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Abstract

This thesis uses data-driven techniques to analyse and assess both point 

and probability forecasts within a prequential framework. Point forecasts 

are assessed using recursive residuals. Examination of the properties of the 

recursive residual found them to be unique to this residual. Recursive resid­

uals for the hidden state of HMM are also defined by taking the difference 

between the one step ahead forecast and the forecast’s filtered update. The 

quality of forecasts generated from different models can be assessed by com­

paring the information content in their corresponding residuals. When faced 

with model misspecification it is shown how this residual can be modelled to 

correct this misspecification, thereby improving forecasts. It is also shown 

how the residual content can be used to judge the predictive sufficiency of 

alternative forecasting methods. Using the theory of probability forecasting, 

the technique of forecasting assessment by calibration is extended to HMM’s 

to assess how well the one step ahead forecast is explained by its filtered 

update. A test statistic to test the empirical calibration of the forecasts is 

also defined and applied to the real world problem of CpG island detection in 

Human DNA sequences. The distribution of the test statistic is investigated 

using a prequential frame of reference and is found to be N { 0 ,1). Calibration 

of HMMs is also examined using smoothed predictions and cross-validation 

forecasts. A test statistic is defined for this scenario and the its distribu­

tion is examined using a cross-validation frame of reference. A prequential 

estimation algorithm for HMMs is also developed.
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Chapter 1

Introduction

This thesis will address the problems of forecasting improvement when faced 

with model inadequacy and the problem of forecasting assessment in an 

information-restricted situation represented by hidden Markov Modelling.

The motivation behind this work draws heavily on the distinction be­

tween statistical models and the physical reality these models attem pt to 

represent. A model is proposed in the hope of providing an explanation for a 

real world problem: a coherent statistical representation based on the mod­

eller’s subjective interpretation of the data generating system. Since the true 

mechanics of a data source are not known, the only link between the physi­

cal world and the statistical world used to represent it is the data observed. 

Based on this, the focus of this thesis is on the use of data-driven techniques 

in statistical analysis as a method of assessing and improving forecasts.

The purpose of statistical data analysis, as it is presented here, is to 

provide a valid explanation for a sequence of observations in the hope of 

producing the best possible forecasts for uncertain future outcomes of a real 

world problem. In turn, the forecasts themselves are assessed by their empir­

ical success at explaining their forecast events. The statistical methods used
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will be judged by the quality of the forecasts they generate at each inter­

mediate point in time for the next observation, based on analysis of earlier 

outcomes. In this thesis, both point forecasts and probability forecasts are 

constructed and analysed within the prequential framework (Dawid, 1984), 

using the formalisms of probability forecasting (Dawid, 1986).

The prequential approach to data analysis (Dawid, 1984) is customised 

for the data-driven analysis of real world problems and the sources that emit 

them (Dawid, 1992). Therefore, the prequential approach, being an essen­

tially data analytic approach, is adopted as the general theoretical framework 

for the concepts developed.

This thesis is dedicated to the development of new empirical methods 

for the analysis of data and the assessment of forecasts, and the extension 

of already existing methods of empirical assessment in various applications, 

hidden Markov models in particular (refer to section 1.1). In the case when 

point forecasts are made, the data are analysed by defining and using recur­

sive residuals. In the case of probability forecasts, the field of probability 

forecasting has developed a rich literature of probability forecasting assess­

ment techniques, the primary focus of which is calibration (explained in sec­

tion 1.3). Here, these calibration techniques are extended to applications in 

hidden Markov models.

1.1 Hidden Markov Models

Hidden Markov Models (HMMs) are used to represent data in which there 

are sequences of two or more variables linked together by a causality rule. 

Specifically, the data sequence is believed to consist of noisy or obscured 

observations emitted from a higher level unobserved variable.



Researchers in many different fields have found treating a sequence of 

observations, as part of a causal formation such as the one described above 

to be very useful. Although these modelling techniques have been in use 

in various fields of engineering for some time now, interest was rekindled 

with Rabiner’s 1989 article on HMMs. Since then HMM modelling has been 

applied in variety of different fields. In econometrics, Hamilton (1988, 1989, 

1990, 1993), Harvey (1993), and McCullock and Tsay (1994) use switching- 

state space models to model data where the dynamics of an observed time 

series are considered to change according to a non-observed Markov chain. 

Hamilton (1989) and Kitagawa (1987) have both developed variations of 

filtering and smoothing algorithms for this sort of model. HMM modelling 

has also be applied extensively in the fields of computational biology (Krogh 

1994, 1998) and speech and pattern recognition (Jaung and Rabiner,1991). 

A review of the use of HMMs in protein and DNA sequencing can be found 

in Biological Sequence Analysis by Durbin et al (1998). Churchill (1992) 

and Crowley et al (1997) also give examples of other HMM applications in 

genetics.

The unobserved variables can be modelled using any number of different 

statistical techniques. Linear dynamic models (Harrison and West, 1997), 

factor analysis and principle component analysis (Everitt, 1984, Hinton et 

al, 1995), and hidden Markov models (Rabiner, 1990) are examples of some 

of the various techniques used. Much work has been done showing the close 

correspondence of these different methods and how they relate to other sta­

tistical concepts. Roweis and Ghahramani (1998) show how these techniques 

can be expressed as variants of one general underlying model. In Smyth et 

al (1997) HMMs are explored within the general framework of probabilistic 

independence networks and Ghahramani (1997) shows how HMMs can be



viewed as examples of a dynamic Bayesian network.

Throughout the thesis, the term HMM will be used as a general term to 

encompass all these modelling techniques.

1.2 Prequential Analysis

The prequential approach to statistics (Dawid, 1984, 1996) is characterised 

by three main features:

1. The formalisation of the procedure involved in making forecasts for the

future and assessing these methods on their empirical success at this

task.

2. Offering suitable measures of uncertainty for unknown events where 

uncertainty is expressed in the form of a numerical probability.

3. Considering the sequential nature of the forecasting task.

The basis of this approach to statistics is the “appropriate manipulation of 

the data currently available so as to produce a specific probability distribution 

for the next observation” (Dawid, 1985) under the supposition that the data 

arrive in sequence. The prequential method can also accommodate situations 

which only require a point forecast or a decision problem. At any time z, a 

probability distribution, P^+i, is formulated expressing uncertainty about the 

outcome of the next observation, in the light of the outcomes observed 

so far. In the case when a point forecast is needed, this formulation can be 

applied to solve the problem at hand. The term prequential refers to the 

combination of probability forecasting with sequential prediction.

The general framework of prequential analysis requires that statistical 

methods be judged solely by the forecasts they generate. With this in mind.



estimation is considered only in its capacity to improve the predictive perfor­

mance of the prequential forecasts generated. The success of the estimation 

task is determined by the quality of the forecasts it helped to produce. The 

predictive performance is assessed through the comparison of the forecasts 

with their outcomes.

1.3 Probability forecasting and calibration

The development of probability forecasting as a theoretical discipline came 

about through the work of meteorologists in their use of probabilistic weather 

forecasting. The uncertain nature of the weather requires forecasters to 

quantify their degree of belief about the outcome of rain (Probability of 

Precipitation) on any given day. Each day a weather forecaster issues a PoP 

for the next day using all the information available. Come the next day, the 

outcome of yesterday’s uncertain event is now known. Adding this newly ac­

quired information to the forecaster’s information base, the forecaster again 

repeats the task of issuing a PoP for the following day. The demands placed 

upon weather forecasters in issuing daily PoPs has motivated much of the 

development of the theory and practice of probability forecasting. A detailed 

review of probability forecasting is given in Dawid (1983). Of primary inter­

est here are the contributions made in the development of methods for the 

empirical assessment and comparison of a sequence of forecasts in the light 

of the outcomes of the forecast events.

Further developments in the theory of probability forecasting were made 

by Dawid (1983, 1986). The basis of the prequential approach to statis­

tics, stimulated by the applications in weather forecasting, stems from the 

methodology of probability forecasting applications in meteorology.



In the prequential framework, the probability forecasts issued are con­

structed from what is called a prequential forecasting system. Let a  =  

(tti, 02 , . . . )  denote the sequential outcomes of uncertain events A =  (Ai, A 2 , . . .) 

where Ai = 1 the event occurs and =  0 if the event does not occur 

(i > 1). In light of the observed outcomes at time z, a probability, 

must be assigned to the outcome of the next event A^+i. Any method of 

constructing sequential forecasts for every i and =  (oi, 02 , . . . ,  in this 

way is called a forecasting system Dawid (1985). A prequential forecasting 

system is defined by a rule which associates a choice of for every i and 

with any possible outcome a^) — (ai, 02 , . . . ,  Gj) of =  ( ^ 1, ^ 2, . . . ,  A^).

Probability forecasts are assessed by determining how successful a fore­

casting system, F , which constructs the sequence of forecasts, is in explaining 

the sequence of outcomes. In the case when Ai € {0, 1} is binary, the crite­

rion chosen to judge probability forecasts is calibration. In the meteorology 

literature calibration is referred to as validity (Miller, 1962) or reliability 

(Murphy, 1973). Lichtenstein et al (1982) give a review of the literature on 

the application of calibration in both meteorology and other fields.

A forecast is said to be well calibrated if, among the times for which a 

forecaster assigns a probability p for an event occurring, the long-run relative 

frequency of that event is also p. As discussed in Dawid (1986) and DeGroot 

and Fienberg (1982), a well calibrated forecasting system does not imply that 

the forecasts are good. This is because calibration assesses only one aspect 

of a forecasting system. The assessment of a probability forecast requires 

the blending of two separate tasks, sorting and labelling (Sanders, 1963, and 

Dawid, 1986). Sorting is the division of the sequence of events into disjoint 

subsequences such that all the events in any given subsequence are equally 

probable. The quality of the sorting process is referred to as resolution.



The second task, labelling, refers to the assigning of a numerical value to 

the common probability in each subsequence. Calibration only addresses a 

forecasting system’s labelling ability.

In DeGroot and Fienberg (1982, 1983), sorting is referred to as refinement. 

They address the issue of inadequate well-calibrated forecasters and show 

how some well-calibrated forecasters can be deemed superior to others by 

comparing their refinement.

The forecasting assessment criterion of calibration is formalised in Dawid 

(1982) with the presentation of a general calibration theorem. Supposing that 

the forecasts arise sequentially from a joint probability distribution P , this 

criterion requires that, for an arbitrarily selected test set (where the selection 

process is admissible), the difference between the proportion of times in which 

an event in question occurs and the average forecast probability for those 

times tends to zero, as the number of forecasts considered in the test set 

approaches infinity. Any forecast system F  which meets this criterion for the 

selected test set is said to be completely calibrated, thereby deeming F  an 

empirically valid explanation for the sequence of outcomes. A sequence of 

forecasts which satisfies this criterion of complete calibration has both perfect 

calibration and maximum attainable resolution. As such, it can be shown 

that if, by the complete calibration criterion, two forecasting systems, F^ 

and are considered to be valid explanations for a sequence of outcomes, 

a, with corresponding forecast sequences and p^, then pj — pf — > 0 as 

i — )■ oo (Dawid, 1985). The calibration criterion satisfies the meta criteria 

laid out by Dawid (1985) for the selection of an appropriate criterion for the 

assessment of the empirical validity of a forecasting system.

More recent applications of the calibration criterion can be found in Kling 

and Bessler (1989) and Bessler and Kling (1991).
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1.4 Outline of Thesis

In a situation when point forecasts are made, recursive residuals (Brown et 

al, 1975) are used as the data-driven apparatus of the forecasting assessment 

techniques. Hadi and Son (1989) examine some of the distinctive properties 

of the recursive residual. In Chapter 2, it is shown how the properties of a 

recursive residual are, in fact, unique to this residual alone, determining its 

structure.

Although recursive residuals are commonly used as a diagnostic mecha­

nism (Harvey, 1990), Lumsdaine and Ng (1999) have shown that they can 

also be used to improve the performance of linear models by adding cumu­

lative functions of recursive residuals to the regression equation. A variation 

of this concept is explored in Chapter 3 where the recursive residuals of a 

misspecified linear model are used in the formulation of a new model. Ex­

amination of the residuals of the new model show that the information lost 

through misspecification is regained by modelling the residuals in this way 

which produces the same results as a model that has been correctly specified. 

Chapter 3 also shows how recursive residuals can be defined and applied in 

Bayesian scenario.

Recursive residual applications are extended to the scope of HMMs in 

Chapter 4 where the residuals are defined and analysed for the unobserved 

state of various hidden Markov models. Using these definitions it is possible 

to show how a sufficient statistic for such models can be constructed and 

applied.

Probability forecasts are often assessed using calibration (Dawid, 1982). 

Dawid (1982, 1985) proposed the criterion of complete calibration forjudging 

the empirical validity of probability forecasts. The basic calibration concepts 

and Dawid’s complete calibration criterion are extended in Chapter 5 to ap­



plications in HMM configurations. Using the real world problem of CpG 

island detection in human DNA sequences, Chapter 6 illustrates how cali­

bration can be used in the assessment of forecasts generated from HMMs, 

and presents a test statistic for testing the empirical validity of such fore­

casts as set out by the complete calibration criterion. The role of estimation 

in improving forecasts is examined in Chapter 7 using the DNA sequence 

data. A prequential online estimation method for HMMs is given and the 

calibration of forecasts constructed from parameter values estimated using 

both this method and the more common Baum-Welch (Rabiner, 1989) esti­

mation algorithm are scrutinised. The calibration criterion is also examined 

outside the prequential framework in Chapter 8 using smoothed predictions 

and cross-validation forecast assessment.

1.5 Basic Concepts

Described below are two concepts that are used frequently throughout the 

thesis.

1.5.1 Martingales

Let (Wi, %2, Â 3, • • •) be a sequence with finite mean. The sequence is

called a martingale if the conditional expectation of Xi+i given the values

X i , X 2 , i s  equal to

E  { X i + i \ X i ,  X 2 t  ■ ■,  X i )  =  X i .  (1 .1)

A martingale can also be defined in the following, more general, way. Let A 

be a cr-field such that A Ç Then it is required that Xi  be ydj-measurable 

for all i, and

E(X ,+i|A) =  % .̂ (1.2)

9



In such a case, (%*) is said to be a martingale adapted to the filtration (A). 

Then (1.1) is recovered when ft is the cr-field generated by ( Xi , . . .  ,Xi).

Let Si = X i  and let Si = Xi — X^_i for all i > 2. Then the constraints 

(1.1) and (1.2) can be written as

E  ( f t+ i|f t ,  52, . . . ,  f t)  =  0

and,

E ( f t + i | f t ) = 0 ,  (2 =  1,2, . . . ) ,

and the sequence of variables (5%), for 2 =  2, 3, . . . ,  is said to form a martingale 

difference sequence with respect to (ft).

T h e o rem  1.1 Let the series {Xi) be a martingale difference sequence, so 

that E{Xi^ i \X\ ,  X 2 , . . . ,  Xi) — 0 (2 ^  1), and define f t  =  X i  -I-X2 +  • • • TX%. 

f t  Q, (2 > 1), is a predictable sequence of random variables such that Ci < 

Ü2 < . . .  — > 00 and
0 0

Z  < 00 (1.3)
k=l

hold with probability one, then with probability one

c-^Ui 0, (1.4)

and the variables

= (1.5)

converge to zero.

The proof can be found in Feller (1971, pg. 238). The sequence (ft) is a 

martingale sequence and E{Y^)  is bounded by the series in (1.3). By the Mar­

tingale Convergence Theorem, the sequence (ft) converges with probability 

one and condition (1.3) holds true for each point in the sample space where 

(ft) converges. From Kronecker’s lemma (Feller, 1971) the convergence of 

E L i  Cfc implies that E L i   ̂ 0 (i.e c^^Si — 0).

10



1.5.2 Conditional Independence

Let y ,  and Z  denote discrete random variables with a joint distribution 

P. The conditional distribution of X  given Y  = y, where y is any possible 

outcome of Y  subject to P{Y  =  y) ^  0, is denoted by P { X \ Y  = y). Two 

random variables X  and Y  are said to be marginally independent, denoted 

by X IL T , if

p ( x | y  =  3/) =  f  (X) ,

for all possible values y for Y  meaning that the probability of X  is indepen­

dent of the outcome of Y . X  is said to be conditionally independent of Y  

given y , denoted as XALY\Z  if, for any possible values y and z for Y  and %,

P ( % | y  =  ? / , Z  =  z )  = P ( X | Z  =  z ) .

All the definitions and properties in this section apply to both the discrete 

and the continuous case, but suppose for simplicity that %, Y,  and Z  are 

discrete random variables assuming any possible values x, y and z respec­

tively. Let a(a:,z), b{y,z) denote unspecified functions of (x, z) and {y, z) 

respectively. Then XALY\Z  if and only if any of the following equivalent 

conditions holds:

1. (a

(b

2. (a

(b

3. (a

(b

(c

P{x\y,z) = P{x\z) if P ( y , z ) > 0

P{x\y, z) has the form a{x, z) if P{y, z) > 0.

P{x,y\z) = P{x\z)P{y\z)  if P{z) > 0 

P{x,y\z)  has the form a{x, z)b{y, z) if P{z) > 0.

P{x, y, z) = P{x\z)P{y\z)P{z)

P {x ,y ,z )  = P{x ,z )P{y ,z ) /P{z)  if P (z) > 0 

P{x, y, z) has the form a(x, z)b{y, z).

11



Chapter 2

The Recursive Residual

2.1 Introduction

Residuals are the core of the forecasting assessment methods used in this 

thesis. Essentially, the residual is a linear function of the discrepancy, y — 

between an observed value y and its prediction y. Depending on the method 

of formulation of y, and the linear transformation o iy  — y chosen, any number 

of different residuals can be produced. This flexibility enables the selection or 

formulation of residuals with certain desirable properties and characteristics.

The analysis carried out in this thesis is, for the most part, performed 

within a prequential framework. To remain with the limits of this framework 

the residual used must also be prequential in nature. The recursive residual 

(Brown et al, 1975) is one such residual. Described in greater detail in 

section 2.2, the formulation of the recursive residual is such that it provides 

a fair and sequential assessment of forecasting performance by using only 

data observed prior to the observation of event y in the formulation of y. 

Such a formulation gives the recursive residual a very definite prequential 

quality making the residual an essential tool in prequential data analysis

12



(Dawid, 1985).

This chapter examines the various characteristics and properties of recur­

sive residuals. It is shown how the properties of this transformation vector, 

expressed in terms of a residual transformation matrix, determine its compo­

nents thereby, proving that the properties possessed by the recursive residual 

are unique to this residual.

After the recursive residual is briefly introducted in section 2.2, a broader 

family of residuals, the Linear Unbiased Scalar (LUS) residuals is described 

in section 2.3. The formulation of the LUS residuals and their corresponding 

residual transformation matrices paves the way for the introduction of the 

recursive residual transformation matrix. The structure and properties of 

this matrix are given in section 2.4, and section 2.5 shows how the properties 

of the matrix determine its elements.

2.2 Recursive Residuals

Consider the simple linear regression model

Y  =  X6» 4- e, (2.1)

where Y  is a n x 1 vector of observations on the dependent variable, X  is 

a n  X p matrix of rank p consisting of observations corresponding to the p 

independent variables, ^ is a p x 1 vector of unknown parameters, and e is 

the n  X 1 vector of unobserved disturbance terms with expectation zero and 

variance cr^I. Let denote the 1 x p vector holding the observations in the 

row of X, and X% and Y% be the leading i x p submatrix of X  and % x 1 

subvector of Y , respectively, containing rows 1 to L It is assumed that Xp is 

of full rank, and it follows that X%, where z > p, is also of rank p. Assuming

13



tha t disturbance term is (0, cr )̂, the recursive residual is defined as

W, = , ~  , (2.2)
y i  +  X i(X T ,X ,_i)-'xT

where yi is the observation of Y  and §i_i =  X^^Y%_i is the

least squares estimate of#. It is important to note here that #j_i is evaluated 

using only the data observed up to and including time i —1. The estimate for 6 

specified in this way gives the residual a prequential quality. The predictions, 

yi = X{9i-i, generated using this formulation of 6 are also prequential which, 

in turn, makes the recursive residual a prequential diagnostic mechanism.

Brown, Durbin, and Evans (1975) introduced the recursive residual for 

the standard linear regression model as an alternative to the ordinary least 

squares residual which will be discussed in greater detail in Chapter 3. In 

analytical terms, the recursive residual is merely the prediction error resulting 

from the difference of yi from its prequential prediction yi =  Consider:

var [yi -  yi] = var (x^# +  Ci) -  ^x  ̂ (x f_ iX i_ i)  ̂X ^^Y ^.i^

= var [ci] +  Xi (xf_iXi_i)  ̂Xj_^var [X^_i# +  X^_i (x f_ iX i_ i)   ̂x

=  +  Xi (xf_ iX i_i)  ̂xfo-^

= cr̂  (̂ 1 + Xi (xf_iXi_i)  ̂xf^ ,

since this is not constant, yi — yi is then standardised by dividing it by the 

square root of the coefficient of the cr̂ , 1 +  x̂  ^X^^X^-ij x f , to obtain 

a constant variance. Because of the standardisation, the recursive residual 

possess two very desirable properties: homoscedasticity and uncorrelated 

errors.

14



2.3 LUS Residuals

The recursive residual belongs to a family of residual known as Linear Unbiased 

with Scalar Covariance Matrix (LUS) residuals. Introduced by Theil (1965, 

1968, 1971), residuals within this family are characterised by a residual vec­

tor that is linear and unbiased. In addition, the residual vector is subject 

to the constraint that its covariance matrix be scalar, i.e. it can be written 

in the form Using the above, the properties of residual transformation 

matrix, C of a LUS residual vector are:

1. The residual transformation matrix C is an {n — p) x n  matrix not 

involving Y. The rows of C are characteristic vectors of the matrix 

(I — H) corresponding to unit roots. The rows of C all have unit length 

and are also pairwise orthogonal.

2. C X  =  0, so that the expectation of the residual vector,

E[CY]  = E[ C{ Xe  +  e)]

=  0 ,

is equal to the expectation of the disturbance term ensuring tha t the 

vector is unbiased.

3. C ^C  =  (I -  H), where H  =  X  ( x ^ x ) ”  ̂X ’’.

4. C C ^ =  I, where I is the identity matrix so that

nar [CY] =  nar [C (X0 +  e)]

=  var [Ce]

=  er^CC^

=  (7̂ 1

which gives the desired scalar covariance matrix.
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Theil’s notion of an unbiased residual vector is explained below. Con­

sider the standard linear model in (2.1). The least squares residual vector is 

expressed as

e — Y„_p — Xn_p0 (2.3)

=  CY,

where C is the residual transformation matrix not involving Y, e is the 

{n — p) X 1 residual vector, Y „-p and Xn_p are the (n — p ) x l  and {n — p ) x p  

submatrices containing the last (n — p) elements of Y  and X  respectively, 

and 9 is the least squares estimate of 9. Recall that the n x 1 vector of 

disturbances, e is unobserved. Expressed as

e =  Y  -  X 6>,

it is easy to see that the residual vector offers itself as a natural approximation 

for at most n — p components of e. Consequently, if the residual vector is 

regarded as an estimate of e, then it is unbiased if E[e] =  E[e] which, in this 

case, is equal to zero.

The conditions of unbiasedness and scalar covariance imposed on C imply 

that only n — p residuals can be found. Such conditions require that p of 

the disturbance terms be discarded. From C X  =  0 it is possible to see that 

the n columns of C are subject to p linear dependencies. As such p of the 

disturbance terms can be discarded without any loss of information.

2.4 Recursive Residual Transformation Matrix

Consider the unstandardised recursive residual,

i — Vi (2.4)

— Vi ~  Xj_^Yi_i, (2.5)
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i =  p +  1 , . . . ,  n. The recursive residual vector, being a member of the LUS 

family of residuals (Hadi and Son, 1989), can be expressed in terms of a 

residual transformation matrix. Let B denote the (n — p) x n  recursive resid­

ual transformation matrix for the unstandardised recursive residual vector r  

satisfying

r =  BY.

Then, B is of the form

-Xp+2 {Xp+l^p+l)

1 0 . .  

1 0

1 0

Let bij denote the element of B on row i and column j  where i = (n—p). n

and j  = 1 , . . . ,  n. The transformation matrix B has a lower triangular 

structure with all the i < j  elements equal to zero and bij = 1 for all i = j  

elements of B. The remaining i > j  elements are defined separately for each 

of the i rows of B by the 1 x {n -  i) vector — X̂ _^.

The recursive residual transformation matrix possessess all the properties 

of a LUS transformation matrix discussed in section 2.3. It is, however, 

mentioned that B is not the standardised recursive residual transformation 

matrix. The rows of B, although not normalised, remain pairwise orthogonal. 

Due to this, B B ^ is a diagonal dispersion matrix with diagonal element 

equal to the square of the standardising constant of the row of B. In order 

for B B ^ =  I, B must be standardised i.e. each row of B must be divided by 

the sum of the square root of its components. The specification of recursive
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residual transformation matrix in its unstandardised form has the advantage 

of simplifying the algebraic manoeuvres in the next section.

2.5 Results

Let B denote the standardised version of the recursive residual transfor­

mation matrix, B, specified in the previous section. Then, in addition to 

possessing all the properties of a LUS residual transformation matrix listed 

in section 2.3, B also has the following two properties:

1. B is (n — p) X n matrix

2 . bij =  0 for z < j

which are specific to the matrix.

T h e o rem  2 .1  Given the above properties of the recursive residual trans­

formation matrix, the formulation of the recursive residual transformation 

matrix is unique.

P roof. Except for i > j  elements, the above properties of B define all 

the characteristics and elements of B. The remaining i > j  elements can be 

solved for using a system of equations provided by B X  =  0 and B B ^ =  I. 

Let Bij denote a j-length row vector containing the first j  elements of the i^  ̂

row of B. is an arbitrary row in B. The value of is determined

by a set of p linearly independent equations from =  0  or equivalently

from Bi+ij+iXi^i = 0  since Bi+ij+i contains the first z -fl elements of Bi+i^n 

and the remaining elements are equal to zero. The remaining i —p equations 

come from Bi+i.i+i [A] =  0 , where A  = 

known.

18
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Assume that rank{Xp) = p, then it follows that the rank of X^+i, where 

(ï +  1) > p, is also p. Assume, also, that the diagonal elements of B are 

positive. Then [A  X^+i] =  0 gives a homogenous set of i equations

in i unknowns. For the solution to be unique it is sufficient that A  be 

orthogonal to X%+i. A  is nothing more then a subset of the first i rows of B, 

where only some of the trailing zeros have been left out. W ith this in mind, 

the orthogonality of A  and Xj+i follows from B X  =  0.

The concept outlined above will now be implemented to derive the exact 

formulation of the recursive residual transformation vector. For simplification 

the matrix B is replaced by B. The first three rows of B will be solved 

for initially to establish the recursive structure of the evaluation scheme. 

Induction will then be used to generalise the results for the remaining rows 

of B.

Let Bj denote the row of B and let A j  denote a j-length row vector 

containing the first j  elements of the row of B. The matrix X  is partitioned 

in the following way
Xp

Xp+i 

Xp-f-2X  =

Solving for Bp+i Expressed in terms of A +Lp? ®p+i has the form

Bp+i (^p+l,p; f 5 bj • • • 1 b)

Multiplying Bp+i by X  yields the first row of BX. Since B X  =  0, the 

result is a  1 X p  vector of zeros:

Bp+iX 5p_|_î pXp T Xp_|_i — 0 ,
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so that

Bp+i,p^p — ~Xp+i- (2 .6 )

The 1 X p vector in (2.6) is a system of p equations in p unknowns 

providing a unique solution for the unknown elements in Bp^i^p since 

Xp is a (p X p) matrix of full rank. Using this system of equations 

solving for Bp+i^p is trivial:

Bp+i^p —Xp-i-i (Xp)

=  -X p + i(x J X p )" 'x J '

which is exactly as desired.

Solving for Bp+2 The same procedure used to solve for Bp+i is followed 

here to solve for Bp+2- First, Bp+2 is multiplied by X  which (from 

Bp+2 ^  = 0 ) yields:

Bp-\-2,p^p T ^p+2,p+iXp-f 1 Xp̂ 2? (2.7)

a system of p equations in p +  1 unknowns. It is, however, possible 

to express one of the unknown component 6p+2,p+i in terms of Bp^2 ,p 

using the matrix B B ^ BB ^ is a diagonal matrix which means that 

any row of B multiplied by any other row of B, other than itself, is 

equal to zero. Multiplying Bp+2 by B ^ ^  gives

Bp+2Bp+2 =  Bp^2,pBp^ip +  6p+2,p+i =  0

which can be rearranged to give

^p+2,p+i =  ~^p+‘2,pBp^i^p. (2 .8 )

Let Cp+i =  -B j+ i p, so that

^p+2,p+l — B p^2,pC p-\-i^
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and note th a t X^Cp+i =

xp+i (X ^ X ,) ' X j

T
■p+1=  X % ( x % ) ' ' x

-— ^p+1-

Although it is not yet apparent, the specification of Cp+i and future 

Ci’s (z =  p +  2 , . . . ,  n — 1) plays an important role in clarifying the 

recursive nature of the algebra used in this proof.

Expressed in terms of Bp+2,p, ^p+2,p+i can be substituted for in equa­

tion (2.7) giving a linear system of p equations in p unknowns:

-^p+2,p^p "b 6p+2,p+l^p+l — ~Xp+2

-^p+2,pXp + B p ^ 2 ,p ^ p + l^ p + l  ^p+2

Bp+2,p (Xp 4- Cp+iXp+i) =  — Xp+2

It is now possible to solve for Bp+2,p:

-̂ p+2,p — ^p+2 (Xp 4- (7p-)-iXp î) (2.9)

=  — Xp+2 (Xp +  Cp+iXp+i)  ̂ (X p) X.p

= —Xp+2 (XpXp +  XpCp+iXp+i) Xp

=  —Xp+2 (XpXp 4- Xp_̂ X̂p_|_î  Xp

=  -Xp+2 (Xp+jXp+i) Xp.

Using the value of Bp+2,p derived in equation (2.10), 6p+2,p+i can be 

evaluated:

^p+2,p+l — -Sp+2,pC*p+l (2  1 9 )

=  -Xp+2 (xJ^jX p+i) XpCp+1

— ~^p+2 (Xp^^Xp+ij Xp+l-
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Together, Bp+2 ,p and 6^+2,p+i niake up the vector Bp+2 ,p+i = [Bp+2 ,p bp+2 ,p+i], 

the unknown components of the row Bp+i. Substituting Bp^2 ,p and 

bp+2 ,p+i with the values obtained in (2 .10) and (2 .11) gives the com­

plete composition of Bp+2,p+i,

B p + 2 , p + l  —  [B p + 2 ,p  bpj^2,p+l]

— Xp+2 (Xp+iXp+i ) " x -

=  "Xp+2 IXp+iXp+1^ "  [X?

— "Xp+2 IXp+iXp+i)

X

Xp+2

u

- 1
(Xp_|_iXp+i I XT

p + 1

Solving for Bp+g First, p linear equations are obtained from Bp+gX =  0,

- S p + 3 , p X p  +  6 p + 3 , p + i X p + i  +  6 p + 3 ^ p + 2 X p + 2  =  — X p + 3 .  ( 2 . 1 1 )

The computations become more complicated as the difference between 

p and i, i = {p-\-l), . . . ,  n, becomes larger. As in the case of Bp+2, the 

scalars 6p+3,p+i and 6p+3 p̂+2 are expressed in terms of Bp+3,p using the 

composition of the matrix BB^. The table below shows the expressions 

obtained for 6p+3 p̂+i and 6p+3 p+2-

Rows Multiplied Expression Obtained

Bp+3B^2 =  0

Rp+3,pRj+i p +  &p+3,p+i =  0

bp+3,p+i = —Rp+3,pB^j p 

— Bp+3 pCp+i

Bp+3Bp+2 =  0

Bp+s,pBp_^2,p +  ^p+3,p+l^p+2,p+l +  &p+3,p+2 =  0

p̂+3,p+2 =  ~^P+3^p+2,p ~  bp+3,p+lbp+2,p+l

= - B p + 3 B p ^ 2 , p  ~  ^P+3,p^J+l,p^p+2,p+l

— ^P+3,p { - B p ^ 2 , p  ~  C'p+l^p+2,p+l)

— ^p+3,pC^+2
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Where Cp+2 — (^^p+2 ,p Cp+i^p+2 ,p+i  ̂ XpCp+2 — ^p+2-

XpCp+2 =  ~ ^ p  [Bp_̂ _2̂ p -  Cp+ibp^2,p+i)

= Xp ^Xp ^Xp_)_jXp+i  ̂ Xp_|_2 +  Cp+iXp^i ^Xp_|_]̂ Xp+î

=  XpXp X̂p_)_2Xp+i^ Xp_,_2 +  Xp_|_iXp+i ^Xp_|_jXp+i  ̂ x̂

=  (x^X p +  x^+iXp+i) (x^+iXp+i) x^+2

=  (x ^ + ,X p + i)(x ^ ^ ,X p + i)- 'x ^+2

-  X^— ^P+2

Using the above results, it is now possible to solve the system of equa­

tions in (2.11). By first substituting for the values of 6p+3,p+i and 

6p+3 p̂+2 in equation (2 .11) so that

-^p+3,pXp +  Bp_|_3 p(vp_|_iXp_|_i -j- .Bp_|_3 pCp_|_2Xp_|_2 Xp_|_3

Bp+3,p (Xp 4- Cp+iXp+i -h Cp+2Xp+2) = —Xp+3,

Bp+3,p can be derived:

Bp+3,p =  —Xp+3 (Xp 4- Cp+iXp+i -f- Cp+2Xp+2)

=  — X p + 3  (Xp 4- C p + i X p + 1  C p + 2 X p + 2 )   ̂ ( x j )  Xp

=  —Xp+3 (XpXp 4- Xp Cp+iXp+1 -I- Xp Cp+2Xp+2) Xp 

=  - X p + 3  (Xp Xp 4- X ^ i X p + i  4- xJ^2^p+2) Xp 

—  — X p + 3  (Xp+2Xp+2Xp+2  ̂ Xp .

Substituting the above expression for 5 p+3,p in 6p+3,p+i and 6p+3,p+2 

gives their values where

bp+3,p+l — -̂ p+3,pĈ p+l

= -Xp+3 (Xp_ 2̂Xp+2) Xp Cp+I

— —Xp+3 (Xp+2Xp+2  ̂ Xp+i
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and

^p+3,p+2 — -Sp+3,pC*p+2

— -Xp+3 (X.p_^2^P+2) X jCp+2

=  -Xp+3 (X ^gX p+2) rT̂p+2-

Now that all the unknown elements have been determined, and the 

vector Bp+3 p̂+2 can now be specified as

-^p+3,p+2 — [-^p+3,p ^p+3,p+l ^p+3,p+2]

/——rp \  1 fp p
— —Xp+3 (^Xp+2Xp+2j Î Xp Xp+̂  Xp+2

— —Xp+3 (^ J+ 2^P+2) ^ p +2

In d u c tio n  To ensure that the recursions displayed in the solution of the 

first three rows of B hold throughout, a proof by induction is used to 

generalise the results for any î +  1 row of B. It is assumed that the 

results obtained hold for row % of B, so that

Bi =  - X i( x f _ iX i_ i ) ' 'x f _ i ,

1 1,

where Q _i =  — p+Cp+i 6i_i^p+i+C'p+26i_i^p+2+ • * •, T Q - 2^%-i,%-2, 

and X jC i - i  =

The above equations are now used to solve for the B^+i. From B X  =  0

Bi+i^pXp +  6^++p+iXp+i +  • • • +  6j+i îXj =  —Xj+i (2 .12)

is obtained and the scalar quantities obtained from B B ^ are sum­

marised in the table below.
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Rows Multiplied Expression Obtained

^z+i,p+i — Bi^i^pCp-\-i

Bi+iBp+2 ^i+l,p+2 Bj_|_î pC7p_|_2

Bi+iBf_i — Bi^i^pCi—i

Bî+iB^ bi+l,i Bi^i^pCi

Ci in the above table is given by the following formula

Ci =  —Bjp +  Cp+ibi^p+i +  • • • +  Ci-ibi^i-i,

and to simplify the computations X jC j is evaluated and found to be 

equal to x f .

At this point it is now possible to compute Bi+i^p. The scalar quantities, 

bi+i,p+i, . • ., are substituted for in (2 .12) which gives

(Xp +  Cp+iXp+i +  • • • +  CiXi)

=  —Xi+i (Xp +  Cp+iXp_|_i +  • • • +  CfXi)  ̂ X^

=  -Xi+i (X^Xp + xJ+iXp+i +  + x f x i )  X j  

=  - X i+ i ( x fX i) " ‘ x J

The scalar quantities, ft̂ +î p+i, . . . ,  bi^i^i, can now be evaluated:

bi+i,p+i Bi^i^pCp^i

=  -x ,+ i(x J 'X i)

-T
“P

- 1

bi+i,p+2 — “ Xj+i ^X fX j) X

‘‘p+l
T
■p+2

bi+i^i =  - X i +1  ( x f X i )  x [

P utting  the components together, the final composition for Bi^i^i is 

—Xi+i ^X fX ij X f . This shows th a t the recursions will hold for all i.
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This concludes the proof: the properties of the recursive residual trans­

formation matrix determine its components, making these components 

unique to these properties.

2.6 Discussion

The recursive residual is given a thorough introduction in this chap­

ter. Belonging to the family of LUS residuals, the recursive residual 

vector can be expressed in terms of a residual transformation matrix 

independent of Y. It is found that the properties possessed by the 

recursive residual transformation matrix determine the m atrix’s com­

ponents, and are unique to this residual. The recursive residual has 

the added advantage of fitting well within the prequential framework 

making it an ideal data-driven tool for use in the analysis to come.
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Chapter 3

Modelling Residuals

3.1 Introduction

This chapter explores methods of modelling residuals to correct model mis- 

specification. Before the topic is examined in detail the purpose of model 

specification must first be clarified. The process that generates the data is 

not known. It is not the purpose of model specification to attem pt to discover 

or even describe the generation process. The purpose of the model specified 

is merely to extract the main features of the data so as to provide reliable 

predictions.

Analysing residuals after designating a model which generates these pre­

dictions provides an accurate indication of the goodness of fit. Any failure 

the model might have in detecting variation in the data is embodied in the 

residuals. If the model is adequate it follows that the residuals will exhibit 

no apparent pattern, making them appear approximately random e.g. the 

sum of the residuals is approximately equal to zero (Harvey, 1990).

The association between random residuals and satisfactory model speci­

fication is discussed further in Dawid (1992). Here the concept of approxi­
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mately random residuals is given a more precise interpretation using a prob­

ability integral transformation. Let Ri be the residual for the observation at 

time i, and let Fi denote the conditional distribution function of Ri given 

past observations under the model M, “then Ü = (Ui,U2 t  ■. ,Un) where 

Ui = Fi{Ri) should be independent uniform [0,1]” if data arise from M. 

Different tests can be used to assess the uniformity and independence of U.

If the model does not account for a predominant characteristic of the 

data, then this deficiency on the model’s part seeps through and embodies 

itself in the residuals. This predominant characteristic is now a systematic 

component of the residual, and, because of this, the residuals no longer fall 

into the random category (Harvey, 1990). In such a situation, the analysis 

is reassessed and a new model is specified using the insight gained from the 

residuals.

Once the residuals have detected model misspecification, the action taken 

need not involve the determination of an entirely new model. Dawid (1992) 

suggests that the residuals themselves be massaged into providing a better 

fit to the data. This entails looking at the residuals as observations of a new 

response variable and modelling it accordingly. By modelling the residuals 

obtained from a misspecified model it is possible to bring the lost information 

back into the analysis.

The correction of model specification through the modelling of residuals is 

the primary focus of this chapter. For a standard linear regression model, it 

will be shown how the residuals of a misspecified model are derived and mod­

elled producing what will be termed the residual model. This residual model 

is also analysed and the residuals for this model, the secondary residuals, 

are obtained. Comparison of the secondary residual of the residual model 

and the residuals from the correct model will show that the two residuals
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are the same, proving that such a modelling strategy can be used to correct 

misspecification and produce results identical to a correctly specified model.

The method of modelling residuals to correct model misspecification is 

applied using three different residuals. Section 3.2 looks at a simple linear 

regression model and how ordinary least square residuals can be used to 

correct an inadequate model. The resulting residual of the residual model 

is found to be the same as that of the correctly specified model. The same 

method is applied in Section 3.3 to recursive residuals which have a slightly 

more complex structure. Section 3.4 explores how residuals can be defined 

and used in a Bayesian framework.

3.2 Ordinary Least Squares Residual

For the linear model, one of the more commonly used residuals is the Or­

dinary Least Squares (OLS) residual. It is easily computed and with it the 

modeller can determine what important factors have been overlooked. The 

model under consideration is of the form

Y - X 6> +  e, (3.1)

e ~  Y"(0, cr^I), where Y  is the n x 1 vector of observations on the dependent 

variable, X  is the n x p matrix of observations corresponding to the p inde­

pendent variables, 0 is a p x 1 vector of parameters and e is a n x 1 vector of 

error terms. Using

ê = (X ^X )“ ‘x ^ Y  (3 .2 )

as the least squares estimator for 0, the predicted value for Y  is X0 and the 

OLS residual vector for this model is

R  =  Y - Ÿ
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=  Y - x ê  (3.3)

=  ( I - H ) Y

where H  =  X(X"^X) ^X'^ and (I — H )X  =  0. If the model is correctly 

specified, then the OLS residual reduces to

R  =  (I -  H)e

showing that this residual is a linear combination of the true disturbance 

term, e, with mean zero and variance cr^(I — H). Under standard regularity 

conditions, R  will also asymptotically converge in distribution to the true 

disturbance when n is large in comparison to p.

Despite its optimality, the OLS residual is inappropriate for testing the 

validity of the assumptions made about the disturbance term of a linear 

model. This assumption states that the disturbances are independent with 

mean zero and variance a^l. In order to check this assumption, it is necessary 

for the residuals to mirror the properties of the disturbances (Harvey, 1990). 

Since the OLS residuals are both correlated and heteroscedastic, they are 

generally not viewed as a valid diagnostic for testing purposes (Harvey, 1993).

3.2.1 The correct model

Assume that the correctly specified model is of the form

Y  =  X6  T T e, (3.4)

where Z is n x q matrix of observations on q independent variables, (/> is a 

q X 1 vector of parameters, and the remaining components are the same as 

in model (3.1). Let 9c and ÿ denote the estimates for 9 and ÿ respectively.
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under the correct model in (3.4). By writing model (3.4) in matrix notation,

Y =

it is possible to obtain a system of two equations with two unknowns:

r 1 ' O c'
X z

4>

x ^ x x ^ z
- 1

' x - ' O c  ’Y =
z ^ x z^ z z^ 4>

X ^Y

Z'^Y

X ^Y

Z^Y

X ^X  X ^Z 

Z^X Z^Z 

X ^ X d c  + X ^Z ^

z ^ x ê c  +

de

4>

(3.5)

(3.6)

from which the estimates of 6 and can be derived:

êc =  (X ^ X )“^ (X ^ Y -X ^ Z .ÿ )

0 = (Z^Z -  Z^HZ)"‘ (Z^ -  Z^h ) Y  

= (Z ^ (I-H )Z )“' ( z^ ( I - H ) y ) .

Substituting (3.6) in (3.5) gives the expanded form of 9c,

§C = ( x ^ x ) ' '  ( x ^ Y  -  X ^ z (z ^ ( I  -  H ) z ) “^Z'^(I -  H )y )  . (3.7)

W ith the prediction for Y, Ÿ, equal to +  Z(J, the residual for this 

model is

R(7 — Y — — 'ZiO.

=  Y - X 0 - Z 0  +  HZ<̂ ,

where 9 is given in equation (3.2) since from (3.5),

êc = ê -  ( x ^ x ) " ‘ x ^ z 0 ,

and so

X § o  =  X 0 -  HZ0.

(3.8)
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3.2.2 Correcting misspecified models

Assume that the correctly specified model is of the form given in equa­

tion (3.4). The model under consideration, however, is model (3.1). The 

misspecification takes the form of an omitted variable. The OLS residual in 

this case is

R i =  ( I - H ) ( X 6» +  Z(/)-t-e).

Because, in this particular situation, the model is deficient the residual does 

not have the proper structure of an OLS residual. It is no longer a linear 

combination of just the disturbances, it is also a linear combination of the 

omitted variable Z and parameter </>:

R i =  (I -  H)Z(/> + ( I -  H)e. (3.9)

The model in Equation (3.9) will be referred to as the residual model. Since 

R i clearly has a linear regression structure, finding an adequate fit for Y  can 

continue by regressing R i on the omitted variable Z.

It is worth noting that both Z and e have been transformed. The distri­

bution of the error term is now N {0,a ‘̂ {l — H)). Later, it will be seen that 

this transformation compensates for the information not accounted for in the 

original fit. In the mean time, generalised least squares is used to find an 

estimate for (f).

First the following definitions are needed. Using a Q R  decomposition 

(Schott, 1997),

Q X =
0

where R* is a p x p upper triangular matrix, let Q =  [Qf be a n x n 

orthogonal matrix with the p x n matrix Qi denoting the first p rows of Q 

and the (n —p) x n matrix Q2 denoting the remaining (n —p) rows of Q. Note
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that from the orthogonality of Q, Q^Q =  QQ^ =  In and that Q iQ ^ =  Ip, 

Q 2Q^ =  I(n-p), and Q iQ ^ =  0. From the above definitions, the following 

relation is obtained

X =

=  Q^R* +  Q^O 

=  Q^R*,

and the projection matrix H  can be expressed as

H  =  X ( X ^ X )" 'X ^

=  Q T R .R :' ( R p '^ R l Q i  

=  Q fQ i

Similarly, the projection matrix for the orthogonal complement of the vector 

space of X, (I — H) can be expressed as I — Q fQ i =  Q 2 Q 2 (since Q ^Q  =  

Q fQ i +  Q ^Q 2) and the following relation is obtained

( I - H )  =  Q ^Q 2 

Q 2( I - H ) Q i ’ =  Q 2QI’Q 2Q2 

Q 2( I - H ) Q J  =  I.

Premultipling both sides of the residual model by Q 2 gives

Q2R1 = Q2(I — H)Z(̂  + Q2(I — H)e,

a transformed version of the residual where the covariance structure of the 

vector of disturbances is constant,

war-[Q2(I -  H)£] =  Q zp  -  H)war [e] (I -  H jQ j 

=  £t2Q 2( I - H ) Q ^

=  (T̂ I.
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The least squares estimate derived from regressing Q 2-R1 on Q 2(I — H )Z is 

the generalised least squares estimate for (f):

4> = ( z ’’( I - H f Q ^ Q 2( I - H ) z ) " ' z ^ ( I - H f Q j ’Q 2( I - H ) Y  

=  (Z^(I -  H f  (I -  H )(I -  H )Z )“^Z^(I -  H )^(I -  H )(I -  H )Y  

=  (Z’’( I - H ) Z ) “ 'Z ^ ( I - H ) Y

For this particular model, using generalised least squares estimation produces

an estimate for that is equivalent to the least squares estimate derived by

regressing R i on (I — H)Z:

ÿ =  ( z ^ ( I - H ) ^ ( I - H ) z ) '^ Z ^ { I - H y ( I - H ) Y

= ( Z ^ ( I - H ) Z ) “^ Z ^ ( I -H )Y , (3.10)

assuming (incorrectly) that the the errors, (I — H)e, are independent and 

identically distributed. Using this estimate to derive the residual for the 

latter stage regression yields

R 2 =  R i — (I — H)Z(^

=  Y - X g -  ( I - H ) Z ^

=  Y  — X 0  — Z(^ T  H Z 0 .  ( 3 . 1 1 )

3.2.3 Results

The estimate for (/> in (3.10) derived for the residual is identical to that derived 

from modelling the correct model in (3.4). The same, however, is not true 

for 9. The misspecified model in (3.1) and the correct model in (3.4) give 

two different estimates for 6. The estimate for the correct model, §c^ uses 

information on both X  and Z. The information about Z comes into §c in 

the form (x ^x )"^X ^Z ,ÿ  or n Z $ .
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In the misspecified model, however, the analysis, for some reason or an­

other, has not taken Z into consideration. Z only comes into the analysis 

when the residuals for misspecified model pick up on Z as systematic compo­

nent in the residual composition. When the residual model is specified, the 

residuals are regressed on a linear combination of Z, specifically (I — H) Z. 

This transformation adds a new term, HZ, to the regression which compen­

sates for the information lost in the misspecification of the model. In the

misspecified model, H Z0 is precisely the term missing from 6. The incor­

poration of HZ in the residual model gives R 2 in equation (3.11) the same 

composition as R c  and the final residuals in both cases are the same.

3.3 Recursive residuals

Recursive residuals are introduced in detail in Chapter 2 . This section uses 

the definitions and properties defined in Chapter 2 to reproduce the results 

in Section 3.2.

As in Section 3.2, the correct model is of the form

Y  =  -j- Z(/> -l- 6.

The misspecification begins by modelling Y  =  -f e and the analysis then 

picks up on the missing component by modelling the residual of the deficient 

model.

3.3.1 OLS and recursive residual relationships

Let the matrix B be the recursive residual transformation matrix defined in 

Chapter 2 so that B Y  is the recursive residual vector. The row of B is

b, =  ^  [ -X i Xf_i 1 0 . . .  0 ] , (3.12)
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where is the 1 x p vector containing the values of the p independent 

variables of X  at time i, and X%_i is the (i — 1) x p matrix containing the 

first (i — 1) rows of the matrix X. Let hi be the standardisation constant:

/i,=

The properties of B can be used to relate the OLS residual vector to its 

recursive residual counterpart. The OLS residual vector for Y  =  X0 +  e 

is R i =  (I — H )Y . Using the properties B ^B  =  (I — H), B X  =  0  and 

B B ^ =  I (Theil, 1975), the recursive residual vector, H ir r  ̂ for the above 

model can be derived by multiplying the recursive residual transformation 

vector by the OLS residual vector,

B Y  =  B B ^B Y  

=  B ( I - H ) Y  

=  B R i

=  RlER. (3.13)

3.3.2 The correct model

Specifying the recursive residual vector for the correct model first requires 

the specification of the estimates for the parameters 6, and (j). Let Z ,̂ B^, 

and Y i  be the first i rows of the Z, B, and Y  matrices respectively and let 

Hi be defined as Hf =  X i(X fX i)”^X f. By definition, the recursive residual 

requires that the estimates used in the prediction of p%, the observation 

Y , contain only information available time i — 1:

%_i =  ( x f_ ,X i_ i) " '(x f_ iY ._ i-X f_ iZ i_ i4 - i )
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êi_i =  (x f_ iX ._ i)“ ‘ (x f_ iY ._ i -  Xf_iZi_i (zf_ i(I -  H i_ i)Z i_ i)" ‘ 

=  (x f_ iX ,_ i)" 'x f_ iY i_ i -  (x f_ iX i_ i)“ 'x f_ iZ i_ i (Zf_i(l -

1 ,

for Z =  (5 +  1 n, s = max{p, q}. The recursive residual at time i is

— (Vi — Xi§i-i —'^icRR —

9i
Vi ~  diYj_i — — fjYi_]

9i

~  iUi ~  (di +  +  fj) Yi_i)
9i 
1 r
— — (dj +  6 i +  fi) 1
Ui L

(3.14)

where

(3.15)d, =  X i(X f_iX i_i)“ Xf_i

e, =  Xi (xf_ iX ._i)“'xf_iZi_i (zf_ i(I-H i_i)Z i_i)'' Z^,^-Hi_i%3.16)

f, = z. (Zf_i(l -  H ,_ i)Z i_ i)" ' Zf_,(I -  (3.17)

and Qi is the standardisation constant,

Si =  (1  +  Xi (x f_ iX i_ i)   ̂x f

+Xi (x f_ ,X i_ ,)“ '  Xf_,Zi_i (Zf_i (I -  H i.i)  Z i . i ) " ' Zf_i (I -  H i_0  

Xi_i ( x f_ iX , , i ) " ' x f  +  Zi (zfLi (I -  H i.i)  Z i_ i)" ' z f )  ' .  (3.18)

Expressing the results in terms of a recursive residual transformation matrix 

can be done by specifying H cRR as (n — s)-length vector of the Ticrr residuals 

and the {n — s) x n matrix C such that

^cRR = CY.
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c  is the recursive residual transformation matrix where the row of C is

1
Ci = —

9i
— (dj +  +  fi) 1 0 (3.19)

3.3.3 M odelling recursive residuals

From equation (3.13) the following regression model is derived:

^iRR = b y

=  B (X.0 +  Z(f) +  e)

=  BZ0 +  Be (3.20)

Unlike the OLS residual model in (3.9), the disturbance term in model (3.20) 

has a constant variance since BB ^ =  I.

To obtain the recursive residuals for model (3.20) the estimate of (f) at any 

arbitrary point in time must contain only information available at that time. 

Therefore, a prediction made for z/j+i will use only the information available 

at time i. The estimate for cj) derived by regressing 'R.îrr on BZ using only 

the information upto time i is then

*  =  { z j B j B i Z i Y "  Z j B j B i Y i

= { z J { I - H i ) Z i y ' z J { l - H i ) Y . .

Because the estimate for is different for each i = q , . . .  ,n  — 1, the matrix 

notation of the secondary recursive residual for the model in (3.20) has a 

complicated structure.

For simplicity, the secondary recursive residual is first expressed as a 

scalar. Define b* as a z-length row vector containing the non-zero elements
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of the row of B and the vector of length i as

M,: —

where again i = s 1 , . . .  ,n. The recursive residual at time i is

=  —  ( f ' i lRR  —
9i  ̂ '

=  ^  (biYi -  biZiM ,Yi)
9i

= — (b* — biZjM i) Yj
9i

(3.21)

where gi is the standardisation constant given in equation (3.18). To simplify, 

equation (3.21) is expressed in terms of the expressions d%, e ,̂ and defined 

in equations (3.16), (3.17), (3.17) respectively:

hi
'f'i2RR — —

9i
h.

9ihi 
1

0 +%  0

— (df +  +  fj) 1

— ~  iVi ~  (dz +  Gj +  f j  Y i_ i) ,
9i

(3.22)

where b* =  ^ —d i  1 and biZiM i =  ^

To present the recursive residuals in terms of a recursive residual trans­

formation matrix the following matrices are used: let B be a block diagonal 

matrix with b% denoting the nonzero components of the row of the matrix 

B. The matrix has the following structure

0 0 0

0 0 bp+1 0

0  0  • •• b„
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and likewise the matrices Z, M, Y, and the matrix of recursive residuals, 

^ 2 RR are defined as

0 0 0 0 0 . . .  Q

z  = 0 0 Zg+1 0 , M = 0 0 Mç+1 0

0 0 Zn 0 0

0 0 0

Ÿ = 0 0 Ys+1 0

0 0 Yn

where s = max{q,p}. With matrix $  =  M Y , a diagonal matrix with as 

the diagonal component, the recursive residual matrix can be written as

^2RR — B Y  — B Z $

= (b - z m ) y .

Such a formulation produces the recursive residual matrix, R 2izî , as a diag­

onal matrix
0 0 • • • 0

^2RR — 0 0 1̂ {s+l)2RR  0

0 0 • • ' T n 2 R R

where U2RR, i = (s +  1) , . . . ,  n ,  is given in equation (3.21). Multiplying 

^2RR by a n  X 1 unit vector will produce H2rr^ the n  x  1 vector of recursive 

residuals for the residual model in (3.20).
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3.3.4 Results

Although the residuals transformation structure for the appropriate model 

and the corrected misspecified model are not the same, the scalar results 

clearly show that the recursive residual itself is the same in both cases. The 

resulting scalar form of the residual in (3.14) is identical to that resulting 

from the residual model in (3.22).

3.4 Residual Analysis in Bayesian Models

This section examines how residuals can be defined and exploited in a Bayesian 

framework. For the purposes of this analysis, the definition of a recursive 

residual is generalised. Without regard to the exact form of recursive resid­

ual defined in Chapter 2 , a recursive residual is any prediction error yi — yi 

(where the prediction for 2/%, contains only past information) standardised 

to acquire a constant variance. With this definition, the predictive distribu­

tion taken in a Bayesian context of a random variable Y  is also a recursive 

residual.

3.4.1 The predictive distribution

Consider first the simple linear regression model of the form

Yi =  (j)Xi +  Cf,

where Yi is the observation of the response variable T, Xi is the 

observation of the explanatory variable X , and is the independent and 

identically distributed disturbance term with mean zero and precision -^ = h. 

Since the conditional distribution of is Normal, a Normal-gamma conjugate 

prior is used to perform Bayesian analysis on Yi. Hence, the problem is
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formulated in the following way:

Y u . . . , Y n \ H , ^  ~  N { X 4 , h ~ ^ )

~  n {0, (Ao/i)-‘)

where F i , . . . ,  F„ is an observation sequence from a Normal population. The 

resulting posterior distributions of <f> and H  are

H\ dat a  -■ 2 ■

The hyperparameters jin, K ,  and are given by

A„ =  Ao +  E?=i X f

=  i-o +  n î^„r  ̂ =  VqtI  +  E?=i '

These results are straightforward and can be found in a number of data 

analysis books (i.e. Bromelling 1986, Zellner 1971).

To find the predictive distribution of a future observation a variable 

transformation technique is applied. Three variables U, V, and W  are defined 

by:

u  =  (y„+i -
V = (A„/i)

W  =

where

Uj^ = (f>,II = h ~  ~  (0 , 1)

V\H  = h -  AT(0, 1)

W  ~  
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Since the distribution of U is unaffected by conditioning on 0  and H, U 

is independent of both W  and V, and likewise since the distribution of V  

is unaffected by conditioning of V  is independent of W . The following 

series of computations detail the evolution of U, V, and W  through to the 

predictive distribution of The computations begin with

U + =  fC/2 (y„+i -  . (3.23)

By the properties of U and V, and since X„+i is given, the above equation 

gives a Normal distribution with mean zero and variance +

Dividing the left-hand side of (3.23) by its standard deviation gives

(i + s  = (r„+i -  .
Note that the distribution of S  is unaffected by conditioning on H  and is, 

therefore, independent of W. Some further manipulation gives

^  T l^n^n+l

since the distribution of is a ^-distribution with Vn degrees of freedom (De- 

Groot, 1989). If equation (3.25) is rearranged, then under the full Bayesian 

model the predictive distribution of given past observations of T ’s can 

be written in the form of a residual,

^^+1 /^n-^n+l
(1 +  K ^ x l ^ . f ' ^

Substituting for the hyperparameters, the final form of this residual is

_ (

+ E?=i -  SgfS) ^ - + 0

1/2
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This residual will be referred to as Vn+i-

3.4.2 The two stage approach

Vn+i is obtained by eliminating the dependence on both parameters, and 

H, from Yn+i simultaneously. If, however, this method of derivation is di­

vided into two stages, so that the parameters are eliminated one at a time, 

would the result be the same? What ensues is a thorough investigation of 

this question.

To begin the analysis, the problem is formulated in much the same way 

as in the previous situation. The three variables U, S  and V  described in 

subsection 3.4.1 are used to derive equation (3.23) and equation (3.24). From 

equation (3.24) a new variable Zn+i is formed:

( i  +  s  =  (y„+i -  finXn+l)
c

  Vn + l-Mn.Vn+1   y

Z„+i\H ^  N { 0 , h - ^ ) .

The variable Zn+i is a linear transformation of Yn+i depending on past ob­

servations of y , where through this transformation the parameter <f) is elim­

inated. If the precision, iJ, is known then Zn+i is the recursive residual for 

Yn+i- This concludes the first stage in deriving the residual.

The next stage focuses on transforming Zn+i into a variable which is inde­

pendent of the precision H. This procedure requires the posterior distribution 

of H\Zi,  . . . ,  Zn- Consequently a new set of random variables, Zi,  . . . ,  Zn, 

are introduced to the analysis taking the place of the Y  sequence.

The new sample %%, . . . ,  Zn is created by transforming the original se­

quence of observations F?, . . . ,  Tn by using stage one of the analysis described 

in the beginning of this section. In essence, this is the replacement of original
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observations by their residuals had the precision been known. This makes it 

possible to perform a posterior analysis on the unknown precision H. Given 

the joint probability distribution and the prior,

2 ’

the posterior distribution oi H\Zi,  . . . ,  Zn then becomes

H\Zi, . Zn

where

— TL I'q — ^O'̂ Q T  X^i=l •

It is now possible to formulate the predictive distribution of Zn+i- Let

U =  

V  =

where

UIH ~  N (0 ,  1)

V
1̂ 2

Note that since the distribution of U does not involve H  then UALV. Then

V
n + 1

This residual will be referred to as Wn+i- Substituting for Zn+i and r* gives

/

1̂0+n ÔTo +  ZILi

V

Xi \
1/2

/  ;
Wn+i is the recursive residual brought about by breaking up the process into 

two separate stages.
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3.4.3 Confirmation

The two methods give two different formulations for the residual of Tn+i, 

Wn+i, and K+i- Conditional on past observations, both Vn+i and Wn+i are 

linear functions of and, independent of past observations of T , both 

and Wn+i have a t-distribution with Vn degrees of freedom. The question that 

still remains is whether lT„+i and are equivalent. A visual examination 

of the two quantities shows that they are almost identical except for the 

summation terms in the denominators of each. Therefore, in order to prove 

that they are equal, it must be shown that the quantity

E
i= \

in Wn+i is equivalent to

^ ( i  +  ( A o + E r = \^ i ) ’ T ? ^ ^
(3.26)

(3 ,7 ,

in Vn+\.

The nested summations in both (3.26) and (3.27) make this an exceed­

ingly difficult task. Therefore, to avoid the cumbersome algebra involved, an 

algebraic technique is devised to prove that the two quantities are the same. 

This technique makes use of the fact that any variable, T, can be represented 

by only one probability density function. Hence, if the pdf of Y  is found by 

two different methods, then those two different methods produce the same 

pdf.

The pdf of interest here, is f{Yi,  . . . ,  Yn\H) where Yi = (f)Xi +  and H  

is the unknown precision. This pdf can be found by either of the following 

two methods. In the first method, /(T i, . . . ,  Yn\H) can be found directly by 

multiplying the likelihood of Y  by the prior density 'ïï{(j)\ h) and integrating
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with respect to (f) producing the following results:

=  /  ( F i ,  . . . ,  Yn\(f), H )  7T {(f), I h )  d(f)

1
1/2

h ( S t i  Y jX i f  
Ao +  E " = iX f

(3.28)

Otherwise, it is possible to obtain f (Y i ,  . . . ,  Yn\H) recursively from 

f  (Y,\H) f  (Y2\Y^, H) - - - f ( Y„\ Yu  

This gives the pdf in a different form,

f {Yi ,  y„|/i)

(27T)
n / 2

h"Xo
LAo + E " = i^ f

1/2 r /
h  "

2 ^
e x p  <

^ i= l
I V

(i+(Ao+Er=i^i)“'̂ i*) j
(3.29)

Expressed in terms of (3.28) or (3.29), the two forms of the pdf are differ­

ent only in the summation quantities found in the exponential terms. These 

same quantities in (3.28) and (3.29) are equal to (3.26) and (3.27) respec­

tively. In this case, however, (3.28) and (3.29) correspond to the same pdf 

and therefore must be equivalent. Hence, it follows that that (3.26) and 

(3.27) are two equal quantities and consequently, Vn+i and Wn+i must also 

be equivalent.

3.4.4 Alternative justification

It can also be shown that 14+ 1 and Wn+i are equivalent by using a more 

general argument.
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Let X  and F  be two random variables such that Y  = g [X)^ where g is an 

increasing linear function. Assume that the two variables X  and Y  have the 

same distribution function F.  Then if F  is strictly increasing, the following 

two statements hold:

1. if % > y  then, F { X ) > F { Y )

2. i f % < y t h e n ,  F ( X ) < F ( y )

These two statements lead to the conclusion that F{X)  — F( Y)  if and only

2/  % =  y .

This argument readily applies to y„+i and Wn+i- The one step method de­

scribed in subsection 3.4.1 takes the distribution of . . . ,  0 , H}

and uses the posterior distribution of and H  to find the predictive distribu­

tion of Yn+i- This marginal distribution conditional on its past is merely a lin­

ear transformation of conditional on its past and the parameters 0 , and 

H. From this linear transformation, the residual %i+i_LL{yi, . . . ,  Yn} ~  

is formulated such that Vn+i is a positive linear function of y„+i.

The two step approach takes the conditional distribution of Yn+i and 

clears away the mean. W hat this produces is a new variable Z^+i, where 

Zn+i, dependent only on its precision and its past, is a positive linear function 

of YnJ^i. The dependence on the precision is removed using another linear 

transformation giving the residual W„+i, where lL^+i_LL{yi, . . . ,  y„} ~

Vn^i and Wn+i have the same properties. Independent of the past Vn+i 

and Wn+i have the same ^-distribution. And dependent on the past, Vn+i 

and Wn+i are both linear transformations of Tn+i- Wn+i is then a linear 

function of Vn+i and consequently, by the argument above, Vn+i = Wn+i-
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3.5 Discussion

Once an initial model is put forth, the residuals can be examined to ensure 

its adequacy. This can be done either graphically, to ensure that there is no 

apparent trend, or by using a probability integral transformation to ensure 

that the probability integeral transformations of the residuals are idependent 

and Uniformly distributed. This chapter presents various methods of treating 

the problem of model inadequacy

In the Bayesian setting, the predictive distribution of a variable is given a 

new interpretation. The structure of the predictive distribution as illustrated 

in section 3.4 is the same as that of a recursive residual, and is, therefore, 

treated as such in the analysis. For the Normal linear model with unknown 

mean and precision it is shown how the residual can be derived using two 

alternative methods. The first method is a direct approach where the desired 

distribution is found by eliminating the model parameters simultaneously.

In the second method, the residual is derived by eliminating one parame­

ter at a time. First, the mean is eliminated, which results in the specification 

of a new variable. This new variable can be interpreted as the residual for the 

misspecified Normal linear model with unknown mean and known precision. 

The misspecification in the Bayesian case comes in the form a misspecified 

prior distribution where the precision is wrongly assumed to be known. By 

eliminating the precision from the new variable the desired predictive distri­

bution is obtained.

In both cases, the predictive distribution is the same. This assertion is 

proved both algebraically and with a more general justification argument. 

The results obtained demonstrate how the analysis can be divided into evo­

lutionary stages without loss of information.

For the standard linear regression model, the result of modelling the resid­
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uals of a misspecified model is the same as having had initially specified the 

correct model. In this case, misspecification often takes the form of an omit­

ted exogenous variable. The correction method applied by the modelling of 

the misspecified model’s residuals repossesses any information in the depen­

dent variable of interest not accounted for in the model. The residuals are 

used to reintroduce any lost or neglected information back into the study to 

improve predictions.

Recall that the residual is a linear function of the variable of interest. This 

characteristic enables the accommodation of the techniques presented here 

to a wide range of linear models (i.e. time series models and more complex 

regression models).

The modelling of residuals redirects the analysis from an analysis that was 

essentially exogenous in nature to an endogenous analysis of the dependent 

variable. The analysis, stated in this way, requires no further knowledge of 

the independent variables affecting the variable of interest. The modelling 

of residuals in this way is a data driven approach that allows fiexibility in 

terms of model specification. In the case when no obvious alternative to the 

misspecified model is present, such a correction scheme can be highly useful.
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Chapter 4 

Hidden Markov Models and 

Recursive Residuals

4.1 Introduction

The previous chapter presented different ways in which recursive residuals 

can be used and applied. It was shown how a data-driven utility such as the 

recursive residual could be used in multistage model development, and could 

also be used in the correction of model misspecification.

This chapter focuses on extending the concepts in Chapter 3 to more 

complex model formulations represented by a broad class of models referred 

to here as hidden Markov models.

Hidden Markov models (HMMs) provide an interesting scenario for the 

application of recursive residuals. A residual is generally regarded as a safety 

net that catches the information provided in the data but neglected by the 

model. In HMMs, however, the model accounts for information known to 

exist, but simply not observed. This, to some extent, reverses the typical use 

of a residual. The question hence changes from “W hat more can the data
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tell me about my model” to “Can the model guide me in any way as to the 

nature of the unobserved observations unaccounted for in those observations 

available.” Hence the aim of this chapter is to gain knowledge and insight 

about the nature of the data using the residuals.

To delve deeper into this question it is first necessary to define some of the 

basic structures used in this study. Section 4.2 will give a brief overview of the 

structure of HMMs. Section 4.3 defines the general residual structures used in 

the HMM applications. The residuals are then calculated for various models 

and the results of the applications are listed in section 4.4 and generalised in 

section 4.5. A model due to Hamilton (1989) is also examined in section 4.6. 

Section 4.7 presents a data compression technique for the observed series that 

results in no loss of information. The results in section 4.7 are analysed in 

greater detail in section 4.8 where a more general explanation is given.

4.2 Hidden Markov Models

A Markov model is stochastic process typically used to describe a system 

which at any time t is in one of a set of N  distinct states. At any given 

time, the current state of the system, Xt, depends only on the outcome of 

the previous state, X t- \ ,  i.e. P { X t \X t - \ ,X t - 2 , •••, ATi) =  P{X t\X t- i) .  A 

HMM is an extension of the concept of Markov models. In a HMM the 

state sequence of the Markov Model is hidden and at each time point a noisy 

signal is emitted depending on the state of the system. In such a system 

it is this series of noisy signals that constitute the observation sequence. 

Rabiner (1989) describes the HMM as “a doubly embedded stochastic process 

with an underlying stochastic process that is not observed but hidden”. The 

hidden process can only be observed indirectly through the noisy emissions
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Figure 4.1: The causal structure of the HMM.

it generates that together constitute the sequence of outcomes.

Figure 4.1 displays a causal diagram typical of the structure of a first 

order HMM. Here, the X ’s represent the hidden system states where the 

state of the system is governed by a Markovian evolution process. The V ’s 

are then the observed values which are noisy emissions of the state. The 

X ’s can only be observed indirectly through the observation of T ’s. The 

diagram in Figure 4.1 describes a causal system conveying the conditional 

independence properties of a HMM:

X ;  -LL { Y i ,  . . . ,  X i ,  . . . ,  X j _ 2 }  | X j _ i

Vi -LL { Y i ,  . . . ,  F i _ i ,  X i ,  . . . ,  X j _ i }  \Xi.

The causality rules define a system where, given the value X%_i, X, is inde­

pendent of past observations of Y and past X ’s. Likewise, given the value of 

the state X*, Yi is independent of past observations of Y and past X ’s. In 

short, given the present the future is independent of the past.

It is the analysis of the hidden state, Xj, that is the main concern of this

study. If knowledge about the states can be gained, then this knowledge

will provide much more meaningful insight about the data generating system 

then the raw observations.

The term HMM usually denotes a model with discrete state space and
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with either a discrete or continuous observation sequence. Here, however, the 

term HMM is used to embody all variations of models with a hidden Markov 

structure emitting a noisy observation sequence. These models include factor 

analysis, principal component analysis, linear dynamic systems (state-space 

models), mixtures of Gaussian clusters and the like. Roweis and Ghahramani 

(1998) give a review of all these models and show how all these models are 

variations of single basic generative model which exploits the conditional 

independence structure of the data. The maximum likelihood parameter 

estimation algorithms for this class of models are also closely linked, and 

can all be expressed as modifications of the Expectation-Maximisation (EM) 

algorithm. Various authors have shown the basic equivalence of the different 

estimation techniques (Hinton, 1995, Roweis and Ghahramani, 1998).

Probabilistic independence networks (PINs) also present a very efficient 

framework for the representation of HMMs. The graphical representation of 

PINS allows for more fiexibility and provides for a framework that permits 

the representation of more complex data formations. Smythe et al (1997) 

show how the forward-backward and Viterbi algorithms commonly used in 

HMMs are special cases of the more general propagation algorithms used 

in PINs. The graphical representation of the first order HMM is shown in 

Figure 4.2. For the first order HMM, the representation of the causal diagram 

in Figure 4.1 is the same as the graphical representation.

4.3 Recursive Residual Applications in HMMs

In the next section, a recursive residual (refer to Ghapter 2 and Ghapter 3) 

will be defined for the state variable X .  Up to now, there has not been a 

formal definition for the state prediction error in the HMM literature. The
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Figure 4.2: The DAG representation of an HMM.

specification of residuals in HMMs is limited to the observation sequence. 

Elliott et al (1995) describes how these residuals are prominent features of 

various online estimation schemes which attem pt to reduce the observation 

prediction error.

In order to define a recursive residual for a HMM, further elaboration 

on the concepts of "realised value" and "prediction" are needed. In a data 

generating system such as an HMM, a realised value for the state as it is nor­

mally understood is unobservable. And because the state is never observed 

a prediction based on past observations of states is also infeasible since its 

evaluation would require the values of past observations of states. Therefore, 

what is suggested here is an approximation of both the predicted and the 

observed values based on what information is available, namely the sequence 

of Y's.

Consider, for example, a model of the form

A T i+ i  —  9 i X i  +  Ci ^  N  ( 0 , W i) ( 4 . 1 )
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Yi — Xi + rji, rji N  (0, Vi) (4.2)

where (4.1) is the system equation and (4.2) is the observation equation.

The information available at time i is the sequence Di = (Ti, . . . ,  Yi).

Given the known values of 6i and Vi it is possible to find the distribution 

of Xj+i|Yi, . . . ,  Yi. From this distribution, a point forecast can be defined 

as =  E (Xi^i\Di). Following the same line of logic, the closest possible 

“estima,te” for the observation is the point forecast, Ci+i =  E  (X i+i|A +i), of 

the updated or filtered distribution for Xj+i|Yi, Y2 , . . . ,  where =

{Di,  The recursive residual can now be defined as ReSi+i =  Ci+i — ̂ i+i-

If the recursive residuals as defined above are computed over a period of 

time to form a sequence, then this is a martingale difference sequence. This is 

proved by examining the conditional expectation of Resi+i, E  (i^eSi+ilTi, I 2, • • •, Yi) 

which is equal to

E [E (x ,+ i |y i,} ^ , . . . ,  }^ )|y i,]^ , . . . ,  y;]

=  0 .

Hence, like all recursive residuals, the Res residuals defined above are uncor­

related. Homoscedacity can be achieved easily by standardising the residual 

by dividing by its standard deviation.

4.4 Results

All the results in this section were obtained using Bayesian updating formulas 

(West and Harrison, 1997) under the assumption that at time 2 =  0 the initial 

information for X o\Dq is N  (mo, Cq).

The residual Res is first derived for the model described in (4.1) and 

(4.2). Note that, although the model is univariate, the results will remain
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valid for the multivariate case. The results are summarised below:
P r io r  a t  tim e  i — 1

F orecast a t  tim e  i

X i \ D i _ i  ~  N  [ai ,  R i ) ,

where a* =  Oimi-i and Ri — 0iCi-\9i +  Wi 

P o s te r io r  a t  tim e  i

X i \ D i  ~  N  (rrii, Q ) ,

where

rrii =  Ui +  AiCi,  Ci  =  R i  — A i Q i A j ,

Ci — ŷ i cLî  Qi — Ri +  Vi,

A i  =  R i { Q i ) ~ ^ .

F orecast for Yi a t  tim e  i

Yi\Di_i ~  N  (üi, Ri + Vi),

R esid u a l a t  tim e  i

Resi = rrii — tti

=  A i { Y i  — t t i ) .

Essentially, Res is no more than a multiple of the residual based on the 

observed F ’s, and, after standardisation, for the univariate case, would be 

identical to it. Although the aim of the analysis is to gain knowledge about 

the expression of the hidden series, the results basically reiterate that the 

information in the observed series contains all information available to make 

a statement about the hidden series.
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4.5 Generalisation

The model analysed above is linear and Normally distributed. In this section, 

a nonlinear system with Normal disturbance terms is analysed to see if the 

results in the previous section also hold true for the recursive residual in this 

generalised case.

The model is defined as follows. Let Fi (•) and Qî (•) be the nonlinear 

regression function for the observation equation, and the nonlinear vector 

evolution function for the system equation respectively. Then the observation 

and system equations are of the form

^i+\ — 9i +  G, €i ^  N  (0, W i )  (4.3)

=  +  77, (4.4)

To define the residual, the distribution of must be specified. For non­

linear systems, however, this conditional distribution is most probably not 

Normal, and can be complex. Standard analysis of models such as these is 

essentially based on linearisation of the nonlinear structures, and approxi­

mating the non-Normal distribution by a Normal.

The easiest and most widely used linearisation method is the Extended 

Kalman Filter. The linearisation techniques described in this section are

fairly common and can be found in a number of publications (West and

Harrison , 1997, and Ghahramani, 1998).

The EKF uses a first order Taylor series expansion of the functions ^, (•) 

and Fi{') to linearise (4.3) and (4.4). It must be assumed that the two 

functions are at least once differentiable. The EKF uses inductive reasoning 

to approximate the posterior distribution. At time z — 1 it is assumed that 

historical information about the state, A,_i, is approximated by Normal
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posterior distribution:

Using rrii-i as a point estimate for gi can be expressed as a first order 

Taylor series expansion,

9i  ~  9i  +  G i  ( X i - i  — r r i i - i ) ,

where

Gi = ^9i l)

is known. The system equation can be approximated by a linear model,

X {  ~  9i { r r i i - i )  +  G i  (%%_i — m j _ i )  Ci =  h i  -i- G i

where hi = gi{mi^i)—Gi7rii^i. The distribution of the state is now |Di_i ' 

N  (uj, Ri) where =  gi (mi_i) and Ri = G iC i-iG j  +  Wi.

The observation equation can be dealt with in a similar fashion, giving 

the following approximation:

^  ~  /i +  Fz (^z — CLi) T hz — {fi ~  Fiflf) +  FjXi +  T]i,

where fi = Fi (a )̂ and

F, =
X=tti

The function Fi{-) is linearised about the point estimate for Xi,  n*.

It is now possible to approximate the predictive density of Yi\Di_i. By us­

ing this density, the desired posterior distribution for Xi\Di can be obtained. 

This distribution is Normal, X i \ D i  ~  N  {rrii,  Q ), where the parameters 

statisfy

'n̂ i — CLi AiCi, 

Ai = RiFiQï^,

Gi — Ri — A iQ iA j , 

= Yi — fi-
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The residual, ReSi = rrii — ai = remains a linear expression of the 

residual for the observed series. Hence the results obtained section 4.4 hold 

true for the more general class of HMMs.

4.6 The Hamilton Model

A second model is considered to see if a change in model structure will lend a 

different interpretation of the residual. In the previous model, the F ’s merely 

represented the additive noise of the X  process. We now consider a model 

similar to that used by Hamilton (1989) where the F ’s are determined by a 

more complex procession of A ’s and T ’s:

y: =  +  Z, (4.5)

Xi = 9iXi^i + rii Tji ^  N  (0, Wi) (4.6)

Zi =  (f)iZi-i +  Cz 6i N  (0, Vi) (4.7)

where Yi, Xi, Zi are scalar, a, 9i, and (/)i are known and r]i and ti are inde­

pendent and with known variances. Substituting (4.7) into (4.5) gives

Yi =  (xXi -t- (f)i {Yi-i — a X i- i)  €i. (4.8)

This model is used in econometrics to model the dynamics of a time series 

characterised by episodes in which there is marked shift in regime. Fig­

ure 4.3 shows the causal diagram for the Hamilton model. Figure 4.4 shows 

the causal structure when equations (4.5) and (4.7) are replaced by equa­

tion (4.8).

The conditional independence structure that characterised the previous 

example does not hold for this model. Yi is no longer conditionally indepen­

dent of past observations and past states given Xi, but rather

Yi-lL{Yi, . . . ,  Tz_2, ^1, •••, Xi-2}\{Xi, X i- i ,  Tz_i}.
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Figure 4.3: The causal diagram for the model as described in equations (4.5) 

(4.7).

Figure 4.4: The causal structure of the HMM as described in equations (4.6) 

and (4.8).
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The residual in this case remains a multiple of the residual for the ob­

served sequence. The results are summarised below. Assuming at time % =  0 

Xq\Dq  ~  N  {mo, Cq):

Prior at tim e i — 1

Forecast at tim e i

X i \ D i - i  ~  N  {ai, R i ) ,

where and Ri =  6iCi-\9i +  Wi

Forecast for Yi

where fi =  aai +  (Tj_i -  am i-i) ,  and Qi = a^Ri +  cjffa^Ci-i +  

Posterior at tim e i

X i \D i  ~  N  {mi. C i ) ,

where

=  0>i ^ iQ i  Ĝi Ci =  Ri — AiQi

6i =  Yi — (piYi^i 4-  (f)iOLmi-i —  OLtti A i =  a R i — (f)iOi9iCi-i

R esidual at tim e i

R,GSi — rrij ai

= Ai {Yi — aai ~  4̂

-- Ai {Yi — f i ) .

ReSi  for the Hamilton model is also a function of the observation predic­

tion error and once standardised would be equivalent to it.
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4.7 Data Compression

Presented below is the analysis of a special case of the multivariate model 

where the Y  observations are multivariate of order r, but the state variable 

X  remains univariate. It is shown that by using generalised least squares 

to estimate X , it is possible to reduce the dimensionality of Y  from r to 

one. Further analysis also shows that residuals derived from such a model 

are the same as those derived from the multivariate case, indicating no loss 

of information.

4.7.1 Compression of Yi

Consider a model with an observation equation of the form

Y i  = L i Xi T] i  ~  N  {hXi,  Vi ) ,

where is an r  x 1 vector of observations, L is an r x 1 vector of some 

predefined constants, Xi  is the univariate state of the system, and r]i is the 

r  X 1 vector of Normally distributed random errors with mean zero and 

covariance matrix V^. The stystem equation is the same as that in the 

univariate case (4.1).

The generalised least squares estimate of Xi,  L^Vp^Yi, can

be regarded as a transformation that compresses Y% into a one-dimensional 

form. This value will be denoted by Y ^  Substituting Y i  m Y *  gives

y ;  =  ( L ^ v - ^ L ) 'T v - :  +

where Y* decomposes into a univariate linear system equation of the form

y.* =  X. +  7„ 7 , ~  iV (o, ( l ^ v - ' l ) )  .
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The Bayesian updating formulas are again used to derive the residual 

for Xi.  The table below summarises the hyperparameters for the posterior 

distribution based on the multivariate and its compressed counterpart Y* .

Multivariate r  x 1 vector Y% Univariate Y*

Posterior at time z — 1 for some 

mean m^_i and variance Q_i,

Posterior at time z — 1 for some 

mean m*_i, and variance c*_i,

X i_ i |A - i ~  N(m*_-^, c*_i).

prior at time z,

X i \ D i - i  ~  N  {ai,  Ti) 

where a* =  OiJrii^i and

Ti — 6j^Ci—\ T Wi-

prior at time z

X i \ D i - i  ~  N [ a * ,  r*)  

where a* =  and

=  ^.'<-1 +

Forecast for Yi at time z,

Y ilA -i ~  N  [a i l , ,  Qi ) , 

where % =  Lr^L^ +  Vf.

Forecast for Y* at time z,

F i lA - i  ~  iV(a*L, ?♦). 

where q* = r* ( iX Y J L ^

Update,

X i \ D i  ~  N  [rrii, c%), 

where rrii = a i 4̂ 6%, A i  = VilX q~^,  

€i = Yi — a^L, and

Ci = T i -  TiL'^q~^Lri.

Update,

X i \ D i  ~  Y(m*, c*), 

where m* = a* +  A* = r*q*_\' 

e* =  ( L ^ V r iL ) ' ' -  a ‘ , and

c* =  u* -

Residual,

R,eSi — AiCi

Residual

Res'i =  A |e |

Res* =  Resi can be proved using induction.

4.7.2 Proof

The state equation, Xi = OiXi-i +  where is N  (0, is the same for 

both cases. Assume at time z — 1 ~  and that
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7Tii_i =  and q_i =  c*_i. From this, the forecast mean and variance for 

Xi\Di in the univariate cases, a*, r j  are also the same as a ,̂ r%, and hence 

Res*_i =  ReSi-\.

It now remains to be seen if the hyperparameters at time z, m*, c%, are 

equivalent to the their transformed counterparts mj, c*.

First the variance,

- 1
Ci = T i -  TiL^ (r^LL^ +  Vi) Ln,

is rewritten by expanding the inverse term (the formula can be found in 

Schott (1997)) and placing and L inside the expansion producing

-1
r,: -  r,: L^’V r 'L  -  L ^ V -'L  ( r - i  +  L ^V ,-'l ) L ^ V f 'L r,:.

The value inside the brackets in the above equation is the expansion of
-1 -1

-1 -1

ri +  (^LVi ^ l)  j  , and therefore c% can be written as

Ci = T i -  ri +  ( l ^ V “^ l)  

which is equivalent to

- 1 - 1

The same technique is used to show that rrii =  m*,

frii = üi +  V%) {Yi — a^L) .

The inverse is expanded and the L vector is multiplied in to give

l / v - ^  -  L ^ V - 'L  ( r - '  +  L^ViL) L^V .r‘] -  a ;L ) .

L^Vj  ̂ is then factored out and multiplied into {Yi — a^L) so that rrii can be 

expressed in the following form

rrii = üi Y  Ti I -  L^V -'L  (r -i +  L^ViL) '] (L^Vr^y; _  aiL^Vr^L)
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m* can also be expressed in the above form. Again the inverse of ql is 

expanded to give

m,- = ai+Ti LV-^L -  LV,-‘L ( r - i  +  LV ,-'l ) ‘ L V - 'l ] [(LV-^l ) '  LV.-*L -

LVj L is then factored out of the expansion and multiplied into

(L V -iL )" A ^ V -iF i -  ai 

giving an expression of m* equivalent to

I -  L^V -^L ( r - i  +  L ^ V - i l ) “ '] (L^'V-iFi -  L^V.-^Lai) .

It can now be deduced from m* =  a* +  and rrii = ai + that the 

residuals Res* = A*e*, and ReSi = AiCi are also equivalent.

4.8 Sufficiency

The results for the special case of the linear dynamic model presented in 

section 4.7 can be given a much broader interpretation. The problem con­

sists of a noisy array of multivariate observations originating from a hidden 

univariate source. The results show that the multivariate data, Yj, can be 

summarised using a univariate statistic, Tj, where Ti is a function of Y%, 

without loss of information. The statistic, Ti, summarises all the informa­

tion in {Yi, . . . ,  Yi} about the hidden variable, Xi, such that the knowledge 

of the individual values of the Y ’s becomes irrelevant. Ti is thus a sufficient 

statistic for Xi with the following property:

V i^X ilT i

The diagram in Figure 4.5 shows the causal structure of the model prior 

to the data compression. Figure 4.6 shows the causal diagram of the model
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X; X i+1 X i+2

Y, Yi+1 Yi+2

Figure 4.5: The causal structure prior to compression.

i+2

i+2i+1

Figure 4.6: The causal structure of the model with the sufficient statistic T.
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after the multivariate data has been compressed. The diagram in Figure 4.6 

makes it clear that Yi is conditionally independent of Xi  given Tj. By moral­

ising the graph it is also possible to see the implications Ti has on the predic­

tions, Cz+i and ^i+i. is conditionally independent of {Y\, . . . ,  Yi) given 

{Ti, . . . ,  Ti) and Xj+i also is conditionally independent of {Y i , . . . ,  Fî+i} 

given {Ti, . . . ,

The forecast distributions for conditional on Di, and Xi+i condi­

tional on Di-^i are equivalent to the forecast distributions for conditional 

on {Ti, . . . ,  Ti] and {Ti, . . . ,  Ti+i} respectively. Therefore the forecasts, 

Ci+i and ^i+i, are the same whether they are based on the sufficient statistics 

or the observation sequence.

The results of section 4.7 show how the concept of sufficiency can be 

applied in an HMM structure. Y* summarises the matrix in a univariate 

statistic with the following conditional independence property

The residual analysis in section 4.7 reveal that the residuals obtained using 

Yi are equivalent to those obtained using Y* showing that there is no loss of 

information, and also that the predictions and updates in both cases are also 

equivalent. Y*, therefore, is a sufficient statistic for Xi.

4.9 Discussion

The aim of this chapter is to use residuals to compensate for the lack of 

information available to the forecaster when dealing with a Hidden Markov 

Model. Residuals for the HMM are defined and it is hoped that through the 

analysis of the structure of the residuals for the hidden state sequence more 

information about the sequence can be gained. The results, however, show
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that residuals, in the univariate case, for the hidden state are equivalent to 

the residuals of the observation sequence. These results hold even for the 

nonlinear case.

The Hamilton model presented an example of HMM with a more complex 

causal structure. In the Hamilton example a noisy signal at time z is a 

function of both the current and previous state of the system and past values 

of the observation sequence. The residuals for the state of system still show 

that they are a multiple of the residual for the observation sequence. The 

complex causal structure of the Hamilton model does not provide any further 

understanding of the hidden sequence.

All the models considered in this chapter have a system equation in the 

form (4.1) where the current state is a function of the previous state. All the 

residuals evaluated for this system equation show that the only information 

available for the state at time i is the corresponding observation at time 

i. It would, then, seem logical to consider a system equation in which the 

current state at time z is a function of the previous state at time z — 1 and 

the observations at time z and z — 1 making full use of the information.

The comparison of residuals gives a good basis for exploring statistical 

methods and making judgements on them. Section 4.7 looks at a Linear 

Dynamic Model with a univariate state variable and a multivariate obser­

vation sequence. For this special case, it is found that the observable series 

can be compressed in the form of a one dimensional transformation. The 

residuals for the state variable are computed using both the original and the 

minimised formulation and are found to be equivalent showing that the com­

pression of the data results in no loss of information. The equivalence of the 

two residuals is proven algebraically in section 4.7. Section 4.8 also proves 

their equivalence using a more general argument which states that the one
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dimensional compression being a function of the data is a sufficient statistic 

for the state.

A data compression technique such as this can be very practical when 

dealing with problems in speech recognition where there are many variables 

involved and also in other complex multivariate HMM applications. The 

reduction in the dimesionality simplifies the modelling scheme without loss 

of information and allows for a concentrated focus on the analysis of the 

variable of interest and the predictions made ffor them.
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Chapter 5 

Calibration for Hidden Markov 

Models

5.1 Introduction

From this chapter onwards, the analysis shifts from the assessment and anal­

ysis of point forecasts to the assessment and analysis of probability forecasts. 

The focus of the applications remains the hidden Markov model described 

in Chapter 4. Empirical calibration is the selected method of assessment for 

the probability forecasts of HMMs.

Calibration is a term commonly used to describe the discrepancy between 

the assessed probability of a sequence of events and the observed frequency 

of the occurance of those events. The formulation of probability forecasting 

assessment by calibration was largely established for the use of meteorolo­

gists. On the evening before any given day a weather forecaster is expected 

to make a forecast or a statement regarding his degree of belief about the 

outcome of rain on that particular day based on information currently avail­

able. At the end of the day, the event under speculation becomes known

71



and a value (rain =  1, no rain =  0) is observed. Over a long period, the 

forecaster develops a sort of history or forecasting portfolio. Using this port­

folio a meteorologist’s ability as a forecaster can be evaluated by empirical 

calibration.

For a forecaster to be well calibrated, it is expected that out of those 

days to which the forecaster assigns the probability p of rain, rain occurs a 

p proportion of the time. What results is a comparison between the proba­

bility forecast and the relative frequency of the outcome. Calibration can be 

evaluated graphically by plotting the relative frequency of the outcomes w, 

against p, in what is called a calibration curve. The calibration curve of a well 

calibrated forecaster should lie on (or close to ) the diagonal. A forecaster 

is said to be well calibrated iî p = uj. In order to calibrate forecasts all that 

is required is a set of sequentially generated forecasts and its corresponding 

set of realised outcomes.

For probability forecasts made about the state of a hidden Markov model 

the corresponding set of realised outcomes is not available. Nevertheless, 

it is still necessary to evaluate the forecasts’ performance. The outcomes 

are replaced with a one step ahead filtered prediction. W ith this in mind, 

assessment by calibration determines the forecasts’ success in explaining the 

forecast’s updated prediction.

This chapter attempts to judge the performance of probability forecasts 

for a sequence of unobserved outcomes, the state of an HMM, by defining a 

new calibration criterion. All of the work presented in this chapter is an ex­

tension of the calibration concepts introduced by Dawid (1982). Section 5.2 

gives an introduction to these calibration techniques. How these concepts 

can be extended for use in HMM forecasting assessment is explained in sec­

tion 5.3. The application of empirical calibration and the concepts developed
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in section 5.3 are illustrated in section 5.4 through the use of two examples.

5.2 The Calibration Criterion

Before discussing the calibration criterion, it is first necessary to define a 

forecasting system and to clarify the basis behind the selection of calibration 

as the validation method for probability forecasts. Let a = (a i,û 2, • • •) de­

note an infinite series of observed outcomes of an uncertain binary event 

observed sequentially over time. After observing a series of i outcomes, 

a* =  (ui , . . . ,  it is possible to assign a probability P^+i to the occur­

rence of the next event. Constructing such a probability forecast for each i 

and a* constitutes a forecasting system (FS) (Dawid, 1986). A prequential 

forecasting system is defined as a forecasting system that is defined by a rule 

which associates a choice of Pi+i for every i and with any possible set of 

outcomes of =  (&%,..., n*).

Suppose the forecasts are generated sequentially from a fixed probability 

distribution IT. The purpose of forecasting assessment is to determine the 

overall adequacy of II as a probabilistic explanation for a. The assessment 

should depend on H only through the sequence of forecasts that it, in fact, 

made (Dawid, 1984). This requirement is referred to as the Prequential Prin­

ciple. In application, an assessment method would require only the sequence 

of outcomes and their corresponding forecasts to be in accordance with the 

prequential principle. The criterion of complete calibration introduced by 

Dawid (1982) is one such method.

Given a sequence of forecasts, P , a subsequence is selected from it ar­

bitrarily using an admissible selection process whereby the inclusion of any 

particular event i is determined by previous outcomes only, (ui, U2, . . . ,  n^_i).
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Figure 5.1: The causal structure of the HMM.

and not by or any later outcome. If P" is the average forecast probabil­

ity for the first n events in such a subsequence, and is the corresponding 

empirical relative frequency of those events, then the calibration criterion 

requires, inorder for the sequence P  to be valid, that (â„ — P ”) — > 0 as

n — > 0 0 .

5.3 The Calibration Criterion for HMMs

The previous chapter looked at the Normal linear state-space model with an 

unobservable state. A causal diagram for such a data generating system is 

given in Figure 5.1. W ithout reference to any particular model, a definition 

for both the forecast and observed value were given for any data generated 

as function of an underlying hidden state. In this chapter, the HMM models 

examined are restricted to HMMs with a discrete state space. Specifically, 

the state space of the HMM is binary {0, 1} where the state of the system is 

either in a particular state {Xi =  1) or not {Xi =  0). To examine this class of 

HMMs, the PiS and g/s must be redefined as probability forecasts. Suppose 

that P  is the joint distribution for (Ai, X 2, . . .).  As such, the forecast for the 

state is now pi = P{Xi = 1 |}^, . . ., Fi_i), the conditional distribution for Xi  

given and its outcome or update is % =  P{Xi =  llTi, . . . ,  T̂ ).
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Algorithm 5.3.1 describes the computation ofp% and %.

A lgorithm  5.3.1

1. Initialisation:

Pi = P{Xi = 1)

P{Yi) = P{Yi\Xi = l)pi + P { Y i \ X i = 0 ) { l - p i )
P i f  =  1)

■  p ( u )  ■

2. Iterate: i = 2, . . . N

P i  —  “  1) +  (1 “  =  0)

F (y ilA - i)  =  P{Yi\Xi = l)pi +  P{Yi\Xi =  0 ) { l - p i )
PiPjY^Xi = 1)

*  P(F .lA -i) ■

3. Stop. Note that the expectation is:

== Ç --------p { y . \ y , . . . .  ---------

=  p , ^ P { Y ^ X i )

=  Pi-

These probability forecasts are used in this section to define a calibration 

criterion. This new criterion assess the p is  performance in predicting the qls 

which adheres strongly to the calibration criterion of Dawid (1982) as well 

as running parallel with the proof of the former.

Assume that the forecasts are made sequentially from a fixed joint prob­

ability distribution P. To create an arbitrary test set of time points, an 

indicator variable, [/̂  =  {0 , 1}, is -measurable and is used to denote
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the exclusion or inclusion respectively of any time point i in the set, where 

% — Let

Pk — '^k ~  ^k ^z=l ^iPi-

The forecasts made are said to be completely calibrated if tt^ =  pk is attained 

for a large enough collection of subsequences of admissible forecasts.

Theorem  5.1 Let the selection process be admissible. Then, with P-probability 

1; TTfc -  Pit 0 as Vk — > oo.

P roo f. Theorem 5.1 is a variation of Theorem 1.1 given in Chapter 1. Let 

Bi = =  BiUiiQi -  Pi), and Sk = Z L i Since E(%|D*_i) =  pi, and

the conditional expectation of X^, E{Xi\Di^i) is equal to 0 :

E { X i \D i^ i )  =  BiUi [E (qi \Di-i )  — E  (pi|D^_i)]

=  BiUi \pi -  Pi]

=  0

and (Sk) is a martingale adapted to Dk-\. For any realisation of Li’s, the 

successive nonzero terms of the sequence (BiUi)"^ , (B 2 U2 Ÿ  > • • • 5 are

1 1  1
' 2 2 ’ 3 2 ’ ■■■’

so that.
k 00 2

z = l  n=l
Using the above result, and

E  ( X f )  = E  (B .U if var f e |A - i )  <  \ e  {BJJi) 

it can be shown that E(Sl)  is bounded:

E  { s l )  =  E i i  E {X?) < \ E  [ E i i  (B iU i f
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Then, by the martingale convergence theorem the sequence

k
=  BiUi  (% -  Pi )

2=1

converges with P-probability 1, and by Kronecker’s lemma (Feller, 1971 pg. 

238)
k

Pk ~ '^k — B k ' ^  Ui (qi — Pi) — > 0,
2 =  1

as Uk — y oo. The only assumption made is that the PiS are evaluated 

sequentially according to a fixed probability distribution P.<^

5.4 Applications

In theory, if the model is appropriate, the calibration criterion should hold 

for any sequence of p^’s and ç/s since P(%|D^_i) = Pi. It remains to be seen 

how Qi and Pi will behave in practice. The calibration criterion is illustrated 

by defining qi and Pi for the examples below.

5.4.1 Example 1

This example is taken from the book Biological Sequence Analysis (Durbin, 

et al 1998) and is used here to demonstrate the application of the calibration 

criterion on a basic HMM configuration.

Consider a casino which occasionally switches from using a fair die, de­

noted by F , to a loaded die, denoted by L. At any given time, the die in 

use is determined by a Markov chain forming a series of hidden states, de­

noted by A, which are unknown to the gambler. The transition probabilities 

governing the switch between the fair and loaded die are summarised in the 

matrix below:
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X i+1

X:

F L

F 0.95 0.05

L 0.10 0.90

, P{Yi\Xi =  L) = {

^ =  1

To i f 11 =  2

Vi =  3

& Vi =  4

& i f Vi =  5

i f  'Vi =  6

All that the gambler observes is the result of the toss, a value from 1 to 6, 

which make up the series of observed F ’s. When a fair die is used there is 

equal probability of observing any of the six possible outcomes. The loaded 

die, however, favours an outcome of 6. The probability of the observed 

outcome is summarised below:

I % =  1 

I 2/ =  2

6 — 3

I i f  ^  =  4

I i f  Y. = 5

. I  i f  Y, = &

The observed series (shown in Figure 5.2) consists of 300 consecutive tosses 

of a die at the casino described above.

The forecasts and updates are computed using Algorithm 5.3.1 with the 

above model. Calibration applications on the data show that the forecasts 

are well calibrated. Setting Ui = 1 for all i, the calculated p3oo and ttsoo were 

found to be 0.3566 and 0.3538 respectively.

Graphical analysis of the forecasts gives some additional insight into their 

behaviour. The plot in Figure 5.3 is a very crude summary of the rela­

tion between (p%, qi). Let Si be the set of prediction and update at time 

h (Pz, Çi), computed from the observed series and let denote the series 

(‘S'l, ^ 2, . . . ,  , Sn) of such pairs. For an infinite realisation of {pi,qi), S°°, a 

joint distribution for (p*, g*), II, is determined on the unit square. II is a
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1 3 1 5 1 1 6 2 4 6 4 4 6 6 4 4 2 4 5

19 3 1 1 3 2 1 6 6 1 1 6 4 1 5 2 1 3 3

37 6 2 5 1 4 4 5 4 3 6 3 1 6 5 6 6 2 6

55 5 6 6 6 6 6 6 5 1 1 6 6 4 5 3 1 3 2

73 6 5 1 2 4 5 6 3 6 6 6 4 6 3 1 6 3 6

91 6 6 3 1 6 2 3 2 6 4 5 5 2 3 6 2 6 6

109 6 6 6 6 2 5 1 5 1 6 3 1 2 2 2 5 5 5

127 4 4 1 6 6 6 5 6 6 5 6 3 5 6 4 3 2 4

145 3 6 4 1 3 1 5 1 3 4 6 5 1 4 6 3 5 3

163 4 1 1 1 2 6 4 1 4 6 2 6 2 5 3 3 5 6

181 3 6 6 1 6 3 6 6 6 4 6 6 2 3 2 5 3 4

199 4 1 3 6 6 1 6 6 1 1 6 3 2 5 2 5 6 2

217 4 6 2 2 5 5 2 6 5 2 5 2 2 6 6 4 3 5

235 3 5 3 3 3 6 2 3 3 1 2 1 6 2 5 3 6 4

253 4 1 4 4 3 2 3 3 5 1 6 3 2 4 3 6 3 3

271 6 6 5 5 6 2 4 6 6 6 6 2 6 3 2 6 6 6

289 6 1 2 3 5 5 2 4 5 2 4 2

Figure 5.2: The data series for Example 1. The first column gives the starting 

value of i for each row.
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Figure 5.3: Plot of Si for the dice example.

limiting empirical distribution for (p%, ryj, and is random depending on the 

sequence S. The distribution, II, contains less information then the actual 

sequence of p’s, and r/’s. The order of the observations once S  is plotted is 

no longer known.

The shape of the versus Pi plot is largely determined by the value of 

1̂ . For this example, the outcome probability is one of three possibilities: 

| ,  and I depending on the value of Yi, and the current state of the 

system. The prediction of the state at time i as determined by the model 

depends primarily on the value of Yi and whether or not it is equal to 6 or 

{1, 2, 3, 4, 5}, therefore, the sequence of T̂ ’s are used as binary sequence 

where each Y] = {{1, 2, 3, 4, 5}, 6}. It is for this reason that the plot 

in Figure 5.3 takes the form of two separate curves around the diagonal. 

Figure 5.4 below is the plot of predictions against their updates for all values
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pi

Figure 5.4: The {)lot of [pi,qi) pairs for =  6.

of I where - C and shows the top curve of Figure 5.3. The bottom curve 

of Figure 5.3 is composed of all pairs of Pi and for which Yi = {1, 2, 3,4, 5}.

This is shown in Figure 5.5.

According to the calibration criterion, the plot should show that the over­

all average of p /s should be approximately equal to the overall average of q '̂s 

for general calibration to hold. The plot of qi versus pi shown in Figure 5.3 

shows an almost symmetric distribution of points around the diagonal. For 

an HMM, this is an indication of good calibration. Such a distribution of 

})oints indicates that the average g/s for a fixed value of p̂  are close in value 

Pi which is the desired attribute of well calibrated forecasts.

This is illustrated more clearly using a calibration plot. A calibration 

plot, such as the one in Figure 5.6, provides a venue for a more accurate as­

sessment of calibration by means of the calibration criterion. The Pi forecasts
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Figure 5.5: The plot of ç,) pairs for = {1,2, 3,4, 5}.

are divided into prespecified intervals. For this example, and the remaining 

examples thronghont this thesis, there are eleven such intervals:

0 < Pi < 0.05 

0.05 < Pi < 0.15 

0.15 < Pi < 0.25

0.85 < Pi < 0.95 

0.95 < Pi < 1

For each of the eleven intervals, the average qi is computed, for those f/i’s 

who’s corresponding pi lies within interval j ,  j  = 1 , . . . ,  11. This is plotted 

against pj, the average of the p /s  that lie within interval j.  As specified 

by the calibration criterion, good calibration is indicated by a straight line 

through the diagonal of a {pj, ^ } plot. Examination of the calibration plot
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Figure 5.6: The plot of average %'s versus average pi's taken at fixed pi 

intervals.

in Figure 5.6 shows that except for a slight bump near the j  = 6 interval 

where pQ = 0.5 , the points lie on the diagonal indicating that the forecasts 

are well calibrated.

5.4.2 Example 2a

Consider a Bernoulli distributed state variable X  with success probability 9. 

Let Y  be the observed binary variable where T |X  is defined by the following 

transition matrix:

X

0 1

0 s f

1 f s
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Then P{Y  =  1|^) =  0s +  (1 — 9)f. Note that in this example, the X ’s are 

independent of each other. Therefore, {Xi^Yi\ pairs are also independent 

across i.

For a given value of 0,

Pi =  P { X i  = l\Yi, . . . ,  Yi_i)

= P{X^ = 1)

=  0

and

Qi = P{Xi - l\Yi) = i
 ÉÏ  j f  y . — 00/+(i-0)s’ —u

Os'1___ j f  y  — 1
0s+(l-0)/’ ‘'J ^

It is easy to see in this example that the calibration criterion holds in theory. 

The conditional expectation of qi is equal to

£ ( * | A - i )  =  P{Xi  = m  =  0)P{Yi =  0) +  P{Xi  = l\Y, = l)P{Yi =  l)

{6f +  (1 -  e)s) +  {es +  (1 -  9)f)
e f  +  { i - e ) s ^ ^  '- ' '  9s +  { I ~ e ) f

=  0

Values for 0 and s were generated randomly. Using 0 =  0.7413 and 

s =  0.6009, a series of 500 observations are simulated and used to compute 

Pi  and Çi- With the values of s  and 0 known, % can take one of two values: 

Qi =  0.655 if Vj =  0 or Qi = 0.8119 if =  1. The value of pi remains constant 

at 0.7413, the value of 0. The statistics pk and 7Tk are 0.7393 and 0.7413 

respectively showing that the predictions are well calibrated overall.

5.4.3 Example 2b

The analysis has now changed slightly to take into consideration calibration 

of forecasts generated from a Bayesian model. Consider the same model in
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section 5.4.2, but now assume that 6 is uniformly distributed over the interval 

[0,1]. First the value of Pi is computed:

Pi ~  P{Xi = l\Yi, . . . ,  Yi^i)

=  E{9\Yi ,  . . . ,  Yi_i).

Further evaluation of this result requires the posterior distribution of 9\Yi^ . . . ,  Yi^\. 

This distribution, however, cannot be determined directly since Yi has a 

Bernoulli distribution with probability of success 9* = {s — f)9  f . To de­

termine the posterior distribution, 9 is expressed in terms of 9*. To simplify 

the task of evaluating pi, the posterior distribution of . . . ,  Yi_i is first

determined and from that the result

' 9 * - f
Pi  =  E

s -  f
■\Yi, . . . ,  Yi-]

can be obtained (note that the distribution of 9* is Uniformly distributed 

over [/, s] assuming s > f ) .  This leads to a truncated Beta distribution with 

density of the form

f { e - \Y i ,  K.-i) =  a ( I :  n  +  1, i -  (1 -  ,
\A :=1 k~l J

where f  < 9* < s, and the normalising constant of the pdf, a(-), is a function 

of the exponents of 9*, and (1 — 9*̂  such that.

i(cK, / ) ) = d9.
7

The conditional expectation of 9 is then 

> - /
P i  = E

s -  f
|Ti, . . . ,  Yi-]

(ErJi n +1, » - Ej-Ji n) - a {Ei=\ n +2, i - £r=\ u) / 
{ s - f ) a  ( E t \  n  +  2 , i -  E r= \ u )
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qi can be evaluated in a similar manner. The value of as in the case 

when 9 is known, takes on two values depending on the value of =  {0, 1}. 

For =  0, % takes the form

Qi — P { X i  =  l \ Y i ,  y^ =  o , )

=  E  [9\Yi, . . . ,  Tj =  0).

Expressed in terms of 9* the expectation becomes:

E

the evaluation of which is

\Yi, . Ti =  0,

Qi —
1 /

(  ̂ “ / )  \ ^ ( ^ f c + 2 , z - r ç )  a { Y ^ l , i  -  Y^ )

where Y^ = ^  and for Yi = 1,

' 9 * - f
E

s - f

s - f ^ K  +  1,2 -

Further calculations show that E{qi\Di^i) = Pi.

The Pi and % were evaluated using the simulated series of section 5.4.2. 

Figure 5.7 is a plot of these predictions. Examination of the plot shows a 

high concentration of points around the value of 9. The calibration statistics, 

TTfc =  0.7181 and pk = 0.7185, not only indicate good calibration, but show 

that the statistics also seem to be approaching the unknown value of 9, the 

probability of observing Xi = 1. The calibration plot in Figure 5.8 further 

emphasises that the forecasts are empirically well calibrated.
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Figure 5.7: The plot g/s versus p^s for unknown 9.
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Figure 5.8: The plot of average ç/s versus average p /s  taken at fixed p, 

intervals.
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5.5 Discussion

Calibration, in its adherence to the prequential principle, provides a practical 

means of evaluating the validity of probability forecasts and provides a rule 

for judging the success of a forecasting system in explaining the outcomes. 

In the HMM structure the realised sequence of outcomes is replaced by the 

sequence of one step ahead predictions, qi.

A theorem, a variation of the calibration criterion, is given which spec­

ifies the asymptotic behaviour of well calibrated forecasts for HMMs. The 

forecasts are said to be well calibrated if the difference between the average 

of the forecasts and the average of the update is zero. Two examples are 

used to investigate the calibration of the forecasts in application. In both 

examples, it is observed that the calibration criterion holds.



Chapter 6

CpG Island Example

6.1 Introduction

To illustrate the performance of the forecasts for the state of an HMM and 

their calibration, the calibration criterion is implemented on a real world 

problem. The data analysed for this purpose is the Xq28 DNA sequence, a 

human DNA sequence obtained from GenBank (accession number U82695). 

The sequence is approximately 80,000 base pairs long.

In the human genome, a CpG island is a strand in the DNA sequence 

characterised by the occurrences of CG dinucleotides (written as CpG to 

distinguish it from a C-G base pair across the two strands). Typically, where- 

ever a CpG dinucleotide occurs in the sequence, the C nucleotide (cytosine) 

is chemically modified by a process called méthylation. The méthylation 

process often acts as a catalyst for mutation of the nucleotide from C to 

T making the CpG dinucleotide a rare incident. There are, however, short 

instances in the genome (a few hundred to a few thousand base pairs long) 

where the méthylation process is suppressed. In these regions there are more 

CpG dinucleotides than elsewhere in the sequence and, in general, there are
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Figure 6.1: The causal diagram of the CpG Island model.

also more occurrences of C and G nucleotides. These regions are known as 

GpG islands, and they act as identifiable landmarks for locating genes.

For this example a short segment of 2500 base pairs of the DNA sequence 

is used. The segment begins at the 8000^  ̂nucleotide and ends at 10500. This 

particular stretch of the DNA sequence has been chosen because previous 

studies have shown that it is a strand rich in CpG islands (Benson et al, 

2000).

6.2 The Hidden Markov Model

The formulation of the HMM model for this problem includes two hidden 

states, the GpG island state, and the non-CpG island state corresponding 

to X i = 1 and Xi =  0, respectively. Any DNA sequence consists of a long 

chain of four possible nucleotides. A, T, G, G, which together make up the 

set of observed outcomes for this example, Y  = {A,T, G, C}. The outcomes 

are governed by a Markov process P{Yi\Yi-i, Xi). Figure 6.1 illustrates the 

causal diagram.

The matrix of transition probabilities in the CpG island state is different 

from that of the non-GpG island state. The values of both the hidden state
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X,:

%i+l

0 1

0 0.9997 0.000245

1 0.001171 0.998829

non-CpG island state CpG island state

i+l Vii+l

Vi

A T C G A T C G

A 0.300 0.210 0.205 0.285 A 0.180 0.120 0.274 0.426

T 0.177 0.292 0.239 0.292 T 0.079 0.182 0.355 0.384

C 0.322 0.302 0.298 0.078 C 0.170 0.188 0.368 0.274

G 0.248 0.208 0.246 0.298 G 0.161 0.125 0.339 0.375

Table 6.1: The transition probabilities of the CpG island model.

transition probabilities, P(Xi\X i-i) ,  and the transition probabilities for the 

observed outcomes were obtained from the literature (Churchill, 1992, Durbin 

et al, 1998). The transition probabilities are displayed in Table 6.1. The 

main distinction between the two states can be observed by comparing the 

transition probability P ( Y i  =  G \ Y i - i  =  C )  for both states. This probability 

is higher in the CpG island state at P{Yi = G\Yi-i = C, Xi  = 1) = 0.274 

than it is in the non-CpG island state where it is equal to P{Yi =  G\Yi-i = 

C , X i  =  0) =  0.078.

The forecasts, and the update, %, are computed based on the def­

initions given in the previous chapter: pi = P{Xi = l | l i , . . . ,  Fi_i) and 

Qi = P(Xi  = l | F i , . . .  , Y i ) .  The plot shown in Figure 6.2 is the plot of the 

Pi’s against %’s.

It can be seen that the plot consists of sixteen very definite arcs on each 

side of the diagonal giving it its unique shape. Like the previous two exam-
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Figure 6.2: Plot of updates against the forecasts.

l)les in Chapter 5, the distribution of the {pi, Qi) pairs is for the most part 

determined by the value of For this example, Yi can take one of four pos­

sible values. The probability of an outcome, 1̂ , however, is dependent not 

only on the state of the system at time z, but also on the value of since 

the series of outcomes also form a Markov Chain. Therefore, the number of 

])ossible transitions or outcomes are sixteen. Analysis of the forecast proba­

bilities shows that each of these arcs pertains to one of the sixteen possible 

outcome transitions (i.e. a transition from A to A, A to T, A to C, A to 

G etc. . .). The arc on the outer boundary of the remaining points towards 

the top of the hgure shows pi against g, when the transition of the observed 

values is from C to G.
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Interval Average p Average q n

0 <  P i  < 0.05 0.0165 0.0180 382

0.05 < Pi < 0.15 0.0876 0.0914 133

0.15 < P i  < 0.25 0.2026 0.2210 76

0.25 < P i  < 0.35 0.2984 0.3161 92

0.35 < P i  < 0.45 0.3986 0.4180 96

0.45 < P i  < 0.55 0.4978 0.4956 104

0.55 < P i  < 0.65 0.6000 0.5943 107

0.65 < P i  < 0.75 0.7026 0.7139 125

0.75 < Pi < 0.85 0.8037 0.7931 184

0.85 < Pi < 0.95 0.9075 0.9031 346

0.95 < P i < 1.00 0.9803 0.9796 856

overall 0.6413 0.6423 2501

Table 6.2: Average q[s for fixed values of p*.

6.3 Assessing Calibration

For this working example the calibration criterion seems to hold well. For 

different values of pi taken within a given interval, the mean value of % is 

computed and compared with the value of the former. Table 6.2 shows the 

results obtained.

Figure 6.3 is a plot of the average % for fixed values of Pi. The straight line 

across the diagonal is the sought after characteristic of calibrated forecasts.
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Figure 6.3: Calibration plot of the forecasts: for fixed values of the plot 

shows against p̂ .
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6.3.1 The test statistic

Figure 6.3 above only shows the empirical calibration of the forecasts. In 

order to assess accurately the calibration of the forecasts, a test statistic is 

used. Sellier-Moiseiwitsch and Dawid (1993) developed a test statistic in 

the framework of probability forecasting to test the discrepancy between the 

number of times an event of interest occurred and the number of times that 

same event is expected to occur. With minor adjustments the same test 

statistic can be adapted for use in this analysis.

The test statistic used to test the overall calibration of the forecasts, Z q, 

is defined as
7 = S  ~ Pi) 1 'l

A variation on this test statistic can also be defined as

Z. -  -  ft) /(, n\' [EUivar{q,\Di.^)Y/^’ 

where Ui = 0, or 1 is -measurable meaning that the value of Ui is as­

signed using only the information available at time i-1. The sequence of t / ’s 

allows the assessment of a predetermined subset of points such as testing 

the calibration of the forecasts for fixed values of or prespecified intervals 

of Pi. For the remainder of this chapter, Zk {k = 1, . . . ,  11) will be used 

to denote the test statistic for the k subsequences of (p%, %) pairs where the 

pair is included in the /c^^-subsequence if its corresponding pi lies within the 

prespecified /c*^-interval (refer to Chapter 5). In the case where Ui = 1 for 

all 2, Zk becomes the overall test statistic Z q

The null hypothesis of this test statistic maintains that the Pi forecasts 

and the % updates fulfil the requirements of the validity criterion of complete 

calibration as discussed in Chapter 5. For the hidden Markov model, the 

calibration criterion does not draw upon any particular probability model,
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but rather makes a single assumption that the pi forecasts for qi are generated 

sequentially as conditional probability forecasts from a fixed distribution P. 

The null hypothesis for complete calibration assessment can then be stated as 

the assertion that the Pi forecasts are constructed sequentially from the same 

probability distribution P as that from which the % updates are generated.

6.3.2 Derivation of the test statistic

Suppose that, as stated in the null hypothesis, the {pi, pairs are generated 

from the same distribution P and that the a - fields, Di, containing all the 

information available at time z =  1 , . . . ,  n are nested, so that Di Ç A + i.

Let Si  =  U i{ q i—p i) ,  where Ui =  0,1 is -measurable and let S  = J2i Si .  

Then, under the distribution P, (5) is a martingale adapted to D^. The

cumulative conditional variance of (5^), YJi^iUiVar{qi\Di-i)^ is denoted by 

W^. The calibration test statistic can then be written as • If

Ui = 1 for all z, then Yn is merely Zq.

T h e o rem  6.1 Suppose that Cn is a sequence of constants such that Ci < C2 < 

• • • —>■ oo, and p is a strictly positive finite random variable for which under 

P, the following conditions hold:

(6.3)

> e) -4 0, for all e > 0 (6.4)

^  A  (6.5)

A  Ç A+i- (6.6)

A e n  -4 AT(0,1).

P ro o f: Theorem 6.1 is a variation on the Central Limit Theorem for Mar­

tingales (Hall and Heyde, 1980, pg. 64) with ^  above, replacing X^i and 

Di = Dni.(>
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Seillier-Moiseiwitsch and Dawid (1992) used this variation of the Central 

Limit Theorem for Martingales to derive the distribution of the their test 

statistic. The same theorem can be applied here to derive the distribution of 

Yn- Condition (6.4) will hold if the cumulative expectation in (6.3) is bounded 

which (as shown in the proof of Theorem 5.1) is the case if P-  For

condition (6.5) to hold, must essentially tend to infinity at an identical 

rate for each sequence, regardless of the data generated by P. Also, 77 is a 

random variable since its value need not be the same for different realisations 

of the forecasts and updates. Condition (6.5) is justifiably upheld if it can 

be assumed that, for the data at hand, will approach infinity as more 

and more data become available.

6.3.3 Generalisations and results

The results of Theorem 6.1 can also be extended to test statistics evaluated 

for several subsequences of (p*, g*) as long as the length of the subsequences 

is infinite. The subsequences calibration test statistic can be formulated as a 

multivariate generalisation of the overall calibration test. Let Sik = Uik{qi — 

Pi), where Uik is D^_i-measurable indicator variable indicating the inclusion 

or exclusion of the forecast and update pair at time i in the subsequence 

k. Each Pi forecast can only be assigned to one of K  subsequences, so that 

Si = {Sii, . . . ,  Six)  is a AT-length vector with one [qi —pi) element and K  — 1 

zero-elements, and SihSik = 0  \/ k ^  h so that all the subsequences are 

disjoint. The cumulative conditional covariance matrix of Si is a diagonal 

m atrix with elements of the form

= '^var[qi\Di^i),  [k = l , . . . , K ) .
i£k
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Interval n Test Statistic Z p-value p-value (x^)

0 < Pi < 0.05 382 2.5671 0.0103 6.5900 0.00142

0.05 < Pi < 0.15 133 1.0023 0.3162 1.0046

0.15 < Pi < 0.25 76 1.9904 0.0465 3.9617

0.25 <  Pi < 0.35 92 1.8778 0.0604 3.5261

0.35 < Pi < 0.45 96 1.6991 0.0893 2.8869

0.45 < Pi < 0.55 104 -0.1900 0.8493 0.0361

0.55 < Pi < 0.65 107 -0.5120 0.6087 0.2621

0.65 < Pi < 0.75 125 1.2842 0.1991 1.6491

0.75 < Pi < 0.85 184 -1.8649 0.0622 3.4779

0.85 <  Pi < 0.95 346 -1.9557 0.0505 3.8247

0.95 < p i < 1.00 856 -1.7382 0.0822 3.0213

overall 2501 0.8408 0.4005 =  30.24

Table 6.3: Results of the calibration test statistic.

Using this formulation, Helland(1982) shows how both the asymptotic Nor­

mality and asymptotic independence of the K  test statistics, for the depar­

ture from calibration within each subsequence, follows from the multivariate 

generalisation of Theorem 6.1.

Since the test statistics are asymptotically Normally distributed and in­

dependent, it is possible to infer that has a X/c distribution and can

be used as a as a portmanteau statistic to test the validity of calibration 

performance combining the test statistics derived from each subsequence in 

an overall measure of discrepancy. This allows the assessment of calibration 

over all the probability ranges simultaneously.

Table 6.3 above shows the value of the test statistic and the corresponding 

p-value for the overall test of calibration and for calibration of various subsets.



Each of the subsets includes only those values of (p*, %) such that pi lies 

within a prespecified interval. The overall test indicates that the predictions 

are well calibrated. The test, shown in the far right column of the table is 

equivalent to 30.24 with 11 degrees of freedom giving a significance level of 

just over 0.1%. In general, the results for the subgroups show that the p /s  

and the ç^’s are calibrated, however, in some subsets (especially when the 

predictions near the zero-one extremes) the p-values are small. The test 

statistic also shows a high level of significance. Since the event under scrutiny, 

the state of the system, is a binary event then it would seem reasonable to 

assume that the test statistic would be more sensitive in the subsets nearer 

to, or containing, zero and one. Although none of the p-values, except for 

the show a high level of significance, the results raise some concern about 

the validity of the model.

6.4 The Test Statistic Distribution

To investigate the test statistic distribution further, the analysis resorts to 

Fisherian inferential methods as described by Dawid (1995). The underlying 

concept behind Fisher’s inference techniques is that of inductive inference, a 

method of extracting information solely from the data at hand. This requires 

the selection of the appropriate frame of reference which will supply the 

inferential model used to analyse the given data. The frame of reference is 

specifically designed for the data observed and hence the inferential model 

depends largely on the data.

Fisher’s approach to statistical inference is in stark contrast to the more 

commonly used inferential methods based on Neyman’s concept of inductive 

behaviour, an investigation of the long run performance of different inference
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making rules and a comparison of the performance of these rules. Instead 

of formulating the analysis around the observed data, as in the Fisherian 

method, Neyman’s primary focus revolved around the production model, the 

probability process either known or assumed to have generated the data at 

hand. It is through the repeated sampling of the production model that the 

long term performance of different inference making methods can be analysed 

and compared.

The test statistic distribution is examined using both the prequential 

frame of reference and the production frame of reference. For both frames, 

an empirical distribution for the test statistic is built using 1000 simulated 

values of %o and Zk- The prequential frame of reference uses the available 

observations as a foundation for the simulation. The production frame of ref­

erence, on the other hand, uses the model described in Table 6.1 to generate 

new samples of data. Both techniques are discussed in greater detail below.

6.4.1 The prequential frame of reference

The probability forecasting techniques and assessments used throughout this 

study all adhere to the prequential principle (Dawid, 1985), as discussed in 

Chapter 1, Chapter 4, and Chapter 5. It is, therefore, consequential that the 

frame of reference used to make inferences about the test statistic distribution 

is the prequential frame of reference. The prequential principle and the many 

criterion it fulfils in assessing empirical probability statements (Dawid, 1985) 

make the prequential method a favourable choice as a frame of reference in 

its own right.

An empirical distribution function for each of the test statistics is built 

using 1000 simulated values of Zq and k = 1 ,.. .,1 1 . Each test statis­

tic is computed from the original 2500 long segment of the DNA sequence
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consisting of the 8000*  ̂ to the 10500^  ̂ nucleotide. At each point i in the 

observation sequence, a prediction, is computed using only past values of 

this original sequence. A new % is then generated using ÿi in place of Yi, 

where ÿi is a simulated value for Yi simulated from the distribution of 

The information base A _ i =  {Yi, . . . ,  Ti_i} is the set of past observations 

from the original data sequence. At each time i, ÿi is simulated and used 

only to compute after which it is discarded. This procedure is repeated 

for each observation in the sequence, a total of 2500 repetitions. The p ’s 

and g’s are then used to evaluate Z q, . . .  ,Zk, giving one value for each test 

statistic. This process is repeated 1000 times, generating 1000 values of the 

test statistics. Note that throughout the 1000 iterations the value of the pi’s 

remains the same since they are always computed from the original sequence. 

The flowchart in Figure 6.4 illustrates the simulation procedure.

The Normal probability plots for the simulated test statistics in Figure 6.5 

show that they are all reliably Normally distributed. The results show that 

the p-value of observing Zq, evaluated empirically from the simulated dis­

tribution, is 0.3900 which is very close to that of the Normal distribution. 

Table 6.4 summarises the results obtained.

It is interesting to note that although the estimates for the transition 

probabilities are not estimated based on information from this particular 

sequence (but rather taken from the literature), this does not seem to affect 

the calibration of the forecasts. Based on these results, the Z  calibration 

test statistics are evidently Normally distributed. Therefore, the p-values 

computed for the test statistics are correct and it also follows that the Pi 

are validated by the complete calibration criterion as perfectly calibrated 

forecasts of their qi updates.
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i  =  1

i = 1

simulate Yi frc)m P{Vi\Di-i)

compute Pi 
using simulât

k  compute % 
,ed value of Yi

No
2500p

Yes

\% =:

compute %o, Z i , . . . ,  Z u

c,. Yes /  \  No
Stop =  looOT

Figure 6.4: Flowchart of the test statistic simulation using the prequential 

frame of reference. Note that since the p^’s are fixed, for computational 

efficiency, they can be computed prior to the simulation procedure.
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Interval n Test Statistic 

Z

Two-tailed

Normal

p-value

Simulated

p-value

Prequential

Simulated

p-value

Production

0 < < 0.05 382 2.5671 0.0103 0.0100 0.0190

0.05 < Pi < 0.15 133 1.0023 0.3162 0.3300 0.3610

0.15 < P i<  0.25 76 1.9904 0.0465 0.0500 0.0490

0.25 < P i<  0.35 92 1.8778 0.0604 0.0490 0.0390

0.35 < p ^ <  0.45 96 1.6991 0.0893 0.0820 0.0730

0.45 < Pi < 0.55 104 -0.1900 0.8493 0.8320 0.6700

0.55 < Pi < 0.65 107 -0.5120 0.6087 0.6070 0.4340

0.65 < Pi < 0.75 125 1.2842 0.1991 0.2220 0.1520

0.75 < Pi < 0.85 184 -1.8649 0.0622 0.0550 0.0370

0.85 <  p, < 0.95 346 -1.9557 0.0505 0.0460 0.0380

0.95 < P i <  1.00 856 -1.7382 0.0822 0.0780 0.0530

overall 2501 0.8408 0.4005 0.3900 0.5690

Table 6.4: Results of the prequential and the production test statistic sim­

ulations. The n column refers the number of pi forecasts, computed for the 

original data sequence, that lie within the specified interval.

104



No Yes Stopi = 1000?

compute Z q. Z i ,. .

simulate sequence from model

Figure 6.6: Flowchart of the test statistic simulation using the production 

frame of reference.

6.4.2 The production frame of reference

In order to validate the results obtained in section 6.4.1 above, the production 

principle must be adhered to. The production principle is the term given for 

the minimal validity requirement on any inferential procedure. This principle 

states that the overall probabilistic properties of the production experiment 

should be compatible with the conclusions drawn from the selected method 

of inference. The production experiment examines the long run behaviour of 

data produced from what is presumed to be the correct model.

For this example, the samples are simulated from the model described 

in Table 6.1. By repeatedly sampling from this model, 1000 data sequences 

of length 2500 are generated and the test statistics are calculated for each 

sequence. This process constitutes the production experiment. The flowchart 

in Figure 6.6 describes the process.
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In the production frame of reference predictions for the state are evalu­

ated from the correct model. The state transition probabilities give a very 

low probability of a transition between states. There is also little fluctua­

tion between states in the simulated sequences and the probability forecasts 

computed for the simulated sequence reflect this, often leaning towards the 

0/1 extremes. Hence, for many of the samples there may not be probability 

forecasts made that lie within speciflc forecast ranges defined for the test 

statistics of the subsequences. Due to this, in some iterations, not all of the 

ZkS  can be computed.

Table 6.4 shows that the empirical p-values for the test statistics evalu­

ated using the production model are not close in value to their Normal, or 

prequential counterparts. Even the production p-value for the overall cali­

bration test statistic, Z q, evaluated at 0.5690 is far from equal to the Normal 

p-value of 0.4005. Again, this could be attributed to the forecasts gener­

ated under the production frame of reference and the forecasts’ values close 

proximity either to 0 or 1 and the small sample sizes of the Z ^ s  simulated 

distributions.

The Normal probability plots of the production simulated test statistics 

are given in Figure 6.7. The plots show that the test statistics Z 4 , . . . ,  Zg 

are slightly misaligned towards the tails of their distributions, but the plots 

still lie within the limits of a "straight line" interpretation. Otherwise, the 

remaining plots show that the distribution for the test statistics is reliably 

Normal. Hence, by the production principle, the inferences drawn using the 

prequential frame of reference uphold the probability statements of the pro­

duction model. The test statistics are Normally distributed.
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6.5 Discussion

By using the test statistic introduced in section 6.3, it is possible to assess 

the calibration for an infinite sequence of (p%, %) pairs. The test statistic 

tests the hypothesis that the p^’s and g/s are completely calibrated. Using 

a variation of the central limit theorem for martingales, the distribution of 

test statistic is shown to be asymptotically standard Normal. The p-value's 

for the eleven test statistics evaluated for the DNA sequence show that, in 

general, the forecasts and updates are well calibrated.

Although Theorem 6.1 assures that the test statistic distribution is asymp­

totically Normal, the test statistics distribution is examined to see if this 

result remains true for the small sample sizes used in this example. This is 

done by simulating an empirical distribution of the test statistic and com­

paring the empirical p-value with that of the Normal. The comparison of the 

two p-values and normal probability plots of the simulated distribution both 

show that the Normal distribution is the distribution of the test statistics 

evaluated for the given data.
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Chapter 7

Estimation

7.1 Introduction

Excluding Ex. 2b in Chapter 5, assessment of the probability forecasts’ 

calibration has been based on a HMM with fixed parameter values. For com­

parative purposes, different estimation techniques are applied to the analysis 

of the CpG island example to examine how the estimation of the transition 

probabilities affects the calibration of the forecasts.

The HMM for the CpG island example consists of 36 Markov transition 

probabilities: four possible state transitions and sixteen possible transitions 

between nucleotides within each state. Together, these transition probabili­

ties make up the model parameters to be estimated.

In this chapter, two estimation techniques are compared: the Baum- 

Welch estimation procedure and the prequential estimation method. Both 

methods are analysed to determine the impact estimation has on the cali­

bration of the forecasts.
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7.2 Baum-Welch estimation

The Baum-Welch algorithm (Buam, 1972, Rabiner, 1989) is used to estimate 

the transition probabilities for a test segment of the sequence. It is a spe­

cial case of the EM algorithm, commonly used to estimate parameter values 

for HMMs. Given an observation sequence as training data, the algorithm 

uses an iterative re-estimation procedure to find parameter estimates for the 

model to maximise the probability of the observed sequence. However, it can 

produce estimates that may only locally maximise the likelihood.

7.2.1 The EM algorithm

The Expectation-Maximisation (EM) algorithm (Dempster et al, 1977) is a 

general algorithm that provides a procedure for executing maximum likeli­

hood estimation in the presence of missing data. Let 6 denote the set of 

all model parameters determining a statistical model. Furthermore, let y  

denote the vector of observed quantities and x denote the missing data. The 

data vector y is regarded as incomplete and is considered to be an observable 

function of the complete data. The notion of incomplete data is used to refer 

to situations where there is missing data and also refers to situations where 

the data contains variables that are never observed.

The purpose of the EM algorithm is to find a value for 6 that maximises 

the log likelihood,

logP(y|6>) =  lo g ^ P (x ,y |(9 ) ,
X

using iterative re-estimation. Using P (x ,y |0 ) =  P (x |y ,0 )P (y |0 ), the log 

likelihood can be expressed as

logP(y|6») =  logP(y,x|6>) -  lo g P (x |y ,6»). (7.1)
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Assume that the current model is determined by the aim is to find a new 

and better model determined by

Multiplying (7.1) by P(x|y,0*) and sum over x yeilds

logP(y|(9) =  Q{9\9^) -Y ,P {y : \y ,e ^ )  logP (x |y ,0 ),
X

where

Q(0|0‘) =  E ^ W y - ^ ‘)lo g P (x ,y |0 ). (7.2)
X

If logP(y|0) is expected to be larger than logP(y|0*), then the difference

logP(y|6») -  logP(y|(9*) =

Q(e\e‘) -  Q(0‘m  +  Ç  F (x |y , 9*) log

should always be positive. This difference can be expressed as

logP(y|0) -  IogP(y |0‘) > Q(e\e*) -  Q(e‘|0‘) (7.3)

Since

^(x|y,6>)
is the relative entropy of P (x |y , 0̂ ) relative to P (x |y , 9) and is, therefore, 

always non-negative. The expression in (7.3) becomes an equality only if 

9 = 9̂  ov P (x |y , 9) = P (x |y , 9̂ ) for 9 ^ 9 ^ .  A positive difference (and thus a 

larger likelihood for the new model) can be derived by taking

0̂ +1 =  argmaxQ(0|^*).

If a maximum has already been reached, then =  9* and the likelihood 

will not change, otherwise the likelihood increases with each iteration of the 

algorithm. The EM algorithm is given below.

A lg o rith m  7.2.1 EM  

E -step ; Calculate function Q{9\9^).

M -step ; Maximise Q{9\9^) with respeet to 9.
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An EM interpretation of the Baum-Welch algorithm can be found in Dur­

ban et al (1997). For the hidden Markov model, the hidden states compromise 

the missing data. The likelihood is expressed as

log P(Yi, . . . , Y n ) = Y1 l o gP( Xi , . . . ,  X n , Yi , . . . ,  Yn \0),
X

where 9 is the set of all parameters to be estimated, and X)x denotes the sum 

over all the sequence of hidden states ( Xi , . . .  , X ^ )  required to obtain the 

marginal probability of the observation sequence. The function Q is given 

by

Q{9\9*') = ^ P ( X i , .. . , X n \Yi , . . .  ,YN,9)\ogP { X i , .. . , X n ,Y i , . . .  ,y„).
X

For a given sequence of states, each parameter will appear a given num­

ber of times in P{Yi , . . . ,  Yj^, X i , . . . ,  X n \0). Let Xkj denote the number 

of times a transition from state k to state j  occurs, and let ysk denote 

the number of times s is observed while in state k. Using Xkj and ysk,

P{Yi , . . . ,  Yn , X i ,. . . ,  can be expressed as:

P {Y i , . . .  ,Y n , X i , . . .  , X n \9) = (7.4)

n  n  p i Y i = n  n  (7 -5 )
k s k j

Using (7.5), the function Q{6\6^) for the hidden Markov model is: 

k;

Y I  Y j =  k) log y k s P ' ^ Y  = j \ ^ i  = log Xks
/c 5 k j

The expectations of ysk and Xkj with respect to P { X i , . . . ,  X„|Yi, . . .  ,Y n , 9̂ ) 

is given by

^  [2/sfc] =  • • • 5 Xn\Y i , . . .  ,Yn , 9^)ysk,
X
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and

E  [Xkj] = ^  f  (^1, • • • , ^n|^l5 • • •, Yni 0^)xkj,
X

respectively. The function Q(9\9^) can be restated in terms of the above 

expectations:

Q{9\9^) = Y ^ Y l E  [?/,fc] log yks + J 2 Y . E  [xkj] log Xks-
k s k j

The E-step of the HMM application of the EM algorithm consists of 

calculating E[ysk] and E[xkj], which completely determined the Q function. 

The M-step consists of plugging in the values of these expectations into the 

re-estimation formulas.

7.2.2 The estim ation procedure

For the CpG island model the algorithm was altered slightly to incorporate 

the Markov structure in the observation sequence. Table 7.1 describes the 

standard Baum-Welch formulas and the alternative computations used for 

the CpG island example. The expectations listed in Table 7.1 can be evalu­

ated by using the formulas given below:

P{Xi = k\Dn) = Y I  P(Xi = k, Xi+i = j\Dn):
3

N
P { Y i  =  r ,  Y i^ i =  s , X i  =  k \ D n )  =  Y  P { X i  — k \ D n ) ,

%—1 5.t. yi — 1—5j yi—T
N

P{Yi.i  = s ,X i  = k\D„) = Y I  P{Xi = k\Dn).
i=l s.t. j/i_i=s

The marginal distribution of Yi = r ,  is

P(V- =  r \ X  — k) == Yls P {X i — ^ - 1  =  S , X j  =  k \Dn)

Thus, once

P{Xi = k, Xi+i = j\Dn) (7.6)
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Baum-Welch

P[Xi+i = j \X i  = k)

Æ'fnum of transitions from k to j] 
E[num of transitions from k]

_  y ^ P { X i = k , X i  + i = j \ D n )  
yPjXilDn)

P{Yi =  r\Xi — k)

E
num of times in state k

E
and observing r

num of visits to k

yP(Yi=r,Xi=k\Dn)
yP{Xi=k\Dn)

=  0 if 7̂  r

CpG Island Model

P{Xi+i — j \X i  = k)

Efnum of transitions from k to jf] 
E[num of times k is visited]

yP{Xi=k,Xi+l^j\Dn)
y P { X j \ D n )

P(Yi = r\Yi_i = s ,X i  = k)

num of times s is observed 

followed by r in state k

E
num of times s is observed 

followed by visit to state k

  y^Yi=r,Yi-i=s,Xi=k\Dn)
~  yP{Yi-i^s,Xi=k\Dn)

= 0 l i Y i ^  r and /  s

Table 7.1: The estimation updating formulas where r , s  = A , T , G , C  and 

j, A: =  0,1.

is computed for all i, the remaining probabilities can be derived.

Before the estimation procedure is described, it is first necessary to ex­

plain the evaluation of P{Xi = k,Xi+i = j\Dn). Expressed as

P ( Y i , . . . , Y j ,  X i  =  k ) P { X j + i = j ] X i  =  k ) P { Y i + i \ Y i , X i + i = j ) P { Y i + i , . . . ,  =  j ,  Yj )

it can be seen that (7.6) is made up of two main components:

P{Y\, . . . ,  y ,  Xi = k)

and,

P(y+1, . . . , Yn\Xi+i = j, Yi).
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The forward-backward algorithm is a compilation of two recursive algorithms 

which between them compute the two components required to evaluate (7.6).

Given the values for the transition probablities, the forward algorithm 

described in Algorithm 7.2.2, computes (7.7), the first part of (7.6), by using 

a forward pass through the data. In contrast, the backward algorithm, de­

scribed in Algorithm 7.2.3 computes the second component, (7.8), by working 

backwards through the data.

A lgorithm  7.2.2 Forward

1. Initialisation:

P { Y u X i  = k) = P{Xi  = k)P{Yi\Xi = k), k = 0,1.

2. Recursion:

P {Y i , . . .  ,Yi ,Xi  = k) =

f ç  P ( Y u - . . ,  Ki-i, X i-i =  s)P{Xi  =  k\X i . i  = s ) j  P{Yi\Xi = k, Yi.{),

where s =  0,1 and 2 =  2 , . . . ,  n.

3. Stop when i — n.

A lgorithm  7.2.3 Backward

1. Initialisation:

P{Yn\Xn = j )  = I, j  =  0 ,1.

2. Recursion:

PiXi+i, . . . ,  Yn\Xi=  j, Yi) =

, ^n|A'i+i =  s)P{Yi+i\Xi^i = s, Yi),
s

where s =  0,1 and z =  1, . . . ,  (n — 1).

115



3. Stop when i = 1.

Algorithm 7.2.4 describes the estimation procedure.

Algorithm  7.2.4 Baum -W elch

1. Initialisation: select model parameters^ starting values.

2. Using all the data and current parameter values, evaluate

P { X i  =  k , X i + i  =  j \ D n )  

using the forward-backward algorithm in 7.2.2 and 7.2.3.

3. Compute new parameter estimates, using Table 7.1 and the above re­

sults.

f .  With new parameter estimates, return to step 2

5. Stop if there is either no change in the likelihood or the estimates have 

converged.

Note that the new or updated estimates are derived using the values of the 

estimates evaluated in the previous iterations.

7.2.3 Results

The parameter values given for the model listed in Table 7.2 are used as initial 

values for the estimation procedure. The model in Table 7.2 has been taken 

from the literature and is the same model used in Chapter 6. The estimation 

procedure is performed on a data segment of 2000 nucleotides which consti­

tute the 7000^  ̂ to the 9000^  ̂ nucleotide of the original DNA sequence. The
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î+1

X,
0 1

0 0.9997 0.000245

1 0.1171 0.998829

non-CpG island state CpG island state

Y,i+l Vii + l

Yi

A T C G A T C G

A 0.300 0.210 0.205 0.285 A 0.180 0.120 0.274 0.426

T 0.177 0.292 0.239 0.292 T 0.079 0.182 0.355 0.384

C 0.322 0.302 0.298 0.078 C 0.170 0.188 0.368 0.274

G 0.248 0.208 0.246 0.298 G 0.161 0.125 0.339 0.375

Table 7.2: The starting values for the parameters of the CpG island model.

algorithm converges after about 65 iterations giving the parameter estimates 

listed in Table 7.3.

The resulting estimates are very different from their starting values. The 

initial transition matrix for the hidden state gives very low probability for 

switching between states and forces a pattern of long segments of non-island 

regions interrupted by short segments of CpG islands. After estimation, the 

transition probabilities are more flexible giving a higher probability for a 

switch between states than before. Non-island segments are now shorter and 

are more likely to be interrupted by CpG islands. The probability of being 

in a non CpG island state is

P(Xi — 0|Xi_i =  1)
P(Xi  =  0) =

P ( X ,  =  0 |X ,_ i =  l ) P ( X i  =  =  1)

0.0138

(0.0138) (0.0072)

=  0.6571.
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The transition probabilities for the observation sequence also change 

sharply after estimation, but with ambiguous results. Of primary interest 

is the transition probability P(Yi^i = G\Yi = C). In both states this proba­

bility is low having a value of 0.0966 in the non-CpG island state and a value 

of 0.0949 in the CpG island state. These estimate values show that there is 

little distinction between the two states with regard to a C —>■ G transition 

that characterise a CpG island.

Another important feature of a GpG island is the more frequent occur­

rence of C and G nucleotides then elsewhere in the DNA sequence. The esti­

mated marginal probabilities for the CpG island state give a high probability 

of observing a G nucleotide, P{Yi = G) = 0.4786, and relatively low prob­

abilities of observing the remaining nucleotides with P(Yi = G) = 0.1602, 

P{Yi =  A) =  0.0774, and P(Tj = T) = 0.2828. For the non-CpG island state 

the probability of observing a G and the probability of observing a G are 

rather close in value with P{Yi = C) = 0.3014 and P{Yi = G) = 0.3226 and 

are also higher than the probability of observing an A, P{Yi = A) = 0.1879, 

or a T, P{Yi = T) = 0.1880, nucleotide.

The joint probability, P(G  followed by G) = P(Yi = C|Fi_i =  G)P{Yi^i = 

G), for both the non-island state and island state, 0.030 and 0.045 respec­

tively, are also not drastically different in value. This further emphasises that 

the estimates do not illustrate a clear distinction between the states based 

on the properties described above. The results can, therefore, be interpreted 

in one of two ways: either the estimated transition probabilities are good es­

timates and are exhibiting behavioural aspects characteristic to the sequence 

and yet invisible to the researcher, or the estimates have reached a very bad 

local maximum.

118



%i+l

0 1

0 .9928 .0072

1 .0138 .9862

non-CpG island state CpG island state

Vii+ l Vii+l

A T C G A T C G

A .1935 .0899 .2367 .4799 A .1007 .2729 .2707 .3557

T .1091 .1879 .3006 .4027 17 T .0279 .2306 .5357 .2059

C .2376 .2696 .3963 .0966 C .1074 .3481 .4496 .0949

G .1842 .1684 .2500 .3975 G .0638 .1878 .5689 .1795

Table 7.3: The Baum-Welch parameter estimates.

7.3 Prequential Estimation

The formulation of Baum-Welch estimates examined in section 7.2 violates 

the fundamentals of prequential theory and therefore, has no place in the 

prequential framework. The nature of the Baum-Welch estimation process 

does not make use of new information as it becomes available. Instead, it 

requires that the forecaster use all the information simultaneously to estimate 

the model parameters. The forecaster can then either go back and make 

“/orecas^s” for what is now essentially the past, or use these estimates to 

make forecasts for future events without updating the estimates with new 

information as it becomes available.

7.3.1 Prequential estimation method

In order to generate prequential forecasts, it is first necessary to produce 

prequential estimates. In much the same way as a prequential forecast at
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time i is based on all the information available at time i — 1, a prequential 

estimate used to generate that forecast should also be based only on the 

information available at time i — 1. By restricting the information available to 

it, the prequential estimate will not allow the event in question (or knowledge 

of future outcomes of events) to contribute in any way to the event’s own 

forecast. It is only as new information becomes available that the prequential 

parameter estimate is updated to incorporate it.

A major impediment in the formulation of sequentially updated param­

eter estimates in the Baum-Welch procedure is the forward-backward algo­

rithm (Rabiner, 1989). In the Baum-Welch procedure, the forward-backward 

algorithm (described in Algorithm 7.2.2 and Algortihm 7.2.3) is a recursive 

computational algorithm used to derive the conditional expectations sum­

marised in Table 7.1. Various authors in the HMM literature have developed 

methods of parameter estimation that circumvent the forward-backward al­

gorithm. Elliot et al (1995) describes an online recursive estimation proce­

dure for sequentially updated parameter estimates which avoids the use of 

the forward-backward algorithm. Baldi and Chauvin (1994) also derived an 

online estimation approach based on gradient descent techniques.

It is also possible to derive the required expectations while avoiding the 

use of the forward-backward algorithm using Algorithm 7.3.1 described be­

low. The evaluation and computation of probabilities used in this algorithm 

will be discussed in greater detail later in the section.

A lg o rith m  7.3.1 Prequential Estimation

1. Initialise with a given sequence of length n and evaluate

P{Xi = k, Xi+i = j\Dn) V 2 =  1, . . . ,  n -  1, (7.9)

2. Evaluate: P{Xn = k,Xn+i = j\Dn+i).
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n =  3

P{Xi = k , X 2 = j \ D , )  

P{X2 = k , X 3 = j \ D s )

n =  4 

P{Xi = k , X 2 =  i l A )  

P{X2 = k , X s =  j\D^) 

P{Xs = k , X ^ =  il A )

n =  5

P{Xi = k,X2 = ijjDs) 

P(%2 =  A;,%3=i|D5)

P(%3 =  A;,%4=i|D5)

P{X4 =  /c,Xs =  i|D s)

Figure 7.1: The evolution of Equation (7.9) as more data is observed.

3. Update: P{Xi = k, Xi+i =  j\Dn+i) Vz =  l , . . . , n —1.

4- Compute parameter estimates.

5. Return to step 2 until no new data is available.

At each n = 2 , . . . ,  N  — the conditional expectations in Table 7.1 must 

be evaluated. This requires that the probability in equation (7.9) be evalu­

ated for all z =  1 , . . . ,  n — 1. From these expectations the values of the pre­

quential parameter estimates can be obtained. Essentially, what the above 

algorithm generates is illustrated in the Figure 7.1.

For any first order hidden Markov model, the formulas for obtaining and 

updating the probabilities in Figure 7.1 are derived using Bayes formula. Let 

Pn =  [ X i , .. . ,Xn).  Then

P{Xi = k,X2 = j\Dn+i) =
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~  —  j \ D n ) P { ^ n + l \ P m  D n ) P O ^ n + l \ ^ n + l j  D - n )

%n + l

P(X2 =  k , X ^ =  j\Dn+l) -
P{X2 =  k ,Xs  =  j\Dn)P{Xn+l\^n,Dn)P(yn+l\/3n+l,Dn)

C l  ^

P( Xi  =  k, Xi+i -- j \Dn+i)  =

V- P { ^ i  — k^Xn-\-i =  j\Dn)P{Xn^i\^n^ Dn)Piy'n-\-l\^n+lt Dfv)  ̂o\

P[ Xn- \  =  k , X n =  j\Dn+i) =
Y^ P{ Xn - l  -  k,Xn =  j \Dn)P{Xn+l\Pn, Pn)P{yn+l\Pn+l, Pn)

C l  P % + i|D » ) ( '  )

P{Xn  =  k, Xn+I =  j \Dn+i)  =

C l  ^

The conditional independence properties of the HMM:

^ + i - L L ( y i , . . . ,  y ^ ,  X i , . . . ,  x „ ) | x „ 4 - i ,  Y n

and

- ^ n + l - L L ( y i ,  . . . , Y f i ,  % 1 ,  . . . , X n - l } \ X n ,  

reduce equations (7.10) - (7.13) to the form given below:

P{ X i  =  k , X 2 =  j\Dn+l)  -

C  P ( Y n M  '  '

1 2 2



P(X2 =  k,X3 = j\Dn+i) =
„  P{X2 = k ,X ,  =  j\D„)P{X„+i\X3,D‘̂ )P{Y„+,\X„+uYn)

P(Xi = k, Xi+i = j\D„+i) =
^  P jX i  =k,Xj+i =j\Dn)P{X„+i\Xi+uD'^^)P{Yn+i\Xr,+uYnX,^ ,  

h  piyn^ iW n)  ^

P(X„^i = k,X„ = i|£>„+i) =
^  P(X„-i  = k ,X„ = jjD„)P(X„+ijX„)P(V„+ilX„+i,V„)

x t .
P(Xn =  k,Xn+l =  j jPn+l)  =

(7.19)

where D" =  (Yi, . . . ,  Yn).

In implementation, only equation (7.19) can be computed directly. The 

remaining probabilities, (7.15)-(7.18), require the use of parallel recursive 

computations to incorporate the new information sequentially as it becomes 

available. To perform these computations. Algorithm 7.3.2 is used in parallel 

with Algorithm 7.3.1 to keep track of P(Xn\Xi,  D^+^). The algorithm is given 

below.

A lgorithm  7.3.2

1. n = Z,

2 .

a n ( n  -  2) =  P ( X n \ X n - \  =  j ) .

3. If  n = N  — 1 exit algorithm, otherwise n = n Y  I.
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an=3 = f (X 3 |% 2 = j) 3 -71=4  —

P{X, \X2=j ,Y3)

P ( X , \ X 3 = j )

P ( X , \ X 2 = j , Y 3 ,Y4 )

^n~ 5  =  P{X^\X^ =  J ,  Y4 )

P (% 5 |% 4= j)

Figure 7.2: The development of a as n increases.

4 . Recursion:

tt„_i(z)P(X7i|X„_i)P(yn|X„,y„_i) ^  ^
0^n\}) —  /  V n / i / T  I 7-^ \  ^  ^  , ,77.  — 3.

5. po io 2.

Algorithm 7.3.2 produces a vector, a, containing the correct formulation 

of P(X „|X j, required to update

P(X j = /c,Xi+i =  j|D „) V 7 =  1, . . . ,  77 -  1. (7.20)

Figure 7.2 illustrates the development of a as 77, becomes larger.

7.3.2 Implementation and results

Unlike the Baum-Welch method, the prequential method, as described in 

Algorithm 7.3.1 does not allow the estimates to converge on a fixed set of 

data. With each new observation, the algorithm performs only one Expec­

tation step and one Maximisation step. Ideally, the algorithm should allow 

the estimates to converge every time a new observation is incorporated. In

124



implementation, however, this is not possible due to computational limita­

tions.

Prequential estimation is performed on the same data sequence used in 

section 7.2.3 (nucleotides 7000 — 9000). The first 1000 nucleotides are used to 

initialise the values of (7.20) so that n = 7999 and ^>7999 =  { I70005 • • •, T7999}. 

Two different starting values for the parameters are used:

1. Using maximum likelihood estimates as starting values.

2 . Using the parameter values in Table 7.2.

In the first scenario, the Baum-Welch algorithm is applied to the initial in­

formation base, D 7999 using model 7.2 for starting values. This results in 

parameter estimates that have converged to a local maximum of the likeli­

hood function of the first 1000 nucleotides of the sequence. The mle’s are 

then used to compute the initial values of the probabilities in (7.20). The 

remaining 1000 observations are then added sequentially to the process as 

the estimates are updated using prequential estimation. Table 7.4 gives the 

maximum likelihood starting values and Table 7.5 gives the final values of the 

estimated transition probabilities after performing prequential estimation on 

the remaining 1000 observations.

The prequential model in Table 7.5 shows that the state transition prob­

abilities have changed dramatically. Contrary to expectation, the model 

describes a DNA sequence with long stretches of CpG island segments inter­

rupted by short and very infrequent non-CpG island regions.

Similar to the Baum-Welch results in Table 7.3, the observation transition 

probabilities show no clear distinction between the two states. The proba­

bility of a C ^  G transition in the non-CpG island state is slightly higher 

than in the island state, with P{Yi = C\Yi_i = G ,Xi  = 1) = 0.0956 and
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X:

Xi+l

0 1

0 .9805 .0195

1 .0084 .9916

non-CpG island state CpG island state

Vi

V ii+l K:i+l

A T C G A T C G

A .2228 .2696 .2583 .2493 A .1867 .0776 .2256 .5100

T .0633 .2657 .4949 .1761 17 T .1261 .1796 .2789 .4105

C .1467 .2300 .3125 .0753 C .2565 .2360 .4396 .0679

G .2940 .4656 .3215 .1508 G .1845 .1442 .2530 .4183

Table 7.4: Baum-Welch estimates using the first 1000 observations only. The 

starting values for the prequential estimation procedure.

X,:

Xi+l

0 1

0 .1910 .8090

1 .0001 .9999

non-CpG island state CpG island state

V .

V ii+l V .i+l

A T C G A T C G

A .2050 .1569 .2519 .3862 A .1745 .1215 .2442 .4598

T .0616 .2705 .4306 .2373 T .0726 .2025 .4077 .3172

C .1218 .3780 .3685 .1317 C .1771 .3046 .4227 .0956

G .0934 .3675 .2093 .3298 G .1587 .1721 .3186 .3506

Table 7.5: The final prequential model estimates using mle starting values.
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X,:

%i+l

0 1

0 1 0

1 .0188 .9812

non-CpG island state CpG island state

Vii+l i+ l

y.

A T C G A T C G

A .1742 .1255 .2443 .4560 A .1163 .0649 .2685 .5503

T .0730 .2076 .4061 .3134 y T .0163 .1472 .6283 .2081

C .1771 .3072 .4211 .0945 C .0647 .2439 .5915 .0999

G .1583 .1739 .3191 .3487 G .0573 .1021 .6053 .2352

Table 7.6: The final prequential model estimates derived using the parameter 

values in Table 7.2 as starting values.

P(Y- = C\Yi-i  = G ,X i  = 0) = 0.1317. This also contradicts expectations.

In the second scenario, the information base, H 7999, is used to compute 

equation (7.20) without performing any form of estimation. The transition 

probabilities in model 7.2 are the starting parameter values used to perform 

these computations. The estimation process begins when prequential pa­

rameter estimation is performed on the remaining 1000 nucleotides of the 

segment. The results listed in Table 7.6 show the prequential estimates after 

they have been updated with the last observation.

This scenario also produces estimates that are unacceptable. As obser­

vations are incorporated in the estimation process, the value of the state 

transition probability, P(Xi+i =  0 |Ai =  0), fluctuates repeatedly from 1 to 

0.9999. Eventually as the last few observations are added, the state transi­

tion matrix gives a probability of 0 for the transition from a non-CpG island
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region to an island region. This means that unless the sequence begins with 

a CpG island segment then there is zero probability of a region occurring.

The observation transition matrices, like the observation transition prob­

abilities estimated before, show no evident distinction between the two states.

7.3.3 Validation

Even though the estimates evaluated prequentially do not look promising, 

it still remains to be determined what exactly the prequential procedure is 

producing. It is clear from visual examinations of the evolution of the esti­

mates that the prequential estimation method is highly sensitive to the data. 

The re-evaluated probabilities change continuously with each new addition 

to an extent that a state transition probability of zero (such as the case in 

Table 7.6) would actually increase in value given more data. The resulting 

probabilities are, therefore, subject to the last observation included in the 

estimation process. This is not unusual since this is also the case with other 

prequential estimation methods (i.e. recursive least squares, Kalman filter, 

etc...).

These other methods, however, are known to produce estimates that max­

imise the likelihood of the data used to evaluate them. This is not known 

to be the case for the prequential estimation procedure for the HMM. Due 

to the nature of the estimation process, one Expectation step and one Max­

imisation step with each new observation, it is difficult for the estimates to 

converge.

To determine if they are maximum likelihood estimates, the estimates 

obtained using prequential estimation, Table 7.5 and Table 7.6, are allowed 

to iterate using Buam-Welch until convergence is reached. The results of 

the iterations on the prequential estimates in Table 7.5 and Table 7.6 are
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given in Table 7.7 and Table 7.8, respectively. The estimates in Table 7.5 are 

derived using mle as starting values. Regardless of this fact, the parameter 

values only converged after more than 1500 iterations. On the other hand, 

the transition probabilities in Table 7.6 converged to the values in Table 7.8 

in less than 25 iterations.

Comparison of the converged prequential estimates with the Baum-Welch 

estimates shows some interesting results. All three models have state transi­

tion probabilities that are remarkably close in value. The same, however, can­

not be said about the nucleotide’s transition probabilities in the two states. 

The parameter values in Table 7.7 that used mle starting values are very dif­

ferent from their Baum-Welch counterparts and yet the converged estimates 

in Table 7.8 are more or less in the same vicinity. These results indicate that 

the likelihood function is not unimodal and, depending on the starting value, 

a different local maximum is delivered by the estimation algorithm.

To test this assumption, the Baum-Welch algorithm is executed using dif­

ferent starting values. The resulting parameter estimates are then compared 

to determine if the likelihood function of the designated data sequence is in 

fact unimodal. The results of this test run is given: Table 7.9 lists the starting 

values of the parameters and Table 7.10 displays the converged estimates. In 

this case, even the transition probabilities for the state are notably different. 

The results strongly support the assumption that the likelihood function has 

more than one mode.

Hence, not only are the estimated values sensitive to the data sequence 

used, but they are also largely determined by the starting values used to 

initialise the estimation process.
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X:

%i+l

0 1

0 .9597 .0403

1 .0151 .9849

non-CpG island state CpG island state

K:

i+l K:i+l
A T C G A T C G

A .1608 .0321 .3248 .4822 A .1852 .1848 .1907 .4392

T .2221 .1171 .1049 .5581 Ti T .0450 .2235 .4623 .2692

C .2842 .1705 .4068 .1385 C .1505 .3392 .4249 .0855

G .2085 .1352 .1683 .4876 G .1227 .1980 .4245 .2548

Table 7.7: The converged prequential model estimates of Table 7.5.

X i+l

0 1

0 .9936 .0064

1 .0180 .9820

non-CpG island state CpG island state

Yr

Yi+l Yii+l
A T C G A T C G

A .1963 .1150 .2264 .4624 A 0 .2105 .3874 .4021

T .1002 .2110 .3128 .3760 Yi T .0161 .1996 .5962 .1880

C .2383 .2795 .3897 .0924 C .0803 .3483 .4705 .1010

G .1777 .1745 .2632 .3845 G .0525 .1630 .6193 .1653

Table 7.8; The converged prequential model estimates of Table 7.6.
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X,:

X i+l

0 1

0 .8090 .1910

1 .25 .75

non-CpG island state CpG island state

Vi

Vii + l Yii + l

A T C G A T C G

A .25 .25 .25 .25 A .25 .25 .25 .25

T .25 .25 .25 .25 17 T .25 .25 .25 .25

C .25 .25 .25 .25 C .25 .25 .25 .25

G .25 .25 .25 .25 G .25 .25 .25 .25

Table 7.9: The starting values for the test run.

X,

Xi+l

0 1

0 .0036 .9964

1 .5545 .4455

non-CpG island state CpG island state

Yii+l K:i+l

A T C G A T C G

A .2831 .1961 .2905 .2304 A .1052 .0784 .2123 .6041

T .0268 .4537 .0558 .4637 Ti T .0817 .1547 .4826 .2810

C .1571 .5967 .2462 .0000 C .1898 .1065 .5420 .1617

G .0014 .3169 .3890 .2927 G .2701 .0686 .2714 .3899

Table 7.10: The converged estimates for the test run after 1200 iterations of 

the Baum-Welch algorithm.
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7.4 Performance

This section examines how calibration is affected by estimation. Table 7.11 

gives a summary of the calibration results for the forecasts based on both 

the Baum-Welch model in Table 7.3 and the prequential model described in 

Table 7.6.

As mentioned earlier, the Baum-Welch algorithm is executed on a segment 

of the DNA sequence, nucleotides 7000-9000. The estimates are then used to 

generate forecasts for the state of the system of nucleotide 9001 to nucleotide 

10500. This is to ensure that the estimates used to generate a forecast do 

not embody information about future observations.

For fixed intervals of the average of the % computed using the Baum- 

Welch estimates is close in value to the midpoint of pi. As indicated by the 

straight line through the calibration plot in Figure 7.3, the calibration of 

these estimation based forecasts are good.

For the prequential estimation procedure, nucleotide 7000 to 7999 are 

used only to form the information base of (7.20). No estimation is performed 

on the first 1000 nucleotides. Prequential estimation begins with the 8000*  ̂

nucleotide and the algorithm is allowed to run continuously to the nucleotide 

in position 10500. This corresponds to the second implementation scenario 

of section 7.3.2. In order to compare the calibration results of the prequential 

forecasts with those of the Baum-Welch model, only the last 1500 forecasts 

are used.

In the prequential framework with each new observation come new up­

dated parameter estimates. Hence, a forecast for the probability of CpG 

island at position i is made with different parameter values than those used 

to generate the forecast at position z -I-1. As the results in Table 7.11 show, 

the forecasts are very consistent showing a very low probability of a CpG is-
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Pi Literature Baum-Welch Prequential

Range n Average q n Average q n Average q

0 < Pi < 0.05 274 0.0161 65 0.0419 1493 0.001

0.05 < Pi < 0.15 74 0.0939 260 0.1023 6 0.0743

0.15 < Pi < 0.25 51 0.2329 163 0.2012 1 0.0597

0.25 < Pi < 0.35 79 0.3198 116 0.3017 0 n /a

0.35 < Pi < 0.45 80 0.4195 105 0.3986 0 n /a

0.45 < Pi < 0.55 78 0.4917 86 0.4962 0 n /a

0.55 < Pi < 0.65 81 0.5846 90 0.6189 0 n /a

0.65 < Pi < 0.75 94 0.7191 137 0.7120 0 n /a

0.75 < Pi < 0.85 147 0.7915 260 0.8073 0 n /a

0.85 < Pi < 0.95 147 0.8899 205 0.8817 0 n /a

0.95 < Pi < 1.00 395 0.9779 13 0.9577 0 n /a

total 1500 1500 1500

Table 7.11; The calibration results obtained using the literature based model, 

the Baum-Welch model and the prequential model.

land occurrence. This is due primarily to the fact that throughout the length 

of the last 1500 observations the probability of a transition from non-CpG 

island state to an island state remains constant at zero. As the results in 

Table 7.11 and the calibration plot in Figure 7.4 show, calibration in the 

forecasts generated from prequential estimates is not good.

In the Baum-Welch case calibration is good, but does not seem to be 

improved by estimation. The prequential case presents a situation where 

calibration becomes worse with an estimated model. Table 7.11 shows that 

the estimation of the model drastically changes the transition probabilities 

and thus the forecast values.
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7.5 Discussion

The investigation in this chapter attempts to explore the affects of estima­

tion on forecasting validation. Estimates are derived using the Baum-Welch 

estimation procedure and to remain consistent with the theoretical concepts 

of Chapter 5 and Chapter 6, a prequential estimation procedure is also intro­

duced. Both methods are iterative re-estimation procedures. In the Baum- 

Welch case, the resulting estimates, having converged at a local maximum, 

are local maximum likelihood estimates. The prequential procedure operates 

by incorporating each data point sequentially as it is observed. Ideally the 

prequential algorithm should iterate until it converges (maximisation) for 

each new observation. Due to computational limitations this is not possible. 

Hence, the prequential algorithm as it is applied in this chapter does not 

produce estimates that have converged to a local maximum. In application, 

it is found that the likelihood is not unimodal and, therefore, the estimates, 

whether derived by the Baum-Welch procedure or the prequential method, 

are subject to the initial values of the estimates.

There is no evidence here to suggest that estimation improves calibration. 

The calibration of the forecasts produced using the Baum-Welch estimates, 

although good, do not seem to improve on the calibration of the forecasts 

produced without the estimation of transition probabilities. The prequential 

estimates, by giving a probability of zero for a transition from a CpG island 

state to a non-CpG island state, give little room for the exploration of cali­

bration behaviour under this type of estimation procedure. For what results 

that are obtained, the forecasts produced using prequential estimates show 

very poor calibration.
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Chapter 8

Smoothed Predictions

8.1 Introduction

The prequential principle forms the foundation for much of the work pre­

sented in this thesis and is the predominant characteristic in the definition 

and formulation of the forecasts used in this work and the methods used 

to assess them. The forecast of an event at time i is formulated in such a 

way as to include only information available up to the time of the forecast, 

specifically all the information available up to and including time i — 1.

In the HMM case, since the observation is not available to make a proper 

assessment of the forecast made, it is replaced with an approximation. This 

approximation is the updated forecast % =  P[Xi = Yi\. In the pre­

vious chapters assessment of the forecast, Pi = P  [Xi = is performed

by comparing the forecast with the update. This method of assessment, up 

to now, has in a sense also been prequential limiting the knowledge of ad­

ditional information for the forecast assessment to only the next sequential 

observation.

Although Qi adheres to the prequential principle and its many advantages.
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it is mostly likely not the best replacement for the outcome of A much 

better approximation would make use of all the information (both past and 

future observations) such as the smoothed prediction Si = E[Xi\Djsj].

The use of a more informative approximation of X  has implications on 

the assessment of the forecasts. For example in Chapter 5 and Chapter 6 

the performance of the Pi forecasts was measured by its overall empirical 

calibration with its % update. This is in essence the gauging of one forecast 

by another, albeit slightly more informative, forecast. Although Si is also 

a prediction it contains all the information available to the forecaster. It 

is, therefore, safe to assume that Si will make a more truthful probability 

statement about the outcome of Xi  than %. Hence, comparison of the fore­

cast with the smoothed prediction s* will give a more insightful and critical 

assessment of the forecast’s performance.

The aim of this chapter is twofold. The first is to provide a more critical 

evaluation of forecast performance. This is done by assessing the empirical 

calibration of the Pi forecasts with the Si predictions. Superficially such 

a construction is expected to yield more viable results. Unfortunately, no 

theory is available to substantiate this claim.

The prequential calibration methods introduced in Chapter 5 and ex­

plored in Chapter 6, although limited in their use of information, have the 

advantage of having a strong theoretical basis detailing the behaviour of 

a well calibrated forecast from which conclusions about the forecasts can 

be drawn. Central to this theoretical foundation (the complete calibration 

criterion in Chapter 5 and the calibration test statistic Chapter 6) is the 

martingale difference property:

E  [{Pi  — Qi) | A - i ]  =  0 .  ( 8 . 1 )

Since Pi — % is A-measurable, the sequence of such quantities {pi — %), for
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z =  1, . . . ,  n ,  forms a martingale difference series. For the smoothed case 

the conditional expectation,

E  [ { s i  — P i )  \ D i _ i ] ,  (8 .2)

is also equal to 0. However, since Si is a not a prequential estimate (i.e. not 

Di-measurable) the series of (g% — pi) quantities does not form a martingale 

difference series. The theory established in the previous chapters can not be 

used in this application, therefore, the {pi, g%) calibration in section 8.4 will 

be assessed on a purely empirical basis.

The second aim of this chapter is the analysis of calibration outside of 

the prequential framework in which it was presented in the previous chap­

ters. Remaining within the calibration structure designed for hidden Markov 

models, the analysis still calibrates the forecast with a more knowledgeable 

prediction; however, in this case both the forecasts and prediction make use 

of both past and future observations. Cross-validation, a method of compar­

ing Si with c%, the forecast evaluated by using all but the observations in 

the sequence, presents itself as an obvious choice for the implementation of 

such a calibration scheme. Section 8.5 investigates the calibration of (g,, Ci) 

in a manner similar to Chapter 6 and entails, firstly, examination of the 

empirical calibration and then the analysis of a purposed test statistic.

8.2 The Data

The CpG island example is again used in this chapter to illustrate the as­

sessment techniques described. The data set used throughout this chapter 

is sequence of 5000 nucleotides simulated from the transition probabilities 

listed in Table 8.1. The variable of interest is the state of the system at time 

z, Xi, which denotes the presence, Xi = 1, or absence, Xi  =  0, of a CpG
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Xi

Xi+1

0 1

0 0.99755 0.00245

1 0.1171 0.998829

non-CpG island state CpG island state

Yii+1 Yi.i+1

K:

A T C G A T G C

A 0.300 0.210 0.205 0.285 A 0.180 0.120 0.274 0.426

T 0.177 0.292 0.239 0.292 T 0.079 0.182 0.355 0.384

C 0.322 0.302 0.298 0.078 C 0.170 0.188 0.368 0.274

G 0.248 0.208 0.246 0.298 G 0.161 0.125 0.339 0.375

Table 8.1; The transition probabilities used to simulate the CpG island data.

island. The transition probabilities in Table 8.1 are identical to those used 

in Chapter 6 save for P  (X"%+i =  1|X* =  0) and P  =  0|X^ =  0) which 

have been altered slightly to allow for more activity in the sequence, hence 

making a more interesting case study.

One of the advantages of using a simulated sequence is that the hidden 

sequence of states is no longer hidden. The DNA sequence is constructed 

by first simulating a state sequence X  using the state transition matrices 

in Table 8.1. The T ’̂s are then simulated from one of the two observation 

transition matrices conditional on the value of the corresponding Xi. The 

realised sequence of X ’s is shown in Figure 8.1.
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Figure 8.1: The simulated state sequence.
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8.3 Computing Sj

The smoothed prediction,

Si = P  {Xi = l\Yi, Yn) , (8.3)

can be evaluated using the forward-backward algorithm discussed in Chap­

ter 7. For each time point i, the forward algorithm calculates

fi{0) = P  {Yi, . . . ,  Yi,Xi = 0) and f i{l) = P  {Yi, . . . ,  Yi,Xi = l ) .

and the backward algorithm evaluates

6 j ( 0 )  =  P  ( F i + i ,  . . . ,  =  0 ,  and bi{l) = P (Yi^i, . . . ,  Yj^\Xi =  l ,Yi)

Using the output from these two algorithms Si can be easily evaluated once 

expressed as

P {X i  = l\Y^, . . . , Y n ) = (/i(0)6i(0) +  /i(l)6i(l))-
Figure 8.2 shows a plot of the smoothed predictions together with plots 

of the Pi forecasts and Qi updates. The probability forecasts of both p’s and 

the g’s roughly follow the state transitions throughout the sequence giving a 

fairly general indication of where the CpG islands are located. The smoothed 

predictions are much more refined. With the majority of predictions very 

close in value to either 0 or 1, the s ’s give a very clear picture of what 

is happening in the sequence. It is only when there is a change in state 

that the smoothed predictions stray from the {0, 1} extreme showing any 

reasonable measure of uncertainty.

8.4 Calibration

This section analyses the performance of the Pi forecasts by assessing the 

calibration of these forecasts with their smoothed counterparts, the s /s . By
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Figure 8.2: Plots of the p/s, ç/s, and s/s.
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using the smoothed predictions for calibration all the observations in the 

sequence are used in the formulation of this prediction. This prediction is 

believed to be the best possible estimate of the hidden state. Such a method 

is expected to give a more precise assessment of the forecasts’ performance.

As mentioned in the introduction of this chapter the martingale quality 

that characterised the previous calibration apparatus does not hold when 

replaced by the smoothed prediction. Therefore, the empirical results ob­

tained in this section can not be supported by any theory that can detail the 

expected or asymptotic behaviour of such a calibration.

As the plots in Figure 8.2 in the previous section show, the g/s at times 

make very different statements about the presence of a CpG island than their 

corresponding g/s. By comparing the plots in Figure 8.2 with the plot of Xi  

in Figure 8.1 it is also clear that the si out perform the % and give a much 

clearer indication of the actual value of Xi.

Table 8.2 gives the results of the calibration, and the calibration plot 

of the average Si against the average pi for fixed intervals of Pi is shown in 

Figure 8.3. The plot shows that the smoothed prediction and forecasts are 

well calibrated toward the 1 end, but stray, slightly, everywhere else. It is 

also worth noting that the number of pi forecasts with a value between 0.2 

and 0.6 is relatively low at 421. This is a possible explanation for the poorly 

calibrated forecasts within this range. In contrast, the calibration line of the 

P i  and Qi is almost perfect.

8.5 Cross-Validation

Cross validation is a method commonly used to assess the predictive capabil­

ity of a forecasting system. In concept, cross validation, introduced by Stone
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Interval Average p Average q Average s n

0 < Pi < 0.05 0.0250 0.0243 0.0181 1084

0.05 <Pi <  0.15 0.0843 0.0856 0.0431 482

0.15 <Pi <  0.25 0.1878 0.1949 0.1324 170

0.25 <Pi <  0.35 0.2941 0.2814 0.1915 89

0.35 <Pi <  0.45 0.4021 0.3849 0.4231 58

0.45 <Pi <  0.55 0.5058 0.5037 0.4797 52

0.55 < Pi < 0.65 0.6018 0.5920 0.5169 52

0.65 < Pi < 0.75 0.6983 0.6728 0.6736 44

0.75 <Pi <  0.85 0.8041 0.8160 0.8984 79

0.85 < <  0.95 0.9150 0.9224 0.9735 394

0.95 < p i <  1.00 0.9842 0.9844 0.9927 2493

overall 0.5002 0.4965 0.5047 4997

Table 8.2: The calibration results oïpi forecasts with the smoothed prediction

5*.
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Figure 8.3; Calibration plot.

(1974), is the eoniparison of the outcome of an event with the prediction of 

that event such that the outcome of the event in question does not play any 

role in its own prediction. Letting denote the outcome of an event Y] at 

time the prediction required by cross validation is

(8.4)

where denotes the absence of Once the c/s are computed for the entire 

sequence, the average mean squared error for cross validation (MSCV),

{y. -  c i fM S C V  =
n

(8.5)

can be evaluated. Using the MSCV the predictive performance of competing 

models can l)c compared and assessed. Although it is not a prequential pre­

diction, Ci is considered a fair prediction because iji does not contribute in 

any way to its own prediction. In this light, cross validation is a fair assess­

ment of a forecasting system making the distinction between a forecasting
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system that provides a good fit to the data and a forecasting system that 

predicts well.

For a HMM, Ci is defined as

Ci =  P { X i  =  l l ^ i , . . . ,  Yn X  Yi).

To compute Ci the forward-backward algorithm must first be used to compute 

the following probabilities;

f i{k ,  o) = P  {Yi, Yi = o, Xi = k) ,  (8.6)

b̂  {k, o) = P  (Fi+i, . . . ,  Y^lXi  = k, Yi = o ) , (8.7)

where o € {A,  T, G, C}  and k G {0, 1}. Using (8.6) and (8.7) Q can be 

expressed as
_  E o / i ( l , o ) 6 i  (1, 6)Ci —

'LkT.ofi(k,o)bi{k,  o)'

8.5.1 Calibration

If the prequential framework for calibration is to be abandoned, then the 

closest alternative to such a framework is cross-validation. This is because 

the cross-validation concept remains true to the nature of the prequential 

framework in that the event in question is not allowed to contribute to its 

own prediction, thereby providing a fair assessment.

In the cross-validation calibration scenario, the smoothed predictions are 

used in place of the observed outcome of an event X  and the Ci are used 

as the forecast of that event. The behaviour of well calibrated forecasts is 

defined by the conditional expectation,

E  Si-Ci\Yi ,  . . . ,  Yn, ~Yi = 0 .  (8.8)
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Equation (8.8) holds since E[si\Yi, . . . ,  ~Yi] = Ci and it is expected that 

the well calibrated forecasts will show this. As discussed in section 8.4, the 

sequence of g/s do not form a martingale process.

In the absence of the martingale property it is not possible to determine 

the generalised asymptotic behaviour of any suitably selected infinite subset 

of (si, Ci) pairs. Therefore, the empirical calibration witnessed in this exam­

ple does not have any broader implications on the general validity of infinite 

subsequences of q  forecasts.

Similar to Chapter 6, the average Si is taken for fixed intervals of Q. 

Table 8.3 gives the results of the calibration and Figure 8.4 shows plots of 

the calibration results. Like the calibration results in section 8.4 (Figure 8.3), 

the results show that the forecasts are well calibrated towards the {0, 1} end 

of the plot, but go astray slightly near 0.5, but only a small number of 

forecasts probabilities lie within this interval range. It would seem that the 

greater the uncertainty conveyed in the forecast, the worse the calibration.

8.5.2 Test Statistic

In a manner identical to Chapter 6, a test statistic to test the calibration 

of cross-validation forecasts is analysed. The test statistic tests the null 

hypothesis that the overall discrepancy between Si and its forecast Ci is equal 

to 0; a measure of the overall calibration of the forecasts. In the previous 

arrangement such a null hypothesis would be synonymous with testing the 

complete calibration criterion. This validity criterion, however, has not been 

defined for the nonprequential forecasts.

The proposed test statistic is

s i l l  Ui (s, -  q)

{jL^iUiVar {si\Yi, Yn , “Fj))
U  = — -------------------  ̂ ‘  ZÏJ2- (8 9)
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Interval Average c Average s n

0 < Ci < 0.05 0.0062 0.0068 1258

0.05 < Ci < 0.15 0.0873 0.0902 110

0.15 < Ci < 0.25 0.1898 0.1669 53

0.25 < Ci < 0.35 0.2947 0.3055 37

0.35 < Ci < 0.45 0.3973 0.5130 24

0.45 < Ci < 0.55 0.5063 0.5862 19

0.55 < Ci < 0.65 0.6106 0.5961 31

0.65 < Ci < 0.75 0.7007 0.7774 28

0.75 < Ci < 0.85 0.7980 0.8361 40

0.85 < Ci < 0.95 0.9128 0.9402 173

0.95 < Ci < 1.00 0.9947 0.9958 3224

overall 0.4998 0.5285 4997

Table 8.3: The calibration results of Cj forecasts with the smoothed prediction

S i .
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Figure 8.4: Calibration plot.

The Uj's are {0, 1} indicator variables indicating the inclusion or seclusion 

of a (ci, Si) pair. The f//s are used to create subsequences of forecasts 

and i)redictions for the application of hypothesis testing. In this example the 

value of is used to create subsequence of (c,, pairs based on prespecified 

intervals of q. When = \ for all z, becomes the overall test of empirical 

calibration, 4o. If both q and var {si\Yi^ . . . ,  IW, are fixed, then the 

only random element in the formation of 14 is This would make 14 a linear 

combination of independent random variables with mean zero and variance 

one.

The test statistic is used to test the empirical calibration of with its 

forecast q. The asymptotic distribution of the test statistic can not be 

determined theoretically since the Central Limit Theorem for Martingales 

can not be applied to this example. However, if 14 is a linear combination 

of independent random variables with mean zero and variance one, then
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by the central limit theorem for the sum of independent random variables 

the distribution of 14 can be approximated by a standard Normal. It is 

also possible to construct and analyse an empirical distribution for the test 

statistic and see how close it is to the standard Normal distribution.

Eleven disjoint subsequences along with the sequence as whole are con­

sidered in this section, giving a total of 12 test statistics to examine. The 

construction of the empirical distribution functions for each of the 12 test 

statistics is performed by simulating 1000 values of the test statistics us­

ing both the production method and a method analogous to the prequential 

simulation method. The diagram in Figure 8.5 explains the simulation of 

the latter method which will be referred to as the cross-simulation method. 

The frame of reference used is a cross-validation frame of reference. In the 

cross-simulation method the test statistics are evaluated using the data se­

quence described in section 8.2. At each point i in the data sequence, Yi 

is simulated from the conditional distribution P{Yi\Yi, . . . ,  TXr, ~Yi). It is 

important to note that the values of {Fi, . . . ,  F̂ v, ~Fj} are not simulated 

values, but come from the original sequence and therefore, the values of Q and 

var (si|Fi, . . . ,  F̂ v, ~Yi) remain the same throughout the 1000 iterations.

The diagram in Figure 8.6 describes the simulation method using the 

production model. This method is identical to that used in Chapter 6. The 

1000 data sequences are simulated using the transition probabilities given in 

Table 8.1 which represent the production model. For each simulated sequence 

the test statistics are computed constructing an empirical distribution of 1000 

values for each of the test statistics.

The empirical distributions constructed under both schemes are anal­

ysed using Normal probability plots, a plot of the ascending simulated test 

statistics versus their n-scores. For the cross-simulation method the Normal
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Figure 8.5: Flowchart of the test statistic simulation using the cross­

simulation method. Note that the value of c /s do not change (since the 

value of Djv is fixed throughout) and for efficiency can calculated prior to 

the simulation procedure.
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Figure 8.6: Flowchart of the test statistic simulation using the production 

model.

probability plots, shown in Figure 8.7, of the simulated distributions show 

that they do have a standard Normal distribution. The results can be scruti­

nised further by looking at the mean and standard deviation of the simulated 

distributions given in Table 8.4. As shown in Table 8.4, all the simulated dis­

tributions have a mean and standard deviation close in value to zero and one 

respectively.

Figure 8.8 shows the Normal probability plots for the test statistic dis­

tributions simulated using the production method. The results for this case 

are drastically different. The plots show that the distributions for all of the 

12 test statistics are approximately Normal, but not standard Normal. It 

is clearly evident from the examination of the results in Table 8.4 that the 

means are not equal to zero and that the standard deviations are not equal 

to one. The empirical distribution of Vu and Vq in particular both have large
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Vk Interval

Cross-Simulation Production

mean std mean std

Vi 0 < < 0.05 -0.0090 0.9546 -1.9063 2.6522

V2 0.05 < Q < 0.15 0.0260 1.0612 0.9644 2.3444

Vs 0.15 < Q < 0.25 -0.0266 1.0014 1.1585 2.0855

V, 0.25 < Q < 0.35 0.0299 0.9971 1.1498 1.8918

V5 0.35 < q  < 0.45 -0.0317 1.0176 1.0549 1.7500

Ve 0.45 < Q < 0.55 0.0283 1.0017 1.0036 1.7627

Vr 0.55 < Ci < 0.65 -0.0118 1.0235 1.0490 1.7823

Vs 0.65 <C i<  0.75 -0.0290 0.9986 1.0689 1.8604

V9 0.75 < Q < 0.85 0.0031 1.0147 1.3386 2.0472

bio 0.85 < Ci < 0.95 0.0258 0.9881 2.7768 2.4297

bli 0.95 < Q < 1.00 -0.0067 1.0135 11.5286 3.8509

overall 0.0072 1.0403 26.2857 50.5663

Table 8.4: The means and standard deviations for the simulated test statistic 

distributions.
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values for the mean and standard deviation.

In this example, the probability statements of the inferential model pro­

vided by the cross-validation frame of reference do not adhere to the sampling 

probabilities of the production model.

Despite the results, the test statistics are computed for q  and Si using 

the data described in section 8.2. The p-values are computed both from 

the standard Normal distribution and empirically using the two simulated 

distributions. The results are summarised in Table 8.5. The cross-simulation 

p-values are remarkably close to their Normal counterparts. This is not 

suprising since under the cross-validation frame of reference the values of 

both Ci and uar (si I Ti, . . . ,  Yn , “ Tî) are fixed and hence the 14 test statistics 

are linear combinations of independent random variables with mean zero and 

variance one. With this in mind, the central limit theorem for the sum of 

idependent random variables is applicable in this situation. It is, therefore, 

expected that the test statistic distributions under the cross-validation frame 

of reference be approximately standard Normal.

As Table 8.5 shows, the same is not true of the production simulation 

where the p-values are far from equal to their Normal counterparts. The cal­

ibration of the c/s, based on both the Normal and cross-simulation p-values, 

is questionable since the p-values of the test statistics for the subsequences 

14, Vio, and Vu all show a very high level of significance. The p-value of the 

overall test statistic at 0.0702 is also slightly low.

8.6 Discussion

In this chapter, the updated forecast, %, used to assess the calibration of 

the Pi forecasts, is replaced with a more informative smoothed prediction.
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14 Interval Test

Statistic

Z

Two-tailed

Normal

p-value

Simulated

p-value

Cross-

Simulation

Simulated

p-value

Production

14 0 < Q < 0.05 -0.0693 0.9448 0.9560 0.9750

^2 0.05 < Q < 0.15 -4.8099 0.0000 0.0000 0.0580

14 0.15 < Q < 0.25 -0.2660 0.7903 0.7920 0.8870

14 0.25 < Q < 0.35 0.5405 0.5889 0.5900 0.7760

14 & 3 5 < Q < 0 . 4 5 0.5151 0.6064 0.6090 0.7990

14 0.45 < Q < 0.55 0.7981 0.4248 0.4350 0.6830

14 0.55 < Ci < 0.65 0.1373 0.8908 0.8870 0.9470

14 0.65 < Q < 0.75 -1.1534 0.2488 0.2450 0.5710

14 0.75 < q  < 0.85 0.8193 0.4126 0.4300 0.7310

14 0 0.85 < q  < 0.95 4.9312 0.0000 0.0000 0.1860

I4i 0.95 < q < 1.00 11.4021 0.0000 0.0000 0.5180

142 overall 1.8583 0.0631 0.0720 0.9560

Table 8.5: Summary of the test statistic results.
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Figure 8.7: Normal probability plots for the cross-simulated test statistic distribution.
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Si in the hope of obtaining a more enhanced forecast assessment. Using 

a simulated sequence of 5000 nucleotides the calibration of {pi,qi) pairs is 

compared with that of {pi, Si). As shown, although the smoothed predictions 

are more accurate indicators of the hidden state than their % counterparts, 

the calibration of Pi and qi is slightly better than that of pi and

The use of all the available information in the formulation of forecasting 

assessment comes at the cost of the prequential framework. Since prequen­

tial theory no longer applies when the smoothed predictions are used, Pi is 

replaced with a more information rich and yet fair cross-validation forecast, 

Ci. A test statistic similar to that in Chapter 6 is devised to assess the cfs  

validity in explaining the g/s in a manner synonymous with the complete 

calibration criterion. The absence of the martingale property inhibits the 

determination of the distribution of the purposed test statistic, T4.

In a manner similar to Chapter 6, the distribution of the 14’s is examined 

in greater detail by simulating empirical distributions for them. The empiri­

cal distributions are simulated using both a cross-simulation method, which 

only simulates a value for Yi while keeping all the remaining observations 

fixed at their original values, and the production method, which repeatedly 

samples from the production model. The formulation of the cross-simulation 

method makes it possible to invoke the central limit theorem for the sum of 

independent random variables, since the 1 4 ’s are linear combinations of in­

dependent random variables with mean zero and variance one and therefore, 

can be approximated by A"(0, 1). The cross-simulated empirical distributions 

of the test statistics reiterate this claim.

Unlike the prequential case, the cross-validation frame of reference presents 

a situation where the inferential method does not correspond to the produc­

tion principle. Examination of the cross-simulated empirical distribution
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shows that they test statistics have a 7V(0, 1) distribution. The empirical 

distributions simulated from the production model, however, do not have a 

standard Normal distribution and because of this the cross-simulated distri­

butions do not meet the minimum validity requirement of the production 

principle.
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Chapter 9

Conclusion

The medley of various data-driven methods which has been presented here 

provides two different approaches to forecasting assessment and improve­

ment. The first explored point forecasts constructed from Normal linear 

models and the second undertook the extension of the calibration techniques 

of probability forecasting assessments.

In the examination of the first case, emphasis was placed on the analysis 

of the recursive residual. Not only is this residual neatly suited to a pre­

quential framework, but, as has been shown, the recursive residual is unique 

to the properties it possess. For a standard linear regression model it has 

been illustrated how the recursive residual, commonly used to detect model 

misspecihcation, can be used to correct it. The linear structure of a recursive 

residual vector of a deficient model can be exploited in the construction of 

a new model formation which when regressed on the missing components 

corrects the original misspecihcation.

Recursive residuals have also been introduced to new areas. The pre­

dictive distributions of a Normal variable with unknown mean and known 

precision has a recursive residual formation. In a manner similar to the mis-

161



specification correction strategy, it is shown how this residual can be used 

in a hierarchical modelling scheme and produce results identical to that of 

standard Bayesian analysis. The residual analysis concepts developed here 

were also extended to hidden Markov models. Recursive residuals are de­

fined for the state of a system of various HMMs, as the difference between 

the one-step ahead prediction and the prediction’s update. These definitions 

are used to show that, for the special case of a HMM with univariate state 

and multivariate observation sequences, the dimensionality of the data can 

be reduced to a univariate sufficient statistic without loss of information. 

This result also illustrates the correspondence between predictive sufficiency 

for a hidden state and conditional independence in a HMM configuration. In 

HMM applications where there are many variables, this compression tech­

nique can be used to simplify the analysis without compromising the model’s 

predictive performance.

The modelling of residuals discussed earlier introduces a novel approach 

to modelling strategy in both the standard linear regression and Bayesian 

applications, and also to statistical analysis as seen in the HMM case. Three 

examples of very different residual applications have been given here, but, 

in all three cases, conclusions about statistical methods are drawn based on 

the residual content they produce. If, for a given set of data, the residuals of 

two varying statistical models are the same, then, regardless of the methods 

used to derive them, their corresponding forecasts are also the same. This 

gives an “ends justifies the means” approach to development and evaluation 

of statistical models based on the forecasts they produce.

This sort of residual analysis draws only on the linear correspondence 

between residual and observation. As such, the concepts presented are ap­

plicable to a limitless number of linear models from autoregressive models to
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higher order HMMs and switching-state models.

Using HMMs, probability forecasting assessment is made possible by ex­

amining the calibration of the one-step ahead forecast with its filtered predic­

tion. Both the complete calibration theorem and the calibration test statistic 

are extended to the HMM case. The application of these extended concepts 

in forecasting the occurrence of a CpG island in a DNA sequence shows that 

they perform well even for small samples.

Estimation is also carried out which allows for the examination of model- 

based calibration. The point of estimation is not to improve the model but 

the forecasts the model generates. For the forecasts calculated using Baum- 

Welch estimates, the calibration of the forecasts as indicated by their cali­

bration plot is good; however, there is little evidence to suggest that model 

based forecasts are empirically better then their counterparts computed from 

unestimated transition probabilities. Since both forecasts are completely well 

calibrated then by the calibration criterion both the estimation based fore­

casts and the non-estimation based forecasts are indistinguishable as the 

number of forecasts made approaches infinity. A prequential estimation pro­

cedure which allows the sequential integration of observations as they become 

available is also introduced, but the calibration results in this case are very 

poor.

Computational limitations and the example data used both proved to 

be major obstacles in the development of a proper prequential estimation 

procedure. The prequential algorithm is a variation of the EM algorithm 

which require that the estimated parameters be allowed to reach a local 

maximum for a fixed set of data. The continuous incorporation of new data in 

the prequential procedure would require the estimates to converge at a local 

maximum for each new observation which is, unfortunately, computationally
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infeasible. Computational limitations also arise in the calculation of standard 

errors for the estimated parameters. The conditional independence structure 

of the observation sequence complicates the calculations to the extent that 

the standard errors can not be computed. The standard errors, had they been 

available, would have provided an indication of the quality of the estimates 

produced. The analysis of the estimation procedure is further hindered by 

the example DNA sequence used. The likelihood has been found to have 

more then one mode, which makes it difficult to determine the quality of the 

estimates produced prequentially.

The prequential framework has the advantage of possessing mathematical 

properties which simplify the statistical theory associated with prediction. As 

seen in the calibration case, the adherence to prequential theory made pos­

sible the use of the central limit theorem for martingales, enabling the pos­

sibility of hypothesis testing in empirical forecasting validation. However, 

when using HMMs, the prequential approach restricts the use of informa­

tion in an already information-deprived situation. Leaving the prequential 

framework makes it possible to use more information-rich forecasts, such 

as cross-validation forecasts and smoothed predictions, and the assessing of 

one against the other using calibration. Although it is possible to judge the 

performance of the forecasts on a basic calibration level, it is not possible to 

extend the calibration criterion to forecasts of this type so that stronger state­

ments can be made about the validity of such forecasts and the forecasting 

systems used to construct them. Empirical investigations show that a test 

statistic testing the complete calibration of smoothed and cross-validation 

forecasts, under the cross-validation frame of reference, is A^(0,1). However, 

in this case, the inferential model presented by the cross-validation frame 

of reference does not uphold the probability statements of the production
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model, since the production simulated test statistic distributions are not 

A^(0,1). This result is an example of the limitations of cross-validation as an 

inferential method and displays the superiority of prequential forecasts over 

their cross-validation associates. More research, however, is need to see the 

extent of such a claim.

The HMM calibration applications presented here bear witness to the 

easy adaptability and wide applicability of prequential theory and probability 

forecasting. It seems to reasonable to assume that these concepts can be 

extended further and applied to more structured HMMs.
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