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ABSTRACT 

In this article I present the unique partial transmission of Euclid’s Elements in the medieval Hebrew 

calendrical treatise Yesod ‘Olam (The Foundation of the World), which was composed by Isaac Israeli 

in fourteenth-century Toledo. After a short introduction of Yesod ‘Olam, I shall discuss the role of 

mathematics in the study of astronomy and the Jewish calendar, as understood by Israeli. Then I will 

provide a mapping of the Elements found in Yesod ‘Olam and demonstrate Israeli’s peculiar rendition 

of this seminal Greek work via four examples. Finally, I will show that Israeli’s transmission of the 

Elements is lexically independent of earlier known Hebrew versions thereof. 
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INTRODUCTION TO YESOD ‘OLAM 

In the Jewish year 5070 A.M. (1309/10 CE), Isaac ben Joseph Israeli from Toledo, also known as Isaac 

Israeli the Younger or The Second,2 composed a vast treatise on the Jewish calendar, Yesod ‘Olam, 

comprising five books, which was of high scientific level for its time. Yesod ‘Olam aims to provide the 

scientific knowledge required for a thorough understanding of all aspects of the Jewish calendar, but it 

                                                           
1Current academic address: The Goldstein-Goren Diaspora Research Centre, 314 Carter Building, Tel Aviv 

University, 6997801 Tel Aviv, Israel. Email: ilanaw@tauex.tau.ac.il. The research on Yesod 'Olam constituted 

the core of my research project with Israel Sandman, carried out at the Department of Hebrew and Jewish Studies 

at University College London, funded by the European Research Council (ERC), and directed by Sacha Stern. A 
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mathematical book. I wish to thank Sacha Stern, Israel Sandman, Ofer Elior, Nadia Vidro, and François de Blois 

for their feedback and their advice. I extend my deep thanks to the two anonymous readers for their insightful 

suggestions. 
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does not merely lay out the necessary basic calendrical principles and algorithms, rather, it proposes a 

quasi-encyclopaedia. Yesod ‘Olam cannot, however, be regarded as a proper encyclopaedia because it 

does not contain the entire mathematical, astronomical and other scientific body of knowledge known 

at the time. 

Yesod ‘Olam provides scientific knowledge in fields related to the Jewish calendar, such as mathematics 

(Book 1), geography, cosmography, and astronomy (Books 2 & 3),3 Jewish Chronology, as well as the 

structure of and the conversion from and into the Christian and Muslim calendars (Books 4 & 5). Visual 

elements serving didactic purposes are abundant throughout Yesod ‘Olam. They include numerous 

mathematical, geographical, astronomical and calendrical diagrams as well as tables.4 

Regarding the mathematics in Yesod ‘Olam, arithmetic is one of the main mathematical fields 

one encounters in Book 1. One finds claims such as ‘1 is the basis of all number’, the definition of ratios 

and how to deal with three and four proportional numbers. The second, more predominant, subject is 

geometry: Euclidean planar geometry as well as solid geometry, or stereometry. The third domain is 

trigonometry: planar and spherical. In Yesod ‘Olam we find no discussion of basic arithmetic - only the 

more advanced rule of three and four proportional numbers, which is applicable in spherical 

trigonometry.5 Israeli does not revert at all to the Hebrew arithmetical tradition of the twelfth century 

such as the one found in Abraham ibn Ezra’s Sefer ha-Mispar (The Book of the Number), a rudimentary 

text on the five basic arithmetical operations: multiplication, division, addition, subtraction and 

extraction of roots, a work well-known to Toledan Jews in the fourteenth century. Although the first 

three of the aforementioned arithmetical operations are necessary for the calculation of the Jewish 

calendar, the absence of their teaching in Yesod ‘Olam probably means that Israeli took for granted that 

his readers possessed at least some rudimentary arithmetical skills.  

As for the structure of Book 1, it includes two chapters. The first chapter contains introductory 

teachings, in which Israeli elaborates on the role of mathematics in the service of astronomy and the 

two types of study of mathematics. The second chapter is dedicated to mathematics and is subdivided 

into twelve sections, ending with the book’s final section: Sections 1-3 on arithmetical and geometrical 

preliminaries, Section 4, the longest one, includes 42 geometrical lessons, Sections 5-6 deal with planar 

                                                           
3 In fact, it is probably most correct to consider Yesod ‘Olam mainly as an astronomical treatise, and for numerous 

reasons, among which we find the following: not only will we see that Israeli considers the Jewish calendar to be 

a branch of astronomy, but he also stresses that understanding the motion of the heavenly bodies is fundamental 
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will entice readers to read his treatise and pursue the knowledge of astronomy. Furthermore, even though he 

declares that he would only treat the heavenly bodies which are relevant to the calculation of the Jewish calendar, 

i.e. the moon and the sun, Israeli cannot help but occasionally smuggle the other five planets into the discussion.  
4 The graphical quality of diagrams and their scientific accuracy varies greatly among the different manuscripts. 
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trigonometry, Sections 7-9 teach spherical trigonometry, and Sections 10-12 and the final section 

elaborate on the notions of a sphere, a cone and proportional line-segments. Most importantly, the great 

majority of the mathematical materials in Book 1, in particular, in Sections 1-4, stems from Euclid’s 

Elements, forming a separate branch of a partial transmission thereof within the medieval Hebrew 

mathematical tradition, as we shall see.   

Yesod ‘Olam is a rich, albeit mathematically imperfect, text, able to quench various types of 

contemporary intellectual thirsts, be they literary, calendrical, scientific, or linguistic. Its importance is 

also manifest in its multifarious transmission, which spans over half a millennium and is testified by 

fifty-three manuscripts as well as two printed editions from Berlin: the first one, by Rabbi Barukh 

Schick of Shklov,6 was printed in 1777 and the second one, by Goldberg and Rosenkranz, was printed 

in 1848, with a summary of the contents of the book in German. There is, in addition, a tiny fragment, 

of Byzantine origin, which I discovered in the Cairo Genizah collection.7 The chain of manuscript 

transmission of Yesod ‘Olam includes many a provenance and various hands: Sephardic, Ashkenazic, 

Oriental, Byzantine, and Italian.8 Fifty-four surviving hand-written witnesses, full and incomplete, is a 

most impressive number for a Hebrew scientific treatise composed in the Iberian Peninsula before the 

expulsion of the Jews from Spain and Portugal in 1492 and 1497, respectively. 

Regarding the complex transmission of Yesod ‘Olam, one can discern, grosso modo, four 

different versions of the text. In a nutshell: Version 1,9 the most disseminated among the surviving 

manuscripts, includes manuscripts which are probably closest to the urtext. Another group, Version 2, 

consists of manuscripts which tend to render the language of the text in Version 1 more elegant and 

concise but occasionally create erroneous interpretations. A further Version, Version 4, sometimes 

agrees only with one version against the other and sometimes it synthesises Versions 1 and 2, with an 

obvious pedagogical agenda of rendering the text as clear as possible by removing unnecessary 

                                                           
6  Rabbi Barukh Schick of Shklov (1744-1808) also translated the Elements into Hebrew. For an extensive 

discussion of him, his learning, and his agenda, see Fishman (1995). 
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 typical of Isaac Israeli it is an important witness of a Byzantine transmission of Yesod ‘Olam, see ,(בקע)
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information, adding explanatory phrases, cross-referencing, disambiguation etc. Another version, 

Version 3, is a subset of the twenty Ashkenazic manuscripts with unique errors but also unique textual 

and paratextual features such as labelled glosses, metric instructions and vocalisations. In general, the 

Ashkenazic manuscripts tend to be more contaminated and corrupt than those of other provenances.  

More often than others, the Ashkenazic witnesses do not even include Books 1-3, which constitute the 

bulk of the scientific information. This conspicuous absence is probably not always due to physical loss 

of these parts of the text, but rather, to disinterest in or lack of understanding of the mathematics and 

astronomy in these books. The first printed edition clearly derives solely from Ashkenazic sources. 

Even the second printed edition, although improved by some corrections, and consultation of other 

manuscripts, still follows the text of the first edition and thus carries along most its problems.10    

For all the excerpts in this article I have chosen a precious witness of Yesod ‘Olam, MS Add. 

15977 from the British Library, a member of Version 4. It was written in semi-cursive Sephardic hand 

in the fifteenth century. No manuscript is perfect but some are more perfect than others. This manuscript 

from the British Library is the best surviving testimony due to its high scientific level, manifesting an 

intelligent synthesis of Version 1 and Version 2.11  

The influentiality of Yesod ‘Olam among Jews in the late medieval and early modern period can be 

further attested by the existence of dozens of compendia, commentaries, as well as other treatises related 

to or inspired by Yesod ‘Olam. Among these works we know of a compendium written originally in 

Arabic by Israeli's son Joseph (תקציר יסוד עולם), which survived in a Hebrew translation by Isaac ben 

Solomon ben Isaac Israeli. Furthermore, Solomon ben Abraham Corcos wrote in 1331 an exegesis (באור) 

on Yesod ‘Olam.12 In the early modern period, the polymath Rabbi David Gans wrote a commentary on 

Yesod ‘Olam.13  

 

THE INTELLECTUAL AND RELIGIOUS CONTEXTS 

 

Before delving into Yesod ‘Olam itself, I would like to shed a bit of light on the intellectual environment 

in which it was composed and its history. At the beginning of the fourteenth century, Toledo had already 

established itself as a centre of academic learning and translations of scientific and philosophical 
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footnote. My own experience with many other Ashkenazic manuscripts on scientific matters seems to confirm 
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Ashkenazic community in a positive way.    
11 For additional visual features of this manuscripts see Wartenberg (ForthcomingB). 
12 He was the disciple of Judah bar Asher, the Rosh's son. See details on the Rosh in the next section. 
13 See Stern (2016). 



treatises from Arabic into Hebrew and Latin.14 Jews had played an important role in the transmission 

of Greco-Arabic science in mathematics, astronomy, astrology and medicine. 15  Interreligious 

cooperation, which had its roots already in ninth-century Baghdad reached Christian Spain in the twelfth 

century. Astronomy, in particular, was considered a 'neutral zone', to quote B. R. Goldstein, i.e. a field 

in which members of one religion could borrow ideas from another religion without any difficulty.16 

Israeli's work is thus part of a well-established Hebrew scientific tradition in the Iberian Peninsula. It 

emerged as a result of complex historical, social and linguistic factors. One speaks of the Hebrew 

Renaissance of the Twelfth Century, in which Hebrew had become the language of science and 

philosophy among Jews in Christian-ruled areas. A salient factor in this process directly relates to the 

invasions of Berber tribes, the Almoravids and the Almohads, into Muslim Spain (Al-Andalus) in the 

eleventh and twelfth centuries, respectively. This led to the collapse of a rather tolerant and intellectual 

milieu, forcing non-Muslim to either convert to Islam or to flee.17  

The encounter between Jewish scholars who had mastered the Arabic language and science and local 

Jewish communities thirsty for knowledge but possessing a relatively a low level of scientific 

knowledge and little or no knowledge of the Arabic language naturally raised the question: in which 

language should the newcomers write for the local community? De facto, only Hebrew was a common 

language to all, and thus the natural candidate to become a lingua franca within the scientific and 

philosophical context. But one should be aware of the fact that the existing Hebrew scientific vocabulary 

was meagre, in particular in mathematics.  

Until the twelfth century, Jews in Muslim lands usually composed scientific treatises in their cultural 

language, Arabic. Hebrew served mainly as a religious and poetic language. Pre-medieval sources such 

as the Bible and the Rabbinic literature possessed a limited amount of mathematical terminology. Thus 

much linguistic ingenuity was called for. The evolution of the medieval Hebrew scientific language, in 

particular the mathematical one, was a lengthy and intricate process, resulting in hundreds of novel 

lexemes. Various techniques were implemented to coin new mathematical words. The two main 

methods, in a nutshell, were: (1) the extension of the semantic field of an existing word in Jewish 

sources, such as the Bible or Rabbinic literature, endowing it with a mathematical meaning and (2) 

creating calques from Arabic.18  

                                                           
14 See Burnett (2001). 
15 See Gomez-Aranda (2008). 
16 See Goldstein (2009). 
17 Maimonides's family is a well-known example of a Jewish family who chose to convert, or rather, pretend to 

have done so. A few years later they decided to leave the Iberian Peninsula altogether and finally settled in Fustat 

(Old Cairo). 
18 A thorough discussion of this theme is well-beyond the scope of this article. For more insight into the medieval 

Hebrew mathematical language and texts See Lévy (1996a, 1996b), Sarfatti (1968) and Wartenberg (2014). 



It is important to note that Yesod ‘Olam was not a mere coincidental fruit of intellectual endeavour by 

Isaac Israeli. A critical contextual element motivated its composition: the presence and influence of 

Rabbi Asher ben Yeḥiel (known as the Rosh, the Hebrew acronym for Rabbi Asher) in Toledo, to whom 

Yesod ʿOlam was officially dedicated. The Rosh had escaped persecutions in Ashkenaz, and was 

appointed the chief Rabbi of Toledo. Yesod ‘Olam seems to present Israeli's endeavour to consolidate 

the Greco-Arabic intellectual Weltanschauung under the growing threat of the contrasting Talmud-

centric world view of the influential Rosh.19 Israeli, being highly diplomatic, first praises the Rosh's 

Halakhic scholarship, but then gently insinuates the latter's lack of scientific knowledge. Furthermore, 

Israeli tells us that he has heard of the Rosh's will to learn astronomy. Whether this is true or not is 

unclear, but in any case, it served as an excellent excuse for Israeli to compose Yesod ʿOlam. Although 

Israeli refers to the Rosh in reverence as 'my teacher', this matter needs to be taken with a pinch of salt. 

A careful analysis of the introduction of Yesod ʿOlam indicates that the two had probably never met.20 

We only know that Isaac Israeli's brother, Israel, was in fact a student of the Rosh. By connecting 

himself to the revered Rosh, Israeli was probably hoping to entice more potential readers to read his 

treatise. This move was bound to create excellent public relations not only for Israeli, but also for the 

creators of both printed editions, helping to enhance their sales. They did not shy to state under Israeli's 

name the fact that he was a student of the Rosh, and this was printed in bold letters on the front page of 

the book, creating a myth that is still found in today's scholarship.  

Except for Yesod ‘Olam, Isaac Israeli wrote two other works on astronomy, Shaʿar ha-Shamayim (The 

Gate of the Heavens) and Shaʿar ha-Milu'im (The Supplementary Gate) ten and twenty years later, 

respectively.21 One learns about Israeli's retrospective perception of Yesod ʿOlam from the introduction 

to Shaʿar ha-Shamayim:22  

...ועל שלא פירשתי בו תחלה ולא הודעתי כמה שמות זרות ומילות נכריות שאני עתיד להשתמש בהם 

]...[ וקשת ואלכסון ויתר וזוית וקוטב גלגל ואופן  בספר הזה כגון מלת נקודה וקו ושטח ועגולה וארכו

מפני שהספר הזה לא יסדתי אלא לבני ושאר התלמידים שכבר למדו את כל זה והשכילו בו מחבורי הגדול 

שקראו יסוד עולם שבו נתבאר כל זה והדומה לו וכן לא נזקקתי בו ללמד בכאן ולברר שום דבר מאותם 

וכמה עניינים אחרים ]...[ תבארו בספר ההוא מתכונת העולם וצורתו העיניינים הנפלאים והעצומים שנ

]...[ וכמה עיקרים ויסודות מטעמי חכמות העיבור והלכותיו ]...[ שנתבארו לשם מאותות שני המאורות 

ובאמת החבור הזה אינו אלא כמו החלוק האחרון מספר יסוד עולם וכאילו הוא מחזיק בשוליו ונלוה אליו 

                                                           
19 See Galinsky (2006). 

20 Israel Sandman has carefully analyzed the introduction and has succeeded to break the myth regarding the 

nature of the relationship, or rather, the lack thereof, between Israel and the Rosh. The details are due to appear in 

a planned volume to be edited by him on the context and transmission of Yesod ‘Olam, mentioned above.   
21 See Goldstein and Chabás (2017). 
22 My partial edition of the introduction here is based on Parma, Biblioteca Palatina MS 3167 and Paris, BnF MS 

héb. 1070. 



צא הספר ההוא לידי כמה בני אדם הייתי מצרף ענייני הספר הזה אליו והייתי עושה הכל ולולא שכבר י

י שלפעמים ובמקומות רבים יכרחני סדר החבור לסדר בכאן ולהביא הרבה עניינים וכמה "ספר אחד אעפ

 יסודות ועיקרים שכבר ביארתים בספר יסוד עולם...

…and that I have not first explained and made known several foreign names and 

foreign words in it [i.e. in Shaʿar ha-Shamayim], which I am due to use in this book, 

such as the word 'point', 'line', 'area', 'circle', its 'circumference', 'arc', 'diameter', 

'hypotenuse', 'angle', 'pole', 'sphere', 'orb' […] because I did not create this book 

but for my son and the rest of the students, who had already studied and intelligized 

all this from my great composition they(!) named Yesod ʿ Olam, in which all this and 

similar matters had been explained. Furthermore, I have not needed to teach here 

and clarify any of those wondrous and great matters which had been explained in 

that book concerning the astronomy of the universe, its shape […] and several other 

matters explained there regarding the two luminaries […] and several principles 

and foundations regarding the reasons in the sciences of the calendar and its rules 

[…] In truth, this composition is just like a latter part of Yesod ʿOlam, and as if it 

were holding its margins, accompanying it. Had that book [i.e. Yesod ʿOlam] not 

reached the hands of several people, I would have attached to it the matters of this 

one and made it all into one book - even though at times and in many places, the 

structure of the composition does force me to arrange and adduce many matters 

here, foundations and principles which I had already explained in the book Yesod 

ʿOlam...23       

 

MATHEMATICS IN SERVICE OF ASTRONOMY AND THE JEWISH CALENDAR 

In Book 1, Israeli emphasizes that knowledge of mathematics is a pre-requisite for the study of 

astronomy; astronomy, or more specifically, the lunar and solar components thereof, in turn, are 

necessary for a proper understanding of the luni-solar Jewish calendar. Interestingly, Israeli further 

claims that the study of the Jewish calendar is an integral part of astronomy.  

ידוע הוא וברור לכל משכיל ומבין שעיקרי יסוד חכמת התכונה ואותותיה שחכמת העיבור היא גזע מגזעיה 

 לא הכירו בהם החכמים וידעו משפטיהם אלא על ידי העיון...

…regarding the laws of the fundamentals and foundations of the science of 

astronomy, the science of calculating the Jewish calendar being one of its trunks, it 

                                                           
23 This is my own translation. 



is known and clear to every intellectual and understanding person that the scientists 

discerned and knew these laws by means of observation… 

Through the following excerpt from the Introduction to Book 1, one gains a good understanding of 

Israeli’s scientific Weltanschauung. He describes the status of Ptolemy’s Almagest, underlining how 

vital it is to master arithmetic and geometry in order to understand its contents. Yet, says Israeli, the 

scientific teachings in Yesod ‘Olam will suffice for the one who is too lazy to study the Almagest but 

who does wish to learn enough astronomy to understand the Jewish calendar. However, as Israeli 

describes in the following beautiful parable, this type of student will be like someone who has tasted 

the delicious fruit of a garden without ever having entered it: 

ובזמן מועט היה לפני רבנו הקדוש  שנה עמד באומות בטלמיוס החכם שבעיםואחרי חורבן בית שני בכמו 

בר בה ספרו הגדול הנקרא מג'סטי קלע יוהוא השכיל מאד בחכמת התכונה. והוציא לאור תעלומה. וח ז"ל

למד מספרו  החכמה ולא החטיא ומאז ועד עתה כל שבא אחריו אחד אחד מעניני זאת לאבו באבן שכלו 

כל אדם חזו בו. אבל לא יוכל להבין את דבריו. ולבא לחדרי מצפוניו. אלא מי שנשתדל ולמד תחלה 

החכמות  שתיאמנם מי שנתעצל ולא זכה ללמוד ולהשכיל ב .והשכיל בחכמת התשבורת ובחכמת החשבון

בור וסודותיו ידי העהאלו ונשאו לבו לידע מחכמת התכונה כדי מה שיספיק לו להבין ולהשכיל בטעמי יסו

ובו ימצא כל צרכו ויצליח  ימלא כיום את ידו ויכין את לבבו ללמוד ולהשכיל במה שאציע ואסדר בספר הזה

ויהי  וכה וכה מתהלך עד שהגיע לגן המלךועה בשדה רעב וצמא אכן יהיה כמו האיש ההוא שהיה ט דרכו

ו השומרים והשוערים אליו ויסגרו שערי הוא נבהל לבא לאכול ולמלא את בטנו מפירות הגן ומעדניו קמ

לראות לא הניחוהו.  'הגן לפניו ויבהילוהו. ובאף ובחמה משם הדפוהו כי לא הכירם ולא הכירוהו. ואפי

מאנשי הגן מהרה ויאמר שלום לך אל תירא. עמד על עמדך  חדוירץ אליו א .ויסב משם עצב וזעף ויגע ויעף

א את חצנו מכל פרי מגדים חדשים גם ישנים ויתן לו ויאכל ויבא אני אתן מעדנים לנפשך. וישב לגן וימל

לו יין וישת ולא סר מלקט מפירות הגן לו ומטעימו ומאכילו עד שהשביע נפשו השוקקה ותחשב לו לצדקה. 

ועתה ראה שהאיש ההוא אע"פ שסר רעבונו ומלא את בטנו איך תנוח דעתו עליו והוא לגן לא בא ולא 

ידיו באילניו. ולא ארה מראש בשמיו. ולא שתה מהיין המשומר בענביו. וכן המשל אכל בטובה ולא שלטו 

נפלאות סודו.  יביןישכיל בטעמי יסודי העבור ויעלו בידו וממנו  שממנוצוני לומ' מד מהספר הזה. רובל

 באו אליו. ולמי אלה לפניו. מאין ואיךאבל לא יכיר ולא ידע 

Now, approximately 70 years after the destruction of the Second Temple, the sage 

Ptolemy arose amongst the nations. For a short time, he was before our holy Rabbi 

[Judah the Prince], in blessed memory, and he intelligized much in the science of 

astronomy, bringing to light its hidden aspect. On it he composed his magnum opus, 

entitled al-Magesti, in which he slings, with the stone of his intellect, at each and 

every one of the topics of this discipline and does not miss. From then to now, all 

who came after him learned from his book. Each man beholds within it, but is not 

able to understand its words, to enter the chambers of its hidden matters – except 

for he who has endeavoured and first learned and intelligized the science of 



geometry and the science of arithmetic. However, he who was lazy, and did not 

merit to learn and intelligize these two sciences, yet his heart has moved him to 

know about the science of astronomy, enough to suffice him to understand and 

intelligize the reasons of the foundations of the calendar and its esoterica, let him 

first of all dedicate himself and focus his heart to learn and intelligize what I shall 

set forth and arrange in this book. In it he will find all his need and will prosper in 

his way. Surely, he will be as that man who was wandering in the field hungry and 

thirsty. Hither and thither he walks about, until he reached the king’s garden. Now, 

he is agitated to arrive to eat and fill his stomach with the fruit of the garden and 

its dainties. But the watchmen and gatekeepers rose up against him and closed the 

garden’s gates before him. They disquieted him; and in anger and wrath they drove 

him from there – for he was not acquainted with them, and they were not acquainted 

with him. They did not give him leave even to look. So, he turned from there sad and 

dejected, worn out and weary. When one of the men of the garden ran to him quickly, 

saying: Peace unto you; have no fear! Maintain your station and I shall provide 

dainties for your soul. So, he returned to the garden and filled his bosom with all 

excellent fruit, both new and old, which he gave to him, whereupon he ate. He 

brought to him wine, and he drank. He did not turn from gathering the fruit of the 

garden and taking them out to him, giving him to taste and giving him to eat, until 

he sated his longing soul, and that was counted to him an act of righteousness. Now, 

see regarding that wandering man – although his hunger did depart, and he did fill 

his stomach – how can his mind be at rest within him, since he did not enter the 

garden, did not eat any of its good, his hands did not touch its trees, he did not 

gather its chief spices, and neither did he drink of the wine preserved in its grapes. 

Thus, is the parable about the learner from this book. I mean to say that from it he 

will intelligize the reasons of the foundations of the calendar and he will attain 

them; and from it he will understand the wonders of its esoterica.  However, he will 

neither be acquainted with nor know how and whence they came to him, and unto 

whom are these which are before him. 24 

 

EUCLID’S ELEMENTS AND ITS RENDITION IN YESOD ‘OLAM 

Euclid’s Elements (Στοιχεῖα) is a pivotal Greek mathematical treatise composed around the year 300 

BCE and it has a long and complex history. The Elements became a mathematical ‘best-seller’ in the 

ancient world and in the Middle Ages as well as in the Early Modern and Modern periods. It was used 

                                                           
24 The English excerpts in this article from Yesod ʿOlam are based on Israel Sandman's translation, with my 

contribution, in particular, to the scientific vocabulary.  



in the study of geometry and arithmetic in medieval universities, two of the four study subjects among 

the seven liberal arts, which formed the upper division, the Quadrivium, together with music, and 

astronomy. The Elements was translated into Arabic, Latin, Hebrew, and numerous other languages. 

Interestingly, during the fourteenth and fifteenth centuries, the study of at least two of the books of the 

Elements was mandatory for all students at Cambridge and Oxford universities. Much of its contents 

are still being taught in schools today.  

One divides the thirteen books of the Elements into three categories: Books I-IV on planar geometry: 

points, lines, angles, triangles, quadrilaterals, parallelograms etc.; Books V-X on ratios and proportions 

between numbers and lines, and number theory; Books XI-XIII on spatial geometry and the analysis of 

three-dimensional figures such as the Platonic solids. What are the building blocks of the Elements? 

There are first principles, which constitute of definitions (e.g. a point is that which has no part),25 

postulates (e.g. to draw a straight line from any point to any point), common notions (e.g. things which 

are equal to the same thing are also equal to each other).  The deductions from the first principles are 

divided into problems (e.g. on a given finite straight line to construct an equilateral triangle)26 and 

theorems (e.g. If a straight line touch a circle, and a straight line be joined from the centre to the point 

of contact, the straight line so joined will be perpendicular to the tangent).27   

Before presenting the detailed mapping of Euclid’s Elements in Yesod ‘Olam in Tables 1 and 2, I will 

first present the kernel: in Yesod ‘Olam we find preliminaries, which include some of Euclid’s 

definitions, postulates, and common notions. There are lessons, which contain one or more problems or 

theorems, or part thereof, and sometimes even a definition or a numerical example. Out of the thirteen 

books of the Elements, it is mainly Book I on planar geometry that was used by Israeli as a mathematical 

source in the composition of Book 1 of Yesod ‘Olam, but also a fraction of Books III, IV, VI, VII, XI 

and XII. Israeli’s focus is on triangles and circles, the basis for spherical trigonometry, which is at the 

foundation of mathematical astronomy. In fact, Israeli lists geometrical objects relevant for his treatise, 

such as the straight line, the circle, the sphere, the triangle, and the square. He also explicitly mentions 

those geometrical objects he has no business with, for example, the curved line, and others he has only 

little business with, such as the parallelogram. Tables 1 and 2 present the mapping of Euclid’s Elements 

within Yesod ‘Olam, demonstrating well Israeli’s selectivity.   

 

  

                                                           
25 See Example 1. 
26 See Example 4. 
27 See Example 3. 



TABLE 1: Definitions, postulates, and common notions 

Euclid’s Elements Heath’s translation from the Greek28 

 

Book I Definition 1 A point is that which has no part. 

 

Book I Definition 2 A line is breadthless length. 

 

Book I Definition 3 The extremities of a line are points. 

 

Book I Definition 4 A straight line is a line which lies evenly with the points on itself. 

 

Book I Definition 5 A surface is that which has length and breadth only. 

Book I Definition 6 The extremities of a surface are lines. 

Book I Definition 7 A plane surface is a surface which lies evenly with the straight lines on 

itself. 

Book XI Definition 1 A solid is that which has length, breadth, and depth. 

Book I Postulate 1 To draw a straight line from any point to any point.  

Book I Definition 8 A plane angle is the inclination to one another of two lines in a plane 

which meet one another and do not lie in a straight line. 

Book I Definition 10 When a straight line set up on a straight line makes the adjacent angles 

equal to one another, each of the equal angles is right, and the straight 

line standing on the other is called a perpendicular to that on which it 

stands. 

Book I Definition 11 An obtuse angle is an angle greater than a right angle. 

Book I Definition 12 An acute angle is an angle less than a right angle. 

Book I Definition 23 Parallel straight lines are straight lines which, being in the same plane 

and being produced indefinitely in both directions, do not meet one 

another in either direction. 

Book I Definition 15 A circle is a plane figure contained by one line such that all the straight 

lines falling upon it from one point among those lying within the figure 

are equal to one another. 

Book I Definition 16 And the point is called the centre of the circle.  

                                                           
28 The entries in the table correspond to their order of appearance in Yesod ‘Olam. All English translations of 

Euclid’s Elements in this article derive from Heath (1956). The parts set in parentheses do not appear in Yesod 

'Olam. I bring Heath's translation as is, including the original emphasis. It contains several archaic forms that are 

no longer, or only rarely used in Modern English, such as the subjunctive forms (e.g. “If a parallelogram have…”). 



Book I Definition 17 A diameter of the circle is any straight line drawn through the centre 

and terminated in both directions by the circumference of the circle, 

and such a straight line also bisects the circle. 

Book I Definition 18 A semicircle is the figure contained by the diameter and the 

circumference cut off by it. (And the centre of the semicircle is the 

same as that of the circle.) 

Book I Definition 19 Rectilineal figures are those which are contained by straight lines,  

trilateral figures being those contained by three, quadrilateral those 

contained by four, and multi-lateral those contained by more than four 

straight lines 

Book I Definition 20 Of trilateral figures, an equilateral triangle is that which has its three 

sides equal, an isosceles triangle that which has two of its sides alone 

equal, and a scalene triangle that which has its three sides unequal. 

Book I Definition 21 Further, of trilateral figures, a right-angled triangle is that which has a 

right angle, an obtuse-angled triangle that which has an obtuse angle, 

and an acute-angled triangle that which has its three angles acute. 

Book I Definition 22 Of quadrilateral figures, a square is that which is both equilateral and 

right-angled; an oblong that which is right-angled but not equilateral; 

a rhombus that which is equilateral but not right-angled; and a 

rhomboid that which has its opposite sides and angles equal to one 

another but is neither equilateral not right-angled. (And let 

quadrilaterals other than these be called trapezia.) 

Book I Common Notion 

129 

 

 

Things which are equal to the same thing are also equal to one another. 

Book VII Definition 2 A number is a multitude composed of units. 

Book VII Definition 11 A prime number is that which is measured by an unit alone. 

Book VII Definition 16 And, when two numbers having multiplied one another make some 

number, the number so produced be called plane, and its sides are the 

numbers which have multiplied one another. 

Book VII Definition 18 A square number is equal multiplied by equal, or a number which is 

contained by two equal numbers. 

                                                           
29 This common notion is used in the proof of Proposition 1 in Lesson 1 without ever having been mentioned by 

Israeli, see Example 4. 



Book VII Definition 20 Numbers are proportional when the first is the same multiple, or the 

same part, or the same parts, of the second that the third is of the fourth. 

Book VI Definition 1 Similar rectilineal figures are such as have their angles severally equal 

and the sides about the equal angles proportional.  

 

TABLE 2: Theorems 

Lesson 

in Yesod 

‘Olam 

Proposition(s) 

in Euclid’s 

Elements 

Heath’s translation 

1 I.1 On a given finite straight line to construct an equilateral triangle. 

2 Not in the 

Elements30 

  

3 I.2 To place at a given point (as an extremity) a straight line equal to a given 

straight line. 

4 I.3 Given two unequal straight lines, to cut off from the greater a straight 

line equal to the less. 

5 I.4 & I.8 (I.4) If two triangles have the two sides equal to two sides, respectively, 

and have the angles contained by the equal straight lines equal, they will 

also have the base equal to the base, the triangle will be equal to the 

triangle, and the remaining angles will be equal to the remaining angles 

respectively, namely those which the equal sides subtend. 

 

(I.8) If two triangles have the two sides equal to two sides respectively, 

and also have the base equal to the base, they will also have the angles 

equal which are contained by the equal straight lines. 

 

6 I.5 In isosceles triangles the angles at the base are equal to one another, and, 

if the equal straight lines be produced further, the angles under the base 

will be equal to one another. 

7 I.6 If in a triangle two angles be equal to one another, the sides which 

subtend the equal angles will also be equal to one another. 

8 I.9 To bisect a given rectilineal angle.  

9 I.10 To bisect a given finite straight line. 

                                                           
30 The lesson concerns Proclus’ teaching of how to draw an isosceles triangle. For an interesting analysis of this 

teaching in the medieval Hebrew tradition see Elior (2018b). 



10 I.11 To draw a straight line at right angles to a given straight line from a 

given point on it. 

11 I.16 In any triangle, if one of the sides be produced, the exterior angle is 

greater than either of the interior and opposite angles. 

12 I.17 In any triangle two angles taken together in any manner are less than 

two right angles. 

13 I.18 In any triangle the greater side subtends the greater angle. 

14 I.19 In any triangle the greater angle is subtended by the greater side. 

15 I.20 In any triangle two sides taken together in any manner are greater than 

the remaining one. 

16 I.22 

 

Out of three straight lines, which are equal to three given straight lines, 

to construct a triangle: thus it is necessary that two of the straight lines 

taken together in any manner should be greater than the remaining one. 

17 I.23 On a given straight line and at a point on it to construct a rectilineal 

angle equal to a given rectilineal angle. 

18 I.27-I.30 

 

 

(I.27) If a straight line falling on two straight lines make the alternate 

angles equal to one another, the straight lines will be parallel to one 

another. 

(I.28) If a straight line falling on two straight lines makes the exterior 

angle equal to the interior and opposite angle on the same side, or the 

interior angles on the same side equal to two right angles, the straight 

lines will be parallel to one another. 

(I.29) A straight line falling on parallel straight lines makes the 

alternate angles equal to one another, the exterior angle equal to the 

interior and opposite angle, and the interior angles on the same side 

equal to two right angles. 

(I.30) Straight lines parallel to the same straight line are also parallel to 

one another. 

19 I.31 Through a given point to draw a straight line parallel to a given straight 

line. 

20 I.32 In any triangle, if one of the sides be produced, the exterior angle is 

equal to the two interior and opposite angles, and the three interior 

angles of the triangle are equal to two right angles. 

21 I.34 In parallelogrammic areas the opposite sides and angles are equal to one 

another, and the diameter bisects the areas. 



22 I.35 Parallelograms which are on the same base and in the same parallels are 

equal to one another. 

23 I.36 Parallelograms which are on equal bases and in the same parallels are 

equal to one another. 

24 I.37 Triangles which are on the same base and in the same parallels are equal 

to one another. 

25 I.38 Triangles which are on equal bases and in the same parallels are equal 

to one another. 

26 I.41 If a parallelogram have the same base with a triangle and be in the same 

parallels, the parallelogram is double of the triangle. 

27 I.46 On a given straight line to describe a square. 

2831   I.47  In right-angled triangles the square on the side subtending the right 

angle is equal to the squares on the sides containing the right angle.  

29 I.48 If in a triangle the square on one of the sides be equal to the squares on 

the remaining two sides of the triangle, the angle contained by the 

remaining two sides of the triangle is right. 

30 VI.1 Triangles and parallelograms which are under the same height are to one 

another as their bases. 

31 VI.2 

 

If a straight line be drawn parallel to one of the sides of a triangle, it will 

cut the sides of the triangle proportionally (and, if the sides of the 

triangle be cut proportionally, the line joining the points of section will 

be parallel to the remaining side of the triangle). 

32 VI.4 In equiangular triangles the sides about the equal angles are 

proportional, and those are corresponding sides which subtend the equal 

angles. 

33 VI.5 If two triangles have their sides proportional, the triangles will be 

equiangular and will have those angles equal which the corresponding 

sides subtend. 

34 III.1 To find the centre of a given circle. 

35 III.3 If in a circle a straight line through the centre bisect a straight line not 

through the centre, it also cuts it at right angles; and if it cut it at right 

angles, it also bisects it. 

                                                           
31 This is Pythagoras’ Theorem, which is useful in the solution of spherical triangles, the basis for astronomical 

models. Israeli emphasizes its importance: ‘Lesson 28. Know that every right-angled triangle, such as this triangle 

ABC, in which angle A is right, has a wondrous property. Pay attention to it, for you will need it much in the 

science of astronomy…’ 



3632 III.18, 19 (III.18) If a straight line touch a circle, and a straight line be joined from 

the centre to the point of contact, the straight line so joined will be 

perpendicular to the tangent.  

(III.19) If a straight line touch a circle, and from the point of contact a 

straight line be drawn at right angles to the tangent, the centre of the 

circle will be on the straight line so drawn. 

37 III.20 In a circle the angle at the centre is double of the angle at the 

circumference, when the angles have the same circumference as base. 

38 III.21 In a circle the angles in the same segment are equal to one another. 

39 III.26, 27 (III.26) In equal circles equal angles stand [i.e. lean] on equal 

circumferences, whether they stand at the centres or at the 

circumferences. 

(III.27) In equal circles angles standing on equal circumferences are 

equal to one another, whether they stand at the centres or at the 

circumferences. 

40 III.31 

 

In a circle the angle in the semicircle is right,33 that in a greater segment 

less than a right angle, and that in a less segment greater than a right 

angle; and further the angle of the greater segment is greater than a right 

angle, and the angle of the less segment less than a right angle. 

41 III.30 To bisect a given circumference. 

4234 

 

Related to 

IV.15 

In a given circle to inscribe an equilateral and equiangular hexagon. 

 

Section 

10 

(Post-

Lessons)  

XII.18 Spheres are to one another in triplicate ratio of their respective 

diameters.35 

 

  

                                                           
32 Lesson 36 is explicitly referred to in Book 3 on astronomy, in the discussion of the discrepancy between the 

true and mean location of the moon. 
33 This is Thales’s Theorem. 
34 In Yesod ‘Olam: Know that the chord of one-sixth of the circumference of a circle is equal to one-half of its 

diameter. 
35 This proposition is applied in Book 2 on astronomy, accompanied by numerical data, when discussing the 

Ptolemaic analysis of the ratios of the volumes of the sun, moon and earth.  



EXEMPLIFYING THE UNTRADITIONAL TRANSMISSION OF THE EUCLIDEAN ELEMENTS 

IN YESOD 'OLAM 

 

In this section I analyse four examples from Yesod 'Olam which demonstrate various aspects of Israeli's 

unusual transmission of Euclidean elements with some interesting linguistic additions to it. Example 1 

concerns the definition of a point (Definition 1 in Book I of the Elements), to which Israeli adduces 

parts of a later definition of a line. The rearrangement is intentional and is spiced up with some humour. 

Example 2 regards various types of triangles, and there we find a novel concept, pinnah (פנה), unknown 

in other Hebrew or non-Hebrew mathematical sources. This word exists in the Bible, where its meaning 

'corner' but in Israeli's text it acquires a new, mathematical, meaning: one of the six components of 

every triangle, three sides and three angles. Example 3 manifests methodological laxity in the 

transmission of the theorem that the line from the centre of circle to the point of tangency is 

perpendicular to the tangent (III.18), and its converse (III.19). The proof of III.18 contains 'holes' and 

that of III.19 is almost non-existent. Israeli trusts the readers to be able to fill the gaps themselves by 

study. Example 4 concerns the construction of an equilateral triangle (I.1). Although it follows Euclid 

rather faithfully, there are several methodological gaps. Example 4 also serves to demonstrate lexical 

independence from earlier known Hebrew transmissions of the Elements. 

EXAMPLE 1: DEFINITION OF A POINT 

In this section I wish to show Israeli’s unique presentation of Euclid’s definition of a point..36  

דע  אתחיל מהנקודה מפני שהיא לזה הענין כמו היסוד לבנין וכמו שהוא האחד שרש ועקר המנין. שערו

כי הנקודה היא דבר שאינו מתחלק כלל. ואפי' במחשבה. לא מפני דקותה בלבד אלא מפני שאינה ראויה 

אמנם היא תכלית הקו וקצהו.  ולא ממשות.לכך הואיל ואין לה שום מדה ולא שיעור ולא שום התפשטות 

ואינה חלק ממנו כמו שחשבו הטפשים באמרם כי הקו הוא מחובר מנקודות רצופות דבוקות זו לזו. וזה 

אינן אלא נקודה  אינו אמת אלא הוי יודע כי אלף אלפי אלפים נקודות אם תחשוב אותן מחוברות כאחת

ה ולא שיעור דבר כמו הקו שהוא בעל מדה ושיעור אחת בלבד. כי איך יתחבר ממה שאין לו שום מד

 והתפשטות.

I shall begin from the point because, for this matter, it is as the foundation of the 

edifice, as ‘one’ is the root and fundament of counting. A Section: Know that the 

point is a thing that is not divisible at all, even in thought – not merely on account 

of its rarefaction, but because it is not fit for this [i.e. divisibility], since it does not 

have any measure, neither amount, nor any extension, nor substance. Indeed, it is 

the terminus and extremity of the line and it is not a part of it – as the fools thought, 

in their saying that the line is composed of points that are contiguous, conjoined to 

                                                           
36 Book 1, Chapter 2, Section 1. Following Euclid, Israeli provides the definition of a point first.   



one another. This is not true. Rather, you should know that thousands upon 

thousands upon thousands of points, if you reckon them attached as one, are nothing 

other than a single point only. Indeed, how could something such as a line, which 

possesses measure, amount, and extension, be composed of that which has neither 

any measure nor amount?!  

 

 

FIGURE 1  

Definition of a point in Yesod ‘Olam  

© The British Library Board Add. 15977 f.8v  

The point is the first geometrical entity defined by Euclid. Israeli includes Euclid’s Definitions 1 and 3 

from Book I in the Elements: 

Definition 1: The point is that which has no part. 

Definition 3: The extremities of a line are points. 

In Euclid’s Elements, Book I Definition 3 forms part of a definition of a line, the extremities of which 

are points, whereas in Yesod ‘Olam the definition are part of the description of a point and the emphasis 

is on the point forming the extremities of a line. When Israeli teaches the definition of a line he does 

not refer to its extremities again. This seemingly intentional rearrangement of the Euclidean definitions 

seems to have served his aim of proving the absurdity of the claim that the line is composed of points 

contiguous to one another. The use of the derogatory term ‘fools’ to depict the claimants was perhaps 

an expression of Israeli’s sense of humour, his way to criticize ignorant people in general, or specific 

figures in his intellectual milieu. Perhaps he was referring to the contemporary debate on the 

Aristotelian concept of the continuous. Alternatively, this may have been a provocative writing style to 

entice readers to continue reading and get to the later, more complex, parts of the text on trigonometry. 

 

Finally, one notes that before introducing his definition of the point, Israeli compares the point, 

depicted as ‘the foundation of an edifice’, and 1, the root of counting, or the building block of all 



numbers (i.e. ‘A number is a multitude composed of units’, the Elements, Book VII Definition 2). It is 

important not to understand the analogy as identity: unlike 1, the atom which creates every number, the 

grouping of points does not create new and greater geometrical entities of higher dimension, such as a 

line. What Israeli seems to have had in mind is that both 1 and the point are not defined by other 

arithmetical or geometrical objects. In any case, it is clear, that throughout the text Israeli sometimes 

goes beyond merely stating Euclidean enunciations. However, alongside his occasional verbosity on 

some geometrical issues, in most cases he uses Euclidean materials rather selectively.  

 

EXAMPLE 2: THE TYPES OF TRIANGLES 

In the Elements, Book I, Definitions 20 and 21, we find Euclid’s categorization of triangles, first, 

according to their sides, and then according to their angles: 

[20] Of trilateral figures, an equilateral triangle is that which has its three sides 

equal, an isosceles triangle that which has two of its sides alone equal, and a 

scalene triangle that which has its three sides unequal.  

[21] Further, of trilateral figures, a right-angled triangle is that which has a right 

angle, and obtuse-angled triangle that which has an obtuse angle, and an acute-

angled triangle that which has its three angles acute. 

In Yesod ‘Olam, Chapter 1, Section 3, Israeli elaborates on the types of triangles, in a similar way found 

in the Elements. However, in his definitions, we find an interesting linguistic addition, the Hebrew term 

pinnah (פנה), meaning ‘element’ or ‘component’, six of which every triangle possesses, (three sides and 

three angles). It is also a novel mathematical concept in the medieval Hebrew mathematical language:37 

פנות והם שלשת צלעיו  ]שש[כל משולש שבעולם ידוע הוא וברור שהוא בעל ואשוב למשולש ואומר כי 

. והמשולש מצד צלעותיו הוא על שלש מדות על דרך כלל. יש משולש ששלשת צלעיו הם ושלש זויותיו

שוים זה לזה. ויש שהשנים מהם בלבד הם שוים זה לזה. ויש ששלשת צלעיו הם מתחלפים זה מזה במדתם. 

א'ב'ג' שזוית ב'  כמווכן הוא עוד מצד זויותיו על שלש מדות כמו כן: יש משולש שהוא בעל זוית נצבת 

ויש שכל אחד  38ממנו היא נצבת. ויש שהוא בעל זוית מרווחת כגון משולש ד'ה'ז' שזוית ה' היא מרווח.

 מזויותיו היא צרה כגון משולש כ'ל'מ'.

                                                           
37 The word pinnah per se is not new but was devoid of mathematical meaning until Israeli endowed it with one. 

In the Bible, it means ‘corner’ (e.g. 2Chronicles 28:24). Israeli, however, extended the semantic field of the 

Biblical word pinnah to include a new, geometric, meaning: ‘element’ or ‘component’, being a side or an angle 

of a triangle, altogether six for each triangle. As far as I have been able to verify, there is no term in Arabic or 

Greek which refers to either a side or an angle of a triangle. Israeli seems to have been inspired by the Arabic term 

rukn ركن (corner), and in its abstract sense of 'element' or 'foundation' in expressions such as arkān al-islam ( أركان

 i.e. the important people, pillars, of the (أركان الدولة) i.e. the pillars/foundations of Islam, or arkān al-dawla ,(الإسلام

empire. For a thorough discussion of this term and its evolution see Sarfatti (1968), pp. 18-19 & 215-220 and 

Wartenberg (forthcomingA). 
38 Adherence to the correct gender in Hebrew was rather lax in the Middle Ages.  



I shall revert to the triangle and say that it is known and clear that every triangle in 

the world possesses six39 components/elements, namely, its three sides and its three 

angles. In general, from the perspective of its sides, the triangle usually exists in 

three measures. It can be that the three sides are equal to one another [i.e. an 

equilateral triangle]; it can be that only the two of them are equal to one another 

[i.e. an isosceles triangle]; and it can be that all three of them differ from one 

another in their measurement [i.e. a scalene triangle]. Furthermore, also from the 

perspective of its angles, the triangle usually exists in three measures. It can possess 

a right angle, as in the case of triangle ABC, the angle B of which is right; it can 

possess an obtuse angle, as in the case of triangle DEF, the angle E of which is 

obtuse;40 and it can be that each of its angles is acute, as in the case of triangle 

KLM.  

 

 

 

 

FIGURE 2 

Types of triangles according to angles in the Preliminaries of Yesod ‘Olam 

                                                           
39 We find 'two' in the manuscript, but with a sign for deletion, but the correct 'six' cannot be discerned.  
40 This is one of the rare diagrammatical errors in the otherwise excellent manuscript Add. 15977 from the British 

Library, as mentioned earlier. The vast majority of the manuscripts present erroneous diagrams when it comes to 

the obtuse triangle and it is often depicted as a right triangle. The few 'righteous' mss. include (i) Vatican, 

Biblioteca Apostolica, ebr. 380 (Sephardic hand, 15c.) (ii) Florence, Biblioteca Nazionale Centrale Magl. II. VI. 

26 (Italian hand, 1421) (iii) New York, Jewish Theological Seminary Ms. 9830 (Ashkenazic hand, 16-17c.) (iv) 

Munich, Bayerische Staatsbibliothek, Cod. hebr. 35 (Italian hand, Venice 1551), and (v) Prague, Jewish Museum 

33 (Ashkenazic hand, 17c.), in which the incorrect diagram was erased from the body of the text and the correct 

diagram was inserted in the margins. The second printed edition includes the correct diagram. 



FIGURE 3 

Types of triangles in Yesod ‘Olam 

© The British Library Board Add. 15977 f.11r 

 

EXAMPLE 3: THEOREMS REGARDING THE TANGENT TO A CIRCLE 

Lesson 36 contains two Euclidean theorems:  

(III.18) If a straight line touch a circle, and a straight line be joined from the centre to the point of 

contact, the straight line so joined will be perpendicular to the tangent. 

(III.19, the converse theorem to III.18) If a straight line touch a circle, and from the point of contact a 

straight line be drawn at right angles to the tangent, the centre of the circle will be on the straight line 

so drawn. 

Lesson 36 is a salient example of Israeli’s general tendency to simplify and informalize Euclidean 

enunciations, in particular in its second part. In the first part of the lesson, he states and proves III.18, 

being overall loyal to the Euclidean text, with some short-cuts. 41  However, when it comes to 

demonstrating Proposition 19, he does not even bother to prove it,42 only formulate it. Israeli says that 

the reader can easily do it himself!   

 נחוג העגולה הזאת סביב מרכז ה' ונציע שקו א"ב הוא פוגש אותה ונוגע בה על נקודת ג' ממנה למוד ל"ו

כי  זולתי קו ה"ג זה. ואם תאמרקו שיהיה עמוד עליו פשר שיפול מנקודת ה' על קו א"ב שום יוזה כי אי א

לש ולפי זה צלע ה"ג ממש ויהיה אזממנה פשר נציע שיהיה קו ה"ד החותך את העגולה על נקודת ז' יאהוא 

מפני שקו ה"ז ממנו הוא שוה לקו  גדול וזה שקר .ה'ג'ד' גדול מצלע ה'ד' הואיל וזוית ד' ממנו היא הגדולה

הפך  ותדע לכך קו ה"ג הוא בהכרח עמוד על קו א'ג'ב' ואין אחר עמוד עליו. ובמעט עיון יתבאר לךיה"ג ה

                                                           
41 See my annotations to the English translation of Lesson 36 below. 
42 Unlike the diagram he provides for the first part (III.18), which is the same as Euclid’s, one can find no diagram 

to prove the reverse theorem (III.19) in any of the surviving manuscripts.  



קו א"ב הנוגע בעגולה ופוגש אותה על נקודת ג' יגרום  כי היות קו ה"ג עמוד על רצו' לומ'זה המשפט ה

 העמוד הזה הנופל על קו א'ג'ב' עובר בהכרח על מרכז העגולה. שיהיה

Lesson 36: We draw this circle around centre E. We posit that line AB meets the 

circle and touches it at its point C [i.e. it is tangent to it]. It is impossible for any 

line to reach line AB from point E and be perpendicular to it, except for this line 

EC. If you say that it is possible, then we posit that it be line ED, which intersects 

the circle at point F, which reaches perpendicularly from point E to line AB. Then, 

accordingly, side EC of triangle ECD will be greater than side ED, since its angle 

D is the greater one43 but this is big lie, for its line EF [which is a mere segment of 

line ED] is equal to line EC. Therefore, line EC is necessarily perpendicular to line 

ACB, and no other is perpendicular to it. With a little scrutiny, the converse of this 

proposition will become clear to you and you will know it. I mean to say that since 

line EC is perpendicular to line AB, which touches the circle and meets it at point 

C, causes that this perpendicular, which reaches line ACB, to necessarily pass 

through the centre of the circle. 

 

        

FIGURE 4: Lesson 36 in Yesod ‘Olam 

 

EXAMPLE 4: THE CONSTRUCTION OF AN EQUILATERAL TRIANGLE AND ISRAELI’S 

LEXICAL INDEPENDENCE FROM EARLIER HEBREW SOURCES 

Lesson 1 is an example of a proposition which teaches how to construct an equilateral triangle, and it 

corresponds to Theorem 1 in Book I of the Elements: 

מוד א' נרצה להקים על קו א'ב' זה הישר ]המוצע[ ולעשות משולש שיהיו שלשת צלעיו שוים זה לזה ל

ונשים נקודת א' ממנו מרכז. ונרחיק  .במדתם וזה יאות להיותו על הדרך הזאת. נתכוון לקו א'ב' זה המוצע

חיק עד נקודת א'. ונחוג עד נקודת ב' ממנו ונחוג עגולת ד' הימנית. ונשים עוד נקודת ב' ממנו מרכז. ונר

כמו ג'ב' עגולת ה' השמאלית. והנה שתי העגולות האלה נפגשות על נקודת ג' מהן. ונמשיך עתה קוי א'ג' 

                                                           
43 This is due to I.19, taught in Lesson 14: In any triangle the greater angle is subtended by the greater side. Israeli, 

like in many other cases, does not follow Euclid entirely by providing the previous, necessary, statement, that 

since angle EDC is right, angle ECD is acute, based on I.17 and taught in Lesson 12: In any triangle two angles 

taken together in any manner are less than two right angles. 



שהם בצורה. ונאמר כי הנה נעשה משולש א'ב'ג' זה מהצורה שוה הצלעים כמו שרצינו לעשותו. והמופת 

ם יצאו ממרכז עגולת ד' ועד ההקף שלה. וכן הם על זה הוא שקוי א'ג' א'ב' הם שוים זה לזה הואיל ושניה

קוי ב'ג' ב'א' שוים כמו כן זה לזה הואיל ושניהם יצאו ממרכז עגולת ה' ועד ההקף שלה. הרי שקו א'ב' 

המוצע הוא שוה לכל אחד מקוי א'ג' ג'ב'. הילכך צלעי משולש א'ב'ג' השלשה הם שוים זה לזה כמו 

  שאמרנו.

Lesson 1: Upon this given straight line AB we wish to erect and make a triangle 

whose three sides will be equal to one another in their measurement. It is 

appropriate that it be according to this method: focusing on this given line AB, we 

set point A on it as the centre, moving as far its point B, and we draw the right circle 

D. Likewise, we further set point B of it as the centre, moving as far as point A, and 

we draw the left circle E. Behold, these two circles intersect at point C on them. 

Now we draw line AC and line CB, as they are in the image. And we say that – 

Behold! – from the image, this triangle ABC has been made equilateral, as we 

wanted to make it. The demonstration of this is that lines AC AB are equal to one 

another, since both of them emerged from the centre of circle D up to its 

circumference; and so are lines BC and BA likewise equal to one another, since 

both of them likewise emerged from the centre of circle H up to its circumference. 

Behold, the given line AB is equal to each one of the lines AC AB. Therefore, the 

three sides of triangle ABC are equal to one another, as we stated.44 

 

FIGURE 5 

The construction of an equilateral triangle in Yesod ‘Olam 

© The British Library Board Add. 15977 f.11r 

                                                           
44 Note that the orientation is a mirror image of what is found in Greek and Latin diagrams, this is the orientation 

common in Hebrew and Arabic sources.  



 

 

FIGURE 6 

Lesson 1 in Yesod ‘Olam 

I wish to raise awareness to the following point: Israeli’s rendition of I.1 in the Elements is in itself 

faithful content-wise. However, within the proof, Israeli implicitly uses preliminaries without having 

made them explicit in Yesod ‘Olam in the way Euclid had done. For example, towards the end of the 

proof of Lesson 1, Israeli uses Euclid’s Common Notion I: ‘Things which are equal to the same thing 

are also equal to one another’, but this had never been mentioned in Yesod ‘Olam! In this context, it is 

important to remember that Euclid’s text is not perfect, either. The British logician Bertrand Russell 

(1872-1970) criticized the Elements and pointed to some of the methodological as well as logical flaws 

in Book I, showing the exaggeration in the perception of the Elements as a masterpiece of logic. In 

particular, says Russell, in the proof of I.1, Euclid assumes, due to his reliance on the diagram, that the 

two circles constructed in the proof actually intersect, but the latter should have been stated as a 

Postulate, but had never been.45   

ISRAELI’S LEXICAL INDEPENDENCE FROM EARLIER HEBREW SOURCES 

I shall now illustrate the lexical independence of Israeli’s rendition of the Elements in Yesod ‘Olam of 

other earlier known medieval Hebrew treatises, which transmit the Elements in its entirety or in part. 

For the comparison, I have chosen Lesson 1 in Example 4 above.  

Judging from the number of surviving Hebrew manuscripts, Euclid’s Elements was probably 

one of, if not the most, popular mathematical works on the medieval Hebrew mathematical 

bookshelf. During the thirteenth century, it was translated in Provence from Arabic into 

Hebrew by Moses ibn Tibbon, Jacob ben Makhir ibn Tibbon, and a certain Rabbi Jacob, 

possibly Jacob Anatoli. Pedagogically similar to Israeli, but in a much more rigorous, broad, 

orderly and thorough manner, Judah ben Solomon ha-Cohen, also from Toledo, incorporated 

some of the Euclidean books (I-VI and IX-XIII) in the introduction to astronomy in his 

scientific encyclopaedia Midrash ha-Ḥokhma, originally composed in Arabic and then 

                                                           

45 Russell (1902). 



translated into Hebrew by the author himself.46 Table 3 includes a sample of the comparison 

between the lexemes used by Israeli and those by Moses ibn Tibbon, Jacob ben Machir ibn 

Tibbon and Judah ben Solomon ha-Cohen in the transmission of I.1: 

TABLE 3: Lexical comparison between Yesod ‘Olam and earlier Hebrew translations of Euclid’s 

Elements 

The 

mathematical 

idea 

Isaac Israeli’s 

Yesod ‘Olam 

[British Library, 

MS Add. 15977, 

Sephardic hand, 

15c.] 

Moses ibn 

Tibbon's 

translation of the 

Elements 47 

[Mantua, 

Comunità 

Israelitica, MS 

ebr. 1, Italian 

hand 15c.] 

Jacob ben 

Machir ibn 

Tibbon’s 

translation of the 

Elements 

[Bodleian 

Library, MS 

Hunt. 16, 

Sephardic hand, 

15c.] 

Judah ben 

Solomon ha-

Cohen’s Midrash 

ha-Ḥokhma 

[Bodleian 

Library, MS 

Mich. 400, 

Byzantine hand, 

15c.] 

To construct a 

triangle 

להקים ולעשות 

 משולש

Lit. to establish 

and make a 

triangle 

 להעמיד משולש

Lit. to erect a 

triangle 

 נעמיד משולש

Lit. we will erect 

a triangle 

 נעשה משולש

Lit. we will make 

a triangle 

An equilateral 

triangle 

משולש שיהיו שלשת 

צלעיו שוים זה לזה 

 במדתם

Lit. a triangle 

whose three sides 

are equal to each 

 משלש שוה הצלעות

 

Lit. triangle of 

equal sides 

 משלש שוה הצלעות

 

Lit. triangle of 

equal sides  

 לש שוה הצלעותומש

 

Lit. triangle of 

equal sides 

                                                           
46 For the complicated and not yet fully understood history of the Hebrew translations of the Elements, see Elior 

(2018a, 2018b, 2019) and Lévy (1996a, 1996b, 1997a, 1997b, 2000, 2005).  

47 Rabbi Jacob (Anatoli?) only lists the theorems, using identical terms to Jacob ben Makhir sans plus. Ofer Elior 

kindly informed me that creating lists of Euclidean Theorems was considered a memory exercise. 



other in measure 

48 

The given 

segment 

 הישר המוצע

Lit. the given line 

קו ישר בעל תכלית 

 מונח

Lit. a straight line 

with a laid end 

ישר בעל תכלית קו 

 מונח

Lit. a straight line 

with a laid end 

 קו ישר שיעורו ידוע

Lit. a straight line 

whose rate is 

known  

We will draw 

circle D 

 נחוג עגולת ד'

 

Lit. we will create 

circle D49 

 

 

נקיף על נקודת ג' 

וברוחק א'ב' עגולה 

 יהיה עגולת ג'ד'ב'

Lit. we will set 

around point C at 

distance [radius] 

AB circle CDB  

 נקיף עגלת ג'ד'ב'

 

Lit. we will set 

around [the centre 

of] circle CDB  

 

 נחוק עגולת ג'ד'ב'

 

Lit. we will 

engrave/create 

the shape of circle 

CDB 

Point C upon 

which the two 

circles intersect 

 והנה שתי העגולות

האלה נפגשות על 

 נקודת ג' מהן.

Lit. then these two 

circles meet at 

point C [which is] 

on [both of] them 

נקודת ג' אשר עליה 

 נתחתכו העגולים

Lit. point C upon 

which the two 

circles cut [past 

tense] each other 

נקודת ג' אשר יתחתכו 

 עליה שתי העגלות

Lit. point C upon 

which the two 

circles cut 

[present tense] 

each other 

א יוה נקודת החציבות

 ג'

Lit. the point of 

quarry/ 

intersection 

which is C 

 

Comparison of Israeli’s terminology with those of earlier Hebrew transmitters of the Elements 

Table 3 shows great lexical differences between Israeli and the other authors in the case of more 

complex mathematical ideas. The few terms which are identical for all authors (משלש or משולש = 

triangle, עגלה or עגולה = circle, קו ישר = a [straight] line, מרכז = centre, מופת = demonstration) are rather 

basic and well-established scientific terms in the medieval Hebrew mathematical literature right across 

the board50 so they cannot point to any textual dependence, only the more advanced notions can. This 

sample of comparative study shows beyond doubt that Israeli’s rendition of Euclid’s Elements is 

                                                           

48 Later in the excerpt we find משולש שוה הצלעים lit. a triangle of equal sides. 

49 The verb לחוג already encompasses the meaning ‘to create a circle’ but requires a noun in the accusative. 
50 The exception being Abraham ibn Ezra from the twelfth century, who insisted upon calling centre מוצק. 



lexically independent of the earlier Hebrew versions. Furthermore, Israeli’s style, syntax and word 

order, as well as the glaring lack of order and adherence to the Elements, in contrast to the other sources, 

makes it safe to conclude that Israeli was unfamiliar with earlier Hebrew transmissions of the Elements. 

Judging from Israeli’s language and structure of his sentences, Israeli’s source must have been an Arabic 

one, but we do not know at this point which one it is, or even whether his source was a full Arabic 

translation of the Elements or an abbreviation thereof. 51  Israeli occasionally refers to the Arabic 

language. For example, in his teaching of a definition of a circle,52 he says ‘…that point which we have 

discussed, directed in its middle [of the circle] will be called in the language of Hagar [Arabic] مركز 

[pronounced markaz, Hebrew מרכז pronounced merkaz] and it will be said about it that it is its centre 

 53.’[merkaza מרכזה]

Israeli's lexical independence from earlier Hebrew translations of Euclid from Provence 

corroborates Ruth Glasner's findings regarding the lack of familiarity of Sephardic authors with 

Provencal Hebrew translations of the thirteenth century at least until the middle of the 

fourteenth century. Glasner analysed a Hebrew translation of The Measurement of a Circle by 

Archimedes, probably by Abner of Burgos/Alfonso of Valladolid, a Jew who converted to 

Christianity.54 

 

EVALUATING ISRAELI’S PARTIAL RENDITION OF THE ELEMENTS AND ISRAELI’S 

MATHEMATICAL AGENDA 

As becomes evident throughout this article, Israeli does not transmit the Euclidean text in its entirety, 

or in a faithful manner. The order of appearance of Euclidean elements in Yesod ‘Olam is not always 

consistent with the order found in the Elements, as can be discerned in the Tables 1 and 2. Occasionally, 

                                                           
51 Ofer Elior has corroborated the results of my own research regarding Israeli’s lexical independence from earlier 

Hebrew sources. In his current study of the Hebrew and Arabic transmission of the Elements, he has recently 

started to examine possible connections between Israeli’s rendition of Book I of the Elements to the extremely 

intricate Arabic transmission thereof. 
52 As found in the Elements, Book 1, Definition 16. 
53 For more lexical examples of ‘Arabicized’ Hebrew mathematical terminology in Book 1 of Yesod ‘Olam see 

Gad ben Ami Sarfatti, Mathematical Terminology in Hebrew Scientific Literature of the Middle Ages (Jerusalem, 

1968), p. 216, as well as the lexicon in the book Israel Sandman and I are writing. It is important to note that 

Israeli did use Hebrew literary sources when he coined new mathematical terms, for example בקע (sine), see 

Sarfatti (1968), pp. 218–220 and Wartenberg (2012, ForthcomingA). 

54 See Glasner (2013). Further evidence for the lack of acquaintance with the Provencal Hebrew translations of 

the thirteenth century by a Sephardic author outside the Iberian Peninsula even as late as the end of the fourteenth 

century, can be found in the first known Hebrew treatise on algebra in Hebrew, The Epistle of the Number, written 

in Sicily at the end of the fourteenth century by the Castilian polymath Isaac ben Solomon ibn al-Aḥdab. He 

adduces two Euclidean common notions, and their formulation clearly manifests lexical independence from the 

Provencal Hebrew translations, see Wartenberg (2015), pp. 12, 218-219, 386-387.  



Israeli adds some information to Euclidean enunciations, as in Examples 1 and 2, but most of the time 

he tends to incorporate abridged, simplified and less rigorous forms thereof, as seen in Examples 3 and 

4. It is a priori easy to criticise Israeli’s transmission of the Elements, for its partiality and even more 

so, for its lack of rigour. However, one must know that unlike other medieval Jewish (and other) 

transmitters of the Elements, Israeli did not declare any intention of transmitting the Elements as a solid 

body of mathematical knowledge and in a rigorous manner at all.55 Furthermore, Israeli did not plan a 

meticulous and thorough mathematical teaching, as can be learned from the following excerpt from the 

introduction to Book 1. In it, he covers the two possible ways of learning mathematics, either by 

descriptive study or by explanatory study. Israeli clarifies that his teaching strategy is to deliver most 

of his mathematical teaching in a descriptive manner, which requires no proof. Only occasionally does 

he revert to explanatory study: 

מודים לימוד הראשון מהם הוא כגון שישאל התלמיד לרב לאמר יאמרו המשכילים כי לכל חכמה יש שני ל

א התמונה הגופנית שתבניתה כך וכך הילו כי  ללמדו ולומ'מה הדבר הזה הנקרא כדור. אז יאות לרב 

דע צורת הדבר יבין התלמיד וי ותשובתו זאת הוא הלמוד הראשון. ויקרא לימוד ציורי. וזה לפי שעל ידו

מוד יש על התלמיד לקבל מן הרב ואין לו רשות לטעון ולחלוק עליו ולא יההוא ששאל עליו. ובזה הל

זוק לדבריו. והלימוד השני הוא כגון שיאמר לו הרב אחרי כן דע כי לזה ילבקש ממנו שיביא לו ראיה וח

אין על השני מוד ית. ובזה הלהכדור ששאלת עליו ולעגולות החקוקות על גבו יש כך וכך משפטים ואותו

דור הסברות יהתלמיד לקבל מן הרב עד שיביא לו ראיות ברורות ויתן טעם לדבריו והבאת הראיות ההן וס

מוד ביאורי. וזה לפי שעל ידו תתבאר לתלמיד אותן האותות ותסור מלבו יהוא הלימוד השני הזה ויקרא ל

נך את התלמיד ולהרגילו ראיתי להביא רוב הלמוד נתי בכאן כמו שאמרתי היא לחוהספקות. עתה לפי שכו

מוד השני ואחרי ימקומות ממנו אביאנו גם לפי הל ובכמה מוד הראשוןיוהביאורים בספר הזה על דרך הל

כן אם תשתוקק נפשו לרוות צמאונה ולמלאות חסרונה הנה לפניו ספרי הקדמונים אליו נתונים ישתדל 

כה אע"פ שבכאן ימצא מזה כדי מה שיספיק לו עד שתנוח דעתו משם כהל הכלויקרב אל המלאכה וילמוד 

 עליו. 

The erudites have said that every discipline has two types of studies. A first one of 

those studies is, for instance, when the student asks his master, ‘What is this thing 

called a ‘sphere’?’ Then it is fitting for the master to teach and tell him that it is a 

corporeal figure the structure of which is thus and such. This answer of his is the 

first study; it is called ‘descriptive study’. This is because by means of it, the student 

understands and knows the form of that thing about which he asked. In this study, 

it is incumbent on the student to accept what the master says; he neither has 

                                                           

55 In fact, neither the Elements nor Euclid are mentioned by Israeli, whereas he does mention other sources and 

authors throughout Yesod ‘Olam. This can perhaps be explained by the fact that the Elements was considered such 

a rudimentary mathematical text in the Middle Age, that every learned person must have been familiar with.  



permission to argue against or disagree with him, nor to request of him that he 

adduce for him a proof and a strengthening of his words. The second study is, for 

instance, when the master subsequently tells him, ‘Know that this sphere about 

which you queried, and the circles inscribed upon it have thus and such laws and 

foundations.’ In this second study, it is not incumbent on the student to accept what 

the master says until he adduces clear proofs for him, giving reason for his words. 

The adducing of those proofs and the arranging of the theories is this second study; 

it is called ‘explanatory study’. This is because by means of it those items of 

foundation are explained to the student, and the doubts are removed from his heart. 

Now, since my intention here, as I stated, is to train the student and to habituate 

him, I saw fit to bring most of the study and explanations in this book in the method 

of the first kind of study; but in a several places of this book I bring it also according 

to the second kind of study. Subsequently, if his soul yearns to slake its thirst and to 

fill its lack, behold, before him are the books of the ancients given unto him.56 Let 

him endeavour and draw close to the work [cf. Exodus 36:2], and learn everything 

from there according to its rules – although here he will find enough of it to suffice 

for him until his knowledge becomes settled within him.  

It is clear that Israeli’s aim was to provide basic mathematical knowledge, mainly Euclidean geometry, 

that will enable the student to understand spherical trigonometry, and later, astronomy, which is at the 

centre of the work.   

CONCLUSION 

In this article I have analysed Isaac Israeli’s rendition of Euclid’s Elements in Yesod ‘Olam, illustrating 

some of its peculiarities through four examples, while highlighting novel linguistic findings within. The 

first two examples show Israeli’s elaboration or re-arrangement of Euclidean elements whereas the third 

and fourth examples include a reductive, simplified and less rigorous rendition of Euclidean theorems. 

The comparison between the more specialized mathematical vocabulary in Yesod ‘Olam and that found 

in earlier Hebrew transmissions of the Elements clearly shows lexical independence, indicating that 

Israeli was probably completely unaware of these earlier transmissions. This adds further evidence to 

the finding by Ruth Glasner regarding the ignorance of the Provencal Hebrew translations by Sephardic 

authors on the Iberian Peninsula until the middle of the fourteenth century. Israeli's source must have 

been Arabic – he often refers to the Arabic language and the syntactical structure of his phrases 

                                                           
56 By ‘the books of the ancients’ Israeli may also refer to Euclid’s Elements. 

 



resembles Arabic. However, it is not yet known which Arabic source he used. In any case, Israeli seems 

to have used his sources selectively, choosing Euclidean elements suitable for his own pedagogical 

purpose of leading the reader to understanding spherical trigonometry en route to understanding 

astronomy. Israeli’s partial and rather untraditional rendition of the Elements is, in spite of, or perhaps 

thanks to its methodological, structural and linguistic imperfections, a variegated and interesting 

Hebrew rendition of the Elements. Furthermore, it creates an additional layer in the history of Hebrew 

Euclid, whose entire story is yet to be told.  
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