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Abstract

The problem of carry-over in cross-over trials has driven research activity for
many decades. Depending on the assumptions made concerning carry-over effect
in the 2x2 design, the CROS or the PAR estimator is selected for estimating
treatment effect. The two stage procedure, selecting CROS with probability p
and PAR with probability 1-p, achieves lower power and higher type I error-rate
when compared to CROS. A corrected scheme, which achieves the nominal type
I error-rate, proves inferior to alternative schemes regarding power and Mean
Square Error Estimation rate. When baseline measurements are included in the
analysis of the 2x2 design, a three-stage procedure emerges with similar properties
to the two-stage one.

The optimum plan for designing a cross-over study in families with more than two
periods and/or sequences, depends on the assumptions made for the carry-over
effects and the optimality criterion chosen. Best plans for two treatments, when
model mis-specification occurs in both the systematic and/or random part of the
model assumed to have generated the observed data, are derived. When three
or more treatments are compared, optimum cyclic plans are chosen under a wide

range of assumptions concerning carry-over activity.
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Chapter 1

Introduction: Practical Issues in

Cross-over Clinical Trials

1.1 Preliminaries

In a cross-over study each patient acts as his own control by trying all available
treatments. As in all other types of clinical studies, patients are followed-up for
some pre-specified time period and data are collected on them at pre;deﬁned time
points within that period. In an ideal world all patients would join the study at
the same calendar date and follow-up measurements would be taken at identical
time points after the entry date. In addition for cross-over studies switches to
alternative therapies should be scheduled at similar time windows for each pa-
tient. This is rarely the case though. Each patient has his own trial history. The
entry date defines time zero for each patient. The interval between two consecu-
tive treatment periods, if it exists, constitutes the wash-out period for cross-over
studies. At wash-out intervals, baseline and other background information is typ-
ically collected in order to assess patient’s physical condition before entering the
next treatment phase.

Occasions exist where there is no standard therapy on the market, and a clinical
trial is set up in order to provide the population at risk with such therapy. In
that case the control group will receive no active treatment, or equivalently they
receive placebo. If the baseline characteristics of the active and the control group

are similar at wash-out periods, then any statistically important difference be-
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tween the two groups during the next treatment phase can be attributed to the
effect of treatment under study. For ethical purposes all participants in a clinical
study are on concomitant therapies prescribed by others (GP) and participants
are usually advised to avoid certain medications that may prevent the treatment
showing its effect. The way specific medications may interact with treatments
under study in a cross-over trial, may generate research questions of interest to
the medical community.

In what follows, reference will be made to a set of guidelines prepared during the
International Conference on Harmonisation (ICH) of technical requirements for
registration of pharmaceuticals for human use. These guidelines have been pre-
pared by the appropriate ICH working group and has been subject to consultation

by the regulatory authorities.

1.2 Phases of drug development

A typical drug-development exercise involves several phases of clinical research
before the drug hits the market. Much thought is devoted to the design of the
various phases, since poorly designed and conducted trials can offer misleading
findings, in sharp contrast with current scientific knowledge. The real purpose of

well-planned trials is to influence clinical practice to an appreciable extent.

1.2.1 Phasel

This is the area in pharmaceutical research where cross-over designs enjoy wide
applicability. Phase I studies help the scientific community to understand the
biological activity of a test compound on the human body. A small number
of volunteers receive the new therapy so that the dose-range expected to be
studied in later phases can be determined (see ICH E8 guidelines). From the
pharmacology point of view, unacceptable doses can lead to toxicity problems,
which in turn cause adverse reactions. In some experiments compounds are tried
on animals first and then the maximum animal tolerated dose is extrapolated
to humans. The design adopted to determine the boundaries of toxicity are

simple step-up/step-down schemes, i.e. a cross-over study with a special design.
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Patients start with a quite low dose which gradually increases until toxicity is
observed. Modern Bayesian design theory can provide the experimenter with
sampling schemes that if used properly, can allow the location of the maximum
tolerable dose to be assessed accurately (see Atkinson [1] or Pilz [70]). Once the
data have been collected a dose response curve is fitted and then the maximum
tolerable dose is determined by solving the dose-response equation with respect
to dose for a given value of the response. There are other study-types in Phase

I, where the cross-over design has been used successfully. Some are listed below:

e bio-availability studies where the level of drug absorbed by the body at

various doses is considered

e bio-equivalence studies for the comparison of two formulations in terms of

safety and efficacy

e pharmacokinetic (PK) studies, where drug absorption, distribution and

elimination around the body is the main concern

e pharmacodynamic (PD) studies, where the relationship between the drug
concentration at the site of acfion with pharmacologic response, is eval-
uated. These studies are useful indicators for early determination of the
safety and the efficacy profile of the compound under study (see ICH E8

guidelines)

e interaction studies, where the extent to which the PK profile of the drug

under study is affected by the presence of other drugs is the focus of interest

e safety studies, where maximum tolerable dose is established. Animal studies

may be relevant to that type of clinical trial

Note that in a typical Phase I study no formal sample size evaluation takes place.
The number of participants can vary from 12 up to 50 depending on resources

and type of compound under study.

1.2.2 Phase II

Based on the phase I results, at phase II an initial assessment of drug effective-

ness, but also of drug safety is established. Usually, phase I studies provide the
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experimenter with a range of acceptable doses. If the dose administered is lower
than the lower limit of that range then the drug is completely ineffective, while
doses beyond the upper limit may cause toxicity and increase the possibility of
adverse events being present. Phase II studies offer the opportunity to decide
more accurately the dose(s) that are worth further attention and might be stud-
ied in subsequent phases. This assessment can be carried-out using a cross-over
experiment. The number of participants in that phase ranges from small to mod-
erate.

Apart from determining optimum dose for a specific compound, the sponsor is in
a position to assess patient’s responsiveness to competing therapies or to make
comparisons with baseline status (see ICH E8). In both scenarios the use of cross-
over trial is appropriate. It is worth noting that the analysis variable(s) during
that period, may not be the same as the analysis variable(s) in later phases. Also
the study-population at that stage are selected by narrow criteria (see ICH ES8),
though the Phase II population may have different characteristics compared to
population recruited in phase III. This trial period is nothing more than an ex-
ploratory phase, which gives the sponsor the opportunity to determine clinical

queries worth pursuing at later stages.

1.2.3 Phase III or Parallel versus Cross-over design

The knowledge accumulated from the two previous phases is used for the design
of that phase, where the effectiveness of the new compound is firmly established,
but in addition knowledge on safety is also collected, so that the role of the new
therapy in clinical practice is fully evaluated. Usually phase III involves long
term studies, since a deeper understanding of what affects recovery from the dis-
ease and of what disease complications the patient will suffer from, needs to be
clarified. Obviously, phase III studies need to be of sufficient size and follow-up
measurements are taken at carefully selected time points, so that the therapeutic
activity of the test compound is clearly demonstrated. According to ICH ES8
guidelines, at phase III sponsors may explore dose-response relationships, drug’s
use in wider populations or drug’s effectiveness at different states of disease. How

appropriate are cross-over plans for running a Phase III study? Since detailed
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evaluation of the new therapy requires long term surveillance, cross-over plans
where the test compound is observed at a large number of successive treatment
periods may be appropriate. This type of cross-over design may prove problem-
atic though, especially if the alternative therapy is placebo. This is one reason
for favoring parallel studies during that stage of drug development.

The preparation needed to set-up a phase III study is quite enormous. The in-
vestigators involved need to have minimal knowledge regarding the safety of the
therapy and have the necessary infrastructure to run the study. In addition, since
phase III studies are usually of appreciable magnitude and of high cost, sponsors
should have convincing evidence of the therapy’s effectiveness to warrant the ef-
fort and expenses involved. From a cost-benefit perspective, cross-over plans are
economic solutions, since fewer participants will need to be recruited compared
to a parallel group study, in order to detect a pre-defined treatment difference.
Regulatory authorities on the other hand, require firm evidence of the new ther-
apy’s effectiveness based on data derived from relatively large study populations,
since this evidence is used for marketing approval (see ICH E8 document). So,
from a regulator’s perspective a parallel group study is more appropriate for use
in Phase III programs.

Furthermore, the timing of running the phase III study is crucial for the success
of the medical program. If the standard therapy has been in use for many years
and has been widely accepted as efficacious for some indications by the scientific
community, then as long as a newly discovered therapy achieves a remarkable im-
provement on the same condition, the phase III study should commence as soon
as possible. On the other hand, if ongoing research continuously improves the
standard therapy, then by the time a long phase III program ends, the proposed
therapy will be outdated. It is under the second scenario that cross-over trials
may be of some use to sponsors. If a quick comparison of the current standard
therapy versus the new treatment is needed, then a cross-over trial with a lim-
ited number of participants can be set up to provide sponsors with the necessary
answers.

In all phases of drug development a document that describes the objectives, de-

sign and procedures the investigator should follow during the course of the trial,
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must be prepared. This document is the clinical protocol and defines a set of
rules that facilitates communication between all working parties involved in the
study. The protocol should be signed-off before recruitment starts and only minor
updates may be allowed while the study is ongoing. The protocol in any phase III
study, usually contains information about the clinical study-background, clinical
objectives, primary and secondary analysis variable(s), study populations, sam-
ple size assumptions, inclusion/exclusion criteria, baseline examination, follow-up
assessments, data analysis strategies (interim, final, stopping rules) and any other
information that affects the running of the study. The protocol of a cross-over
study may look more complicated, since special preparations may need to be un-
dertaken during a wash-out interval before the patient enters the next treatment
period. Finally note that for drug approval purposes, different studies are run
with their own specific objectives. Each study’s objective is described in a sep-
arate protocol. During a FDA hearing meeting, a document that describes the
common features of the studies as well as the contribution made by each study
separately should be prepared (see ICH E9 guidelines).

In all clinical phases, Phase III included, the primary question the investigators
are most interested in, should be defined. This question is usually stated in a
hypothesis testing format and is usually by taking measurements on the primary
variable (endpoint). Based on these measurements inference is drawn for the
population parameter of interest. As it is stated in the ICH E9 guidelines the
primary endpoint should be the variable capable of providing the most clinically
relevant and convincing evidence directly related to the primary objective of the
trial . There may be secondary questions of a statistical rather than a clinical na-
ture, closely related to the primary one. The secondary question(s) are tackled by
collecting measurements on the secondary variables which é.re either supportive
measurements related to the primary objective or measurements of effects related
to the secondary objectives (ICH E9). A good example of a secondary question
for a cross-over study might be the presence of carry-over, i.e. the persistence of
the current treatment activity to subsequent treatment intervals. Other examples
from the same field concern presence of time trends with treatment, especially in

multi-period cross-over designs. A typical example of a primary question drawn
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from parallel group trials, is the reduction in mortality rate caused by the new
therapy. A secondary question of interest then might be how risk factors causing
death differ between the competing therapies. Another type of secondary ques-
tion, relevant to both cross-over and parallel group trials, concerns treatment
effectiveness across different sub-groups. Methodological issues arise if lots of
statistical tests are performed on various sub-groups, since some of these tests
will incorrectly show a statistically important treatment effect. This is the is-
sue of multiplicity, and is usually tackled by making appropriate adjustments
(e.g. Bonferonni) at the significance level the various tests are performed. Note
that studying treatment effect across sub-groups is only appropriate when these
sub-groups are adequately represented in the study population. The ICH E9
guidelines suggest that in most trials sub-group analysis or a statistical model
that include interactions should be exploratory and any conclusion of treatment
efficacy based solely on sub-group analysis should be avoided.

Although the primary and secondary efficacy questions in phase III are clearly
specified, the same does not hold for the safety aspect of the trial. Recall that
safety information is usually collected at Phase II, where a cross-over design may
be used. Additional safety information, like adverse events and other labora-
tory measurements are collected during Phase IIT under a parallel design scheme.
Most of the compounds tested at phase III using a parallel study, have already
demonstrated safety during phase II using a cross-over study. This is a reason
why safety comparisons are dealt less formally at phase III. Although the efficacy
part of any study is a well-control experiment, adverse events or other safety
measurements are of an observational nature. Adverse events occur in an unpre-
dictable way, what causes them is unknown and their relation to the treatment,
if any, is often difficult to understand.

Different types of primary response variables may be encountered in practice. The
most common one, met in parallel studies rather than in cross-over ones, is the
incidence of a specific event. The incidence of an event is a dichotomous variable,
i.e. in statistical terms a factor with two levels. This type can be easily extended
to factor variables with more than two numerical levels, which can be ordered or

nominal. A third type of response is the continuous one, widely used in hyperten-
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sion and asthma cross-over trials. The use of a single outcome variable to answer
the primary question is favored in all types of clinical experiments (see ICH E9),
since in the situation where inconsistent results are provided by the analysis of
more than one outcome variable, interpretation of trial findings becomes diffi-
cult. In parallel group trials, combining events to make up a response variable is
a typical practice, especially when component events rarely occur. As stated in -
the ICH E9 document, this approach addresses the multiplicity problem without
requiring adjustment to the Type I error rate. Difficulties with that practice arise
when component-event analysis, if at all possible, give different results compared
to the combined-event one. An hierarchy of the component events, established
in advance, could be the answer to the problem. Aggregation of measurements
in cross-over studies is a within-subject process, and usually occurs only when
repeated observations are made within a given treatment period. Aggregation of
measurements across subjects is not commonly met in the cross-over literature.

Cross-over trials are not appropriate for diseases where the primary measurement
is Vdeath, diseases where a long treatment period is needed, diseases where the
effect of treatment is irreversible or diseases where gradual deterioration in pa-
tient’s health is observed. In some clinical trials, the therapeutic ability of the
tested compound is quantified by obtaining measurements closely related with the
drug activity at the site of action (receptor). For example in asthma trials peak
expiratory flow, a measurement of lung function, is compared between competing
therapies. In the majority of clinical studies, either cross-over or parallel group
ones, instead of studying the clinical endpoint of most interest another response
variable, called a surrogate variable, with strong predictive ability for the primary
clinical endpoint, is measured. A good example is HIV trials, where monitoring
the incidence of AIDS is commonly replaced by measuring the change in CD4
cell-counts. According to the ICH E9 guidelines surrogate variables can only be
used, if the biological plausibility of the surrogate and the clinical outcome has
been demonstrated, or if there is conclusive evidence from epidemiological stud-
ies that the prognostic value of the surrogate variable on the clinical outcome
is high, or other trials have shown that treatment effects on the surrogate mea-

surement correspond to effects on the clinical outcome. If a surrogate variable
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is used, investigators have to make sure that the surrogate measurements can
be taken accurately and reliably, without the need for expensive equipment and
highly trained staff. Finally, trial participants should feel comfortable with the
procedures undertaken during the measurement process.

Phase III results are the main information submitted to regulatory authorities
for licensing a drug to the market. Usually these results may change the current
clinical practice and long-term surveillance of the proposed therapy is absolutely
a necessity. Parallel group studies are favored by sponsors and regulators during

this stage.

1.2.4 Phase IV

During phase III the investigator assess not only the clinical benefit of the new
therapy on the population at risk, but also any unwanted effects. This informa-
tion helps regulatory bodies to decide under what circumstances the new therapy
should be recommended for use. The cost of the proposed therapy to the general
public is a further dimension of the decision making process. The general public
will not be willing to pay for highly expensive agents, especially when they are
of limited clinical benefit compared to existing treatments. Currently cost eval-
uation is not an integral part of the marketing approval process, though ICH E9
guidelines suggest that Phase IV studies are useful for optimizing drug’s use in a
subject-level but also in society.

The cost of treatment to the general public should not be the only factor to
be considered for licensing or not a compound. Improvements on the quality
of life of study participants is another dimension that regulatory bodies should
consider. A cross-over trial can be used for assessing improvements in various
quality of life dimensions between the standard and the newly proposed therapy,
since patients try all available treatments at least once. There are various di-
mensions to the ”quality of life” concept though. To begin with, the individual’s
ability to perform daily life activities (e.g. bathing, dressing) is referred to as
the ”physical” dimension. Next comes the ”psychological” component, referring
to emotional and mental well-being. The new treatment may cause side effects

such as depression or anxiety affecting in a negative way a participant’s daily life.
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Finally, there is the ”social” component, i.e. the person’s willingness to partici-
pate in family or other social activities, maintenance of any working obligations
at a satisfactory level and the way one interacts with the community in general.
Further dimensions of quality of life, of secondary importance, include the ef-
fect of treatment on the cognitive abilities of a participant (memory, recognition,
e.t.c), sleep patterns, pain related to specific physical activities, failure to form
and maintain personal relationships e.t.c.

It has to be mentioned that such life-quality assessments may not only be collected
at phase IV. On some occasions they might be the primary response variable in a
phase III program, where a parallel group study is used for assessing the primary
question. Personally, I have been involved in a parallel group phase III study for
comparing a newly form compound against placebo for stroke patients. The pri-
mary outcome variable was the Barthel index, a measure of physical functioning
and independence. On the other hand, if the primary outcome at phase III is of
a clinical nature (e.g. a new anesthetic for use in surgery), then quality of life
measurements may be collected at a post-surgical phase (phase IV). A cross-over
plan might be used to that purpose.

Medical life-quality data related to either financial or personal costs, are collected
either from interviews or questionnaires sent by post. Questionnaires have the
advantage of being a cost-effective data collection process and it is also more likely
to derive answers to sensitive questions. However, face-to-face interviews tend
to provide investigators with complete information that can be used for further
analysis. Special attention needs to be given to accurate collection of life-quality
data, since in the majority of clinical studies investigators collect cautiously all
clinical information relevant to the treatment under study, but this is unlikely
for non-clinical data. Quality of life data are not used in regulatory submissions
and that is why investigators are often careless in collecting them. If a cross-over
design is used for conducting a phase IV trial, then information from the sub-
ject with incomplete set of measurements will contribute to the overall treatment
assessment. This would have not be the case if a parallel design had been used
instead.

A score is usually attached to each dimension of health life-quality data. For
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example, the physical functioning score could be the sum of scores on various
daily activities. The same principle applies to scores in other dimensions. This
is an example, where methodologies for the analysis of ordinal categorical data
in cross-over trials become relevant. A review of that literature is given in the
next chapter. From the statistical perspective, difficulties arise in interpreting
differences between sub-groups on a given scale. For example, does the observed
change in the physical functioning score reflect a clinically important improve-
ment in a participant’s life? Lack of interpretation may lead to difficulties in
evaluating the size of a trial, if the physical functioning score is the primary out-
come. In summary, lot’s of research effort needs to be placed in incorporating
health related quality of life measurements smoothly into current clinical trial

practice.

1.3 Selecting an appropriate population

The information presented in this section is relevant for both parallel and cross-
over studies.

In the majority of clinical experiments, the compound under study is working for
the population it has been tested. Participants randomized into the treatment
phase (study sample) are a subset of the study population, i.e. patients that base-
line characteristics obtained but failed to enroll into treatment phase for various
reasons. The study population is in turn a subset of a wider population consisting
of patients with the medical condition under study, but not eligible to enter the
trial. Generalizing results found on the study sample to the study population
is legitimate, as long as the study sample is a representative sub-sample of the
study population (see ICH E9). The eligibility criteria that separate the study
population from the population with the medical condition under study present,
should not be excessively restricted, since difficulties in getting sufficient number
of participants will arise. On the other hand, if loose inclusion/exclusion criteria
are set beforehand, inappropriate participants may be admitted into the study,
the sample size will rapidly increase but the probability of observing the primary

response outcome will decrease. ICH E9 guidelines suggest that a confirmatory
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trial may be helpful for selecting the patient population for which the drug will
eventually be indicated.

The entrance criteria are easier to set if the mechanism of action of treatment
is known to some extent and the investigator is able to identify a relatively ho-
mogeneous population likely to respond to that treatment. On the other hand,
treatment efficacy should be demonstrated on a study population where mem-
bers may differ on one or more aspects of the medical condition under study
(e.g. severity of disease). In that case, a heterogeneous group of participants will
be collected. In large clinical trials it is more likely to have an heterogeneous
rather than a homogeneous group of patients. Cross-over trials have a distinct
advantage compared to a parallel design for comparison of treatment effectiveness
across various sub-groups in an heterogeneous population. This is because within
a sub-group, say males, treatment effect is assessed more precisely since within
patient information is utilized. This results in a more aécurate assessment, across
sub-groups (males vs females). It has to be mentioned though that even for a
crbss—over trial, if treatment effect within sub-group(s) is of interest, the number

of patients recruited to adequately power such a study can be enormous.

1.4 Procedures needed to be followed before a
study starts

Once the experimenter selects the study-design the next step is to assign the
chosen study-population to the various sequences of the chosen cross-over de-
sign. The allocation process should be unpredictable, so that experimental bias
is avoided. Experimental bias simply means that the decision to randomize or not
a subject in a given treatment sequence depends upon this sequence. Obviously,
no randomization scheme can guarantee perfect balance on other risk/prognostic
factors, but the larger the study is, the more likely the imbalance issue to be
resolved for various factors (see ICH E9 guidelines).

There are various ways to randomize patients into a cross-over study. The sim-
plest scheme assigns participants to the various sequences with equal probability.

The real advantage of that scheme is ease of implementation, though in groups
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with different demographic or other characteristics not adequately represented,
substantial imbalance across sequences may occur. Block randomization ensures
that imbalance will not be large at any time during the randomization process.
The idea is to split the number of eligible subjects into blocks of size equal to
a multiple of the number of sequences of the cross-over plan adopted and then
within ‘each block equal allocation of patients to sequences occurs. The main
advantage with block randomization is that each sequence will be approximately
equally represented, if the trial is terminated early for any reason, or type of par-
ticipants changes during recruitment (e.g. males recruited earlier than females).
The investigators though should be blinded to the block size or, if that is not pos-
sible, the block size should vary as recruitment continues. As ICH E9 guidelines
suggest block sizes should be sufficiently small to avoid possible imbalance, but
should be sufficiently large to avoid predictability of treatment sequences towards
the end of the randomization process within a block. Blocking maintains balance
representation of the various sequences and it is usually taken into consideration
in the statistical analysis.

Stratified randomization involves performing sequence randomization within strata
defined by selected prognostic or risk factors. Usually the chosen factors are ex-
pected to correlate highly with the primary response variable. Simple or blocked
sequence randomization is performed within each stratum, although the blocking
strategy is usually preferred so that less sequence imbalance occurs in strata with
fewer participants. Obviously, as the number of risk factors of interest increase
and the levels within factors grow, the number of strata expands rapidly. Only
important risk factors should be chosen, so that the number of strata is kept to a
minimum (see ICH E9 document). Factors used to perform a stratified random-
ization should be included in any statistical model thereafter, but one should
keep in mind that these factors affect estimates of between subject contrasts
rather within subject comparisons. A special example of a study where stratified
randomization occurs is the multi-center trial. In that case ICH E9 guidelines
recommend that several whole blocks of treatment sequences should be assigned
to each center, while randomization procedures should be organized centrally.

Modern randomization schemes have been proposed, though they are of limited
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practical use. A famous one, originally suggested by Efron (see [10]), assigns
treatments within sequences sequentially as the trial progresses. Assignment of
the next treatment regime is based upon previous treatment assignments for that
subject, but not on his responses already observed. The allocation probability
p to group A (or B) within a sequence is adjusted continuously, so that next
treatment assignment is more likely to occur to the treatment group with fewer
past appearances on that subject. Randomization strategy should be taken into
consideration during the analysis, otherwise the p-value reported will be slightly
larger than if the correct analysis was performed. More advanced adaptive ran-
domization schemes make use even of the past responses collected on a subject, in
order to decide the treatment allocation in the next period. The play-the-winner
rule assigns a subject to the same treatment group as in the previous period, if
that treatment has been successful on the previous period; otherwise the partic-
ipant is assigned to the other treatment group. These schemes were motivated
by ethical concerns, since one may wishes to maximize the number of times a
pa‘tient receives the superior treatment. A major obstacle in implementing these
schemes is that response may no be immediately available and it is not yet clear
to the statistical community how to take into account the randomization process,
in the analysis.

One of the main pre-cautions taken to reduce bias is to keep both patients and
investigators blinded to treatment. Most of the efficacy trials are double-blinded
ones. If investigator ignores the treatment a patient is receiving, then he is
expecting to act in a similar way regardless of the treatment the patient is re-
ceiving within a treatment period. Double-blind trials are usually more difficult
to carry-out than trials where a simpler blinded scheme is adopted. The key to
truly blind a study is to hdve medications with similar appearance. This may
not be possible, unless interference with the treatments occurs to an apprecia-
ble extent. The technique of double dummies is then used, where placebos with
similar appearance to the products under study are administered simultaneously
with the treatments (ICH E9 glossary). Both investigators and patients may try
to discover drug’s identity. For cross-over studies where patients try both medi-

cations, matching drug appearance is crucial, since patients can make their own
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comparisons. Appearance is one of the many characteristic that agents should
be matched, taste and weight are two others. Finally, a procedure should always
be in place to unblind quickly for any individual at any time, if that is necessary.
In summary, both randomization and blinding contribute to the quality of the
collected data and validate conclusions drawn from the analysis of the study. As .
ICH E9 guidelines suggest randomization and blinding should be normal features

of any controlled clinical trial intended to be included in a marketing application.

1.5 Quality Recruitment

This section contains material that is applicable to both parallel and cross-over
studies.

In any clinical study, obtaining sufficient number of participants within a reason-
able time period is the key for successful completion of the program as a whole.
First of all, the time the recruitment period lasts should be set well in advance.
Investigators must make every effort to enroll participants in a timely fashion.
Extending the recruitment beyond the originally planned period increases costs
and decreases participant’s and investigator’s morale. Inadequate planning, fail-
ure to start on time and under-estimating the importance of factors that may
have accelerated the recruitment process if considered promptly, are a few of the
primary reasons for recruitment failure.

Realistic estimates of the potential number of participants can only be made by
tracking hospital or physicians records. Making the trial publicly known through
scientific meetings or media campaigns may increase participation rates. If data
sources concerning recruitment are difficult to obtain, then a pilot study (or con-
firmatory study as mentioned in the ICH E9 guidelines) can be set-up to provide
valuable information on best recruitment techniques and yield estimates of po-
tential participants.

There are various strategies to recruit subjects to a clinical study. The strategy
chosen, usually depends upon the type of the trial (single or multi-center), the
length of the available time and the general setting. The first step in a traditional

recruitment process is to identify groups of potential participants in hospitals,
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patients of physicians or employees in various organizations. After passing an
initial screening test, patients are formally invited to undertake a further eligi-
bility evaluation. An alternative strategy is to bypass the initial testing process
and directly invite patients into the program. Sponsors should always remem-
ber that techniques achieving high recruitment rates within a geographical area,
may completely fail in doing so in other areas. Modifications to the recruitment
strategy should be made where necessary. For cross-over studies the length of
wash-out period between successive active treatment periods should be carefully
chosen so that higher drop-out rates are avoided.

If recruitment is delayed, reasons should be identified why this is the case. In
multi-center studies, cites that perform poorly can learn from cites where recruit-
ment performance is excellent. Graphs showing actual recruitment compared to
originally planned are useful tools for identification of potential problems. If a
center cannot contribute enough participants then it is highly likely to drop-but
from the study. For cross-over studies there might be specific treatment intervals
where withdrawal rates are high. The knowledge of that information may result
in improving the design of future cross-over trials.

One way of tackling lagged recruitment is by relaxing inclusion/exclusion crite-
ria. This will increase the study-population, but the incidence rate of the primary
outcome in the new participant-type may not be as large as in the original partic-
ipants. ICH E9 guidelines suggest that changes in the inclusion/exclusion criteria
may be appropriate when knowledge from outside the trial or from interim anal-
yses indicate that this is the right course of action. Another viable solution is to
extend the recruitment time or add more recruiting sites. Obviously this increases
the overall study-cost and it will inevitably delay publication of study-results. A
further approach to the problem is to recycle potential patients, i.e. giving per-
sons who are interested in participating in the study a second chance. Sometimes,
accepting a smaller number of patients is the right course of action. Reducing
sample size deliberately, has the effect of lowering the power of the study. If
on the other hand, treatment effect is higher than originally anticipated, this
solution will provide comparable power. On the other hand ICH E9 guidelines

suggest that if sample size calculations have been performed using uncertain in-
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formation, a revised sample size may be calculated using modified assumptions.
This change though, should be documented both in a protocol amendment and

in the final study report.

1.6 Collecting Quality Data

Problems in data collection for cross-over studies can be of several sorts. Ex-
amples include incorrect data, missing data or data with greater variability than
expected. It is essential that inferences from the study are based on accurate
and valid data. Key data, like baseline characteristics, primary and secondary
outcome measures, should be error-free. Missing data usually arise from inabil-
ity of physicians or participants to complete questionnaires. Missing data are
commonly found in late follow-up measurements, since as the trial progresses
participants fail to meet the standards of adherence as established by the in-
vestigator. This point is especially relevant to multi-period cross-over studies.
Patients with incomplete information still contribute to the overall assessment
of various terms in cross-over studies. It has to Be noted that the higher the
percentage of missing data the less credible are the conclusions drawn from the
study. Universally accepted methods for handling missing data cannot be recom-
mended, though ICH E9 guidelines suggest that methods of dealing with missing
values should be pre-defined in the protocol and the sensitivity of the results of
analysis to the method of handling missing values should be examined.

Incorrect data, on the other hand, are not easily recognized. They usually arise as
measurements obtained by clinical staff or technicians using a different definition
than the one described in the protocol. Once the error has been spotted, feedback
to the personnel responsible for collecting the data should be given immediately,
so that the correct value identified and entered into the database. Incorrect data
usually appear in a statistical analysis as outliers. The definition of an outlier is
arbitrary. Characterization of a value as an outlier should be justified both med-
ically and statistically (ICH E9 document). Regulator bodies favors testing the
influence of outliers on the final results, by performing at least two analyses; one

with the actual values and another one which eliminates or reduces the outlier
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effect. For cross-over studies the presence of outliers generates spurious interac-
tions. Jones and Kenward (see [39]) gives an example where an incorrect value
for a subject generated a statistically significant treatment by period interaction,
which in the 2x2 case is equivalent to the carry-over effect.

The majority of clinical trials are repeated measurements studies. The variabil-
ity between repeated assessments on a subject can be of systematic or random
nature. In cross-over studies systematic variation can be attributed to different
treatments assigned at different time points, while random variation may rep-
resent the physical condition of the patient, errors due to the instrument used
for thé measurement or errors of the clinical staff responsible for data collection.
Clinical staff get more experienced with trial procedures as study progresses and
this accounts for intra-observer variability. However, depending on level of knowl-
edge and expertise, people will perform the same task differently within the same
working environment. This will account for inter-observer variation. Inconsistent
behavior of the same clinician or of clinical staff working in the same team, may
alert to the need for thorough checking of the collected data.

Certain steps have to be taken in order to minimize the collection of poor quality
data. A manual of operations is usually prepared for any clinical trial, where de-
tailed description of participant’s visit and the procedures followed during these
visits can be found. Questionnaire forms should always derive the key infor-
mation, being well-organized and have a logical sequence. Standardization of
interviewing techniques, laboratory tests and other procedures are crucial to the
success of any large study. Finally a typical technique to reduce variability is to
repeat the assessment, if at all possible. For example, blood pressure could be
measured twice and the average reported.

Monitoring the areas most important for the sfudy, is the key action to obtain
high-quality data. Clinical staff, on a regular basis, should receive reports of
weaknesses or errors blinded to treatment. Personal experience, suggests that
date of event(s) is unlikely to be the same, if reported in two different forms. In
follow-up assessments, especially in cross-over designs, it may be the case that
missing or late participant visits may be associated with the treatment adminis-

tered. If that is the case, then the final conclusions drawn from the study will
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be biased. Laboratory measurements are good examples where extreme values
can be mistakenly recorded. Laboratories should make sure that equipment has
been tested, been well-calibrated and appropriate adjustments in scales have been
made where necessary. Finally, auditing sites may improve data quality and trial
conclusions.

What really can make a difference in collecting quality data, is the adherence
of the study-participants to the protocol. Participants may not be willing to be
compliant with the study procedures for various reasons, for example they ex-
perience unpleasant side effects, or compliance with protocol requires changes in
their daily lives, or they may mis-interpret instructions given to them, or their
health deteriorates during the study-course regardless the treatment group they
have been assigned to. Obviously, shorter studies has greater advantages over
longer ones. Also, hospital-based trials tend to have less non-adherence problems
than home-based ones. In addition, keeping dose-regimen as simple as possible

helps in the derivation of complete data.

1.7 Monitoring large studies

This section concern monitoring of Phase III studies, which are not conducted
using a cross-over design, as has already been mentioned. For purposes of com-
pleteness though some account of my personal involvement in such studies will
be given.

The credibility of a trial is enhanced if the persons who monitor the efficacy and
safety variables have no formal involvement with either the participants or the
investigators. Data monitoring requires collection and processing of the relevant
information in a timely fashion, otherwise monitoring would be of limited value
if carried out at a stage where the majority of the data have been collected. In-
vestigators cannot have the monitoring responsibility, since they may discover
that treatment A is more effective than treatment B, while participants are still
enrolled into the study. Interim analysis results are used to decide whether to con-
tinue, terminate or modify the design of an ongoing study. I have been personally

involved in the safety and executive committees of an ongoing diabetes study and
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the format used during these meetings involves an open and a closed session. In
the open session, recruitment status, data quality and other issues that affect the
outcome of the trial are considered. In the closed session, baseline characteristics,
primary and secondary outcome variables, adverse events and other safety mea-
surements are compared by treatment groups. In the closed session, key members
of the committee only decide continuation or premature termination of the study,
based on careful review of the interim analysis results presented to them. Ac-
cording to the ICH E9 guidelines, the monitoring committee is responsible for
setting operating procedures and maintain records of all its meetings, while the
role of each member of that committee (sponsor staff inclusive) should be clearly
defined.

An issue that needs to be resolved is how the results of any interim analysis will
be presented to the members of the committee. Early in the trial, where the
two treatments are expected to be equally efficient (or inefficient), there is no
reason to identify the two groups in each table or figure of the report. When
oné of the two competing therapies show its superiority the committee-members
should have full knowledge of the group identities. Usually annual reviews of
study-progress suffice to resolve any issues, while in other occasions meetings are
scheduled when a specific proportion of the outcome variable has been observed
(e.g. 25% of deaths). From a statistical perspective, if the null hypothesis of
no difference between the two treatment groups is tested at the same level of
significance using accumulated data, then the probability of incorrectly rejecting
the null will be higher than the nominal level. Group sequential methods, de-
scribed by Jennison and Turnbull (see [35]), where the number of interim looks
is taken into consideration for setting the significance level at each look as data
accumulate, ensufe that the overall significance level for the trial remains at the
desired level.

The decision to terminate/continue a study will be based on various factors. The
extent to which the new therapy is beneficial is one determinant factor. The
incidence of serious adverse events in the two treatment groups may force early
termination for safety reasons (see ICH E9 guidelines). If in one of the latest

interim looks it becomes clear that it is impossible to see a beneficial effect if the
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trial continues to the end, then terminating the study has financial advantages
for the sponsor (see ICH E9 guidelines). Finally, logistical problems not foreseen
during the design phase, may suggest that study continuation is not feasible. In
the interim analysis results, possible differences of various prognostic factors at
baseline between the two treatment groups should be considered. In addition
the impact of missing data on the analysis should also be evaluated. Secondary
response variables should be analyzed along with the primary ones. Consistency
of results across dominant sub-groups or across different centers should be ex-
amined. The decision to terminate a study should not be based on unexpected

results in small sub-groups.

1.8 Concluding remarks - Thesis outline

In this chapter I have tried to summarize my three-year involvement in designing
and analyzing clinical trials. A lot of topics have not been discussed. For exam-
ple, different type of designs that can be used to run a study, different sample
size formulas the statistician can use depending on the type of the primary re-
sponse variable, the issue of using baseline measurements as part of the response
or as covariate trying to explain variability in the response, setting significance
levels for repeating testing, sub-group analyses, comparison of multiple primary
response variables, meta analysis, multi-center trials, reporting and interpreta-
tion of trial results and many more.

This thesis concerns cross-over studies. A full review of the cross-over literature is
provided in the next chapter. In chapter three, the 2x2 cross-over design is stud-
ied in depth. Properties of treatment effect estimates under different carry-over
assufnptions are presented and a newly proposed treatment estimate is stud-
ied. The two-stage procedure is discussed in detail and properties of a corrected
two-stage scheme are presented. A trial in asthma is then analyzed using both
Frequentist and Bayesian methodology. The use of baselines as part of the re-
sponse leads to a three stage scheme for comparing two treatments, the properties
of which are fully evaluated. The baseline measurements enrich the assumptions

that can be made for carry-over term(s) and analysis of the same 2x2 trial in
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asthma with baselines now incorporated is presented. Bayesian and frequentist
analysis when baselines are considered as covariates are also discussed. The im-
pact of covariates on the cross-over trials is also evaluated in some depth. Finally,
a non-linear model, where carry-over is modeled as a proportion of treatment ef-
fect is presented and the same trial in asthma is analyzed using that model. A
model selection exercise using the AIC criterion is performed, for comparing lin-
ear and non-linear approaches.

In chapters four and five attention focuses on selecting the best design for run-
ning a cross-over study under different assumptions concerning residual effects.
In chapter four, clinical justification for the carry-over assumptions made is pre-
sented. Assumptions in both the systematic and random part of the model are
reviewed and optimal plans are presented for comparing two treatments for de-
sign families with limited number of periods and sequences. The impact of model
mis-specification in designing a cross-over study is fully evaluated. More specifi-
cally, the model used to design the study may be different from the one used to
pefform the analysis. Optimum plans, where not only the systematic but also the
random part of the model is mis-specified, are given. Finally, analysis of a cross-
over study with seven treatments where carry-over effects depend on the type of
treatments administered in the current and previous period is also presented. An
account of the design literature for repeated measurements studies concludes the
chapter. In the fifth chapter, optimum plans for the comparison of two and more
than two treatments are presented under different carry-over assumptions. Cross-
over plans with moderate number of periods and sequences are studied using an
optimality criterion widely encountered in practical applications. When three or
more treatments are compared, cyclic designs are only considered. Finally, opti-
mum plans for the non-linear model studied in chapter four are derived. In the
final chapter, conclusions of the whole thesis are presented and future research

directions are given.

34



Chapter 2

Cross-Over Trials - A Review

2.1 Types of Clinical Trials

The most common type of clinical trial is the randomized control study, where
participants are assigned randomly to a treated or a control group. Most tests
used for the analysis of this experiment, like the t-test, can be justified on a
randomization argument only, without further assumptions needed to be made
on the measured variables. The majority of clinical investigators feel that pa-
tients should receive the newly proposed therapy, regardless if that therapy has
demonstrated its effectiveness in real life situations. These investigators will not
be willing to participate in a trial. From an ethical point of view, investigators
who are in doubt about which therapy is superior can possibly participate in the
study to settle the question.

In some studies, randomization does not take place. Participants are assigned to
the two treatment groups without use of a random allocation scheme. For exam-
ple, data on the success of a new surgical procedure will only be collected at the
institution the new method was applied. Results will then be compared with pa-
tients in other hospitals, where a more traditional medical care was implemented.
In these studies, patients in the two groups are matched by key characteristics.
Matching on some of the important prognostic factors may be impractical, while
evaluation of the impact of other equally important characteristics on the out-
come response may not be possible.

Another well-known type of study is the withdrawal ones, where patients are
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taken off therapy in order to evaluate the duration of benefit of the treatment.
Study-population consists of patients who have experienced a treatment benefit
for several years.

The purpose of setting-up a factorial design is to evaluate three or more treat-
ments in one experiment. This will reduce the cost and the effort required to
compare competing therapies in separate experiments. The only disadvantage
with this type of study is the possibility of interactions being present, i.e. treat-
ment A has a lower response when administered in conjunction with treatment
B rather than with treatment C. The power for testing for interactions is always
lower than for testing main effects. A factorial study adequately powered to de-
tect interactions would require number of participants equal to the sum of the
participants of the separate studies. ICH E9 guidelines mention another example
of a factorial design; the dose-response trial. In this type of study, a number of
m doses of drug A (placebo inclusive) and similarly a number of n doses of the
alternative therapy B (placebo inclusive) are selected. Patients are randomized
in one of the mzn possible treatment groups. The data collected are used to give
an estimate of the response surface and then an appropriate combination of doses
of A and B is identified for clinical use. In other trials the basic sampling units
are groups rather than individuals. In these plans, called cluster randomization
designs, a whole group of individuals (e.g. center) is randomized to one of the
two treatment groups. Types of clinical trials, where cross-over design is used
extensively, have been presented in the previous chapter. For an extensive review

see Senn [80].

2.2 Cross-Over Plans

The 2x2 cross-over trial will be properly studied in the next chapter, though some
account of the existing literature will be presented in this chapter as well. In this
type of trial each participant receives some or all of the competing therapies.
The order in which treatments are administered to participants is randomized.
This type of trial has some appeal to the medical community, since each par-

ticipant is used more than once and comparisons between different treatments
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are individual-based. The carry-over effect, i.e. treatment activity in the current
period persisting in subsequent periods, has played a key role in evaluating the
usefulness of a cross-over plan in medical practice. As ICH E9 guidelines suggest,
when a cross-over design is used it is important to avoid carry-over by allowing for
sufficiently long wash-out periods. Loss of subjects can be an additional problem
in using a cross-over study. An area where the 2x2 design has been successfully
applied is to demonstrate the bio-equivalence of two formulations of the same

medication.

2.2.1 Parallel vs Cross-over design

Brown (see [3]) was the first to compare the 2x2 cross-over design (2 measurements
per participant) with a parallel group study (1 measurement per participant) in
terms of cost-effectiveness. He assumes that the model generating the data for
the cross-over experiment, contains a term for the mean, period, treatment and
carry-over effect, while the subject effect is taken as random. If n subjects are
randomized in each sequence of the cross-over experiment, while m in each group
of the parallel study, then the two treatment estimates derived from the two
trials will be equally efficient, if the following relationship is satisfied between the

sample sizes:

(2.1)

m
n = (1—P)5

where p is the correlation between measurements on a subject in the cross-over
experiment. Now, let Sy be the cost of recruiting a new participant and S; the
cost of treating and measuring the patient in a given period. Then the relative

cost of the cross-over relative to the parallel group study is:

14+ 251/50

R = {1-») 1+ S1/50

(2.2)

From that equation, Brown concludes that if recruiting a patient is more costly
than obtaining follow-up measurements and/or there is large between subject
variability, then cross-over is a more economic solution compared to the paral-
lel group study. Brown’s approach was interesting, since the two designs were

compared on economic rather than statistical grounds.
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2.2.2 Multi-stage procedures in the 2x2 case

The problem with the carry-over in the 2x2 case is usually tackled by proposing
multi-stage procedures. Two of them, Grizzle’s (see [30]) and Kenward-Jones’s
(see [42]) are studied in the next chapter. Lehmacher (see [55]) suggests another
two stage scheme, which is a modification of Grizzle’s proposal. More specifi-
cally, if 7 and ) are the treatment and carry-over effects respectively, then the
jloint hypothesis Hy : 7 = A = 0 is tested at level a using Hotelling’s T2%-test. If
it is significant then four separate hypotheses about treatment, carry-over, bias
of treatment estimate (7 — A/2) and second period difference (7 — A), are all
simultaneously tested at level a. Lehmacher argues that his multiple test pro-
cedure preserves the nominal level of significance for treatment difference, but
the power of the scheme was not evaluated in the original paper. Lehmacher’s
approach can be seen as an updated version of Willan’s statistic (see [91]), where
the maximum of two treatment estimates (CROS, PAR) is used for testing treat-
ment difference at half of the nominal significance level. Jones and Lewis (see
[40]), by using a simulation based approach, compares the power of Grizzle’s,
Willan’s and Lehmacher’s procedures and concludes that Griizle’s is the best
while Lehmacher’s the worst. The Type I error rate is not reported for any of
the above schemes though. Willan (see [91]) argues that his procedure achieves
the nominal significance level, and his treatment estimate compares favorably
to the CROS estimate in terms of power and MSE, when carry-over is a small

proportion of the treatment effect.

2.3 The 2x2 case with baselines

2.3.1 Baselines as part of the response

In the 2x2 case a "run-in” and a ”"wash-out” period are included and measure-
ments are collected during these intervals. On other occasions, a wash-out period
is not possible and the baseline measurements obtained in the run-in interval
can be used as covariates in the analysis. Four repeated measurements can be

collected on each subject and Kenward with Jones (see [42]) provide an extensive
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account of the covariance structure that can be assumed on the vector of obser-
vations on a particular subject.

One of the special forms this structure can take, is a stationary first order auto-
regressive (AR(1)), where correlation between repeated measurements depends
on their distance in time, plus a random subject effect. The length of the wash-
out interval can be incorporated into that structure. Kenward with Jones did
a detailed investigation on what particular structure could be recommended for
future use, by analyzing data on 2x2 cross-over studies where baseline measure-
ments were available. Unfortunately no particular structure emerged and in a few
cases none of the structures considered fit the data particularly well. Kenward
with Jones go even further proposing a three stage procedure for the analysis
of cross-over data with baselines. Jones and Lewis (see [40]) using a simulation
based approach studies the properties of the three stage procedure without re-
porting the Type I error rate. An analytical approach is used instead in the next
chapter to study that procedure and the Type I error rate is also evaluated. The
interesting point in Kenward and Jones’s work is that GLS estimates of parame-
ters are equivalent to their OLS counterparts, appropriately adjusted for baseline

readings.

2.3.2 Baselines as a covariate

Chi (see [6]) discusses the recovery of inter-block information in cross-over trials,
without restricting the arguments to the 2x2 case only. He considers the simple
carry-over model where subject is taken as a random effect. This model in a

matrix notation can be partitioned into a fixed and a random part as follows:
Y = XB+C¢&+e (2.3)

where 3 contains overall mean, period, treatment and carry-over effects, while &
is the vector of patient (or block) effect. In both the fixed and/or the random part
baseline measurements can be easily incorporated. Chi derives the GLS estimate
as a combined estimate of intra and inter-block analysis. More specifically, the

intra-block analysis offers as the following solution:
Bintra = (XT (I = C(CTC)T'CT) X) T XT (I - C(CTC)'CT) Y (24)
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with
Sintra & (XT (I = C(CTC)ICT) X) 7. (2.5)
The inter-block analysis offers the following estimate
Binter = (XTCCTX) ™" XTCCTY (2.6)
with
Sinter & (XTCCTX)™ (2.7)

If Bintm and Binter are independent, the combined analysis gives the following

estimate of 8:
" < - -1 /. " ,. "
/BGLS = (Ei—nltra + Zgzlter> (Zi_nltraﬁint‘f‘a + Ezt;zlterﬂinter) (28)

which is the same as:

Bers = (XTvarA(Y)“IX)—1 XTvarA(Y)_lY (2.9)
Chi concludes that when missing data are available, recovering the inter-block
information may not be worth while, although he does not report any conditions,
under which recovering such information may prove beneficial.
Senn (see [75]), discusses the use of baselines in asthma trials. He argues against
the idea of correcting for baseline by subtracting the baseline measurement from
the measurements obtained during the trial’s active treatment period. This ac-
tion has the benefit of reducing the variability in the analysis variable, though it
creates spurious correlation between the analysis variable and the baseline read-
ing. Senn seems to favor an analysis of covariance method, where instead of

subtracting the baseline measurement an estimated fraction of it is subtracted.

2.4 Simple extensions of the 2x2 design

Laird et al (see [50]) derive treatment effect estimates for two period designs by
extending the number of sequences. Balaam’s design is a four-sequence cross-
over plan (AA, BB, AB, BA), where carry-over effect can be estimated using

within subject information and a treatment by carry-over interaction can also be
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considered. If n subjects are allocated in each sequence group, then the treatment
estimate has variance

o%(1—p? 1
var(rt) = (4n 7) 5= (2.10)

where o and p are estimated as shown in the previous section.

Koch’s design is a six-sequence two-period plan for the compaﬂson of three treat-
ments. Two of them are active compounds (labeled A, B) while the third is the
standard therapy, S. Interest is focused on the comparison of the two active treat-
ments. So, if n subjects are allocated in each one of the sequence groups (AS,
SA, BS, SB), then nm allocated in each one of AB and BA. This is an incomplete
block design where sequences are not equally replicated. The simple carry-over
model assumed throughout may not be appropriate for this design, especially if
the standard therapy is placebo. Laird et al derive expression for the efficiency of
the contrast 74 — 7, although he notes that Koch’s may not be an appropriate
design for efficiently estimating carry-over effects.

Ebbutt (see [9]) was one of the first to analyze data on three-period cross-over
plans for comparing two treatments. He considers a design with two sequences
(ABB/dual) and a design with four sequences (ABB, ABA, duals). The two
sequence design has been proved to be universal optimal for estimating treat-
ment effect (Laska et al, see [52]), irrespective if one includes carry-over effects
or not in the model, and whether or not baseline measurements are available.
Ebbutt defends the four-sequence plan on the grounds that treatment by period
interactions are now estimable, although he does not include such a term into
his model. In addition it would be more difficult for the investigators to break
the randomization code, if the four sequence plan is used. In the four-sequence
design, n subjects are allocated in each sequence group, while 2n subjects are
assigned in each sequence of the two-sequence plan. The simple carry-over model
with fixed subject effects is assumed throughout. The two plans are roughly
equally efficient for estimating treatment and carry-over differences, though the
two-sequence plan has the additional advantage that treatment and carry-over
estimates are orthogonal to each other. A more detailed investigation of these
and other plans, under various model assumptions is provided in the next chap-

ter.
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Hafner et al (see [32]) analyze data on two group of mice under different exper-
imental conditions. From each group, equal number of mice are randomly allo-
cated to one of the two sequences of the following cross-over plan: ABA/dual.
Hafner et al assume random mouse effects, and his analysis is based on trans-
forming the 3z1 vector of original responses to a new response, by multiplying
it with a 3z1 vector of coefficients of an appropriately selected within-subject
linear function. The summary response, is then analyzed using a typical ANOVA
method or a Wilcoxon rank sum test. The interesting point about that work,
is that more than one linear function could be available for estimating the same
effect and the most efficient one should be used. Senn and Hildebrand (see [81])
considers a similar approach to that of Hafner et al, by analyzing a three-period
three-treatment cross-over trial in asthma. The 3x1 vector ¥;; of the j** patient

in the t* sequence is modeled as follows:
Yii = plag + Sij13:c1 + P+ Tt + €5 (211)

where 1 the overall mean, s;; the random subject effect, P the period matrix, T;
the treatment matrix and €;; the error vector. Contrasts, defined on each subject,

estimating treatment or other effects of interest can be expressed as:

Zi; = CTT]Y; (2.12)
All six possible treatment sequences are used in this study. Treatment effect is
estimated orthogonally to the carry-over one for this design.
The problem of demonstrating equivalence between a reference (R) and a test
product (T) has a long history. Vuorinen and Turunen (see [89]) propose a three-
stage procedure for bioequivalence assessment using the two period cross-over
model. As usual, the Type I error rate and the power of the proposed scheme
are not reported. The model assumed, allows not only means but also variances
to depend on the treatment administered at a specific period. For a subject who

has been randomized in either treatment-sequence, it is assumed that
yr ~ N (uT = U+ T, a% = a?g + O'ST) (2.13)
yr~ N (uR = U+ Tg, O‘?{ = 0§~ + O'ER) (2.14)

where o2 is the intersubject variance, while o2, 025 are the intrasubject ones for

the two therapies. The correlation between measurements on the same subject
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will be p = o%/(oror). The three stage scheme is based on hypothesis test-
ing procedures for three key parameters: 6 = ur/ur, n° = 0%/0% and p. If
6 € (0.80,1.25), n* € (0.70%,1.432?) and p > 0.5 then one can claim individual
bioequivalence. If the hypothesis on p is rejected, then one can claim population
bioequivalence. If both the hypothesis on p and n? are rejected, then one claims
average bioequivalence. All tests are performed at level a. The parametric ver-
sion of the scheme is based on appropriately defined t-statistics for performing
the various tests, while the non-parametric one is based on the Mann-Whitney
statistic.

Shumaker and Metzler (see [86]) criticize the above scheme, by arguing that there
are no data to question the average bioequivalence criteria set by FDA. In ad-
dition, the three stage scheme requires defining the range of 7% and p and these
choices usually are not based on scientific knowledge. To prove the point, Shu-
maker and Metzler analyze data on a four period two-treatment study, where
the design RTTR/TRRT has been used. Two analysis variables are considered;
area under the curve (AUC) and maximum concentration (CMAX). Surprisingly
enough, the authors consider the four-period plan as two replicates of the two-
period cross-over (RT/TR) design. The main reason for doing so, is to assess
more accurately the within and between-subject variances, though the original
four period plan is used to that purpose as well. They conclude that average bio-
equivalence criteria set by FDA, would have provided us with identical results

compared to the individual based criteria, i.e. three stage scheme.

2.5 Bayesian approaches

2.5.1 2x2 case with baselines

Grieve (see [26]) performed the Bayesian analysis for the two-period cross-over
design without baseline measurements initially. Inclusion of baselines raised the
question of how period effect is modeled, since four measurements are collected
per subject (Grieve, see [27]). Some authors modeled the period effect in the
run-in and first treatment period using a common term (Willan and Pater, see

[92]). Similarly, in the early years, it was assumed that carry-over from the first

43



treatment period to the wash-out interval is the same as the carry-over from first
treatment to second treatment period (Chi, see [7]). Grieve follows Kenward and
Jones’s model, where four distinct terms are used to describe period effects and
two terms are used for modeling residual effects (A and ). In Grieve’s analysis
the four measurements per subject have assumed to follow a multivariate normal
distribution with a common uniform covariance matrix. Following Box and Tiao

(see [2]) an ignorance prior for the model parameters is assumed, i.e.:

1
o?(1 - p)(1+3p)

p(#a7,7r177r2a7r3a7-7/\)0>0-21p) X (215)

where 7 is the sequence effect and p the intra-subject correlation coefficient.
Grieve initially derives the conditional distribution of the mean parameters given
the variance components. From this result, the conditional distribution of each
mean parameter given the other mean parameters and the variance components
can be easily evaluated. These distributions are the building blocks of an MCMC
scheme, which is implemented in the next chapter. Marginal posterior densities
of 7, A and 6 turn-out to be t-distributions, appropriately shifted and scaled.
This model (M2) assumes that § and A are unrestricted. Grieve, considers three
further possibilities: § = 0 (model M;;), A = 0 (model M;3) and A = § = 0 (model
My). Posterior distribution of the treatment effect is also derived for the three
new models and a cross-over trial in angina is analyzed for all four possibilities. A
model-selection exercise using the Bayes factor approach is performed, and Grieve
concludes that the models My, and My are the most likely to have generated the
observed data. In other words, inclusion of the first-order carry-over term is

feasible, while presence of the second order carry-over effect is unlikely.

2.5.2 2x2 case with missing data

Grieve (see [28]) develops the Bayesian approach to take account of missing data
in the 2x2 cross-over trial without baseline measurements. For sequence 7, where
1 = 1,2, n; subjects have complete data, n;; subjects have data for the first
period only and n;; subjects have data for the second period only. Data are
assumed to be missing at random. Uniform within-subject covariance matrix is

assumed as before. Grieve derives the conditional distribution of the treatment
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and carry-over effect given the variance components and the posterior density of
the variance components. For the derivation of the posterior distribution for T,
o? can be easily integrated out from p(7|o?, p, data), but numerical methods need
to be employed in order to get rid of p.

Grieve, then investigates the value of recovering missing data information in the
2x2 case. To that purpose, he evaluates the variance of the treatment effect esti-
mate under three scenarios: missing values included in the analysis, completely
ignore patients with missing data and finally assume that data have been avail-
able on all participants. It turns-out that missing data play an important role
for drawing inference for the carry-over rather than for the treatment difference.
A Bayes factor approach is implemented for choosing between two competing
models, the one with carry-over term (M) against the model with no carry-over
term (M)). Grieve concludes that Bayes factor when missing data are considered,

is close to the Bayes factor when data are available on all participants.

2.6 Frequentist Missing Data Solutions

Frequentist approaches to the missing data problem, includes the work of Patel
(see [68]), who argues that taking into consideration patients with incomplete
data in the 2x2 case enhances the power of the test for various interactions, like
the treatment by period one, which is equivalent to the carry-over effect for the
2x2 design. Only second period data are allowed to be missing in Patel’s work.
Patel also assumes that no more than 40% of the study-participants are allowed
to have missing values in the second period. The first period measurements, for
patients with missing second period data, have the same mean and variance as
the first period data in the complete cases. If u is the vector of first period data
for complete and incomplete cases and v the second period data for the complete
cases, then the likelihood function can be written as f(u)g(v]u). MLE is used
to estimate treatment and carry-over effects under the following scenarios: sub-
jects with incomplete data are included in the analysis, subjects with incomplete
data are discarded. Simulation is performed to compare the empirical with the

nominal Type I error rate and to evaluate the power of the test statistics pro-
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posed for the carry-over and the treatment effect, under these scenarios. These
statistics have a t-distribution with appropriate number of degrees of freedom.
Simulations assumed a small number of study-participants, up to 20, and a pos-
itive intra-subject correlation coefficient. When incomplete cases are included,
Patel concludes that the nominal and empirical Type I error rate agree closely
and do not seem to depend on sample size. In addition, the power of the test for
carry-over is higher compared to the power of the test where only complete pairs
are used. For the treatment effect this phenomenon is less evident.

More recent work on missing data, includes that of Richardson and Flack (see
[71]), who use the design ABB/BAA to compare a newly proposed imputation
approach with other established methodologies. Richardson and Flack follow
closely Little and Rubin (see [57]) or Schafer (see [72]) in defining missing data
mechanisms. One of them is MCAR where missing observations are a random
sub-sample of the originally planned sample. A refinement of that scheme, MAR,
is one where the missingness depends on the already observed values but not on
the missing values themselves. Another possibility where missing mechanism de-
pends on the missing values but not on the already observed values, NMAR-1,
is also considered. Finally, both observed and missing values could drive the
drop-out mechanism; the NMAR-2 type of missingness. Four analysis methods
are compared; Complete Case analysis (CC), Maximum Likelihood (ML) of com-
plete and incomplete cases, Residual Draw method with one and three imputed
values (RD1, RD3). The residual draw method imputes conditional predictive
mean with additional noise. Richardson and Flack consider sample sizes of ap-
preciable magnitude, up to 80. The percentage of missing data in the second
period is always lower than the third period one and may depend on the treat-
ment administered. Compound symmetry or AR(1) structure is assumed for the
within-subject covariance structure.

Richardson and Flack conclude that bias of treatment effect estimate is always
lower than the carry-over estimate over all analysis methods. The CC method
has the worst performance in terms of bias for both treatment and carry-over
effect over all missing data mechanisms. The other three analysis methods are

comparable in terms of bias. In terms of variance estimation, empirical signifi-
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cance levels and power, the RD-3 and ML give comparable results closer to the
nominal levels and recommended by the authors as the appropriate methods for
analyzing cross-over designs with missing data. The authors, finally, recognize
the importance of becoming aware of the missing data mechanism, although they
suggest that investigators have information which can help in identifying reasons
for patient dropout.

Another approach of analyzing cross-over experiments with missing data is the
one suggested by Jones and Kenward (see [39]). Separate estimates from the
complete and incomplete data for the parameter of interest are-first derived and

then combined using the inverse of the estimated variances as weights.

2.7 Categorical Data

Binary data are modeled by Jones and Kenward (see [38]) by using a log-linear
model, where within-subject dependence is taken into consideration. Their method-
ology can easily be extended, when the primary outcome is categorical. Suppose
that a cross-over study in s sequences and p periods is used to compare ¢t treat-
ments. Assume the primary response is categorical with c category levels. For
the number of subjects (m;;x) who fall in the k™ response category within the **

sequence in the j®* period, the following log-linear model can be considered:
mean + category + sequence + period + treatment + carry-over (2.16)

In this model successive responses on the same sequence are independent from
each other. By introducing appropriate interaction terms, associations between
adjacent cells in the same sequence are generated. The revised model looks as

follows:

mean + category + sequence + period +
(2.17)

terms at the sequence by period level + period by period interactions

The first term in the second line of the equation above is composed of terms like
treatment and carry-over effects, while the "period by period” interaction term
introduces associations between observations taken on the same sequence. This

is simply a log-linear model where the joint distribution of the sequence’s counts
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is considered. From the above equation marginal probabilities can be derived,
though their analytical expressions are awkward. Jones and Kenward (see [39])
discuss the association between log-linear model for cross-over data with log-linear
models for contingency tables. Essentially, data within a sequence-period cell, can
be classified according to the levels of various outcome variables (e.g. response
category). Observed marginal totals can be fixed by fitting the corresponding
term in a log-linear model, as illustrated in McGullaph and Nelder (see [66]) or
Everitt (see [11]). Jones and Kenward (see [39]) conclude that tests concerning
the statistical significance of various terms can be seen as a special case of a
likelihood ratio statistic.

Instead of collapsing individual-based data into counts, an alternative approach
would be to model subject-based data directly. Conditionally upon the subject
effect, s;r, measurements on the same subject are independent. If it is assumed

that:

logit (pijk = lj|sik) = intercept for category I; + six +

effects from cell (i,j) for subject k (218)

where [ define the categories of the response variable, then from the conditional

independent assumption, the following relationship holds:

p(yilk =0.. -Yipk = lp|sik) = P('yilk = ll|3ik) - -p(yipk = lp|3ik) (2-19)

Now, if a probability function g(s) is assumed for the subject effect, then the

joint distribution of the data-vector for a specific subject is as follows:

Pk =l .. Yk = 1) = /p(yilk =11 Yipk = lp|sik)g(s) ds (2.20)

Ordered categorical data can be easily incorporated into the log-linear modeling
framework. To that purpose, a regression is used on the category scores, where
higher order terms (quadratic, cubic e.t.c) can be included in the model. Ezzet
and Whitehead (see [12]) use a random effects approach to model ordinal data
in the 2x2 design. Ezzet and Whitehead explain how an ordinal variable can be
derived by discretizing a continuous latent variable which follows a logistic dis-
tribution. Ezzet and Whitehead illustrate the subject-based model by analyzing

data for the comparison of two inhalation devices, using a four-category ordinal
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scale response. In their discussion, the authors point out that treating the out-
come variable as continuous may lead to biased results and the real treatment
effect may not be recovered.

A third way to analyze categorical data, is by modeling linear contrasts or directly
marginal probabilities in period j of sequence ¢. Under this approach recovery of
the within-subject dependence structure is impossible, unless higher order joint
probabilities are modeled as well. Fidler (see [15]) illustrates an approach where
a model with six terms is used for the analysis of binary data in the 2x2 design:
sequence, period, treatment, carry-over, overall success probability and correla-
tion between responses on the same subject. McNemar’s and Gart’s tests are

special cases of Fidler’s model.

2.8 Other types of cross-over data

2.8.1 Multivariate Data

The analysis of the 2x2 design from a multivariate perspective was first presented
by Zimmermann and Rahlfs (see [93]). The authors argue that the multivari-
ate approach has certain advantages over the univariate one, since simultaneous
testing of hypothesis of interest are possible, while restrictive assumptions on
the within-subject covariance structure can be avoided. The authors assume a
simple carry-over model with a general within-subject covariance structure. A
simultaneous hypothesis concerning treatment and carry-over effect is first per-
formed. This hypothesis is usually rejected at conventional significance levels
and this leads to a test for examining the importance of carry-over difference. If
carry-over effect is shown to be different from zero, then only first period data
are used for testing treatment effect, while in the case where residual effect is
statistically unimportant then all four cell means are used for drawing infer-
ence for treatment effect. This work is extended in the case of the cyclic design
(ABC,BCA,CAB) where carry-over effect in the third period represents residual
effect from the second and the first period. A similar multi-stage procedure to
the 2x2 case for testing treatment effect is proposed. The authors conclude that

for the 2x2 design the univariate approach gives identical results to the multivari-

49



ate one. For multi-period designs different hypothesis can be tested under the
two approaches, though the multivariate procedures has the advantage that less
restrictive assumptions are imposed. A hybrid procedure is finally recommended
which uses the advantages of both approaches.

In multi-period multi-sequence cross-over trials a single outcome variable is usu-
ally of interest. There are occasions however, where two or more outcome vari-
ables may be observed within a treatment period. This is simply a cross-over
design with multivariate observations and can be analyzed using standard multi-
variate techniques, see Mardia et al [60] or Kraznowski [46]. Grender and Johnson
(see [24]) discuss an example of a cross-over trial with a bivariate response, where
the effect of caffeine on stress reactions was studied by measuring systolic and di-
astolic blood pressures before performing a task and after administering caffeine
or placebo. An adequate wash-out period was allowed in this study.

Let y;;x be the response vector of the k*" subject within the j* period who has
been randomized in the i** sequence. The model can be expressed in matrix

nofation as follows:
E (yije) = p+m + 7+ A (2.21)

where p, 7j, 7, A are vectors corresponding to the overall mean, period, treatment
and carry-over effects. Note that Grender and Johnson do not include a sequence
effect, since even in the multivariate 2x2 case that term is confounded with the

carry-over effect. The above model can be presented in a concise form as follows:
E(Y)= A¢ (2.22)

where each row of Y corresponds to responses of each individual. All multivariate

cross-over hypothesis can be written in the form:
CoM =0 (2.23)

and an appropriately constructed F-test can be used to test the hypothesis above.
Surprisingly enough Grender and Johnson propose a multi-variate analogue of the
two stage procedure to test the hypothesis of treatment effect. Obviously the def-
ficiencies of that scheme are well known, when one outcome variable is measured

in each period, but it is my view the same defficiences will be evident in the
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multivariate case as well. A common covariance matrix ¥ is assumed for the
observations taken on a subject across responses.

Grender and Johnson extend the above work to accommodate analysis of two or
more responses taken repeatedly across time. For example, in the previous trial,
diastolic and systolic blood pressure can be measured more than once within a
period. In such circumstances, the interaction of time with period, treatment and
carry-over should be tested and if not important then one can average responses
over time points and use the analysis outlined above. More specifically, Grender
and Johnson propose a three stage procedure, where the time by carry-over in-
teraction is tested first, followed by a test of no carry-over differences. Based on
the outcome of the test for carry-over, either data from both periods are used or
only the first period data considered for analysis purposes. The Wilks likelihood
ratio criterion, which transforms to a F-statistic for the 2x2 cross-over case, is
used for the hypothesis testing of various effects.

In a subsequent paper (see [25]), Grender and Johnson fit polynomial models for
a 2x2 cross-over design where several responses are measured within a period,
repeatedly over time. With such data, a multi-variate test of equality of means
at time points within sequence by period cells, is first performed. This hypothesis
is usually rejected at conventional levels of significance and the next step is try to
claim parallelism of mean profiles across groups defined by the sequence by pe-
riod cells. If that hypothesis accepted, then averaging response(s) across time is
the way forward. However, if the parallelism hypothesis is rejected, then the aim
might be to discover how mean profiles across sequence by period groups differ.
To that purpose, a polynomial model can be fitted to subject specific data. The
estimated parameters of the polynomial model are subsequentvly analyied using
appropriate techniques for cross-over plans. Grender and Johnson illustrate the
technique by fitting second order polynomials in a study which investigates the

effect of eating onions on triglyceride levels of patients with heart disease.

2.8.2 Survival Data

The analysis of survival data in the cross-over literature is one of the areas that

has been under-developed. France et al (see [20]) are one of the few authors who
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describe different approaches for the analysis of survival data in the 2x2 case. The
trial used to illustrate the methods concerns treatment of angina pectoris. A well
established therapy is compared to the combination of that therapy with a newly
proposed treatment. There is a 4-week run-in period followed by two active four-
week treatment periods. No wash-out interval is allowed. France et al initially
analyze the data using standard methods of analysis, like analysis of variance
or Wilcoxon rank sum test. None of the above methods, take into account the
correct underlying data-distribution or the censoring mechanism. Because of
that, treatment effect estimates derived from these methods are biased. France’s
et al survival method follows closely Cox’s proportional hazards regression model.
Each patient has a separate baseline hazard function appropriately shifted to
allow for treatment and period effects. France et al do not include a carry-over

term in their analysis. For the ** patient the hazard function is:
hi(t, period, treatment) = hg;(t)exp(B; * treatment + S, * period) (2.24)

The treatment and period effect can be estimated by maximization of the partial
likelihood and depends only on the number of treatment preferences in the two
sequence groups. Treatment A is preferred to treatment B, if the survival time
on A is longer than that on treatment B. If ny4,n15, 724, n2p are the number of

preferences of A and B in the two groups, then

By = In, | 1ET2E (2.25)
n1ATB

A similar, though more elaborate, expression holds for the variance of ;. France
et al, are in a position to extent their methodology to a three-period cross-over
trial. They do not manage though to extend their work to include cross-over
designs with unlimited number of sequences/periods and for comparison of more
than two treatments.

Feingold and Gillespie (see [14]) propose an alternative method for the analysis
of cross-over survival data, easily applied to many different experimental designs
under various censoring mechanisms. In Feingold and Gillespie’s method, each
observation is replaced by a score and then standard statistical techniques ap-

plied (e.g. ANOVA) to the derived scores. Feingold and Gillespie use the Gehan
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score, defined differently for censored and uncensored observations. An alterna-
tive way of analysis is to use medians or other quantiles obtained from the survivor
curve from each sequence/period combination and then apply the CROS weights
to these summary statistics. Feingold and Gillespie seem to favor the average-
quantile statistic, which is simply the average distance of each survivor curve from
the origin calculated over a quantile range where all survivor curves are defined.
The asymptotic variance of that statistic is difficult to calculate and bootstraping
could be used to that purpose. Both approaches are illustrated with an exam-
ple of the protective value of two types of helicopter passenger immersion suits.
Simulation methodology is used to compare score transformation method (ST)
with France’s et al (FLK) procedure. Overall the ST method seems to perform
better in terms of power and bias for treatment effect estimation regardless of
the censoring rate. The analysis of time failure cross-over data can be carried out
using standard survival analysis software, where treatment, period and carry-over

effect are time dependent covariates.

2.8.3 Classical and modern non-parametric approaches

For many years the use of classical non-parametric procedures, like Wilcoxon rank
sum test, have dominated the analysis of cross-over data where the distributional
assumptions (e.g. normality) have been violated. This approach is illustrated in
Koch (see [45]) for the 2x2 design. Koch assumes the simple carry-over model
with a random subject effect. For estimating treatment effect, the within subject
differences are calculated and the Wilcoxon rank sum test is applied to these
differences. Similarly for testing the hypothesis of no residual effects, the within
subject sums are first evaluated and then the Wilcoxon test is applied to these
sums.

McHugh and Gomez-Marin (see [67]) examine and compare a randomization
model for analyzing the 2x2 cross-over design with the simple carry-over model.
An additivity assumption is then introduced in the randomization model and a
new comparison with the simple carry-over model is performed. The randomiza-
tion model assumes that the test and reference products can be tried only on a

finite population of size N. Conceptually each of the IV experimental subjects can
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be allocated to any one of the four possible sequence by period combinations, gen-
erating a hypothesized 4NV responses, which can be used to describe the observed
responses. It turns out that the treatment estimator based on the randomization
argument alone, has a distinct different variance from the treatment estimator
under the simple carry-over model. The additivity assumption, introduced next,
simply assumes that the 4N conceptually responses are composed of a subject, a
treatment and a carry-over effect. The results of the randomization model with
the additivity condition are comparable to the results of the simple-carry-over
model, as far as the precision of the treatment effect estimate is concerned.

Tsai and Patel (see [88]) were one of the first to apply modern non-parametric
approaches to the analysis of the 2x2 trial with baselines. Tsai and Patel imple-
ment these methods to a 2x2 design that includes a placebo run-in period and a
wash-out interval of adequate length between the two active treatment periods.
Baseline measurements are taken both during the run-in and wash-out periods.
Tsai and Patel, consider a similar approach to that of Jones and Kenward for the
management of carry-over effects. A test for the significance of the residual effect
from the first treatment period to the wash-out interval is first performed, by
taking the differences between the two baseline measurements and then applying
a Wilcoxon rank sum test to the derived data from the two sequence groups.
Where Tsai and Patel’s work differs from conventional approaches, is the way
they test for residual effect from the first to the second treatment period, and the
way they test for treatment effect. Before testing for treatment and carry-over
effects, Tsai and Patel remove the effect of baselines. Data from first and second
treatment period are modeled separately. A linear regression is performed, with
treatment period data as response and corresponding baseline measurement as
covariate. These models are not fitted by minimizing the sﬁm of the squares of
the difference between the response and its expected value, but rather a slightly
complicated function of that difference is optimized. Robust linear fit minimizes

for each period j, where j = 1,2, the following function:
> ¢ ((wik — o — Bymisw) /o) (2.26)
ik

Note that a common regression coefficient is assumed for both sequences within a

period. The function ¢(z) is Huber’s function (see [34]), and parameter estimates
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are derived by solving a system of nonlinear equations simultaneously. The above
equation also implies a different variance parameter for the two period groups.
An alternative way to identify a relationship between two continuous variables,
is by fitting a locally weighted robust regression curve. Cleveland (see [8]) was
the first to introduce the idea, which allows us to use neighborhood points of a
given point (z,y) to obtain a fitted value for y. With these points, a weighted
least squares fit is performed, where the weighted function is symmetric about z
and decreases to zero as the distance from z increases. As before, this method is
applied separately to the data from the two periods.

Using either of the above approaches, a pair of residuals (r;1x,7:2k) can be cal-
culated for each subject, and the hypothesis of no carry-over effect from first to
second treatment period or of no treatment difference is based on these residual
pairs. A Wilcoxon rank sum test is applied to the sets (r111+7121, - - - » T11n;, +7120,)
and (7211 +7221, - - - , T21n, +T22n,) fOr carry-over testing, where n; and n, are num-
ber of subjects randomized to the two sequence groups. For the comparison of

treatments a Wilcoxon rank sum test is performed on the differences r;;x — 750k

2.8.4 Poisson Data

There is an extensive literature covering generalized linear model approaches for
modeling purposes in repeated measures settings (see [56]). One of the few pa-
pers paying special attention to the analysis of count cross-over data is the one
by Layard and Arvesen (see [54]). The authors suggest that cross-over experi-
ment should be avoided if it is thought that carry-over effects could occur. So,
a Poisson distribution is assumed for the count data, while a log-link relates the
mean of that distribution to the linear predictor. The linear predictor contains
terms for subject, period and treatment only. Layard-Aversen’s analysis condi-
tions upon subject totals. In this way testing for drug by period interactions
is not feasible, though for tackling this problem they recommend an alternative
procedure based on a t-test for appropriately transformed patient data. They
illustrate their approach using two examples, where a 2x2 design was used to run
the trials.

The authors extend their methods to multi-period designs using the 3x3 Latin
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square for illustrative purposes. The approach based on conditioning on the sub-
ject total suffers from the fact that pairwise comparisons among treatments are
not easily performed. An alternative route where data are first appropriately
transformed and then a weighted linear regression is performed on the trans-

formed values, with weights determined beforehand, is recommended.

2.9 Variance Components Estimation

Laird et al (see [50]) propose an interesting method of estimating the variance
components, when compound symmetry structure (i.e. random subject effects)
is assumed for the responses on a subject, in two period cross-over studies. More
specifically, if d;, s; denotes the difference and the sum of the two responses on

the i*" subject, then the following two models are fitted,

d = Xdﬁ+ed (227)
s = XB+es (2.28)

where Xy and X, denote the design matrices for the sum and difference vector.
From these models two mean square errors, MSE; and MSE;, are derived and

the covariance/correlation parameters are estimated as follows:

52 (MSE, + MSE,) /4 (2.29)

Il

p = (MSE,— MSE,)/(MSE,+ MSE,) (2.30)

Laird et al combine the estimates of 5 derived from equations (2.27) and (2.28) to
derive the GLS estimate. Obviously this method generalizes in a straightforward
way, when baseline measurements are included as covariates.

Matthews (see [63]) considers the estimation of the dispersion parameters in the
general case of a p-period cross-over trial with a continuous outcome, where n
subjects are recruited. The model assumed, includes subject, period and treat-
ment effects (all fixed), while carry-over term is not considered. The linear model

can be summarized in the following equation

Y= Q®1l)s+(1la @ L) +TT+e=Za+e (2.31)
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where y is an np-dimensional vector, s, 7, 7 is the subject, period and treatment
effect respectively. The variance matrix of the error-vector € has a block diagonal

form
W =0,V (2.32)

where the matrix Vj,, describes the intra-subject correlation structure. This
structure takes the form of a stationary first-order autoregressive process, with
its (i,7)*" element equal to (1 — p?)~1pi=3l. Matthews removes the nuisance
parameters, subject and period terms, by pre-multiplying both sides of the above
equation with an appropriate matrix. The model for the transformed response

looks as follows:
z=AT+¢€ (2.33)

This model contains only the parameters we are interested in, 7, p and ¢. The
author then applies ordinary maximum likelihood and derives an analytic ex-
pression for the correlation coefficient p. The above approach, called restricted
maximum likelihood, is equivalent to integrating out the nuisance parameters
from the full likelihood function. Matthews compares the above method with
a conditional profile likelihood approach, where a likelihood function containing
only the parameter of interest, p, can be written down explicitly. Simulation
studies are used to compare the two inference methods plus the standard maxi-
mum likelihood approach. The designs used are a four-sequence three-period one
(ABB, AAB, duals) and a four-sequence four-period one (ABBA, AABB, duals),
where 12 subjects are allocated in each sequence. Matthews concludes that both
conditional and restricted likelihood approaches perform better than the standard
maximum likelihood in terms of bias, though the restricted likelihood approach
is to be preferred because it can easily be generalized to the case where intra-
subject covariance structure is described by more than one parameter. Standard
weighted least squares can be used to estimate 7, the treatment effect, with p
replaced by its estimate. Uncertainty concerning the estimation of p can safely
be ignored in our inferences for 7, since p and 7 are orthogonaly estimated.

Guilbaud (see [31]) estimates variance components in the 2x2 case, assuming

that variances under the two treatment regimes are different. Interest centers
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on drawing inference for the ratio § = o% /0%, which measures the relative vari-
ability within subjects under the two treatments. Guilbaud derives initially the
exact distribution of the following quantity v = (6% —0%)/(c% +0%), from which
inferences about € can be made. As before, the key statistic is based on the
within-subject sum and difference pair (s;, d;x), where k indexes subject and 2
sequence group. The author proves that (y* — «)/s* follows a t-distribution on
n — 3 degrees of freedom, where n is the total number of participants recruited in
the study. The value of v* equals the common slope of two parallel lines fitted to
the two sequence groups by ordinary least squares, with the d;; treated as fixed
predictor, while the s;; treated as the response. The s* is simply the standard

error of that slope.

2.10 Choosing the right design

2.10.1 Theoretical results on repeated measures designs

Kunert (see [47]) deviates from conventional approaches to identify optimal plans
for repeated measurements designs, a special case of which are cross-over plans.
Special restrictions are usually imposed on a plan to be optimal under a pre-
defined model. For example, number of treatments should appear equally often
in each sequence and period. This work is presented in Ch4.

Kunert proves an orthogonality condition which ensures that the information
matrices for the estimation of the same effects in two models are equal. Note
that for the two models it is assumed that one of them is nested within the other.
The author discriminates the set of parameters the experimenter is primarily
interested in (7), from the parameters that are of secondary importance (£). The

following model is assumed:
Y = An+ B +e (2.34)

where the error vector has uncorrelated components with common variance. The

information matrix for the parameters of interest 7 is:

C=AT (1-B(B"B)” B") A (2.35)
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The responses on the nested model are generated according to the following

model:
Y=An+Bip+e¢ (2.36)

Obviously B = [B;|B,], with an information matrix for the parameters of interest
n given by an expression similar to the one described in equation (2.35). The
information matrices in the two models will be equal if the following orthogonality

condition is satisfied:
AT (1 — B, (BTB,)™ B}") B,=0 (2.37)

So, if one can find an optimum design for the model described by equation (2.36),
which at the same time satisfies the orthogonality condition described by equa-
tion (2.37), then this design is optimum for the more elaborated model described
by equation (2.34).

In Kunert’s work simple carry-over is assumed throughout. The author consid-
ers cross-over designs where residual effect is allowed even in the first period.
From a practical standpoint, this assumption is not as unreasonable as it sounds,
since in most clinical trials participants are already on a standard therapy and
if that therapy is compared to a newly proposed treatment, then carry-over in
the first period may exist. Of course, Kunert also considers cross-over plans with
no residual terms in the first period. Optimum results claimed for the family of
generalized latin square (GLS) designs, where both number of subjects (n) ran-
domized and number of periods (p) used are a multiple of number of treatments
(t) compared, and treatments appear equally often in each sequence and on each
period. If these conditions are satisfied, then any design made of sequences where
a treatment is followed equally often by all other treatments (including itself) is
optimum for the estimation of treatment effects in that family. In that paper,
Kunert replaces the strong assumption that number of subjects recruited must
be a multiple of number of treatments, with a weaker one that relates the num-
ber of times a treatment i is followed by treatment j with the number of times
treatments 7 and j appear in period k. In a similar fashion the assumption that

number of periods must be proportional to the number of treatments can also be
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replaced with a weaker one. Similar results for efficient estimation of the carry-
over effects are also presented.

In a subsequent paper, Kunert (see [48]), deals with the situation where number
of periods equals number of treatments (p = t). Balance uniform designs (i.e.
n o t, treatments appear equally often in each period/sequence, each treatment
is followed equally often by other treatments, but never by itself) are optimum
for estimating treatment differences, when the number of subjects equals or is
twice as high the number of treatments. Whenever n = 2t¢ this result is true
only when more than six treatments are compared. In case where the subjects
recruited is a multiple of the number of treatments greater than two, then the
efficiency of a balance uniform design is greater than

(t—1)2—2(t 1)t
(t—1)2 —2(t — 1)t-1 +¢2

(2.38)

The equation above implies, that as the number of treatment grows balance uni-
form designs are almost optimum. In that work, Kunert extends these results
by providing conditions for efficient estimation of residual effects when p = ¢. In
these conditions, it is assumed that n = t(t — 1) and the experimenter is in a
position to find a uniform balanced design where each pair of treatments appears
equally often in the last and second to last period. Then if the last period is
replaced with the second to last one, the resulting plan will be optimum for es-
timation of residual terms.

Kunert (see [49]) extends the results above, in the situation where repeated mea-
surements taken on the same subject are related according to an AR(1) process.
As before, number of treatments equal number of periods. In that paper terms for
the mean, subject, period and treatment effect are only fitted. Carry-over ﬁerms
are not allowed. The sum-to-zero parameterization is used for the treatment ef-
fect. Kunert’s model is exactly the same as the one described in equation (2.31)
with a covariance matrix for the error vector given in equation (2.32). Now, if we
consider the matrix A,;, with the property AV AT = I, then by pre-multiplying
both sides of equation (2.31) with I, ® A the resulting error vactor has uncorre-

lated components. Let B = [1, ® A|l, ® Al,], then the information matrix for
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the treatment effect estimates matrix is:
C=T"(I,® A7) (1~ B(B"B) "' BY) (L@ A)T (2.39)

The family of designs where each treatment appears equally often in each sequence
and each period, followed equally often by other treatments (including itself), is
considered. In addition, each pair of treatments should appear equally often in
the first and last period. Kunert calls this set of plans ”"Williams design with
balance end-pairs”. The main conclusion of Kunert’s work, is that a Williams
design with balance end pairs is optimum for estimation of treatment effects,
irrespective of the value of the AR(1) coefficient p, over the family of designs
where treatments appear equally often in each sequence. Furthermore, Williams
designs with balanced end-pairs are optimal for estimating treatment effect over
the whole design family under study, when p =t = 3. When p =t > 3, then
Williams design with balanced end-pairs is optimum for treatment effects over
the whole design family, only when the AR(1) coefficient p is greater than

t—2— 12— 8
20t — 3)

(2.40)

A general note on Kunert’s optimality criterion is in order. The ¢, optimality
criterion has been used throughout. Let A\;, (i1 =1,... ,k = rank(C)) be the non-
zero eigenvalues of the information matrix C for the parameters we are interested

in. Then for every a, where 0 < a < o0, the following criterion can be defined:

. k 1/a
p (2_1: ,\i—a) (2.41)

Kunert’s results are valid for all values of &. When a = 0 the D-criterion, widely
used in subsequent chapters, is recovered. The ¢; criterion corresponds to the
well-known A-criterion. Universal optimality, described in Ch4, is a more general
concept than ¢, optimality, though most of Kunert’s results are valid under the

universal optimality criterion as well.

2.10.2 Practical results on repeated measures designs

In an impressive review paper, Matthews (see [65]) questions the conventional

approaches to identifying optimum plans. His main criticism concentrates on how
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appropriate is the simple carry-over model, a model widely used for derivation
of optimum designs, and proposes alternative solutions. Before proceeding to
that debate, Matthews is critical about considering carry-over terms in the first
period. Magda’s work (see [59]) is based heavily on this assumption, where a
hypothesized pre-period interval with the same treatments administered as in the
last period, is used. So, carry-over in the first period is determined by treatments
administered in the final period. The data collected during the pre-period interval
are not used in the analysis stage, and this is the point where this scenario may
sound unreasonable to the practical user of the cross-over trial. The modeling of
the carry-over term has been criticized by Fleiss (see [18]). According to Fleiss

carry-over plan, a treatment carries-over to all other treatments, except itself.
This type of carry-over with some extensions is studied in subsequent chapters.

For two treatment comparison, Matthews expresses the Fleiss model as follows:
1
Yijk = 1 + S + T + Tdi’j + aAdi,j_l (1 - diy]’di,j_l) + €ijk (242)

where d;; is the treatment (A or B) administered to sequence ¢ in period j.
Assuming independent errors and all other term in the above equation fixed,
Matthews derives optimum dual sequence plans for the Fleiss type of carry-over,
where unequal number of subjects may be allocated to each sequence pair. The
author presents best designs in the three or four-period families and concludes
that these designs are highly efficient under the simple carry-over model. Worth
noting that in Matthews work, sequences like AAA/BBB or AAAA/BBBB are
candidates for inclusion in the proposed plans. The author also points out that
since the type of carry-over is not known in the planning stage, designs which are
robust to model mis-specification in terms of efficiency and/or bias are worthwhile
to be derived. Results to that direction are provided in Ch4.

In a subsequent paper, Matthews (see [64]), studies the problem of how efficient
Ordinary Least Squares (OLS) treatment estimate is, when the responses on the
same subject are stochastically dependent and this dependence is captured by an
unknown parameter p. If p was known a-priori, then Generalized Least Squares
(GLS) would have been fully efficient. The fact that p is estimated forces the
analyst to use a practical alternative, the empirical GLS (EGLS), which will

not always be more efficient than OLS. Matthews points out that the choice
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of estimate heavily depends on the design selected to run the trial. Designs,
where the OLS estimate is highly efficient even when repeated measures on a
subject are correlated, may be preferred for running the trial during the planning
stage. Matthews investigation, compares OLS with GLS when p is known. If the
efficiency of OLS is 90% or more over all plausible values of p, then the extra
- complexity of the GLS analysis may not be justified.

More specifically if p is known, then the estimate of the variance for the fixed

effects using GLS would be:
var(agrs) = o (ZTW™12)! (2.43)
The OLS estimate is simply (Z7Z)~!ZTy with variance:
vargwe(aors) = 02(2T2)"(Z2TW 2)(ZT Z) ! (2.44)
The estimated variance from a typical OLS analysis would be:

'Ua'ra.nalysis(aOLS) = &S(ZTZ)_I (245)

where 62 is the OLS estimate of 2. Matthews compares the expected values of

the variance estimates provided in the last two equations under the GLS model.
Although he includes a carry-over effect in his model, attention is focused on how
misleadingly the variance of the treatment effect is estimated using OLS, when
GLS should be used instead. For the intra-subject covariance structure, either
a first order autoregressive or a first order moving average model is assumed.
The author concludes that designs where the OLS estimate can be used without
much loss of efficiency are (ABB,AAB,duals) and (ABB,ABA duals) from the
four-sequence three-period family, while for the two-sequence four-period family
good choices are (ABBA, dual) and (ABBB, dual).

Matthews then questions the sensitivity of not equal allocation of available pa-
tients to each sequence. The author illustrates his point using a dose-escalating
design for the comparison of three doses (1,2,3) and placebo (P), where the pro-
portion of subjects randomized to each sequence are not necessarily equal. The
four-period design used, consists of the following four sequences: P123,1P23,12P3
and 123P. It turns out that the efficiency of equireplicate designs is over 90% and

this is true over a wide range of optimality criteria (A-, D-, E-criterion).
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A further point raised by Matthews concerns the modeling of period effect. This
term is typically incorporated in any modeling exercise. Since every patient has
his own trial history, the statistical interpretation of the period effect is unclear.
It is my view that data collected on a subject is part of a stochastic process and
effects believed to influence. patient’s response at a given time point should be
included as terms in his mean response at that time. An alternative way of in-
corporating period effects in an analysis, is to describe stochastic dependence on
observations taken within subjects or across groups. In that respect, Matthews
proposes a solution where period is considered as a random effect. Sensitivity of
optimality results when period term is excluded from the model is a potential re-
search direction according to the author. Finally, Matthews raises the point that
treatment by subject interaction may be worth investigating from both sponsor’s

and GP’s perspective.

2.10.3 Results on special design families

In a different mode, Pigeon and Raghavarao (see [69]), propose designs for com-
paring u test treatments (0,...,u—1) with a control . The authors are interested
in efficient estimation of the contrasts of treatment and carry-over effects of the u
test treatments versus the control treatment. Designs where the variance matrix
of the contrasts of interest is completely symmetric tend to be optimum. Control
balance residual effect designs found to have this property and being equally effi-
cient as incomplete block solutions, for estimating contrasts of interest. A control
balance residual effect design possesses the following properties: each treatment
appears at most once in each subject, control and test treatments occur the same
number of times in each period (¢, times for the control and ¢; times for the
test), control treatment occurs with each test treatment in Ao subjects and each
test treatment occurs with every other test treatment in A; subjects, the pre-
mentioned property also holds if the last period is deleted, the ordered pair of
treatments (x,i) occur in successive periods in vy subjects and the ordered pair
(i,j) occur in successive periods in v; subjects. Finally, for every treatment pair
(6,4) the number of subjects where 6 occurs with ¢ in the last period equals the

number of subjects where ¢ occurs with 6 in the last period. The author provides
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rules for the construction of such a design.

An interesting paper, close to that of Matthews, is Lasserre’s work (see [53])
on determining optimum plans for the comparison of two treatments when two,
three and four period design-families are considered. Three models studied and
subject is considered as a random effect throughout. In the first model, overall
mean, period and treatment terms are included. The second model contains all
terms included in the first plus carry-over of the simple type. The third one is
an extension of the second, where treatment by period interaction is also fitted.
A first result in Lasserre’s work is that the estimate of the period effect is in-
dependent from the between subject variability. Variance of treatment effect or
other parameters of interest, are presented in terms of the ratio 0?/0? where o2 is
the subject error variance and o? the error variance. For the two-period designs
all possible sequences are considered (AA,AB,BA,BB) and if ny;, n12, 121 and nogg
subjects allocated in each one of them, the following restrictions must be satisfied
nyy = Ngg and ny9 = no;. The same principle applies to three and four-period
families. The variance of the treatment effect estimate is minimized under model
1 when equal number of subjects are allocated to the sequences (AB,AB). For
the other two models, equal number of patients should be allocated in all four
possible sequences. For the three-period two-sequence family anyone of the three
possible designs can be recommended for use under model 1. Under the same
model, in the three-period four-sequence family the plan (AAB, ABA, duals) is
optimum. Surprisingly enough for model 2 the same design estimates efficiently
both treatment and carry-over effects: ABB/dual. For model 3, two six-sequence
designs are recommended. When four-periods are used, then under model 1 the
number of designs the experifnenter can choose from to run his study is much
higher, compared to the number of plans for the other two models.

Two-period cross-over designs where more than two treatments are compared are
studied by Carriere and Reinsel (see [4]). Number of randomized subjects (V)
should be a multiple of ¢ or ¢, ¢ being the number of treatments under considera-
tion. The authors derive first the information matrix jointly for the treatment and
carry-over effects and then the information matrix for the treatment effect alone,

adjusted for all the other terms in the model, carry-over inclusive. Carriere and
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Reinsel prove that a two-period design where treatments appear equally often in
each period and the number of subjects receiving the treatment pair (z, j) equals
the number of subjects receiving the pair (j,7), is optimal for estimating treat-
ment effects among all two-period repeated measurement designs, when N o t2.
The covariance matrix for any treatment effect contrast is also evaluated.

Up till now we have not touched upon Bayesian methodologies for deriving opti-
mum plans for cross-over trials. The application of Bayesian ideas becomes more
relevant when non-linear terms included in the model, see Ch5 for further de-
tails. Both Atkinson and Donev (see [1]) or Fedorov and Hackl (see [13]) provide
a thorough account of Bayesian experimental design theory. An interesting paper
on Bayesian design of experiments for linear models in the presence of variance
components is that by Lohr (see [58]). The paper is not related to cross-over
experiments particularly, but the ideas presented there can be applied easily to

that area as well. Any cross-over model can take the following form:

Yijk = Mij + Sik T €5k (2.46)

where s;x ~ N(0,02) and €5 ~ N(0,0%). The question of interest is identifying
best plans for variance component estimation. A reasonable guess is needed for
the variance components, in fact for the ratio v = ¢Z/0?, which will be translated
to a proper prior distribution for that parameter. Two Bayesian design criteria
considered in Lohr’s work: the expected value of the log of the determinant of
the information matrix is maximized (extension of D-optimality), the average
variance of a linear combination of the parameters is minimized (extension of
A-optimality). After deriving the Fisher information matrix for the variance
components, the number of measurements per sequence is estimated and a fur-
ther condition needs to be satisfied for the desig‘n to be D-optimum. All these
conditions depend heavily on the prior distribution for «. Results between the

two criteria differ, when the prior belief is that -y is small.

2.11 Concluding remarks

The majority of the methodologies concerning the analysis of cross-over data has

been developed with the 2x2 design in mind. Extensions of these analysis methods
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to higher order designs are under-developed. Obviously, there is an extensive
literature on the analysis of repeated measurement experiments, a special case
of which is the cross-over experiment. Lindsey (see [56]) provides over 50 pages
of references for analyzing repeated measurement data. Worth investigating,
if extended 2x2 analysis strategies to more general settings lead to techniques
already known for analyzing repeated measures.

Concerning the identification of optimum plans, attention has been focused on
the simple carry-over model. Results for other carry-over types are provided in
subsequent chapters. These results apply to cross-over plans with limited number
of sequences and periods. Generalization of these results to higher order designs

require further research effort.
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Chapter 3

The 2x2 Cross-Over Trial

3.1 Cross-over and Parallel Group Trials

A cross-over trial is an attempt to make a fair comparison between two or more
treatments on a group of patients. Patients are divided into two or more groups,
and each group receives a sequence of treatments. The time period a trial lasts
is divided into sub-periods. At the beginning of each sub-period one and only
one treatment is administered to each patient and the effect of the treatment is
assessed at the end of it.

The main advantage of conducting a cross-over trial in medical research, is the
ability of making treatment estimates based on within-subject measurements
(see Senn [77]). This simply means that the variance of the proposed treatment-
estimator is lower compared to the one of a parallel group trial. Moreover patients
through their measurements, provide their own judgement about the performance
of the therapies and it’s the combination of these judgements that forms the final
picture concerning effectiveness of different treatment regimes. On the contrary if
we use a parallel trial to compare therapies, then each group of patients receives
only a specific treatment and then comparisons are made between groups to assess
treatment-effect. Obviously a significant difference between two treatments in a
parallel study, might be caused because of differences in groups and not of any
real treatment effect. However randomization arguments exclude the possibility
of a significant group effect.

A main disadvantage with the cross-over trial is the carry-over effect. This simply
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means that the effect of a treatment in a given period is present at the beginning
of subsequent periods. As a result other important effects of interest, like the
treatment by period interaction in the 2x2 case, are intrinsically aliased with the
carry-over effect. A solution to the problem is to allow for adequate wash-out
period between any two active periods, so that the effect of the treatment in the
present period is eliminated at the start of subsequent periods. A drawback of this
solution is that the time-period a trial lasts is extended considerably, increasing

at the same time substantially the possibility of drop-outs.

3.2 The model

A response obtained on a patient participating in a cross-over study at a specific
treatment period is affected by a number of factors, some of which are listed

below (see Jones and Kenward [39]):

e Physical condition of the patient at the time the measurement has been

taken (subject effect).

e Effect of the period in which the measurement was taken. This corresponds
to time trend effects, probably affecting the trial as a whole. For example
measurements taken in Winter might be substantially lower than measure-
ments taken in Summer, no matter which treatment is administered to the
patient. But the statistician should always keep in mind that patients are
not recruited simultaneously. For example two patients who have been
assigned to the sequence AB might visit the clinic for the first time in dif-
ferent dates. This raises the important question of how the period (time)
effect should be defined and modeled, though Matthews (see [65]) proposes

several approaches to this query.

o Effect of the treatment given to the patient at that period. This simply
counts the improvement (if any) in patient’s health by the specific treat-
ment, when this improvement is compared to the normal condition of the
patient. Usually the model is over-parameterized if a different term is al-

lowed for each treatment effect. Contrasts of treatments are usually in-
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cluded in the model. A standard parameterisation is the one in which each

treatment is compared to a standard therapy.

Effect of treatments administered in previous periods. This is simply the
well-known carry-over (residual) effect of previous treatments administered
to patients during the course of the study. The presence of carry-over effect,
not 6n1y biases the estimated treatment effect, but also creates problems
on the choice of best design at the early stages of the trial-design phase.
As a result, adjusting for those residual effects is of questionable value for
assessing the real effect of the current treatment. But the question raised

is if carry-over effect is present at all in a well-planned clinical trial.

Random fluctuation counts for errors which cannot be controlled or ex-
plained by the trialist. The effects of explanatory variables that may influ-
ence the response but have not been measured during the study period, are

also included in that term.

The above additive effects if written in an equation form, give the linear model

for cross-over trials described below:

Yijk = B+ Sik + 75 + Ta,5) + /\d(z',j—l) + €k (3.1)

where

u : a general overall mean.

sik : The effect of subject k in the ¢ sequence group.

m; : The period effect.

Td(,;) : Effect of treatment given to sequence ¢, at period j.

Adgij-1) - Residual effect of treatment given to sequence 4, at period j — 1.

Note that carry-over effect lasts only for one period and depends on the preceding

treatment and not on the current one. For that reason the model described in

(3.1)

is called ’simple carry-over’ model. It is possible to include higher order

carry-over terms in the previous model, but this may create identification prob-

lems during the estimation process. Furthermore, it is highly unlikely in practice
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that carry-over terms of higher order will be present at all.

Two important statistical points are in order. To begin with, in the classical linear
model set-up it is always assumed that €;; ~ N (0,0%,), where o3, stands for the
within-patient error variance. A question of interest is if the subject effect should
be considered as fixed or random (see Chi [6]). From the statistician’s perspec-
tive, inferences should be drawn for the population with the medical condition
as a whole, rather than for the trial participants only. This calls for considering
the subject effect as random variable. In addition with random subject effect,
the number of parameters needed to describe that effect does not increase with
the number of subjects. Finally, variability for which one has no explanatory
variables to explain, or for which one wishes to allow without trying to explain
can be described by a random subject effect. For all the above reasons, the as-
sumption s ~ N (0,0%) seems a realistic one.

Secondly, in the model described in (3.1), no interaction effects were included.
In a cross-over trial it is not possible to test all multi-way interactions, although
some of them might be of interest in specific settings. For example the treatment
effect might be a function of time. In the classical linear model setting this im-
plies a statistically significant treatment by period interaction. Another similar
example is the patient by treatment interaction, which simply indicates that the
treatment is highly beneficial for one group of patients, but less so for another.
The availability of that information is of great interest to pharmaceutical com-
panies, as it would show the sub-population(s) for which the development of a
compound is worthwhile. This information is available only at the later phases
of drug development.

In the examples that follow the statistical signiﬁcanée of some of the interaction
terms will be examined. In most cases it will be concluded that the inclusion of

such terms in the model is hardly necessary.

3.3 The 2x2 case

In the simplest of the cross-over designs, where two treatments are tested in

two periods, half of the recruited patients are randomly allocated to one of the
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two sequence treatment groups; namely AB and BA. The four group by period
observed means are sufficient for drawing inference about the treatment effect.

The treatment estimator is simply a weighted average of these means; namely
T = w1P11 + Wali2 + WaPo1r + Walao (3.2)

where 2?21 w; = 0. The first two moments of the four sequence by period means
vector, assuming random subject effect, can be expressed for the simple carry-over

model as follows:

U 1 -1 -1 0 L
7] 1 1 1 -1 T
El ¥ |= (3.3)
Y21 1 -1 1 O T
Y22 1 1 -1 1 A
and,
swtoh 0 0
Y ™ ™
_ g’_za ai, +o O O
v Y12 _ - —Lﬂm (3.4)
_ od, 4o o ’
Y2 0 0 —nLZB' 75
o2 0 0 %%‘ 2y +op ,:;62

In equation (3.4), it has implicitly been assumed that between subject measure-
ments are uncorrelated, so the variance-covariance matrix is a block-diagonal one.
Our goal is to determine the weights in (3.2). Standard statistical techniques, like
generalized least squares (GLS), provide the following estimates for the treatment

difference 27:

e If carry-over is not present in the model, then:
(wly wWs, W3, w4)T = (_'%) %7 %a —%
e But if carry-over is included, then:
(wl, W2, W3, w4)T = (—17 01 11 O)T

It is assumed that n;,7 = 1,2 patients allocated in each one of the two sequence

groups, while n = n; + ny is the total number of patients recruited in the trial.
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Note that when carry-over term is included in the model, the proposed weights
do not depend on the data from the second period.

The above estimators can be written in a more concise form as follows:

1. 1. 1. 1.
CROS = —5Tu + 502 + 5P — 50 (3.5)

when carry-over parameter is not included in the model, and
PAR = 521 - ’y_n (36)

when carry-over parameter is included in the model.

The proposed treatment-estimators as expressed in (3.5) and (3.6) have a simple
interpretation: if the trialist can be reasonably confident that residual effects from
first period therapy are not present at the start of the second period, then he can
use the whole of his data to extract information about the treatment differences;
on the contrary if he strongly believes that residual effects are still in existence at
the beginning of the second period, then inference about the treatment difference
should be based only on the first period data, which are free from any residual
effects. In the second case 50% on average of the available information (second
period data) is discarded.

In conclusion, if you include a carry-over term, then you should throw away half

of your data in order to derive a statistically optimal treatment estimator.

3.3.1 What if CROS is used when we should use PAR in

the simple carry-over model

From the discussion so far, it is clear that inclusion of a carry-over term in the
2x2 case leads to a treatment estimator which sacrifices a lot of the available in-
formation, in order to retain good statistical properties (MVUE). One may argue
that data from both periods should be used to estimate treatment differences, no
matter if carry-over effect is included in the model or not. In the more general
case, where the carry-over term is included, although PAR estimates unbiasedly
the treatment difference 27 it has higher variance since it is a between-patient es-
timator. On the other hand CROS is a biased estimator, but with lower variance,

since it utilizes within-patient information to estimate treatment effect. Bias and
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variance of the proposed estimators are presented below:

. 11
BiaspAR =0 VpaR = (0% + a%)(n—l + n—z) (3.7)
) A o% 1 1

Biascros =3 VCROS =5 (- +7) (3.8)

‘From (3.7) and (3.8), it is not difficult to evaluate the Mean Square Error (MSE)
of the proposed estimators and try to figure out under which circumstances we
should use the within-patient estimator CROS instead of the less precise between-
patient estimator PAR. Since:

— (0% 4+ o) (e L
MSEpapR = (GW+O'B)(n1 + nz) (3.9)

o 1 1 +)\2

MSEcRros = _é—( (3.10)

no o4
the required condition for selecting CROS instead of PAR is easily proved to be:

—2— < (0'W+20'B)(n—1+n—2) (311)

In the special case where equal number of patients are allocated to the two se-
quence groups, i.e n; = ny = n, the previous condition takes the simpler form:

oo o1z
By studying more carefully (3.12) we see that our final decision about which
estimator is the best one to be used in the analysis, depends on the magnitude of
the unknown residual effect. Generally speaking, the carry-over effect might be
expected to be small, smaller than the combination of the within and between
patient variance stated in the right-hand side of (3.12). As a result we are more

likely to select the CROS estimator instead of the PAR, in real-life situations.

3.3.2 Combining the two estimators - Frequentist approach

The statistical properties of CROS and PAR have been extensively studied in
the previous section. A typical medical statistician will be tempted to linearly
combine the two estimators in order to improve upon them. Our new treatment

effect estimator takes the following form:
7. = wCROS + (1 — w)PAR (3.13)
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In order to investigate the properties of the combined estimator, the joint distri-
bution of PAR and CROS under the simple carry-over model is needed and it is
provided below. It is assumed that equal number of patients are allocated to the

sequence groups.

PAR T 1 [ 2(c% +0%) o%

CROS | -2 |'n o2, o
Note that Cov(PAR,CROS) = Vor(Qg, a property which greatly simplifies the
expressions for the first and second order moments of 7.. We would like to choose
the weight w in (3.13), so that to minimize the MSE of 7.. To that purpose, a

new between-patient estimator has to be defined as follows:

SEQ = 2(PAR — CROS) = (J21 + F22) — (F12 + J11) (3.14)
This estimator plays a key role for drawing inference about carry-over effect, since

its expectation is simply that effect, while its variance is:
o2 + 20%

. (3.15)

VSEQ =
There is an easy clinical interpretation for the SEQ estimator: The sum of the
responses are calculated for each patient and the averages of those sums are
obtained for each sequence group. Those averages are compared between groups,
and this difference forms an unbiased carry-over effect estimator. SEQ is being
used for testing statistical significance of any residual effects under the simple
carry-over model.
The optimal weight for minimizing the MSE of the combined estimator is as

follows:

_ Vseq 1
Wfrequentist = VsEqQ + X141

where T) is the t-statistic for testing A = 0. The above expression has been

(3.16)

derived by Jones and Wang (see [41]), who also report a simulation study for
a range of values of A and ¢% which shows that the combined estimator has
worse performance in terms of MSE when compared to CROS and the two stage
procedure (presented in the next section). Equation (3.16) simply confirms that
when the carry-over effect is negligible, more weight is put on the within-patient
CROS estimator, while in the unlike alternative scenario of a huge carry-over

effect the between-patient PAR estimator gets more credit.
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3.3.3 Combining the two estimators - Bayesian approach

Grieve (see [26]) considers in his Bayesian analysis of the simple carry-over model,
the problem of model selection. In our set-up, a discrete set of competing models
(simple and no carry-over) is proposed and the Bayes factor is used for selecting
a single model. For the 2x2 cross-over trial, the Bayes factor is simply the ratio of
the marginal likelihood under the no carry-over model, to the marginal likelihood
under the simple carry-over model. Grieve evaluates the Biayes factor against a

carry-over effect as follows:
By = 3n/4[l+F/(2n—-2)]" (3.17)

where, F' is the statistic for assessing significance of the carry-over effect, while
n is the number of subjects recruited in each sequence. Grieve reports that the
maximum value for By, occurs when F' = 0. Although the observed F value
rarely is identical to zero, in the example that will be shortly analyzed, but also
in the trial considered by Grieve, the ratio F'/(2n — 2) does seem to approach

zero. If this assumption is made, then the Bayes factor simplifies to:
Bor ~ \/3n/4 (3.18)

A general use of the Bayes factor is to form posterior estimates of parameters
of interest by averaging over a discrete set of quantities derived from posterior
distributions under different model assumptions. Grieve implements this idea, by

combining CROS and PAR using the following weight on CROS:

7TB()1

“bayes = T 1By, (3.19)

where, 7 is the prior odds against a carry-over effect. If we are indifferent a-priori
to the choice of a model, then we can assume that 7 = 1. Substituting equation
(3.18) into equation (3.19), the Bayesian weight on CROS takes the following

form:

W, :ﬁ_ (3.20)
ayes = 51 /3,

Obviously the Frequentist approach assigns a weight in CROS that results in the

smallest possible MSE for treatment effect estimation. The question, how close
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is the Bayesian combined estimator when compared to its Frequentist competitor
over a range of A values, is raised. Figure (3.1) reveals that for moderate values
of the carry-over difference the two approaches are indistinguishable, while the
Bayesian is out-performed considerably by the Frequentist solution for low and
high values of A The Bayesian solution though, has the distinct advantage
that the weight assigned to CROS depends only on the sample size and not

on unknown parameters.

Combining CROS with PAR

Frequentist
Bayesian

co —

LO

0 8aeOE ©

oo
ity

co

Lambda

Figure 3.1; Combining the two treatment estimators
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3.4 The two stage procedure

In our discussion so far, it is clear that residual effect plays a key role in drawing
inferences about the treatment difference. Of course clinical knowledge could rule
out carry-over occurring in any appreciable degree, but it is quite unlikely, under
either the Frequentist or even the Bayesian point of view, to be in a positibn to
incorporate any knowledge about the residual effect of a treatment without ac-
curate knowledge of the treatment effect itself. Usually such knowledge becomes
partially available at the early stages of a clinical trial (Phase I) where drugs
are tested on healthy volunteers, but statisticians face difficulty in incorporating
that piece of information at the later stages of either planning or analyzing the
outcome of a cross-over or a parallel group trial.

A first attempt to tackle this problem was the solution proposed by Grizzle (see
[30]). The idea was to test formally for the presence of carry-over effect, rather
than relying on subjective opinions provided by medical doctors for its existence.
His procedure composed of two stages. At the first stage the significance of carry-
over was decided by comparing the means of the two sequences (SEQ estimator).
It has to be said that this test for carry-over is under-powered, as noted by Senn
(see [74]). At the second stage the treatment effect estimate is based on the in-
formation provided about the residual effect at the first stage. Schematically the
procedure is displayed in Figure (3.2).

The detailed proposed scheme is as follows:

e Stage 1: Use the between-patient carry-over estimator, SEQ, to test the

significance of carry-over effect at 10% level.

e Stage 2: If test for carry-over is significant use the between-patient PAR
estimator to evaluate the extend of the treatment difference at 5% level,
otherwise the within-patient treatment estimator, CROS, should be used

for drawing inference about treatment, again at 5% level.

A mixed effects model is assumed throughout, since subject effects are considered
as random. At first sight the two stage procedure seems to be the correct one for
analyzing data from cross-over experiments, since the minimum variance unbiased

(MVU) treatment estimator is the recommended one for inferential purposes,
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Use CROS for
testing T =0

Check A=0

using SEQ

Use PAR for
testing 7 =0

Figure 3.2: Flow diagram of the two stage procedure
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irrespective of the significance or not of the residual effect. Before proceeding
further it would be helpful at this point to present the marginal distributions
of treatment and carry-over estimators, useful for evaluating the performance of
the two stage procedure under the simple carry-over model with random subject

effects. These are:

SEQ ~ N (X\4(o% +20%) /n) (3.21)
PAR ~ N (1,2 (o} +03) /n) (3.22)
CROS ~ N (r—X/2,0%/n) (3.23)

Evaluation of Type I and Type Il error rates of the two stage procedure require the
distribution of the treatment estimator used at the second stage of the procedure,
conditional on the value taken by the carry-over estimator used at the first stage.

These are:

PAR|SEQ ~ N (r—X/2+SEQ/2,0%/n) (3.24)
CROS|SEQ ~ N (1= X/2,0%/n) (3.25)

As shown by Freeman (see [21]), the scheme suffers from many deficiencies the
consequences of which will be soon demonstrated. The majority of these defi-
ciencies stem from the high correlation between SEQ and PAR. It is not difficult
to show that:

Corr (PAR,SEQ) = \/(0‘24, +20%) / (202, + 20%) (3.26)

but,

Corr(CROS,SEQ) = 0 (3.27)

This simply implies that although the PAR estimator is unbiased for estimating
the treatment effect under the simple carry-over model, it is highly biased if
carried out having seen the value of the SEQ estimator (see Senn [78]). More
specifically:
SEQ — A
2
2

V(PARISEQ) = VeRos = % (3.29)

E(PAR|SEQ) = 7 + (3.28)
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A further implication of the high correlation between PAR and SEQ, is that if
the PAR estimator is chosen at the second stage, then the size of the test for
investigating a treatment difference using PAR, should not be set at the conven-
tional 5% level, but at a much lower level, such as 0.5% (see Wang and Hung [90]
or Senn [79]). This ensures that the overall Type I error rate of the procedure is
kept at the nominal 5% level.

Another way of looking at the deficiency of the two stage procedure is by not-
ing that conditionally on SEQ, CROS and PAR are both biased; the first by an
amount of —A/2, while the second by (SEQ — A)/2. Note that the conditional
distribution of CROS|SEQ is identical to that of CROS since the two estimators
are statistically independent. So PAR|SEQ is biased regardless of the presence of
carry-over effect, on the other hand CROS (or equivalently CROS|SEQ) is biased
only in the presence of carry-over (see Senn [78]). Furthermore CROS and PAR
have the same conditional variance given SEQ. As a consequence the treatment
estimator with the smallest conditional bias (in absolute terms) should be chosen
by. the procedure at the second stage. But when the PAR estimator is chosen
from the procedure for testing treatment effect, the difference SEQ — A must be
large enough so that the carry-over effect is statistically different from zero. From
the discussion above the PAR estimator will have higher conditional bias than
its competitor CROS (or CROS|SEQ) and the same conditional variance, but
the two stage procedure will select PAR instead of the more efficient CROS. In
conclusion PAR is selected when it should not by the two stage procedure.

A thorough investigation of the performance of the two stage procedure was at-
tempted 25 years later after Grizzle proposed this scheme, by Freeman (see [21]).
Trialists who had analyzed data from cross-over experiments using the two stage
procedure for many years, had implicitly assumed that PAR and SEQ were inde-
pendent, so that they were incorrectly thinking that the overall Type I error of
the procedure was 5%. Because of the high correlation between PAR and SEQ
the real Type I error is 8.7% in the absence of any residual effect. In the case
where carry-over effect is a small fraction of the treatment effect the CROS es-
timator is more powerful when compared to the two stage procedure, as will be

soon demonstrated. The two stage procedure is superior to the CROS estimator,
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in terms of power, only in the unlike case where carry-over effect is a substantial
fraction of the treatment effect.

Before attempting a more detailed investigation of the two stage procedure a basic
notation will now be introduced. Let a, stand for the size of the test for carry-
over, while a, and a. represent the size of the test for treatment when PAR or
CROS are used respectively. Moreover fSEQ(x), fpar(z) and forog(z) denote
the marginal densities, while VSEQvVPAR and VorQg are the unconditional
variances of the estimators indicated in the subscripts. Finally z, is the value
which cuts-off the upper a% of the standard normal distribution, ®(z) is the cu-
mulative density of the same distribution, while ¢;,c, and ¢, are the critical values
for testing the hypothesis of significance for carry-over or treatment effect and de-
fined as follows: ¢, = z,,/2 \/\—/ﬁ, Cp = zap/gm and ¢, = zg,/2 \/\TC_RO—S
More specifically, following Senn (see [78]), according to the plan of the two stage

procedure the following treatment estimator is used:

A CROS, if [SEQ| < za,2,/VSEQ

PAR, if [SEQ|> z.,/2,/VSEQ

TTs =
The evaluation of the power of the two stage procedure, requires first the calcu-
lation of the power for each arm; the left one which points to the use of CROS
and the right one where PAR is used as tool for estimating treatment effect. The
unconditional power of each arm is more easily evaluated by considering first the
conditional power of each treatment estimator upon the possible values of the
carry-over estimator (SEQ) that gave rise to that treatment estimator. Because

CROS and SEQ are independent it is obvious that:

Power(CROS|SEQ) = Power(CROS) =

1-— @(zac/z - ——-—2—) + @(-Zac/g — 2

——)
v VCROS v'VCROS

On the contrary, because PAR and SEQ are highly correlated, in order to work
out the power of that arm we have to evaluate first the power of PAR|SEQ = z,
which as a function of SEQ will then be integrated out over the values of SEQ
for which PAR is selected at the second stage of the procedure, as follows:

Power(PAR) = / fSEQ(z) (Power (PAR|SEQ = z)) dx

IleCs
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where,

Power(PAR|SEQ=2z)=1 — & (Zap/2\/VPAR, —(r=A2+ x/Q))
v/ VPAR|SEQ
+ @ (‘zap/zx/VPAR —(r=X/2+ m/z))

v/ VPAR|SEQ

By combining all the above we can evaluate the power of the TS procedure as

follows:

Power (TS) = prob (CROS is selected) Power (CROS|CROS is selected)
+ prob (PAR is selected) Power (PAR|PAR is selected)

where,

prob(PAR is selected) = prob(reject A = 0) = prob(|SEQ| > z,,/2, /VSEQ)

To illustrate the performance of the two stage procedure, suppose that the real
treatment difference is 27 = 5, while the carry-over difference can be set at
any value in the interval (0,27). By assuming the within-patient variance to be
half the between-patient variance (for example suppose that o2, = 48, so that
0% = 96) and by requiring the power of the CROS test to be 90%, the number
of patients in each sequence group can easily be estimated to be n = 22. Those
values are the same as those used by Jones and Lewis (see [40]) on their discussion
of the usefulness of the cross-over experiments at the third phase of clinical trials.
The results comparing the power of the two stage procedure with that of CROS
and PAR are presented in Table 3.1.

As far as the bias is concerned the argument goes as follows:

Erg = / E (CROSISEQ = z) fgpq () d
|z|<cs
+ / E (PARISEQ = 7) fggq(x) do
|z|>cs
A A
= (7‘—)\/2) P )2 T T /———— - _Za.,/2“—)>
v/ VSEQ v/ VSEQ
v [ =Mz fepqe)de (3:30)
|z|>cs
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where the independence of CROS and SEQ estimators has been exploited once
more. Turning now to the assessment of the variance of the procedure, we apply

the following tower property regarding variances:

Vrg = V(E(CROS|SEQ)) + E(V(CROS|SEQ))
+ V(E(PAR|SEQ)) + E(V(PAR|SEQ)) (3.31)

The above expressions can be evaluated by using the appropriate conditional

moments:

E(V(CROS|SEQ)) = g;mprob(select CROS)
V(E(CROS|SEQ)) = 0 (3.32)

E(V(PAR|SEQ)) = —%(1 — prob(select CROS))

V(E(PARISEQ) = ;VsEq

2

| —

= 3 / $2fSEQ($) dr — / zfsRQ(z) dz

z|>cs z|2es
The tower property of the expectation and variance operators has been used to
evaluate the first and second order moments of the two-stage procedure. From
Table 3.1 it is clear that the power of both CROS and the two stage procedure
(TS) decrease as the carry-over difference increases. The reverse argument is true
as far as the bias and variance of the above estimators are concerned. Regarding
the PAR estimator one can easily notice that the values of the power, bias and
variance do not depend at all on the carry-over difference.
The prime interest to the statistician involved in the analysis of a cross-over clin-
ical trial is always which estimator should be used for the statistical analysis and
unfortunately no ultimate decision can be reached towards that end. Note that
only in the case when carry-over is 50% or more of the real treatment effect is
the two stage procedure superior to the CROS estimator in terms of power. The
PAR estimator has always the lower power compared to the other two estima-
tors and should never be used. However the TS procedure has lower bias when
compared to the CROS estimator but has substantially higher variance along the
whole range of values for the carry-over difference. If one now computes the mean

square error (MSE) of the two estimators the CROS estimator will be preferred as
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Table 3.1: Properties of the three treatment estimators when 7 =5

Power Type 1 Bias Variance

A |CROS TS PAR|CROS TS PARCROS TS PARCROS TS  PAR
0.0 {0.922 0.881 0.2820.050 0.087 0.05 0.000 0.000 0.0004 2.182 6.974 13.091
0.510.895 0.863 0.282 0.0563 0.089 0.05-0.250 -0.139 0.000 2.182 7.018 13.091
1.0 | 0.861 0.839 0.282 0.063 0.098 0.05-0.500 -0.278 0.000( 2.182 7.149 13.091
1.5 | 0.820 0.809 0.282 0.080 0.112 0.05-0.750 -0.414 0.000/ 2.182 7.368 13.091
2.0 10.772 0.772 0.2820.104 0.131 0.05-1.000 -0.546 0.000 2.182 7.672 13.091
2.5 (0.718 0.730 0.2820.135 0.157 0.05-1.250 -0.673 0.0000 2.182  8.059 13.091
3.0 |0.658 0.683 0.2820.174 0.187 0.05-1.500 -0.794 0.00(4 2.182  8.527 13.091
3.5|0.594 0.635 0.28200.220 0.223 0.05-1.750 -0.908 0.0000 2.182  9.070 13.091
4.0 | 0.528 0.584 0.282(0.273 0.263 0.05-2.000 -1.013 0.000 2.182 9.684 13.091
4.5 10460 0.535 0.2820.331 0.306 0.05-2.250 -1.110 0.0000 2.182 10.363 13.091
5.0 0.394 0.488 0.282( 0.395 0.349 0.05-2.500 -1.196 0.000 2.182 11.100 13.091

having the lower MSE. Once more the PAR estimator has the worst performance
in terms of MSE.

Since in most cases any residual effect from previous treatments is negligible,
Table 3.1 shows that we should be quite confident in using most of the time the
CROS estimator without pre-testing for carry-over effect. However in the un-
likely case of a statistically significant carry-over difference the TS procedure is a
viable alternative in terms of power but still inferior to CROS in terms of MSE.
Note here that the comparison based on the power performance is not a fair one,
because the size of the test for treatment for the TS procedure when A = 0 is
8.7%, while for the other two alternatives the corresponding figure is 5%. The
question of adjusting the size of TS so that the nominal 5% level is achieved, will

be discussed in the next section.

3.4.1 Can we improve the two stage procedure?

The answer to that question lies in the percentage of time that PAR is selected
by the two stage procedure. The original scheme, as proposed by Grizzle, selects
PAR 10% of the time under the null. It is obvious that if TS is modified such that
the size of the test for PAR is lowered, then it would be possible to fix the Type
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I error rate at the nominal 5% level, but it is not clear at all if that alteration
will improve the power of the procedure and make it superior to CROS. One way
to adjust the T'S procedure is by keeping fixed the size of the test for carry-over
and the size of the test for treatment (when CROS is selected) at their original
values, but adjusting the size of PAR. To illustrate the idea, suppose that the

unconditional size of the test for PAR (apar), is set according to the relation:

(1 — aspqQ) acros +apar = 0.05 (3.33)

This relationship is approximately valid, since if P(SEQ,PAR) defines the prob-
ability that PAR and SEQ are jointly significant, then by requiring Type I error

rate of the procedure to be 5% the following exact relation holds:
(1 - aSEQ) acros + P (PAR, SEQ) = 0.05 (3.34)
Because P (PAR, SEQ) < apar we conclude that

(1 — aseqQ) acros +apar < 0.05 (3.35)

where equality holds when PAR and SEQ are perfectly correlated (see Senn [79]).
This expression will be close to equality for the sorts of Corr (PAR,SEQ) com-
monly encountered in practice.

Equation (3.33) implies that the original scheme could be corrected in two dif-
ferent ways. According to the first plan the investigator might wish to test the
significance of the treatment difference at the same pre-specified level (say 5%)
irrespectively of which treatment estimator is chosen by the procedure at the
second stage (i.e acros = apar)- This approach requires re-setting the level of
carry-over testing, but keeps the sizes of CROS and PAR equal. If we target
Type I error at 5% then the permissible range of values for the common size of
the test for the treatment difference lies in the interval (2.5%, 5.0%).

An alternative way of amending the procedure requires fixing the size of the test
for carry-over difference at the traditional 10% level, while altering simultaneously
the sizes of CROS and PAR so that equation (3.33) is satisfied. As it is obvious
from that equation an increase in the size of CROS should be accompanied by
a decrease in the size of PAR, if that plan is followed. This approach may have

implementation difficulties, since the analyst has to decide different significance
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Table 3.2: Performance of the corrected two stage procedure

Type I error Power
Plan 1 Plan 2 Plan 1 Plan 2
aseo | 7.6% | 14.8% 10.0% 7.6% | 14.8% 10.0%
aCcROS

X| 26% 2.7% |4.5% 5.0% 5.5% 2.6% 2.7% |4.5% 5.0% 5.5%
0.0 | 0.047 0.049 0.050 0.050 0.050 0.848 0.821 [0.870 0.871 0.852
0.5|0.049 0.051 [0.053 0.053 0.053 0.818 0.798 |0.849 0.850 0.828
1.0 | 0.055 0.056 [0.061 0.062 0.062 0.782 0.768 |0.821 0.821 0.797)
1.5 0.064 0.066 0.075 0.076 0.07§ 0.740 0.731 [0.785 0.785 0.758
2.0(0.079 0.079 0.094 0.097 0.099 0.692 0.688 [0.742 0.741 0.712
2.5(0.098 0.097 0.119 0.123 0.127 0.640 0.641 0.693 0.691 0.659
3.0 10.122 0.119 0.150 0.155 0.160/ 0.586 0.591 [0.638 0.635 0.601
3.510.151 0.145 0.185 0.192 0.199 0.531 0.540 [0.581 0.575 0.539
4.010.186 0.176 0.225 0.233 0.241} 0.477 0.489 [0.521 0.513 0.475
4.5(0.224 0.209 0.268 0.277 0.285 0.426 0.440 0.462 0.451 0.410
500266 0.245 0.312 0.322 0.331 0.380 0.396 [0.405 0.391 0.348

levels for the testing of the treatment effect, depending on the treatment estima-
tor chosen at the first stage of the procedure. In that case the maximum value
that acros can be set at is 5.5%, while the corresponding range of acceptable
values for apg is from 0% to 5%.

Applying the first correction scheme leads to an improvement of the power of
the procedure, as the size for testing the treatment difference decreases, con-
trary to the Type I error rate which looks to deviate from the desired 5% level.
In Table 3.2 both power and Type I error rate for Plan 1 are displayed, when
acros = apar = 2.6% (or 2.7%). From equation (3.33) it can easily be derived
that the size of the test for carry-over should be set at 7.6% and 14.8% respec-
tively. Those values were chosen on the grounds of providing best power values,
while keeping the Type I error rate close to 5%.

Moving on now and studying more carefully the performance of the second cor-

rection scheme, it can be seen that power initially increases as acros varies from
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.O% to 5% but decreases afterwards. Type I error rate gets closer and closer to
5% as acros moves from 0% to 5.5%. Once more the values chosen to illustrate
the performance of the second correction plan give the highest power values. It is
worth mentioning here that the first correction plan alters the bias and variance
of the procedure, while the second one leave them unchanged. Comparison of the
two plans performance show that correction Plan 1 is less effective in improving
the power of the procedure if the Type I error rate is set at about the same level
for both.

In conclusion all attempts to improve the two stage procedure have failed for the
whole range of carry-over values. This indicates that this procedure is rather of
historical rather than actual value and by no means should be used in the future

by the analyst of the cross-over experiment.

3.4.2 Another two-stage procedure

Equation (3.12) implies that the following treatment estimator can be defined:

CROS, if [SEQ|< 2v/(% ¥203)/n
PAR, if |SEQ|>2y/(0% +20%)/n

TTs2 =

An investigation similar to the one followed for studying the two stage procedure,
reveals that the new scheme is worse in terms of power from CROS and the two
stage procedure. More specifically, for the most interesting case where 7 = A\ = 0,
the Type I error rate is evaluated at 8.4% while the power is as low as 78%. This
result shows that another attempt to define the two-stage scheme in a more

rational way, has failed.

3.5 A 2x2 trial in asthma

Salbutamol is a well established bronchodilator for patients suffering from mod-
erate or severe asthma. A recently developed bronchodilator, called formoterol,
is tested against the old method in a 2x2 cross-over trial conducted on 13 chil-
dren. The response measurement was peak expiratory flow (PEF). Let A denote
formoterol and B salbutamol, respectively. Children were randomized to one of

the two sequence groups, such that 7 of them were allocated to the sequence
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group AB, and the rest to the dual group BA. After their first visit in the clinic a
wash-out period of at least one day followed before their second visit. These data
can be found in Grieve and Senn (see [29]). A graphical display of the asthma
trial data is presented in figure (3.3). A simple ANOVA analysis where the total
Sum of Squares (SS) has been split up into two components, a between and a
within patient SS, is shown in Table (3.3).

Overall the new treatment gives higher mean peak expiratory flow than the old
one, although the improvement seems to be higher when salbutamol is administer
to the patient before formoterol. This indicates that a carry-over effect (or equiv-
alently a treatment by period interaction) may be present. If carry-over effect is
there this simply means that the persistence of salbutamol is longer when com-
pared to that of formoterol. A clinical explanation to this phenomenon is that
patient’s body has been addicted to the old treatment, so that its effect dies out
slowly. As a result a longer wash-out period will be needed before the residual
effect of salbutamol will have completely disappeared.

Bﬁt is there a carry-over effect? ANOVA Table (3.3) indicates that the carry-
over effect is negligible. The improvement in PEF in favour of formoterol in
the sequence BA was twice as much as that in the sequence AB. This was not
because of a carry-over effect as the ANOVA table revealed, but it was due to
a peculiar observation for subject 13. Particularly for this subject his first ac-
tive period measurement (treated with salbutamol) was extremely low (only 90),
when compared to the mean of PEF from subjects in the same sequence group
and at the same period (mean=322). In the same way his second measurement
(220), when treated with formoterol, although it looks more similar to the mea-
surements taken on patients in the same sequence group and at the same period
(mean=371), it is still substantial lower. The between and within subject stu-
dentized residuals are shown in figure (3.4). The outlier values observed in this
figure, correspond to subject 13.

In addition, fitting ”patient” as a random effect, a typical analysis of the re-
sulting mixed effects model using restricted maximum likelihood (REML) as the
method of estimation for the variance components (see Searle [73]), evaluates the

between-patient component at §p = 66.52 more than two times larger compared
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Figure 3.3: Graphical summary of the asthma trial (without baselines)
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Figure 3.4: Model checking of the asthma trial (without baselines)
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Table 3.3: Analysis Of Variance (ANOVA) table

Source DF Sum of Squares Mean Square F-value p-value
Between subjects

Carry-over 1 335.19 335.19 0.03 0.86
BS Residual 11 114878.30 10443.48

Within Subjects

Period 1 984.62 984.62 1.31 0.27
Treatment 1 14035.92 14035.92 18.70 0.00
WS Residual 11 8254.46 750.41

to the estimated within-patient component &y = 27.39. Evaluation of the treat-
ment effect shows that, we expect in a future patient an increment in PEF by
46.60 (10.77), when the patient is treated with formoterol compared to being

treated with salbutamol.

3.5.1 The Bayesian Approach

The power of this approach lies on the ability of the analyst to report not only an
estimate of treatment (or carry-over) difference accompanied with its standard
error, but the whole distribution of it, making easier the task to answer further
queries of interest about these parameters. The first to present a Bayesian anal-
ysis of the cross-over experiment was Grieve (see [26]), who was able to derive
explicitly the joint posterior distribution of treatment and carry-over effect, as
well as, the marginal posterior distribution of the carry-over effect. Marginal in-
ference for the treatment effect, which is the main purpose for running the clinical
trial, was not possible to be evaluated analytically, but Grieve (see [27]) was able
to provide a very good approximation to it, based on Patil’s approximation to a
Behrens-Fisher type distribution. Also the constrain ¢4, < 0% was considered in
the analysis, but it turned out to make very little difference to the final conclu-
sions.

Our approach will be based on graphical modeling theory for expressing qualita-
tive relationships between data and unknown parameters, and on Gibbs sampling

for performing the necessary computations to derive the posterior quantities of
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interest. The presentation of a statistical problem using graphs, where nodes rep-
resent random quantities and missing links represent conditional independence
assumptions, has the main advantage of breaking a complex model to simpler
ones. This implies that the structure of the problem is easier to communicate
and furthermore the graph provides the basis for the computation task (Gibbs
sampling, see Gilks et al [22]).

In the 2x2 cross-over trial examined here, recall that responses (y;;) on a specific
patient are independent conditional on their mean p;; and the within-subject
component of variance o%,. Each patient’s mean is a linear function of four pa-
rameters : patient, period, treatment and carry-over effect. Each one of these
parameters is considered as a random variable and a prior distribution is assigned
to it. Note that in the frequentist approach only the "subject effect” is taken as
random, with the rest of the parameters regarded as fixed quantities. This model
is known in the frequentist literature as the random intercept model.
Schematically the situation is presented in Figure (3.5). In that diagram logical
links (dashed arrows) have been used for represented deterministic relationships,
while solid arrows represent stochastic dependencies. The Gibbs sampler now
generates a Markov chain for each variable. The chain is produced by using the
conditional distribution of each unobserved node in the graph given the rest. In
the long run the generated draws compose a sample from the posterior distri-
bution of that variable. The diagram indicates the way in which a sample of
a random variable is linked with random draws of other variables, so that the
statistical restrictions of the model are satisfied (see Spiegelhalter [87]).

The likelihood function can be expressed as the product of the following terms:
Yijk ~ N (/Jijk, U%v)
Bijk = M+ Sik + T + Tagg) + Adgi,j-1)
s~ N(0,03)
Fully Bayesian analysis requires the specification of prior distributions for all un-
known parameters appearing in the above equations. If information regarding
those parameters was available from previous cross-over trials this could be in-

corporated at that stage. In the absence of any prior knowledge the influence of

the prior distributions in the final conclusions should be minimal. In our case the
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Figure 3.5: Graphical representation of the simple carryover model



following least-informative priors were chosen:

Wy Ty TaGing)s Mgij—1) ~ N (0,10°)

o5’ 05 ~ Gamma (107%,107°)

The starting values chosen to initiate the Gibbs sampler set the location param-
eters at zero, while the variance components at one. A long chain was run, so
that conclusions are insensitive to initial values and most importantly to ensure
that the chain has converged to its limited distribution. In this example, conver-
gence monitoring was also performed by generating five simulated sequences with
different starting points and using CODA software to evaluate Gelman-Rubin’s
R-statistic for treatment and carry-over effect. The R-values were almost identi-
cally equal to 1, re-assuring that convergence occurred. For each variable 15000
values were generated and only the last 5000 values used for drawing inference.
The sampled values used for drawing inference for the various parameters are
displayed graphically in Figure (3.6). All calculations were performed using the
BUGS software. BUGS code is provided at the end of this chapter.

The posterior distribution of carry-over has mean 13.30 with variance 85.70. We
conclude that carry-over must be negligible, although the 95% equal-tailed confi-
dence interval for that effect is (-141.00,201.00) indicating a wide range of possible
values for the carry-over difference. This is expected since carry-over is estimated
using between-patient information, which implies that no matter if either a Fre-
quentist 95% confidence interval is formed or a 95% Bayesian HPD region is
calculated the interval looks always wide. Note here that because of the sym-
metry of the posterior distributions for all location parameters, 95% equal-tailed
intervals or 95% HPD regions lead to similar inferential conclusions.

Other posterior quantities of interest for both models, not only for treatment and
carry-over difference, but also for the within and between patient variability are
summarized in Table (3.4).

The advantage of the Bayesian approach is that we can form an idea of the most
likely values of treatment (carry-over) effect. In Figure (3.7), the posterior distri-
bution of 2 indicates that the probability of that parameter lying in a symmetric
interval around zero is really high. In the same figure the posterior distribution

for the treatment difference suggests that under the simple carry-over model it is
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Figure 3.6: Sampled values for treatment and carry-over effect under various

assumptions concerning the carry-over term
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Posterior distribution of residual effect for ttie simple carryover model
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Figure 3.7; Upper half: Posterior for residual effect under simple carry-over
model. Lower half: Posterior for treatment effect under model with no carry-

over (solid line) and model with simple carry-over (dashed line)
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more likely formoterol to give higher PEF measurements than salbutamol, i.e
prob(7 > 0ly) > prob(7 < 0ly).

although the possibility of a negligible treatment effect cannot be ruled out, as the
posterior distribution of 27 confirms. However this is not the most likely scenario

for that effect. A further model that can be fitted, is the one where no carry-over

Table 3.4: Posterior quantities for parameters of interest

Model with carry-over term Model without carryover term
Parameter [Mean SD 95% LL 95% ULMean SD 95% LL 95% UL
27 53.10 44.60  -28.10  150.0046.50 17.60 21.30 70.00
24 13.30 85.70 -141.00  201.00
ép 74.10 - 19.50 44.60  120.0069.80 17.60 43.10 112.00
Gw 30.00 7.52 19.50 48.70030.00 7.44 19.50 47.90)

term is considered. Figure (3.7) shows the posterior density p(7|\ = 0, data).It is
clear now that, although the mean posterior treatment difference is slightly lower
compared to the corresponding estimate under the simple carry-over model, the
standard error of this difference is substantially lower as well in the simpler model.
The 95% HPD region of the simpler model leaves no doubt about the superiority
of the new treatment.

The posterior quantities for the within and between patient variability are also
affected to some extend by the presence or not of the carry-over term in the
model. Both the posterior mean and SD for 6p are inflated when carry-over
term is included in the model. This is due to the fact that A and op utilize simi-
lar between subject information for inferential purposes and absence of anyone of
the two parameters affects our estimate for the other. On the contrary the effect
on Gy seems to be smaller. Finally the data does not exclude the possibility of
the within-patient variance being larger than the between-patient one, although
looking at the posterior means of the variance components the posterior proba-
bility of that scenario is expected to be small.

In conclusion, the Bayesian analysis of our 2x2 cross-over trial without baselines
support the conclusions drawn from the Frequentist approach. Further insight

on how treatment and carry-over effect affect each other, is also gained.
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3.6 The use of baselines

In the basic 2x2 cross-over experiment, already considered, it is quite common
in practice for measurements to be taken on patients just before the start of the
first treatment period, and after the completion of the first treatment period and
prior to the start of the second treatment period, i.e at the end of the wash-out
interval. Let [yiik, Yiok, Yisk, Yiak] denote the four measurements collected oﬁ the
k** patient randomized in the i** sequence group. The two baseline measurements
provide information about the physical condition of the patient before the start
of each treatment period, but they do not help at all in assessing the treatments
themselves. Note here that the second baseline measurement might have been
influenced by the treatment administered in the first period due to a first order
carry-over effect, denoted as 8. Of course carry-over from the first treatment
period, might be present when the second treatment measurement is taken and
this will be referred to as the second order carry-over effect, and denoted as A
in ' what follows. An adequate wash-out period would suffice to eliminate both

carry-over terms. The linear model adopted here is:
Yijk = M+ Yi + Sik + Tj + Tagig) + Oa@,j—1) + Aag,j—2) + €izk (3.36)
where,
sik ~ N(0,0%) and €5 ~ N(0,0%)
and,

od(i’o) = /\d(i,O) = )\d(i,l) =0 for 7= 1711,] = 14, k= 1, 2.

Similar notation to the one used in the 2x2 cross-over experiment without base-
lines is utilized throughout. For example, carry-over from the first active treat-
ment period to the second active treatment period is denoted by A, while a new
symbol is used to refer to carry-over from first active treatment to wash-out
period; namely . Once more the second order carry-over term is confounded
with the treatment by period interaction. As in the simple carry-over model the

conventional uniform covariance structure is implied for observations taken on a
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subject, while observations from different subjects are assumed independent. A
further term introduced in the model is that of the sequence effect «;. Its inclu-
sion ensures that treatment and carry-over terms will be estimated using within
subject contrasts.

One way to handle baseline measurements is that proposed by Kenward (see [42]).
They use OLS estimators, as they are optimal under uniform covariance struc-
ture. These estimators have the form é; — é;, where & is a contrast of the four
cell means [§i1., ¥io., Uis., Jia.] in Sequence ¢. A treatment or carry-over estimator is
completely determined once the weights in those contrasts are explicitly defined.
A three stage procedure for drawing inference about the treatment difference al-
lowing at the same time for any adjustments caused by the presence of carry-over

terms is now described. Schematically strategy 2 is presented in Figure (3.8).

e Step 1: Test the significance of the first order carry-over difference at 10%
level, by comparing the two baseline measurement on each subject. Least

squares analysis points to the use of the following set of weights:

1 1
w; =(z,0,—=,0
e Step 2 : If the first order carry-over term is found statistically significant
from zero then keep that term in the model and check for the significance
of the second order carry-over term at 10% level, by comparing the first
baseline measurement with the average of the two treatment measurements

for each patient. The proposed set of weights in that occasion is:

1 1
wX2 = (17 _5107 —'2')

On the other hand if the test for the first order carry-over term allows
the deletion of that term from the model, then the test for the second
order carry-over term (at 10% level again) is based on the comparison of
the average of the baseline measurements to the average of the treatment

measurements for each patient, suggesting the following scheme of weights:

1 11 1

w;\:

=Gy
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Check if § =0
using 6

Test if /\A= 0 Test if ’\-= 0
using A using A
Yeg Yeqg
No
Use 7, Use # Use 7 Use 7,
(CROS) 2 (CROS) (PAR)

Figure 3.8: Flow diagram of the three stage procedure (staregy2). Strategy 1 is
described by a similar diagram by eliminating the third path in the above figure

101



e Step 3 : The set of weights for the treatment difference depends upon which
carry-over terms have been deleted and which have been kept so far in the
model, before entering this final step of analysis. In the most likely case
where both carry-over terms have been dropped or only the first order carry-
over is still retained in the model, the difference between the treatment
measurements for each patient determine the treatment estimator. Note
that the baseliné measurements are completely ignored in that occasion.
This estimator is similar to CROS, used in the analysis of the 2x2 cross-
over trial without baselines and without carry-over effect. Each patient’s

readings are weighted as follows:
Wi = Wiy = (0’ -

In the least favorable and quite unlikely case of keeping both carry-over
terms in the model the treatment estimator is based on the difference be-
tween the first baseline and the first treatment measurement for each sub-
ject, i.e. the baseline and treatment measurements from the second period
are wasted. The weights, presented below, are similar to the ones used on
estimating the treatment difference in the classical 2x2 case with carry-over
(PAR estimator).

1 1

57 _iao’o)

Wty =(

Turning now to the final and most unreasonable possibility of deleting the
first order carry-over term but keeping the second one, the difference be-
tween the average of baseline measurements and first treatment measure-
ment for each patient forms the treatment estimator. In that case only
the second treatment reading is discarded for each patient, pointing to the
following scheme of weights:

1 11

77270

Wy, = (
All the above tests for the treatment difference are carried out at 5% level.

The above scheme will be called strategy 2. An alternative, simpler scheme,
called strategy 1, differs from the previous one in the way that handles the dele-

tion of carry-over terms. More specifically according to strategy 1, if the first
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order carry-over term is removed from the model then this automatically implies
that the second one is dropped as well (see Kenward [42]). On the contrary in
strategy 2 it is feasible to keep the second order carry-over term without includ-
ing in the model the first one. Because of the more reasonable way of handling
carry-over terms, strategy 1 is expected to have a better performance compared
to strategy 2 in terms of power or MSE, as would be soon demonstrated.

Before that, a comparison of the treatment estimators proposed in the cross-over
experiment with and without baselines is in order. In both cases the estimator
used when no carry-over terms retained in the model or when only the first order
carry-over is present in the cross-over with baselines, are biased but with lower
variance, compared to the estimator used when the full set of carry-over terms is
included in either case. A reasonable query at that point is raised. Are the defi-
ciencies of the two stage procedure inherited to the three stage procedure as well?
The estimators used in each stage to decide the significance or not of the corre-
sponding terms are highly correlated, and this might force the power of the three
stage procedure to be lower than the power of 7; (CROS), which corresponds
to the treatment estimator without pre-testing for carry-over effects at all. A
thorough investigation of both strategies requires marginal and conditional prob-

ability distributions of various estimators. These are displayed in Table (3.5). A

Table 3.5: Three stage procedure

Marginals of treatment and carryover estimators

b~ N (6,02 /n) 1,73 ~ N (1~ X/2,0%,/(4n))
A ~ N (A - 6,20%,/n) 73 ~ N (1 —0/2,30%,/(4n))
A2 ~ N (), 30%,/n) 4~ N(r,0%/n)

Conditionals of 2™ order carryover given 1% order carryover estimators
and of treatment estimators given 1% and 2™¢ order carryover estimators
5118 ~ N (A= 8,202, /n) ;\2]9~N(A—9+é,20‘2,v/n)
ik 8~ N (1= M/2,0%/(4n)  7aldo,6 ~ N (r = A/2+ %1/2,0% /(4n))
#alSa, 0 ~ N (7= N2,0%,/(4n)  Falde, 8~ N (1= /2 + 3o/2,0%, /(4n))

worth emphasizing property of either strategy is that the treatment effect estima-

tor is independent from the first order carry-over effect estimator, conditionally
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upon the second order carry-over difference estimator.

According to that flow diagram three distinct treatment estimators are proposed
at the end of each of the four paths. One of them 7; (similar to CROS) is used
twice, while 74 (similar to PAR) only once. This is an early indication that this
procedure might have a good performance in terms of power and MSE, depending
upon the proportion of time 7, is used. But the crucial question is if the three
stage procedure is superior than using directly 7. To answer that question a
similar approach to the one used at the investigation of the two stage procedure
will be used for the evaluation of power, bias and variance of both strategies as

follows:

02
Power (Strategy 2) = Z/ / prob |T| >cilf=z,)= y) fi5(z,y) dz dy
0 I
02 pra X X
E (Strategy 2) = Z/ / E ('F|9 =z,A= y) fé’;\(x,y) dz dy
o I

V(Strategy 2) = 3 [E (v (ﬂx, 9)) +V (E (%15\, (9))] (3.37)

where the summation is over the four paths, while the estimators and the lim-
its of the integrals used for each path are decided according to the plan of the
strategy. Assuming that the real treatment difference is 5, the first carry-over
difference is a fraction of the treatment difference and finally that the second
order carry-over difference is a fraction of the first one, the performance of both
strategies is summarized in Table (3.6). In the first third of Table (3.6) the sec-
ond order carry-over difference has always been kept at zero, while the first one is
increased gradually by 10%, reaching finally the treatment effect. In the second
and final part of that table, the first order carry-over was taken two and four
times respectively higher than the magnitude of the second one.

The most interesting message from that investigation is that when both carry-
over terms are negligible (first line of Table (3.6)) the Type I error rate is about
6% for strategy 1, while the corresponding figure for strategy 2 raises to 8.5%
similar to the Type I error of the two stage procedure without baselines. More-
over the power of strategy 1 is very close to that of the CROS estimator in the
classical 2x2 cross-over, while that of strategy 2 is slightly lower. A simple expla-

nation for the better behaviour of strategy 1 is that more than 88% of the time
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Table 3.6: Performance of strategies 1 and 2

Strategy 2 Strategy 1

6 ATypel Power Bias Varl'ypel Power Bias  Var
0.00 | 0.00 | 0.084 0.872 0.000 4.861] 0.059 0.910 0.000 3.136
0.50 | 0.00 | 0.085 0.861 -0.062 4.900 0.060 0.910 0.037 3.144
1.00 | 0.00 | 0.088 0.847 -0.125 5.014 0.060 0.910 0.072 3.167
1.50 | 0.00 | 0.091 0.832 -0.189 5.194 0.060 0.909 0.106 3.202
2.00 | 0.00 | 0.096 0.817 -0.252 5.425 0.061 0.908 0.136 3.248
2.50 |1 0.00 { 0.102 0.802 -0.318 5.690 0.062 0.907 0.162 3.300
3.00 [ 0.00 | 0.108 0.788 -0.379 5.970 0.063 0.906 0.184 3.356]
3.50 { 0.00 | 0.114 0.775 -0.434 6.245 0.064 0.905 0.201 3.415
4.00(0.00| 0120 0.766 -0.478 6.497 0.065 0.904 0.214 3.475
450 | 0.00 | 0.124 0.760 -0.510 6.711 0.065 0.902 0.221 3.537
5.00 | 0.00 | 0.128 0.757 -0.526 6.876 0.066 0.901 0.223 3.604
1.00 | 0.50 | 0.090 0.839 -0.246 4.976( 0.067 0.885 -0.149 3.248
2.00{1.00| 0.105 0.800 -0.478 5.298 0.076 0.854 -0.292 3.568
3.00 | 1.50 | 0.128 0.760 -0.675 5.768 0.095 0.817 -0.425 4.056
4.00 | 2.00 | 0.155 0.722 -0.832 6.307 0.119 0.777 -0.542 4.657
5.00 | 2.50 | 0.184 0.686 -0.947 6.846 0.147 0.735 -0.652 5.321
1.00 1 0.25 | 0.088 0.844 -0.186 4.983 0.061 0.898 -0.039 3.205
2.00|0.50 | 0.098 0.813 -0.362 5.314 0.066 0.884 -0.079 3.396}
3.00|0.75 | 0.113 0.783 -0.521 5.764 0.072 0.867. -0.124 3.670
4.00 | 1.00 | 0.129 0.758 -0.649 6.218 0.081 0.850 -0.178 3.985
5.00 | 1.25 | 0.142 0.742 -0.737 6.578 0.090 0.833 -0.240 4.309
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the treatment estimator similar to CROS (;) is used while less than 3% of the
time the inefficient similar to PAR (#;) estimator is chosen by the procedure. On
the contrary strategy 2 selects 7; only 81% of the time, 74 less than 3% while the
rest of the time 7, is chosen.

On those grounds strategy 1 can be considered as an improved version of the
two stage procedure at the cost of obtaining two further measurements on each
patient. Moreover strategy 1 has Type I error rate and power similar to that
of CROS for the whole range of first order carry-over values, provided that the
second order carry-over term is kept at zero. This indicates that as long as carry-
over terms are handled in a rational way, their inclusion into the model does
not affect to a large extend the quality of the estimation procedure concerning
treatment effect.

It is also clear from the first third of Table (3.6) that strategy 1 overestimates
the real treatment difference, while strategy 2 under-estimates it. However both
strategies underestimate the treatment difference in the rest of the cases. Overall
in absolute terms, strategy 2 has higher bias and variance compared to strategy 1,
and worst performance in terms of Type I error and power, over the whole range
of first and second order carry-over combinations considered here. So, strategy
1 should be preferred to strategy 2 for analyzing data from cross-over trials with
baselines, although both are inferior compared to using always CROS. In con-
clusion the incorporation of carry-over terms in the model adversely affects the
properties of the final treatment estimator proposed, regardless of the availability

of baselines measurements.

3.6.1 A 2x2 cross-over trial with baselines

In the cross-over experiment, already examined, further information was available
on each child, i.e. two baseline measurements were taken before the start of each
treatment period. A graphical summary of these data is provided in Figure
(3.9). The models considered in this subsection include various combinations of
carry-over terms. In addition results from analysis without baselines are also
reported. This will help to assess the predictive ability of baseline measurements

in evaluating treatment and carry-over effects. Following Grieve’s notation (see
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[27]) four models are fitted:

e M2 : The saturated model in which carry-over effects of both kinds are
included. The trialist, most of the time, allows wash-out and treatment
periods to be of the same time length. As a consequence it is quite unlikely
for the second order carry-over term to be present at all, unless there is
a treatment by period interaction. In our example the second treatment
measurement was taken two days after the first one, so that a significant
treatment by period interaction is quite unlikely. Overall there is a small

chance for this model to have generated our data.

e M11 : In this model only the second order carry-over term is fitted. This
might look unreasonable since if the wash-out has been chosen long enough
to eliminate the first order carry-over, why should the second order carry-
over be present? In fact carry-over here represents a psychological carry-
over. This simply means that some patients suffered discomfort during the
first treatment period (probably they were given placebo which does not
relieve pain) and they feel unhappy in entering the second treatment period.
This feeling might influence the measurement of the second treatment. An
alternative motivation (as in model M2) for considering the second order
carry-over but excluding the first one, is the presence of a treatment by

period interaction.

e M12 : Only first order carry-over term is now considered, i.e the wash-
out period prevent the residual effect of the first active treatment period
to be present when the second active treatment measurement was taken,
but it was not long enough to eliminate the first treatment’s residual effect
at the time second baseline measurement was obtained. This model is
in accordance with the statistical hierarchy the analyst should follow in a
backwards elimination procedure, i.e. second order carry-over is considered
for elimination before the first one. Among all the models considered this

is the only one that handles carry-over terms in a rational way.

e MO : No carry-over terms are now included. The statistician in collabo-

ration with the trialist have already agreed in advance that the proposed
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Figure 3.9: Graphical summary of the asthma trial with baselines.
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length of the wash-out period is long enough to eliminate any residual effects
from the first treatment in all subsequent periods. This model is mostly

favored by the practical-oriented data analysts.

If patient effect is taken as random and both carry-over terms are included in the
model while REML is the estimation method for the variance components, then
formoterol gives higher PEF measurements by an amount of 49.76 (30.26) units
when compared to salbutamol (see Table 3.7). Also both carry-over effects are
negligible. The between-children variability is twice as high as the within one.

When both carry-over terms are removed from the model, treatment effect is
estimated at about the same level as before, but with a much smaller standard
error, 27 = 46.60(15.09). By keeping both carry-over terms the treatment effect
is obscured. However when these terms are removed the new treatment shows
its superiority. The inclusion of carry-over terms influences to an appreciable
extend our inference about treatment effect, even when baselines are used in the

analysis. In some circumstances the collection of baseline measurements might

Table 3.7: Frequentist analysis of a 2x2 trial with and without baselines

Models with baseline measurements

Model MO M12 M11 M2

27 46.60 (15.09) 46.60 (14.91) 65.41 (26.23) 49.76  (30.26)

25 37.61 (42.84) 6.30 (52.41)

26 — —— 3341 (24.34) — — -31.30  (30.26)

OB 60.57 60.65 60.55 60.56

ow 38.37 37.90 38.50 38.46
Models without baseline measurements

Model No carryover Simple carryover

27 46.60 (10.77) 53.80 (41.62)

2 _ 14.40  (80.40)

0B 66.52 69.61

ow 27.39 27.39

influence the precision with which treatment effect is estimated, although it is
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unclear how the estimation of carry-over terms is affected.

In this specific example it seems that the availability of baseline measurements has
some effect, not only on the magnitude of the treatment or carry-over difference,
but most importantly in their estimated standard errors. In absolute terms,
estimated carry-over effect from first active to second active treatment period for
the model with baselines is double when compared to the corresponding-figure
of the model without baselines, while its standard error is about half. As far as
the treatment effect is concerned, the estimates along with their standard errors
from both models are comparable.

Note that the sequence effect is always included in the above models. In addition
the precision with which the treatment effect is estimated gets higher as carry-
over terms are eliminated from the full model. For purpose of completeness only,
it is worth noting that the correlation between any two measurements on a child
(intra-class correlation coefficient) is estimated at 0.71, regardless if any carry-
over terms are included or not in the model and if baselines are used or not in

the analysis.

3.6.2 The Bayesian Solution

The set of models studied here are identical to the ones considered in the previ-
ous section, but perceived from a Bayesian perspective. Least-informative priors,
similar to the ones used for the analysis of the same dataset without baselines,
were assigned to each unknown quantity and Gibbs sampling was used for the
derivation of the relevant posterior distributions. Kernel estimates for the pos-
terior density of the treatment and the carry-over terms are displayed in Figure
(3.10). Posterior summaries for the parameters of interest, are presented in Table
(3.8).

Once more it is confirmed that if both carry-over terms are included in the model
then there is a non negligible posterior probability for the treatment difference to
lie in a symmetric interval around zero. On the contrary the elimination of any
residual term (first or second) in the model seems to produce stronger evidence
that formoterol gives on average higher PEF measurements than salbutamol.

More specifically the irrational model M11 indicates that formoterol is superior
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Figure 3.10: Bayesian analysis with baselines.
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Table 3.8: Bayesian analysis allowing for baseline effect
Model M2 Model M11 Model M12 Model MO
Mean SD Mean SD Mean SD Mean SD
or 51.00 32.10 65.50 27.00 46.80 15.40 46.70 15.50

A

2\ 8.17 56.00 37.40 44.20 _ _— —
20 -30.70 32.20 — —  .-33.70 24.80 _— —
6p 6490 17.40 64.90 17.40 65.00 17.40 64.40 16.60

ow 39.70 5.16 39.40 4.95 38.80 4.89 39.40 5.09

to salbutamol by 65.50 (27.00) units, while for models M12 and MO the corre-
sponding figure is about 20 units lower (46.80 or 46.70) with half standard error
(15.40 or 15.50). Posterior inference for the first order carry-over is not affected
considerably from the presence of the second order carry-over term in the model
and vice-versa (see Figure 3.10).

Finally, in this case, although the posterior distribution of the second order carry-
ovér difference is centered around zero, the same is not true for the first order
carry-over effect (see Figure (3.10)). Baseline measurements taken after admin-
istration of salbutamol give lower PEF values than baselines taken after admin-
istration of formoterol. On subjective grounds it seems that model M12 is the
most coherent with the observed data, though model MO is an equally good al-
ternative. Which one of the two is the best choice, will be formally investigated

by using appropriate model selection techniques.

3.6.3 Another use of baselines

If we take a more careful look at the data it is clear that higher baseline mea-
surements tend to be followed by higher treatment outcomes no matter which
treatment has been administered to the patient. This implies a patient trend
effect affecting both baselines and outcome measurements. If this hypothesis is
true, then baseline measurements convey useful information not accounted for by
patient or period effects. If we denote by yijk, ik the treatment outcome and

baseline measurement respectively at the i sequence group, in the j** period,
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on the k** patient, then the model adopted here is:
Yijk = W+ Sik + Tj + Tagij) + Mg j-1) + B(Tije — Z..) + €k (3.38)

where, as usual, s;x ~ N(0,0%) and €;x ~ N(0,0%). A graphical summary of
the association between active treatment measurements and baseline readings, is
displayed in Figure (3.11). Both Bayesian and Frequentist approaches, with and
without carry-over terms have been considered and the results are presented. in
Table (3.9). Model checking graphical summaries for the Frequentist approach
is provided in Figure (3.11). Running the Gibbs sampler, 15000 values were
generated for each variable, but only the last 5000 ones were used for drawing
inference. Posterior distributions for parameters of primary interest are displayed
in Figure (3.12).

Note that in equation (3.38) baseline measurements have been standardized by
subtracting their mean. This strategy is typical in regression problems since it
achieves orthogonality between the standardized variable and the constant term.
The ideal situation is when the estimated parameters are orthogonal to each
other. This is hardly achieved when an unbalanced design is used, but in re-
gression problems the standardization of covariates stabilizes considerably the
estimation process. Parameterization issues are common in MCMC methodology
as well, and usually tackled in a similar fashion. Convergence of the Markov chain
to the posterior distribution is highly accelerated by using a balanced design or
appropriately transforming the original parameters in the unbalanced case.
Here we have another close agreement, as far as the usefulness of the baseline
measurements is concerned. In both Bayesian and Frequentist analysis baseline
measurements have a strong predictive value for the response, i.e. higher baseline
measurements tend to be followed by higher response outcomes (see upper half of
Figure (3.11) and lower part of Figure (3.12)). Our main question is always the
clinical effectiveness of the new treatment against the old one. As in all previous
models considered, when carry-over is included, both the Frequentist and the
Bayesian statistician will agree that no treatment difference is evident from the
data, although the Bayesian will stresses that the superiority of formoterol is the
more likely scenario (see upper part of Figure (3.12)). Both will agree that in

the absence of carry-over from the model there is strong evidence for suggesting
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formoterol in a future patient as the best treatment regime.

Table 3.9: Results of model fitting with baselines as covariates

Frequentist viewpoint Bayesian viewpoint
Model with A | Model without A | Model with A | Model without A
Mean  SD| Mean SD | Mean SD | Mean SD
27 | 51.37  30.99 37.16 10.25 | 49.50 34.10 | 37.10 12.10
2\ | 2839 588y — —— | 25.60 63.30 | — —
B 0.60 0.16 0.60 0.16 | 0.61 0.18 | 0.60 0.18
6p | 49.64 47.78 51.30 48.30
ow | 25.23 25.21 28.00 28.80

The practical implication from the discussion above is that the collection of base-
line measurements during the course of a cross-over trial hardly alters the conclu-
sions about treatment effect, already drawn from previous analysis where base-
lines were completely ignored. This statement is true no matter if baselines are
‘considered as part of the response or fitted as a covariate. It might be the case
that if baselines perform poor in explaining variability of the treatment outcome,
then their inclusion in the model might increase the variance with which the
treatment effect is estimated. In our example this seems to be true when carry-
over term is included in the model, but not when an adequate wash-out period

prohibits the consideration of such term in the model.

3.7 Covariates

In most clinical trials, either cross-over or parallel, demographic information is
usually available for the patients participating in the study, such as age, sex,
weight etc. Two kinds of covariates commonly met are: continuous or categori-
cal. An example of a continuous covariate is the baseline measurement already
studied in the previous section. In the formoterol/salbutamol example patients 2,
3, 6 and 11 are female, the rest being male. Patient profiles for male and female
patients are displayed in Figure (3.13).

In that case the main concern is if drug acts differently on various patient sub-
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groups. If it does then treatment effect should be studied separately for each level
of the covariate. On the other hand if treatment effect is not related to the levels
of the covariate then the inclusion of it might explain a substantial proportion
of the between-subject variability, implying a reduction in the between-subject
residual sum of squares. In that case more precise statements could be derived
for the carry-over difference, since the investigation of its statistical significance
relies upon between subject information. On the contrary treatment or other
effects which are usually estimated using within subject contrasts will not be af-
fected by the inclusion or not of the covariate in the model. The introduction of
a further factor (gender) into our model generalizes the ANOVA table as follows:

(Table (3.10)).

Table 3.10: Extended ANOVA table after incorporation of covariates

Source of variation DF Sum of Squares Mean Square F-value p-value

Between Subjects

carryover 1 335.19 335.19 0.03 0.86
gender 1 18482.80 18482.80 1.76 0.21
carryover:gender 1 1991.72 1991.72 0.18 0.67
Residuals 9 94403.75 10489.31

Within Subjects

period 1 984.62 984.62 1.16 0.30

treatment 1 14035.92 14035.92 16.65 0.00

period:gender 1 621.06 621.06 0.73 0.41

treatment:gender 1 49.66 49.66 0.05 0.81
esiduals 9 7583.75 824.64

According to the analysis above there is no strong evidence that the effect of drugs
on PEF measurements depends on the gender of the child. On the other hand
the covariate has accounted for more than 20% of the between subject variability,
but carry-over effect is still far from statistical significance. An idea about the
variability explained by treatment, carry-over effect and their interactions with
other terms is also summarized in Table (3.10). The model fitted here treats pa-

tient effect as the only random parameter, while the fixed parameters allowed for
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Posterior distribution of the treatment effect when 'gender’ included in the model
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are: period, gender, treatment, and carry-over. Two-way interactions between
”gender” and each one of the fixed effects are also considered.

One of the less discussed issues in the cross-over literature, but of high practi-
cal importance, is the treatment by patient interaction term. Modern statistical
thinking (implemented in widely used commercial software packages like SAS or
S+) allow the inclusion of that term in either the fixed and/or the random part
of our model. This term implies not only that the mean treatment effect but
also the volatility of the response are patient dependent. Irrespective of the way
this interaction term is treated, an enormous number of new parameters will be
introduced to describe it. A typical way to overcome estimation-related problems
is via modern Bayesian techniques. More specifically both the treatment effect
and the variability of the observations for each patient could be modeled as a
random sample from a population distribution, characterized by a set of hyper-
parameters. Finally the implication of this hierarchical modeling structure on
the choice of the optimal design for running cross-over experiment have not been
fully investigated.

In our example we have only 13 participants, not enough information to estimate
accurately the hyper-parameters. This is true not only for the patient by treat-
ment interaction but also for any interaction between the random component
("patient”) and any fixed term. As a result considering a two-way interaction
between a fixed and a random effect was ruled out for that analysis. On the
contrary interactions between ”gender” (the covariate of interest in this section)
and any fixed parameter require only one degree of freedom to model it. It was
felt that adequate information was available to include these terms. Results are
summarized in Table (3.11)

There is no statistical evidence that average PEF measurements on male patients
differ significantly from the female ones. Both approaches confirm that treatment
effect is the same irrespective of the gender of the child (i.e negligible treatment
by gender interaction, see lower part of Figure (3.14)). The estimates along with
the standard errors of all the parameters presented above decrease (in absolute
terms) when carry-over term is removed from the model. There seems to be a

fairly close agreement concerning parameter estimation under either Frequentist
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Table 3.11: Summary statistics when a covariate is included in the model

Frequentist viewpoint Bayesian viewpoint

With A No A With A No A
Parameters Estimate (SD)
Gender 58.50 (43.60) 57.29 (39.90) | 60.10 (47.00) -51.00 (41.20)
Treatment 51.00 (45.32) 48.25 (12.35) | 49.00 (48.60) 48.30 (14.60)
Carryover 5.50 (87.20) 2.33 (92.90)
Treatment:Gender | -8.00 (22.66)  1.50 ( 6.17) | -9.23 (25.00)  1.41 ( 7.29)
Carryover:Gender | -19.00 (43.60) -21.10 (47.70)

or Bayesian point of view.

Overall, inclusion of carry-over terms affect to an appreciable expend our infer-
ences regarding treatment differences (see Figure (3.14)). Results are not altered
by the incorporation of a covariate in the model; a similar conclusion was drawn

for baselines as well.

3.8 A Non-Linear approach to the carry-over

Our modeling approach till now, is based on the assumption that carry-over and
treatment effects are mathematically unrelated. The majority of the medical
investigators, involved in a cross-over study, would implicitly assume that the
residual effect, if it exists, is a small proportion of the treatment effect and should
be modeled as such. A typical medical statistician would object to the idea of
modeling carry-over effect by incorporating a non-linear term into his model,
simply because on one hand it adds unnecessary complexity' to the problem and
on the other hand computationally can be quite difficult to be tackled by widely
used statistical software. In my view, any statistician keen on modeling residual
effects, should consider this approach as the only pragmatic one, which in addition
provides reasonable results.for the treatment effect. There is no doubt that there
is limited information in estimating the unknown proportion of treatment that
carries over to the next period. This causes problems in the estimation process

for that non-linear term, but as soon as more patients are recruited per sequence,
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this limitation is largely removed.
The model considered in this section is a slight modified version of the simple

carry-over model and can be written as follows:
E (yijr) = o+ 75 + Tagig) + TaGi,j-1)P (3.39)

where notation is similar to the one used in previous sections. When baseline
measurements are considered as part of the response, the mean function can be

specified as follows:
E (Yije) = o+ % + 75 + Tag) + Tai-1)P + Td(i,j—2) PK (3.40)

Terms introduced in this non-linear form of the simple carry-over model with
baselines, are closely linked with the ones considered in the linear case. More

specifically the following relations hold:

iy = Taj-1)P (3.41)
Ad(ij) = Td(j-2)PK
= Oy -1k (3.42)

where p,x € (0,1). With this parameterization residual effect dies out as time
progresses, i.e. | Aguj) |<| bagij) |<| 7agj) |- According to the above model, the
proportion of treatment that carries over from period 7 to period ¢ + 1 is p, while
that from 7 to ¢ + 2 is px. The two terms added, although it may reflect drug
activity more realistically, it can lead to problems during the estimation process.
Following our modeling philosophy so far, the within subject variance-covariance
matrix will be of the form o?R(«). Simple correlation structures (compound
symmetry) will be considered in the sequel, since a limited number of repeated
measurements are available per subject. Generalized least squares principle will
be used to accommodate simultaneous estimation of mean and covariance param-

eters. Details of the estimation scheme are as follows:

e Step 1: Estimate « using a preliminary fit to our data, like the typical

Ordinary Least Squares fit.

e Step 2: Using the value of o from Step 1, an estimate for the mean param-

eters can be derived by minimizing the following quadratic form:
(y— E@)" R(a) (v — E®¥)) (3.43)
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e Step 3: Using the estimates from Step 2, re-estimation of the covariance
parameters takes place, by minimizing with respect to o2 and « the pseudo-

likelihood function below:
log|o®R(a)| + (v — E(v))" R™(a) (y — E()) /o (3.44)
The final estimate of o2 is:

5= (v-BWw) B (v- BW) /(N -p) (3.45)

where N is the number of patients recruited in the trial, while p the number of
estimated mean parameters. An estimate of the approximate covariance matrix

for the mean parameters is:

-1

&* (XTR(a)X) (3.46)

where X is the Nxp matrix of partial derivatives of the mean function with respect

to the mean parameters, evaluated at the final estimates of these parameters.

3.8.1 Frequentist approach without baselines

In the non-linear case the treatment estimate is 53.54(39.08) in favor of the new
treatment (formoterol). The carry-over effect from the first to the second active
treatment period is estimated at 15.95(55.47). The proportion of treatment that
carries-over to the next period is 29.79%. These results are in agreement with
the linear approach, in which the carry-over effect is modeled independently of
the treatment difference, since in either case both treatment and carry-over effect
are statistically non-significant. It is worth noting that both estimates and their
standard errors for treatment and carry-over difference are similar in the non-
linear case compared to the linear approach. The mean function is described in
equation (3.39). A compound symmetry covariance structure has been assumed
for the repeated measurements obtained in each subject, with an estimated intra-
subject correlation coefficient of 0.07. In order to obtain the above estimates
for the mean parameters and variance components, the following function was

optimized by following the steps 1-3 described before:

2nin(o®) + nin(l - p2) + (y—E@)" [L.® V'] (y— E(y)) (3.47)

o*(1 — p?)
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This is simply minus twice the log-likelihood function and it was minimized using
S+ routines. Relevant S+ code is given at the end of the chapter. Regarding
notation, n is the number of patients recruited for the study (13 in our case),
ps = 0% /(0% + 0%,) being the intra-subject correlation coefficient, 0 = 0% + 02,,

while

1 T Px
vlo= P (3.48)

—p. 1

3.8.2 Frequentist approach with baselines

Turning now to the case where baselines are incorporated into the analysis and
both first and second order carry-over terms enter into the model (M2) as de-
scribed in equation (3.40), the estimated proportion of treatment effect that car-
ries over from first treatment period to first wash-out period is identical to zero.
This implies that the proportion of treatment that carries over from first treat-
ment to second treatment period must be zero as well. Since, p = 0 and & = 0,
the matrix (XTR™!(&)X) is non-invertible and an estimate of the standard error
of the treatment effect cannot be derived. The treatment difference itself is esti-
mated at 46.61. These findings are in close agreement with the linear approach,
where both Bayesian and Frequentist approaches indicate that carry-over of any
order is unlikely to be present. Due to the linear nature of the latter approach,
standard errors for the parameters of interest are available in this case.

If we omit anyone of the carry-over terms but retain the other one, then treat-
ment effect is still statistically insignificant, but the estimate of the retained
residual effect is zero in either case. More specifically when the second order
carry-over term is eliminated from the model (M12), then the treatment esti-
mate is 46.61(26.12) in favor of formoterol, while in the case where the first order
carry-over is omitted (M11), then the corresponding treatment estimates raises
at 65.42(45.13). In conclusion, in both linear and non-linear analysis the only
model that is highly supported by the data is the one with no carry-over terms.
All the above conclusions are drawn under the assumption that repeated mea-

surements within a subject are related via a compound symmetry error structure.
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The function minimized for inferential purposes looks as follows:
3nin(od,) + nin(cd, + 40%) + (y — E(y))T [In ® V_l] (y — E(y)) (3.49)

where E(y) is described by equation (3.40) or any of its variants depending on
which carry-over terms included in the model, while
2 .

V= —&12; (1414 ) 1340% J4z4) (3.50)
Once more n is the number of subjects recruited in our trial, I is the identity
matrix and J is a square matrix having every element equal to unity. For illus-
trative purposes, S+ code used to optimize the function described in equation
(3.49) when only the first order carry-over is included in the model, is provided

at the end of the chapter.

3.8.3 Bayesian approach without baselines

In the Bayesian analysis without baselines, the only added complication is the
specification of a prior distribution for p. Since this parameter is constrained to
the interval (0,1), a natural family of distributions from which this prior could
be chosen from is the Beta(a,b) one. The parameters a,b can be modified to
reflect opinion of medical experts, or experience gained from similar studies in
the past. In practice, hardly such information exists, and a useful starting point
is the Beta(1,1) distribution (or equivalently the Uniform distribution in the
(0,1) interval). After a 10000 iteration burn-in, a further 5000 iterations confirm
the superiority of the new compound compared to the old one. According to
- this analysis a typical user of formoterol will have his PEF measurement raised
by 51.30(14.40) units compared to salbutamol. The 95% HPD for treatment
effect is (21.70, 79.50). The point estimate of the treatment effect from the non-
linear analysis is in close agreement to the one derived under the linear case,
where carry-over and treatment terms were unrelated. Posterior kernel density
estimates of the treatment difference under both linear and non-linear approaches
are presented in Figure (3.15). The estimated standard error of the treatment
effect is about three times smaller in the non-linear analysis when compared

to the corresponding figure in the linear case. This implies that the posterior
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Figure 3.15: Posterior distribution of various parameters of interest of the asthma

trial without baselines under the simple carry-over model
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probability of the treatment effect lying in a symmetric interval around zero is
far less in the non-linear case compared to the linear one. Both analysis though,
indicate clearly that formoterol is the appropriate therapy for asthma.

It is worth noting that the estimated carry-over effect in the non-linear case is
24.2(17.7). 'The posterior density of the carry-over difference is slightly skewed
to the left in the non-linear case, contrary to the density resulted from the linear
analysis which looks symmetric. This is because carry-over effect is calculated
as the product of the treatment effect with the proportion of drug remaining in
the body from the previous treatment assignment. The point estimates of the
carry-over effect closely agree in the linear and non-linear analysis, though the
standard error in the linear analysis is about four times higher when compared
to the non-linear case (see Figure (3.15). Both analysis agree that presence of

carry-over is highly unlikely.

3.8.4 Bayesian approach with baselines

Similar conclusions were drawn when baseline measurements were incorporated
as part of the response into the analysis. As before, Beta(1, 1), has been chosen as
the prior distribution for these extra parameters. Analysts might be tempted to
consider informative prior inputs, although clinical justification for these choices
should be provided.

The model that includes first and second order carry-over terms (M2), gives a
treatment estimate of 44.30(17.30) in favour of formoterol. Only 28.3% of the
treatment effect persists from first active to first wash-out period, while the cor-
responding figure from first active to second active treatment period is 14.7%.
Similar results are derived when the model under which only one carry-over term,
that from first active to first baseline period is allowed for (M12). The estimated
treatment effect slightly lowers to 41.30(16.80), but a similar proportion of ac-
tive treatment persists to the next period, 28.4%. Finally, the irrational model
(M11) where second order carry-over is fitted in the absence of the first one, gives
an inflated but significant treatment estimate: 63.80(22.70). This estimate may
reflect not only real treatment difference but also first or higher order residual

effects, which have been eliminated from our model. Posterior distribution of
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carry-over proportion under all models considered is displayed in Figure (3.17).
Note that the linear and non-linear Bayesian analysis provide comparable results
concerning estimation of the treatment difference (see Figure (3.16)), as long as
the same assumptions are made for the carry-over effect. The effectiveness of the
new treatment is unquestionable. The posterior distribution of carry-over effects
of any order, show clearly that inclusion of such terms in the model is unnec-
essary. This is true in either linear or non-linear approach. It is worth noting
that posterior densities of carry-over terms are slightly skewed to the left in the
non-linear case, contrary to the linear approach where a rather symmetric shape
is observed.

In conclusion the Frequentist analysis (linear or non-linear) of this cross-over trial
strongly rejects the inclusion of any residual terms, while treatment difference is
masked when carry-over terms are included into the model. The Bayesian ap-
proach (linear or non-linear) supports the superiority of the new treatment regime
under different carry-over schemes. Note that for the Frequentist approach, a

constrained non-linear optimization problem was solved using S+ routines.

3.8.5 Model checking

A more formal way is normally required for the selection of the best among
competing models. Obviously in the class of models fitted, some are nested within
others, which implies that a likelihood ratio approach for choosing between them
is valid. But if a selection is required between a linear an a non-linear model
then the final decision should be based on a criterion that rewards a good fit but
punishes for model complexity. One such criterion is the Akaike’s Information

Criterion (AIC) defined as follows:
AIC = -=2In(likelihood) + 2(number of estimated parameters)

Although AIC has received some criticism as a model selection tool (especially
in the time series literature), it is still the most popular criterion used by prac-
titioners. In a Bayesian analysis, the posterior distribution of AIC is evaluated
and model choice is based on a summary statistic of that distribution. In what

follows the posterior mean of AIC calculated from the last 1000 MCMC runs is
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compared among competing models and summarized in Table (3.12).

Table 3.12: Posterior Mean of AIC
M2 M11 M12 MO

Linear -238.705 -240.433 -239.853 -242.096
Non-linear | -238.693 -240.115 -240.876

The model which has the lowest value of AIC is selected as the best one. Following
that principle the model with no carry-over terms (MO0) is the preferable one. For
model M12 the non-linear fit gives slightly better results when compared to its lin-
ear counterpart. The reverse argument is true for models M11 and M2. In the lin-
ear case AIC gives the following model ordering: M0 < M11 < M12 < M2, while
in the non-linear context we get the more sound result M0 < M12 < M11 < M2.
The operator < means that the model on the left hand side provides a better fit
compared to the right hand side one. In conclusion the non-linear approach gives
sensible results for treatment effect irrespective of the type of residual term (if
any) fitted in the model. Moreover it tends to provide accurate outcome during

the model selection process.

'

3.9 Conclusions

In the 2x2 cross-over trial, the performance of various treatment estimators
(CROS, PAR, TS) has been studied in some detail. In summary CROS should be
the preferable treatment estimator, no matter if carry-over is included or not in
the model. The alternative (TS procedure), where CROS is selected with proba-
bility p and PAR with probability 1 — p, should be avoided, because it has lower
power and higher MSE when compared to CROS. If the analyst insists in using
the two stage procedure then one can replace the original scheme with a new one
in which, the sizes of the tests for carry-over and treatment difference are set so
that the overall size of the procedure is 5%. Unfortunately the improved plan
does not perform better when compared to CROS in terms of power, or MSE.
This investigation leads to the conclusion that TS procedure should be gradually

abandoned by the analyst of the cross-over experiment.
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Based on a representative example of a cross-over trial in asthma, both Bayesian
and Frequentist analysis suggest that carry-over is very unlikely to be present
in a well-planned trial. The use of baselines or covariates hardly affect our con-
clusions about treatment difference, although their incorporation might increase
precision for inferences about carry-over effect. In conclusion magnitude and
standard error of treatment difference are affected by the presence of carry-over
terms. Treatment effect tends to be statistically unimportant when carry-over is
incorporated in the final model, while in the absence of it treatment difference
is highly significant. The trialist should carefully investigate the potential for
pharmacological carry-over and choose the appropriate length of the wash-out
period for eliminating such an effect. Once this precaution has been taken the

analysis model should not include carry-over terms of any kind.

3.10 BUGS and S+ code used for the derivation

of the results in this chapter

3.10.1 BUGS code for the linear Bayesian analysis with-

out baselines - subsection 3.5.1

Bayesian analysis of simple carry-over model without baselines
model pefl;
const
N=13, number of patients
P=2; number of periods
var
pef[N,P], response matriz
carryover, parameter for carryover
carryover.effect, real carryover effect
carry[N,P], carry-over matriz
treatment, parameter for treatment
treatment.effect, real treatment effect

treat[N,P], treatment matriz
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pi, period effect

period|[N,P], period matriz

intercept, intercept of the model

mu[N,P], mean of the response

subject[N], random subject effect
precision.within, within patient precision
precision.between, between patient precision
sigma.within within patient standard deviation

sigma.between; between patient standard deviation

Next we simply read data and set initial values for the parameters in our model
data period, treat, carry, pef in ”agsc.dat”;

inits in ”agsc.in”;

Priors for the parameters in our model

{

intercept ~ dnorm(0,1.0E-06); pi ~ dnorm(0,1.0E-06);
treatment ~ dnorm(0,1.0E-06); carryover ~ dnorm(0,1.0E-06);
precision.within ~ dgamma(1.0E-06,1.0E-06);

precision.between ~ dgamma(1.0E-06,1.0E-06);

treatment.effect <- 2*treatment; carryover.effect <- 2*carryover;
sigma.within <- sqrt(1/precision.within);

sigma.between <- sqrt(1/precision.between);

Nezt we simply define our model

for (iin 1:N) {
subject[i]~dnorm(0,precision.between);
for (j in 1:P) {
pefli,j]~dnorm(muli,j],precision.within);
muli,j]<-intercept+pi*period(i,j]+treatment*treat(i,j]+

carryover*carryli,j]+subject[i]; } }
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3.10.2 BUGS code for the linear Bayesian analysis with
Baselines as part of the response (model M2) -

subsection 3.6.2

model pefl;
const
N=13, number of patients
P=4; number of periods
var
pef[N,P],
theta, first.carry, carryl[N,P],
lambda, second.carry, carry2[N,P],
tau, treatment, treat[N,P],
pil,pi2,pi3,pid,
period1[N,P], period2[N,P], period3[N,P], period4|N,P],
sequence, seq[N,P], intercept, mu[N,P], subject[N],

precision.within, precision.between, sigma.within, sigma.between;-

Reading data and initial values for the Gibbs sampler
data periodl, period2, period3, period4,
treat, carryl, carry2, seq, pef in "nagm?2.dat”;

inits in "nagm?2.in”;

Defining priors

{

intercept ~ dnorm(0,1.0E-06);

pil ~ dnorm(0,1.0E-06); pi2 ~ dnorm(0,1.0E-06); pi3~dnorm(0,1.0E-06);
treatment ~ dnorm(0,1.0E-06); first.carry~dnorm(0,1.0E-06);
second.carry ~ dnorm(0,1.0E-06); sequence~dnorm(0,1.0E-06);
precision.within ~ dgamma(1.0E-06,1.0E-06);

precision.between ~ dgamma(1.0E-06,1.0E-06);

theta<-2*first.carry; lambda<-2*second.carry; tau<-2*treatment;
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sigma.within<-1/precision.within;

sigma.between<-1/precision.between;

Model definition

for (i in 1:N) {
subject(i]~dnorm(0,precision.between);
for (jin 1:P) {
pef[i,j] ~ dnorm(muli,j],precision.within);
muli,j]<-intercept+subject[i]+sequence*seq]i,j]+
pil*period1[i,j]+pi2*period2[i,j]+pi3*period3[i,j]+
(pil+pi2+pi3)*period4[i,j]+
treatment*treat|i,j]+first.carry*carryl[i,j]+second.carry*carry2[i,j|; }}

}

Similar code has been applied for fitting models M11 and M12.

3.10.3 S+ code for the Non-linear Frequentist analysis

without baselines -subsection 3.8.1

Reading the data-set

datal<-read.table(”agsc.dat”); datal<-data.frame(datal)

data<-as.matrix(datal)

period.data<-datal, 1 : 2]; period.col<-matrix(period.data,2*nrow(data),1)
treatment.data<-data[, 3 : 4]; treatment.col<-matrix(treatment.data,2*nrow(data),1)
carryover.data<-data[, 5 : 6]; carryover.col<-matrix(carryover.data,2*nrow(data),1)
response.data<-data[, 7 : 8]; response.col<-matrix(response.data,2*nrow(data),1)
no.param<-4; no.times<-2; no.subj<-nrow(data)

ones<-matrix(1,26,1); epsilon<-1.0E-06

var.parameters.old<-c(10,0)

mean.parameters.old<-c(1,1,1,0.5)

Mean Function

mean.estimation<-function(mean.vector)

{
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x<-mean.vector[1]; y<-mean.vector|2]

z<-mean.vector[3]; w<-mean.vector[4]

inv.vl<-(1/(1-p%))*matrix(c(1,-p,-p,1),2,2)

inv.sigmal <-kronecker(diag(nrow(data)),inv.v1)
meanl<-x*ones+y*period.col+z*treatment.col+z*w*carryover.col
likelihood1.value<-t(response.col-meanl)%*%inv.sigmal%*% (response.col-mean1)

return(likelihood1.value)

Variance function

var.estimation<-function(var.vector)

{
a<-var.vector[l]
b<-var.vector[2]
inv.v2<-(1/(1-b?))*matrix(c(1,-b,-b,1),2,2)
inv.sigma2<-kronecker(diag(nrow(data)),inv.v2)
mean2<-mu*ones+period*period.col+tau*treatment.col+tau*theta*carryover.col
likelihood2.value<-2*nrow(data)*log(a)+
nrow(data)*log(1-b?)+
(1/a)*(t(response.col-mean2)%*%inv.sigma2%*%(response.col-mean2))

return(likelihood2.value)

Here is where the estimation process starts

p <-var.parameters.old[2]
meanlikelihood.old<-mean.estimation(mean.parameters.old)
mean.nonlinear.list<-nlminb(start=mean.parameters.old, objective=mean.estimation,
lower=c(-Inf,-Inf,-Inf,0), upper=c( Inf, Inf, Inf 1))
mean.parameters.new<-mean.nonlinear.list§parameters

meanlikelihood.new<-mean.nonlinear list§objective

while (abs(meanlikelihood.new-meanlikelihood.old)>epsilon)
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mu<-mean.parameters.new([1]; period<-mean.parameters.new|2]
tau<-mean.parameters.new[3]; theta<-mean.parameters.new(4]
var.nonlinear list<-nlminb(start=var.parameters.old,
objective=var.estimation, lower=c(0,-1), upper=c(Inf,1))
var.parameters.new<-var.nonlinear.list§parameters
mean.parameters.old<-mean.parameters.new
var.parameters.old<-var.parameters.new
meanlikelihood.old<-meanlikelihood.new
p <-var.parameters.old[2]
mean.nonlinear.list<-nlminb(start=mean.parameters.old,
objective=mean.estimation, lower=c(-Inf,-Inf,-Inf,0), upper=c( Inf, Inf, Inf,1))
mean.parameters.new<-mean.nonlinear.list§parameters
meanlikelihood.new<-mean.nonlinear.list$objective
}
Final estimation steps
p.final<-mean.parameters.new(1]
* period.final<-mean.parameters.new|2]
7.final<-mean.parameters.new(3]
f.final<-mean.parameters.new(4]
A.final<-7.final*@.final
sigtot.final<-var.parameters.new|1]
p-final<-var.parameters.new|2]
mean.final<-yu.final*ones+period.final*period.col+
7.final*treatment.col+\.final*carryover.col
inv.varcov.ind<-(1/(1-p.final?))*(1/sigtot.final) *matrix(c(1,-p.final,-p.final,1),2,2)
inv.sigma.all<-kronecker(diag(nrow(data)),inv.varcov.ind)
derivative.matrix<-cbind(ones,period.col,treatment.col+
f.final*carryover.col,r.final*carryover.col)
corr.fixed.effects<-solve(t(derivative.matrix) %*%inv.sigma.all%*%derivative. matrix)
T.se<-sqroot(t(c(0,0,1,0))%*%corr.fixed.effects%*%c(0,0,1,0))
A.se<-sqroot(t(c(0,0,4.final, T .final))%*% corr.fixed.effects%*% c(0,0,6.final,7 .final))
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1.7 <-7.final-qt(0.975,(no.times*no.subj-no.param))*r.se
ul.7 <-7.final+qt(0.975,(no.times*no.subj-no.param))*r.se
11X <-) final-qt(0.975,(no.times*no.subj-no.param))*A.se
ul. A <-X.final+qt(0.975,(no.times*no.subj-no.param))*\.se

3.10.4 S+ code for the Non-linear Frequentist analysis
with baselines (model M12) -subsection 3.8.2

Reading the data-set

datal<-read.table(”nagm2.dat”); datal<-data.frame(datal)
data<-as.matrix(datal)

periodl.data<-datal, 1 : 4]; period2.data<-data[, 5 : 8]
period3.data<-data[, 9 : 12]; period4.data<-data[, 13 : 16]
treatment.data<-data[, 17 : 20]

carryl.data<-data[, 21 : 24]; carry2.data<-data[, 25 : 28]
sequence.data<-data[, 29 : 32]; response.data<-data[, 33 : 36]
periodl.col<-matrix(periodl.data,4*nrow(data),1)
period2.col<-matrix(period2.data,4*nrow(data),1)
period3.col<-matrix(period3.data,4*nrow(data),1)
period4.col<-matrix(period4.data,4*nrow(data),1)
treatment.col<-matrix(treatment.data,4*nrow(data),1)
carryl.col<-matrix(carryl.data,4*nrow(data),1)
carry2.col<-matrix(carry2.data,4*nrow(data),1)
sequence.col<-matrix(sequence.data,4*nrow(data),1)
response.col<-matrix(response.data,4*nrow(data),1)
no.param<-7; no.times<-4; no.subj<-nrow(data)
ones<-matrix(1,4*nrow(data),1); epsilon<-1.0E-06
mean.parameters.old<-c(1,1,1,1,1,1,0.5)

var.parameters.old<-c(10,10)

Mean function

mean.estimation<-function(mean.vector)

{
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x1<-mean.vector[1l]; x2<-mean.vector[2]

[
x3<-mean.vector([3]; x4<-mean.vector[4]
x5<-mean.vector[5]; x6<-mean.vector[6]

x7<-mean.vector[7]

vl<-p;*diag(no.times)+po*matrix(1,no.times,no.times)
inv.vl<-(1/p;)*(diag(no.times)-(po/ (01 +4*p2)) *matrix(1,no.times,no.times))
inv.sigmal <-kronecker(diag(nrow(data)),inv.v1)

meanl <-x1*ones+x2*sequence.col+
x3*periodl.col+x4*period2.col+x5*period3.col+(x3+x4+x5)*period4.col+
x6*treatment.col+x6*x7*carryl.col

likelihood1.value<-t(response.col-meanl)%*%inv.sigmal%*% (response.col-meanl)

return(likelihood1.value)

Variance function

var.estimation<-function(var.vector)

{
a<-var.vector[1]; b<-var.vector|2]
v2<-a*diag(no.times)+b*matrix(1,no.times,no.times)
inv.v2<-(1/a)*(diag(no.times)-(b/(a+4*b))*matrix(1,no.times,no.times))
inv.sigma2<-kronecker(diag(nrow(data)),inv.v2)
mean2<-p*ones+sequence*sequence.col+
period1*period1l.col+period2*period2.col+period3*period3.col+
(period1+period2+period3)*period4.col+
T*treatment.col+7*carryl*carryl.col
likelihood2.value<-3*nrow(data)*log(a)+nrow(data)*log(a+4*b)+
(t(response.col-mean2)%*%inv.sigma2%*%(response.col-mean2))

return(likelihood2.value)

Estiamtion process

p1 <-var.parameters.old[1]
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p2 <-var.parameters.old[2]
meanlikelihood.old<-mean.estimation(mean.parameters.old)
mean.nonlinear.list<-nlminb(start=mean.parameters.old, objective=mean.estimation,
lower=c(-Inf,-Inf,-Inf -Inf,-Inf -Inf,0), upper=c( Inf, Inf, Inf, Inf, Inf,Inf,1))
mean.parameters.new<-mean.nonlinear.list§parameters

meanlikelihood.new<-mean.nonlinear.list§objective

while (abs(meanlikelihood.new-meanlikelihood.old)>epsilon)

{
@ <-mean.parameters.new|1]; sequence <-mean.parameters.new|2]
periodl<-mean.parameters.new|(3]; period2<-mean.parameters.new(4]
period3 <-mean.parameters.new(5]
7 <-mean.parameters.new[6]; carryl <-mean.parameters.new[7]
var.nonlinear.list<-nlminb(start=var.parameters.old, objective=var.estimation,
lower=c(0,0), upper=c(Inf,Inf))
var.parameters.new <-var.nonlinear list§parameters
mean.parameters.old<-mean.parameters.new
var.parameters.old <-var.parameters.new
meanlikelihood.old <-meanlikelihood.new
p1 <-var.parameters.old[1]; p; <-var.parameters.old[2]
mean.nonlinear.list<-nlminb(start=mean.parameters.old, objective=mean.estimation,
lower=c(-Inf,-Inf,-Inf,-Inf -Inf,-Inf,0), upper=c( Inf, Inf, Inf, Inf, Inf, Inf,1))
mean.parameters.new<-mean.nonlinear.list§parameters

meanlikelihood.new<-mean.nonlinear.list$objective

p-final<-mean.parameters.new[1]
sequence.final<-mean.parameters.new(2]
periodl.final<-mean.parameters.new[3]
period2.final<-mean.parameters.new[4]
period3.final<-mean.parameters.new|5]

7 final<-mean.parameters.new(6]
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carryl.final<-mean.parameters.new|7]
f.final<-7.final*carryl.final
p1-final<-var.parameters.new(1]

p2-final<-var.parameters.new(2]

mean.final<-u.final*ones+sequence.final*sequence.col+
periodl.final*periodl.col+period2.final*period2.col+period3.final*period3.col+
(periodl.final+period2.final+period3.final) *period4.col+

7.final*treatment.col+7.final*carryl.final*carryl.col

inv.varcov.ind<-(1/p;.final)*(diag(no.times)-

(p2-final/(p;.final+4*p,.final))*matrix(1,no.times,no.times))

inv.sigma.all<-kronecker(diag(nrow(data)),inv.varcov.ind)
derivative.matrix<-cbind(ones,sequence.col,
periodl.col+period4.col,period2.col+period4.col,period3.col+period4.col,

treatment.col+carryl.final*carryl.col,7.final*carryl.col)

corr.fixed.effects<-solve(t(derivative.matrix)%*% inv.sigma.all%*% derivative.matrix)
T.se<-sqroot(t(c(0,0,0,0,0,1,0)) %*%corr.fixed.effects%*%c(0,0,0,0,0,1,0))
6.se<-sqroot(t(c(0,0,0,0,0,carryl.final,7.final))%*%corr.fixed.effects%*%
¢(0,0,0,0,0,carry1.final,7.final))

.7 <-7.final-qt(0.975,(no.times*no.subj-no.param))*r.se

ul.7 <-7.final+qt(0.975,(no.times*no.subj-no.param))*r.se

11.0 <-6.final-qt(0.975,(no.times*no.subj-no.param))*6.se

ul.f <-6.final+qt(0.975,(no.times*no.subj-no.param))*g.se

Similar code has been written for fitting models M2 and M11.

3.10.5 BUGS code for the non-linear Bayesian analysis

without baselines - subsection 3.8.3

model pefl;

const
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N=13, P=2;

Defining parameters

var
peflN,P),
rho, carryover.effect, carry[N,P],
treatment, treatment.effect, treat[N,P],
pi, period[N,P],
intercept, mu[N,P], subject[N],

precision.within, precision.between, sigma.within, sigma.between;

Reading data-set
data period, treat, carry, pef in ”agsc.dat”;

inits in ”coragsc.in”;

Defining priors

{

intercept~dnorm(0,1.0E-06); pi~dnorm(0,1.0E-06);
treatment~dnorm(0,1.0E-06); rho~dbeta(1,1);
precision.within~dgamma(1.0E-06,1.0E-06);
precision.between~dgamma(1.0E-06,1.0E-06);

treatment.effect <-2*treatment; carryover.effect<-2*treatment*rho;
sigma.within<-1/precision.within;

sigma.between<-1/precision.between;

The model
for (i in 1:N) {
subject[i]~dnorm(0,precision.between);
for (j in 1:P)
pef[i,jj~dnorm(muli,j],precision.within);
muli,j]<-intercept+pi*period[i,j]+treatment*treat|i,j]+

treatment*rho*carry[i,j]+subject[i]; } }

142



3.10.6 BUGS ‘code for the non-linear Bayesian analysis
with baselines (model M2) - subsection 3.8.4

model pefl;
const

N=13, P=4;

Defining model parameters
var
pef[N,P],
rhol, first.carry, carryl[N,P],
rho2, kappa, second.carry, carry2[N,P],
treatment.effect, treatment, treat[N,P],
- pil,pi2,pi3, period1[N,P], period2[N,P], period3[N,P], period4[N,P},
sequence, seq[N,P],
intercept, mu[N,P], subject[N],
precision.within, precision.between,

sigma.within, sigma.between,;

Reading data-set
data periodl, period2, period3, period4,
treat, carryl, carry2, seq, pef in "nagm2.dat”;

inits in ”"coragm?2.in”;

Defining priors

{

intercept~dnorm(0,1.0E-06);

pil~dnorm(0,1.0E-06); pi2~dnorm(0,1.0E-06); pi3~dnorm(0,1.0E-06);
rhol~dbeta(1,1); kappa~dbeta(1,1); rho2<-rhol*kappa;
treatment~dnorm(0,1.0E-06); sequence~dnorm(0,1.0E-06);
precision.within~dgamma(1.0E-06,1.0E-06);

143



precision.between~dgamma(1.0E-06,1.0E-06);
treatment.effect<-2*treatment;

first.carry<-2*treatment*rhol; second.carry<-2*treatment*rho2;
sigma.within<-1/precision.within;

sigma.between<-1/precision.between;

The model
for (iin 1:N) {

subject[i]~dnorm(0,precision.between);

for (j in 1:P) {
pef[i,j]~dnorm(muli,j],precision.within);

muli,j] <-intercept+sequence*seq|i,j]+
pil*period1[i,j]+pi2*period2(i,j]+pi3*period3[i,j]+
(pil+pi2+pi3)*periodd|[i,j]+
treatment*treati,j]+

treatment*rhol*carry1[i,j]+
treatment*rhol*kappa*carry2[i,j]+

subjectli]; } }

Similar code has been applied for fitting models M12 and M11
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Chapter 4

Multi-period, multi-sequence

designs for two treatments

4.1 General considerations

When a clinical trial is conducted, the number of periods used is usually chosen to
be equal the number of treatments the trialist is prepared to compare. This need
stems from the limited time horizon within which the trial must be completed,
but also from limited financial resources. A direct implication of that restriction
is that when only two treatments are compared, no more than two periods will
be used.

There are a number of advantages when higher-order designs are used for compar-
ing two treatments. By higher-order we mean that in the clinical trial plan either
multi-period designs are allowed for, or more than two sequence groups are used,
or both. To begin with, better insight for the treatment difference can be gained
for each patient, if a multi-period trial is preferred to a conventional 2x2 solution.
Imagine for the moment that the treatment sequence ABAB... is administered
to a patient. In that case the treatment difference A-B can be evaluated more
than once, and assuming negligible time trends, a more accurate patient-based
estimate for the treatment effect is possible. By combining these iﬁdividual—based
treatment estimates a better overall picture for the superiority or not of the newly
proposed treatment (A) compared to the old one (B) can be obtained. Further-

more, if subject effect is modeled as a fixed parameter, multi-period designs offer
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the opportunity to estimate carry-over differences using within subject contrasts.
On the contrary in the 2x2 case carry-over effect is estimated by utilizing only
between subject information. Finally in multi-sequence, multi-period cross-over
clinical trials treatment by period interaction and carry-over difference are sepa-
rately estimable. In the 2x2 case these effects are intrinsically aliased.

Another important issue, which can be investigated using the rﬁulti-period de-
signs, is the statistical significance or not of the treatment-by-carryover interac-
tion. Till now it has been assumed that residual effects depends on the previous
treatment and not at all on the current one. A well-known alternative to that
scenario (see Fleiss [17]) proposes a scheme under which carry-over from A to
A might be negligible, but the one from A to B might be present. On phar-
macological grounds this might be the case if the two compounds have similar
but not identical therapeutic activity and react to each other. In clinical trials
(cross-over or parallel group ones) when a prespecified dose is administered to
the patient the clinician allows the drug to reach its pharmacological peak effect
(known from PK/PD studies) before the measurement is taken. Therefore, when
the wash-out period is not long enough between successive measurements of the
same compound, the residual effect from the previous period will force the cur-
rent measurement to reach its asymptote value earlier, implying that the final
current measurement will be similar to the one obtained as if no residual effect
is present at all. On the contrary between successive measurements of different
compounds, which might react chemically, the effect of the previous compound
to the current measurement might be influential in determining the final current
treatment outcome. This type of residual effect is called Fleiss (or steady-state)
carry-over (see Fleiss [17]).

Overall three models can be considered by the analyst during the design phase
for choosing the optimal plan: the simple carryover, the Fleiss-carryover type
model, and finally the model with no carryover terms at all. A question worth
consideration, is what are the losses in estimating the treatment difference using
anyone of the models mentioned before, but in reality any of the other two has
produced the observed data.

Although more statistical issues are possible to be tackled in a multi-period setup,
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there are some practical disadvantages in conducting such a trial worth consid-
ering in more detail. To begin with, the trialist should always keep in mind that
sources and time for drug development are limited. As a consequence if more
than two treatment periods are used, the time a trial lasts will be extended sub-
stantially and the possibility of drop-outs from the study becomes significantly
higher. If the time length of wash-out periods is added to that of treatment
periods then use of multi-period designs might be strictly cost-prohibited. Fur-
thermore, in cases where a complicated multi-period design is used, clinicians will
find difficult to administer treatments according to the protocol of the trial, while
statisticians will face difficulties in communiclating results from the final analysis.
Overall we have to weight carefully the advantages for conducting such a trial,
which should be in agreement with the objectives of the study, before we prefer

the more complicated design from the conventional 2x2 solution.

4.2 The approach considered here

Suppose that a multi-period cross-over design consisting of s sequence groups
and p periods is to be used. The statistician responsible for choosing the opti-
mal within a family of designs, exploits the fact that any treatment difference
estimator can be expressed as a weighted average of the ps sequence by period
means. This assumption will be adopted in what follows. Note here that it is
quite common in practice repeated measurements are collected on each subject
within a treatment period. It is debatable if the mean of these measurements
is the appropriate statistic for summarizing patient’s response at that specific
period. An interesting query of how results altered when a different summary
measure is chosen, or alternatively when the repeated measurements are used
without any attempt to summarize them, is raised.

In a typical ANOVA table, where the results of the analysis of a cross-over trial
will be summarized, the total number of available degrees of freedom (df) is sp—1.
Now, s — 1 of them will be used for estimating sequence effects (if fitted as fixed
effects), p — 1 for period effects, while the rest, (s —1)(p — 1), will be partitioned

for assessing treatment and carry-over difference as well as any other estimable
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interactions of interest. This implies that the number of periods, number of se-
quences and number of patients allocated in each sequence, should provide the
analyst with adequate information to estimate these parameters. In some trials
the treatment effect(s) on sub-group of patients with specific demographic char-
acteristics (e.g. males, aged 50-60) can be of interest. This information can be
used by the GP to individualize the treatment regime. For such a trial not only
is the choice of the treatment sequences under question, but also the proportion
of males/females allocated to different sequences is controversial. On the other
hand, in other types of clinical trials (e.g PK/PD studies) the long-term effect
of the compound on a target subpopulation might be the focus of attention; if
that is the case, the way the total study-completion time is divided into sub-
periods is debatable. The statistician, in close collaboration with the clinician,
should choose the appropriate sub-period length so that the possibility of carry-
over presence diminishes, while the proportion of patients who drop-out from the
study is kept to a minimum level.

In most studies, both the number of periods and sequences used, are usually fixed
in advance by relying mostly not on statistical methodologies but on practical
needs. We follow the same policy here by restricting the number of periods and
sequences at low levels, so that the whole set of designs for that family can be
easily listed. The statistically optimal designs for the simple carry-over model
have been derived under the assumption of fixed subject effects (or equivalently
fixed sequence effects) and independent within-subject errors. For a full review
of these results, see Kershner and Federer [43].

An attempt to relax both assumptions has already been reported in the literature,
for example determining optimum design plans assuming random subject effects
(see, Laska and Meisner [51]). If the subject effects are considered as random
quantities, then the sequence effect which is the average effect of the subjects
allocated to that sequence should be random as well. Results under different
kinds of carry-over (e.g. Fleiss) will be presented. More specifically, the model

considered here is:

Uij = B+ 8i + 5 + TaGig) + Adtij-1) T & (4.1)
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where
si ~ N(0,0%/n) and &; ~ N(0,0%,/n) (4.2)

Note that the residual treatment effect (Ag; ;1)) depends on the current and
previous period treatment in an unspecified way. This equation includes simple,
Fleiss and no-éarryover model as special cases. If patients are followed up for
a long time, within-subject error structure can be safely assumed to follow a
stationary first-order auto-regressive process. The (j,k) element of the variance-

covariance matrix for the i** subject’s error vector is:

I /T ik

COV(&]’, Eik) = 1 p2

(4.3)

where n is the number of patients per sequence. In equation (4.1) a serially
correlated error structure and a random subject effect are considered simultane-
ously. This implies that correlation decays with increasing time difference and
approaches a limit that is greater than zero for large time differences. This limit
is the between subject variance. If that model is adopted for designing a study,
knowledge in advanced of this variance component is necessary. Because that in-
formation is not readily available, the random sequence effect is removed from the
model, leaving the AR(1) structure to describe stochastic dependence between
measurements made on a subject.

The d; optimality criterion is used for determining the optimum plan, regardless
of the assumptions made for the fixed or the random part of the model. More
specifically the design plan under which the treatment effect is estimated with
minimum MSE, will be declared as optimum. Note that the optimum design for
estimating treatment difference might be sub-optimum for estimating carfy-over
difference or any other interaction terms and vice vérsa. A further restriction on
the class of designs studied is that of dual balance i.e. if a treatment sequence (e.g.
AABB) is present, then its dual (BBAA) should be present as well. In addition,
equal proportion of patients are allocated to that pair of sequences. The concept
of duality for treatment sequences is meaningful only when two treatments are
compared in the study (e.g placebo-control). In the case where more than two
treatments are examined, the duality concept applies to the design as a whole,

but not to individual treatment sequences. The main reason for considering this
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special family of designs stems from a result proved by Laska and Meisner (see
[51]), under which optimal designs are not necessarily dual balanced, but a dual

balance design always exists in the family of best plans.

4.2.1 Three period-two sequence designs

| The only possible design plané in this case are listed in Table (4.1). In any de-
sign presentation each sequence is accompanied by its dual. Following standard
notation introduced by Jones and Kenward (see [39]) the above plans will be
referred to as 3.2.1, 3.2.2 and 3.2.3, where the first number reflects the number
of periods, the second stands for the number of sequences, while the final one is
an index to distinguish between different designs. The efficiency of a design for a
prespecified effect (e.g treatment or carry-over difference) is defined as the ratio
of the variance of the treatment or carry-over estimator at the optimum over the
corresponding figure for the design in question. The efficiency of three-period
two-sequence designs for the treatment as well as the carrv-over difference have
been evaluated over a range of possibilities concerning the modeling of the carry-

over effect and the within-subject covariance structure. It is well-known that

Table 4.1: Two, four sequence three-period designs

3.2.1 3.2.2 3.2.3 3.4.12 3.4.13 3.4.23
A B B A B A A A B|/A B B A B B A B A
B A A B A B B B A|B A A B A A B A B
A B A A A B A A B
B A B B B A B B A

under fixed subject effects and independent within-subject errors (see, Jones and
Kenward [39] or Kershner and Federer [43]), design 3.2.1 gives minimum variance
unbiased estimator both for the treatment and carry-over effect under the simple
carry-over model. If no-carryover is assumed and AR(1) error structure is used,
design 3.2.2 estimates treatment difference most efficiently over the positive range
of the correlation coefficient (p). Under Simple (Fleiss) type of carryover design
3.2.3 (3.2.1) is the optimum for estimating treatment effect this time, while all

designs are equally efficient for that effect when a second order carry-over term
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is added to the first one (second order carry-over model). Similar results are
given by Matthews (see [61]). The majority of the results presented above, are
valid when the assumption of a uniform covariance structure is made, with the
exception that all designs are equally efficient in the case of no-carryover while
3.2.1 instead of 3.2.3 is the optimum under simple carry-over model.

In the cross-over literature, designs which estimate efficiently not only the treat-
ment but also the carry-over difference are preferred. Design 3.2.1 is optimum
for estimating carry-over difference for both Simple and Fleiss type of carry-over.
This is true irrespective of the covariance structure assumed, although for the
Fleiss type of carry-over and under uniform structure 3.2.2 is an equally efficient
alternative.

Overall design 3.2.1 seems to have a good performance for estimating both the
treatment and residual effect no matter the within-subject error structure as-
sumed, while for those with a special interest on the treatment effect, design 3.2.3
is an excellent alternative. Under no circumstances design 3.2.2 should be used
(unless no carry-over is assumed), while for all designs variance of the treatment
and carry-over effect decreases as intra-class correlation increases. Sensitivity of
best plans under different model assumptions, show that it is easier to propose

robust solutions for the residual effect rather than for the treatment effect.

4.2.2 Three period-four sequence designs

The possible design plans in that occasion are listed in the right half of Table
(4.1). The available degrees of freedom for the group by period interaction in
the three period two sequence designs are (p — 1)(s — 1) = 2 allowing only the
estimation of treatment and first-order (or Fleiss) residual effects. In all these
designs first-order carry-over is aliased with treatment by period interaction, while
the assumption of carry-over being dependent not only upon previous treatment
but also upon the current one (treatment by first-order carry-over interaction)
cannot be tested.

A way to overcome this problem is to allow for more sequences and/or more
periods in the design. Here the first possibility is only considered and the two-

sequence three-period designs presented in the previous section, are combined
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in pairs giving four-sequence three-period designs. For example, by combining
3.2.1 with 3.2.j the three-period four-sequence design 3.4.ij is generated. The three
possibilities, labeled 3.4.12, 3.4.13 and 3.4.23, are given in Table (4.1). In this way
we increase the available degrees of freedom for the group by period interaction
from two to six. If we include treatment, first-order and second-order carry-
over terms then two d.f remain for estimating uninteresting sequence by period
interaction terms. Note that the 2 d.f of the treatment by period interaction are
aliased with first and second order carry-over effects, as for the 2x2 case. Under

uniform or AR(1) within-error structure four models will be studied:

e M1 : Inclusion of residual terms of any kind is not considered based on
knowledge about the pharmacological effect of the drug on humans. Only

treatment effect (7) is fitted.

e M2 : First order carry-over effect added to model M1 (simple carry-over

model).

e M3 : A second order carry-over effect further added to the simple carry-

over model (second order carry-over model).

e M4 : A special type of treatment by first-order carry-over interaction is

fitted in addition to the treatment term (Fleiss model).

It was concluded that under model M1 and AR(1) error structure designs 3.4.12
and 3.4.23 are equally efficient for estimating treatment difference, while under
the simple carry-over model the ideal choice is 3.4.13. In the Fleiss model, the
optimum decision depends upon the correlation coefficient. More specifically de-
sign 3.4.13 is preferred for small values of p, while for the larger values 3.4.12
becomes the favored one. Finally under the completely unrealistic model M3,
design 3.4.23 is the best choice. Similar results for the simple carry-over model
are proven by Matthews (see [61]).

If now uniform covariance structure is assumed under model M1 all designs are
equally good for assessing treatment effect, whereas for the Fleiss and second
order carry-over model, optimum decision depends again upon p. For the simple

carry-over model, optimum design does not depend on the assumed covariance
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Table 4.2: Optimum three period four sequence designs for 7 and A

Upper half : AR(1) structure - Bottom half : Uniform structure

Optimum for 7 (3.4.index) Optimum for A (3.4.index)

M1 M2 M3 M4 M2 M3 M4
Jd2o0r .13Vp .23 Vp 13 if p € (0,0.6] 13 Vp A3Vp .12 Vg
23 Vp 12 if p € (0.6,1)
12o0r .13Vp .23ifpe(0,0.8] .13if p€(0,0.5)[.13if p € (0,0.2] .13Vp .12Vp
13 or 12ifpe (0.8,1) .12if pe (0.5,1)12if p € (0.2,1)
.23 Vp
structure.

Turning now to the issue of estimating efficiently the residual effect designs 3.4.12
and 3.4.13 are preferred in all the cases (AR(1) error structure), but in other oc-
casions the unknown value of p plays a key role in the final choice (Uniform error
structure). Results are shown in Table (4.2).

'Obviously if the number of sequences used in the trial is increased, then the pre-
cision with which we estimate treatment or residual terms will be increased as
well. This implies that four sequence designs should be preferred for running a
cross-over study than two sequence ones. But a four sequence design is normally
more expensive to conduct and requires the management of four groups of pa-
tients. In conclusion, if the experimenter decides to run a four sequence design
then 3.4.13 is a good choice as it has good performance for estimating treatment
difference when carry-over terms are included in the model, irrespective of the

covariance structure assumed.

4.3 Using more periods

In that section designs made of four treatment periods in either two, four or
six treatment sequence groups are considered. Only designs made up of dual
balanced treatment sequences are investigated. The logistics of running such a

study are far more complicated from the study-designs considered so far. If we
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assume that the experimenter keeps the completion time of the trial fixed, then
sub-dividing this time into four equal time-intervals (instead of three or two),
may cause difficulties in collecting the amount of information required for regu-
latory or other authorities. In addition the cost for conducting such study might
not be negligible. From the statistical point of view, by using more periods it is
expected that all the effects of interest will be estimated more precisely, but also
non-estimable effects in two or three period plans become estimable in the four
period family. As in the previous section treatment, first-order and second-order
residual effects will be included in the model, but also the best design plan when
different carry-over types (e.g. Fleiss) assumed, will be presented.

The optimum design will be the one which estimates treatment (or carry-over)
difference with minimum variance. It is obvious that other functions could be
considered to optimize, but these choices depend upon the interests of the exper-
imenter. For example minimizing the variance of the overall treatment effect (i.e.
treatment plus residual component) or the total study cost are two such func-
tions. As before, both uniform and AR(1) within error structure will be assumed
throughout. Finally note that when Fleiss type of carry-over is incorporated into
the analysis, second order carry-over of the same type is not included, because
it is quite unlikely in practice to occur. The same argument can be put forward
for the simple carry-over model, but the reason for considering such a term here,
is simply to study the sensitivity of optimum plan when higher order carry-over
terms are considered. Third, fourth or higher order residual terms will not bother
us in what follows. There are seven different four period dual-sequence designs,
listed in Table (4.3).

By allowing more periods, the set of estimable interactions increases, but some
of them like the treatment by carry-over one (7) are still not estimable. Un-
der the AR(1) within-error structure when treatment and all carry-over terms
are included (M3), designs 4.2.6 and 4.2.7 are the optimum ones for estimating
treatment effect but the decision depends on intra-class correlation, while in the
case of the simple carry-over model (M2) design 4.2.3 is the preferable one. If
the Fleiss type of carry-over holds then 4.2.1 and 4.2.6 are equally efficient for

small values of p, but 4.2.3 is the optimum for the large ones. Finally if the
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trialist is confident enough that no residual terms should be present because an
adequate wash-out period has been allowed for, then the advisable design is the

4.2.2. These results are also comfirmed by Matthews (see [61]). From the above

Table 4.3: Two-sequence, four-period designs
4.2.1 4.2.2 4.2.3 424

A A B B A B A B A B B A A B A A

B B A A B A B A B A A B B A B B
4.2.5 4.2.6 4.2.7

A A B A A B B B A A A B

B B A B B A A A B B B A

discussion it can be concluded that if a model with elaborated carry-over terms is
used, then optimum designs are made of sequences with non-equal replication of
A’s and B’s (designs 4.2.6 or 4.2.7), while as residual terms are removed gradually
from the model then equal number of A’s and B’s appear in each sequence for the
optimum plan. This is the price we have to pay for including carry-over terms.
The dangers from administered the same drug in a number of adjacent periods is
to bias the clinician’s assessment of the subject’s response, as the randomization
code could be easily broken. More importantly if one of the treatments is placebo
and design 4.2.6 (or 4.2.7) is used, then a group of patients will suffer discomfort
for a long period and be willing to abandon the trial. All the above shows that a
lot of conflicting objectives have to be reconciled, one of which is the statistical
efficiency, before a specific design is chosen. Under uniform covariance structure
similar conclusions derived when compared to the AR(1) case.

Turning now to the optimum estimation of carry-over effect design 4.2.6 seems to
have good performance over the range of the models studied and irrespective of
the covariance structure assumed. Generally speaking it is easier to find a robust
plan for estimating carry-over rather than treatment effect.

By combining two-sequence four-period generic designs in pairs we form 21 dis-
tinct four-period four-sequence designs, each one referred to as 4.4.ab if designs
4.2.a and 4.2.b are joined together. Contrast to the two sequence plans, stud-

ied before, the treatment by first order carry-over interaction is now estimable.
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Under uniform covariance structure and when the full set of carry-over terms
is present (model M3), designs 4.4.12 and 4.4.14 estimate 7 optimaly, but the
decision which one to use depends on p. For the simple carry-over model design
4.4.13 is our best choice, while 4.4.16 is the favorite one for the Fleiss type of
carry-over, irrespective of the value of p. In the absence of any residual terms any
combination of 4.2.1, 4.2.2 and 4.2.3 in pairs can be used to estimate optimaly the
treatment difference. From the above discussion the major two-sequence design
for constructing the optimum four-sequence plan is 4.2.1. If the AR(1) structure
is assumed and model M1 (no-carryover) is used for analysis purposes then 4.2.2
is the major building block for the optimum four-sequence design, while design
4.2.3 plays that role for the simple and Fleiss type of carryover; for more details
see Table (4.4). This family of plans has also been studied by Matthews (see [61],

[62]) and similar conclusions were derived.

Table 4.4: Optimum four-period designs for treatment effect

Upper:Two sequences-Middle:Four sequences-Lower:Six sequences

AR(1) within-subject error structure assumed

M1 M2 M3 M4
2V 3 6 if p € (0.0,0.4] 1 or .6 if p € (0.0,0.5]
7if p € (0.4,1.0) 3if p € (0.5,1.0)
23 or .24 |13 if p € (0.0,0.7] |56 or .47 if p € (0.0,0.1].16 if p € (0.0,0.5]
or .25 ¥p |35 if p € (0.7,1.0) |47 if p € (0.1,0.4] 13 or .36 if p € (0.5,0.7]
12 if p € (0.4,1.0) 34 if p € (0.7, 1.0)
235 or .245.134 if p € (0.0,0.2][126 if p € (0.0,0.5]  |167 if p € (0.0,0.2]
234Vp  |135ifp e (0.2,1.0).127 if p€ (0.5,1.0)  |136 if p € (0.2,0.8]
.134 or .346 if p € (0.8,1.0)

Following the same principle, combining any three two-sequence four-period de-
signs, a six-sequence four-period design is produced. There are 35 distinct designs
in that family and the optimum combination for estimating 7 is presented again
in Table (4.4). Note here that the 35 distinct designs produced in that way in
two treatments constitute all the members for that family. The strategy of pro-

ducing more complicated designs by combining generic ones can be extended to
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the situation where more than two treatments are compared. Worth noting that
the plans generated in that way constitute a new design family the size of which
grows too fast. Identification of subsets with high probability of containing plans
with optimum properties is highly desirable. Formal proof that the optimum
plan for the subset is the optimum for the family as well, or at least that the
efficiency of the former is quite high, could be difficult to derive. ’Efﬁcient subset
construction could considerably simplify the design search for the original family.
It should be noted that the optimality conclusions drawn so far do depend upon
the intra-class correlation coefficient p.

A related work by J.N.S Matthews (see [61]) in which the simple carry-over
model with fixed subject effects and AR(1) within-error structure is assumed as
the model generated the data at hand, manages to determine mathematically
the optimum design. This work restricts attention on three and four-period de-
sign families. Under these assumptions, negative correlation between successive
measurements on a patient is possible. Matthews concludes that the final de-
cision concerning the design to use is highly affected not only by the value of
p, but also the proportion of patients allocated in each sequence group. This
is an uninteresting result since p is unknown in practice while equal number of
patients are usually allocated to the sequence groups. Being aware of these facts,
Matthews goes even further and examines the robustness of various designs con-
sidered before. He deduces that over the full range of p and under the simple
carry-over model a design with good performance for estimating treatment and
residual effect is 4.4.13 in our notation. Unfortunately our results do not suggest
a specific design with good properties over the range of models studied. This is
an indication that this line of research will be difficult (if at all possible) to be

taken any further.

4.4 Model mis-specification

A wide range of different criteria have been proposed in the literature for choosing
the optimum design. In the cross-over set-up the assumed carry-over effect is

crucial in deciding the best design for the analysis. Types of carry-over, already
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discussed, make this term depending upon current and previous treatment regime
(Fleiss carryover). These ideas can be further extended in various directions,
producing more elaborated carry-over schemes, although the validity of those
plans in real life problems has been questioned a lot in the past (see Matthews
[62] and Fleiss [18]). One such direction allows the current patient’s response to
depend on the whole treatment history of that patiént, i.e the residual effect at
time ¢ is a function of all treatment effects up to and including time ¢. Although
such a scenario assumes that carry-over from current treatment is present in all (or
some) subsequent treatment periods, it is extremely unlikely to be encountered
in practical applications.

A more general scheme, can be described as follows: if carry-over from treatment
A to treatment B (or from B to A) is denoted by A, then carry-over from A to A
(or from B to B) will be ¢ for some 0 < ¢ < 1. This will be referred to as the
mixed carry-over model in the sequel. Essentially it is an intermediate scenario
between simple and Fleiss type of carry-over, since when ¢ = 0 (¢ = 1) then the
Fleiss model (simple carry-over model) is recovered. Note that even under that
new scheme, residual effect from previous treatment lasts for one period only.
An analyst might feel insecure in using either the Simple or the Fleiss type of
carry-over as his analysis model, so he may prefer to let the data decide upon the
value of ¢. In other words, his analysis model should allow for all possibilities. On
the other hand if "nature” decides that the observed data are generated by the
Simple (or Fleiss) carryover model, and that information is not captured by the
analysis model, then the analyst would be interested to know which design gives
the minimum mean square error (MSE) for estimating treatment effect under
model mis-specification. In other words, if Model 1 is used for the analysis, but
Model 2 is the correct one and should have been used instead, which design plan
recovers the real treatment difference. In all the above, only two treatments are
compared, the within-error structure is assumed known and only dual balanced
designs in two, four or six sequence groups and four periods will be considered.
The above question can be extended in the case where not only the systematic
part, but also the within-patient error structure of the model has been mis-

specified; for example although the analyst is using the OLS treatment estimator
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which is optimal if one assumes uniform within-subject covariance structure, the
same estimator might be sub-optimal and should be modified, if the structure
adequately describing the correlation between successive observations in a patient
is the AR(1).

Some minimal notation will now be introduced. The design matrices for the
”analysis” and the ”true” mo'del'w‘ill be denoted by X; and X, respectively.
Following Laird-Ware’s notation for models with fixed and random effects, both

the true and analysis model can be described as follows:
y=XiB+Js+e i=1,2 (4.4)

where [ includes overall mean, period, treatment and carryover effect (if present),
all fixed, while s ~ N(0, 0%) being the random sequence effect and J is a vector of
ones. The equation above, implies a uniform covariance matrix X for the vector of
repeated measurements on a particular subject. The AR(1) structure cannot be
expressed using a random effects model, but usually is presented in the following

form:
y=X,0+c¢ 1=1,2 (4.5)

where ¢ ~ N (0,%) and %;; = pli-il. The correlation coefficient is assumed
positive throughout, in agreement with the findings in most practical applications.
The generalized least squares estimator for the fixed effects under the ”analysis”

model will be:
Ba'n.alysis = (XlTE—le)—l Xrlrz_ly (46)

Note that the model used for ”analysis” differ from the ”true” only in their
systematic part, and more specifically on the type of carryover assumed. Under

the ”true” model we have:

E (}’) = X
so that:

B (Bunatysis) = (XT=72x0) 7 XTE71 X8 (4.7)
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It is easy now to evaluate the bias and the variance matrix of the fixed effects as

follows:

Bias(Banatysis) = (1—(X1TE-IX1)"1X1TE-1X2)5 (4.8)
V(Banalysis) = (XlTE_IXI)—l (49)

"True” model candidates includes the model with no carry-over terms, the Sim-
ple and the Fleiss-type carry-over model. Similarly ”analysis” model candidates
includes all the ”"true” model nominees plus the mixed carry-over type with ¢
ranging from 0 to 1. In what follows the real treatment difference is assumed to
be 5 units, while the carry-over effect is taken as a proportion of the treatment
effect. Both treatment and carry-over terms enter linearly into the model and are
mathematically unrelated. To facilitate results presentation the ratio A/7 and the
correlation coefficient p are classified as follows : low (0.1-0.3), medium (0.4-0.6)
and high (0.7-0.9) range of values. In practice 20% or less (low range) of the
real treatment effect carries over to the next period, while the correlation among
successive measurements on the same subject is usually estimated at about 0.7
(high range). Optimum plans under these restrictions will mainly be discussed
in the sequel.

As expected the design used for running the trial depends upon the statistician’s
choice for the ”analysis” model. For example, in the quite likely case, where
the model with no residual terms is the ”true” model and statistician 1 uses
the Simple carry-over, while statistician 2 uses the Fleiss type of carry-over as
his ”analysis” model respectively, when it comes to design selection they will
choose differently. If we restrict attention to four-sequence four-period designs,
then statistician 2 should be running his trial using the design (AABB, ABBB,
duals) while statistician 1 can choose any one of the about equally efficient plans
(AABB, ABBA, duals) and (AABB, AAAB, duals). The two statisticians will
disagree on which design should be used to run the trial, even when the Simple
or Fleiss carryover schemes are the models responsible for generating our data
("true” model), as long as they pick up different ”analysis” models.

General recommendations on the choice of the best design cannot be made; a no-
table exception to that rule might be when the family of two-sequence four-period

designs is decided to be used from the outset. If that is the case a design with
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good performance on estimating treatment effect with minimum MSE, irrespec-
tive of the "true” or ”analysis” model assumed, is ABBA/BAAB. Unfortunately
this argument does not hold when designs with more than two sequences are
considered. The set of optimum designs, under various scenarios, are summa-
rized in Tables (4.9), (4.10) and (4.11). Each design is identified by a number
'pre-'assigned to it. The key to that index is presented in Table (4.12.).

From the statistician’s point of view, the robustness of the chosen design to "na-
ture’s” choices is the ultimate goal. Suppose for the moment that a statistician
after reviewing the cross-over literature feels comfortable in using the simple
carry-over model as his analysis model. If he had to choose a six-sequence plan,
normally he would choose the design as if the ”true” and ”analysis” model co-
incide. Suppose now that "nature” disappoints his expectations and chooses the
model with no carry-over terms as the one responsible for generating the observed
data. If that is the case, design 22 (see index) should be used for running the
study, while in the alternative case where "nature” chooses as "true” model the
one with the Fleiss type of carry-over, design 15 becomes his best choice. The
wise statistician would prefer a design with high efficiency over a wide range of
"nature’s” choices. This design usually is not the optimum under anyone of the
"true” models, but it has good performance (efficiency more than 90%) over the
range of "nature’s” choices. Some of these designs will now be presented when

six sequences are used. We still assume that A = 0.27 and p = 0.7.

e A down-to-earth statistician decides to use for his analysis model the one
with no residual terms. In that case, design 3 has 97% efficiency under the
Simple carry-over model, while it is nearly optimum under the Fleiss type

of carry-over (efficiency more than 99%).

e A conservative choice could be to use in the analysis phase the simple carry-
over model. If that is the case, designs that are highly efficient when the
"true” model is the Fleiss one, tend to be of low efficiency under the no-
carryover scheme. A design with reasonably good performance under either
of these "true” model candidates, is design 33 (ABBA, ABBB, AAAB,
duals), which has efficiency of 58% under no-carryover model and only 50%

under the Fleiss type of carryover.
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o In the unlikely case where the statistician chooses the Fleiss type of carry-
over for his analysis model, then design 12 has 94% efficiency if ”true”
model is the one without residual terms, while it has only 80% efficiency if

"nature” selects the Fleiss type of carry-over as the ”true” model.

If we are given ”true”, ”analysis” models, correlation coefficient p, and it is as-
sumed that residual effect is a small proportion of the treatment effect, then the
set of designs the analyst can choose from to run his trial is wider than the cor-
responding set when A is a substantial proportion of 7. On the other hand, given
"true”, "analysis” models and proportion of treatment effect carrying over to the
next period, the set of designs the analyst can choose from is similar across pos-
sible values of the correlation coefficient. To illustrate the point suppose that the
practitioner decides to use a four-sequence design. On pharmacological grounds,
he decides to use for his analysis model the Mixed one with ¢ = 0.2. ”"Nature”
on the other hand produces the observed data using the Fleiss model. Which is
the best design to use, so that the MSE of estimating treatment effect is mini-
mized, if correlation among successive measurements on a subject is high? The
answer, of-course, depends on the true value of A. If A is in the low range then
the statistician is free to choose any one of the four designs (5,6,13,14). He has
two alternatives if A lies in the middle range (designs 5,14) and only one choice
(design 5) when A is in the high range. In other words the analyst should worry
more to capture correctly residual difference, rather than the way observations
are related within subjects.

In our discussion so far it has been assumed that if the Mixed carry-over model
is used the proportionality coefficient ¢ is known. This is a strong assumption
to be made and one would expect this quantity to be estimated from the data.
If that is the case then we are dealing with a non-linear model with respect to
¢ and A. Usually not sufficient data are available in practice to estimate both
¢ and A. To prove the point, suppose that the two-sequence three-period design
AAB/BBA is used. If n patients are allocated in each sequence, then only the
second period data will be used to estimate ¢. Given that the number of patients
recruited in a typical cross-over trial is usually low to moderate, the estimation

of ¢ and its standard error will be unstable. As a consequence, ¢ will be assumed
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known throughout, implying a linear model in the unknown parameters.
Furthermore the situation in which not only the systematic part, but also the ran-
dom part of the model is mis-specified by the analyst will be discussed in some
detail. The majority of the analysts cannot express any prior opinion about sec-
ond order behaviour of their data without actually analyzing these data; usually
they are much more confident in modeling ﬁrét order properties. Let’s assume
for the moment that the analyst uses uniform correlation structure to model the
within-patient dispersion matrix, while the appropriate one for the data actually
observed is the AR(1). Recall here that the family of designs studied so far has
at most four periods. In such occasion, the uniform structure sounds a sensible
choice, unless the observations on a subject are quite distant apart in time, in
which case the AR(1) is a viable alternative. It is further assumed that each
subject offers a complete set of measurements, obtained under an agreed therapy
time-table common to all subjects (e.g each patient has his second measurement
taken one week after the first one). On the other hand patients can visit the
clinic at different dates. Finally intervals between successive measurements are
assumed to be similar across subjects. Those assumptions are crucial when sec-
ond order structure is modeled.

Under those circumstances, the bias vector for the fixed effect parameters is pro-
vided by a similar relation to the one used when only the systematic part of
the model is mis-specified. The variance-covariance matrix for the same set of

parameters is as follows:
V (Banalysis) = BE2 BT (4.10)
where:
B = (xTz'x,) " xTxp! (4.11)

and ¥, is the dispersion matrix used in the analysis model (uniform in our case),
while ¥, is the true error structure (AR(1)) which the analyst fails to correctly
identify. It seems that the error-structure chosen for the ”analysis” model in-
fluences to a greater extend the chosen design, compared to the error-structure
chosen for the ”true” model. This can be seen from the bias and variance equa-

tions above, which depend more heavily on ¥; rather than on X,.
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Optimum designs derived _under mis-specification of the systematic part, tend to
be highly efficient even in the case where both systematic and random part are
wrongly modeled. For the six-sequence family of designs, in the case of practical
importance where no carry-over is present, but the analyst insists on incorporat-
ing residual term(s) (of some kind) into his model, designs 12 and 31 (see index)
are still the best choices. The same set of designs, along with design 9, have
high efficiency under the Fleiss carry-over model. When the simple carry-over
model become the ”true” model, then design (ABAB, ABBA, ABBB, duals) has
excellent performance over the whole range of ¢, p and .

The logic behind the strategy for choosing the design which gives the minimum
variance for the treatment estimator when systematic and/or random part of the
model is mis-specified is quite artificial. The statistician has to select his analy-
sis model based on his intuition, experience and background information about
the nature and objectives of the study (see Senn and Lambrou [82]). In practice
though this intuition is built after experiments with similar set-ups have been ana-
lyzed and sometimes after combining results from various studies (meta-analysis).
In this way information is obtained not only about the nature and magnitude of
residual terms, but also about secondary parameters, such as intra-class correla-
tion. The effective planning of future trials highly depends on the quality of this
background information. It is exactly this experience used throughout in this
section concerning plausible values of p and A/7. If the analyst feels that not
enough information is available to justify his choice on key parameters, then a
Bayesian approach could be adopted to incorporate this uncertainty. Results of
optimum designs under the Bayesian perspective are very limited in the cross-over
literature, mainly due to computational difficulties that frequently arise during

the implementation phase.

4.5 What makes a good plan

To understand why some designs estimate treatment effect more accurately than
others under specific model assumptions, it is wise to take a closer look at the

treatment estimators proposed under these plans. Recall that treatment estima-
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tor is a weighted average of the ps sequence by period cell means. The expectation
of this estimator is free of period, sequence and residual terms.

The procedure followed for the specification of the weights has already been con-
sidered in the 2x2 case, and will be further illustrated here using the four period,
two sequence design AABB/BBAA. Following Senn (see [77]), we first eliminate
sequence and period effects. This implies that for a given column (row) the
weights must add up to zero. This results in the scheme displayed in Table (4.5).
Note that only those two constrains reduce the number of unknown weights from
eight to three. An estimator of the difference between the effect of treatment
A and the effect of treatment B would require that if weights summed over the
symbol A the result should be 1, while summed over the symbol B the result
ought to be -1. This imposes the further constraint: w; +w, = 1/2. Suppose

Table 4.5: Weights after eliminating sequence and period effects

A A B B

wy wo w3 — (w1 + we + ws)
B B A A

—u —wo —w3 w1 + wo + w3

now that three experts express three different opinions about the type of carry-
over occurred during the study. The first expert after considering the half-lives
of the drugs involved and the length of the wash-out period used, he strongly
supports the opinion that the presence of carry-over is high unlikely (no carry-
over). The second expert believes that no matter the serious attempt made to
eliminate residual effects, there will still be a carry-over of meaningful size (simple
carry-over). Finally, the third one who do not feel so confident that the wash-out
period used excludes in all cases the possibility of residual term being present,
he combines the opinions of the other two and suggests that residual effect is not
possible when a treatment is followed by itself, but it might be possible in other
scenarios (Fleiss carry-over).

The next step is to eliminating residual effects form the treatment estimator. The
weights produced, shown in the three lay-outs below, correspond to the the three

carry-over types; no carry-over, simple carry-over and Fleiss carry-over.
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Simple carryover scheme Fleiss carryover scheme

A Aa Ba Bb A A Ba B
1+2w -1/2 - 2w w =-1/2—w 1/2—w w 0 -1/2
B Bb Ab Aa B B AB A
—1—2w 1/2 + 2w —w - 124+w| —-1/24w —w 0 1/2

As far as the notation is concerned, English lowercase letters correspond to sim-
ple carry-over effect, while Greek ones to the Fleiss-type carry-over. Note that
the associate weights for either letters add up to zero, a fact which ensures the
elimination of the residual term, when the expectation of the treatment estima-

tor is evaluated. In order to obtain a unique set of weights in each case further

No carryover scheme

A A B B
1/2 — wo wo w3 —-1/2 —ws
B B A A
—1/2 4+ we —wa —w3 1/2 + ws

constrains are needed. For those who include carry-over term of any kind in their
model only one weight is still unknown, but for the model without residual terms
two weights need specification. To keep things simple, we assume that observa-
tions are independent. In that case, the variance of the treatment estimator is
proportional to the sum of squares of the weights for each scheme. One way of
selecting the unknown weight(s) is by minimizing that variance.

Applying that rule, the following set of weights is derived, under the three models

considered:

~

. 5 N 5 _ 5 " 3_ + 5 +3
T = 20?,'1 20?!2 20y3 0 Ya 20116 203/7 20y8

_ 6 4 4 3 N 4 +l L3 3 _
T2 = 20% 201/2 20?;3 y4 ys 203/6 2097 20

R 5 5 10 5 _ 0 10
T3 = \ =01+ 5502 — —ya - ——y4 + -—ys 20?/6 + =Y+ =Us

20 20 20 20 20
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where 71,7, and 73 estimate the treatment effect under the model with no carry-
over terms, Simple and Fleiss type of carry-over respectively. Note that 7; (the
estimator with all weights equal in absolute terms) has the smallest variance of
the three. Another scheme of weights could have resulted if the statistician tried
to eliminate both Simple and Fleiss-type carryover, or Simple and second order
carryover simultaneously.

The above approach is applied to decide the optimum six sequence, four period
dual balanced design, assuming AR(1) within error structure with p = 0.7. The
new element added here is that a different proportion of the available patients
is allocated in each dual sequence group. Three dual sequences are involved in
the family of designs considered, which implies that a proportion p of them is
allocated to the first one, a proportion q to the second one, while the rest (1-p-q)
to the third one. In that case the precision with which the treatment effect is
estimated, will be affected not only by the auto-correlation coefficient (known
here), but also by the allocation scheme. The weights are chosen so that Simple,
Fleiss and Mixed type of carry-over are eliminated from the treatment estimator
in the corresponding model. Varying p will not qualitatively alter our conclu-
sions. Similar work has been done by Matthews (see [65]).

In the majority of reported clinical trials there is an equal allocation of patients
to the sequence groups, usually controlled by a central randomization system.
Obviously this is the optimal allocation of patients in a longitudinal study, if the
serial observations on each subject are assumed independent or equally corre-
lated. Under more elaborated error structures this might not be the case. There
are also other practical needs to study the efficiency of designs with non-equally
replicated sequences. For example, in a multi-center study small centers will be
running part of the planned sequences with a moderate number of subjects ran-
domized in each one, while larger medical units have the infrastructure to recruit
an adequate number of subjects equally allocated in each sequence. Putting these
facts together, inevitably one concludes that equal proportions per sequence is
the exception rather than the rule in real life applications.

Results concerning the optimal plan along with the optimal allocation of subjects

to sequences for that plan, over the six-sequence, four-period family of designs
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are presented in Table (4.6). As it is expected the highest proportion of the

Table 4.6: Optimum 6-sequence, 4-period designs

AR(1) within-subject error structure with p = 0.7.
Unequal proportion of patients is allowed in each dual sequence.

No model mis-specification is allowed for

Model ' Design Proportion
ABAB ABBA ABAA / duals | 0.8 0.1 0.1
No carryover ABAB ABBA AABA / duals | 0.8 0.1 0.1

ABAB ABAA AABA / duals | 0.8 0.1 0.1
Simple carryover AABB ABBA AABA / duals | 0.1 0.8 0.1
Fleiss carryover AABB ABBA ABAA / duals | 0.1 0.8 0.1
ABBA ABAA ABBB / duals | 0.8 0.1 0.1
Mixed with ¢ = 0.2 | AABB ABBA ABBB / duals | 0.1 0.8 0.1
Mixed with ¢ = 0.5 | AABB ABBA ABBB / duals | 0.1 0.8 0.1
Mixed with ¢ = 0.8 | AABB ABBA AABA / duals | 0.1 0.8 0.1

recruited patients is assigned to the optimal two-sequence plan in the family of
two-sequence, four-period designs. For example, for the model free of carry-over
terms 80% is allocated to the dual sequence ABAB/BABA (40% in each single
sequence), while under any model which includes residual term of any kind, the
same percentage of subjects is now allocated to the dual sequence ABBA/BAAB.
In design theory both the selection of sequences and the proportion of the avail-
able resources assigned to each one of them are treated as unknown quantities.
The optimization problem need to be solved is considerably simplified when the
assumption of equal allocation of subjects to sequences is made. The implication
of that assumption is hard to be assessed in practice. Note that the optimality
criterion has to be slightly modified, in the case where non-equal number of pa-
tients is allowed for in each sequence. More specifically if X; denotes the design
matrix of the s** sequence, then the information matrix, i.e. the inverse of the

covariance matrix for the fixed effects, for any design plan is:

Zstst_IXs (4.12)
s
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where p; is the proportion of subjects allocated to the s** sequence and ¥ stands
for the within-subject error structure (AR(1) here). In the case of a balance
allocation of subjects to sequences, the information matrix is similar to the un-

balanced case one presented above, with the p; terms removed.

4.6 A cross-over clinical trial in 7 treatments

A cross-over trial was carried out for comparing two different formulations of
a compound, called formoterol, used to treat patients suffering from asthma.
The old formulation was a dry powder of formoterol delivered from a single dose
device, called ISF, while the new one was a multi-dose inhaller named MT&A and
developed by a pharmaceutical company. This was a multi-center clinical trial
carried out in four different countries under the close supervision and assistance
of people at company’s headquarters. The data were kindly provided by Senn et
al (see [83]).

An important query needed to be tackled at the planning stage of the trial was
the number and level of different doses for each formulation. Three doses of
MT&A (6, 12 and 24mg per puff) and three of ISF (6, 12 and 24mg per puff) are
to be compared. One of the study-objectives was to determine the time-response
curve at each dose for each formulation. For ethical reasons placebo was also
given during the course of the study. This implies seven treatments altogether.
The response variable was force expiratory volume in one second (FEV). The
recommended treatment regime for each patient was one or two puffs daily. Each
patient was followed for a time period of five days and according to well-known
PK/PD properties of formoterol, a wash-out period of at least two days would
eliminate any residual effect. A four-day wash-out period between successive
active treatment periods was agreed. This ensures that carryover should not be
a consideration for the statisticians involved, neither in the design choice nor in

the analysis. The design plan was produced by cycling the sequences:

(MT&AS, Placebo, ISF24, MT&A24, ISF6, MT&A12, ISF12)
(MT&AS6, ISF24, ISF6, ISF12, Placebo, MT&A24, MT&A12)
(MT&A6, MT&A24, ISF12, ISF24, MT&A12, Placebo, ISF6)
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until a 7x7 latin square is produced from each one of them. In that way a cross-
over design of 21 sequences in 7 periods is generated. If we delete periods 6 and
7, a 21-sequence, 5-period cross-over plan is finally produced.

The above design may not be the optimal one for minimizing the variance of
treatment contrasts on which the trial investigators were interested, but it is a
reasonable choice given the time constraints faced by the statisticians involved.
Although the precaution of an adequate wash-out period to eliminate the pos-
sibilities of presence of carry-over effect of any kind were taken, an interesting
query of how this optimal plan may change if we assume the existence of certain
forms of carry-over, like the Simple or the Fleiss one, is now raised. Note that a
baseline measurement was taken before each treatment measurement. It turned
out that baseline measurements had a tremendous explanatory power for the re-
sponse variable, which in our case is the logarithm of FEV measurements.

This is an incomplete block design and estimation of treatment contrasts can
be done in various ways depending on how the patient effect is treated. If a
fixed patient effect is assumed then all treatment comparisons are made using
within patient differences. On the contrary by modeling patient effect as a ran-
dom component some inter-block information can be recovered, i.e. a weighted
combination of between and within patient differences forms now the treatment
estimator. Both cases will be covered.

With 7 treatments a set of at most 6 treatment contrasts is estimable. The or-
thogonal set of treatment contrasts chosen by the authors (see [83]) were the
following: the first one compares the average treatment effect to the placebo one.
The second one addresses the question for which the trial was set up, i.e. does
the new treatment formulation of formoterol (MT&A) gives on average higher
FEV measurements compared to the old one (ISF) or not? The third contrast,
("slope”), examines the linear effect of dose level on the response aggregated over
formulations, while the ”curvature” contrast tests for a similar quadratic effect.
The next contrast checks whether or not the linear effect of MT&A is parallel to
the linear effect of ISF, while the final one examines if the vertical distance of the
average reading at 12mg from the line joining the average readings at 6mg and

24mg is the same for the two formulations. For simplicity the last two contrasts
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will be referred as ”Parallelism” and ” Opposite Curvature” in what follows.

Only the first three contrasts were found statistically significant at 5% level, after
fitting a variety of models. The first model excludes residual terms of any kind,
in agreement with the investigator’s beliefs. The second model is a simplification
of the Simple carry-over scheme, in which only active agents effect can persist to
the next period, while placebo’s residual effect is negligible. In our final model
the amount of dose that carries-over to the next period depends not only on the
current dose level and type of formulation, but also on the type of formulation
of the next period. This new type of carry-over, a special case of the Fleiss
type, will be referred to as the ”proportional” type of carry-over in the sequel
and is presented in Table (4.7). Note that from the 161 patients participating
in the trial, only 148 provided complete sequence of 5 measurements. Overall
158 patients were available for analysis. Those who discontinued for any reason
gave 31 measurements. The incomplete sequences were taken into account at

the analysis stage. Frequentist analysis in which subject effect is considered as

Table 4.7: Fleiss type of carry-over for the 7 treatment trial
ISF6 — ISF12,ISF24 ) | MT&A6 — MT&A12, MT&A24 4

ISF12 — ISF6, ISF24 2X | MT&A12 — MT&A6, MT&A24 2u
ISF24 — ISF6,ISF12 3\ | MT&A24 — MT&A6, MT&AI2 3u

either fixed or random will be discussed for all three models. Bayesian analysis
with random subject effect is also covered. Results are presented in Table (4.8).
For sake of presentation M1 refers to the model with no-carryover terms, M2 to
the simple carry-over model, while M3 to the proportional type of carry-over.
The important message though, is that the dose-log(response) curve for ISF can
be derived from the corresponding curve for MT&A by a vertical shift upwards
of about 0.01. Unfortunately the new formulation proved unsuccessful and this
conclusion stays valid irrespective of the inclusion or not of any residual effect in
the model, or the way the patient effect is treated (fixed or random).

The analysis of that multi-period, multi-treatment trial points out that carry-
over effect of any kind, if fitted, does not alter the conclusions concerning the

treatment effect in a substantial way, if the precaution of eliminating residual
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Table 4.8: Analysis of the 7 treatment cross-over trial (x 1072)

ModelDrug vs ISF vs Slope Baseline U% o2,
Placebo MT&A effect
Frequentist with fixed subject effect
M1 [12.15 (0.71) 9.98 (0.93)  5.40 (0.76) 46.01 (3.87) 7.67
M2 [12.27 (0.82) 10.04 (0.99) 4.62 (0.91) 45.71 (3.89) 7.68
M3 |12.09 (0.73) 10.06 (1.04) 5.45 (0.77) 46.00 (3.88) 7.68
Frequentist with random subject effect
M1 [12.43 (0.74) 10.10 (0.97) 6.01 (0.79) 78.40 (2.19) 1.04 (0.15) 0.68 (0.03)
M2 [12.20 (0.88) 10.24 (1.04) 5.52 (0.94) 78.54 (2.19) 1.03 (0.15) 0.65 (0.03)
M3 |12.41 (0.76) 10.31 (1.10) 6.03 (0.80) 78.46 (2.19) 1.04 (0.15) 0.65 (0.03)
Bayesian with random subject effect
M1 [12.40 (0.75) 10.10 (0.97) 6.00 (0.79) 77.90 (3.26) 1.09 (0.18) 0.65 (0.04)
M2 [12.20 (0.88) 10.20 (1.05) 5.50 (0.94) 78.20 (2.93) 1.07 (0.16) 0.66 (0.03)
M3 [12.40 (0.76) 10.30 (1.12) 6.02 (0.81) 78.30 (2.91) 1.07 (0.16) 0.65 (0.04)

effect at the design phase has been taken.

4.7 Discussion and other related results

As has already been explained there are many reasons to use more than two
periods in a cross-over trial. For the clinicians who use those designs in practice
a reasonable question arises: what is the optimal design to use if the number of
periods, number of sequences and number of treatments one decides to compare
are provided. Furthermore what is the optimal allocation of the available number
of patients to each sequence group? For notation’s sake a cross-over designs in
t treatments, n subjects (units), and p periods, will be denoted as co(t,n,p).
In the majority of optimality results drawn so far in the literature, the simple
carry-over model is assumed with independent within-subject error structure.
The optimality criterion used is universal optimality, which implies A-,D- and E-
optimality criteria. A design is universal optimal if its information matrix, C,

satisfies the following conditions, as described by Kiefer (see [44]):
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e The rows of C sum to zero.
e The diagonal elements of C are equal as well as the off diagonal elements.

e C has maximal trace over the family of designs which universal optimality

is claimed.

Most of the optimum designs possess certain characteristics; they are uniform
balance designs. A design is uniform if each treatment appears the same number
of times in each period and is administered the same number of times in each
subject. This implies that both the number of periods and the number of sub-
jects must be a multiple of the number of treatments the trialist is prepared to
compare. The balance property requires that each treatment is proceeded equally
often by any other treatment and never by itself. The ”strongly balanced” prop-
erty ensures that each treatment follows any other treatment the same number
of times including itself.

The first important optimality result for cross-over designs was derived by He-
dayat and Afsarinejad (see [33]), who proved that uniform balance designs are
optimal for estimating treatment and carry-over effects over the class of uniform
designs, when the number of periods used is the same as the number of treat-
ments. Cheng and Wu (see [5]) were able to relax the uniformity assumption and
prove that uniform balance cross-over designs are optimal for estimating only the
carry-over effect over all co(t,At,t) designs. To be able to extent this result for
the treatment effect as well, a uniformity assumption need to be imposed over
the family of designs in which optimality is claimed. More specifically, if the
class of designs which are uniform on units and uniform on the last period only is
considered, then uniform balance designs are optimum for the estimation of the
treatment and carry-over effect over this class.

From results in previous sections it is evident that the three-period, two-sequence
design ABB/BAA is optimal (or near optimal) under various model assumptions.
This design results, if the last period of the classical 2x2 design (AB/BA) is
repeated. More generally Cheng and Wu proved that if in a balance uniform
co(t,At,t) design, the last period is repeated, then a universally optimal design

for the treatment and carryover effect is obtained over the designs in co(t,At,t+1).
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An even more general result, proved again by Cheng and Wu (see [5]) and raises
further restrictions is the following: A strongly balanced uniform design is uni-
versal optimal for the estimation of treatment and carry-over effect over all designs
in co(t,n,p). The practical difficulty in implementing that result stems from the
fact that strongly balance uniform designs are more restricted than balance uni-
form designs. As a consequence it is more difficult for the statistician to suggest
a strongly balance uniform design than a balance uniform one.

In the case where only two treatments are compared, optimality results were
derived by Laska and Meisner (see [51]), who were the first including random
subject effects in their model, so that the covariance matrix of each subject’s
response is the uniform one. They proved that when the number of periods p
is even, then a strongly balance uniform design always exists and it is optimal
for estimating treatment and carry-over effect over all co(2,Ap,p) designs. If the
number of periods used is odd, then the optimal design for the estimation of
treatment and carry-over effect consists of a strongly balance uniform design in
the first p-1 periods, while the last period is a repetition of the (p — 1)** period.
This result is valid even in the case where baseline measurements are available.
Unfortunately Laska and Meisner were not able to provide an analytical result
if an AR(1) within-error structure with positive correlation assumed for the co-
variance matrix of each subject’s response, but a computer program was used
to search all possible designs and find the optimum for p=3 and p=4. Conclu-
sions depend upon the correlation coefficient. If more than two treatments are
compared and an AR(1) within-error structure is assumed then Gill and Shukla
(see [23]) suggest that if p < O then the optimal design should change over the
treatments as little as possible, whereas if p > 0 then in the optimum design each

treatment should be preceded and followed by other treatments.

4.8 Suggestions-Conclusions-Future Directions

The results presented in this chapter, provide a better insight why the two stage
procedure (presented in the previous chapter) performs worse than the CROS

estimator under any performance criterion we consider. It is clear that lack of
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information concerning residual effect results in highly inefficient two stage pro-
cedure. Furthermore, treatment effect is estimated better when designs made
of sequences where treatments appear equally often in each sequence are used,
whereas designs made of sequences with un-equal repetitions of A and B are per-
forming better when estimation of residual terms is under consideration. It was
pointed out that the inclusion of more periods and/or sequences may improve
the power with which residual effects of any kind are detected, but the best de-
sign plans used for testing carry-over terms may prove bad choices for detecting
treatment differences.

In the Bayesian analysis of the cross-over example in the previous chapter, we
modeled the residual effect.as a proportion of the treatment difference. It was
assumed that if a% of treatment A carries over to treatment B, then the same
proportion carries over from B to A. At first glance this argument may sound
un-reasonable, but bearing in-mind that the two asthma drugs we try to compare
have similar pharmacokinetic profiles, then this assumption may be justified. In
practice, any analyst would like to hypothesize that the fraction of treatment
that carries over from A to B is different from the fraction that carries over from
B to A. Then, it would make sense to explore how our design choice changes,
if that non-linear model, or any modification of it, is considered as the ”true”
expected to generate the data. A first attempt to tackle this question is made in
the next chapter.

Another important issue, not well-explored in the cross-over literature, is the use
of N-of-1 trials. In such a trial individual patients are given repeated adminis-
tration of at least two treatments with the objective to learn something about
the effect of the drug in a given patient rather than for patients in general. This
requires that patients must be willing to be treated at least three times, although
the possibility of using 6 to 8 periods is reasonable. A further study objective
would be to investigate the variation of individual response to treatment. Opti-

mum plans for this scenario would be quite useful to be derived.
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Table 4.9: Optimum two, four and six sequence designs

Only the systematic part of the model is mis-specified.

True model:No carryover. Within error structure:AR(1).

Correlation Coefficient (p)

Low Medium High
A ow Med High [Low Med High [Low Med High
Analysis model:Simple Carryover
Two(3,6 6 6 3,7 7 7 3,7 7 7
Four2 2,21 2,21 [2,11,16,21 11,16,21 11,16,212,16 16 16
Six (12,22,34 12,22,34 12,22,3422,31 22,31 31 22,31 22,31 2231
Analysis model:Fleiss Carryover
Twoll,6 1,6 1,6 1,3,6 1,6 1,6 1,36 1,6 1,6
Fourl1 11 11 11 1 11 11 11 11
Six 31 31 31 31 31 31 12,31 31 31
Analysis model:Mixed with ¢ = 0.2
Twoll 1 1 1,3 1 1 1,3 1 1
Founll 11 11 11 11 11 2, 16 16 16
Six 31 31 31 31 31 31 22,31 31 31
Analysis model:Mixed with ¢ = 0.5
Twoll 1 1 1,3 1 1 1,3 1 1
Fourll 11 11 16 16 16 16 16 16
Six 131 31 31 31 31 31 22,31 22,31 22,31
Analysis model:Mixed with ¢ = 0.8
Two|3,6,7 6,7 6,7 1,3,7 1,7 1,7 1,3 1 1
Four?2,21 2,21 21 2,16 16 16 2,16 16 16
Six [12,22,31 12,31 12,31 22,31 31 31 22,31 22,31 22,31
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Table 4.10: Optimum two, four and six sequence designs

Only the systematic part of the model is mis-specified.

True model:Simple carryover. Within error structure:AR(1).

Correlation Coefficient (p)

Low Medium High
A [Low Med High [Low Med High[Low Med High
Analysis model:No carryover
Twol3 3 3 3 3 3 B 3 3
Four?2 2 2 2 2 2 9 9 9
Six 3,6 36 36 6 6 6 6 6 6
Analysis model:Fleiss carryover
Two|3,6 2 2 3,6 2 2 2,36 2 2
Four5,13 5 5 5,13,14 5 5 [12,13,14 5,12 5,12
Six 4,15,16 4 4 15,16 15 15 (15,16 15 15
Analysis model:Mixed with ¢ = 0.2
Two|3,6 26 2 3,6 26 2 2,36 2,6 2
Four5,13 5 5 5,13,14 5 5 [12,13,14 12 5,12
Six 4,16 4 4 15,16 15 15 15,16 15 15
Analysis model:Mixed with ¢ = 0.5
Twol3 6 26 B3 6 2,6 3,6 2,6 2
Four13 5,13 5 6,13,14 5,14 5 6,13,14 12,14 12
Six 4,16 4,15 4 15,16 15 15 [15,16 15 15
Analysis model:Mixed with ¢ = 0.8
Two|3 3 36 8B 3 36 3 3,6 6
Fourj2,13 13 13 2,6,13 13 13,146,13 13,14 12,14
Six 3,16 16 4,15,163,16 16 15,163,16 15,16 15
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Table 4.11: Optimum two, four and six sequence designs

Only the systematic part of the model is mis-specified.

True model:Fleiss carryover. Within error structure:AR(1).

Correlation Coefficient (p)

Low Medium High
A [Low Med High[Low Med High [Low Med High
Analysis model:No carryover
Twoll,6 1,6 1,6 1,3,6 1,3,6 1,36 3 3 3
Fourl1 11 11 £2,11,13 2,11,13 2,11,132,6,13 2,6,13 2,6,13
Six (12,31 12,31 12,3112 12 12 3,12,16 3,12,16 3,12,16
Analysis model:Simple carryover
Twol2,6 2 2 12,6 2 2 2,4 2 2
Four5,6,8,12 8 8 P12 5,8 8 5 5 5
Six 4,9 9 9 4,9,15 9,15 9,15 |15 15 15
Analysis model:Mixed with ¢ = 0.2
Two|6 6 4 3,6 4,6 24 33,6 2,4,6 24
Fourl1,14 56,12,14 5 [11,13,14  5,12,14 5 5,6,13,14 5,14 5
Six (12,16,31 4,15 4 12,16 4,15 4,15 |[15,16 15 15
Analysis model:Mixed with ¢ = 0.5
Twol,6 2 2 W46 2 2 2,3,4,6 2 2
Four5,6,11,12 5,8 8 5,12,13,14 5 58 5,14 5 5
Six #4,14,16,31 4,9 9 4,15,16 9,15 9,15 15,16 15 15
Analysis model:Mixed with ¢ = 0.8
Twol2,4,6 2 2 R24,6 2 2 2,4,6 2 2
Four5,14 8 8 pl4 5,8 58 5,14 5 5
Six #4,9,15 9 9 4915 9,15 9,15 |15 15 15
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Table 4.12: Key to optimal designs under different model assumptions

Key to the four sequence designs

2

5
ABAB/BABA

6

8

AABB/BBAA ABBA/BAAB ABAB/BABA
ABBA/BAAB ABAA/BABB ABAA/BABB AABA/BBAB
9 11 12 13
ABBA/BAAB AABB/BBAA ABAB/BABA ABBA/BAAB
AABA/BBAB ABBB/BAAA ABBB/BAAA ABBB/BAAA

14 16 21
ABAA/BABB AABB/BBAA ABBB/BAAA
ABBB/BAAA AAAB/BBBA AAAB/BBBA
Key to the six sequence designs
3 4 6 9
AABB/BBAA ABAB/BABA AABB/BBAA ABAB/BABA
ABBA/BAAB ABBA/BAAB ABBA/BAAB ABAA/BABB
ABAA/BABB ABAA/BABB AABA/BBAB AABA/BBAB
12 14 15 16
AABB/BBAA AABB/BBAA ABAB/BABA ABBA/BAAB
ABBA/BAAB ABAA/BABB ABAA/BABB ABAA/BABB
ABBB/BAAA ABBB/BAAA ABBB/BAAA ABBB/BAAA
22 31 34
AABB/BBAA AABB/BBAA ABAA/BABB
ABBA/BAAB ABBB/BAAA ABBB/BAAA
AAAB/BBBA AAAB/BBBA AAAB/BBBA
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Chapter 5

Multi-period, multi-sequence

designs in general

5.1 Designing for a purpose

The aim of any clinical trial, cross-over or parallel one, is to compare two or more
treatments on the basis of experimental data. The confidence with which the ef-
fects of the various treatments will be assessed, depends to a large extent on the
plan chosen to conduct the trial. A typical 2x2 cross-over experiment can be seen
as a randomized block design with 2 blocks (AB, BA), in which n experimental
units randomly allocated in each block. Similarly any cross-over experiment in s
sequences and p periods, can be seen as a randomized design with s blocks. The
allocation of treatments to these blocks should be carried out in such a way that
treatment contrasts of direct interest are estimated with the highest precision.
A good plan usually depends on the number of times a treatment appears in each
sequence. In a cross-over trial, each patient should try all available treatments
at least once. This implies that if ¢ treatments are compared, then the number
of repeated measurements collected from each patient should be at least ¢. Al-
lowance of adequate wash-out intervals is essential to ensure high data quality in
these circumstances. If p > ¢ then replication of treatments in each sequence is
inevitable, leading to more efficient treatment estimates, especially for two treat-
ment comparison as illustrated in the previous chapter.

On other occasions, due to situation restrictions, it is not possible to have a single

180



replication of every treatment into each sequence, in other words the number of
periods used is less than the number of compounds compared. This type of design
known as ”incomplete block design”, is a popular choice in the industry, though
more sequences might be required to achieve similar treatment effect accuracy as
in a design where each treatment appears at least once in each sequence. The
clinical management of such a study might be difficult as well. In the "incom-
plete block designs” the number of times treatments appear in each sequence is
crucial in the precision with which pair-wise treatment comparisons are made.
An excellent review of these type of designs can be found in Fisher and Yates
(see [16]).

In a typical analysis of a cross-over trial, treatment comparisons are based on
weighted averages of within-sequence treatment estimates. Optimal plans are
selected on the basis that both the chosen sequences and the weights attached
to the treatment estimates derived from them, provide the best overall picture of
drug activity. In any cross-over design though, treatment comparisons can also
be evaluated using between-sequence information, although such estimates are
given less credibility because of the high between-sequence variability. Combina-
tion of these two pieces of information, known widely as ”recovery of inter-block
information” in the statistical literature, is being routinely implemented in ev-
eryday statistical analysis.

Recovering the inter-block information will make sense only if the "sequence”
effect fails to achieve a marked reduction in the error mean square. If that is
the case, then the amount of information regarding treatment activity recovered
from the inter-block analysis will alter conclusions to an appreciable extent. On
the other hand if "sequence” effects are large, then inter-sequence treatment in-
formation could be safely ignored.

The families studied in this chapter, are usually composed of multi-period designs
(number of periods >= 5). For long-period families it makes sense to assume that
the within-sequence error structure is described by an AR(1) process. It will be
shown that the AR(1) correlation coefficient plays a key role in determining the
optimal plan under specific carry-over schemes. Recovering inter-block infor-

mation, implying compound symmetry covariance structure, is appropriate for
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cross-over plans with short sequences (see previous chapter).

5.2 Setting the scene

In the previous chapter cross-over plans for the comparison of two treatments
only were considered. In the current chapter up to six treatments are compared
under different assumptions made for the carry-over term. A typical user of
cross-over plans would require each patient to act as his own control, trying all
available treatments. This implies, that all treatments appear at least once in
each sequence (i.e. p > t).

The full model used throughout for comparing two treatments contains terms for
the general mean, period, treatment and first-order carry-over effects. For the
comparison of three or more treatments a fixed sequence effect is added to the
previous model. The reason a fixed sequence effect is not included for the compar-
ison of two treatments is because it leads to non-estimable treatment effect under
specific carry-over schemes (e.g. simple carry-over and design AAAAB/BBBBA).
In addition, it is assumed that there is a standard treatment (labeled A) and the
contrasts we are interested in estimating with the highest precision are the ones
that compare each of the newly proposed treatments with the standard one. This
implies that comparisons between the new treatments may have lower precision.
Furthermore, designs for efficient comparison of carry-over differences will not

bother us in the sequel, since carry-over terms are of less importance.

5.2.1 Comparing two-treatments

Best plans were derived under different carry-over assumptions. More specifically
for two treatment comparison the following type of residual effects have been

studied:
e No carry-over terms included.
e Simple carry-over model (described in detail elsewhere).

e Fleiss carry-over, i.e a treatment can carry-over to any other treatment but

not to itself.
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e Mixed carry-over, i.e if A carries over to B A units, then B carries over
to A ¢\ units where 0 < ¢ < 1. Three values of ¢ are considered:
0.2,0.5 and 0.8.

The within-sequence covariance structure is the stationary auto-regressive of or-
der one. Negative values of p, the correlation between adjacent measurements,
are not considered. The sensitivity of the opfimal plan to positive values of P
is studied. Three values for the éorrelation coefficient (p = 0.2,0.5 and 0.8) are
considered, reflecting the different spacing (long, medium and short, respectively)
of the repeated measurements collected within sequences that may occur during

the course of the cross-over experiment.

5.2.2 Comparing more than two treatments

More possibilities arise in that occasion, due to the larger number of treatment
contrasts likely to be tested. It is also easier to consider more elaborate carry-
over schemes, which in the two-treatment case are not applicable. Simple and
Fleiss carry-over schemes are extended in a natural way to the multi-treatment
case. Mixed carry-over scheme is impractical here, since different values of ¢
could be assumed for different pairs of treatments. For ethical reasons, placebo
is typically one of the treatments in this type of trials. If that is the case, it
is assumed that carry-over from placebo to any other treatment is nonexistent.
Furthermore, there is no placebo treatment effect. For sake of argument this type
of model refers to as ”Simple2” in what follows.

Finally in most pharmacological studies, treatments are administered in increas-
ing doses. The aim of these experiments is to discover the dose with the highest
response. In a typical study three doses of each compound are considered. The
doses are chosen in the low, medium and high part of the dose-response curve.
It is assumed here, that increasing the dose by a factor & would increase the
pharmacological response by the same factor. A similar argument applies to the
carry-over effect as well. The typical objection against this approach is that dou-
bling dose will not necessarily double the response, since if both doses are close
to the asymptote of the dose-response curve then similar responses will be gen-

erated. However, it may be the case that the middle part of the dose-response
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curve is studied and our three doses have been selected from that range. Under
these circumstances, the proportionality argument on treatment and carry-over
effect may be valid. This type of model will be referred to as ”proportional”

carry-over model in the sequel.

5.3 Optimality Criteria

For the comparison of two treatments, minimizing the variance of the treatment
estimate is of direct interest to all parties involved in the study. There are always
parameters of secondary importance (nuisance parameters), the estimation of
which affects to a smaller or a larger extent the precision with which treatment
effect is estimated. One such parameter is the carry-over effect, which affects the
mean of our response. Another example is the variance components describing
second order properties of a subject’s repeated measurements vector. Adjusting
for all secondary parameters is a typical precaution taken in all experimental
design exercises.

The choice of optimality criterion becomes more laborious when more than two
treatments are compared. Recall that if three treatments are studied, we are
interested in estimating as precisely as possible the pair-wise differences B — A
and C — A, where A is the standard treatment and B,C the newly proposed
therapies. The criterion used to decide the best design is that of D;-optimality,
in which the determinant of the relevant part of the variance-covariance matrix
of the fixed model parameters is minimized. This criterion is a variant of the
D-optimality rule, widely used in applications. Following Atkinson and Donev’s
or Fedorov and Hackl’s notation (see [1],[13]), if we denote by I(£) the variance-
covariance matrix (inverse of the information matrix) of the fixed parameters in
our regression model for a given plan &, then this matrix could be partitioned as

follows:

111(&) 12(é)
(&) In(6)

(5.1)

where I;,(€) is the variance matrix for the treatment contrasts of interest. The

objective is to find the plan & that minimizes det (I;1(£)). This is the rule used
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throughout for the derivation of the best design plans presented in subsequent
sections.

An alternative criterion is the one that minimizes the average variance of the pair-
wise treatment contrasts. This is a special case of what is known as L-optimality
criterion, a variant of the A-otimality rule. According to the L criterion designs
that minimize the variance of linear combination(s) of the model parameters are
declared optimum.

The previously presented criteria are the most widely used for practical appli-
cations. Many more criteria are available in the literature serving different pur-
poses. The estimated variance-covariance matrix is the key element in all these
optimization exercises. Both D and A-optimality criteria can be expressed in
terms of the eigenvalues of the variance-covariance matrix. The D criterion is
the product, while the A criterion is the sum of these eigenvalues. In both criteria
the covariance between parameters of primary interest, as well as the covariance
between primary and secondary model parameters, are taken into consideration
during the optimization process. The geometric interpretation of the D criterion
is to provide the experimenter with a confidence region of minimum content for
the treatment contrasts of interest, while the A optimality criterion is mostly con-
cerned with the length of the axes of that confidence region. It should be noted
the A criterion gives more flexibility to the experimenter regarding the degree
of interest he/she places to the various treatment comparisons (see, Jones and
Donev [37]). For example, in a three-treatment cross-over trial minimizing the
weighted average of the pair-wise treatment variances, with weights determined
by the experimenter’s interests, could lead to a different optimum plan, when
compared to the situation where the average of pair-wise variances is minimized.
A computational note is in order. The results presented in subsequent sections
have been derived by a full search over the design family where optimality is
claimed. Some discussion of other search methods for finding best plans will be
provided at the end of this chapter. Optimum experimental design results de-
pend heavily on the assumed model and particularly on the type of carry-over
for cross-over trials. Optimality criterion is a further dimension affecting our

final decision. In this chapter, the sensitivity of results in accurately estimating
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treatment contrasts of interest to changes in the type of carry-over assumed, is

studied.

5.4 Two-treatment results

The majority of the cross-over examples reported in the literature deal with the

comparison of two treatments. The typical 2x2 plan is widely used for that-
purpose, which explains away the fact that most research effort has been put

into the study of that design. However, Ebbutt (see [9]) reports the results of
a three-period cross-over experiment for the comparison of two treatments in

asthma. Drug development sponsors have shown a strong interest in running

two-sequence multi-period designs for comparing two treatments.

In that section designs that made up of dual sequences are only considered.

Equal number of subjects are allocated in each sequence. Results in which dif-

ferent treatment sequences receive unequal number of subjects are provided in

Laska and Meisner (see [51]), for relatively small design families. Optimum plans

in two, four and six sequences are only presented. Four sequence designs are gen-

erated by different pairings of two-sequence plans. In a similar fashion by joining

together two-sequence designs in triplets, six-sequence plans are produced. In or-

der to make clearer the number of switches between A’s and B’s, design families

with long treatment sequences are considered. For the two, four and six sequence

plans up to ten, eight and six periods respectively are studied. Note, that three

and four period designs will not bother us in what follows.

The computational effort needed to extend these results to larger families in-

creases exponentially as the number of periods and/or sequences gets larger. To

illustrate the point, suppose that cross-o{rer designs in p periods are compared.

There are k = 2P~! — 1 possible design plans. If combined in pairs, (5) four
sequence designs are generated, while () six-sequence designs produced, if com-

bined in triplets. To get a feel for the computational burden involved in the
search for the optimal plan as the number of sequences and/or period grows, the
following table provides the number of distinct designs for various combinations

of sequences and periods. Bolded are the families for which optimal plans are
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provided at the end of the chapter.

Table 5.1: Number of distinct designs

Sequences/Periods 5 6 7 8 9 10
2 15 31 63 127 255 511
4 105 465 1953 8001 32385 130305
6 455 4495 39711 333375 2731135 22108415

5.4.1 Practitioners’s favourite model - No carry-over scheme

Most cross-over studies have been analyzed using that model, but it is not clear
to me if this model has also been used for choosing the best plan as well. When
there are no residual terms into the model, the optimum plan does not depend
on the value of the correlation coefficient.

Looking at Table (5.2) the optimum design utilizes sequences in which switches
between A’s and B’s are as frequent as possible, in fact the maximum number of
switches occur in these designs. The design efficiency is unaffected by the cor-
relation coefficient at the absence of any residual terms, although under anyone
of the other carryover schemes higher treatment efficiency is achieved the closest
the repeated measurements on each subject are collected. This may cut short
the time a trial lasts but one has to bear in mind that if successive measure-
ments are close in time, then the possibility of carry-over being present increases
substantially, though the type of residual activity would be difficult to identify.
Under the no carry-over scenario the fact that in the two sequence optimum plans
frequent exchange between alternative treatments occurs, necessitates the neéd
for formal testing for the presence of residual effects. Although regulatory bodies
have recently argued unfavorably to the use of the 2x2 plan as lacking power for
detecting carry-over effects (see Wang and Hung [90]), this should not be the
case when more than two periods are used. Carry-over effects are now estimated
with higher precision than in the 2x2 case, since within-sequence information
is utilized. The last argument is in favor of using longer sequences when two

treatments are compared, instead of avoiding running a cross-over experiment
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altogether.

The optimum four and six sequence plans are made up of the best two sequence
plan in conjunction with sequences, where again frequent switches between the
two treatments occur. Note that if the experimenter decides to divide the trial
time into six rather than five sub-period intervals then higher treatment preci-
sion is achieved. Similar argument is true if designs with six rather than four
sequences are used. In other words by making our trial bigger, in either direc-
tion, more information is collected concerning efficacy of the two therapies and
that would inevitably lead to more accurate treatment estimates. In the extreme
scenarios the number of sequences ranges from one to the number of patients
recruited to participate in the study. Similarly the number of periods could be
made arbitrarily large by sub-dividing the trial-time into small time windows.
The running of such studies is not recommended on financial grounds but also on

difficulties concerning the management of large groups of people for long time.

5.4.2 Naive approaches for modeling residual activity -

Simple Carry-over

This model has caused too much controversy in the cross-over literature, although
carry-over effect is not really a major problem in cross-over trials (see Senn [76]).
The additive carry-over term is difficult to be justified using pharmacological
argument. Suppose in a typical trial the half life of the active compound is
known to be T' time units from Phase I studies. The clinical team has to make
sure that the patient will be treated at time intervals of length at least 2T, so
that the possibility of carry-over being present diminishes. These scheduled visit
arrangements are based purely on scientific reasons. However, it may be the case
that the patient may scheduled his next visit in less than 27 time units. In that
case, the carry-over effect to the next visit would be a known proportion of the
previous-visit treatment effect and could be modeled as such. To keep track of the
various patients visits and appropriately adjusting for any residual effects, would
be an enormous task hardly affecting our treatment estimate. As a consequence
the typical analyst models carry-over activity (if any) with a simple additive

term, which most of the time is proved statistically unimportant and removed
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from the model. We have already modeled residual effect as a proportion of the
treatment one, and it seems to be the case that the non-linear model recovers
treatment effect even under unrealistic carry-over assumptions.

Should this model being used for designing a study though? Clearly not in the 2x2
case, since imprecise first period data will only be used to generate a much larger
sample size than it is-actually needed (see Brown [3]). This may not be the case
with longer sequences though. Results concerning optimum plans are presented
in Tables (5.3)-(5.5). Correlation coefficient plays a minor role in deciding the
best plan to go for. The number of switches between A’s and B’s are not that
frequent as they were when no residual effect was present. In fact switches to the
alternative therapy need only to be made every third measurement, instead of
every second measurement as it was the case in the "no carry-over” scenario. For
specific combinations of sequences and periods the number of optimal plans the
experimenter has to choose from to run his trial, increases with the correlation
coefficient. For example, in the 7-period 2-sequence family there is only one good
plém when the correlation between successive measurements is low, while the
number of optimum designs increases to three for medium or large values of p.
Similarly for the 8-period 4-sequence family, the number of best designs for large
values of p is twice as high as the number of designs when p takes values in the

small/medium range.

5.4.3 Pharmacology matters - Fleiss carry-over

Under this type of carry-over scenario, the optimum plan depends heavily on the
value of the auto-correlation coefficient p. The interesting result (see Table (5.6))
comes in the situation where repeated measurements on a subject are nearly un-
correlated (p = 0.2). The best treatment sequences are made of a long series of
A’s followed by a long series of B’s. For instance, the subset of optimum plans in
p-period cross-over families is made of p; series of A’s followed by p — p; series of
B’s, where 2 < p; < (p —1). In these designs the minimum number of switches
(i.e. one) occurs between the two competing therapies. Interestingly enough the
four and six sequence best plans consists of all the possible combinations of two-

sequence plans in pairs and triplets respectively.
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Reasons have already been provided elsewhere why the use of such treatment se-
quences may be inappropriate to run a study. Firstly, if one of the two therapies
is placebo, then it will be unethical to keep a patient untreated for such a long
time. Secondly, the proposed treatment sequences and their duals are equivalent
to an AB/BA design, the inefficiency of which have well been explored in the
cross-over literature. To demonstrate the last point, suppose that an eight-week
cross-over trial will be used to run a study. If the statistician believes that the
most likely form of carry-over to be present is the Fleiss one, then one of the
designs he could propose for running the study is the AAAABBBB and its dual.
Repeated measurement will be obtained at weekly intervals. This is exactly the
same as running an AB/BA design, where the total study-period has been di-
vided into two four-week sub-periods. In the AB/BA case, measurements may
be obtained on each subject on a weekly basis, but an appropriate summary for
every four consecutive measurements, e.g. the mean, will be used as the analysis
variable.

The real question is if there are any experiments met in practice where treat-
ment sequences, like AAAABBBB, are used. The answer is affirmative. The-
multiple-dosage regimen studies are good examples, where prolonged therapeutic
activity is sought in order to achieve maximal clinical effectiveness. In these stud-
ies, drugs are released into the body by intravenous (IV) infusion at a constant
rate. A loading dose (or bolus dose) usually precedes the IV infusion in order
to obtain steady state concentrations as quickly as possible. If only one IV dose
is administered, the time required to reach the steady-state drug-concentration
in the plasma depends on the elimination rate of the drug from the body, but
also on the half-life of the compound. For most drugs, the estimated time to
reach 99% of the steady-state drug concentration after a single IV infusion is 6.6
half-lives. To get a deeper understanding for the drug concentration in plasma
as a function of time after a single IV dose, the corresponding equation looks as

follows (see, Shargel and Yu [84]):

= I

where a, b are known constants, R is the rate of infusion, & is the overall elimina-

tion constant and V}, is the volume of drug in plasma. It has been assumed that
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our drug follow a two-compartment kinetic model. As time goes by (i.e. t — 00)
then the steady state concentration is:

R

Css:m

(5.3)

The above equation can predict at any time after the start of the IV dose the
plasma drug concentration. In multiple-dosage regimes studies, it is assumed
that earlier doses will not have an effect on later ones. This is the principle of
superposition and essentially it makes sure that the pharmacokinetic profile of
the repeated doses remains the same throughout the study. Obviously the size of
the dose and the dose interval have been determined in such a way that the drug
level in the blood increases at the end of each dose. In summary, the total plasma
drug concentration would be equal to the sum of the residual drug concentrations
of all the previous doses. The amount of drug in the body will increase and finally
will reach a plateau. One should not wrongly assume that the steady-state drug
concentration remains constant for the whole study period. In fact, depending
on the type of the compound, it can fluctuate considerably between two values,
which for sake of argument will be referred to as C,in and Cie, in what follows.
It is exactly this fluctuation that can generate the Fleiss and the Mixed types of
carry-over, discussed in this and the next section respectively.

In a typical multiple-dosage study, which most of the time is a 2x2 cross-over
study comparing equal doses of a test and reference products, patients usually
maintained on the drug since the use of a wash-out period could place them at
substantial risk. The patient continues on his own medication and blood samples
are repeatedly collected at equal time-intervals. Once this process is completed
the patient switches to the alternative therapy, where time is again allowed for
the compound to reach its steady-state. Assume now, that the plasma drug
concentration fluctuation at steady state is different for the two therapies. In
that case, if multiple doses of a compound are followed by multiple doses of the
same compound, then carry-over effect could be safely assumed to be negligible
especially if the difference Cruz — Crin is small. But if repeated doses of the
first therapy (A) are followed by repeated doses of the second one (B), then what
remains from A may play a crucial role in deciding the response of B at steady

state. One may argue that adequate time must be allowed, so that by the time

191



the second product reach his plateau level therapy A is completely eliminated
from the body. However, one has to remember that the two therapies may react
with each other and complete elimination of anyone of them may not be reached
within the trial period.

The above reasoning justifies to some extent the point that using Fleiss carry-over
model for designing purposes is a viable possibility, although considerable input
may be required from the Phase I clinical team. The discussion for multiple-
dosage studies was motivated by the fact that treatment sequences made by long
series of A’s (or B’s) are optimum under the Fleiss carry-over model, when p is
small. This does not seem to be the case when p lies in the middle or high range
of its plausible values (see Tables (5.7)-(5.8)). If p lies in its middle range, designs
made up of relatively short sequences, with three on average consecutive repeti-
tions of A’s (or B’s), are the optimum ones. Most of these plans are optimum or
have high efficiency under the simple carry-over scheme as well. When repeated
measurements on the patients are highly correlated, then optimum plans are
made up of even shorter sequences of the two therapies. Once more the proposed
plans have excellent properties under the simple carry-over model. For a specific
combination of sequences and periods the number of optimum plans decreases as
p increases under the Fleiss carry-over model, contrary to the simple carry-over
scheme.

In conclusion, designing a study with Fleiss carry-over in mind is equivalent to de-
signing a study assuming that simple carry-over scheme applies, for the majority
of the p values encountered in practice. For small values of p optimum plans are
essentially multiple-dosage studies, widely used in bio-equivalence applications.
Justification of Fleiss carry-over in practice is difficult, if not impossible, but ex-
amination of its applicability leads to a deeper understanding of the compound’s

activity in the human body.

5.4.4 Further pharmacology in action - Mixed Carry-over

This type of residual effect has already been introduced in the previous chapter
as an intermediate scenario between the simple and the Fleiss type of carry-over.

Recall that under this scheme, a treatment carries over to itself only a proportion
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of what carries over to alternative therapies. This proportion is assumed constant
for all treatments under study. If that proportion (¢) is high, then the simple
carry-over model is recovered, while for small values of the same parameter the
Fleiss carry-over model is retrieved.

A similar reasoning could possibly justify the mixed residual effect, although
the introduction of an extra parameter to describe residual treatment activity
makes the use of such a model, for both analysis and design purposes, difficult.
Such a residual effect could possibly be met in multiple dosage studies. Suppose
that the two therapies we are about to compare are compounds with similar
pharmacological properties; a good example is when a low and a high dose of the
same compound are compared. A direct consequence of that assumption could be
that the therapeutic windows of the small dose is contained within the therapeutic
window of the higher one. Suppose that when the higher dose precedes the lower
one, then the carry-over effect is 10%. A fraction of that 10% would remain as
residual effect when the order of administration for the two therapies is reversed,
since the lower dose has a narrower therapeutic window compared to the higher
one.

Comparing now the family of optimum plans for the mixed carry-over model
when ¢ = 0.2 (see Tables (5.9)-(5.13)) with the corresponding family for the
Fleiss model, there seems to be some difference between the two families for
small values of p. Recall that in the Fleiss model best treatment sequences were
made up of long series of A’s followed by long series of B’s, in contrast to the
mixed type model with ¢ = 0.2, where the two-sequence plans contain frequent
switches between the two therapies. However, in the four/six sequence optimum
plans sequences that contain three or even four consecutive repetitions of the same
therapy may be found. For other values of p the two models seem to propose
designs which are not identical but have similar structure.

Comparing now designs among the simple carry-over model and the mixed model
with ¢ = 0.8, it seems to be the case that designs which are optimum in one model
are also highly efficient under the alternative model. This finding is consistent
over the whole range of p values. In summary, designing a cross-over study

with the simple carry-over model in mind gives robust answers to model mis-
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specification, if that model mis-specification is adequately described by the mixed
model. This is not true for the Fleiss model. Note that the number of best plans
under the mixed model for all values of ¢ and p is quite limited (usually one or
two), contrary to the Simple and Fleiss model. Our purpose here is rather to
explore similarities in the structure and efficiency of the best designs from the
one end of the spectrum (Fleiss model) to the other end (Simple model), rather

than using mixed model for designing a study.

5.5 More than two treatments

It is quite common in clinical trials to set-up a study for the comparison of three
or more treatments. The analysis of a seven treatment cross-over study, for the
comparison of three formulations of two asthma drugs and placebo, has already
been presented.

Another example of such trials can be found in the pharmaceutical industry and
it concerns the testing of combination of drugs. Common therapeutic area of ap-
plication is HIV trials. Combination trials are set-up to explore how two or.more
factors affect a clinical response (see, Fletcher et al [19]). In the simplest situa-
tion where a low and a high dose of two drugs are considered, the four factorial
combinations can be tested on each subject in four successive treatment peri-
ods. This calls for the use of a cross-over design for running the study. Medical
researchers use the simple carry-over model for designing and analyzing combi-
nation studies. This is another example where residual effects at time 7" + 1, if
present, should depend on the treatments administered at times 7" and T'+1. It is
questionable if simple carry-over model is appropriate for modeling such residual
effects, but even the Fleiss one may not be suitable for tackling the problem. The
introduction of distinct carry-over terms depending on the order of treatments
administered may be the appropriate course of action. For example, if we label
the four combinations by A, B, C, D, and the carry-over from A to B is denoted
by A2, then carry-over from B to A is Ag;, where Ajp # Ag1. Introducing a large
number of residual terms may lead to parameter identification problems at the

analysis stage. Appropriate parameter restrictions on these residual terms, based
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on clinical knowledge, may overcome such problems.

With factorial experiments, like combination trials, the testing of treatment by
treatment interactions is commonly reported in practice, regardless of any as-
sumptions concerning residual terms. The analyst could also check the statistical
significance of any carry-over by carry-over interactions, since in multiple se-
quence/period trials such terms are estimable. The testing of any important
treatment by carry-over is usually overlooked. It is a similar situation to the one
where the statistician includes fourth order terms in his linear model, without
including third orders ones. Although in practice the presence of the above inter-
actions is extremely unlikely, any model with carry-over by carry-over interactions

should include treatment by carry-over ones as well.

5.6 Three treatment results

The design families considered in this section have at least three sequences and
three periods, so that in a szp arrangement each treatment occurs at least once
in each row and at least once in each column. The within-subject covariance
structure is AR(1) with p = 0.7 throughout. The sensitivity of results to depar-
tures from the chosen value of p is not studied, since this value is commonly met
in practical applications.

Recall that we concentrate on the simultaneous comparison of several new ther-
apies (B,C,...) to a control therapy (A) using the D-optimality criterion. Alter-
natively we might be interested in efficiently estimating all pair-wise treatment
comparisons, although this will not be the case in what follows. For three-period
designs, D-optimum plans are selected by performing a detailed search over the
full listing of all possible distinct designs for that family. Due to the compﬁta—
tional burden involved as the number of periods and sequences grows, in families
with more than three periods our search has been restricted to the distinct cyclic
designs for that family. Recall also that five carry-over schemes are studied: No
carry-over, Simple, Fleiss, Simple2 and Proportional. In the Simple2 scheme one
of our treatments (A) is Placebo with no treatment or residual effect. In that

case our interest is focused on the comparison between the standard therapy (B)
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and the new proposed treatments (C,...). Under the Proportional scheme mul-
tiple doses of a compound with proportional treatment and residual effects are
administered to the study participants. Note that if the number of periods equal
the number of treatments studied, then Fleiss carry-over does not apply, since
each treatment should appear at least once in each treatment sequence implying
that no treatment replication occurs.

In the three-period, three-sequence family there is a variety of good plans un-
der the simple carry-over scheme (see Table (5.14)). Under the ”Simple2” and
"Proportional” type of carry-over, optimum plans are identical with equal vari-
ances. These designs are optimum even when no carry-over terms included into
the model, but with 90% lower variance for the estimation of contrasts of inter-
est. This implies that in order to achieve a given treatment precision level, fewer
patients need to be recruited under the model with no residual terms, compared
to any model that contains carry-over effects.

By extending the number of sequences while keeping the number of periods fixed,
the number of distinct designs is reduced. This makes easier the task for se-
lecting a good plan, since the computational effort required is reduced. In the
four-sequence three-period plans, not only the variance of the treatment con-
trasts reaches its lower value under the no-carryover model, but also the number
of available plans under that scenario is at least twice as high as the number of
plans under any model with residual terms. Note in passing that there are six
treatment sequences in three periods, as a result of which only six five-sequence
three-period plans exist. All of these plans are equally efficient for designing a
study under the simple and the no-carryover scheme, while only five of them can
be used under the two alternative residual-effect patterns.

The reader may wonder why the efficiency of designs with more sequences than
periods are considered. It is the case that clinical trials are conducted in many
different large recruitment centers all over the world. Assigning a treatment
sequence to all subjects of a specific center is common practice. Under that sce-
nario center and sequence effects are not separately estimable, the problem can
be overcome by assigning more than one treatment sequence to the patients of

any center. In other words, practical needs require the rate at which sequences
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grow to be higher than the corresponding rate for periods and this necessitates

special attention to designs with s > p.

5.7 Cyclic Designs

Suppose now that patients are scheduled to come to the clinic in six visits, al-
though only three treatments will be tried on them. Due to the large number of
distinct designs that can be chosen to run the study, attention will be restricted
to cyclic designs. Although no formal mathematical proof has been given, a cyclic
design must exist in the subset of best plans under any carry-over effect scenario.
This conjecture is true in the three-period family but it is unclear if it can be
extended to families with more than three periods. Generally speaking, cyclic
plans tend to be highly efficient.Computer generation of such plans is straight-
forward. For example, a three-sequence cyclic design in three treatments and p
periods can be generated from an initial treatment sequence by adding one and
two to each element of that sequence and reducing modulo 3 when necessary. Up
to eight period plans have beén studied in three treatments. In that way the
set of distinct treatment sequences is divided to mutual exclusive and exhaustive
sub-families made of triplets of treatment sequences. The computational effort
to search over the cyclic sub-families instead of searching over the range of all
possible triplets is reduced considerably. In the presentation of results, only the
initial sequence of the best cyclic plans are displayed. Incomplete block designs
are good examples of designs produced by cyclic generation of an initial sequence.
One can easily generate incomplete block designs for any number of sequences,
periods and treatments. Special restrictions have to be imposed to the above pa-
rameters in order to get a balanced incomplete block design, in which pair-wise
treatment comparisons are made with the same accuracy.

Further properties of cyclic designs can be found in John and Williams (see [36]).
Mathematically speaking, when no residual terms are included and the error
terms are uncorrelated with zero mean and constant variance, cyclic designs are
attractive because both the information matrix and its inverse can be expressed

as a linear combination of circulant matrices. A circulant is a symmetric matrix
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having 1 in one of its minor diagonal and zero elsewhere. The eigenvalues of such
matrices can be written down explicitly, allowing the variances of pair-wise treat-
ment contrasts to be expressed analytically. This facilitates the task of deciding
the properties a plan should possess in order to be optimum, but unfortunately it
does not pick-up a good plan for the person who designs the study. A further key
property of cyclic designs is the special form the concurrence matrix can take.
This is a tzt symmetric matrix (¢ being the number of treatments compared)
with its (i,)™ element equals the number of sequences the treatment pair (3, 5)
appears.

Cyclic plans can be further classified and the concurrence matrix can take a
special form in each case. One example are resolvable block designs, which are
incomplete block designs where treatment sequences can be grouped so that each
treatment appears once in each group. This type of designs can be quite helpful in
multi-center studies, since groups of treatment sequences could be assigned into
different centers. This implies that even in the scenario where some centers with-
drawn from the study all treatments will have occurred equally often. Resolvable
designs are good examples where recovery of inter-block information could re-
sult in more efficient treatment estimates. Another category of cyclic plans are
the row-column designs. In such plans, the number of times each treatment can
appear in each row/column can vary. In the special case where each treatment
appears once in each row and once in each column the row-column plan is called
Latin square. All cross-over experiments can be seen as row-column plans with
row representing sequences while columns periods. Treatments comparisons are
available form both rows and columns, but its the comparisons made within rows
and columns that are expected to be of highest precision. When no residual terms
included into the model, treatment effects can sometimes be independently esti-
mated of any row/column effects. When residual terms of any sort are included,
the orthogonality property is lost in the majority of the cases. Recall that lack
of orthogonality between treatment and carry-over effects in the 2x2 case is the
main reason for the deficiency of the two stage procedure.

Back to our results for three treatment plans, where three-sequence in more than

three-period designs are examined (see Table (5.15)). A striking feature is the
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fact that when residual terms excluded from the model, the number of best plans
available for design purposes are much higher compared to the corresponding
number of plans under models that include carry-over term of any kind. In ad-
dition under Simple2 and Proportional carry-over schemes, optimum plans are
identical with the same efliciency. In these plans the design structure is quite
interesting; for example the six period best plans are made of replicates of three
period plans. For the Fleiss carry-over model there is a frequent exchange be-
tween the three treatments, on the contrary under simple carry-over model best
treatment sequences are made of short successive repetitions of the same treat-
ment. In fact, under the simple carry-over model, a six period plan is made of
a three period plan followed by the same plan in reversed order. Furthermore
the difference in efficiency between any model than contain residual terms and
the model with no carry-over terms decreases with increasing number of periods
used. Generally speaking, good plans under the model with no residual terms
are not optimum under models with carry-over terms, in other words proposing
robust solutions when analysis model is mis-specified becomes a difficult task.
Obviously these observations generate hypothesis for future research. Finally, it
has been reported that under the simple carry-over with additional restrictions in
the design structure and model assumptions, a t + 1-period design can be made
of a t-period optimum plan by repeating the treatment of the last period. This
rule does not seem to be justified in our case. Further research may be needed
to find out under which circumstances the previous statement is true.

Practical experience suggests that routine follow-up can be easily implemented
and it is not as costly as patient recruitment. In conclusion designs with many
periods could be the future of cross-over trials. Worth noting that reporting of
cross-over studies with few periods but with repeated measurements collected

within each period is frequently met in practice.

5.8 Four, five and six treatment results

The use of cross-over plans for the comparison of more than three treatments is

not currently favored neither by sponsors nor by regulatory authorities. Dose-
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ranging trials are good examples of experiments where a large number of treat-
ments are tested in a single trial. Such studies are usually conducted at later
stages of drug development in order to determine the clinical effectiveness of
a series of doses and appropriate adjustments to current dosage regimes made
where necessary. Surprisingly enough, parallel designs are used for running such
studies, implying that information on individual dose-response parameters is not
recovered. This information will be available if a cross-over plan had been used
instead, where several doses are tested on each subject. The problem with a
cross-over study for dose ranging is not that of carry-over but rather the dose
timetable. This timetable has to be chosen so that toxicity problems are avoided.
Sheiner et al (see [85]), describe simulation studies where at each period the dose
level is increased as long as the response remains above a threshold level and
there is no toxicity. During the first period placebo is administered to all sub-
jects. Obviously these strict guidelines not only reduces the number of available
plans, but also decreases the number of observations offered from each subject.
Modern statistical methodology can easily predict missing values of follow-up
(i.e. measurements typically collected if we had continued to monitor the subject
for the entire study duration), but in addition these predictions can be used for
drawing inference about population parameters.

Despite the questionable usefulness of these studies, due to the practical limi-
tations discussed above, results will be presented for cyclic families only. For
the four treatment comparison, designs up to seven periods are tested (see Ta-
ble (5.16)). The initial intention was to generate and compare up to ten-period
cyclic plans, but the upper bound of available computational memory was soon
reached, and the idea abandoned. Nevertheless, insight into the structure of opti-
mum plans when more than seven periods are used, can still be gained. As ever,
treatment effects are more precisely estimated when residual terms of any kind
are excluded from the model. A nice property of the four-period, four-sequence
family is that the same set of designs are optimum irrespective of any assumptions
made concerning the carry-over effect. In the five period plans the above property
is valid under all carry-over schemes, but a different set of designs are optimum

when presence of carry-over is ruled out. When we move on to six periods, the

200



simple and Fleiss carry-over model offer identical and equally efficient plans for
running a study. This is evidence supporting a conjecture made by Matthews
(see [65]) that optimum plans under simple carry-over model are usually good
choices under the Fleiss model as well. This property is also justified for the six
and seven period families. Generalization of that conjecture to p-period families
for comparing four treatments is worth investigating. Six and seven period fam-
ilies, offer one of the few occasions where the Simple2 and Proportional schemes
provide us with different solutions for designing a study. The Simple2 scheme
seems to propose the same designs, as Simple and Fleiss models do in the 6-period
family. This is not the case for the seven period family though.

Once more computational restrictions did not allow the study of long treatment
sequences when five or six treatments are compared (see Table (5.17)). All carry-
over scenarios seem to agree on the set of best plans, apart from the Proprtional
scheme. Also the Proportional scheme offers a limited number of solutions com-
pared to the other carry-over scenarios. As has been noted in other occasions,
the number of proposed plans when carry-over terms are not included is at least
twice as high as the number of plans when carry-over terms included. In con- .
clusion some interesting hypotheses have been generated by comparing plans in
families where more than two treatment compared, although it is a difficult task

to provide theoretical justification for these hypotheses.

5.9 Non-linear Designs for two treatments

Cross-over trials have been widely used for the comparison of hypertension or
asthma drugs. In such studies wash-out periods are not allowed for ethical rea-
sons. Under these circumstances, presence of residual effects are likely. In the
majority of cross-over studies treatment periods are usually long time windows.
So, depending on the time each measurement is collected, the carry-over effect to
the next period, is usually a proportion of the treatment activity in the current
period. For the sequence AB, which might be part of a longer treatment sequence,
carry-over from A to B can be written as Ay = T74p4 and similarly from B to

A is Ap = T7gpp. This is the Simple carry-over model with two additional non-
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linear terms. In the sequel it will be assumed that p4 = pp. Data have already
been analyzed using this model and it has been shown that treatment effect can
truly be recovered irrespective of inclusion or not of any residual terms in the
model. The assumption that the two treatments carry-over the same proportion
can be defended on the basis that similar pharmacological properties govern the
therapeutic activity of two beta blockers, two ace inhibitors, or any other agents
belonging to the same group from a pharmacological point of view.

A further assumption made, without explicitly stated, is that proportion of treat-
ment persisted to the next period is assumed constant throughout the whole
study duration. Violation of that assumption can frequently be met when differ-
ent doses administered at different treatment periods. Higher doses expected to
carry-over more than lower ones. But even if the same dose is administered for
each compound (say 10mg), fluctuation around this value (e.g. overdose) may
result to different proportion of treatment persisted to the next period.

Recall in the 2x2 case that the treatment effect estimate is biased by half the dif-
ference of the unknown residual effect (A = A4 —Ag) between the two treatments.
Introducing the non-linear term makes this bias dependent on the unknown treat-
ment effect (A = pr). The consequence of that assumption for designing a study
is minimal. In fact, for two treatment comparison and when two sequence de-
signs are considered, results are similar regardless if residual term is a non-linear
function or completely unrelated to the treatment effect. This result cannot
be extended in the four and six sequence design families. For example, in the
seven-period four-sequence family, under the simple carry-over model in which
carry-over is modeled using a non-linear term, the optimum plan is (ABBAABB,
ABBAABA, duals). Similar argument holds for the Fleiss carry-over model.

It is also true in the non-linear case that the efficiency of the various plans do not
depend on the proportion of treatment persisted to the next period. Obviously
things would change if the assumption p4 = pp is removed. But how easy is
to assume otherwise? For designing a study plausible values of p4, pg have to
be provided. Physicians are usually unaware of such information, though results
from previous studies could help in the derivation of any unknown quantities.

Uncertainty of this kind can also be incorporated into the design problem by

202



using the Bayesian approach, although implementation of this method can be
difficult. This is because priors imposed on unknown parameters affect results
to some extent. Robust designs to the choice of prior are desirable. Finally the
assumption p4 = pgp does not make much sense if more than two treatments
are compared. This is why there is a lack of research attention to this kind of
problem.

The mathematics for tackling the non-linear design problem is a direct extension
of the linear approach. More specifically the choice of best design depends on
a number of unknown parameters. In our case, this is the unknown treatment
effect 7 and the proportion of treatment p that carries over to the next period.
It is assumed that 7 = 2.5 and p ranges from zero to one. The nonlinear mean

response can be expressed as follows:

E (yijx) = 1+ Tag,j) + Ta@,j-1)P (5.4)

where the mean u includes overall mean, period or any other effects that distin-
guish among cells of the cross-over plan. A modified version of this equation has
already been used at chapter 3 and explanation of the d(i,j — 1) and the other
subscripts is given there. To derive an expression for the dispersion matrix of
contrasts of interest, the matrix of partial derivatives of the mean response equa-
tion with respect to all parameters needs to be evaluated at the selected values
of p and 7. Because all other terms, apart from p and 7, enter linearly into the
model, specification of other parameters is not necessary. The partial derivatives

of interest are:

OE (yijx) _ 1+p3Td(i,j—1) (5.5)
074(i j) OT4(i )

BE(yi'k)

—ﬁ'— = Td(ij-1) (5.6)

In case where the two treatments carry-over a different proportion to the next

period the mean equation can be written as:

E (yijk) = [+ Td(i,5) + Td(s,5-1)Pd(i,j—1) (5~7)
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and the partial derivatives with respect to 74 ;) and py( ;) are:

OE(yijx) OT4(i,j-1)

—_— = 1 + p i, ; — —_— 58
OT4(i 5) D B i) )

OE (yijx) 0pa(ij-1)

—— = Td i, s _ 0 7 5.9
Opd(i.j) “I7D " Bpagi) (59)

Note that mean response expressed by equation (5.4) is a special case of the mean
response model described by equation (5.7). Model (5.7) covers all possibilities,
i.e. the carry-over effects of the two treatments may be equal (equation (5.4)),
or related in some mathematical way, or completely unrelated. Results when the
mean response is described by equation (5.7) are not given due to the lack of
information concerning py(; ;). Contrary, results for the first scenario (equation
(5.4)) are straightforward to derive and have already be presented.

Assume there are n study participants, in a p period cross-over study. Assume
further that our model has k¥ unknown parameters (in our case £k = p + 2).
Once the vector of partial derivatives of the mean response with respect to every
unknown parameter has been evaluated, these vectors are joined together in a
npzk matrix, denoted as Xz for sake of reference. The variance matrix is simply

1

V= (X[?S*Xﬂ)‘ (5.10)

where ¥ is a block diagonal npxnp matrix, each block being an AR(1) type
correlation matrix. The variance matrix for any set of linear/nonlinear contrasts
(a good example of a non-linear contrast is the overall treatment effect 7 + p7)

1s given by:
Vi = AVAT (5.11)

where the i** row of A is a vector of partial derivatives of the i** contrast with
respect to the unknown model parameters evaluated at specific values of these

parameters where necessary.

5.10 Computational approaches in searching for
optimum plans

It has already be mentioned that current computing limitations do not allow

fast detection of the best cross-over design for any number of sequences and
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periods. In the results presented so far, we had to confine our search to special
sub-families (cyclic plans), but even then only for moderate values of the number
of sequences/periods exact results were derived. Special numerical algorithms
have been devised in order to tackle the high-dimensional optimization problem,
in the case where p (number of periods) and s (number of sequences) are large.
Our problem can be expressed in a straightforward manner: in a set of s 1xp
vectors, select the best subset consisting of { such vectors (I can vary from 2 to
s —1). The winning subset will be the one that minimizes some function defined
by the needs of the experimenter. An initial attempt to solve the problem is to
identify a smaller group of highly efficient designs and then search within that sub-
family. Theoretical results can limit the number of designs under consideration,
but usually easily programmed counting rules are more efficient in finding plans
worth further attention. An example of such a rule is to minimize the sum of

squares
2

; }; X (5.12)
where );; is the number-of treatment sequences containing both ** and j* treat-
ments. Note though, that this rule may produce a large sub-class of plans. Other
rules need to be implemented in that sub-class so that further reduction in the
candidate design set is achieved.
Once the experimenter defines both the dimension of the problem (i.e. p and s),
and the sub-family of plans selected from his screening procedure is deemed ap-
propriate, then he can either do a full search or use one of the interchange (or
exchange) algorithms to find the best plan. Assume for the moment that there
are N.,q candidate treatment sequences and we are interested for the best triplet.
Any exchange algorithm usually start the search from a design that is optimum in
a family with fewer number of periods than the family we are interested in. This
may not necessarily be the case and the starting point can be a design randomly
chosen from the family under consideration. The next step of the algorithm is
to improve the starting design by exchanging treatment sequences of that design
with treatment sequences that they belong to the candidate set but they are not
included in the starting design. The first sequence is exchanged with the one

from the candidate set that leads to the greatest reduction in the determinant of
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the variance matrix for the contrasts of interest. The same process is repeated
for the second and third sequence of the starting plan and at the end of that
cycle a new starting design is proposed. The process starts all over again and at
the end of each cycle a new starting point is reached, far more efficient than the
one recommended at the beginning of the cycle. The process terminates when no
further exchanges can be made that will improve upon the design at the end of
the current cycle.

Various modifications of the above algorithm are available. For example instead
of doing the best current exchange we could simply update the design with any
exchange that improves its efficiency as soon as it is discovered. Another mod-
ification is to accept an exchange that may not improve the objective function
with small probability. One should always remember that all these modifications
are made in order to increase our chances of locating the global rather than a
local optimum plan. There are currently routines available for generation of all
possible treatment sequences for any number of periods and sequences and also
it is not difficult to program an algorithm for listing all [ possible subsets of these
sequences. As computational power increases rapidly, exact results can be made
possible as s and p grow. This will not replace the use of exchange algorithms
but will probably improve their performance as well as the accuracy of results

they provide.
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Table 5.2: Optimum two-treatment designs. Model: No carry-over

Periods | Designs (Variance 210~2 when p = 0.2,0.5,0.8)

Two Sequence Designs

5 ABABA (7.44, 5.12, 3.75)
6 ABABAB (6.12, 4.16, 3.02)
7 ABABABA (5.20, 3.50, 2.52)
8 ABABABAB (4.52, 3.03, 2.17)
9 ABABABABA (4.00, 2.66, 1.90)
10 ABABABABAB (3.59, 2.38, 1.69)
Four Sequence Designs
5 ABABA with any of: ABAAB, AABAB, ABBAB, ABABB
Variances: 3.95, 2.85, 2.13
6 ABABAB with any of: ABABAA, ABAABA, AABABA, ABBABA, ABABBA
Variances: 3.22, 2.27, 1.67
7 ABABABA with any of ABABAAB, ABAABAB, AABABAB, ABBABAB,

ABABBAB, ABABABB

Variances: 2.71, 1.88, 1.37

8 ABABABAB with any of ABABABAA, ABABAABA, ABAABABA,
AABABABA, ABBABABA, ABABBABA, ABABABBA

Variances 2.34, 1.61, 1.16

Six Sequence Designs

5 Define: 5=ABABA, 9=ABAAB, 10=AABAB, 11=ABBAB, 13=ABABB
The following triplets are optimal:

(59 10), (59 11), (5 10 11), (5 9 13), (5 10 13), (5 11 13)

Variances: 2.69, 1.98, 1.48

6 Define: 5=ABABAA, 9=ABAABA, 10=AABABA, 11=ABBABA,
13=ABABBA, 21=ABABAB. The following triplels are optimal:

(59 21), (5 10 21), (9 10 21), (5 11 21), (9 11 21), (10 11 21),

(5 13 21), (9 13 21), (10 13 21), (11 13 21)

Variances: 2.18, 1.56, 1.24
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Table 5.3: Optimum two-treatment designs. Model: Simple carry-over. Within-

subject error structure AR(1) (p = 0.2)

Periods | Design 1 Design 2 Design 3 Design 4
Two Sequence Designs (Variance z10~2)
5 AABBA (9.77)
6 ABBAAB (7.96)
7 AABBAAB (6.94)
8 ABBAABBA (5.92)
9 ABBAABBAB (5.33) £ ABBAABAAB ABAABBAAB ABBABBAAB

ABBAABBAAB (4.73)

Four Sequence Designs (Variance z1072)

5 ABBAA
AABBA (4.89)
6 ABBAAB ABBAAB
ABAABB (4.04) ABBABB
7 AABBAAB AABBAAB AABBAAB
ABBAABA (3.43) ABAABBA ABBABBA
8 ABBAABBA ABBAABBA  ABBAABBA
AABBAABA (2.98) AABAABBA  AABBABBA
Six Sequence Designs (Variance £1072)
5 ABBAA ABBAA
AABBA AABBA
ABAAB (3.23) ABBAB
6 AABBAA AABBAA
ABBAAB ABBAAB
AABAAB (2.68) AABBAB
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Table 5.4: Optimum two-treatment designs. Model: Simple carry-over. Within-

subject error structure AR(1) (p = 0.5)

Periods | Design 1 Design 2 Design 3 Design 4
Two Sequence Designs (Variance £1072)
5 AABBA (8.72)
6 ABBAAB (6.55)
7 ABAABBA (5.85) ABBAABA ABBABBA
8 ABBAABBA (4.88)
9 ABBAABBAB (4.36) @ ABBAABAAB ABAABBAAB ABBABBAAB

ABBAABBAAB (3.90)

Four Sequence Designs (Variance £1072)

AABBA AABBA

ABAAB (4.23) ABBAB

ABBAAB ABBAAB

AABAAB (3.40) AABBAB

AABBAAB AABBAAB AABBAAB

ABBAABA (2.87) ABAABBA ABBABBA

ABBAABBA ABBAABBA  ABBAABBA

AABBAABA (2.49) AABAABBA  AABBABBA

Six Sequence Designs (Variance £10~2)

ABBAA ABBAA
AABBA AABBA
ABAAB (2.81) ABBAB
AABAAB

ABBAAB

AABBAB (2.30)
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Table 5.5: Optimum two-treatment designs. Model: Simple carry-over. Within-
subject error structure AR(1) (p = 0.8)

Periods | Design 1 Design 2 Design 3 Design 4
Two Sequence Designs (Variance £10~2)
AABBA (7.23)
ABBAAB (5.13)
ABAABBA (4.52) ABBAABA ABBABBA

ABBAABBA (3.80)
ABBAABBAB (3.36) ABBAABAAB ABAABBAAB ABBABBAAB
10 ABBAABBAAB (3.03)

© 00 N O w»

Four Sequence Designs (Variance 21072)

5 AABBA AABBA
ABAAB (3.38) ABBAB
6 ABBAAB ABBAAB
AABAAB (2.69) AABBAB
7 AABBAAB AABBAAB  AABBAAB
ABBAABA (2.25) ABAABBA  ABBABBA
8 ABBAABBA ABBAABBA ABBAABBA  ABBAABBA
ABAABAAB (1.92) ABBABAAB ABABBAAB ABBAABAB
8(con’t) | ABBAABBA ABBAABBA
ABAABBAB ABBABBAB

Six Sequence Designs (Variance £1072)

5 ABBAA
AABBA
ABAAB (2.29)
6 AABAAB
ABBAAB
AABBAB (1.83)
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Table 5.6: Optimum two-treatment designs. Model: Fleiss carry-over. Within-

subject error structure AR(1) (p = 0.2)

Periods Design 1 Design 2 Design 3 Design 4
Two Sequence Designs (Variance z1072)
5 AAABB (15.2) AABBB ABBBB
6 AAAABB (12.7) AAABBB AABBBB ABBBBB
7 AAAAABB (10.9) AAAABBB AAABBBB AABBBBB
7 (con’t) | ABBBBBB
8 AAAAAABB (9.61) AAAAABBB AAAABBBB AAABBBBB
8 (con’t) | AABBBBBB ABBBBBBB
9 AAAAAAABB (8.56) AAAAAABBB AAAAABBBB AAAABBBBB
9 (con’t) | AAABBBBBB AABBBBBBB ABBBBBBBB
10 AAAAAAAABB (7.71) AAAAAAABBB AAAAAABBBB AAAAABBBBB
10 (con’t) | AAAABBBBBB AAABBBBBBB AABBBBBBBB ABBBBBBBBB
Four Sequence Designs (Variance z1072)
5 All péssible combinations in pairs of 5-period 2-sequence designs, are optimal
Number of optimal designs: 3 - Variance: 7.61
6 All possible combinations in pairs of 6-period 2-sequence designs, are optimal
Number of optimal designs: 6 - Variance: 6.37
7 All possible combinations in pairs of 7-period 2-sequence designs, are optimal
Number of optimal designs:10 - Variance: 5.48
8 All possible combinations in pairs of 8-period 2-sequence designs, are optimal
Number of optimal designs:15 - Variance: 4.80
Six Sequence Designs (Variance £10~2)
5 All possible combinations in triplets of 5-period 2-sequence designs, are optimal
Number of optimal designs: 1 - Variance: 5.08
6 All possible combinations in triplets of 6-period 2-sequence designs, are optimal

Number of optimal designs: 4 - Variance: 4.25
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Table 5.7: Optimum two-treatment designs. Model: Fleiss carry-over. Within-

subject error structure AR(1) (p = 0.5)

ABBBAA (4.76)

Periods | Design 1 Design 2 Design 3 Design 4
" Two Sequence Designs (Variance z1072)
5 ABBAA (15.3)
6 ABBBAA (14.2) ABBAAA AABBAA
7 ABBAABB (11.1)
8 AABBAABB (10.5) ABBAAABB ABBBAABB ABBAABBB
9 ABBAABBAA (8.69)
10 AABBAABBAA (8.33) ABBAABBBAA ABBBAABBAA ABBAAABBAA
Four Sequence Designs (Variance £10~2)
5 ABBAA ABBAA ABBAA
AAABB (8.69) AABBB ABBBB
6 ABBAAA ABBAAA AABBAA
AABBAA (7.14) ABBBAA ABBBAA
7 ABBAABB ABBAABB ABBAABB ABBAABB
ABBAAAA (6.06) AABBAAA ABBBAAA AAABBAA
7 (con’t) | ABBAABB ABBAABB
AABBBAA ABBBBAA
8 All combinations in pairs of 8-period, 2-sequence designs are optimal
Number of designs: 6 - Variance : 5.62
Six Sequence Designs (Variance £1072)
5 ABBAA ABBAA ABBAA
AAABB AAABB AABBB
ABBBB (6.06) AABBB ABBBB
6 ABBAAA
AABBAA
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Table 5.8: Optimum two-treatment designs. Model: Fleiss carry-over. Within-

subject error structure AR(1) (p = 0.8)

Periods | Design 1 Design 2 Design 3 Design 4
Two Sequence Designs (Variance 21072)
5 ABBAA (13.7)
6 ABBAAB (12.1)
7 ABBAABB (9.46)
8 ABBAABBA (8.60)
9 ABBAABBAA (7.22)
10 ABBAABBAAB (6.68)
Four Sequence Designs (Variance £1072)
b) ABBAA ABBAA
AABBA (8.04) ABBBA
6 ABBAAB ABBAAB ABBAAB
ABBAAA (6.34) AABBAA ABBBAA
7 ABBAABB ABBAABB ABBAABB
ABBAAAB (5.24) AABBAAB ABBBAAB
8 ABBAABBA ABBAABBA ABBAABBA ABBAABBA
ABBAAABB (4.47) AABBAABB ABBBAABB ABBAABBB
Six Sequence Designs (Variance £1072)
5 ABBAA
ABAAB
ABBAB (5.71)
6 ABBAAA AABBAA ABBAAA
ABBBAA ABBBAA AABBAA
ABBAAB (4.31) ABBAAB ABBAAB
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Table 5.9: Optimum two-treatment designs. Model: Mixed. Within-subject error
structure AR(1) (p = 0.2)

Periods Mixed with ¢ = 0.2 Mixed with ¢ = 0.5
Design 1 Design 2 Design 1 Design 2
Two Sequence Designs (Variance £1072)
5 ABBAB (9.44) ABBBA (9.76)
6 ABBABB (7.68) ABBABB (7.83)
7 ABBABBA (6.29) ABBABBA (6.51)
8 ABBABBAB (5.60) ABBAABBA (5.83)
9 ABBABBABA (4.97) ABBABABBA | ABBABBABB (5.14)
9 (con’t) | ABABBABBA
10 ABBABBABBA (4.37) ABBABBABBA (4.54)
Four Sequence Designs (Variance 1072)
5 ABBBA | ABBBA
ABBAB (4.60) ABBAB (4.74)
6 ABBABB ABBABB ABBABB
ABBABA (3.78) ABABBA ABBBAB (3.96)
7 ABBABBA ABBABBA ABBABBA
ABBBABA (3.20) ABABBBA ABBAABB (3.34)
8 ABBABBAB ABBABBAB | ABBABBAB ABBABBAB
ABBBABBA (2.80) ABBABBBA | ABBBABBA (2.90) ABBABBBA
Six Sequence Designs (Variance £1072)
5 ABBBA ABBBA
ABBAB ABBAB
ABABB (3.11) AABBA (3.17)
6 ABBABA ABBABA ABABBA
ABABBA ABBABB ABBABB
ABBBBA (2.53) ABBBBA (2.63) ABBBBA

214




Table 5.10: Optimum two-treatment designs. Model: Mixed. Within-subject
error structure AR(1) (p = 0.5)

Periods Mixed with ¢ = 0.2 Mixed with ¢ = 0.5
Design 1 Design 2 Design 1 Design 2
Two Sequence Designs (Variance £1072)
5 ABBAB (7.23) ABBAB (7.91)
6 ABBABA (6.08) ABABBA ABBABB (6.66)
7 ABBABBA (4.91) ABBABBA (5.12)
8 ABBABBAB (4.24) ABBABBAB (4.60)
9 ABBABBABA (3.74) ABBABABBA | ABBABBABB (4.19)
9 (con’t) | ABABBABBA
10 ABBABBABBA (3.36) ABBABBABBA (3.52)
Four Sequence Designs (Variance £1072)
5 ABBBA AABBA
ABBAB (3.84) ABBAB (3.98)
6 ABBABB ABBABB ABBABB ABBABB
ABBABA (3.02) ABABBA ABBABA (3.28) ABABBA
7 ABBABBA ABBABBA ABBABBA ABBABBA
ABBABAB (2.46) ABABBAB ABBAABA (2.68) ABAABBA
8 ABBABBAB ABBABBAB | ABBAABBA
ABBABABB (2.21) ABABBABB | ABBABBAB (2.30)
Six Sequence Designs (Variance £10~2)
5 ABBBA ABBAA
ABBAB ABBAB
ABABB (2.63) AABBA (2.71)
6 ABBABA ABBABB ABBABB
ABABBA ABBAAB ABBAAB
ABBABB (2.00) ABBABA (2.19) ABABBA
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Table 5.11: Optimum two-treatment designs. Model: Mixed (¢ = 0.8). Within-

subject error structure AR(1)

ABBABB (2.68)

AABBAB (2.29)

Periods p=0.2 p=05
Design 1 Design 2 | Design 1 Design 2
Two Sequence Designs (Variance £1072)
5 AABBA (9.77) AABBA (8.71)
6 ABBAAB (8.02) ABBAAB (6.61)
7 ABBABBA (6.89) ABBABBA (5.51)
8 ABBAABBA (5.88) ABBAABBA (4.85)
9 ABBABBAAB (5.34) ABBABBAAB (4.31) ABBAABBAB
10 ABBAABBAAB (4.74) ABBABBABBA (3.82)
Four Sequence Designs (Variance £1072)
5 ABBAA AABBA
AABBA (4.88) ABBAB (4.13)
6 ABBAAB ABBAAB ABBABB
ABBABB (4.01) ABBABB (3.39) ABABBA
7 ABBABBA ABBABBA ABBABBA
ABBAABB (3.39) ABBAABA (2.83) ABAABBA
8 ABBAABBA ABBAABBA
AABBABBA (2.96) ABBABBAB (2.41)
Six Sequence Designs (Variance z107?)
5 ABBAA ABBAA
AABBA ABBAB
ABBAB (3.22) AABBA (2.77)
6 AABBAA ABBABB
ABBAAB ABBAAB
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Table 5.12: Optimum two-treatment designs. Model: Mixed. Within-subject
error structure AR(1) (p = 0.8)

Periods Mixed with ¢ = 0.2 Mixed with ¢ = 0.5
Design 1 Design 2 Design 1 Design 2
Two Sequence Designs (Variance 21072)
5 ABBAB (5.48) ABBAB (6.05)
6 ABBABA (4.64) ABABBA ABBAAB (5.22)
7 ABBABBA (3.76) ABBABBA (3.92)
8 ABBABBAB (3.17) ABBABBAB (3.46)
9 ABBABBABA (2.79) ABBABABBA | ABBABBABA (3.16) ABABBABBA
9 (con’t) | ABABBABBA ABBABABBA
10 ABBABBABBA (2.53) ABBABBABBA (2.66)
Four Sequence Designs (Variance z1072)
5 AABBA AABBA
ABBAB (3.04) ABBAB (3.15)
6 ABBABA ABBAAB ABBAAB
ABABBA (2.32) ABBABA (2.59) ABABBA
7 ABBABBA ABBABBA ABBABBA ABBABBA
ABBABAB (1.85) ABABBAB ABBAABA (2.06) ABAABBA
8 ABBABBAB ABBABBAB ABBAABBA
ABBABABA (1.65) ABABBABA | ABBABBAB (1.76)
8 (con’t) | ABBABBAB
ABABABBA

Six Sequence Designs (Variance 10~2)

5 ABABA ABBAA
AABBA AABBA
ABBAB (2.12) ABBAB (2.19)

6 ABBABA ABBABB ABBABB
ABABBA ABBAAB ABBAAB
ABBABB (1.56) ABBABA (1.73) ABABBA
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Table 5.13: Optimum two-treatment designs.Model:Mixed (¢ = 0.8).

subject error structure AR(1) (p = 0.8)

Within-

Periods Two-sequence Designs Four-sequence Designs
Design 1 Design 2 Design 1 Design 2
Two Sequence Designs (Variance z1072)
5 ABBAB (6.81) ABBAB
AABBA (3.29)
6 ABBAAB (5.17) ABBAAB
AABBAB (2.70)
7 ABBABBA (4.23) ABBABBA ABBABBA
| ABBAABA (2.18) ABAABBA
8 ABBAABBA (3.78) ABBAABBA
ABBABBAB (1.85)
9 ABBABBAAB (3.30) ABBAABBAB
10 ABBABBABBA (2.90)
Six Sequence Designs (Variance z1072)
5 AABBA
ABBAB
ABBAA (2.26)
6 ABBAAB ABBAAB
AABBAB AABBAB
ABBABA (1.84) ABABBA
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Table 5.14: Optimum three-treatment designs. Full Design Listing. Within-
subject error structure AR(1) (p = 0.7)

Carryover | Design 1 Design 2 Design 3 Design 4 Design 5 Design 6

Scheme
Three-period, three-sequence designs (Variances £1072)
No ABC ACB
BCA BAC
CAB (1.43) CBA
Simple | ABC ACB ABC ACB ABC ACB
BAC BCA BCA BCA BAC BAC
CBA (10.0) CAB CBA CBA CAB CAB
Simple2 | ABC ACB
and BCA BAC

Propo- | CAB (154) CBA

rtional
Three-period, four-sequence designs (Variances £1072)
No ACB ACB ABC ABC ABC ABC
BAC BAC BCA ACB BAC ACB
BCA CAB CAB BCA BCA BAC
CBA (0.92) CBA CBA CAB CAB CBA
Simple | ACB ABC ABC
BCA BAC ACB
CAB BCA BAC

CBA (270) CBA  CAB

Simple2 | ABC

and ACB
Propo- BAC
rtional | CAB (10.5)

Three-period, five-sequence designs (Variances £1072)

No carry-over: All 6 possible designs are optimal with variance 0.56

Simple carry-over: All 6 possible designs are optimal with variance 1.52

Simple2: (ABC,ACB,BAC,BCA,CAB) and (ABC,ACB,BAC,CAB,CBA) - variance 9.22
Proportional: (ABC,ACB,BAC,BCA,CBA) and (ABC,BAC,BCA,CAB,CBA) - variance 9.22
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Table 5.15: Optimum three-treatment designs. Cyclic Designs considered only.

Within-subject error structure AR(1) (p = 0.7)
No Simple Fleiss Simple2 Proportional

Carryover Carryover Carryover Carryover Carryover

Cyclic 4-period, 3-sequence designs (Variances z10~2)

ABAC ABBC ABAC ABCA ABCA
ABCB ACCB ACAB ABBC ACBA
ACBC (1.82) (4.45) ACBA (10.6)
ACAC (0.68) ACCB (10.6)

Cyclic 5-period, 3-sequence designs (Variances £1072)
ABCBC ABBAC ABCBA ABCAB ABCAB
ABABC ACCAB ACBCA ACBAC ACBAC
ACBCB (0.99) (1.35) (7.80) (7.80)

ACACB (0.39)

Cyclic 6-period, 3-sequence designs (Variances z10~2)
ABACBC ABCCBA ABCBAC ABCABC ABCABC
ABCABC ACBBCA ACBCAB ACBACB ACBACB
ABCACB (0.55) (0.75) (6.05) (6.05)
ABCBAC
ACABCB
ACBCAB
ACBACB
ACBABC (0.25)

Cyclic 7-period, 3-sequence designs (Variances z1072)

ABABCBC ABCCBAC ABCACBA ABCABCA  ABCABCA
ABCBABC ACBBCAB ACBABCA ACBACBA  ACBACBA
ACACBCB (0.38) (0.46) (5.14) (5.14)

ACBCACB (0.17)

Cyclic 8-period, 3-sequence designs (Variances £1072)

ABCACBCB ABCAACBA ABCACBAC ABCABCAB ABCABCAB
ACBACBCB ACBAABCA ACBABCAB ACBACBAC ACBACBAC
ACABCBCB (0.13) (0.28) (0.33) (0.43) (0.43)

plus 25

other designs
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Table 5.16: Optimum four-treatment designs. Cyclic Designs considered only.

Within-subject error structure AR(1) (p = 0.7)
No Simple Fleiss Simple2 Proportional

Carry-over Carry-over  Carry-over  Carry-over  Carry-over

Cyclic 4-period, 4-sequence designs (Variances 10~2)

ABDC ABDC ABDC ABDC
ADBC ADBC ADBC ADBC
(0.09) (0.29) (1.66) (4.13)
Cyclic 5-period, 4-sequence designs (Variances z10~2)
ABCBD ABDCB ABDCB ABDCB ABCDB
ACBCD ADBCD ADBCD ADBCD ADCBD
ACDCB (0.12) (0.12) (0.93) (3.16)
ADCDB
(0.04)

Cyclic 6-period, 4-sequence designs (Variances z1072)
ACBCBD ABCADB ABCADB ABCADB ACBADC
ACDCDB ADCABD ADCABD ADCABD ACDABC
(0.02) (0.06) (0.06) (0.60) (2.52)

Cyclic 7-period, 4-sequence designs (Variances 210~2)
ABADBDC ABDCBDA ABDCBDA ACBDABC ABCDABC
ADBABDC ADBCDBA ADBCDBA ACDBADC ADCBADC
(0.01) (0.03) (0.03) (0.42) (2.08)

plus 14

other designs




Table 5.17: Optimum five, six-treatment designs. Cyclic Designs considered only.

Within-subject error structure AR(1) (p = 0.7)
No Simple Fleiss Simple2 ' Proportional

Carry-over Carry-over Carry-over Carry-over Carry-over

Five-treatment designs

Cyclic 5-period, 5-sequence designs (Variances £1072)

ABDCE ABEDC ABEDC ACDEB
ACBDE ACDBE ACDBE ADCBE
ADECB ADCEB ADCEB (1.57)
(0.005) AEBCD AEBCD

plus 9 (0.02) (0.19)

other designs

Cyclic 5-period, 4-sequence designs (Variances z1072)
ABDBCE ABEDCE ABEDCE ABEDCE ABDEAC
ACBCED ACDBED ACDBED ACDBED AECBAD
ADCECB ADCEBC ADCEBC ADCEBC (1.29)
(0.002) AEBCDB AEBCDB AEBCDB
plus 13 (0.008) (0.008) (0.072)

other designs

Six-treatment designs

Cyclic 6-period, 6-sequence designs (Variances z107%)

ABDECF ACBEFD ACBEFD ACEFBD
ACFEDB AEFCBD AEFCBD AECBFD
ADFECB (0.11) (0.88) (72.88)
(0.02)

plus 15

other designs

222



Chapter 6

Thesis Close-out

6.1 The 2x2 case revisited

A short account of the main thesis results will be provided in this chapter. A
thorough examination of the analysis strategies of the 2x2 design with continu-
ous data has been presented. Depending on the inclusion or not of the carry-over
term, two test statistics can be proposed for testing treatment effectiveness: the
never pooled test using the first period data only (PAR) and the more powerful
pooled test based on data from both periods (CROS). Under the simple carry-
over model, the condition needed to be satisfied so that the more powerful CROS
is selected instead of PAR depends upon the unknown carry-over effect. Simi-
larly, the best weighted combination of PAR and CROS, places weight on CROS
which depends not only on the unknown carry-over effect but also on the variance
of the test statistic for checking the significance of that term.

The properties of the two stage procedure (TS), where CROS is selected with
probability p and PAR with probability 1 — p, have been reviewed. It is well-
known, that TS has worst performance in terms of power for treatment effect
estimation in comparison to CROS. This comparison though is not statistically
appropriate, since the Type I error rate of TS is 8.7%, while that of CROS is
5%. Two strategies for fixing the Type I error rate of TS are presented. The
new improved TS scheme still performs worse in terms of power when compared
to CROS. Both the original and improved TS strategy perform worst in terms
of MSE, when compared to CROS. A 2x2 trial in asthma is then analyzed from
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a Frequentist and a Bayesian point of view. In both approaches the residual
treatment effect seems to be unimportant. The Bayesian approach has the ad-
vantage of concluding that the newly proposed therapy is more effective than the
standard treatment, regardless of the inclusion or not of the carry-over term.

The inclusion of baselines in the 2x2 cross-over experiment is then considered.
A three stage procedure is proposed for evaluation of the treatment effect. Two
modifications of that scheme are studied. The Type I error rate is over the nom-
inal 5% level for both strategies. Both schemes perform worse in terms of power
when compared to CROS. One of the two schemes (strategy 1) handles carry-over
terms in a more rationale way than the other one (strategy 2). Overall strategy 1
has always a better performance when compared to strategy 2, in terms of power
and MSE for estimating treatment effect. The same trial in asthma is re-analyzed,
but now baseline measurements included in the analysis. Similar conclusions to
the ones drawn by the analysis where baselines ignored, are reported. The inclu-
sion of demographic information, e.g. sex, in a 2x2 experiment affects only the
terms estimated using between subject information (e.g. carry-over). The im-
pact of these terms on treatment effect or other within subject contrasts is rather
minimal. Finally, since carry-over is related to the treatment effect, the analysis
of the 2x2 trial in asthma was repeated by introducing appropriate non-linear
terms in order to describe the mathematical association between treatment and
carry-over. That analysis stresses in an even more emphatic way that the newly
proposed therapy is more effective compared to the standard therapy, even when
carry-over effects are not handled in the best way. A model selection exercise
based on the AIC criterion is then performed, and the model with no residual
terms seems to be favored as the most appropriate for having generated the ob-

served data.

6.2 Selecting a design

The problems with the 2x2 design can possibly be overcome, if the estimation of
the carry-over effect is made by using within-subject information. Multi-period,

multi-sequence designs can be used to that purpose. Initially four types of carry-
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over are examined: No carry-over, Simple, Fleiss and second order carry-over.
In the three-period, two-sequence family a design with excellent properties for
estimating both treatment and carry-over effect is the (ABB/duals). This choice
is quite robust to the type of carry-over assumed. In the three-period four-
sequence family a design with good properties over all carry-over schemes is the
(ABB,AAB,duals). When more periods are used, then the choice of a good plan
becomes less clear. In the four-period family when two sequence plans are consid-
ered, design (ABBA /duals) is optimum for estimating treatment and carry-over
difference over most of the carry-over scenarios. Firm recommendations cannot
be made if the number of sequences increases to four or six.

Optimum plans under a decision rule that may sound appealing to practitioners
who design cross-over trials, are derived. More specifically during the planning
stage the statistician is unaware of the carry-over mechanism (if any) that will
generate the observed data. In addition he is unaware if the model fitted at
the analysis stage will correctly identify true carry-over activity. However, the
statistician should write down in the protocol clearly the type of carry-over he is
prepared to adopt in his analysis, without analyzing the data. In other words,
the ”analysis” model may completely miss the "true” model and interest focuses
in identifying designs with minimum MSE for estimating treatment effect, under
that scenario. Four types of carry-over are now considered: No carry-over, Sim-
ple, Fleiss and the Mixed one. The mixed carry-over is an intermediate scenario
between the Simple and the Fleiss types. The selected plan does not seem to
depend on the correlation between successive responses on a subject. The deci-
sion though, is heavily affected by the assumptions made regarding ”true” and
"analysis” models. But how much of a problem is the identification of the correct
carry-over type during the planning stage? The clinical team usually allows for
adequate wash-out interval which make sure that presence of carry-over is highly
unlikely. This point is illustrated with the analysis of data from a cross-over trial
with 7 treatments, where carry-over types that sound reasonable in the outset
have no effect on our inferences for treatment, simply because carry-over is not
present anyway.

For two treatment comparison, up to four-period cross-over designs are used to
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run a trial. Practical considerations suggest that routine follow-up is not that
costly as recruitment of new patients. The future of cross-over studies lies on
using multi-period designs and evaluation of best plans in these design families
is worth investigating. For two treatment comparison, under the no carry-over
model, frequent switches between the two therapies are needed. The number of
switches is moderate for the simple carry-over scenario, while it is minimal if
treatment residual activity is described by the Fleiss carry-over scenario. It has
to be noted that conclusions heavily depend on within-subject correlation struc-
ture. If in the two treatment scenario, carry-over is modeled as a proportion of
the treatment effect this has minimal impact on the design choice. In the case
where more than two treatments compared results are less clear. To begin with,
full listing of the design family is not possible, since the number of distinct plans
grows fast as number of sequences and/or periods increases. Cyclic families are
studied. A general comment worth made is that the number of optimum designs
under the model with no carry-over terms is usually much higher compared to
the number of best plans under any carry-over scenario. Five different carry-over
types have been considered.

In conclusion, modeling carry-over activity has future only in Phase I trials. The
derivation of algorithms for efficient planning of cross-over designs with unlim-
ited number of sequences and periods needs further development. Multi-stage
procedures for other data types (e.g. binary) need to be studied. Efficient assess-
ment of specific interaction terms of interest to sponsors could be seen as another

research direction.
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