (Variance a: 10

5 ABBAA (15.3)

6 ABBBAA (14.2) ABBAAA AABBAA

7 ABBAABB (11.1)

8 AABBAABB (10.5) ABBAAABB ABBBAABB ABBAABBB

9 ABBAABBAA (8.69)

10 AABBAABBAA (8.33) ABBAABBBAA ABBBAABBAA ABBAAABBAA

Four Sequence Designs (Variance a: 10

5 ABBAA ABBAA ABBAA

AAABB (8.69) AABBB ABBBB

6 ABBAAA ABBAAA AABBAA

AABBAA (7.14) ABBBAA ABBBAA

7 ABBAABB ABBAABB ABBAABB ABBAABB

ABBAAAA (6.06) AABBAAA ABBBAAA AAABBAA

7 (con’t) ABBAABB

AABBBAA

ABBAABB

ABBBBAA

8 Ail combinations in pairs of 8 -period, 2-sequence designs are optimal

Number of designs: 6 - Variance : 5.62

Six Sequence Designs (Variance xlO )̂

5 ABBAA ABBAA ABBAA

AAABB AAABB AABBB

ABBBB (6.06) AABBB ABBBB

6 ABBAAA 

AABBAA 

ABBBAA (4.76)
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Table 5.8: Optimum two-treatment designs. Model: Fleiss carry-over. Within-

subject error structure AR(1) (p =  0.8)

Periods Design 1 Design 2 Design 3 Design 4

Two Sequence Designs (Variance a: 10

5 ABBAA (13.7)

6 ABBAAB (12.1)

7 ABBAABB (9.46)

8 ABBAABBA (8.60)

9 ABBAABBAA (7.22)

10 ABBAABBAAB (6 .6 8 )

Four Sequence Designs (Variance a: 10

5 ABBAA ABBAA

AABBA (8.04) ABBBA

6 ABBAAB ABBAAB ABBAAB

ABBAAA (6.34) AABBAA ABBBAA

7 ABBAABB ABBAABB ABBAABB

ABBAAAB (5.24) AABBAAB ABBBAAB

8 ABBAABBA ABBAABBA ABBAABBA ABBAABBA

ABBAAABB (4.47) AABBAABB ABBBAABB ABBAABBB

Six Sequence Designs (Variance xlO

5 ABBAA

ABAAB

ABBAB (5.71)

6 ABBAAA AABBAA ABBAAA

ABBBAA ABBBAA AABBAA

ABBAAB (4.31) ABBAAB ABBAAB
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Table 5.9; Optimum two-treatment designs. Model: Mixed. W ithin-subject error

structure AR(1) (p =  0.2)

Periods Mixed with 0

Design 1

=  0 .2  

Design 2

Mixed with </>

Design 1

=  0.5 

Design 2

Two Sequence Designs (Variance a; 10

5 ABBAB (9.44) ABBBA (9.76)

6 ABBABB (7.68) ABBABB (7.83)

7 ABBABBA (6.29) ABBABBA (6.51)

8 ABBABBAB (5.60) ABBAABBA (5.83)

9 ABBABBABA (4.97) ABBABABBA ABBABBABB (5.14)

9 (con’t) ABABBABBA

10 ABBABBABBA (4.37) ABBABBABBA (4.54)

Four Sequence Designs (Variance zlO )̂

5 ABBBA ABBBA

ABBAB (4.60) ABBAB (4.74)

6 ABBABB ABBABB ABBABB

ABBABA (3.78) ABABBA ABBBAB (3.96)

7 ABBABBA ABBABBA ABBABBA

ABBBABA (3.20) ABABBBA ABBAABB (3.34)

8 ABBABBAB ABBABBAB ABBABBAB ABBABBAB

ABBBABBA (2.80) ABBABBBA ABBBABBA (2.90) ABBABBBA

Six Sequence Designs (Variance xlO )̂

5 ABBBA ABBBA

ABBAB ABBAB

ABABB (3.11) AABBA (3.17)

6 ABBABA ABBABA ABABBA

ABABBA ABBABB ABBABB

ABBBBA (2.53) ABBBBA (2.63) ABBBBA

214



Table 5.10: Optimum two-treatment designs. Model: Mixed. W ithin-subject

error structure AR(1) {p =  0.5)

Periods Mixed with 0

Design 1

= 0 .2  

Design 2

Mixed with 0 =

Design 1

0.5

Design 2

Two Sequence Designs (Variance a: 10

5 ABBAB (7.23) ABBAB (7.91)

6 ABBABA (6.08) ABABBA ABBABB (6 .6 6 )

7 ABBABBA (4.91) ABBABBA (5.12)

8 ABBABBAB (4.24) ABBABBAB (4.60)

9 ABBABBABA (3.74) ABBABABBA ABBABBABB (4.19)

9 (con’t) ABABBABBA

10 ABBABBABBA (3.36) ABBABBABBA (3.52)

Pour Sequence Designs (Variance rclO )̂

5 ABBBA AABBA

ABBAB (3.84) ABBAB (3.98)

6 ABBABB ABBABB ABBABB ABBABB

ABBABA (3.02) ABABBA ABBABA (3.28) ABABBA

7 ABBABBA ABBABBA ABBABBA ABBABBA

ABBABAB (2.46) ABABBAB ABBAABA (2.68) ABAABBA

8 ABBABBAB ABBABBAB ABBAABBA

ABBABABB (2.21) ABABBABB ABBABBAB (2.30)

Six Sequence Designs (Variance a:10 )̂

5 ABBBA ABBAA

ABBAB ABBAB

ABABB (2.63) AABBA (2.71)

6 ABBABA ABBABB ABBABB

ABABBA ABBAAB ABBAAB

ABBABB (2.00) ABBABA (2.19) ABABBA
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Table 5.11: Optimum two-treatment designs. Model: Mixed (0 =  0.8). W ithin-

subject error structure AR(1)

Periods p =  0 .2

Design 1 Design 2

p =  0.5

Design 1 Design 2

Two Sequence Designs (Variance a; 10

5 AABBA (9.77) AABBA (8.71)

6 ABBAAB (8.02) ABBAAB (6.61)

7 ABBABBA (6.89) ABBABBA (5.51)

8 ABBAABBA (5.88) ABBAABBA (4.85)

9 ABBABBAAB (5.34) ABBABBAAB (4.31) ABBAABBAB

10 ABBAABBAAB (4.74) ABBABBABBA (3.82)

Four Sequence Designs (Variance zlO

5 ABBAA AABBA

AABBA (4.88) ABBAB (4.13)

6 ABBAAB ABBAAB ABBABB

ABBABB (4.01) ABBABB (3.39) ABABBA

7 ABBABBA ABBABBA ABBABBA

ABBAABB (3.39) ABBAABA (2.83) ABAABBA

8 ABBAABBA ABBAABBA

AABBABBA (2.96) ABBABBAB (2.41)

Six Sequence Designs (Variance TlO

5 ABBAA ABBAA

AABBA ABBAB

ABBAB (3.22) AABBA (2.77)

6 AABBAA ABBABB

ABBAAB ABBAAB

ABBABB (2.68) AABBAB (2.29)
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Table 5.12: Optimum two-treatment designs. Model: Mixed. W ithin-subject

error structure AR(1) (p =  0.8)

Periods Mixed with 0 = 0 .2 Mixed with (f) = 0.5

Design 1 Design 2 Design 1 Design 2

Two Sequence Designs (Variance xlO

5 ABBAB (5.48) ABBAB (6.05)

6 ABBABA (4.64) ABABBA ABBAAB (5.22)

7 ABBABBA (3.76) ABBABBA (3.92)

8 ABBABBAB (3.17) ABBABBAB (3.46)

9 ABBABBABA (2.79) ABBABABBA ABBABBABA (3.16) ABABBABBA

9 (con’t) ABABBABBA ABBABABBA

10 ABBABBABBA (2.53) ABBABBABBA (2.66)

Four Sequence Designs (Variance zlO )̂

5 AABBA 

ABBAB (3.04)

AABBA 

ABBAB (3.15)

6 ABBABA ABBAAB ABBAAB

ABABBA (2.32) ABBABA (2.59) ABABBA

7 ABBABBA ABBABBA ABBABBA ABBABBA

ABBABAB (1.85) ABABBAB ABBAABA (2.06) ABAABBA

8 ABBABBAB ABBABBAB ABBAABBA

ABBABABA (1.65) ABABBABA ABBABBAB (1.76)

8 (con’t) ABBABBAB

ABABABBA

Six Sequence Designs (Variance arlO )̂

5 ABABA 

AABBA 

ABBAB (2.12)

ABBAA 

AABBA 

ABBAB (2.19)

6 ABBABA ABBABB ABBABB

ABABBA ABBAAB ABBAAB

ABBABB (1.56) ABBABA (1.73) ABABBA
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Table 5.13: Optimum two-treatment designs.Model:Mixed (</> =  0.8). W ithin-

subject error structure AR(1) (p =  0.8)

Periods Two-sequence Designs Four-sequence Designs

Design 1 Design 2 Design 1 Design 2

Two Sequence Designs (Variance xlO )̂

5 ABBAB (6.81) ABBAB 

AABBA (3.29)

6 ABBAAB (5.17) ABBAAB 

AABBAB (2.70)

7 ABBABBA (4.23) ABBABBA 

ABBAABA (2.18)

ABBABBA

ABAABBA

8 ABBAABBA (3.78) ABBAABBA 

ABBABBAB (1.85)

9 ABBABBAAB (3.30) ABBAABBAB

10 ABBABBABBA (2.90)

Six Sequence Designs (Variance a: 10 )̂

5 AABBA 

ABBAB 

ABBAA (2.26)

6 ABBAAB 

AABBAB 

ABBABA (1.84)

ABBAAB

AABBAB

ABABBA
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Table 5.14: Optimum three-treatment designs. Full Design Listing. W ithin-

subject error structure AR(1) (p =  0.7)

Carryover

Scheme

Design 1 Design 2 Design 3 Design 4 Design 5 Design 6

Three-period, three-sequence designs (Variances xlO

No ABC ACB

BCA BAC

CAB (1.43) CBA

Simple ABC ACB ABC ACB ABC ACB

BAC BCA BCA BCA BAC BAC

CBA (10.0) CAB CBA CBA CAB CAB

Simple2 ABC ACB

and BCA BAC

Propo­ CAB (15.4) CBA

rtional

Three-period, four-sequence designs (Variances rrlO

No ACB ACB ABC ABC ABC ABC

BAC BAC BCA ACB BAC ACB

BCA CAB CAB BCA BCA BAC

CBA (0.92) CBA CBA CAB CAB CBA

Simple ACB ABC ABC

BCA BAC ACB

CAB BCA BAC

CBA (2.70) CBA CAB

Simple2 ABC

and ACB

Propo­ BAC

rtional CAB (10.5)

Three-period, five-sequence designs (Variances a: 10 )

No carry-over: All 6 possible designs are optimal with variance 0.56 

Simple carry-over: All 6 possible designs are optimal with variance 1.52 

Simple2: (ABC,ACB,BAC,BCA,CAB) and (ABC,ACB,BAC,CAB,CBA) - variance 9.22 

Proportional: (ABC,ACB,BAC,BCA,CBA) and (ABC,BAC,BCA,CAB,CBA) - variance 9.22
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Table 5.15: Optimum three-treatment designs. Cyclic Designs considered only.

W ithin-subject error structure AR(1) (p =  0.7)

No Simple Fleiss Simple2 Proportional

Carryover Carryover Carryover Carryover Carryover

Cyclic 4-period, 3-sequence designs (Variances a: 10

ABAC ABBC ABAC ABCA ABCA

ABCB ACCB ACAB ABBC ACBA

ACBC (1.82) (4.45) ACBA (1 0 .6 )

ACAC (0 .6 8 ) ACCB (10.6)

Cyclic 5-period, 3-sequence designs (Variances xlO

ABCBC ABBAC ABCBA ABCAB ABCAB

ABABC ACCAB ACBCA ACBAC ACBAC

ACBCB (0.99) (1.35) (7.80) (7.80)

ACACB (0.39)

Cyclic 6 -period, 3-sequence designs (Variances zlO )̂

ABACBC ABCCBA ABCBAC ABCABC ABCABC

ABCABC ACBBCA ACBCAB ACBACB ACBACB

ABCACB (0.55) (0.75) (6.05) (6.05)

ABCBAC

ACABCB

ACBCAB

ACBACB

ACBABC (0.25)

Cyclic 7-period, 3-sequence designs (Variances xlO )̂

ABABCBC ABCCBAC ABCACBA ABCABCA ABCABCA

ABCBABC ACBBCAB ACBABCA ACBACBA ACBACBA

ACACBCB (0.38) (0.46) (5.14) (5.14)

ACBCACB (0.17)

Cyclic 8 -period, 3-sequence designs (Variances xlO )̂

ABCACBCB ABCAACBA ABCACBAC ABCABCAB ABCABCAB

ACBACBCB ACBAABCA ACBABCAB ACBACBAC ACBACBAC

ACABCBCB (0.13) (0.28) (0.33) (0.43) (0.43)

plus 25

other designs
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Table 5.16: Optimum four-treatment designs. Cyclic Designs considered only.

W ithin-subject error structure AR(1) [p =  0.7)

No Simple Fleiss Simple2 Proportional

Carry-over Carry-over Carry-over Carry-over Carry-over

Cyclic 4-period, 4-sequence designs (Variances xlO

ABDC ABDC ABDC ABDC

ADBC ADBC ADBC ADBC

(0.09) (0.29) (1 .6 6 ) (4.13)

Cyclic 5-period, 4-sequence designs (Variances zlO )̂

ABCBD ABDCB ABDCB ABDCB ABCDB

ACBCD ADBCD ADBCD ADBCD ADCBD

ACDCB (0 .1 2 ) (0 .1 2 ) (0.93) (3.16)

ADCDB

(0.04)

Cyclic 6-period, 4-sequence designs (Variances xlO )̂

ACBCBD ABCADB ABCADB ABCADB ACBADC

ACDCDB ADCABD ADCABD ADCABD ACDABC

(0 .0 2 ) (0.06) (0.06) (0.60) (2.52)

Cyclic 7-period, 4-sequence designs (Variances xlO )̂

ABADBDC ABDCBDA ABDCBDA ACBDABC ABCDABC

ADBABDC ADBCDBA ADBCDBA ACDBADC ADCBADC

(0 .0 1 ) (0.03) (0.03) (0.42) (2.08)

plus 14

other designs
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Table 5.17: Optimum five, six-treatment designs. Cyclic Designs considered only.

W ithin-subject error structure AR(1) (p =  0.7)

No Simple Fleiss Simple2 Proportional

Carry-over Carry-over Carry-over Carry-over Carry-over

Five-treatment designs

Cyclic 5-period, 5-sequence designs (Variances xlO~^)

ABDCE ABEDC ABEDC ACDEB

ACBDE ACDBE ACDBE ADCBE

ADECB ADCEB ADCEB (1.57)

(0.005) AEBCD AEBCD

plus 9 (0 .0 2 ) (0.19)

other designs

Cyclic 5-period, 4-sequence designs (Variances a: 10 )̂

ABDBCE ABEDCE ABEDCE ABEDCE ABDEAC

ACBCED ACDBED ACDBED ACDBED AECBAD

ADCECB ADCEBC ADCEBC ADCEBC (1.29 )

(0 .0 0 2 ) AEBCDB AEBCDB AEBCDB

plus 13 (0.008) (0.008) (0.072)

other designs

Six-treatment designs

Cyclic 6 -period, 6-sequence designs (Variances xlO"'^)

ABDECF ACBEFD ACBEFD ACEFBD

ACFEDB AEFCBD AEFCBD AECBFD

ADFECB (0 .1 1 ) (0 .8 8 ) (72.88)

(0 .0 2 )

plus 15

other designs
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Chapter 6

Thesis Close-out

6.1 The 2x2 case revisited

A short account of the main thesis results will be provided in this chapter. A 

thorough examination of the analysis strategies of the 2x2 design with continu­

ous data  has been presented. Depending on the inclusion or not of the carry-over 

term, two test statistics can be proposed for testing treatm ent effectiveness: the 

never pooled test using the first period data only (PAR) and the more powerful 

pooled test based on data from both periods (CROS). Under the simple carry­

over model, the condition needed to be satisfied so th a t the more powerful CROS 

is selected instead of PAR depends upon the unknown carry-over effect. Simi­

larly, the best weighted combination of PAR and CROS, places weight on CROS 

which depends not only on the unknown carry-over effect but also on the variance 

of the test statistic for checking the significance of th a t term .

The properties of the two stage procedure (TS), where CROS is selected with 

probability p and PAR with probability 1 — p, have been reviewed. It is well- 

known, th a t TS has worst performance in terms of power for treatm ent effect 

estim ation in comparison to CROS. This comparison though is not statistically 

appropriate, since the Type I error rate of TS is 8.7%, while th a t of CROS is 

5%. Two strategies for fixing the Type I error rate of TS are presented. The 

new improved TS scheme still performs worse in terms of power when compared 

to CROS. Both the original and improved TS strategy perform worst in terms 

of MSB, when compared to CROS. A 2x2 trial in asthm a is then analyzed from
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a Frequentist and a Bayesian point of view. In both approaches the residual 

treatm ent effect seems to be unim portant. The Bayesian approach has the ad­

vantage of concluding th a t the newly proposed therapy is more effective than  the 

standard  treatm ent, regardless of the inclusion or not of the carry-over term. 

The inclusion of baselines in the 2x2 cross-over experiment is then considered. 

A three stage procedure is proposed for evaluation of the treatm ent effect. Two 

modifications of th a t scheme are studied. The Type I error rate is over the nom­

inal 5% level for both strategies. Both schemes perform worse in term s of power 

when compared to CROS. One of the two schemes (strategy 1) handles carry-over 

terms in a more rationale way than the other one (strategy 2). Overall strategy 1 

has always a better performance when compared to strategy 2, in terms of power 

and MSE for estim ating treatm ent effect. The same trial in asthm a is re-analyzed, 

but now baseline measurements included in the analysis. Similar conclusions to 

the ones drawn by the analysis where baselines ignored, are reported. The inclu­

sion of demographic information, e.g. sex, in a 2x2 experiment affects only the 

terms estim ated using between subject information (e.g. carry-over). The im­

pact of these term s on treatm ent effect or other within subject contrasts is rather 

minimal. Finally, since carry-over is related to the treatm ent effect, the analysis 

of the 2x2 trial in asthm a was repeated by introducing appropriate non-linear 

terms in order to describe the mathematical association between treatm ent and 

carry-over. T ha t analysis stresses in an even more emphatic way th a t the newly 

proposed therapy is more effective compared to the standard therapy, even when 

carry-over effects are not handled in the best way. A model selection exercise 

based on the AIC criterion is then performed, and the model with no residual 

terms seems to be favored as the most appropriate for having generated the ob­

served data.

6.2 Selecting a design

The problems with the 2x2 design can possibly be overcome, if the estim ation of 

the carry-over effect is made by using within-subject information. Multi-period, 

multi-sequence designs can be used to tha t purpose. Initially four types of carry-
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over are examined: No carry-over, Simple, Fleiss and second order carry-over. 

In the three-period, two-sequence family a design with excellent properties for 

estim ating both treatm ent and carry-over effect is the (ABB/duals). This choice 

is quite robust to the type of carry-over assumed. In the three-period four- 

sequence family a design with good properties over all carry-over schemes is the 

(ABB,AAB,duals). W hen more periods are used, then the choice of a good plan 

becomes less clear. In the four-period family when two sequence plans are consid­

ered, design (ABBA/duals) is optimum for estimating treatm ent and carry-over 

difference over most of the carry-over scenarios. Firm recommendations cannot 

be made if the number of sequences increases to four or six.

Optimum plans under a decision rule th a t may sound appealing to practitioners 

who design cross-over trials, are derived. More specifically during the planning 

stage the statistician is unaware of the carry-over mechanism (if any) th a t will 

generate the observed data. In addition he is unaware if the model fitted at 

the analysis stage will correctly identify true carry-over activity. However, the 

statistician should write down in the protocol clearly the type of carry-over he is 

prepared to adopt in his analysis, without analyzing the data. In other words, 

the ’’analysis” model may completely miss the ’’true” model and interest focuses 

in identifying designs with minimum MSB for estimating treatm ent effect, under 

th a t scenario. Four types of carry-over are now considered: No carry-over. Sim­

ple, Fleiss and the Mixed one. The mixed carry-over is an interm ediate scenario 

between the Simple and the Fleiss types. The selected plan does not seem to 

depend on the correlation between successive responses on a subject. The deci­

sion though, is heavily affected by the assumptions made regarding ” true” and 

” analysis” models. But how much of a problem is the identification of the correct 

carry-over type during the planning stage? The clinical team  usually allows for 

adequate wash-out interval which make sure tha t presence of carry-over is highly 

unlikely. This point is illustrated with the analysis of data from a cross-over trial 

with 7 treatm ents, where carry-over types th a t sound reasonable in the outset 

have no effect on our inferences for treatm ent, simply because carry-over is not 

present anyway.

For two treatm ent comparison, up to four-period cross-over designs are used to
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run a trial. Practical considerations suggest th a t routine follow-up is not tha t 

costly as recruitm ent of new patients. The future of cross-over studies lies on 

using m ulti-period designs and evaluation of best plans in these design families 

is worth investigating. For two treatm ent comparison, under the no carry-over 

model, frequent switches between the two therapies are needed. The number of 

switches is m oderate for the simple carry-over scenario, while it is minimal if 

treatm ent residual activity is described by the Fleiss carry-over scenario. It has 

to be noted th a t conclusions heavily depend on w ithin-subject correlation struc­

ture. If in the two treatm ent scenario, carry-over is modeled as a proportion of 

the treatm ent effect this has minimal impact on the design choice. In the case 

where more than two treatm ents compared results are less clear. To begin with, 

full listing of the design family is not possible, since the num ber of distinct plans 

grows fast as number of sequences and/or periods increases. Cyclic families are 

studied. A general comment worth made is th a t the num ber of optim um  designs 

under the model with no carry-over terms is usually much higher compared to 

the number of best plans under any carry-over scenario. Five different carry-over 

types have been considered.

In conclusion, modeling carry-over activity has future only in Phase I trials. The 

derivation of algorithms for efficient planning of cross-over designs w ith unlim­

ited number of sequences and periods needs further development. M ulti-stage 

procedures for other data types (e.g. binary) need to be studied. Efficient assess­

ment of specific interaction terms of interest to sponsors could be seen as another 

research direction.
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