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Rational Models for Inflation-Linked Derivatives\ast 

Henrik T. Dam\dagger , Andrea Macrina\ddagger , David Skovmand\S , and David Sloth\P 

Abstract. We construct models for the pricing and risk management of inflation-linked derivatives. The models
are rational in the sense that linear payoffs written on the consumer price index have prices that are
rational functions of the state variables. The nominal pricing kernel is constructed in a multiplicative
manner that allows for closed-form pricing of vanilla inflation products suchlike zero-coupon swaps,
year-on-year swaps, caps and floors, and the exotic limited-price-index swap. We study the conditions
necessary for the multiplicative nominal pricing kernel to give rise to short rate models for the nominal
interest rate process. The proposed class of pricing kernel models retains the attractive features of
a nominal multicurve interest rate model, such as closed-form pricing of nominal swaptions, and it
isolates the so-called inflation convexity-adjustment term arising from the covariance between the
underlying stochastic drivers. We conclude with examples of how the model can be calibrated to
EUR data.

Key words. inflation-linked derivatives, rational term structure models, convexity adjustment, calibration, pric-
ing kernels, year-on-year swap, limited price index
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1. Introduction. The inflation market has grown in the aftermath of the 2008 financial
crisis. Central banks have been conducting aggressive quantitative easing to keep inflation off
the cliff of deflation, and the ensuing fears have driven hedging needs. As a consequence, the
market for trading inflation has soared to the point where standard inflation derivatives are
now cleared on the London Clearing House in numbers exceeding 100 bn EUR measured by
notional outstanding value in early 2017. As this number only counts linear derivatives, the
total market size is likely much larger. Among the products cleared one finds the Year-on-
Year (YoY) swap, swapping annual inflation against a fixed strike, and the Zero-Coupon (ZC)
swap, which swaps cumulative inflation against a fixed strike at maturity.

Among the OTC-traded nonlinear derivatives, the most important is arguably the YoY
cap/floor, which is in principle a portfolio of calls (caplets) or puts (floorlets) with equal
strike on YoY inflation. Another significant derivative is the ZC cap/floor, which is simply a
call/put on the ZC swap rate. The derivatives market is dwarfed in size by the market for
inflation-linked bonds. These bonds are typically government-issued debt where the principal
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is linked to the consumer price index (CPI) or similar. The bonds often have an embedded
YoY floor protecting the principal from being adjusted downward by deflation. Limited Price
Index (LPI) products come with both a lower and upper bound on the principal adjustment
creating a path-dependent collar on inflation. Despite their exotic nature LPIs have been in
high demand by pension funds.

All products should ideally be priced in a consistent manner using a tractable arbitrage-free
model. Cap/floor products display volatility skews and nonflat term structures of volatility,
both of which the model also should be able to capture. Besides, the model should yield closed-
form solutions for the price of the most traded derivatives, here the YoY and the ZC cap/floor.

[22] develops a general arbitrage-free theory of interest rates and inflation in the case where
the consumer price index and the real and nominal interest rate systems are jointly driven by
a multidimensional Brownian motion. This approach is based on a foreign exchange analogy
in which the CPI is treated as a foreign exchange rate, and the ``real"" interest rate system
is treated as if it were the foreign interest rate system associated with the foreign currency.
The often-cited work by Jarrow and Yildirim [27] makes use of such a setup. They consider a
three-factor model (i.e., driven by three Brownian motions) in which the CPI is modeled as a
geometric Brownian motion with deterministic time-dependent volatility and the two interest
rate systems are treated as extended Vasicek-type (or Hull--White) models. Similar to [27],
[11] uses a short-rate approach where the nominal and the inflation rates are both modeled by
Hull--White processes while discarding the idea of a real economy. A GBM-based model for the
CPI provides the baseline framework for how one might understand implied volatility in such a
market, but any GBMmodel for the CPI does not, by construction, reproduce volatility smiles.

Further development of inflation models has paralleled that of interest rates models. For
example, inflation counterparts to the nominal LIBOR market model (see, for example, [6])
have been studied in [2], [35], and [36]. While these models can reproduce smiles---augmented
with stochastic volatility or jumps---they rely on numerically intensive algorithms or approx-
imations for the pricing of ZC cap/floors, in particular. One may say similarly of the models
in [29], [18], and [37], which, in a similar manner use forward inflation, or in the case of [20],
the forward inflation swap rate, as the model primitive. [47] builds an inflation counterpart
to the nominal model of [16] and [28]. One also finds [39] in the local volatility context, [32]
extending the GBM methodology with [19] stochastic volatility, and [46] adding stochastic
volatility to the [27] model. Our work is inspired by the approach to nominal term structure
of interest rates based on the so-called rational models. This choice is motivated by the suc-
cess of the rational model framework as documented in the comprehensive empirical study of
[13], which demonstrates that linear-rational models perform as well or better than similar
affine term structure models. Furthermore, the rational model framework has been extended
to model multiple nominal curves and credit risk in [8] and [34]; it is this approach we fol-
low. This framework allows for analytical expressions for swaptions, which is not the case for
affine term structure models. In this paper, we demonstrate how rational models for inflation
are constructed, which retain the tractability of the nominal counterpart and can price, in
closed-form, all the relevant derivatives suchlike YoY and ZC cap/floors and LPI swaps.

In section 2, we first present the model in full generality. Following [12], we study the
conditions for a short rate model representation to be obtained. In section 3 we derive option
pricing formulae under different assumptions in the driving process, and in section 4 we endD
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976 H. T. DAM, A. MACRINA, D. SKOVMAND, AND D. SLOTH

with an example that shows how the model can be simultaneously calibrated to inflation
derivatives and a multiple-curve nominal interest rate market.

2. Rational term structures. We adopt the pricing kernel approach, which was pioneered
in [7], [14], [15], and [40]---for a good summary see [24] and, for a more recent account, [17].
[34] proposes pricing kernel models to construct so-called curve-conversion factor processes,
which link distinct yield-curves in a consistent arbitrage-free manner and which give rise to
the across-curve pricing formula for consistent valuation and hedging of financial instruments
across curves. Applications include the pricing of inflation-linked and hybrid fixed-income
securities. A property of the pricing kernel approach is the ease with which the pricing and
hedging of multiple currencies can be handled. This is the property one benefits from when
considering inflation-linked pricing, and nominal and real economies are introduced in analogy
to domestic and foreign economies. Compared to the classical approach, in order to allow for
negative short rates, we relax the paradigm and consider general semimartingale dynamics
for the pricing kernels. The approach taken next is one where the existence of a pricing
kernel model is postulated and its dynamics are modeled. It is via the pricing kernel that
no-arbitrage price processes of tradable assets are generated by imposing that the asset price
process, when multiplied by the pricing kernel process, be a martingale with respect to the
probability measure that the pricing kernel dynamics are produced. This no-arbitrage notion
is one presented in textbooks suchlike, e.g., [24] and [3].

2.1. General model. We model a financial market by a filtered probability space
(\Omega ,\scrF ,\BbbP , (\scrF t)0\leq t), where \BbbP denotes the real probability measure and (\scrF t)0\leq t the market fil-
tration satisfying the usual conditions. A finite time horizon is considered, i.e., a timeline
0 \leq t \leq T < T <\infty , throughout.

Definition 2.1 (pricing kernel). We call a stochastic process (\pi t)0\leq t with \pi 0 = 1 a pricing
kernel if it is a strictly positive, c\`adl\`ag, semimartingale such that \pi t has finite expectation for
all t \geq 0.

Let \scrL 1
T (\mu ;\pi ) = \{ \chi : \Omega \rightarrow \BbbR s.t. \chi is \scrF T -measurable and \BbbE \mu [| \pi T\chi | < \infty ]\} , where \mu is a

probability measure on (\Omega ,\scrF ). Let (\pi \mathrm{N}t )0\leq t be the (nominal) pricing kernel process. If we
consider some claim \chi \in \scrL 1

T (\BbbP ;\pi \mathrm{N}), then by standard no-arbitrage theory (see, e.g. [24]) the
process (V \chi 

t )0\leq t\leq T , defined by

(2.1) V \chi 
t =

1

\pi \mathrm{N}t
\BbbE \BbbP 
t

\bigl[ 
\pi \mathrm{N}T\chi 

\bigr] 
,

is an arbitrage-free price process. The notation \BbbE t[\cdot ] is short-hand for \BbbE [ \cdot | \scrF t]. Following [38,
Proposition 2.2], we have the following.

Proposition 2.2. Consider n assets with price processes (S1
t ), . . . , (S

n
t ) satisfying (2.1), i.e.,

such that (\pi \mathrm{N}t S
i
t) is a \BbbP -martingale for i = 1, . . . , n. Assume the asset with strictly positive

price process (S1
t ) is traded. Then, the market is free of arbitrage.

Proof. By (2.1), the process \xi t := S1
t \pi 

\mathrm{N}
t /S

1
0 is a strictly positive martingale with \xi 0 = 1.

A measure \BbbQ may be defined by \xi t = d\BbbQ /d\BbbP | \scrF t
on any finite interval, and by the Bayes RuleD
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one obtains

\BbbE \BbbQ 
t

\biggl[ 
SiT
S1
T

\biggr] 
=

\BbbE \BbbP 
t

\bigl[ 
\xi T (S

i
T /S

1
T )
\bigr] 

\xi t
=

\BbbE \BbbP 
t

\bigl[ 
\pi \mathrm{N}T S

i
T

\bigr] 
\pi tS1

t

=
Sit
S1
t

for 2 \leq i \leq n. Thus, \BbbQ is a risk-neutral measure associated with the numeraire (S1
t ). The

existence of a pricing kernel, here the process (\pi Nt )0\leq t, guarantees absence of arbitrage, also
in the case of uncountably many assets. Here we refer to the no-arbitrage notion of ``no
asymptotic free lunch with vanishing risk"" developed in [10].

We are agnostic as to how the asset with price process (S1
t ) is chosen; for example, it

may be a zero-coupon bond. From formula (2.1) it follows that, for 0 \leq t \leq T , the nominal
zero-coupon bond price system,

(2.2) P\mathrm{N}
tT =

1

\pi \mathrm{N}t
\BbbE \BbbP 
t

\bigl[ 
\pi \mathrm{N}T
\bigr] 
,

is free of arbitrage opportunities. Assuming that P\mathrm{N}
tT is differentiable in T , the short rate

process (r\mathrm{N}t )0\leq t\leq T may be obtained by the well-known relation r\mathrm{N}t =  - \partial T ln
\bigl( 
P\mathrm{N}
tT

\bigr) 
| T=t. This

tells that (\pi \mathrm{N}t ) determines simultaneously the intertemporal risk-adjustment and the discount-
ing rate.

The goal is to produce models that facilitate the pricing of inflation-linked derivatives. To
this end, we equip the framework with a real-market analogous to the foreign economy in the
foreign-exchange analogy. If we assume that (\pi \mathrm{R}t )0\leq t is a pricing kernel for the real market,
then the foreign-exchange analogy establishes the relationship

(2.3) Ct = \pi \mathrm{R}t /\pi 
\mathrm{N}
t ,

where (Ct)0\leq t denotes the CPI process that acts as an exchange rate from the nominal to the
real economy (see, e.g., [3, Proposition 17.11]).

As in [14], [15], [43], and [40], we introduce an extra degree of flexibility and model prices
with respect to an auxiliary measure \BbbM . This extra degree of freedom allows for simplified
calculations or more tractable modeling under the \BbbM -measure while desirable statistical prop-
erties may still be captured under the \BbbP -measure. In fact it is also possible to build in terminal
distributions or ``views"" under \BbbP , in the spirit of [4], and as explicitly obtained in [33]. This
is a feature expected by practitioners of inflation-linked trading, motivated by the fact that
inflation is an area that often receives significant attention from monetary policymakers and
is subject to so-called forward guidance. With regard to how to induce the measure change
for such a purpose, we refer to [21], [33] for the multivariate generalization and [8] for an ap-
plication in a multicurve term structure setup. We shall model the Radon--Nikodym process
(Mt)0\leq t withM0 = 1 as a strictly positive, c\`adl\`ag martingale and fix some time \^T <\infty . Then,
\BbbM (A) = \BbbE \BbbP [M \^T 1\{ A\} ] for A \in \scrF \^T defines an equivalent measure. By setting h\mathrm{N}t = \pi \mathrm{N}t /Mt,
with no loss of generality, we can express the fundamental pricing equation (2.1) under \BbbM by
the Bayes formula:

V \chi 
t =

1

\pi \mathrm{N}t
\BbbE \BbbP 
t

\bigl[ 
\pi \mathrm{N}T\chi 

\bigr] 
=

1

h\mathrm{N}t Mt
\BbbE \BbbP 
t

\bigl[ 
MTh

\mathrm{N}
T
\chi \bigr] = 1

h\mathrm{N}t
\BbbE \BbbM 
t

\bigl[ 
h\mathrm{N}T\chi 

\bigr] 
(2.4)
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for 0 \leq t \leq T < T \wedge \^T and \chi \in \scrL 1
T (\BbbP ;\pi \mathrm{N}). That is, (h\mathrm{N}t ) is the nominal pricing kernel under

the \BbbM -measure. Similarly, the relationship \pi \mathrm{R}t =Mth
\mathrm{R}
t introduces the real pricing kernel (h\mathrm{R}t )

under \BbbM . It follows that, under \BbbM , (h\mathrm{N}t ) and (h\mathrm{R}t ) are strictly positive semimartingales (see
[26, III Theorem 3.13]) and that Cth

\mathrm{N}
t = h\mathrm{R}t for all t \geq 0.

Modeling convention. Let st := 1/Ct for t \geq 0, for modeling convenience. From the
relation (2.3) it then follows that hNt = sth

R
t . We model (hRt ) and (st), where h

R
0 = 1/s0 = C0,

as strictly positive semimartingales under \BbbM such that hRt and hNt have finite expectation for
t \geq 0.

Definition 2.3 (real-kernel spread model). Let the triplet (h\mathrm{R}t , st,Mt)0\leq t be such that (h\mathrm{R}t )0\leq t,
(st)0\leq t, and (Mt)0\leq t are strictly positive, c\`adl\`ag, hR0 = 1/s0 = C0, and M0 = 1. Furthermore
assume (h\mathrm{R}t )0\leq t, and (st)0\leq t are semimartingales and that (Mt)0\leq t is a martingale. Denote
by \BbbM the measure induced by (Mt). Assume that h\mathrm{R}t and h\mathrm{R}t st have finite expectation for all
t \geq 0 under \BbbM . We call such a triplet a real-kernel spread model (RSM).

Often, the pricing of inflation-linked instruments is performed under either the nominal
risk-neutral measure \BbbQ \mathrm{N} or the real risk-neutral measure \BbbQ \mathrm{R}. In the general setting presented
so far, one is not necessarily in a position to get consistent prices under these measures. In
section 2.2, we treat this issue in the context of some well-known models, which use from the
outset a risk-neutral measure. In section 2.3 we proceed to the pricing of primary inflation-
linked securities in the backdrop of a more specific model class. In section 2.4 we discuss the
change to risk-neutral measures in the same model class.

2.2. Comparison with other models. In this section, we discuss other models and in a
few cases show that our specification can be regarded as a generalization. The comparisons
shall help to understand our modeling approach in that they show how our model ingredients
would look in known models.

In the case of equity pricing, the benchmark model is the geometric Brownian motion
specification of [5]. In this sense, the most natural translation of this to inflation modeling is
done by [31] specifying the inflation index under the nominal risk-neutral measure by

dCt = Ct(r
\mathrm{N}(t) - r\mathrm{R}(t))dt+ Ct\sigma CdW

\mathrm{C}
t ,

where r\mathrm{N} and r\mathrm{R} are the deterministic nominal and real interest rates and (WC
t )0\leq t is a

Brownian motion. Black--Scholes-type pricing formulae are derived for ZC caps with payoff
function max[CT /C0  - K, 0], and [41] derives a pricing formula of a similar type for YoY
caplets with payoff function max[CTi/CTi - 1  - K, 0]. We refer to [32] for the exact formulae.
The formulae for the ZC cap and YoY caplet as functions of the volatility parameter \sigma C can be
inverted to implied volatilities as is commonly done for equity options. This will be relevant
in section 4 when we calibrate some specific rational pricing models.

[27] produces an important generalization that allows for the pricing of inflation-linked
securities with stochastic interest rates. In practice, the popular model specification is to
assume that the nominal and the real interest rates have Hull--White dynamics. Under theD
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nominal risk-neutral measure, such a model specification takes the form

dr\mathrm{N}t =
\bigl[ 
\theta \mathrm{N}(t) - a\mathrm{N}r

\mathrm{N}
t

\bigr] 
dt+ \sigma \mathrm{N}dW

\mathrm{N}
t , dr\mathrm{R}t =

\bigl[ 
\theta \mathrm{R}(t) - \rho \mathrm{R}\mathrm{C}\sigma \mathrm{C}\sigma \mathrm{R}  - a\mathrm{R}r

\mathrm{R}
t

\bigr] 
dt+ \sigma \mathrm{R}dW

\mathrm{R}
t ,

dCt = Ct
\bigl( 
r\mathrm{N}t  - r\mathrm{R}t

\bigr) 
dt+ Ct\sigma \mathrm{C}dW

\mathrm{C}
t ,

where (W\mathrm{N}
t ), (W\mathrm{R}

t ), and (WC
t ) are dependent Brownian motions, and where \theta \mathrm{N}(t) and \theta \mathrm{R}(t)

are functions chosen to fit the term-structure of interest rates (see [6, Chapter 15] and [23]).

Proposition 2.4. The [31] and the [27] models are RSM triplets where (h\mathrm{R}t , st,Mt)0\leq t is
given by

h\mathrm{R}t = exp

\biggl( 
 - 
\int t

0
r\mathrm{R}s ds

\biggr) 
d\BbbQ \mathrm{R}

d\BbbQ \mathrm{N}

\bigm| \bigm| \bigm| \bigm| 
\scrF t

, st =
1

h\mathrm{R}t
exp

\biggl( 
 - 
\int t

0
r\mathrm{N}s ds

\biggr) 
, Mt =

d\BbbQ \mathrm{N}

d\BbbP 

\bigm| \bigm| \bigm| \bigm| 
\scrF t

.

The nominal pricing kernel (h\mathrm{N}t )0\leq t is determined by h\mathrm{N}t = st h
\mathrm{R}
t .

Proof. The measure change to \BbbQ \mathrm{N} is given in [27, Footnote 5], the measure change to \BbbQ \mathrm{R}

is similar, and, in the Black--Scholes case, the results are standard.

The choice above is not unique. One could, e.g., setMt = 1 and change the other processes
accordingly, which would amount to specifying and matching the models under \BbbP , instead.

2.3. Primary inflation-linked instruments. We now proceed to the pricing of the pri-
mary inflation-linked products, suchlike the ZC swap and the YoY swap, which serve as the
fundamental hedging instruments against inflation risk and the swap rates underlying exotic
inflation-linked derivatives. To this end, we propose a specific class of rational pricing kernels.

Definition 2.5 (rational pricing kernel system). Let \BbbM be a measure equivalent to \BbbP induced
by a Radon--Nikodym process (Mt)0\leq t. Let (A\mathrm{R}

t )0\leq t and (A\mathrm{S}
t )0\leq t be positive martingales under

\BbbM with A\mathrm{S}
0 = A\mathrm{R}

0 = 1. Let (A\mathrm{R}
t A

\mathrm{S}
t ) have finite expectation under \BbbM for all t \geq 0. Let the real

pricing kernel (h\mathrm{R}t )0\leq t be given by h\mathrm{R}t = R(t)
\bigl[ 
1 + b\mathrm{R}(t)(A\mathrm{R}

t  - 1)
\bigr] 
, where R(t) \in C1 is a strictly

positive deterministic function with R(0) = C0, and where b\mathrm{R}(t) \in C1 is a deterministic
function that satisfies 0 < b\mathrm{R}(t) < 1. Furthermore, let st = S(t)A\mathrm{S}

t , where S(t) \in C1 is
a strictly positive deterministic function with S(0) = 1/C0, and set h\mathrm{N}t = st h

\mathrm{R}
t . We call

(h\mathrm{R}t , st,Mt)0\leq t thus specified a rational pricing kernel system (RPKS).

By Ito's lemma, (h\mathrm{R}t ) and (st) are strictly positive semimartingales. An RPKS is in
particular an RSM-triplet and therefore, by section 2.1, it produces a nominal and a real
market, both free of arbitrage opportunities. The martingale (A\mathrm{R}

t ) generates the randomness
in the real market, while the joint law of (A\mathrm{S}

t ) and (A\mathrm{R}
t ) generates the randomness in the

nominal market. All derivations throughout will be obtained under the assumption of having
an RPKS.

Proposition 2.6 (affine payoffs evaluated in an RPKS). Assume an RPKS. The price process
(V \chi 
t )0\leq t\leq T of a contract with payoff function \chi = a1 + a2CT , for a1, a2 \in \BbbR , at the fixed date

T \geq t \geq 0 is given by

(2.5) V \chi 
t =

a2(b0(T ) + b1(T )A
\mathrm{R}
t ) + a1(b2(T )A

\mathrm{S}
t + b3(T )\BbbE \BbbM 

t [A
\mathrm{R}
TA

\mathrm{S}
T ])

b2(t)A\mathrm{S}
t + b3(t)A\mathrm{R}

t A
\mathrm{S}
t

,D
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where, for 0 \leq t \leq T , b0(t) = R(t)(1 - b\mathrm{R}(t)), b1(t) = R(t)b\mathrm{R}(t), b2(t) = R(t)(1 - b\mathrm{R}(t))S(t),
b3(t) = R(t)b\mathrm{R}(t)S(t). If a1 = 0, i.e., the payoff is linear in CT , the price process V \chi 

t is a
rational function of A\mathrm{R}

t and A\mathrm{S}
t .

Proof. It follows by the \BbbM -pricing equation (2.4).

The price process (P\mathrm{N}
tT )0\leq t\leq T of the nominal ZC bond follows from (2.5) for a1 = 1 and

a2 = 0. We have,

(2.6) P\mathrm{N}
tT =

b2(T )A
\mathrm{S}
t + b3(T )\BbbE \BbbM 

t [A
\mathrm{R}
TA

\mathrm{S}
T ]

b2(t)A\mathrm{S}
t + b3(t)A\mathrm{R}

t A
\mathrm{S}
t

with b2(t) and b3(t) given in Proposition 2.6. It then follows that the initial nominal term
structure P\mathrm{N}

0t , 0 \leq t \leq T , is given by P\mathrm{N}
0t = R(t)S(t)(1 + b\mathrm{R}(t)(\BbbE \BbbM [A\mathrm{R}

t A
\mathrm{S}
t ] - 1)). In particular,

the parameter function S(t) appearing in both the price processes of the nominal ZC bond
and the contract (2.5) can thus be used for calibrating to the market-observed prices P\mathrm{N}

0t,
0 \leq t \leq T , according to S(t) = P\mathrm{N}

0t/[R(t)(1 + b\mathrm{R}(t)(\BbbE \BbbM [A\mathrm{R}
t A

\mathrm{S}
t ]  - 1))]. We note that should

t \mapsto \rightarrow \BbbE \BbbM [A\mathrm{R}
t A

\mathrm{S}
t ] not belong to C1, one can calculate its value in all relevant time points and use

a C1-interpolation, and nevertheless produce the same price for any financial product whose
payoff only depends on state variables at those times.

The most basic inflation-linked product is the ZC swap, which gives exposure to the CPI
value at the swap maturity T for an annualized fixed payment. Its price process (V \mathrm{Z}\mathrm{C}\mathrm{S}

t )0\leq t\leq T
can be written in the form

(2.7) V \mathrm{Z}\mathrm{C}\mathrm{S}
t =

1

h\mathrm{N}t
\BbbE \BbbM 
t

\biggl[ 
h\mathrm{N}T

\biggl( 
CT
C0

 - K

\biggr) \biggr] 
= P \mathrm{I}\mathrm{L}

tT  - KP\mathrm{N}
tT ,

where P \mathrm{I}\mathrm{L}
tT = \BbbE \BbbM 

t [h
\mathrm{N}
TCT /C0]/h

\mathrm{N}
t is the price of an inflation-linked ZC bond at t \leq T . ZC

swaps are highly liquid for several maturities and therefore it is reasonable to consider an
actual term-structure of ZC swaps and aim at constructing models able to calibrate to the
relevant market data in a parsimonious manner. By (2.7), given a nominal term-structure,
a ZC swap term-structure is equivalent to an inflation-linked ZC bond term-structure, and
fitting either is equivalent. The price of an inflation-linked ZC bond within an RPKS follows
directly from Proposition 2.6:

P \mathrm{I}\mathrm{L}
tT =

1

C0

b0(T ) + b1(T )A
\mathrm{R}
t

b2(t)A\mathrm{S}
t + b3(t)A\mathrm{R}

t A
\mathrm{S}
t

with b0(t) and b1(t) given in Proposition 2.6. We see that by matching the degree of freedom
R(t) to the initial term structure P \mathrm{I}\mathrm{L}

0t of inflation-linked bonds as implied from the market,
i.e., R(t) = P \mathrm{I}\mathrm{L}

0tC0, the model replicates the term structure of ZC swaps. For ZC swaps, a
deannualized fair rate is quoted, namely, a number \~k such that for K = (1 + \~k)T the initial

value of the swap is zero. Given P\mathrm{N}
0T , the initial term structure P

\mathrm{I}\mathrm{L}
0T is implied from the ZC

swap market fair rates k \mathrm{Z}\mathrm{C}
0T via k \mathrm{Z}\mathrm{C}

0T =
\bigl( 
P\mathrm{N}

0T

\big/ 
P \mathrm{I}\mathrm{L}

0T

\bigr) 1/T  - 1. The price process (P\mathrm{R}
tT )0\leq t\leq T of a

real ZC bond is

(2.8) P\mathrm{R}
tT =

1

h\mathrm{R}t
\BbbE \BbbM 
t

\bigl[ 
h\mathrm{R}T
\bigr] 
=
b0(T ) + b1(T )A

\mathrm{R}
t

b0(t) + b1(t)A\mathrm{R}
t

D
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with b0(t) and b1(t) as in Proposition 2.6. In accordance with the foreign-exchange analogy,
it holds that P\mathrm{R}

tT Ct = P \mathrm{I}\mathrm{L}
tT .

Next, we consider the YoY swap which exchanges yearly percentage increments of CPI
against a fixed rate. The YoY swap can be decomposed into swaplets, so we consider first the
price V \mathrm{Y}\mathrm{o}\mathrm{Y}\mathrm{S}\mathrm{L}

tTi
at time t < Ti - 1 of a such over the period [Ti - 1, Ti]. By the pricing relation (2.4)

we have

V \mathrm{Y}\mathrm{o}\mathrm{Y}\mathrm{S}\mathrm{L}
tTi =

1

h\mathrm{N}t
\BbbE \BbbM 
t

\biggl[ 
h\mathrm{N}Ti

\biggl( 
CTi
CTi - 1

 - K

\biggr) \biggr] 

= P \mathrm{I}\mathrm{L}
tTiS(Ti - 1)A

\mathrm{S}
t +

b2(Ti)S(Ti - 1) Cov
\BbbM 
t

\Bigl[ 
A\mathrm{R}
Ti - 1

, A\mathrm{S}
Ti - 1

\Bigr] 
b2(t)A\mathrm{S}

t + b3(t)A\mathrm{R}
t A

\mathrm{S}
t

 - KP\mathrm{N}
tTi(2.9)

with b2(t) and b3(t) as in Proposition 2.6. For YoY swaps the fair rate \~k is quoted in financial
markets such that K = 1 + \~k. The price of the swap is V \mathrm{Y}\mathrm{o}\mathrm{Y}\mathrm{S}

tTN
=
\sum N

i=1 V
\mathrm{Y}\mathrm{o}\mathrm{Y}\mathrm{S}\mathrm{L}
tTi

, from which

the fair rate \~k\mathrm{Y}\mathrm{o}\mathrm{Y} can be extracted:

(2.10) \~k\mathrm{Y}\mathrm{o}\mathrm{Y}tTN
=

1\sum N
i=1 P

\mathrm{N}
tTi

N\sum 
i=1

\left(  P \mathrm{I}\mathrm{L}
tTiS(Ti - 1)A

\mathrm{S}
t +

b2(Ti)S(Ti - 1) Cov
\BbbM 
t

\Bigl[ 
A\mathrm{R}
Ti - 1

, A\mathrm{S}
Ti - 1

\Bigr] 
b2(t)A\mathrm{S}

t + b3(t)A\mathrm{R}
t A

\mathrm{S}
t

\right)   - 1.

If independence between (A\mathrm{R}
t ) and (A\mathrm{S}

t ) is assumed, the YoY swap rate at time t = 0 becomes

k\mathrm{Y}\mathrm{o}\mathrm{Y}0TN
=

1\sum N
i=1 P

\mathrm{N}
0Ti

N\sum 
i=1

\Biggl( 
P \mathrm{I}\mathrm{L}

0Ti - 1

P\mathrm{N}
0Ti - 1

P
\mathrm{I}\mathrm{L}
0Ti

\Biggr) 
 - 1.

Thus, if the independence assumption is imposed, the swap rate is completely determined
by the inflation-linked and nominal term structures and hence can be expressed in a model-
independent fashion. The difference between the market-observed swap rate and the above
expression is often referred to as the convexity correction for the YoY swap of length TN .

2.4. On short-rate representation. In the following section, we study the question of the
existence of a classical savings account in an RPKS, which is related to the work of [12]. We
shall see that the obtained class of nominal pricing kernels can rarely be represented in terms
of a short rate model. We study the reasons behind the lack of such a property. If it is possible
to decompose a pricing kernel into

(2.11) ht =
d\BbbQ 
d\BbbM 

\bigm| \bigm| \bigm| \bigm| 
\scrF t

e - 
\int t
0 ru\mathrm{d}u,

where (rt) is a short rate process and \BbbQ is the corresponding numeraire measure, then the
prices obtained in either model would be equal, i.e., the same prices could instead have been
obtained using a short rate approach. To investigate whether a decomposition like (2.11)
exists, some technical material is needed.

We recall that a special semimartingale is a process (Xt) with a unique decomposition
Xt = X0+Bt+Nt, where (Bt) is predictable and of finite variation, (Nt) is a local martingale,
and B0 = N0 = 0. The decomposition is called the canonical (additive) decomposition. We
recall [26, II Theorem 8.21].D
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Theorem 2.7. Let (Xt) be a semimartingale with X0 = 1, such that (Xt) and (Xt - ) are
strictly positive. Then, (Xt) is a special semimartingale if and only if it admits a multiplicative
decomposition

(2.12) Xt =MtLt,

where (Mt) is a strictly positive and c\`adl\`ag \BbbM -local martingale, (Lt) is a positive, predictable
process with locally finite variation, and M0 = L0 = 1. When the decomposition exists, it is
unique and is given by

Mt = \scrE 
\biggl( \int \cdot 

0

1

Xs - +\Delta Bs
dNs

\biggr) 
t

, Lt = \scrE 
\biggl( 
 - 
\int \cdot 

0

1

Xs - +\Delta Bs
dBs

\biggr)  - 1

t

,

where (Bt) and (Nt) are the processes in its canonical additive decomposition.

Comparing (2.11) and (2.12) in Theorem 2.7 we see that a number of conditions need
to be satisfied for a short rate representation to be available. The pricing kernel (ht) has
to satisfy the assumptions of Theorem 2.7, (Mt) has to be a true martingale and act as a
measure change, (Lt) needs to have the specific form in (2.11), and finally the resulting ZC
bond prices need to be sufficiently differentiable. More precisely, following [12, Theorem 5
and Proposition 12], when (2.12) exists for a pricing kernel, one calls At = L - 1

t an implied
savings account. When in addition At = 1 +

\int t
0 \phi sds is satisfied, where (\phi t) is adapted and\int t

0 | \phi s| ds \in L1(\BbbM ), then the forward and short rates exist, that is, (2.11) holds, and (At) is
termed a classical savings account.

Our first endeavor is to characterize the real-economy risk-neutral measure \BbbQ \mathrm{R}. In the case
that the short-rate process exists, we denote it by (r\mathrm{R}t )0\leq t. If in addition (r\mathrm{R}t ) is absolutely
integrable, then the discount factor (DR

t ) exists, and we define

D\mathrm{R}
t = exp

\biggl( 
 - 
\int t

0
r\mathrm{R}s ds

\biggr) 
.

We introduce the process (I\mathrm{R}t )0\leq t, given by

I\mathrm{R}t =

\int t

0

b\mathrm{R}(s)

1 + b\mathrm{R}(s)(A\mathrm{R}
s -  - 1)

dA\mathrm{R}
s ,

and note that \Delta I\mathrm{R}t >  - 1 for all t \geq 0. Next, we denote by \scrE (\cdot ) the stochastic exponential
and define

(2.13) \xi \mathrm{R}t = \scrE 
\bigl( 
I\mathrm{R}
\bigr) 
t
,

which is strictly positive for all t \geq 0.

Lemma 2.8. Assume an RPKS. Then (h\mathrm{R}t ,\BbbM ) has a savings account if and only if (\xi \mathrm{R}t ) in
(2.13) is an \BbbM -martingale. In this case, \xi \mathrm{R}t = d\BbbQ \mathrm{R}/d\BbbM | \scrF t, and the savings account is classical
with short rate process (r\mathrm{R}t ) given by

(2.14) r\mathrm{R}t =  - 1

h\mathrm{R}t

\bigl( 
b\prime 0(t) + b\prime 1(t)A

\mathrm{R}
t

\bigr) 
.D
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Proof. By the relation (2.8), we obtain expression (2.14). Now, h\mathrm{R}t = b0(t) + b1(t)A
\mathrm{R}
t and

Ito's formula shows

(2.15) dh\mathrm{R}t =  - r\mathrm{R}t h\mathrm{R}t dt+R(t)b\mathrm{R}(t)dA\mathrm{R}
t , h\mathrm{R}0 = C0,

which exposes the unique additive decomposition of (h\mathrm{R}t ). One can now either calculate the
dynamics of \xi \mathrm{R}t = h\mathrm{R}t /D

\mathrm{R}
t or apply the formula for the multiplicative decomposition.

We now examine the nominal market processes; this endeavor is slightly more elaborate.
In the case that the nominal short-rate process (r\mathrm{N}t )0\leq t and the associated discount factor
(DN

t ) exist, we write

D\mathrm{N}
t = exp

\biggl( 
 - 
\int t

0
r\mathrm{N}s ds

\biggr) 
.

We furthermore define

I\mathrm{S}t =

\int t

0

1

ss - 
dss =

\int t

0

1

A\mathrm{S}
s - 

dA\mathrm{S}
s ,

andmt(T ) = \BbbE \BbbM 
t [A

\mathrm{R}
TA

\mathrm{S}
T ], which is differentiable in T = t in the case that the nominal short rate

exists in an RPKS. In the case that
\int t
0 | 
m\prime 

s(s)b3(s)
hNs

| ds <\infty , we define the stochastic exponential

\xi \mathrm{N}t = \scrE (
\int \cdot 
0  - 

m\prime 
s(s)b3(s)
hNs

ds+ I\mathrm{R} + I\mathrm{S} + [I\mathrm{R}, I\mathrm{S}])t. We note that \Delta (I\mathrm{R}t + I\mathrm{S}t + [I\mathrm{R}, I\mathrm{S}]t) >  - 1 for

all t \geq 0, i.e., \xi \mathrm{N}t > 0 for all t \geq 0. We define the ``pseudo short-rate""

(2.16) rt =  - 1

h\mathrm{N}t

\bigl( 
b\prime 2(t)A

\mathrm{S}
t + b\prime 3(t)A

\mathrm{R}
t A

\mathrm{S}
t

\bigr) 
.

Lemma 2.9. Assume an RPKS and that (r\mathrm{N}t ) exists. Consider the pseudo short-rate (2.16).
Then (h\mathrm{N}t ,\BbbM ) has a classical savings account with short rate (r\mathrm{N}t ), given by

(2.17) r\mathrm{N}t = rt  - 
m\prime 
t(t)b3(t)

h\mathrm{N}t
,

if and only if
\int t
0 | 
m\prime 

s(s)b3(s)
hNs

| ds <\infty and (\xi \mathrm{N}t ) is an \BbbM -martingale.

Proof. By (2.6) we get expression (2.17). Since hNt = b2(t)A
\mathrm{S}
t + b3(t)A

\mathrm{R}
t A

\mathrm{S}
t Ito's formula

shows that

dh\mathrm{N}t =  - h\mathrm{N}t rtdt+ b3(t)A
\mathrm{S}
t - dA

\mathrm{R}
t + (b2(t) + b3(t)A

\mathrm{R}
t - )dA

\mathrm{S}
t + b3(t)[A

\mathrm{R}, A\mathrm{S}]t

(2.18)

=
\bigl( 
 - h\mathrm{N}t r\mathrm{N}t  - m\prime 

t(t)b3(t)
\bigr) 
dt+ b3(t)A

\mathrm{S}
t - dA

\mathrm{R}
t + (b2(t) + b3(t)A

\mathrm{R}
t - )dA

\mathrm{S}
t + b3(t)[A

\mathrm{R}, A\mathrm{S}]t

with h\mathrm{N}0 = 1. We define \xi Nt =
hNt
DN

t
. An application of Ito's quotient rule shows that

d\xi \mathrm{N}t = \xi \mathrm{N}t

\biggl( 
 - m

\prime 
t(t)b3(t)

h\mathrm{N}t
dt+ dI\mathrm{R}t + dI\mathrm{S}t + d[I\mathrm{R}, I\mathrm{S}]t

\biggr) 
,

i.e., (\xi \mathrm{N}t ) is the stated stochastic exponential.D
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Lemma 2.9 is a weaker result than Lemma 2.8, since (\xi \mathrm{N}t ) is not necessarily a local martin-
gale. The result is still interesting because (rNt ) is the most tempting candidate for a short-rate
process in a discount factor emerging from a nominal pricing kernel. Lemma 2.9 shows that,
in general, we cannot expect (h\mathrm{N}t ,\BbbM ) to have a classical savings account with short rate (r\mathrm{N}t ).
This rules out though neither the existence of a savings account nor a classical savings account
with a different short-rate. To apply the theory we need (hNt ) to be a special semimartingale.

Lemma 2.10. Assume an RPKS and that (h\mathrm{N}t ) is a special semimartingale. Then the
canonical additive decomposition is given by h\mathrm{N}t = 1 +Bt +Nt, where

dBt = h\mathrm{N}t rtdt+ b3(t)d\langle A\mathrm{R}, A\mathrm{S}\rangle t (B0 = 0),

(2.19)

dNt = b3(t)A
\mathrm{S}
t - dA

\mathrm{R}
t + (b2(t) + b3(t)A

\mathrm{R}
t - )dA

\mathrm{S}
t + b3(t) d

\bigl( 
[A\mathrm{R}, A\mathrm{S}]t  - \langle A\mathrm{R}, A\mathrm{S}\rangle t

\bigr) 
(N0 = 0).

The multiplicative decomposition is hNt =MtLt, where

Mt = \scrE 
\biggl( \int \cdot 

0

1

h\mathrm{N}s - +\Delta Bs
dNs

\biggr) 
t

, Lt = \scrE 
\biggl( 
 - 
\int \cdot 

0

1

h\mathrm{N}s - +\Delta Bs
dBs

\biggr)  - 1

t

,

and moreover, a savings account exists if and only if (Mt) is a martingale.

Proof. The dynamics of (h\mathrm{N}t ) was derived in (2.18). By [26, I Theorem 4.23], the term\int t
0 b3(s) d[A

\mathrm{R}, A\mathrm{S}]s has locally integrable variation, and therefore it has a predictable compen-

sator
\int t
0 b3(s) d\langle A

\mathrm{R}, A\mathrm{S}\rangle s (see [26, I Theorem 3.18]).

When there are no simultanous jumps in (A\mathrm{R}
t ) and (A\mathrm{S}

t ) the situation is simpler.

Corollary 2.11. Assume an RPKS and that \Delta A\mathrm{R}
t \Delta A

\mathrm{S}
t = 0 a.s. Then (h\mathrm{N}t ) is a special

semimartingale and the canonical decomposition is given by h\mathrm{N}t = 1 +Bt +Nt, where

dBt = h\mathrm{N}t rtdt+ b3(t)d[A
\mathrm{R}, A\mathrm{S}]t (B0 = 0)

dNt = b3(t)A
\mathrm{S}
t - dA

\mathrm{R}
t + (b2(t) + b3(t)A

\mathrm{R}
t - )dA

\mathrm{S}
t (N0 = 0),

and h\mathrm{N}t =MtLt, where

Mt = \scrE 
\bigl( 
I\mathrm{R} + I\mathrm{S}

\bigr) 
t
, Lt = \scrE 

\biggl( 
 - 
\int \cdot 

0
h\mathrm{N}s rsds+ [I\mathrm{R}, I\mathrm{S}]

\biggr)  - 1

t

,

and a savings account exists if and only if (Mt) is a martingale. If additionally [A\mathrm{R}, A\mathrm{S}]t is
absolutely continuous, write [A\mathrm{R}, A\mathrm{S}]t =

\int t
0 asds and define \lambda t = atb3(t)/h

N
t for t \geq 0. Then,

Lt = exp

\biggl( \int \cdot 

0
(h\mathrm{N}s rs  - \lambda s)ds

\biggr) 
t

and, if
\int t
0 exp( - 

\int s
0 (h

N
u ru  - \lambda u)du)| hNs rs  - \lambda s| ds \in L1(\BbbM ), then a classical savings account

exists.D
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Proof. By assumption, we have that [A\mathrm{R}, A\mathrm{S}]t = \langle (A\mathrm{R})c, (A\mathrm{S})c\rangle t and thus the decom-
position above has a predictable bounded variation part. By change of variables, L - 1

t =
1 +

\int t
0
\partial 
\partial s exp( - 

\int s
0 (h

N
u ru  - \lambda u)du)ds. That is, by [12, Proposition 12], integrability implies

the existence of a classical savings account.

A simple example where the first condition is satisfied is if (A\mathrm{R}
t ) or (A

\mathrm{S}
t ) is continuous. If

both (A\mathrm{R}
t ) and (A\mathrm{S}

t ) are Ito processes, then [A\mathrm{R}, A\mathrm{S}]t is absolutely continuous.
Finally we present a lemma giving a condition in an RPKS to check whether (h\mathrm{N}t ) is

special; this will be particularly simple to check in the following setting.

Lemma 2.12. Assume an RPKS and that (A\mathrm{R}
t ) and (A\mathrm{S}

t ) are locally square-integrable. Then
(h\mathrm{N}t ) is a special semimartingale.

Proof. By [26, I Proposition 4.50], the process ([A\mathrm{R}, A\mathrm{S}]t) has locally integrable varia-
tion and its compensator (\langle A\mathrm{R}, A\mathrm{S}\rangle t) exists. Therefore, the decomposition in (2.19) is war-
ranted.

3. Construction of the exponential-rational class. Our next goal is to derive explicit
price formulae for financial derivatives based on the ZC and the YoY swap rates and for the
so-called LPI swap. For its flexibility, tractability, and good calibration properties, we choose
to work with a subclass among the rational pricing kernel systems, namely, the exponential-
rational pricing kernels. We next construct this class.

Definition 3.1 (exponential-rational pricing kernels). Assume an RPKS and let (Xt)0\leq t be
a d-dimensional stochastic process. Assume that (A\mathrm{R}

t )0\leq t and (A\mathrm{S}
t )0\leq t in Definition 2.5 are

on the form A\mathrm{R}
t = exp(\langle w\mathrm{R}, Xt\rangle ) and A\mathrm{S}

t = exp(\langle w\mathrm{S}, Xt\rangle ). We call this class the exponential-
rational pricing kernel models. If (Xt) is an additive process, we call this class the additive
exponential-rational pricing kernel models.

Remember that an RPKS requires that (A\mathrm{R}
t ) and (A\mathrm{S}

t ) are martingales, that (ARt A
S
t ) has

finite expectation for all t \geq 0, and that A\mathrm{S}
0 = A\mathrm{R}

0 = 1; it is implicit that w\mathrm{R}, w\mathrm{S}, and (Xt) in
Definition 3.1 are chosen such that this is satisfied.

Definition 3.2 (additive process). Let (Xt)0\leq t be a d-dimensional stochastic process. Fol-
lowing [44, Definition 1.6], we say (Xt) is additive if it has a.s. c\`adl\`ag paths, X0 = 0, and the
following hold:

1. Independent increments: for any n \geq 1, 0 \leq t0 < t1 < \cdot \cdot \cdot < tn - 1 < tn, the random
variables Xt0 , Xt1  - Xt0 , . . . , Xtn  - Xtn - 1 are independent.

2. Stochastic continuity: for any t \geq 0 and \epsilon > 0, lims\rightarrow t\BbbM (| Xt  - Xs| > \epsilon ) = 0.

In the remainder of the paper, the derivations will be based on exponential-rational pricing
kernel models. The additive exponential-rational pricing kernel models will be given particular
attention, so we now recall some facts about additive processes and provide some examples.
The independent increments property gives a L\'evy--Khintchine representation

\BbbE \BbbM 
\Bigl[ 
ei\langle z,Xt\rangle 

\Bigr] 
= ei\psi t(z),

\psi t(z) = i\langle z, \mu t\rangle  - 1/2\langle z,\Sigma tz\rangle +
\int 
\BbbR d

\Bigl( 
ei\langle z,x\rangle  - 1 - i\langle z, x\rangle 1\{ \| x\| \leq 1\} 

\Bigr) 
\nu t(dx),
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where the L\'evy--Khintchine triplet (\mu t,\Sigma t,\nu t) is unique and satisfies a number of conditions
(see [44, Chapter 2]). The L\'evy--Khintchine triplet also determines the sample path properties
of (Xt)0\leq t by the L\'evy--Ito decomposition (see [44, Chapter 4]). Next, we consider examples
of how additive processes can be obtained.

Example 3.3 (time change). Let (\tau t)0\leq t be a continuous, increasing process with \tau 0 = 0.
For t \geq 0, define pathwise Xt = L\tau t for (Lt)0\leq t a L\'evy process. Then (Xt)0\leq t inherits the
independent increments of (Lt) and is therefore additive. A particular simple case is obtained
by letting \tau t = \tau (t) be deterministic. Then, we may write \BbbE \BbbM [exp(izXt)] = exp(\tau (t)\psi \mathrm{L}(z)),
where \psi \mathrm{L}(z) is the characteristic exponent of (Lt) in t = 1.

Example 3.4 (stacking independent additive processes). Let (X1
t ), . . . , (X

N
t ) be one-dimen-

sional additive processes with characteristic exponents \psi 1
t , . . . , \psi 

N
t . Then (Xt) = (X1

t , . . . , X
N
t )

is an N-dimensional additive process with characteristic exponent \psi t(z) =
\sum N

i=1 \psi 
i
t(zi), where

z = (z1, . . . , zN ). Furthermore, for w \in \BbbR N (\langle w,Xt\rangle )0\leq t is a one-dimensional additive process
with characteristic exponent z \mapsto \rightarrow \psi t(zw).

A fact about additive processes is that they are convenient to construct martingales.
Define

(3.1) E(X) =

\Biggl\{ 
z \in \BbbC d :

\int 
\{ x\in \BbbR d : \| x\| >1\} 

exp(\langle Re z, x\rangle ) \nu t(dx) <\infty \forall t \geq 0

\Biggr\} 
,

then for z \in E(X) it holds that \BbbE \BbbM [| e\langle z,Xt\rangle | ] < \infty and the Laplace exponent \kappa t(z) = \psi t( - iz)
is well-defined (see [44, Theorem 25.17]). It follows from the independent increments property
that for w \in E(X), one has that

(3.2)
e\langle w,Xt\rangle 

\BbbE \BbbM 
\bigl[ 
e\langle w,Xt\rangle 

\bigr] = e\langle w,Xt\rangle  - \kappa t(w)

is a martingale. We can build exponential martingales by taking an additive process and let
the drift absorb the mean in (3.2). This produces the condition that if

(3.3) \langle w, \mu t\rangle =  - 1

2
\langle w,\Sigma tw\rangle  - 

\int 
\BbbR d

(exp(\langle w, x\rangle ) - 1 - \langle w, x\rangle 1\{ \| x\| \leq 1\} ) \nu t(dx),

then (e\langle w,Xt\rangle )0\leq t is a martingale. Equation (3.1) is useful for additive-exponential rational
models. Recalling Definition 2.5, (3.1) shows that (ARt A

S
t ) has finite expectation for all t \geq 0

if w\mathrm{S} + w\mathrm{R} \in E(X). Similarly, recalling Lemma 2.12, (ARt ) and (ASt ) are locally square-
integrable if 2w\mathrm{S} \in E(X) and 2w\mathrm{R} \in E(X).

We proceed to calculate a number of expressions needed in both the previous and next
sections. First, for w \in E(X) and 0 \leq t \leq T ,

\BbbE \BbbM 
t [exp(\langle w,XT \rangle )] = exp(\langle w,Xt\rangle ) exp(\kappa tT (w)),

where we define the forward Laplace exponent \kappa tT (\cdot ) = \kappa T (\cdot ) - \kappa t(\cdot ). For the YoY swap (2.9)D
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we also need

Cov\BbbM t [exp(\langle w1, XT \rangle ), exp(\langle w2, XT \rangle )]

= e\langle w1+w2,Xt\rangle 
\Bigl( 
e\kappa tT (w1+w2)  - e\kappa tT (w1)+\kappa tT (w2)

\Bigr) 
= e\langle w1+w2,Xt\rangle e\kappa tT (w1+w2)

\Bigl( 
1 - e\kappa tT (w1)+\kappa tT (w2) - \kappa tT (w1+w2)

\Bigr) 
,

where w1, w2, (w1 + w2) \in E(X) is assumed. We notice that the sign, and to some extent
the magnitude, of the covariance depends on the nonlinearity of z \mapsto \rightarrow \kappa tT (z). For the subse-
quent derivation of Fourier-inversion formulae, we will also need the multiperiod generalized
characteristic function.

Lemma 3.5. Let (Xt)0\leq t be an additive process. Assume t \leq T0 \leq T1 \leq \cdot \cdot \cdot \leq TN , set
u = (u1, . . . , uN ), and define

qt(u) = \BbbE \BbbM 
t

\Biggl[ 
exp

\Biggl( 
N\sum 
i=1

ui\langle wi, XTi\rangle 

\Biggr) \Biggr] 
.

Set zN = uNwN and zi - 1 = zi + ui - 1wi - 1 for i = 2, . . . , N . Assume that zi \in E(X) for
i = 1, . . . , N . Then,

(3.4) qt(u) = exp(\langle z1(u), Xt\rangle ) exp

\Biggl( 
N\sum 
i=1

\kappa Ti - 1Ti(zi(u))

\Biggr) 
,

which is well-defined and finite.

Proof. The statement follows from iterated expectation and the independent increments
property.

We next build on the ideas of the Examples 3.3 and 3.4 with two concrete specifications for
the additive exponential-rational pricing kernel models. Very similar models will be calibrated
in section 4.

Specification 3.6 (time-changed L\'evy). Let (Lt)0\leq t be a L\'evy process satisfying the con-
dition Var\BbbM (L1) = 1. Let (t1, a1), (t2, a2), . . . , (tn, an) be given points such that both co-
ordinates are increasing, and let \tau (t) be a continuous, nondecreasing interpolation. Then
t \mapsto \rightarrow Var\BbbM (L\tau (t)) = \tau (t) interpolates the given points. This property can be utilized for, e.g.,
fitting a term-structure of at-the-money implied volatilities. Building on this motivation, we
let

Xt =
\Bigl( 
L\mathrm{R}
\tau \mathrm{R}(t) + \mu \mathrm{R}(t), L\mathrm{S}

\tau \mathrm{S}(t) + \mu \mathrm{S}(t)
\Bigr) 
.

Let (t\~\mu \mathrm{R}, t(\sigma \mathrm{R})2, t\nu \mathrm{R}) and (t\~\mu \mathrm{S}, t(\sigma 2)\mathrm{S}, t\nu \mathrm{S}) denote the L\'evy--Khintchine triplets of (L\mathrm{R}
t ) and

(L\mathrm{S}
t ). Then (Xt) has the L\'evy--Khintchine triplet

\mu t =
\bigl( 
\mu \mathrm{R}(t) + \tau \mathrm{R}(t)\~\mu \mathrm{R}, \mu \mathrm{S}(t) + \tau \mathrm{S}(t)\~\mu \mathrm{S}

\bigr) 
, \Sigma t =

\biggl( 
(\sigma \mathrm{R})2\tau \mathrm{R}(t) 0

0 (\sigma \mathrm{S})2\tau \mathrm{S}(t)

\biggr) 
,

\nu t(B) = \tau \mathrm{R}(t)\nu \mathrm{R}(B1) + \tau \mathrm{S}(t)\nu \mathrm{S}(B2),D
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where B1 = \{ x \in \BbbR : (x, 0) \in B\} and B2 = \{ x \in \BbbR : (0, x) \in B\} . By choosing the drifts \mu \mathrm{R}(t)
and \mu \mathrm{S}(t) according to (3.3) we can turn A\mathrm{R}

t = exp(\langle w\mathrm{R}, Xt\rangle ) and A\mathrm{S}
t = exp(\langle w\mathrm{S}, Xt\rangle ) into

martingales. This construction generalizes to higher dimensions in a straightforward way.

Specification 3.7 (time-changed Wiener process). As a special case of Example 3.6, we
consider time-changing independent Wiener processes. We set

Xt =
\Bigl( 
W\mathrm{R}
\tau \mathrm{R}(t) + \mu \mathrm{R}(t),W \mathrm{S}

\tau \mathrm{S}(t) + \mu \mathrm{S}(t)
\Bigr) 
.

This corresponds to having the L\'evy--Khintchine triplet given by

\mu t =
\bigl( 
\mu \mathrm{R}(t), \mu \mathrm{S}(t)

\bigr) 
, \nu t = 0, \Sigma t =

\biggl( 
\tau \mathrm{R}(t) 0
0 \tau \mathrm{S}(t)

\biggr) 
.

We can choose (A\mathrm{R}
t ) and (A\mathrm{S}

t ) to be martingales as in Specification 3.6.

3.1. Option pricing. By use of the exponential-rational pricing kernel models, tractable
expressions can be derived for inflation-linked derivatives, such as the YoY floor and the ZC
floor. Under the stronger assumption of additive exponential-rational pricing kernel models,
we can find a similarly tractable formula for the LPI swap.

3.1.1. Year-on-year floors. The payoff of the YoY floor can be written in terms of a series
of floorlets. A floorlet has payoff function (K  - CTi/CTi - 1)

+ paid at time T ; typically \~k is

quoted with K = 1 + \~k. In practice it is often observed that T > Ti to ensure that there
is a reliable observation of CPI available at maturity. We want our framework to be able to
accommodate this feature. The next theorem is a pricing formula for the YoY floorlet.

Theorem 3.8. Assume an exponential-rational pricing kernel model. Let Y1 = c1 +
\langle w\mathrm{S}, XTi - 1\rangle  - \langle w\mathrm{S}, XTi\rangle , Y2 = \langle w\mathrm{S}, XT \rangle and Y3 = c3 + \langle w\mathrm{R}, XT \rangle , where c1 = ln[S(Ti - 1)/

(KS(Ti))], c3 = ln[b\mathrm{R}(T )/(1 - b\mathrm{R}(T ))], and qt(z) = \BbbE \BbbM 
t [e

\langle z,(Y1,Y2,Y3)\rangle ]. Let R > 0 and assume
that

(3.5) qt( - R, 1, 1) + qt( - R, 1, 0) <\infty .

Let t \leq T and consider

V \mathrm{Y}\mathrm{o}\mathrm{Y}\mathrm{F}\mathrm{l}
t =

1

h\mathrm{N}t
\BbbE \BbbM 
t

\Biggl[ 
h\mathrm{N}T

\biggl( 
K  - CTi

CTi - 1

\biggr) +
\Biggr] 
,

by (2.4), the price of the YoY floorlet. Then we have

(3.6) V \mathrm{Y}\mathrm{o}\mathrm{Y}\mathrm{F}\mathrm{l}
t =

c0K

\pi h\mathrm{N}t

\int 
\BbbR +

Re
\vargamma t(u)

(R+ iu)(1 +R+ iu)
du,

where c0 = R(T )(1  - b\mathrm{R}(T ))S(T ) and \vargamma t(u) = qt( - (R + iu), 1, 0) + qt( - (R + iu), 1, 1). If
Ti \leq t \leq T , then V \mathrm{Y}\mathrm{o}\mathrm{Y}\mathrm{F}\mathrm{l}

t = (K  - CTi/CTi - 1)
+P\mathrm{N}

tT .D
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Proof. By the pricing formula (2.4) the price at any time t < Ti is

V \mathrm{Y}\mathrm{o}\mathrm{Y}\mathrm{F}\mathrm{l}
t =

1

h\mathrm{N}t
\BbbE \BbbM 
t

\Biggl[ 
h\mathrm{N}T

\biggl( 
K  - CTi

CTi - 1

\biggr) +
\Biggr] 
=
c0K

h\mathrm{N}t
\BbbE \BbbM 
t

\bigl[ 
(1 + eY3) eY2 (1 - eY1)+

\bigr] 
.

We can directly apply Lemma A.3, found in the appendix, to get (3.6). Note that if Ti - 1 \leq 
t < Ti, then a part of Y1 is measurable. The formula for Ti \leq t \leq T follows by observing that
the payoff function is Ti-measurable and recalling (2.2) combined with the relation (2.4).

A point to note about (3.6) is the quadratic convergence of the numerator in the inte-
gral, which makes the formula particularly tractable. In the case that we use an additive
exponential-rational pricing kernel model, qt(z) follows from an application of Lemma 3.5,
and the integrability (3.5) is satisfied if  - Rw\mathrm{S} \in E(X). Note that the difference between a
YoY caplet and floorlet is a YoY swaplet, potentially with time-lag. The price is

(3.7) V \mathrm{Y}\mathrm{o}\mathrm{Y}\mathrm{S}\mathrm{L}
t =

1

h\mathrm{N}t
\BbbE \BbbM 
t

\biggl[ 
h\mathrm{N}T

\biggl( 
CTi
CTi - 1

 - K

\biggr) \biggr] 
=
c0K

h\mathrm{N}t
(qt(1, 1, 0) + qt(1, 1, 1)) - KP\mathrm{N}

tT ,

where qt(z) and c0 are given in Theorem 3.8. This can be used in conjunction with Theorem 3.8
to get the price of a caplet or used directly to price the time-lagged swaplet.

3.1.2. Zero-coupon floors. Next we focus on the pricing of the ZC floor, which together
with the ZC cap and YoY caps and floors, are the most liquidly traded inflation-linked de-
rivatives. The structure of this section closely follows the previous one, since the calculations
are similar. The payoff at time T of the ZC floor can be written in the form (K  - CTi/C0)

+

with T \geq Ti akin to the YoY floor. Typically, the strike quoted is \~k, where K = (1 + \~k)T .

Theorem 3.9. Assume an exponential-rational pricing kernel model. Let Y1 = c4+\langle w\mathrm{S}, XTi\rangle ,
Y2 = \langle w\mathrm{S}, XT \rangle , and Y3 = c3 + \langle w\mathrm{R}, XT \rangle , where

c4 = ln

\biggl( 
1

KS(Ti)

\biggr) 
, c3 = ln

\biggl( 
b\mathrm{R}(T )

1 - b\mathrm{R}(T )

\biggr) 
,

and qt(z) = \BbbE \BbbM 
t [e

\langle z,(Y1,Y2,Y3)\rangle ]. Assume R > 0 and

(3.8) qt( - R, 1, 0) + qt( - R, 1, 1) <\infty .

Consider T0 \leq t \leq Ti \leq T and let

V \mathrm{Z}\mathrm{C}\mathrm{F}
t =

1

h\mathrm{N}t
\BbbE \BbbM 
t

\Biggl[ 
h\mathrm{N}T

\biggl( 
K  - CTi

CT0

\biggr) +
\Biggr] 

be the price at time t of a ZC floor. Then we have

V \mathrm{Z}\mathrm{C}\mathrm{F}
t =

c0K

\pi h\mathrm{N}t

\int 
\BbbR +

Re
\vargamma t(u)

(R+ iu)(1 +R+ iu)
du,

where c0 = R(T )
\bigl( 
1 - b\mathrm{R}(T )

\bigr) 
S(T ) and \vargamma t(u) = qt ( - (R+ iu), 1, 0) + qt ( - (R+ iu), 1, 1). If

Ti \leq t \leq T , then V \mathrm{Z}\mathrm{C}\mathrm{F}
t = (K  - CTi/CT0)

+ P\mathrm{N}
tT .D
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Proof. Exactly as for the YoY case, see Theorem 3.8.

If we assume the additive exponential-rational pricing kernel, qt(z) follows directly from
(3.4), and the assumption (3.8) is satisfied if  - Rw\mathrm{S} \in E(X). Analogous to the YoY cap we
have that the time-lagged ZC swap has the price

(3.9) V ZCS
t =

1

h\mathrm{N}t
\BbbE \BbbM 
t

\biggl[ 
h\mathrm{N}T

\biggl( 
CTi
CT0

 - K

\biggr) \biggr] 
=

c0

h\mathrm{N}t
(qt(1, 1, 0) + qt(1, 1, 1)) - KP\mathrm{N}

tT ,

where c0 and qt(z) are given in Theorem 3.9. This can also be used to obtain the price of ZC
caps.

3.1.3. Limited price index swap. The tractability of the model specification we have
used so far allows us to find semi-closed-form price formulae for the exotic LPI swap. This,
contrary to the previous theorems, does rely on the assumption that the driving stochastic
process (Xt)0\leq t is additive. The LPI is defined by

C\mathrm{L}\mathrm{P}\mathrm{I}
Tk

= C\mathrm{L}\mathrm{P}\mathrm{I}
Tk - 1

mid

\biggl( 
1 +Kf ,

CTk
CTk - 1

, 1 +Kc

\biggr) 
,

where k = 1, . . . , N and Tk is a periodic fixed date, typically yearly. The contracts have
maturities up to 30 years. Similar to the ZC swap, the LPI swap has payoff C\mathrm{L}\mathrm{P}\mathrm{I}

TN
 - K. We

will consider the payoff to be settled at the fixed time T \geq TN . The pricing relation (2.4)
gives the swap price at time t:

V \mathrm{L}\mathrm{P}\mathrm{I}\mathrm{S}
t =

1

h\mathrm{N}t
\BbbE \BbbM 
t

\bigl[ 
h\mathrm{N}TC

\mathrm{L}\mathrm{P}\mathrm{I}
TN

 - K
\bigr] 
= P\mathrm{L}\mathrm{P}\mathrm{I}

tT  - KP\mathrm{N}
tT ,

where P\mathrm{L}\mathrm{P}\mathrm{I}
tT = \BbbE \BbbM 

t [h
\mathrm{N}
TC

\mathrm{L}\mathrm{P}\mathrm{I}
TN

]/h\mathrm{N}t is the price process of the LPI-linked ZC bond. We therefore
need to derive the price at time t \leq T of the LPI-linked ZC bond.

Theorem 3.10. Assume an additive exponential-rational pricing kernel model. Assume,
without loss of generality, that T0 \leq t < T1 < T2 < \cdot \cdot \cdot < TN \leq T . Let, for k = 1, . . . , N ,

q1k(z1, z2) = \BbbE \BbbM \bigl[ exp \bigl( (z1 + z2)\langle w\mathrm{S}, XTk  - XTk - 1\vee t\rangle 
\bigr) \bigr] 
,

q2k(z1, z2) = \BbbE \BbbM \bigl[ exp \bigl( z1\langle w\mathrm{S}, XTk  - XTk - 1\vee t\rangle + z2\langle w\mathrm{R} + w\mathrm{S}, XTk  - XTk - 1\vee t\rangle 
\bigr) \bigr] 
,

and Rk > 0 be such that

N\sum 
k=1

\Bigl( 
q1k( - Rk, 1) + q2k( - Rk, 1)

\Bigr) 
<\infty .

Then,

P\mathrm{L}\mathrm{P}\mathrm{I}
tT = 1

h\mathrm{N}t
C\mathrm{L}\mathrm{P}\mathrm{I}
T0

\Biggl( 
c0V

11
t

N\prod 
k=2

V 1k + c5A
\mathrm{R}
t V

21
t

N\prod 
k=2

V 2k

\Biggr) 
A\mathrm{S}
t ,D
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where

c0 = R(T )
\bigl( 
1 - b\mathrm{R}(T )

\bigr) 
S(T ), c5 = R(T )b\mathrm{R}(T )S(T ) exp (\kappa TNT (w\mathrm{R} + w\mathrm{S})) .

Furthermore, for j = 1, 2

V j1
t = \beta c exp

\bigl( 
\kappa tT1(\omega 

j)
\bigr) 
+

1

\pi 

\int 
\BbbR +

Re
\beta c \vargamma 

j1(\alpha 1c
t , u) + \beta f \vargamma 

j1(\alpha 1f
t , u)

(R+ iu)(1 +R+ iu)
du,

V jk = \beta c exp
\bigl( 
\kappa Tk - 1Tk(\omega 

j)
\bigr) 
+

1

\pi 

\int 
\BbbR +

Re
\beta c \vargamma 

jk(\alpha kc, u) + \beta f \vargamma 
jk(\alpha kf , u)

(R+ iu)(1 +R+ iu)
du,

where \vargamma jk(\alpha , u) = \alpha  - (R+iu)qjk( - (R+ iu), 1) , and

\alpha 1c
t = \beta  - 1

c

S(T1)

S(T0)

A\mathrm{S}
T0

A\mathrm{S}
t

, \alpha 1f
t = \beta  - 1

f

S(T1)

S(T0)

A\mathrm{S}
T0

A\mathrm{S}
t

,

\alpha kc = \beta  - 1
c

S(Tk - 1)

S(Tk)
, \alpha kf = \beta  - 1

f

S(Tk - 1)

S(Tk)
for k = 2, . . . , N,

\beta c = (1 +Kc), \beta f = (1 +Kf ),

\omega 1 = w\mathrm{S}, \omega 2 = w\mathrm{S} + w\mathrm{R}.

Proof. First we write

C\mathrm{L}\mathrm{P}\mathrm{I}
TN

= C\mathrm{L}\mathrm{P}\mathrm{I}
T0

N\prod 
k=1

ZTk ,

ZTk = (1 +Kc) - 
\biggl( 
1 +Kc  - 

CTk
CTk - 1

\biggr) +

+

\biggl( 
1 +Kf  - 

CTk
CTk - 1

\biggr) +

.

Note that ZTk is \scrF Tk -measurable and independent of \scrF Tk - 1
. Using the tower property and

the independent increments property we have

P\mathrm{L}\mathrm{P}\mathrm{I}
tTN

= C\mathrm{L}\mathrm{P}\mathrm{I}
T0

1

h\mathrm{N}t
\BbbE \BbbM 
t

\Biggl[ 
h\mathrm{N}T

N\prod 
k=1

ZTk

\Biggr] 

= C\mathrm{L}\mathrm{P}\mathrm{I}
T0

c0

h\mathrm{N}t
\BbbE \BbbM 
t

\Biggl[ 
A\mathrm{S}
TN - 1

N - 1\prod 
k=1

ZTk

\Biggr] 
\BbbE \BbbM 

\Biggl[ 
A\mathrm{S}
TN

A\mathrm{S}
TN - 1

ZTN

\Biggr] 

+ C\mathrm{L}\mathrm{P}\mathrm{I}
T0

c5

h\mathrm{N}t
\BbbE \BbbM 
t

\Biggl[ 
A\mathrm{R}
TN - 1

A\mathrm{S}
TN - 1

N - 1\prod 
k=1

ZTk

\Biggr] 
\BbbE \BbbM 

\Biggl[ 
A\mathrm{R}
TN
A\mathrm{S}
TN

A\mathrm{R}
TN - 1

A\mathrm{S}
TN - 1

ZTN

\Biggr] 

= C\mathrm{L}\mathrm{P}\mathrm{I}
T0

c0

h\mathrm{N}t
A\mathrm{S}
t\BbbE \BbbM 

t

\Biggl[ 
A\mathrm{S}
T1

A\mathrm{S}
t

ZT1

\Biggr] 
N\prod 
k=2

\BbbE \BbbM 

\Biggl[ 
A\mathrm{S}
Tk

A\mathrm{S}
Tk - 1

ZTk

\Biggr] 

+ C\mathrm{L}\mathrm{P}\mathrm{I}
T0

c5

h\mathrm{N}t
A\mathrm{R}
t A

\mathrm{S}
t\BbbE \BbbM 

t

\Biggl[ 
A\mathrm{R}
T1
A\mathrm{S}
T1

A\mathrm{R}
t A

\mathrm{S}
t

ZT1

\Biggr] 
N\prod 
k=2

\BbbE \BbbM 

\Biggl[ 
A\mathrm{R}
Tk
A\mathrm{S}
Tk

A\mathrm{R}
Tk - 1

A\mathrm{S}
Tk - 1

ZTk

\Biggr] 
.

(3.10)
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All the expectations can be calculated by Lemma A.2, in the appendix, to obtain

\BbbE \BbbM 
t

\Biggl[ 
A\mathrm{R}
T1
A\mathrm{S}
T1

A\mathrm{R}
t A

\mathrm{S}
t

ZT1

\Biggr] 

= \BbbE \BbbM 

\Biggl[ 
A\mathrm{R}
T1
A\mathrm{S}
T1

A\mathrm{R}
t A

\mathrm{S}
t

\Biggl( 
(1 +Kc) - 

\biggl( 
1 +Kc  - x

CT1
Ct

\biggr) +

+

\biggl( 
1 +Kf  - x

CT1
Ct

\biggr) +
\Biggr) \Biggr] \bigm| \bigm| \bigm| \bigm| \bigm| 

x=Ct/CT0

= \beta c exp (\kappa tT1(w\mathrm{S} + w\mathrm{R})) +
1

\pi 

\int 
\BbbR +

Re
\beta c \vargamma 

21(\alpha 1c
t , u) + \beta f \vargamma 

21(\alpha 1f
t , u)

(R+ iu)(1 +R+ iu)
du.

The remaining remaining expectations are calculated in the same way.

We note that each V is calculated like a ZC floor or YoY caplet, i.e., the evaluation is no
more complicated than for a YoY cap. To price multiple LPI-linked ZC bonds, the shorter
maturity bond prices can be found from the factors needed for the longer maturity ones.

3.2. Gaussian formulae. In this section we derive the results equivalent to Theorems 3.8,
3.9, and 3.10 under the assumption of the model in Specification 3.7. The results will be
Black--Scholes-style formulae.

Proposition 3.11. Assume the additive exponential-rational pricing kernel where (Xt)0\leq t is
the time-changed Wiener process of Specification 3.7. Assume that t \leq Ti - 1 < Ti and denote
by V \mathrm{Y}\mathrm{o}\mathrm{Y}\mathrm{F}\mathrm{l}

t the price of the floorlet, as in Theorem 3.8. Then

V \mathrm{Y}\mathrm{o}\mathrm{Y}\mathrm{F}\mathrm{l}
t =

c0K

h\mathrm{N}t
A\mathrm{S}
t

\biggl( 
e\delta 1\Phi ( - d1) - \alpha e\delta 1+\mu y+

1
2(1+2b1)\sigma 2

y\Phi ( - (d1 + \sigma y))

\biggr) 
+
c6K

h\mathrm{N}t
A\mathrm{R}
t A

\mathrm{S}
t

\biggl( 
e\delta 2\Phi ( - d2) - \alpha e\delta 2+\mu y+

1
2(1+2b2)\sigma 2

y\Phi ( - (d2 + \sigma y))

\biggr) 
,

where

\mu x1 = \langle w\mathrm{S}, \mu Ti  - \mu Ti - 1\rangle ,
\sigma x1 = \langle w\mathrm{S}, (\Sigma Ti  - \Sigma Ti - 1)w\mathrm{S}\rangle ,
\mu y =  - \langle w\mathrm{S}, \mu Ti  - \mu Ti - 1\rangle ,
\sigma x1y =  - \langle w\mathrm{S}, (\Sigma Ti  - \Sigma Ti - 1)w\mathrm{S}\rangle ,

\mu x2 = \langle w\mathrm{R} + w\mathrm{S}, \mu Ti  - \mu Ti - 1\rangle ,
\sigma x2 = \langle w\mathrm{R} + w\mathrm{S}, (\Sigma Ti  - \Sigma Ti - 1)(w\mathrm{R} + w\mathrm{S})\rangle ,
\sigma y = \langle w\mathrm{S}, (\Sigma Ti  - \Sigma Ti - 1)w\mathrm{S}\rangle ,
\sigma x2y =  - \langle w\mathrm{S}, (\Sigma Ti  - \Sigma Ti - 1)(w\mathrm{R} + w\mathrm{S})\rangle 

(see Specification (3.7) for the values of \mu t and \Sigma t, and, for j = 1, 2, \delta j = aj+bj\mu y+(bj\sigma y)
2/2,

dj =
1
\sigma y
(ln\alpha + bj\sigma 

2
y + \mu y), aj = \mu xj  - 

\sigma xjy

\sigma 2
y
\mu y  - (\sigma 2xj  - 

\sigma 2
xjy

\sigma 2
y
)/2, bj =

\sigma xjy

\sigma 2
y
). Moreover,

\alpha =
S(Ti - 1)

KS(Ti)
, c0 = R(T )

\bigl( 
1 - b\mathrm{R}(T )

\bigr) 
S(T ),

c6 = R(T )b\mathrm{R}(T )S(T ) exp
\bigl( 
\kappa tTi - 1(w\mathrm{R} + w\mathrm{S})

\bigr) 
exp (\kappa TiT (w\mathrm{R} + w\mathrm{S})) .
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Proof. Using the independent increments property,

V \mathrm{Y}\mathrm{o}\mathrm{Y}\mathrm{F}\mathrm{l}
t =

1

h\mathrm{N}t
\BbbE \BbbM 
t

\Biggl[ 
R(T )

\bigl( 
1 + b\mathrm{R}(T )(A\mathrm{R}

T  - 1)
\bigr) 
S(T )A\mathrm{S}

T

\biggl( 
K  - CTi

CTi - 1

\biggr) +
\Biggr] 

=
c0K

h\mathrm{N}t
A\mathrm{S}
t\BbbE \BbbM 

\Biggl[ 
A\mathrm{S}
Ti

A\mathrm{S}
Ti - 1

\biggl( 
1 - 1

K

CTi
CTi - 1

\biggr) +
\Biggr] 

+
c6K

h\mathrm{N}t
A\mathrm{R}
t A

\mathrm{S}
t\BbbE \BbbM 

\Biggl[ 
A\mathrm{R}
Ti
A\mathrm{S}
Ti

A\mathrm{R}
Ti - 1

A\mathrm{S}
Ti - 1

\biggl( 
1 - 1

K

CTi
CTi - 1

\biggr) +
\Biggr] 
.

Now we apply Lemma A.5 to each term to obtain the result.

The case where Ti - 1 < t < Ti is derived similarly (see Proposition 3.13). The price formula
for the ZC floor is derived analogously.

Proposition 3.12. Assume the additive exponential-rational pricing kernel where (Xt)0\leq t is
the time-changed Wiener process of Specification 3.7. Let T0 \leq t < Ti \leq T , then the price of
the ZC floor is

V \mathrm{Z}\mathrm{C}\mathrm{F}\mathrm{l}
t =

c0

h\mathrm{N}t

1

S(Ti)

\biggl( 
\alpha t e

\mu y+
1
2\sigma 

2
y\Phi (d1t + \sigma y) - \Phi (d1t )

\biggr) 
+

c7

h\mathrm{N}t

1

S(Ti)
A\mathrm{R}
t

\biggl( 
\alpha t e

\delta +\mu y+
1
2(1+2b)\sigma 2

y\Phi (d2t + \sigma y) - e\delta \Phi (d2t )

\biggr) 
,

where \mu x = \langle w\mathrm{R}, \mu Ti  - \mu t\rangle , \sigma x = \langle w\mathrm{R}, (\Sigma Ti  - \Sigma t)w\mathrm{R}\rangle , \mu y = \langle w\mathrm{S}, \mu Ti  - \mu t\rangle , \sigma y = \langle w\mathrm{S}, (\Sigma Ti  - 
\Sigma t)w\mathrm{S}\rangle , \sigma xy = \langle w\mathrm{R}, (\Sigma Ti  - \Sigma t)w\mathrm{S}\rangle (see Specification (3.7) for the values of \mu t and \Sigma t).
Furthermore, d1t = 1

\sigma y
(ln\alpha t + \mu y), d

2
t = 1

\sigma y
(ln\alpha t + b\sigma 2y + \mu y), a = \mu x  - \sigma xy

\sigma 2
y
\mu y  - 1

2(\sigma 
2
x  - 

\sigma 2
xy

\sigma 2
y
), b =

\sigma xy
\sigma 2
y
, \delta = a + b\mu y +

(b\sigma y)2

2 , \alpha t = KS(Ti)A
\mathrm{S}
t , c0 = R(T )

\bigl( 
1 - b\mathrm{R}(T )

\bigr) 
S(T ), c7 =

R(T )b\mathrm{R}(T )S(T )e\kappa TiT (w\mathrm{R}+w\mathrm{S}).

Proof. Using the properties of the conditional expectation and the independence of the
increments, we may write

V \mathrm{Z}\mathrm{C}\mathrm{F}
t =

1

h\mathrm{N}t
\BbbE \BbbM 
t

\bigl[ 
R(T )

\bigl( 
1 + b\mathrm{R}(T )(A\mathrm{R}

T  - 1)
\bigr) 
S(T )A\mathrm{S}

T (K  - CTi)
+\bigr] 

=
c0

h\mathrm{N}t

1

S(Ti)
\BbbE \BbbM 

\Biggl[ \biggl( 
1

x
K
Ct
CTi

 - 1

\biggr) +
\Biggr] \bigm| \bigm| \bigm| \bigm| \bigm| 
x=Ct

+
c7

h\mathrm{N}t

A\mathrm{R}
t

S(Ti)
\BbbE \BbbM 

\Biggl[ 
A\mathrm{R}
Ti

A\mathrm{R}
t

\biggl( 
1

x
K
Ct
CTi

 - 1

\biggr) +
\Biggr] \bigm| \bigm| \bigm| \bigm| \bigm| 
x=Ct

.

Now applying Lemma A.4 to each term yields the result.

The formula for the price process of the LPI-linked ZC bond follows in the same way.

Proposition 3.13 (limited price index bond). Assume the additive exponential-rational pric-
ing kernel with (Xt)0\leq t the time-changed Wiener process of Specification 3.7. Assume without
loss of generality that T0 \leq t < T1 < T2 < \cdot \cdot \cdot < TN \leq T . Then

P\mathrm{L}\mathrm{P}\mathrm{I}
tT = 1

h\mathrm{N}t
C\mathrm{L}\mathrm{P}\mathrm{I}
T0

\Biggl( 
c0V

11
t

N\prod 
k=2

V 1k + c5A
\mathrm{R}
t V

21
t

N\prod 
k=2

V 2k

\Biggr) 
A\mathrm{S}
t ,D
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where c0 = R(T )(1  - b\mathrm{R}(T ))S(T ), c5 = R(T )b\mathrm{R}(T )S(T ) exp (\kappa TNT (w\mathrm{R} + w\mathrm{S})) , and for k =
2, . . . , N , j = 1, 2,

V j1
t = (1 +Kc) e

\kappa tT1 (\omega 
j) + e\delta 

j1
\Phi 
\Bigl( 
 - dj1ct

\Bigr) 
 - \alpha 1c

t e\delta 
j1+\mu 1y+

1
2(1+2bj1)(\sigma 1

y)
2

\Phi 
\Bigl( 
 - dj1ct  - \sigma 1y

\Bigr) 
+ e\delta 

j1
\Phi 
\Bigl( 
 - dj1ft

\Bigr) 
 - \alpha 1f

t e\delta 
j1+\mu 1y+

1
2(1+2bj1)(\sigma 1

y)
2

\Phi 
\Bigl( 
 - dj1ft  - \sigma 1y

\Bigr) 
V jk = (1 +Kc) e

\kappa Tk - 1Tk
(\omega j) + e\delta 

jk
\Phi 
\Bigl( 
 - djkc

\Bigr) 
 - \alpha kce\delta 

jk+\mu ky+
1
2(1+2bjk)(\sigma k

y )
2

\Phi 
\Bigl( 
 - djkc  - \sigma ky

\Bigr) 
+ e\delta 

jk
\Phi 
\Bigl( 
 - djkf

\Bigr) 
 - \alpha kfe\delta 

jk+\mu ky+
1
2(1+2bjk)(\sigma k

y )
2

\Phi 
\Bigl( 
 - djkf  - \sigma ky

\Bigr) 
,

where, for k = 1, . . . , N ,

\mu kx1 = \langle w\mathrm{S}, \mu Tk  - \mu Tk - 1\vee t\rangle ,
\sigma kx1 = \langle w\mathrm{S}, (\Sigma Tk  - \Sigma Tk - 1\vee t)w\mathrm{S}\rangle ,
\mu ky =  - \langle w\mathrm{S}, \mu Tk  - \mu Tk - 1\vee t\rangle ,
\sigma kx1y =  - \langle w\mathrm{S}, (\Sigma Tk  - \Sigma Tk - 1\vee t)w\mathrm{S}\rangle ,
\omega 1 = w\mathrm{S},

\mu kx2 = \langle w\mathrm{R} + w\mathrm{S}, \mu Tk  - \mu Tk - 1\vee t\rangle ,
\sigma kx2 = \langle w\mathrm{R} + w\mathrm{S}, (\Sigma Tk  - \Sigma Tk - 1\vee t)(w\mathrm{R} + w\mathrm{S})\rangle ,
\sigma ky = \langle w\mathrm{S}, (\Sigma Tk  - \Sigma Tk - 1\vee t)w\mathrm{S}\rangle ,
\sigma kx2y =  - \langle w\mathrm{S}, (\Sigma Tk  - \Sigma Tk - 1\vee t)(w\mathrm{R} + w\mathrm{S})\rangle ,
\omega 2 = w\mathrm{S} + w\mathrm{R}

(see Specification (3.7) for the values of \mu t and \Sigma t). For j = 1, 2, k = 1, . . . , N , we have

\delta jk = ajk + bjk\mu ky +
(bjk\sigma ky )

2

2
, bjk =

\sigma kxjy

(\sigma ky )
2
, ajk = \mu kxj  - 

\sigma kxjy

(\sigma ky )
2
\mu ky  - 

1

2

\biggl( 
(\sigma kxj )

2  - 
(\sigma k

xjy
)2

(\sigma k
y )

2

\biggr) 
for k = 2, . . . , N and l = c, f

dj1lt = 1
\sigma k
y

\Bigl( 
ln\alpha 1l

t + b1j(\sigma 1y)
2 + \mu 1y

\Bigr) 
, \alpha 1l

t =
S(T1)

(1 +Kl)S(T0)

A\mathrm{S}
T0

A\mathrm{S}
t

,

djkl = 1
\sigma k
y

\Bigl( 
ln\alpha kl + bjk(\sigma ky )

2 + \mu ky

\Bigr) 
, \alpha kl =

S(Ti - 1)

(1 +Kl)S(Ti)
.

Proof. We may use the proof of Theorem 3.10 up to the expectations in (3.10), which can
be calculated by Lemma A.5 in the appendix.

3.3. Nominal products. An important nominal linear interest rate derivative is the swap
which pays the difference between a fixed rate and a floating rate. Loosely speaking we refer to
this rate as the LIBOR. Suppose we have a sequence of time points T0 < T1 < \cdot \cdot \cdot < TN , and
let \delta i = Ti - Ti - 1. A payer's swap pays \delta i(L(Ti, Ti - 1, Ti) - K) at each Ti, where L(Ti, Ti - 1, Ti)
is the LIBOR spot rate. We assume for ease of exposition that payments on the fixed leg K
and floating leg L(Ti, Ti - 1, Ti) both occur at time Ti. It follows that the price of the swap at
time t \leq T0 is given by

(3.11) V \mathrm{S}\mathrm{w}
t =

N\sum 
i=1

\delta i

\Biggl( 
\BbbE \BbbM 
t

\Biggl[ 
h\mathrm{N}Ti
h\mathrm{N}t

L(Ti, Ti - 1, Ti)

\Biggr] 
 - KP\mathrm{N}

tTi

\Biggr) 
.
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Definition 3.14 (single-curve setup). If LIBOR rates are spanned by a single system of nom-
inal bonds for all tenors, we say that we are in the single-curve setup.

We refer to [17] for an overview of single- and multicurve interest rate models. Within the
single-curve setup, we have the no-arbitrage relation

L(Ti, Ti - 1, Ti) =
1

\delta i

\Biggl( 
1

P\mathrm{N}
Ti - 1Ti

 - 1

\Biggr) 
.

It follows that

\BbbE \BbbM 
t

\Biggl[ 
h\mathrm{N}Ti
h\mathrm{N}t

L(Ti, Ti - 1, Ti)

\Biggr] 
=

1

\delta i

\Bigl( 
P\mathrm{N}
tTi - 1

 - P\mathrm{N}
tTi

\Bigr) 
,

and thus the swap price is given by

(3.12) V \mathrm{S}\mathrm{w}
t =

N\sum 
i=1

\Bigl[ 
P\mathrm{N}
tTi - 1

 - (1 + \delta iK)P\mathrm{N}
tTi

\Bigr] 
.

3.3.1. Swaptions. A swaption is an option to enter a swap at some future time. If we let
this point in time be Tk and denote the maturity of the underlying swap by TN , the swaption
price at t \leq Tk is given by (2.4) and we have

(3.13) V \mathrm{S}\mathrm{w}\mathrm{n}
t =

N

h\mathrm{N}t
\BbbE \BbbM 
t

\Bigl[ 
h\mathrm{N}Tk

\bigl( 
V \mathrm{S}\mathrm{w}
Tk

\bigr) +\Bigr] 
,

where N is the notional.

Proposition 3.15. Assume an additive exponential-rational pricing kernel model and as-
sume the single curve setup. Let V \mathrm{S}\mathrm{w}\mathrm{n}

t , as in (3.13), be the swaption price at time 0 \leq t \leq Tk.
Let Tk+1 < Tk+2 < \cdot \cdot \cdot < TN denote the payment dates of the underlying swap. Set

c0 =
N\sum 

i=k+1

\bigl( 
R(Ti - 1)

\bigl( 
1 - b\mathrm{R}(Ti - 1)

\bigr) 
S(Ti - 1) - (1 + \delta iK)R(Ti)

\bigl( 
1 - b\mathrm{R}(Ti)

\bigr) 
S(Ti)

\bigr) 
,

c1 =

N\sum 
i=k+1

\Bigl( 
R(Ti - 1)b

\mathrm{R}(Ti - 1)S(Ti - 1)e
\kappa TkTi - 1

(w\mathrm{R}+w\mathrm{S})

 - (1 + \delta iK)R(Ti)b
\mathrm{R}(Ti)S(Ti)e

\kappa TkTi
(w\mathrm{R}+w\mathrm{S})

\Bigr) 
.

If c0 < 0 and c1 < 0, then V \mathrm{S}\mathrm{w}\mathrm{n}
t = 0, and if c0 > 0 and c1 > 0, then

V \mathrm{S}\mathrm{w}\mathrm{n}
t =

1

h\mathrm{N}t
A\mathrm{S}
t

\Bigl( 
c0 +A\mathrm{R}

t c1e
\kappa tTk (w\mathrm{R}+w\mathrm{S})

\Bigr) 
.

If sign(c0) \not = sign(c1), define Y1 = \langle w\mathrm{S}, XTk\rangle , Y2 = \langle w\mathrm{R}, XTk\rangle and qt(z) = \BbbE \BbbM 
t [e

\langle z,(Y1,Y2)\rangle ]. Let
R <  - 1 if c0 < 0 and R > 0 if c0 > 0. Assume that qt( - R, 1) <\infty . Then

V \mathrm{S}\mathrm{w}\mathrm{n}
t =

| c0| 
\pi h\mathrm{N}t

\int 
\BbbR +

Re
\vargamma t(u)

(R+ iu)(1 +R+ iu)
du,

where \vargamma t(u) = \alpha  - (R+iu)qt( - (R+ iu), 1) and \alpha = | c1/c0| .
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Proof. From the nominal bond pricing formula (2.6) we have that

h\mathrm{N}TkP
\mathrm{N}
TkTi

= R(Ti)S(Ti)
\Bigl( 
A\mathrm{S}
Tk

\bigl( 
1 - b\mathrm{R}(Ti)

\bigr) 
+ b\mathrm{R}(Ti)\BbbE \BbbM 

Tk

\bigl[ 
A\mathrm{R}
TiA

\mathrm{S}
Ti

\bigr] \Bigr) 
.

Then, inserting this into the swap formula (3.12), we obtain

h\mathrm{N}TkV
\mathrm{S}\mathrm{w}
Tk

=

N\sum 
i=k+1

\biggl( 
R(Ti - 1)S(Ti - 1)

\Bigl( 
A\mathrm{S}
Tk

\bigl( 
1 - b\mathrm{R}(Ti - 1)

\bigr) 
+ b\mathrm{R}(Ti - 1)\BbbE \BbbM 

Tk

\Bigl[ 
A\mathrm{R}
Ti - 1

A\mathrm{S}
Ti - 1

\Bigr] \Bigr) 
 - (1 + \delta iK)R(Ti)S(Ti)

\Bigl( 
A\mathrm{S}
Tk

\bigl( 
1 - b\mathrm{R}(Ti)

\bigr) 
+ b\mathrm{R}(Ti)\BbbE \BbbM 

Tk

\bigl[ 
A\mathrm{R}
TiA

\mathrm{S}
Ti

\bigr] \Bigr) \biggr) 
.

We may write

(3.14) \BbbE \BbbM 
Tk

\bigl[ 
A\mathrm{R}
TiA

\mathrm{S}
Ti

\bigr] 
= A\mathrm{R}

Tk
A\mathrm{S}
Tk
e\kappa TkTi

(w\mathrm{R}+w\mathrm{S}).

Collecting terms and using the fact that A\mathrm{S}
t > 0 for any t \geq 0, we arrive at\bigl( 

h\mathrm{N}TkV
\mathrm{S}\mathrm{w}
Tk

\bigr) +
= A\mathrm{S}

Tk

\bigl( 
c0 + c1A

\mathrm{R}
Tk

\bigr) +
.

If c0 > 0 and c1 < 0, then

(3.15)
\bigl( 
c0 + c1A

\mathrm{R}
Tk

\bigr) +
= | c0| 

\bigl( 
1 - \alpha A\mathrm{R}

Tk

\bigr) +
,

where we recall that \alpha = | c1/c0| . The result follows from Lemma A.1. If c0 < 0 and c1 > 0,
then

(3.16)
\bigl( 
c0 + c1A

\mathrm{R}
Tk

\bigr) +
= | c0| 

\bigl( 
\alpha A\mathrm{R}

Tk
 - 1
\bigr) +

and the result follows from Lemma A.2. The two remaining cases are straightforward.

The independent increments property of (Xt) is only used to obtain (3.14).

Remark 3.16. Under the assumption of Specification 3.7, the counterpart to Proposi-
tion 3.15 is obtained by applying Lemma A.4 and A.5 to (3.15) and (3.16).

3.3.2. Multicurve interest rate setting. We can, at a relatively low cost, allow our model
to incorporate multicurve features. This is done by modeling (3.11) as a rational function of
state variables not fully spanned by the ones driving the nominal bonds. We model the forward
LIBOR by

L(t, Ti - 1, Ti) :=
1

h\mathrm{N}t
\BbbE \BbbM 
t

\bigl[ 
h\mathrm{N}TiL(Ti, Ti - 1, Ti)

\bigr] 
.

[8] proposes the following definition, which we shall adopt.D
ow

nl
oa

de
d 

11
/2

4/
20

 to
 1

44
.8

2.
11

4.
25

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RATIONAL MODELS FOR INFLATION-LINKED DERIVATIVES 997

Definition 3.17 (rational multicurve setup). Let

(3.17) L(t, Ti - 1, Ti) :=
L(0, Ti - 1, Ti) + b\mathrm{L}(Ti - 1, Ti)(A

\mathrm{L}
t  - 1)

h\mathrm{N}t
,

where (A\mathrm{L}
t )0\leq t is an \BbbM -martingale with A\mathrm{L}

0 = 1, and where b\mathrm{L}(\cdot , \cdot ) and L(0, \cdot , \cdot ) are determin-
istic functions.

We consider A\mathrm{L}
t = exp(\langle w\mathrm{L}, Xt\rangle ), where w\mathrm{L} is chosen such that (ALt ) is a martingale.

This is analogous to how (A\mathrm{R}
t ) and (A\mathrm{S}

t ) are modeled. Adding a multicurve dimension to the
nominal markets has no effect on any of the formulae derived for the inflation products. It
does though impact the swaption formula.

Proposition 3.18. Assume an additive exponential-rational pricing kernel model and the
multicurve setup. Consider a swaption with maturity Tk written on a swap with payments
dates Tk+1 < Tk+2 < \cdot \cdot \cdot < TN . The swaption price V \mathrm{S}\mathrm{w}\mathrm{n}

t at 0 \leq t \leq Tk is given by

(3.18) V \mathrm{S}\mathrm{w}\mathrm{n}
t =

1

h\mathrm{N}t

\int 
\BbbR n

H\mathrm{M}(x)+mTk(dx),

where mTk is the distribution of XTk and

H\mathrm{M}(x) = c0 + c\mathrm{L} exp (\langle w\mathrm{L}, x\rangle ) + c\mathrm{S} exp (\langle w\mathrm{S}, x\rangle ) + cSR exp (\langle w\mathrm{R} + w\mathrm{S}, x\rangle ) .

Furthermore,

c0 =

N\sum 
i=k+1

\delta i
\bigl( 
L(0, Ti - 1, Ti) - b\mathrm{L}(Ti - 1, Ti)

\bigr) 
, c\mathrm{L} =

N\sum 
i=k+1

\delta ib
\mathrm{L}(Ti - 1, Ti),

c\mathrm{S} =  - 
N\sum 

i=k+1

\delta iKR(Ti)S(Ti)
\bigl( 
1 - b\mathrm{R}(Ti)

\bigr) 
, c\mathrm{S}\mathrm{R} =  - 

N\sum 
i=k+1

\delta iKR(Ti)b
\mathrm{R}(Ti)S(Ti)e

\kappa TkTi
(w\mathrm{R}+w\mathrm{S}).

Proof. Using (3.17) we may write

h\mathrm{N}TkV
\mathrm{S}\mathrm{w}
Tk

=
N\sum 

i=k+1

\delta i

\biggl( 
L(0, Ti - 1, Ti) + b\mathrm{L}(Ti - 1, Ti)(A

\mathrm{L}
Tk

 - 1)

 - KR(Ti)S(Ti)
\Bigl( 
A\mathrm{S}
Tk

\bigl( 
1 - b\mathrm{R}(Ti)

\bigr) 
+ b\mathrm{R}(Ti)\BbbE \BbbM 

Tk

\bigl[ 
A\mathrm{R}
TiA

\mathrm{S}
Ti

\bigr] \Bigr) \biggr) 
.

By collecting the terms, the result follows.

Note, analogous to the single-curve setup, the independent increments of (Xt) are only
used to evaluate \BbbE \BbbM 

Tk
[A\mathrm{R}

Ti
A\mathrm{S}
Ti
]. In our applications, since (Xt) is bivariate, we may apply the

two-dimensional cosine method of [42]. The most immediate method for handling (3.18) in
higher dimensions is in the style of [45], where H(x)+ \approx H(x)1\{ G\} with G = \{ H(x) \geq 0\} 
being exact. If G = \{ \langle \omega ,XTk\rangle > \alpha \} , this leads to a one-dimensional integral (see [30] and
[9]). If G = \{ \beta 1 exp(\langle \omega 1, x\rangle ) + \beta 2 exp(\langle \omega 2, x\rangle ) > \alpha \} the inversion formula becomes a two-
dimensional [25]-type formula.D
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Figure 1. Left: The initial curves. Right: Convexity corrections for YoY swap rates. January 1, 2015.

4. Calibration examples. In this section, we show the calibration properties of the models
on real data. We consider EUR data from Bloomberg from January 1, 2015. The necessary
data consists of OIS zero yields constructed from EONIA overnight indexed swaps, LIBOR
discrete curves based on EURIBOR, and a term structure of ZC forward rates, as well as YoY
cap and floor prices and EURIBOR swaptions. There is no LPI traded on EUR data. The
OIS and EURIBOR curves are constructed directly in the Bloomberg system. We then set the
nominal curve equal to the OIS curve, and the initial real (or equivalently the initial inflation-
linked) curve is implied from the OIS curve and zero-coupon inflation forward rate using the
methodology described in section 2.3. The prices for YoY caps and floors are available to us
for maturities 2, 5, 7, 10, 12, 15, 20, and 30 years. The strikes for the floors range from -1\%
to 3\% and caplets from 1\% to 6\%. Quotes for YoY swap rates are not available to us, but the
overlap in strikes for YoY caps and floors allows us to use put-call (cap-floor) parity to imply
YoY swap rates consistent with the option prices.

In Figure 1, all the curves are plotted on the left-hand side. The real curve is plotted as
zero-coupon rates, and we note that on this day, there is a consistently negative real curve
with a widening gap to the nominal as the maturity increases. The 3m EURIBOR and OIS
curve are plotted as discrete forward rates with 3m increments to be directly comparable, and
we can note a significant spread between the two curves in the short and most liquid end of the
maturity spectrum, which warrants the use of a multicurve model to price nominal products.
Finally, we observe that the option-implied YoY swap rates are close to the ZC swap rates.
This relation implies only small levels of the convexity correction as seen directly in the right-
hand side of Figure 1, where the convexity correction, as described in section 2.3, is plotted
for different swap lengths. An implied lognormal volatility surface is constructed from the
prices of these options (selecting out-of-the-money options where available) using a geometric
Brownian motion model for the CPI index as described in section 2.2. Two of the prices
for the two year maturity are identically zero and are thus removed from the dataset. We
find the at-the-money implied volatility of the YoY cap using the piecewise constant Hermite
interpolation. The surface is plotted in the left-hand side of Figure 2, and one can see a
significant volatility smile, but also volatility levels that are quite low, around only 1.5--3\%.D
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Figure 2. On the left: Lognormal implied volatility surface. On the right: Implied normal (Bachelier)
volatility in basis points for swaptions on 1Y swaps. The data is from January 1, 2015.

Finally we consider a EURIBOR term structure of swaptions with maturities ranging from
3m, 6m, 1Y, 2Y, 3Y, 5Y, 7Y, 10Y, 15Y, 20Y, to 30Y. Since the focus of the paper is on
the inflation component we limit our modeling to one curve---the 3m tenor curve. We thus
calibrate only to swaptions with a one-year underlying swap length, since this swaption, by
EUR market convention, contains payments involving only 3m EURIBOR. We refer to [8] for a
more extensive calibration involving matching the volatility of both the 3m and 6m EURIBOR
curves in a rational model resembling this one, but without the inflation component. Due to
the lognormal assumption for swap rates precluding negative interest rates, it is now customary
to quote swaption prices in normal or Bachelier implied volatility as opposed to lognormal.
This is done on the right panel in Figure 2. The data is for January 1, 2015, and we calibrate
directly to these volatilities.

Very similar to Specification 3.6, our model setup is the following:

Xt =
\Bigl( 
X\mathrm{R}
t + \mu \mathrm{R}(t), X\mathrm{S}

\tau \mathrm{S}(t) + \mu \mathrm{S}(t), \mu \mathrm{L}(t)
\Bigr) 
,

where \mu i(t) for i = L,R, S are deterministic martingalizing functions and thus the model
is a two factor model. We assume that (X\mathrm{R}

t , X
\mathrm{S}
t ) is a two-dimensional L\'evy process with

independent marginals and that \tau \mathrm{S}(t) is a deterministic time-change. The two independent
L\'evy processes are defined by their Laplace exponents

\kappa i(z) = ln
\Bigl( 
\BbbE \BbbM 
\Bigl[ 
ezX

i
1

\Bigr] \Bigr) 
, (i = R,S),

at t = 1. Thus we are in the additive exponential-rational pricing kernel setup with

A\mathrm{R}
t = e\langle w\mathrm{R},Xt\rangle , A\mathrm{S}

t = e\langle w\mathrm{S},Xt\rangle , A\mathrm{L}
t = e\langle w\mathrm{L},Xt\rangle .

We set w\mathrm{S} = (0, 1, 0), w\mathrm{R} = (a\mathrm{R}, ba\mathrm{R}, 0), and w\mathrm{L} = a\mathrm{L}w\mathrm{R} + (0, 0, 1). This means that the b
parameter determines the dependence between the (A\mathrm{R}

t ) and (A\mathrm{S}
t ) and it furthermore means

that the randomness in (A\mathrm{L}
t ) is merely a (log)-linear transformation of the randomness inD

ow
nl

oa
de

d 
11

/2
4/

20
 to

 1
44

.8
2.

11
4.

25
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1000 H. T. DAM, A. MACRINA, D. SKOVMAND, AND D. SLOTH

(A\mathrm{R}
t ). As in (3.2), when w\mathrm{R}, w\mathrm{S}, w\mathrm{L} \in E(X) we can solve for the martingalizing drifts to

obtain

\mu \mathrm{S}(t) = - \tau \mathrm{S}(t)\kappa \mathrm{S}(1), \mu \mathrm{R}(t) =  - \tau \mathrm{S}(t)
\biggl( 
\kappa \mathrm{S}(a\mathrm{R}b)

a\mathrm{R}
 - b\kappa \mathrm{S}(1)

\biggr) 
 - t\kappa \mathrm{R}(a\mathrm{R}),

\mu \mathrm{L}(t) = - \tau \mathrm{S}(t) (\kappa \mathrm{S}(a\mathrm{L}a\mathrm{R}b) - a\mathrm{L}\kappa \mathrm{S}(a\mathrm{R}b)) - t (\kappa \mathrm{R}(a\mathrm{L}a\mathrm{R}) - a\mathrm{L}\kappa \mathrm{R}(a\mathrm{R})) .

We set the deterministic time-change \tau \mathrm{S}(t) =
\int t
0 a(s) ds, where a(t) is a piecewise constant

function

a(t) = ak, t \in (Tk - 1, Tk].

Here \{ T0, T1, . . . , T8\} = \{ 0, 2, 5, 7, 10, 12, 15, 20, 30\} is the set of maturities quoted in the YoY
option market. We calibrate the constants a1, . . . , a8 starting from the smallest to the largest
maturity by matching to the YoY cap/floor volatility surface allowing a perfect fit to at least
one strike per maturity. The dependence structure between the R and S component is fully
determined by the parameter b, thus reducing the model to a two-factor setup where the
calculated expressions for YoY caplets, YoY swap prices, and swaption prices can be applied
directly without approximation.

The nominal and the real curve are fitted by construction, but fitting the term-structure of
YoY swap rates is less straightforward, since the swap rate depends on the full parameter set of
the model (see (2.10)). We choose to calibrate the b\mathrm{R}(t) function to this term structure. There
is enough flexibility in the b\mathrm{R}(t) function to fit the YoY swap rates without error, but direct
calibration results in a quite volatile b\mathrm{R}(t) function, which is hardly desirable. Therefore we
instead fit an eight-knot Hermite polynomial with a nonsmoothness penalty---a similar choice
is made in [18]---and we find that the loss of accuracy when doing this is insignificant. The
flexible shape means that the correlation parameter b and volatility parameter a\mathrm{R} in practice
cannot be identified simultaneously with b\mathrm{R}(t) from the YoY swap curve. We solve this issue
by simply fixing the b and the a\mathrm{R} parameters before calibration. In practice one needs only
to avoid setting these parameters too low because the convexity correction becomes zero, by
construction, if b = 0 or a\mathrm{R} = 0. In both of our calibration examples we fix these values at
b = 30 and a\mathrm{R} = 0.25.

Since swap rates are determined not only by the b\mathrm{R}(t) function, but the full parameter set of
the model, one cannot calibrate b\mathrm{R}(t) independently of a(t) and the parameters determining
the (Xt) process. On the other hand, YoY cap and floor prices are primarily affected by
the (A\mathrm{S}

t ) component and thus not very sensitive to the changes in values of b\mathrm{R}(t) unless the
correlation between (X\mathrm{R}

t ) and (X\mathrm{S}
t ) is very high, which means this dual identification problem

is in fact easily solved in practice. The overall calibration algorithm can be reduced to the
following:

1. Set b\mathrm{R}(t) = 1, and calibrate a1, . . . , a8 and the parameters of determining the law of
(X\mathrm{S}

t ) to YoY cap/floor implied volatilities.
2. Calibrate b\mathrm{R}(t) to the curve of YoY swap rates rates using least squares minimization

with a penalty for b\mathrm{R}(t) /\in (0, 1).
3. Repeat step 1 using instead the updated values of b\mathrm{R}(t).
4. Calibrate b\mathrm{L}(\cdot , \cdot ) to swaption prices.D
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The swaption calibration is done by calibrating the b\mathrm{L}(\cdot , \cdot ) function sequentially. This means
that the a\mathrm{L} parameter, which also determines overall variance, cannot be calibrated at the
same time and we therefore fix it at a\mathrm{L} = 1.3 below. We parametrize the b\mathrm{L}(\cdot , \cdot ) function by
setting b\mathrm{L}(t, t + 3m) = P\mathrm{N}(0, t)L(0, t, t + 3m) + \~b\mathrm{L}(t). The function \~b\mathrm{L}(t) is then piecewise
constant in relation to the swaption maturities we can observe, i.e.,

\~b\mathrm{L}(t) = \~bk, t \in (Tk, Tk+1]

with \{ T0, T1, . . . , T11\} = \{ 3m, 6m, 1Y, 2Y, 3Y, 5Y, 7Y, 10Y, 15Y, 20Y, 30Y, 31Y \} .

Gaussian example. We first assume that (X\mathrm{R}
t ) and (X\mathrm{S}

t ) are independent standard Brown-
ian motions with Laplace exponent at t = 1 \kappa \mathrm{R}(z) = \kappa \mathrm{S}(z) = 1

2z
2, i.e., in the spirit of

Specification 3.7. We would not expect a Gaussian or log-normal model to be well suited
to reproduce implied volatility smiles, but we nevertheless believe that a Gaussian setup is
illustrative as a benchmark case of study.

As discussed above, we first fix the b = 30 and a\mathrm{R} = 0.25 and then proceed with the
calibration algorithm described above. In step 1 we choose to calibrate a1, . . . , a8 to at-the-
money implied volatility. This is done sequentially starting with calibrating a1 to the two-year
YoY implied volatility and a2 to the five-year YoY implied volatility, and so forth. We note
that the value of a1 affects not just the two-year maturity but all YoY option maturities
(larger than two years) since we are calibrating directly to caps, which have annual payments
every year until maturity. Thus the sequential nature of the calibration of these parameters
is key.

When fitting to swaptions we fix a\mathrm{L} = 1.3 as explained above. Then we sequentially fit the
b\mathrm{L}(t) function directly to swaption normal implied volatility starting from the three-month
maturity up to the thirty-year maturity. The model is made to fit at-the-money, swaptions
only, and the results are plotted in the lower right quadrant of Figure 3.

NIG example. To produce a model more in line with the volatility smile, we instead
assume that (X\mathrm{R}

t , X
\mathrm{S}
t ) are independent normal inverse Gaussian (NIG) processes (see, for

example, [1]). We have that the Laplace exponent at t = 1 is given by

\kappa i(z) =  - \nu i
\biggl( \sqrt{} 

\nu 2i  - 2z\theta i  - z2\sigma 2i  - \nu i

\biggr) 
, i = R,S,

expressed in terms of the parametrization (\nu i, \theta i, \sigma i), where \nu i, \sigma i > 0 and \theta i \in \BbbR . Since we

want to control variance primarily using the time-change \tau \mathrm{S}(t), we set \sigma i =
\sqrt{} 

1 - \theta 2i /\nu 
2
i so

that X\mathrm{R}
1 and X\mathrm{S}

1 both have a variance of 1. Since we are only calibrating to the YoY cap/floor
smile the full distribution of both marginals in (X\mathrm{R}

t , X
\mathrm{S}
t ) is not identified by the data. For

simplicity, we also set \nu \mathrm{S} = \nu \mathrm{R} and \theta \mathrm{S} = \theta \mathrm{R}. As in the Gaussian case we prefix b = 30
and a\mathrm{R} = 0.25. In the NIG case we split step 1 in the calibration process by first fixing
the rate of time at a constant, i.e., ai = a, and then calibrate a, \nu \mathrm{S}, \theta \mathrm{S} to the whole YoY
cap/floor implied volatility surface using the lsqnonlin algorithm in MATLAB. Thereafter,
the individual a1, . . . , a8 are calibrated sequentially such that the model fits the at-the-money
implied volatilities without error. The rest of the algorithm is followed exactly like in the
Gaussian case.D
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Figure 3. Upper left: At-the-money lognormal implied volatility of YoY caps model vs market using data
from January 1, 2015. Upper right: YoY cap/floor implied volatility. Lower left: YoY option implied swap
rates, market vs (Gaussian) model. Lower right: At-the-money normal swaption implied volatility. January 1,
2015.

The fit to YoY swap rates is indistinguishable from the graph in Figure 3 and is not
plotted again. We set a\mathrm{L} = 1.3 and fit the b\mathrm{L}(t) function to the same dataset of swaptions on
one-year underlying swaps. The resulting fit is again indistinguishable from the fit in Figure 3
and the calibrated b\mathrm{L}(t) function is available upon request. In Figure 4, we plot model vs
market volatility smiles for select maturities. We have only used one time-dependent scaling,
so the model fits the at-the-money level without error. The remaining option prices are in
principle fitted using only two parameters \nu \mathrm{S} and \theta \mathrm{S}. Thus we would not expect a perfect fit
for all maturities. In general, any L\'evy process is well known to exhibit a flattening smile
as maturities are increased, which often results in a slightly too steep smile in the short end
and too flat in the long end. These problems could be resolved by introducing further time-
inhomogeneity or by applying stochastic time-changes, but with the virtue of model simplicity
taken into account, we view the calibrated setup as satisfactory.

5. Conclusions. This paper focuses primarily on the theoretical development of stochas-
tic, rational term-structure models using pricing kernels suitable for the pricing of nominal
and inflation-linked financial instruments. We demonstrate how this model class can be con-
structed with a view toward calibration to market data. We furthermore show how the models
extend the classical short rate approach to inflation modeling. We expect future research to be
focused more on the numerics of risk management within the model as well as calibration to
a broader set of market instruments such as joint calibration of year-on-year and zero-coupon
caps, as well as including time-series information in the calibration problem.
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Figure 4. Lognormal implied volatility for YoY cap/floors model vs market using data from January 1, 2015.

Appendix A. Lemmas. This section contains a number of lemmas used for the derivation
of the formulae for option pricing.

Lemma A.1. Let qt(z) = \BbbE t[exp(\langle z, Y \rangle )] be the moment generating function of Y = [Y1, Y2],
a random vector with conditional distribution mt. Assume R > 0, q( - R, 1) <\infty , and \alpha > 0.
Then,

\BbbE t
\bigl[ 
eY2(1 - \alpha eY1)+

\bigr] 
=

1

\pi 

\int 
\BbbR +

Re
\alpha  - (R+iu)qt( - (R+ iu), 1)

(R+ iu)(1 +R+ iu)
du.

We omit the proof of this lemma since it is standard.

Lemma A.2. Let qt(z) = \BbbE t[exp(\langle z, Y \rangle )] be the moment generating function of Y = [Y1, Y2],
a random vector with conditional distribution mt. Assume R <  - 1, qt( - R, 1) < \infty , and
\alpha > 0. Then,

\BbbE t
\bigl[ 
eY2(\alpha eY1  - 1)+

\bigr] 
=

1

\pi 

\int 
\BbbR +

Re
\alpha  - (R+iu)qt( - (R+ iu), 1)

(R+ iu)(1 +R+ iu)
du.

Lemma A.3. Let qt(z) = \BbbE t[exp(\langle z, Y \rangle )] be the conditional moment generating function of
Y = [Y1, Y2, Y3], a random vector with conditional distribution mt. Assume R > 0 and thatD
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qt( - R, 1, 1) + qt( - R, 1, 0) <\infty . Then

\BbbE t
\bigl[ 
(1 + eY3)eY2(1 - eY1)+

\bigr] 
=

1

\pi 

\int 
\BbbR +

Re
qt( - (R+ iu), 1, 0) + qt( - (R+ iu), 1, 1)

(R+ iu)(1 +R+ iu)
du.

Proof. We write

\BbbE t
\bigl[ 
(1 + eY3)eY2(1 - eY1)+

\bigr] 
= \BbbE t

\bigl[ 
eY2(1 - eY1)+

\bigr] 
+ \BbbE t

\bigl[ 
eY3+Y2(1 - eY1)+

\bigr] 
and apply Lemma A.1 to each term.

Lemma A.4. Let X \sim N(\mu x, \sigma 
2
x) and Y \sim N(\mu y, \sigma 

2
y) with Cov[X,Y ] = \sigma xy and assume

that \alpha > 0. Then

\BbbE 
\bigl[ 
eX(\alpha eY  - 1)+

\bigr] 
= \alpha e\delta +\mu y+

1
2(1+2b)\sigma 2

yN(d+ \sigma y) - e\delta N(d),

where a = \mu x  - \sigma xy
\sigma 2
y
\mu y + (\sigma 2x  - \sigma 2xy/\sigma 

2
y)/2, b = \sigma xy/\sigma 

2
y, \delta = a + b\mu y + (b\sigma y)

2/2, and d =
1
\sigma y
(ln\alpha + b\sigma 2y + \mu y).

Proof. By conditional of normals \BbbE [eX | Y ] = ea+bY . Noting that  - (x - \mu )2
2\sigma 2 + bx = b\mu +

b2\sigma 2

2  - (x - \mu  - b\sigma 2)2

2\sigma 2 , the tower property yields

\BbbE 
\bigl[ 
eX(\alpha eY  - 1)+

\bigr] 
= \BbbE 

\biggl[ 
ea+bY (\alpha eY  - 1)1

\{ Y\geq \mathrm{l}\mathrm{n}
1
\alpha \} 

\biggr] 
= \alpha e\delta +\mu y+

1
2(1+2b)\sigma 2

yN(d+ \sigma y) - e\delta N(d),

as sought.

Lemma A.5. Let X,Y, and \alpha be as in Lemma A.4. Then

\BbbE 
\bigl[ 
eX(1 - \alpha eY )+

\bigr] 
= e\delta N( - d) - \alpha e\delta +\mu y+

1
2(1+2b)\sigma 2

yN ( - d - \sigma y) ,

where a, b, \delta , and d are as in Lemma A.4.

Proof. The proof is the same as Lemma A.4.
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