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Abstract

Coherent radar clutter statistics

Mohammed Jahangir

Ground surveillance radars have been used for a number of years for target
detection and terrain mapping. Neither of these tasks can be carried out without a
proper understanding of the ground clutter statistics. Traditionally, radar signal
processing has been optimised for Gaussian intetference. However, ground clutter
in high resolution systems is rarely Gaussian. Thus in this thesis the non-Gaussian

statistics of a coherent radar sensor are investigated.

The clutter statistics are a function of both the terrain features and the imaging
process. One of the major influencing factors is the radar resolution cell size. Thus
as a prerequisite to studying the clutter characteristics the theory concerning radar

resolution is discussed.

A review of the non-Guassian clutter models is carrded out and the K-
disttibution is selected as a reasonable model for land clutter statistics based on
empirical evidence. However, a major drawback with the K-distribution is a lack of

efficient optimum estimators for its parameters.

Neural nets are devised to give an optimum estimator for the order parameter
of the K-distribution. The minimum error is obtained with a net trained on the
mean normalised log intensity and the amplitude contrast. A new estimator is pr o-
posed based on the multiple moments model. It is shown that nearly optimum pe t-

formance is achieved with the new estimator.

The parameter estimators are also investigated for a more general form of the
K-distribution where the data statistics are such that a simple K-distribution is no
longer sufficient to describe the clutter statistics. Estimators are proposed for the
parameter values of generalised-K and homodyned-K based on a large order p a-
rameter approximation. Error analysis is carried out and a comparison is made

between theoretical and simulated results.
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Chapter 1

1. Introduction

The Concise Oxford Dictionary gives the meaning of clutter as 'crowded confu-
sion' or 'untidy state’. In a radar context clutter refers to unwanted signals - signals
which confuse the detection of objects of interest. In ground sutveillance radar the
main objects of interest for a military application ate the man-made vehicles. The
radar is being used for target detection and in this situation the signals from sea,
ground, buildings and vegetation are considered as clutter. However, increasingly
radar is being used for terrain mapping and, in this remote sensing application, the
signals from land and sea are the ones which are of interest. Nevertheless in this
thesis the term clutter will refer to the radar returns from land and sea irrespective
of the application. The question arises why there is a requirement for studying
clutter characteristics. The answer to this very much depends upon the application
of the radar. Thus there are essentially two reasons for studying clutter which fol-
lows from the two distinct applications of the ground surveillance radar, i.e. target
detection and terrain mapping. A review of these two applications of ground sut-

veillance radar would give an appreciation for studying clutter characteristics.

1.1 Importance of understanding clutter

The principle of a radar is fairly straightforward. Radar is an active sensor whereby
a signal is transmitted and the energy backscattered from an object is received by
the radar antenna. The nature of this signal provides information tegarding the
object. The delay between the transmitted pulse and the received echo from the
object relates to its range. The strength of the received echo relates to the object

size, orientation and electromagnetic properties and is an indicator for the object
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CHAPTER 1. INTRODUCTION 6

type. The use of a directional antenna allows the radar to sense the angle of arrival

of the received echo and this identifies the angular location of the target.

From a target detection consideration the simplest case is whete the target, the
object of interest, is in an isolated location, with no interfering clutter. This situa-
tion is typical of airborne targets. During the second world war this usage of the
radar was first brought into service and deployed in air defence systems for de-
tecting attacking aircraft [65]. These original radar systems were noncoherent, in
the sense that they transmitted a burst of Radar Frequency (RF) energy and de-
tected the amplitude of that proportion of the signal that came back from a target
of interest. A receiver contains other spurious signals as well which are background
electrical noise which invariably exists in the output of a receiver. The echo re-
ceived from the target will thus only be detected once it can be discerned above
this background electrical noise. On a radar video image such target returns show
up as bright spots or 'blips' which are recognised by a trained human operator. In
sophisticated radars, detection is performed automatically. The received signal is
compared against a threshold and a target is registered only when it exceeds this
threshold. The system will have some undetected targets because of the target sig-
nal being too low and it will also have some false alarms due to the noise signal
exceeding the threshold level. The threshold is set according to the background
signal level. The critetia for the signal processing are to minimise the false alarm
rate and maximise the detection probability. When the target is just competing with

the noise background it is easier to set this threshold.

The task becomes more difficult when the target also has to compete with si-
multaneous received echoes from interfering objects like ground. These clutter re-
turns may in some instances be stronger than the noise signal and the detection
performance drops. Since clutter is always present for ground targets and for low
flying targets there could be clutter at the same range as the target, this would seri-
ously limit the effectiveness of the radar system. Modern radars overcome this
limitation by using a coherent system where the detection is based not only on the
amplitude of the signal, but on its phase characteristics as well. The phase of the

signal changes linearly with target distance, providing a means to measure the ve-
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locity of the target. When the target is moving the received, echo signal is shifted in
frequency due to the target’s Doppler effect. This enables a radar to separate the
signals from the desired moving target (such as vehicles) from stationary clutter
even though the stationary echo signal may be many orders of magnitude greater
than the moving target. Thus coherent pulse radars use Doppler filtering to detect
moving targets; a process that is termed Moving Target Indication (MTT). Ground
based systems use this method to detect both aitborne and ground based moving
targets. For fixed antenna all the returns from stationary clutter will be in zero
Doppler and the Doppler returns from moving targets will be generally free of
clutter interference. The detection threshold can, therefore, be set using simplified

algorithms based on thermal noise limited data.

The clutter returns, however, do not always reside at zero Doppler. The clut-
ter can have real Doppler or apparent Doppler. Real Doppler is when the clutter
has intrinsic motions. The internal clutter motions are mainly wind induced and
this produces only limited Doppler spread. Apparent Doppler is due to one of two
reasons. A scanning antenna gives the clutter an apparent Doppler. The clutter
Doppler varies linearly along the aperture resulting in a Doppler spread. The extent
of the spread is dependent on the scan rate and the antenna beamwidth. Secondly,
a moving platform, as in the case of an airborne or spaceborne radar system, intro-
duces an apparent Doppler for the clutter. The apparent Doppler is due to the
component of platform motion in the direction of the clutter. Since the radar beam
has a finite width there is a spread in the Doppler frequencies of the clutter return.
The extent of this spread depends up on the platform velocity and also on the an-
tenna pointing angle in relationship to the platform velocity vector. The widening
of the clutter band can be quite extensive due to the high speeds of moving plat-
forms. Where the clutter Doppler spread is large, the target will only clear the
clutter dominant region of the Doppler spectrum if it has a significant Doppler
shift. In the case of the airborne targets where the velocities are relatively large the
targets have a significant possibility of residing in the clutter free region of the
Doppler spectrum. However, ground moving targets are much slower and are far

more likely to fall within the Doppler spread of the clutter. Traditionally, in radar
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image processing, regions which are clutter dominated are discarded [82]. This re-
sults in a failure to detect any of the slow moving targets. Therefore, the airborne
surveillance of ground targets has had limited success to date despite the strategic
importance of such systems. In order to ensure that slow moving targets can be
detected, the target detection has to be cartied out in a clutter dominated back-
ground. This is not possible without a full understanding of the statistical propet-
ties of clutter. An improved understanding of the clutter characteristics will allow
us to set appropriate detection threshold in clutter dominated regions hence ex-
tending the range of velocities at which a target can be detected. Considerable
work has been done on understanding the characteristics of land and sea clutter. A
number of statistical models have been put forward for the clutter data [17, 41, 52,
74, 75, 82]. The bulk of this work has been performed by empirical fitting of distri-
bution to measured data [13, 16, 27, 86, 88, 94]. However, this wotk has to be put
on a firmer physically based model.

The understanding of clutter characteristics also plays a vital role in interpret-
ing images of ground-mapping radar. These radars are generally side-looking.
During flight the radar radiates a microwave beam typically at right angles to the
aircraft, then detects and records the reflections received from the earth's surface.
As it travels forwards, successive sttips of terrain are exposed to the radar beam
and are detected at the aircraft. The reflections are used to produce a map of the

terrain covered. In these images the clutter is now the object of interest.

There is continuous push to produce maps with finer resolution. Improvedr
range resolution is achieved using a narrower pulse. Improved azimuth resolution
in conventional radar was achieved using a narrower beam either by employing a
larger antenna or using shorter wavelength. In modern pulsed Doppler radar, azi-
muth resolution is achieved by deploying a technique called Synthetic Aperture
Radar (SAR), whereby the aircraft forward motion is utilised to synthesize a very
long antenna. This method produces near photographic quality images. High
resolution radar mapping has proved particularly useful in areas that are un-
mapped, poorly known, sparsely populated, intensively cloud covered and in areas

that otherwise have not lent themselves to traditional aerial mapping methods.
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In order to extract useful information about the scene from such images post
processing tasks such as image segmentation and classification are carried out.
These techniques are based upon the statistics of the undetlying cross section val-
ues of the clutter [60]. An added complication with the cohetent imaging process is
that there is speckle noise present. Speckle is random noise which results from the
interference of the coherent radar echo with the surface scatterer. This speckle,
which gives a granular appearance to a SAR image, seriously degrades the image
quality. Therefore, both the statistical variation in the underlying cross section val-
ues of the background along with the statistical properties of the speckle has to be
taken into account for the proper modelling of the observed data. This type of co-
herent clutter statistics analysis is not unique to the radar sensor but other coherent
imaging processes like sonar and laser have similar statistical behaviour and an
identical approach can be applied to understanding the clutter statistics from such

4 scenario.

We have therefore established that studying the clutter properties is a vital link
in a) the detection of radar targets and b) the understanding and interpretation of
images of coherent systems. In this thesis we address this task of characterising the
clutter model. The discussion will be based on a coherent radar system but the
modelling technique is a generic approach, applicable to other coherent imaging
methods. One particular example of this is coherent sonar systems whete clutter

modelling techniques, developed for radar systems, are increasingly being applied.

The clutter characterisation problem can be broken down into a number of

sub-questions:

1. What parameterised statistical model can be used to characterise the clutter?
2. What physical justification is thete to use the statistical models?

3. What are the optimal parameter solutions to the statistical model?

4. What are the errors associated with estimating these parameter values?

These questions comprise the main aspects of the clutter charactetisation

problem addressed in the following chapters.
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In the remainder of this introductory chapter an outline plan of the thesis is
presented, the novel aspects of the research presented in this thesis are listed and a

brief description is given of the radar data that will be used in later chapters.

1.2 Outline

Before we can address the task of understanding the clutter characteristics we need
to establish a full understanding of the imaging process. We need to know what
the parameters of the radar systems are and what information is represented by the
data. This is a general prerequisite for interpreting any type of data. Hence in
Chapter 2 the general theory of radar imaging is discussed. A pulsed Doppler sys-
tem and a high resolution SAR system is described, discussing in patticular the im-
age resolution achieved with each system. The information concerning the resolu-
tion of the system will be used in later chapters to devise models for the clutter

statistics.

After a brief explanation of the radar principles we go on to address the task
of clutter characterisation covered by the questions highlighted above. The first
two of these questions are addressed in Chapter 3. A general review is carried out
of the clutter modelling techniques used by various researchers. A short back-
ground is given on direct modelling techniques based on the electromagnetic the-
ory followed by a detailed discussion of statistical based models used to describe
the clutter statistics. The search for a proper phenomenological based model leads
us to the K-distribution as an adequate representation of the statistics of medium
resolution land clutter data. Evidence from goodness-of-fit tests on SAR and MTI
data is used to justify the K-distribution model. The discussion on the K-
distribution is extended in Chapter 4 where we address the third and fourth ques-
tion on clutter modelling regarding parameter estimation. Neural nets are used to
investigate optimal parameter estimators for the K-distribution. A new multi-
moment estimator is proposed for the estimation of the parameter of the K-
distribution and its error analysis is carried out. It is shown that near optimal pa-

rameter estimates are obtained with this hybrid estimator.
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In Chapter 5 we extend our discussion to high resolution clutter where the
statistics deviate from a K-distribution. Once again we address the four questions
as to what is the most suitable noise model and how to obtain the optimal pa-
rameter estimators. We introduce weak scattering models which are a more appro-
priate representation of the scattering process when the phase of the detected field
is not uniformly distributed. Consideration of a random walk in a weak scattering
regime leads us to the generalised-K and the homodyned-K distribution. Estima-
tors are proposed for the parameters of the distributions and error analysis is car-

ried out for the estimators.

Chapter 6 contains conclusions on the clutter statistics given the results in

Chapter 3 to 5. It also suggests ideas for further research.

A number of appendices are included. Appendix A lists a complete evaluation
of the predicted errors for the various estimators discussed in this thesis. Appendix
B contains an extended proof of a result referred to in the main body of the thesis.
The details of the chi-squared goodness-of-fit test and the maximum likelihood
classification test used in the evaluation of real radar data are described in appendi-
ces C and D respectively. Appendix E lists the output distributions of basic binary
operators in terms of the distributions of their inputs; these results are required at
various stages in the main body of the thesis. Appendix F is a glossary which
briefly defines various mathematical functions and relationships referred to in the
thesis. For ease of reference topics listed in the glossary are printed in bold in the
main body of the thesis wherever the reader may require further explication of the
topic (e.g., where it is first introduced). Finally, appendix G gives a list of symbols

used in the thesis.

1.3 Novel aspects of the research

The main achievement of the results presented in this thesis is the development of
suitable statistical models for surface clutter. New estimators for the most viable
clutter distribution models are proposed and their performance assessed using
theoretical predictions and simulated results. This work, on the main, built on the

many years of research on sea and land surface scattering carried out by the Sut-
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face Surveillance group at DERA Malvern but also drew upon the work of the
wider radar clutter modelling research community. There are a number of original

results presented in this thesis and these are listed as follows

e Using new SAR data for land, the K-distribution is shown to be a good em-
pirical model for medium resolution system which confirmed previously

published results.

e New results are presented for the empirical fit to MTI data for land clutter
which for the first time showed that the K-distribution is also a suitable non-

Gaussian model for this case.

e Neural nets are used in a novel way to construct estimators for the ¢ pa-
rameter of the K-distribution which outperformed existing texture measure
estimators. A key element to the success of the neural net estimators is the
introduction of the pre-processing stage. Thus instead of presenting directly
the K-distributed intensity data, moments calculated from this data are pre-
sented to the input layer of the neural net which enables a much more suc-

cessful convergence of the neural nets' weights.

¢ A new hybrid estimator is proposed which combines the normalised log and
the amplitude contrast texture measures to give a near optimal estimator for
the ¢ parameter of the K-distribution. A new expression is detived for the
predicted error performance of this estimator which is compared with

simulated results.

e The homodyned-K and the generalised-K distribution, which ate candidate
distribution for weak scattering, lacked any optimal parameter estimators.
New results are presented which propose some simple estimators for the pa-
rameters of these distributions. The corresponding expressions for the error

predictions are derived and their performance assessed using simulations.

1.4 Real radar data

Results presented in this thesis are based on a number of data sets from DERA

Malvern airborne radars:
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Band Allocation

Frequency GHz Wavelength cm

C 5.25-5.35 5.71-5.62

X 9.50-9.80 3.16-3.06

Table 1.1 Frequency band allocations for radar remote sensing [89].

1. Single-look complex SAR data taken by the DERA Malvern Canberra X-band
airborne system near Amesbury, Wiltshire, England.

2. Single polarisation MTI data taken by the DERA Malvern Canberra X-band
airborne system of the Hull area, England.

3. Single-look complex SAR data taken by the DERA Malvern Andover C-band

airborne system near Pershore, Worcestershire, England.

The frequency allocations corresponding to the radar frequency bands referred to
above are listed in Table 1.1. Other relevant imaging parameters will be listed when

the need atises.



Chapter 2

2. Radar resolution theory

Radar resolution has a significant bearing on the statistics of the clutter returns.
Thus in this chapter, as a prerequisite to studying clutter characteristics, the theory
of radar resolution for ground imaging surveillance systems is described. For mod-
ern surveillance systems there has been continuous pressure and desire to achieve
finer resolution. There are a number of techniques available for improving radar
resolution. An airborne system has certain limitations but there are also particular
teatures which can be exploited to improve radar resolution. The high resolution
techniques which are applicable to airborne surveillance systems are described in

this chapter.

The resolution of a system can be defined as a length scale which characterises
how far apart two point targets must be for them to be distinguished as such in an
image. A common choice for the resolution is the width of the main lobe of the
point spread function (PSF) [70]. However, this is only a nominal resolution as the
actual ability to resolve two scatterers depends upon their relative cross-section and
phase difference [69]. Nevertheless, for the purpose of the discussion here we will

treat this nominal resolution as the system resolution.

Figure 2.1 shows a typical geometry for a sideways-looking radar mounted on
an airborne platform. The aircraft flies along a straight line track. The direction of
flight is known as the along-track or azimuth direction and the direction perpen-
dicular to this is known as the cross-track or range direction. As the aircraft flies

along its track, it emits a continuous train of radar pulses. Each radar pulse illumi-

14
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SWATH

AZIMUTH
BEAMWIDTH

Figure 2.1: Geometry of an airborne sideways-looking radar

nates the ground over a region determined by the antenna beamwidth. As a rule of

thumb, the beamwidth of an antenna of length D is [83]

w=A/D @2.1)

where A is the radar wavelength. Typically the antenna is rectangular with dimen-
sions D, X D,, where a and e denote azimuth and elevation, respectively. Thus
the antenna footprint has both a range and azimuth extent given by (2.1). These
two spatial components make up the two-dimensional radar image. The range
resolution of a sideways-looking radar is discussed in Section 2.1. The range reso-

lution is inversely proportional to the bandwidth of the radar pulse. High range
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resolution requires larger bandwidth which can be achieved by using frequency
modulation. When linear modulation (i.e., a chirp pulse) is used the system re-
sponse is described by a sz function, provided no amplitude taper is used. The
azimuth resolution for a real aperture antenna is described in Section 2.2. The azi-
muth resolution is inversely proportional to the aperture of the antenna expressed
as number of wavelengths. Higher azimuth resolution is achieved using SAR tech-
niques. The azimuth resolution for a fully focused synthetic aperture is equal to
half the real aperture length, and the system response is desctibed by a sine func-

tion.

An alternative to the two-dimensional spatial image is to represent the re-
ceived signal as a range Doppler map. The Doppler data is obtained by a frequency
transformation of the azimuth data. The Doppler of a target is proportional to its
radial velocity towards the radar. This feature is exploited in coherent MTI radars
to separate the echoes of moving targets from stationary clutter. The clutter echoes
also have a Doppler return determined by the platform speed, the antenna beam-
width and the antenna pointing direction. Section 2.3 discusses the Doppler reso-
lution in an MTI system. The Doppler resolution is equal to the reciprocal of the
coherent integration time. The total width of the Doppler spectrum is given by the
Pulse Repetiion Frequency (PRF).

The imaging geometry will assume a flat earth model. This is valid for aitborne
surveillance radar operating over a narrow swath width. However, surveillance
systems which operate at a very long range, for example spaceborne surveillance
radars, the imaging geometry must also take into account the Earth’s curvature and
rotation, and the satellite orbit [25, 66]. However, these factors ate not considered
further since they affect only the details of the range and azimuth processing rather
than the general theory. The effect of range curvature [90] will also be ignored.

2.1 Range resolution

The range component of a radar image is given by the time it takes a radar pulse to
return from the target when it is broadside. This is termed the slant range. Figure

2.1 shows the range swath of a sideways-looking radar.
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For a pulsed radar the width of the radar pulse determines the ability of a radar to

resolve closely spaced targets in range. Thus for a radar with a pulse width T, the

slant range resolution is given as

CTP
d, = T 2.2)

where ¢ is the speed of electromagnetic propagation through the atmosphere
(¢ =3x10°m/s). For an unmodulated pulse, T,is approximately related to the
bandwidth B of the radar as 7, =1/ B . Therefore, the slant range can be written

d, =— 2.3)

For clutter modelling, the resolution that is of interest is the corresponding ground

range resolution. For (2.3) this is given as

- 2.4
" sin® @9

where ¥ is the local incident angle of the beam with the surface. ¥ changes over
the range swath of the antenna footprint. The maximum attainable swath in the

range direction is given by the antenna elevation beamwidth ¥, . For a side looking

radar flying at a height A, and looking down at an angle ¢o the maximum range

swath is [25]

S = hac(cot(gbo - ”’7} - cot((po N %D

B 2h, siny, 3 h, v,
 cosy, —cos2¢, sin’g,

(2.5)

for vy, <<1

The ground range resolution varies nonlinearly across this swath. This can have
important consequences for image properties, particularly for spaceborne or short-
range airborne systems. The actual slant range swath, bounded by the minimum
and maximum range, is determined by the time between the pulse transmission

and the start and end of the reception petiod. The swath is always selected to lie
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between the main lobe of the elevation beam. Since transmission and reception
cannot ovetlap, the slant swathwidth is restricted by the PRF, and the condition
[c0]

c

S, <T———= 2.
" 2XPRF @6

must hold to avoid range ambiguities. For real aperture systems thete is no lower
limit on the PRF, however, for SAR systems the PRF must exceed a certain lower

limit (see Section 2.2).

A simple sinusoidal pulse of length 1 us will give a slant range resolution of
the order of 150 m. To achieve higher range resolution would require a pulse with
a much shorter length. This would require higher transmitter peak power to main-
tain the detection ranges. The bandwidth of the unmodulated 1 us pulse is 1 MHz.
The range resolution can be improved by using frequency modulation, which in-
creases the bandwidth of the pulse without reducing the length of the transmitted
pulse. This results in the system response in range being a sinc function [45, 58, 90]

when no amplitude taper is used.
For a linear modulated pulse (i.e., a chirp) of bandwidth B and length 7,’,

where the frequency f(7) at time Tis given by

T 1

f __l_;z ITIS_p
f@=1""=7 2 @7
0 |rl>7"

and where fp is the carrier frequency, the transmitted pulse is of the form!

P

p(t)= exp{ /'271[ fo —2—3;—,]7} for |z]< %’L 2.8)

The received pulse from a point target at range R is a delayed and scaled version of

the transmitted pulse. Processing the return signal involves stripping off the carrier

1 /:J:I
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Xr

Figure 2.2: Compressed chitp pulse for B =100 MHz and 7,'=100 sec

frequency and performing a correlation with a copy of the transmitted signal (this
is known as matched filtering [63]). The output for a point target is given by [62]

[ 7B, .IB 2 S+7T
h,(t)—'[_rp,/zexp(/?—'s }exp(— /F[s+r] )rec{ . st

'
P p P

2.9)
= (rp '—|’L’|) sinc(% T [T » '“M]J reCt[?TT}

p p

where

0 >t 2.10)

The time resolution 77 (related to range resolution as d, = cr, /2) is given by the

first positive zero of the sine function. This occurs when

B '
FT(TP -7)=1 (2.11)
p
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which gives the solution for r;as

T i 1- /1 4 2.12
=y =— - _— .
T 2 BTPI ( )

Fort high resolution systems, the #me-bandwidth product BT," is large and (2.12) ap-

proximates to

- 2.13
= 2.13)

rT
rr is the compressed pulse length. Using (2.13) we get the expression for the com-

pression ratio as

T
compression  ratio =—— = Bz, (2.14)
rT

Thus a pulse of length 7,' = 1 us using a chirp with a compression ratio of 100 will
P P g p P

have a range resolution of 1.5 m. The corresponding bandwidth is B = 100 MHz.
The plot of the compressed chirp pulse for this system is shown in Figure 2.2,

where the x-axis has been converted to distance units by the substitution x, =c¢T.

2.2 Azimuth resolution

The azimuth information makes up the second component in a radar image. The
azimuth resolution of a real aperture radar is governed by its azimuth beamwidth.

The azimuth geometry of a side looking radar imaging is illustrated by Figure 2.1.
The azimuth resolution at a slant range Ry is given as
d, = Ry, (2.15)

Using (2.1) this gives

d =

a

RA
D

a

(2.16)

The returns from a point scatterer at range Ro would be smeared out in azimuth by

a distance given by (2.16). An X-band system using a 2-m antenna at a range of 10
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Synthetic aperture of length L
Figure 2.3: Geometry of the illumination of a point target across a syn-

thetic aperture of length Lg.

km will have an azimuth resolution of 150 m. For most imaging purposes this
resolution is very poor. The brute force method for increasing the azimuth resolu-
tion would be to a) reduce the wavelength of the transmitted signal, and b) increase
the aperture of the antenna. Neither of these solutions are practical for long range
surveillance radars, the former due to high propagation losses for frequencies
higher than X-band and the latter due to the constraint on the antenna size due to

platform dimensions.

A more practical method for achieving higher azimuth resolution for a side-
ways-looking radar on a moving platform is to coherently add the returns from a
series of different positions along the line of flight. This effectively forms a syn-
thetic aperture from which this method derives the name ‘synthetic aperture radar’
(SAR). The geometry of the illumination of a point target along a straight synthetic
aperture of length Lg is shown in Figure 2.3.

As the radar beam passes over a point target, the range of the target to the
platform changes. This produces a change in the phase of the detected field at each

point along the synthetic aperture. The range R of a point target X can be ex-
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pressed in terms of its range when it is broadside to the radar platform Ry, and its
azimuth lag x,, along the ground track of the radar beam away from being broad-

side

R=+R}+x 2.17)

For a narrow beam, X is only illuminated when x, << R, in which case

2
xa

2R,

R=R,+ (2.18)

Thus the path difference OR between when a target is at an azimuth lag x, com-

pared to when it is broadside of the antenna is given by

x 2

OR=—° 2.19
o @19)
where the corresponding two-way phase difference 8¢ as a function of azimuth lag
is given by
27}
5¢(x) : (2.20)

If Ej is the field detected when the point target is broadside of the antenna

then the detected field F(x,) at point x, along the synthetic aperture is given
by

L
<

Ls

a 2

2.21
a L (2.21)
2

X 1>

a

where the variations in the magnitude of the detected field across the synthetic ap-
erture are ignored. This is a valid assumption as the variation in the target’s range
across the synthetic aperture is small relative to the range itself. In the absence of
any phase correction, only those returns for which 0 is less than a fraction of a

cycle can be summed together. With proper phase correction, radar returns re-
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ceived over the full length of the synthetic aperture can be summed together which
results in very fine azimuth resolution.

Full phase cotrection involves convolving the detected field with the matched
filter of the phase difference term. The azimuth response to a point target is then

given as

h, (xa ) =F (xa ) * exp(— /5¢(— x, ))

2 + y)exp(— /'6(])(— y))dy (2.22)

= IF(
Xa| . | 2Lgx X,
= — —a) 1=
EOLS(I L, J smc{ 7R, ( L, n

-Lg/2
for |xa, < L, otherwise it is zero?. The output response is a distorted sinc function

xa

with the first null occurring at

2L¢x, -
AR,

X

a

ZS—] =1 (2.23)

which gives the solution for the azimuth resolution as

AR
x =d =—"

2.24
o =do=3p 2.24

The maximum value for Ls is determined by the distance over which a target is
within the main beam of the antenna. This is equal to the azimuth beamwidth.
Thus substituting for maximum Lg from (2.16), the azimuth resolution of a fully

focused SAR is given as

d—Da 2.25
a9 (2.25)

The azimuth resolution is independent of range and wavelength and is determined
solely by the azimuthal length of the real aperture. Thus an X-band system with a

2-m antenna can achieve an azimuth resolution of 1 m. The associated cost of SAR

2 When the symbol * is used as in X it represents the complex conjugate of x, whilst when used as a binary
operator as in x * y, it represents the convolution of x and y.
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processing is high data storage since the Nyquist critetion demands that the sam-
pling rate must exceed the resolution length [90]. This imposes a lower limit on the
PRF which then also limits the maximum slant swathwidth (see (2.6)).

The azimuth resolution, however, cannot be increased indefinitely by reducing
the real aperture size. Firstly, reducing the size will lower the gain of the antenna
and thus the detection performance of the radar. Secondly, the required minimum
PRF will increase, reducing the slant swathwidth [90]. Higher SAR resolution is,
however, possible with spotlight mode SAR which uses beam steering to keep the
target in the beam for a longer time and thus form a longer synthetic aperture. This
gives considerable improvement on the azimuth resolution, however at the ex-

pense of spatial coverage [17].

2.3 Doppler resolution

A target can be defined in three state variables; range, azimuth and Doppler. The
Doppler of a target is a function of its radial velocity toward the radar and is used
in MTT radars to form range-Doppler maps which facilitate the detection of mov-

ing targets.

The Doppler frequency of a target is related to its radial velocity v, toward

the radar, as [81]

2v,fo
c

f, = (2.26)

The maximum unambiguous Doppler is given by the PRF. In a coherent MTI
system the received pulses are processed along the azimuth direction using a one-
dimensional Fast Fourier Transform (FFT) to generate a Dopplet profile. The FFT
is performed for each range gate. This produces a two dimensional range-Dopplet

map. The Doppler resolution is given as [83]

_ PRF
¢ N

p

2.27)
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where Np is the number of pulses that are coherently integrated. N, / PRF =7,

nt >
the coherent integration time. Therefore, the Doppler resolution, and hence the

bandwidth, is given as

fi=— (2.28)

int
The total number of Doppler bins is equal to the number of pulses that are cohet-
ently integrated. The Doppler resolution is increased by extending the coherent
integration interval. For a given PRF this is achieved by increasing the number of
pulses that are processed together by the FFT operation. The upper bound on #ine
is the dwell time on the target. The dwell time is a function of antenna beamwidth,
platform velocity and antenna scan rate. Therefore, there is a trade-off between
azimuth accuracy, swath coverage and Doppler resolution. Furthermore, finc has to
be kept as short as possible to avoid target migrating through the resolution cells.

A typical value of & for ground surveillance radar is 0.1 sec.

For a moving platform, ground clutter also has a relative velocity towatd the
radar which results in the clutter echo being shifted in Doppler. The relative clutter
velocity depends on the aircraft velocity and the direction of the clutter relative to
the platform velocity vector. The mean value of the clutter Doppler shift is given

by

2v,.fo
f.= cos¢@, cosf, (2.29)
c

where Vg is the platform velocity, & is the antenna’s azimuth angle, and ¢v is the
antenna’s depression angle. Since the radar footprint has a spatial extent (see Figure
2.1) the clutter spectrum has a Doppler spread. For small depression angles, the
Doppler spread from clutter returns is generally determined by the radar’s azimuth
beamwidth. The Doppler spectral width is found by subtracting the radial Doppler

frequency components, which occur at the half-power edges of the azimuth beam

as [75]
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Af, = aclo cos @, [cos(GO -,/ 2)— cos(@0 +y,/ 2)]

c

2v,. f

cJ 0 -
= ——C—l//a cos@, sin6,

(2.30)

for small azimuth beamwidths. An X-band airborne radar moving at 200 m/s with
a 2-m antenna at 5% depression angle and pointing sideways will have a clutter

spectral width due to platform motion of 199 Hz.

The clutter Doppler spectrum is divided into a number of Doppler bins de-
termined by the Doppler resolution. This has the effect of dividing the azimuth
beamwidth into subapertures whose beamwidth is determined by the Doppler
resolution. The Doppler frequency corresponding to the kth subaperture is given

as

2
fo = YacSo o5 4, cos ) 2.31)

c

where 6 is the azimuth angle between the kth subaperture and the aircraft velocity
vector. Since Doppler resolution is the frequency difference between adjacent

Doppler bins, therefore

2v
fd = fdm - fdk = —%fO_COS ¢0 (COS 9k+1 — COS Qk ) (2.32)

Letting A8 be the differentiating angle represented by each subaperture such that
0,=6,—-A0/2 and 0, =6, + AG/2, whete On is the medium angle to the

centre of the clutter cell and substituting in (2.32) gives

2
£, = L"ij—co-cos 0,A0sin 6, (2.33)

and solving for the azimuth resolution angle gives

cf,

AB =
2v, f,cos@,sing,

(2.34)

The Doppler processing has resulted in an azimuth resolution better than that

achieved with just the real aperture. This technique is called Doppler beam sharp-
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ening [75]. Although the azimuth resolution achieved is inferior to that of a fully
focused SAR and it is not independent of range, it is used in MTT radars to pro-
duce simple clutter maps. For the example of the X-band system considered ear-
lier, a PRF of 1 kHz and an FFT of 64 pulses will give a Doppler resolution of
16Hz. The corresponding azimuth angle resolution at 5% depression angle and
sideways-looking antenna is 0.070. At a slant range of 10 km this equates to a spa-
tial azimuth resolution of 12 m. Thus in MTI radars, Doppler processing also ef-
fects the size of the radar footprint on ground which in turn has a bearing on the
statistics of the observed scattering. Clutter models that are able to characterise the

observed scattering are discussed in the following chapter.

2.4 Summary

In this chapter

e The theory of how a side looking radar flown on a moving platform
achieves high resolution in range, azimuth and Doppler domain has been

described.

e It was shown that the range resolution is inversely proportional to radar
bandwidth. The chirp pulse technique for achieving high range resolution
was described and the system response to a point target was shown to be a

sine function.

® The azimuth resolution improvement achieved with a synthetic aperture
compared to a real aperture was discussed. The system response to a point

target was shown to be again a sinc function.

e The relationship between the coherent integration time and the Doppler
resolution was described and the technique of Doppler beam sharpening for

obtaining clutter maps was discussed.



Chapter 3

3. Clutter models

Clutter modelling is essential for optimising target detection and tetrain classifica-
tion. The clutter echoes result from a coherent electromagnetic scattering process.
When an electromagnetic wave scatters from a position (x, y) on the Earth’s sur-
face, the physical properties of the terrain cause changes in both the phase P(x, y)
and amplitude A(x, y) of the wave. Therefore, the most direct method for model-
ling the clutter returns is to obtain a full wave solution using Maxwell’s equations
while applying the appropriate boundary conditions. This method, however, suf-
fers from the difficulty of selecting and applying the correct boundary conditions
to represent typical real surfaces. A more simplified approach is to represent the
received complex signal as a sum of contributions from discrete elementary scat-
terers. The statistical distribution of the received signal can then be modelled in
terms of the probability distribution of the amplitude, phase and number of the
discrete scatterers. The choice of statistical models can be based on some physical
justification for the scatterer distribution or on ad hoc models based on empirical
evidence. The major part of this chapter is devoted to a discussion of the statistical

models.

The forward problem, as the electromagnetic modelling of rough sutface scat-
tering is commonly known, is briefly reviewed in Section 3.1. An in-depth study of
the forward problem is outside the scope of this thesis and the discussion is limited
to a general overview of the technique. This method predicts the scattered field
based on the properties of the scattering medium and the incoming wave. The

first results in this area were obtained for scattering from periodic surfaces. Subse-

28
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Refeience
plane

Figure 3.1: The Rayleigh criterion for smooth surfaces.

quent work addressed the problem of scattering from random rough surfaces. Sec-
tion 3.1.1 to 3.1.5 summarises the various approaches taken to solve the forward

problem.

Although the forward problem analysis has helped to identify the dominant
scattering mechanisms, the full wave solutions in most cases are unavailable.
Therefore, an analysis of the statistics of the observed field is a more realistic ap-
proach for characterising the clutter models. The statistics of the received signal are
investigated in terms of a general model for the electromagnetic field detected by a
radar system; this is described in Section 3.2. When the resolution cell is large
compared to the wavelength the phase of the scatterers is uniformly distributed
and contains no information regarding the target. Therefore the useful information
regarding the scattering surface is contained only within tlie intensity of the de-
tected field. For the completeness of the discussion we briefly describe the statis-
tics of the phase and complex components of the detected field in Section 3.2.
Tliis is followed by a more extensive discussion of the statistics of the intensity of

the detected fields in Section 3.2.1 onwards.
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A review is carried out of the statistical models used to desctibe the intensity
characteristics of ground clutter. Where applicable the physical models undetlining
the statistical models are described. For each model the probability density
function (pdf), cumulative distribution function (cdf) and the moments are
listed. The most promising of these models are selected for testing with real data.

The results are quoted for goodness-of-fits using the chi-squared test.

3.1 Electromagnetic models

The problem of backscattering from a rough surface is of interest to radar imaging,
sonar detection and optics. There has been considerable work published on this
subject in a wide spectrum of journals. The very first work published in this area
was by Rayleigh [67] which analysed the scattering from sinusoidal sutfaces for
normal incidence. Schouten and De Hoop [76] extended this for any analytical
rough surface. Although periodic surfaces proved useful in indicating the general
behaviour of rough surfaces, real surfaces are rarely periodic. A number of re-
searchers have investigated the scattering from random rough surfaces. Beckmann
and Spizzichino [7] considered scattering from normally distributed rough surfaces
using the Kirchhoff solution which assumes a slowly varying height profile. How-
ever, many surfaces of practical interest are not normally distributed. The distribu-
tion of terrain with sharp ridges and round valleys and that of a rough sea is asym-
metric and therefore not normal. A standard approach for modelling scattering
from non-Gaussian surfaces is the Small Perturbation Method (SPM) which is suit-
able when the surface roughness is small [68]. The purely analytical approach,
however, is limited in the type of sutface that can be modelled, due to the lack of
closed form solutions. Various numerical solution based approaches have been
used to analyse the scattering from arbitrarily defined rough surfaces. Section 3.1.1
to 3.1.4 summarises each of these approaches. Besides these methods there have

been a few other notable approaches, which are mentioned in Section 3.1.5.

3.1.1 Periodic surfaces

Historically, this class of rough surfaces was the first to be treated. A rough surface

is represented with periodic irregularities such as sinusoidal undulations, saw-tooth
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profiles, protrusions of equal shape spaced at regular intervals, etc. This approach

enables the problem to be solved in a simplified non-statistical way.

Rayleigh [67] analysed the problem for sinusoidal surfaces and developed the
well-known Rayleigh criterion, for qualifying the roughness of a surface. The process
in which an incident wave is reflected depends upon the sutface roughness. For
smooth surfaces the reflection is specular. Specular reflection is directional and has

a constant predictable phase with respect to the incident wave. In this case 6, and
6, in Figure 3.1 will be equal and the reflections will add coherently to give a
strong return in a single direction. For rough surfaces, the reflection is diffused.
Diffused reflection is much more dispersed and the phase of scattered energy vat-
ies over 0 - 27. Rayleigh stated that a surface may be regarded as smooth if the

phase difference between two treflected waves is less that 77/2. Using the geometry

of Figure 3.1 this is

A
<
8cosb,

Ah (3.1)

where Ah is the height difference, 6; is the incident angle and A is the wavelength
of the incident wave. (3.1) states that roughness of any scattering surface is not an
intrinsic property of that surface but depends on the frequency and angle of the
incident wave. A surface appears rougher the smaller the incident wavelength or
the closer the angle of incidence is to the surface normal. Although, the Rayleigh
criterion was originally defined for periodic surfaces it has been universally adopted
for all type of rough surfaces, where Ah is replaced by 0y, the standard deviation

of surface heights.

Rayleigh’s work was for the special case of normal incidence onto a sinusoidal
surface which was extended by LaCasce and Tamarkin [47] to oblique angles.
Deryugin [23] applied it to different profiles and Schouten and De Hoop [76] gen-
eralised it for any analytically given rough surface.
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Figure 3.2: Scattering from random rough surfaces.

3.1.2 Normal distributed surfaces
The scattered field Ep observed at a point F at a distance » from a point O on a

surface S (Figure 3.2) is given by the Helmholtz integral [7] as

32
7S dii 3-2)
where Es is the field on S, ils is a normal to the surface and y/s is given by
25
exp(y— 1)
(3.3)

Beckmann and Spizzichino [7] derived an analytical solution to the scalar
problem of (3.2) for a normally distributed surface using the Kirchhoff approxi-

mation whereby the field at any point on the surface is expressed as the sum of tlie
incident and reflected field at the tangent at the considered point. Thus Es in (3.2)

is replaced by

=1+ KoJf (3.4)

where Rcoeff'is the reflectivity coefficient of a smooth plane and Ei is the incident

field. This approximation is very good when the radius of curvature of the irregu-
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@ (b)

Figure 3.3: The tangent plane at a general point of the rough surface. The
radius of curvature is (a) small, and (b) large in comparison with the

wavelength.

larities is very large compared to the wavelength (Figure 3.3b) but breaks down
completely for sharp edges (Figure 3.3a). Thus the Karchhoff solution is suitable
for smoothly varying normally distributed surfaces. The analyses produced by
Beckmann and Spizzichino [7] assumed small slopes and small standard deviation
of surface heights (J,. Wu and Fung [98] extended this to surfaces with large (Jj

using a vector formulation of the Kirchhoff method.

Many surfaces of practical importance are, however, not normally distributed.
Beckmann [8] showed that the surface height probability distribution has a signifi-
cant bearing on the characteristics of the scattered field where the surface rough-
ness and the grazing angle of the incident wave are large. Introducing a correlation
function into the Kirchhoff model can compensate for an incorrect surface model.
Shaw and Dougan [80] proposed suitable correlations to model ocean-Hke sur-
faces. The assumption of gently undulating terrain, nevertheless severely limits the
applicability of this model to land surface scattering and therefore there have been
alternative techniques developed for predicting scattering from non-Gaussian sur-

faces. These are described in the following section.

3.1.3 Non-Gaussian surfaces

Rice [68] developed a scattering model suitable for non-Gaussian surfaces based
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on SPM analysis. Unlike the Kirchhoff method, SPM does not impose a restriction
on the surface curvature and permits the surface height to vary within the distance
of a wavelength. The method, however, is applicable only to slightly rough surfaces

where

ko, <03 (3.5)

It also requires that [s, the average slope of the surface, should meet the critetion
V20,1, <03 (3.6)

SPM calculates the field at any point in the scattering medium using the solutions
for scattering from a smooth sutface, together with ‘perturbative’ terms atising
from the slight surface roughness. Under the assumption of slightly rough surfaces
the quantities that are a function of the surface height may be expanded as a Taylor

series about their value on the mean scatteting surface

,y0) h*3*f (x,y,0
f(x,y,h)=f(x,y,0)+h%(xy )+_2_az_{(xy )+ 3.7)

where fis a quantity defined in the Cartesian co-ordinates x, y and z, and the mean
scattering plane is z =0. The accuracy of the perturbation theory depends on the
number of terms retained in the expansion of (3.7). Perturbation theory assumes

that the total scattered field E, may be written as a seties
E =E°+E'+E*+... (3.8)

where E¥ is the contribution from the ¥ term in (3.7). The eatlier analysis of the

perturbation theory was carried out using just the first order terms in & [15]. Mote
recent work by Bass and Fuks [5] and Watson and Keller [96] cartied out the

analysis for the second order perturbation theory.

Wright [97] tested the SPM model for sea clutter and found good agreement
to vertically polarised data. The gap between the Kirchhoff method, suitable for
high frequencies, and the SPM, suitable for slightly rough surfaces, was bridged by

Bahar [2] who produced a unified full wave solution to evaluate the scattering from
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@) (b)
Figure 3.4: The image method. The surface field in (a) is equivalent to the
surface field in (b) where the conducting plane has been replaced by a

mirror image of the surface protrusion.

rough surface with arbitrat}” slopes. The full wave solution also extends the solu-

tion to take into account shadowing and multiple scattering.

3.1.4 Numerical solutions

This approach uses the numerical solutions of integral equations for the unknown
surface fields to calculate the scattered field. The surface height function /z(x, y) is
treated as a random correlated discrete variable. The numerical solutions are not
restricted to an analytical expression for the scattering surface and thus the solution
can be calculated for any realisation of surface height profile. A variety of methods
have been adopted from spectral analysis to generate surface height profiles for
example moving average methods and autoregressive processes [55]. Each set of
generated data represents one surface realisation for which the scattered field may
be calculated. The statistical parameters of the scattered field are then determined
by generating large number of surface realisation and analysing the scattered fields
from these surfaces. There is, however, a large price to pay in terms of increased

computational effort with this method.



CHAPTER 3. CLUTTER MODELS 36

Numerical solutions have been used to study the accuracy of the SPM [18, 30]
and the Kirchhoff theory [29, 48] approximate techniques. A further use of nu-
merical simulation techniques is in the modelling of many aspects of realistic scat-
tering geometries. Factors that complicate, and often preclude, analytical theory,
such as non-planar incident waves with a spatially varying amplitude profile, inci-
dent pulses of arbitrary form and finite-sized surfaces of non-ideal shape, may all
be included in a numerical study, however, at the expense of increased computa-

tional effort.

3.1.5 Other methods

The methods described in the previous sections are for the more general type of
rough surfaces. There has been other less general method developed which over
come some of the limitations of the more general models. Twersky [87] developed
a scattering model based on mirror images. He considered a perfectly conducting
surface with arbitrary shaped protrusions. Under this situation the field scattered
by the protruding object under an incident plane wave E; can be derived by evalu-
ating the field scattered from the object in free space illuminated by two incident
waves. This is so since the surface field in both instances is the same, as illustrated
diagramatically in Figure 3.4. The scattered field is easily derivable using this
method and it allows the modelling of multiple scattering. This approach is par-
ticularly useful when the surface can be represented by a collection of randomly
located discrete scatterers. Fung and Ulaby [28] and others [19, 44] used the dis-

crete scatter model to represent scattering from vegetation clutter.

Rather then attempting to calculate the field from a realistic model of a rough
surface an alternate approach is to adopt a model of a rough surface that will scat-
ter a realistic field. A simple model of rough surfaces that will have this effect is
one which consists of plane facets of random slope where the random slopes ate
generated by a Markov chain (Figure 3.5). Beckmann [6] used this model to obtain
an approximation to the scattered field. The analysis was simplified by assuming
that the reflection are locally specular (this is true when the facets are large com-

pared with the wavelength) and that the elementary waves reflected in the same
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Figure 3.5: Scattering by a surface of large plane facets.

direction (by facets of the same slope) are summed together with respect to their
phases to form a single resultant wave in that direction. The plane facet approach
is, however, more suited to man-made objects. The facets can be generated deter-
ministically using the object geometry. This method has been used to generate ac-

curate scattering predictions for vehicles [34].

3.2 Statistical models

An image generated by a coherent imaging system is affected by coherent interfer-
ence between scatterers [32] which causes the detected intensity to fluctuate from
resolution cell to resolution cell. This fluctuation in pixel intensities is evident in
both MTI and SAR images (see Figure 3.6 and Figure 3.7) of land. The observed
intensity fluctuations can be characterised by statistical model without performing

a rigorous solution of the Maxwell equations for the scattering surface.

The statistical model assumes that the received electric field at an observation
point » can be represented as a sum of contributions from elementar)” scatterers

[32, 37, 56, 60]
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E(r) = 2 (F)exp(/6,(r)) = A)exp( /() 69)

where a (r) and ¢(r) are the amplitude and phase of the kth scatterer with tespect
to the observation point F. ai(r) includes experimental parameters, e.g. range,

transmitter powet etc. ax and ¢ are assumed to be statistically independent ran-
dom wvariables. This discrete scatterer model representation is obviously very sim-
ple but is based on the belief that any model that gives the same value for the
scattered field per pixel of the image may be regarded as an equivalent representa-

tion.

The detected field of (3.9) can be viewed as arising from an N-step random
walk in the complex plane where ai(r) and @(r) now constitute the length and ori-
entation of the random steps. The probability distribution of the detected field in a
given pixel can be analysed in terms of the probability distribution of a(r), @(r)
and N.

As long as a target is rough relative to the illuminating wavelength and inci-
dent angle, or the depth of the resolution cell is much greater than the wavelength,
the phase of the scatterers within the resolution cell will be randomly distributed
over many cycles. The phase of each of the scatterers will then be uniformly dis-
tributed over the interval -7 and 77 and will be statistically independent of its am-
plitude [32]. This implies a uniform distribution of the step orientation in the ran-
dom walk. The resultant phase of the detected field will have a phase that is uni-
formly distributed and independent of the detected field amplitude.

The scatterers will not have a uniformly distributed phase when the resolution
cell is only a few wavelengths in depth. At X and C-band (3 and 6 cm wavelength)
this would occur at very high resolutions. In other situations, for example sonar
scattering from sea bed, this type of scattering may occur at much lower frequency
(a few tens of kHz) owing to the slower velocity of propagation of the signal. The
random walk model represents this type of scattering process as a bias in the ran-
dom walk. Alternatively, if there is a smooth target, e.g. a cotner reflector ot a

strong scatterer, immersed in a resolution cell otherwise containing scatterers with
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uniformly distributed phase, the detected field again will have a non uniformly dis-
tributed phase. The analysis of the statistical models resulting from a biased ran-
dom walk is a more complicated task and is dealt in Chapter 5. Before that, in this
chapter, we consider the simple scenario of uniformly distributed phase for the

scatterers and analyse the statistics of the detected field.

When analysing the data of a coherent imaging system we have the choice of
working in the complex domain, phase domain or the intensity domain. However,
when the scattering process results in the uniform distribution of the phase, the
phase component contains no information. Similarly the complex components also

have little information content. This is explained as follows:

When the phase of the detected field is uniformly distributed, the real and
imaginary component of the detected field given by

E(1)= 3 a,(r)cos0, ) 6.10)
E,(r) = za (£)sin g, (r) G11)

will both have mean zero3

(E4)) = g@k (£))(cos 9, () = 0 512

(E, @)= 2@ (£))sin g, (¢) = 0 513

equal variance, which depends only on the step length

(B2 7)) = 3 3 (0, 0)a () cos ) cos 6, r) = %}N) (&) (14

<EJ (r)2> = gé( [(r)a, (£))(sin ¢,(r)sin g, (r)) = kENKak (r)2> (3.15)

3 The operator <> indicates ensemble averaging.
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Range Cells

Figure 3.6: MTI intensity image from DERA Canberra X-band radar
containing 64 frequency bins and 1365 range bins. The clutter dominant
frequency bins appear bright. The clutter band is several frequency bins
wide. The data is from an imaging pass over the Hull area and the strong-

est clutter return corresponds to returns from the Humber bridge.

(@) (b)
Figure 3.7: Single look SAR intensit)® images of rural area from two
DERA airborne platforms (a) Andover C-band SAR and (b) Canberra X-
band SAR. Woodlands appear as bright regions, whereas grass and fields

appear as dark regions.
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@

(b) (c)
Figure 3.8: (a) the phase and, (b) and (c) the real and imaginary compo-

nents of the SAR image whose intensity is shown in Figure 3.7a.

and they will be uncorrelated [32]. This is because

|72 %)W) =SS («-(*'KW )(cos0,(r)sin0,(r)) =0=(£"(1)) (£ (1)) (3.16)

H =\
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Equations (3.12) to (3.16) rely on the fact that when @(r) is an independent ran-

dom variable uniformly distributed on the interval (— T, 71')

<cos d, (r)> = (sin ¢k(r)> =0 (3.17)
1.
<cos ¢,(r)cos ¢, (r)> = <sin ¢,(r)sin g, (r)> =<2 ifi=k (3.18)
0 ifi#k
and
<cos ¢,(r)sin ¢, (r)) =0 (3.19)
for all i and k.

Figure 3.8 shows the phase and complex components of the C-band SAR im-
age whose intensity is shown in Figure 3.7a. Structural features present in the in-
tensity image are barely discernible in the complex components. No structure is
apparent in the phase image. The results for the MTI data are similar as can be
seen from Figure 3.9 which shows the phase and real component of the MTI in-
tensity image shown in Figure 3.6. As most of the information regarding clutter is
in the intensity component, the remainder of the chapter will discuss the intensity

statistics of the detected field.

The initial statistical models used to described the radar clutter intensity were
based on simple Gaussian scattering which gives rise to a negative exponential dis-
tribution for the intensity field; this is described in Section 3.2.1. As the radar sys-
tems became more sophisticated and the resolution achieved with these systems
improved, the simple clutter models no longer represented the radar data ade-
quately. Recently, in an attempt to remedy this situation several non-Gaussian
clutter models have been introduced. Some of these models ate purely empirical,
whereas the K-distribution uses a plausible physical model based on the random
walk in a complex plane to arrive at a pdf for the detected field intensity. In Sec-
tion 3.2.2 and 3.2.3 we describe the log-normal and the Weibull distribution, two

widely used empitical models prior to a detailed description of the K-distribution



3.2 STATISTICAL MODELS 43

model in Section 3.2.4. We present results from real data to show the suitability of

K-distribution for land clutter.

3.2.1 Negative exponential distributed intensity

A simple model for the scatterer distribution is where the number of scatterers
tends to infinity and the phase is uniformly distributed. The probability disttibution
for the detected field can be derived from the random walk model. Jakeman [38§]
used the characteristic function to derive the intensity pdf. The characteristics

function for (3.9) is given as’
C(u) = <exp( Ju. E)>

= <t1[ exp( Jaucos(g, + Y))>

(3.20)

where Y depends on the components of u. Using the assumption that a; and ¢ ate

statistically independent, the product sign can be taken outside the average, so
N .
c(u)=]] <exp(/aku cos(@, + y))> (3.21)
k=1

Integrating over ¢ then gives

Cu) = g<]o(aku)> (3.22)

where Jg is the zeroth order Bessel function of the first kind. Since a; are as-

sumed to be statistically independent, (3.22) becomes

Cu) = (3, (au))” (3.23)

where (a) is the ensemble average of all possible realisations of the step length. By

scaling the step length a through a — a/ VN and allowing N to tend to infinity
(3.23) becomes

4 The notation has been simplified by removing the explicit reference to r.
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(b)
Figure 3.9: (a) The phase and (b) the real component of the MTI image

whose intensity is shown in Figure 3.6.

C(u) = exp (3.24)

This corresponds to the Rayleigh distribution for the amplitude 4
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£a(4) =2(4/(4%))exp(- 47/(47)) (3.29)
Defining the intensity by
I1=A? (3.26)

leads to the negative exponential distribution for the intensity fluctuation

£(D) = (D)) exp(- /(D)) (3.27)

Rewriting (3.27) in terms of a general random variable x with mean U, gives the

pdf as

f.(x)= “i eXp(— —:LLJ (3.28)

X X

the cumulative distribution function as

x
F(x)=1- exp(— —J (3.29)
Hu,
and moments® as
(x") =T+ (3.30)

From (3.27) and (3.28) the mean of the negative exponential intensity is given as
= (1) (3:31)

where the subscript [ indicates an intensity pdf. The resultant radar cross section of

the surface, p6 is given by the mean of the intensity. Therefore,

p=U = <I> (332)

The negative exponential model is based on the phenomenon that the resolution

cell contains a large number of scatterers with no single scatterer dominating the

5 Iz) is the gamma function.

6 The symbol p is used for the radar cross-section of the surface rather than the more normal 0 so as not to
confuse 0’s indicating the radar cross-section of the surface with those indicating variances.
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Figure 3.10: Negative exponential pdf for three different values of the

mean.

radar return. Figure 3.10 gives the plot of the intensity pdf for various values of the

mean. As the mean increases the tail of the distribution gets longer.

The result that the detected intensit}" is negative exponentially distributed
when the number the of independent scatters tends to infinit}* can also be reached
by applying the central limit theorem to the complex components of the de-
tected field [32]. In this case the real and imaginary parts of the vector £ will be
independent Gaussian distributions with zero mean and the same variance. They

will have a joint pdf given as

/,(E~,£])="ex p (3.33)

where is the variance of both the real and imaginary components ((3.14),

(3.15)). The joint pdf of the intensit}” and phase of the detected field is obtained

from (3.33) by transforming to polar co-ordinates
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Real component imaginary component

© (d)

Figure 3.11: Flistograms showing the distribution of the (a) intensity, (b)
phase, (c) real component and (d) imaginary component, of pixel values
from a homogeneous region (128x128 pixels) in the image shown in
Figure 3.7a. The cur\xs represent expected distributions fitted to the data,
(a) negative exponential, (b) uniform, and (c) and (d) zero mean Gaus-

sian.

/N(1,0)= /A (VTcos0,v7sinO)ly| = Gxp (3.34)

27, ,
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whete J =1/2 is the Jacobian of the transform. The marginal distribution of the
intensity is obtained by integrating over the phase which gives the negative expo-

nential distribution as expected

1

£(D)= if5(1,¢)d¢ = iexp(—“ij (3.35)

where 4, =203 . Similarly, integrating over intensity confirms that the marginal

distribution of the phase is uniformly distributed

£,(0)=] fe(L.o)dr = (3.36)

0 2n

(3.34), (3.35) and (3.36) also confirm that the intensity and phase are independent
and therefore circularly symmetric as the product of their marginal distribution

gives their joint distribution
fE(I’Q)':fI(I)fO(O) (3.37)

Radar data from homogeneous clutter at low to medium resolution exhibit this
type of statistical behaviour. Figure 3.11 shows the histograms of the intensity, the
phase and the complex component, of pixel values from a homogeneous region in
a C-band SAR image (the grass field in the top left hand corner of the image in
Figure 3.7a). The histogram values are given by cross marks and the solid lines rep-
resent the expected distributions. For this set of data there is a good fit between

histogram and expected distribution.

In order to get a more overall assessment of the clutter statistics chi-squared
goodness-of-fit test is performed over the whole of the SAR region in Figure 3.7a.
Appendix C describes the procedure for performing the goodness-of-fit test. The
test is performed using a stepping window of 5X9. Over each window a compati-
son is made between the observed histogram of the pixel intensities and the ex-
pected histogram from a negative exponential distribution using estimated pa-
rameters obtained from the data values. An indicator of the goodness-of-fit is the

failure rate at the 5% level for the upper tail probabilities. In Figure 3.12, 12.9% of
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Figure 3.12: The chi-squared failure rate at the 5% level on the upper tail
probabilities for the negative exponential distribution applied to the An-
dover C-band SAR image of Figure 3.7a. The test was performed using a
stepping window of 5x9. This reduces the 512x512 image to 102x56 im-
age. The white pixels mark a failure and the black pixels a success at the

5% level for the data fitting to the negative exponential distribution.

the image fail at the 5% level with the negative exponential model. A majority of
the failures are in regions of the image where the clutter exhibits significant texture
variation. This suggests that the negative exponential distribution is an insufficient
representation of the clutter characteristics. Similar tests on the X-band SAR image
of Figure 3.7b and the MTI image of Figure 3.6 gave a failure rate of 28.3% and
28.9% respectively. A possible explanation for the failure rate is that the resolution
cell is too small for the assumption of a large number of scatterers to hold true.
Therefore, the central limit theorem may not be invoked for the real and imaginar}”"
parts of the scattered field in (3.33), and non-Gaussian statistics may arise. A num-
ber of non-Gaussian models have been considered for high resolution radar data.
A few of the more widely used non-Gaussian models are described in the follow-

ing sections.
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3.2.2 Log-normal distributed intensity
The log-normal distribution has been fitted to high resolution radar data from both
land and sea clutter [26, 31, 62, 73, 86]. The log-normal is a two parameter distri-

bution. The pdf of the intensity log-normal data is given as

1 n*(1/1,)
fl(l)_mo_mllm exp[— 202, J

(3.38)

where I, is the median value and 0, is the standard deviation of the underlying

normal generating distribution (i.e., standard deviation of Inf). The cumulative dis-

{1

tribution function for this model is 7

1
F \I)=—|1+erf 3.39
I ( ) 2 ‘\/EC'ID , ( )
and the moments are given as
(1")=exp|n(in1, +no?, /2)] (3.40)

Since the log-normal distribution has two degrees of freedom it can fit the tail of
the data better where it deviates from the negative exponential distribution. Figure
3.13 shows the plot of the log-normal pdf for several values of 0, and a median
value of 1. The mean-to-median ratio of the disttibution is usually higher than

those for members of the generalised chi-squared family.

The other attractive feature of the log-normal distribution is that, like the
negative exponential distribution, it has simple closed form solutions for its pa-
rameter values. Thus when using m independent normalised log samples to esti-

mate the parameters /,, and 0, the minimum variance estimators are given as

[84]

7 erf(z) is the error function.
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Figure 3.13: The log-normal pdf for median 1 and standard deviation

Mn/ ~ 0.5, 1, 2.

/! m
/ (3.41)
=] > y
and
A 1 m
ANn/ = — (3.42)

where the ‘hat’ symbol signifies an estimated quantity.

The log-normal distribution has been fitted to sea clutter [73, 86]. It has been
found to be appropriate for urban clutter [95] where the data is very spiky. Oliver
and Quegan [62] investigated the log-normal model for land clutter. Using C-band
SAR data similar to that shown in Figure 3.7a they found a reasonable fit to homo-
geneous clutter from fields, but woodlands gave a very poor fit to the log-normal
distribution. The texture variation of clutter in a wooded area did not follow a log-
normal distribution. The log-normal generally tends to overestimate the dynamic

range of the real clutter distribution. Fay er al [27] showed that the portion of the
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curve where the fit is poorest is the tail; this is the region most critical for setting
False Alarm Rate (FAR). The log-normal distribution has a further drawback, that
it predicts a zero probability at zero intensity which is not the case for coherent
clutter. Due to these limitations and because of the lack of a suitable physical
model, the log-normal distribution is not considered as a strong candidate for the

statistics of scattering from land.

3.2.3 Weibull distributed intensity

The Weibull family of distributions, like the log-normal, is a two parameter family.
The pdf of Weibull distributed clutter intensity is of the form

o] e

where by is the scale parameter relating to the median value of the intensity and cw

is a parameter relating to the skewness of the distribution. The cumulative distri-

F(D)=1- exp{— (bi} } G.44)

(1") = b,"T(1+n/c,) (3.45)

bution is given as

and the moments as

Figure 3.14 shows the pdf plot of the Weibull distribution for by =10 and three
values of cw. The negative exponential disttibution is a special case of the Weibull

model for cy =1.

In the early 70’s there were many researchers investigating the non-Gaussian
characteristics of high resolution clutter statistics. The log-normal distribution de-
scribed in the previous section gave a better fit compared to the negative exponen-
tial model but still fell well short of desctibing adequately the single point statistics
of coherent surface clutter. Goldstein [31] called attention to the Weibull distribu-

tion as a suitable candidate. Boothe [13] carried out an extensive study of land
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Figure 3.14: Weibull pdf for -10 and Gv=0.5, 1, 2. For Cw =1 the

Weibull distribution reduces to a negative exponential distribution.

clutter and showed a very good fit of the data to the Weibull distribution. This
provided a strong stimulus for many other researchers to investigate the suitability
of the Weibull distribution for describing clutter characteristics. Ekstrom [24]
showed that the skewness of the Weibull distribution increases as the radar depres-
sion angle decreases. Schleher [74] investigated the Weibull distribution for both
land and sea clutter and showed that generally the Weibull distribution represents
the real clutter distribution more accurately then either the log-normal or the nega-
tive exponential model. Fay e al [27] using the DERA Canberra X-band radar
data showed that the skewness of the distribution varies with the resolution cell
size. Investigations carried out by Japanese researchers using L and X-band radar
data showed that the Weibull distribution is appropriate for a wide range of clutter

types ranging from land [79], sea [78], weather [77] and sea-ice [54].

The Weibull model gives a good empirical fit to high resolution radar clutter.
The additional degree of freedom enables the model to get a much better fit to real
clutter data compared to the single parameter negative exponential model. As the

clutter data gets more spiky the skewness parameter of the Weibull distribution
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gets smaller. However, with such low skewness parameters the Weibull yields an

incorrectly large probability for zero intensity [62].

The Weibull distribution, unlike the negative exponential and the log-normal
distribution, does not have closed form solution for the parameter estimators [35].
The optimum parameter estimators have to be calculated using an iterative process

which is computationally expensive and is undesirable in real time systems.

Despite the empirical evidence supporting the Weibull model there is no theo-
retical justification which links the discrete scatterer model to this distribution. This
means that there is no definite way of linking the distribution parameter values to a
physical model of the scattering scene. The gap between an acceptable empirical
model and a plausible physical justification was bridged by the introduction of the

K-distribution model which is described in the next section.

3.2.4 K-distributed intensity

At low resolution many of the clutter features like trees and houses are much
smaller than a resolution cell. The contributions from the radar cross section (RCS)
fluctuations are averaged out so that no spatial variation is visible. However, at
higher resolution the length scale of many of the clutter features are longer than
the resolution and the clutter RCS fluctuates from resolution cell to tresolution cell.
This variation in the underlying RCS is visible as a change in image contrast. This
can be seen within the wooded region of Figure 3.7a (the vertical narrow strip) and

between the wooded and grass region.

A possible model to describe the scattered field is that it is the result of a
negative exponential process due to the coherent interference of many scatterers,
but the mean characterised by the underlying surface RCS is also random variable
which depends on the physical properties (such as dielecttic constant) of those
elements. The pdf of the intensity is then a combination of the negative exponen-

tial pdf and the pdf of the clutter RCS which is given by

£, =] £, (110)1, (P (3.46)
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where fj, is the negative exponential distribution, termed the speckle component,

and fp is the RCS component. This representation of the observed intensity statis-
tics as a product model [91] was a major breakthrough in the understanding of ra-

dar image properties.

Empirical analysis of sea clutter [91, 92] and land clutter [72] showed that the

underlying surface RCS, was usually consistent with a gamma pdf, given by

1 C
fp(p)=l:(;5[ﬂ - exp{—ﬁﬂ (347)

where U, is the mean RCS and v is the order parameter. The cumulative distribu-

tion is given as

F(p)=1- exp(——]iki(—)k (3.48)

and the moments as

<p">=(ﬁ) Hary) (.49

Figure 3.15 shows how the shape of the gamma distribution changes with or-
der parameter. When vV =1 the gamma distribution reduces to the negative expo-
nential distribution. As the order parameter tends to infinity the gamma distribu-

tion tends to a Gaussian distribution with mean U, and zero vatiance.

For the gamma distributed RCS the integral in (3.46) has a closed form and is

f,(1)=7r%(\/§ﬂ KV_I(Z ;—f] (3.50)

where i is the mean, V the order parameter and K,_[-] is the modified Bessel

given by

function of the second kind of order v -1. This distribution has been termed the
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Figure 3.15: Gamma pdf of the underlying surface RCS for /Ip =10 and V

=0.5, 1,2, 10. As Vgets large the gamma distribution tends to a Gaussian.

K-distribution and its mean and order parameters are same as those of the gamma

distribution. The cumulative distribution is given as

0 (0 2.1 (3.51)

W o

and the moments as

(3.52)

r(v)

Figure 3.16 shows the K-distribution for the intensity corresponding to the
gamma distributed RCS shown in Figure 3.15. For large order parameter value the
K-distribution is equivalent to a negative exponential model. This is so since the
underlying gamma distributed surface RCS is constant for large order parameter
values. For small values of Vthe tail of the distribution gets longer. Longer tails are
a feature of spiky clutter which have a much higher contrast. This can be seen

from the coefficient of variation, given as
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2 _ 07 _ .2
vi=—F=1+— (3.53)

My v
The square root of the coefficient of variation gives the image contrast. For
V — oo the right hand side of (3.53) is equal to 1 and the standard deviation of the
intensity equals to its mean value. This means that the intensity will on average

fluctuate away from its mean value by an amount equal to its mean value. This is

often interpreted as a signal to noise ratio of one and is the case for negative expo-
nential distributed intensity. For smaller values of Vv, it is evident from (3.53) that
the intensity will fluctuate away from its mean value by an amount significantly

greater than its mean value.

One of the first evidence that the K-distribution is a reasonable model for the
scattered field was obtained for non-coherent sea clutter data [91]. Since then it has
been fitted to coherent sea clutter [3, 94], land clutter [41, 56, 57] and weather
clutter [53]. The essential features of the K-distribution results from the radar ob-
serving a multiscale process [93]. The scales smaller than the resolution cell size
cause the negative exponential intensity ‘speckle’, whilst the larger scales are re-
solved by the radar and produce the modulation. Jakeman and Pusey [37] pro-
posed a theoretical model that provided important insight into the basis for this

empirical model.

The simple scattering model considered by (3.9) assumed a fixed number of
scatterers and in the limit of N — oo the detected field intensity is negative expo-
nentially distributed. However, at high resolution the effective number of scatterers
within a resolution cell will undoubtedly fluctuate and therefore N would be a ran-
dom variable itself. For the random walk model desctibed in Section 3.2, Jakeman
[38] suggested that the number of steps could be modelled by a Matkov process
controlled by the birth-death-immigration equation

G _

o= DW= (B+ DIV + ) +(BO =D+ J)fue 354
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Figure 3.16: Pdfs of K-distribution for iJi =10 and V' =0.5, 1, 2, 10. At
this linear scale a K-distribution with order parameter 10 or higher is
virtually indistinguishable from a negative exponendal distribution with

the same mean value.

where ~ is the birth rate, ~ is the death rate and ~ is the spontaneous immigra-

tion rate. An equilibrium solution to (3.54) exists when the death rate is greater
than the birth rate, in which case  tends to a negative binomial distribution given

as

A+v+r [ NIA

v (3.55)

IN -

+v

where the mean ~ the order parameter V = as

/ —>00. The order parameter characterises the clustering or bunching of scatterers

in a resolution cell and is related to the variance of the number of steps as
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Figure 3.17: The ML decision between the K-distribution and the nega-
tive exponential distribution for the Canberra X-band MTI image shown
in Figure 3.6. For the original data, blocks of 91 range gates in each of the
64 frequency bins are used for the ML decision. This gives an ML classi-
fied image which has 64 frequency bins (horizontal axis) and 15 blocks of

data in range (vertical axis).

S (3.56)

Considering (3.23) for a negative binomial distributed N and averaging over the

fluctuations in N gives
1+ 3.57)

Once again scaling the step length a through a j then in the Limit

oo the characteristic function of the output is given as

lim = (3.58)

The Fourier inversion of (3.58) corresponds to the K-distribution amplitude pdf
/ \ (v+1)/2

() o 2. T:{Af (3.59)

for which the intensit)" pdfis that of (3.50).
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Failure at the 5% level on the upper tail probabilities for K-distribution

Figure 3.18: The chi-squared test performed on the MTI image shown in
Figure 3.6. The white pixels mark a failure and the black pixels a success

at the 5% level for the data fitting to the distribution under test.

Thus when the distribution of the number of steps is negative binomial the re-
sultant intensity is K-distributed [37, 38]. The negative binomial distribution is in
fact the discrete analogue of the gamma distribution, and it has been shown that
the output of a continuous birth-death-immigration process, with a death rate
greater than the birth rate, tends to a gamma distribution as + —> [39]. The mean
and the order parameter of the gamma distribution (and therefore of the K-
distribution) are then defined in the same way as the mean and order parameter of

the negative binomial distribution in the discrete case.

A comparison was made between the suitabilit}* of the K-distribution and the
negative exponential distribution to model the intensity statistics of the MTI data
shown in Figure 3.6. A maximum likelihood (ML) classifier (see Appendix D) was
used to select the model which best describes the data. This test calculates the total
probability of occurrence PT for m random samples assuming a given probability
distribution for the data samples and chooses the distribution for which Pj is
maximum. The ML test was carried for blocks of 91 range gates in each of the 64
frequency bins. Figure 3.17 shows that the whole of the clutter band and the side-

lobe dominated region is classified as K-distribution. The area beyond the main
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clutter band comprises a mixture of distributions. Altogether, 66% of the image is

classified as K-distributed data.

In order to get an idea about how well each of the models fitted to the data
the chi-squared test was carried out on the MTI data. The size of the data blocks
selected for the chi-squared test were chosen to be same as those used for the ML
classification test. The top image in Figure 3.18 shows 28.9% of the image failed at
the 5% level with the negative exponential model confirming the inadequacy of
this type of model to describe land clutter. The same test with the K-distribution
gives a failure rate of 17.8% (bottom image in Figure 3.18). This shows that K-
distribution is a better fit than the negative exponential model, although this distri-

bution alone is not able to desctibe all the features in land clutter.

The ML classification results for the SAR intensity images shown in Figure 3.7
are given in Figure 3.19. The ML results were obtained using a stepping window of
59, same as for the chi-squared test on the SAR image detailed in Section 3.2.1.
43.3% of the C-band SAR (Figure 3.192) and 30% of the X-band SAR image
(Figure 3.19b) are classified as K-distributed. Area of woodland and edges have
been classified as K-distributed whereas low contrast ateas of grass and fields as
negative exponential distributed. Where the image is classified as negative expo-
nential the values of the ML ratio are close to 1 indicating that both distributions
are equally suitable for the data. Thus wheteas the negative exponential model fits
the low contrast homogeneous regions, the K-distribution is a reasonable fit for

the whole scene.

The chi-squared test and the ML classification were carried out by estimating
parameters of the distribution from the data samples. The negative exponential is a
single parameter distribution and the optimum estimate is just the average of the

data samples i.e.,
== 2 (3.60)

where m is the number of independent samples.
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(b)
Figure 3.19: The ML decision between the K-distribution (marked as
white pixels) and the negative exponential distribution (marked as black
pixels) for (a) the Andover C-band and (b) the Canberra X-band SAR
images shown in Figure 3.7. The ML test performed using a stepping

window of 5x9 on a 512x512 intensity image.

The K-distribution, however, does not have a simple closed form solution for the
optimum parameter estimates [36]. Numerous approximate solutions have been
considered which aim to minimise the error on the estimates of the parameter val-

ues for the K-distribution. The next chapter addresses the problem of optimum
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parameter estimates for the K-distribution and detives a new estimator for the or-

der parameter.

3.3 Summary

In this chapter:

® An overview was given for the forward problem which solves the Maxwell

equations to predict the scattered field from a rough surface.

e It was shown that solutions are available for only very simple scattering sce-
narios and the basic assumptions were described for the Kirchhoff and the
SPM approximate methods. The scattered field from a surface with an arbi-
trarily defined surface height profile can be calculated using numerical solu-
tions. However, it was shown that for a realistic surface the computational

complexity can be prohibitively large.

¢ It has been described how the field detected from a resolution cell may be

represented as a sum of contributions from discrete elementary scatterers.

® The conditions required for strong scattering arising from uniformly disttib-

uted phase of the scatterers were described.

e It was shown that, for strong scattering, the phase and the complex compo-

nents of the detected field contained little information.

e It was shown how in the limit of large number of scatterers the observed
field will have a negative exponential intensity distribution which is a reason-
able model for low resolution radar data. However, using chi-square good-
ness-of-fit test on real examples of MTI and SAR data, it was shown that at
high resolution the assumption of negative exponential disttibuted intensity

is no longer valid.

® The shapes of the log-normal and Weibull pdf were described and their suit-

ability for modelling non-Gaussian clutter was discussed.
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e It was shown how the intensity of the detected field may be modelled as the
product of a negative exponential speckle process and a gamma distributed

surface RCS which gives rise to the K-distribution.

¢ The K-distribution was shown to be the result of a negative binomial distri-

bution in the number of effective scatterers in a resolution cell.

¢ Considering the results in open literature and the analysis carried out on SAR
and MTT data it was concluded that the K-distribution is the preferted

model for coherent land clutter.



Chapter 4

4. K-distribution parameter estima-

tors

Statistical models which can accurately describe coherent land clutter are used to
define image analysis algorithms like detection, segmentation, despeckling and
clutter classification. The statistical models are characterised by a finite number of
parameters. These parameters for the statistical models are not known 4 priori and
have to be estimated from the radar data using local statistics. Therefore, a major
portion of radar image analysis involves the estimation of the parameters of the

clutter models.

In the previous chapter the K-distribution was shown to be a good model for
coherent land clutter. The parameters that are required to be estimated from the

data for this model are the mean intensity and the order parameter.

The optimum parameter estimate is obtained using the maximum likelihood
(ML) solution. The K-distribution does not have a closed form for the ML esti-
mates. Therefore, sub-optimal estimators have to be devised for the K-distribution
parameters. Before discussing the sub-optimal estimators, the full expression for
the ML solution of the K-distribution parameters is desctibed in Section 4.1 and it
is shown that it cannot be solved analytically to obtain the parameter estimates. A
suitable sub-optimal estimator for mean intensity is simply the arithmetic average
of the pixel intensities. This is in fact an optimum estimator for the mean intensity
when there is no texture variation and the clutter is negative exponentially distrib-

uted. Section 4.2 derives the error performance for the mean intensity estimator.

65
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Estimating the second parameter of the K-distribution is addressed in Section 4.3.
Current texture measure estimators for the order parameter are shown to be
suboptimal. A neural net based estimator is devised which improves upon the ex-
isting texture measure estimators. Prompted by the neural net results, a new hybrid

texture measure estimator is proposed which almost matches the ML performance.

4.1 ML estimation of the mean and order parameter

The use of statistical models to describe the detected field requires us to have suit-
able parameter values that can be assigned to the model. These parameters have to
be estimated from the data in the absence of prior knowledge. The ML estimation
gives the optimal solution for the parameter estimators when the form of the dis-
tribution to be estimated is known. This is because the limiting distribution of the
ML estimate is normal around the true value as mean and with a variance achieving
the Cramer-Rao lower bound [20].

If m independent random samples, {x] ,xz,...,xm} are drawn from a distri-

bution with [ parameters, O;,,,...,0,, then the total probability of occurrence is

given as?
PT({xi}loc,,ocz,...,cx,)dx =TT 7 (o 0ty Jaix 4.1)
i=1

where f, (x,.|oc1,oc2,... , O ,) is the pdf for the given statistical model. The ML so-
lution is then a set of values (361, 6(2, ---,d, that maximises the likelihood function
L(Ocl,ocz,...,ocl) = Pr({xi}lal’azv--’az)- Assuming that the joint pdf is uni-

modal, this is found by solving the partial differential equation

dL (al,az,...,a,)
do

=0 (4.2)

LY

where 0 is the kth parametet. Since the logarithm function for a positive real vari-

able is a strictly monotonic increasing function, the ML estimate will also maximise

8 {x;} denotes a vector containing all x; for i =1,...,m.
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the log-likelihood function, In L. The ML estimate is often more easily found by
differentiating the log-likelihood with respect to the parameter values. The ML es-

timates for the parameters are then given as

dln L (o, 0ty,...,00,) alan( ot 0,01

do, da, =
(4.3)
= a Elnf( |a1’(x2’ °? l):O
do,, !

Given m statistically identical independent K-distributed intensity values

I,1,,...,I, with unknown mean and order parameter, the log-likelihood that

they have mean [ and order parameter V is given by

In L(l,,v) = n{ln 2+ 1(1n v—Ing)-In r(v)j

V-1 C i,
+—2—i§lln I,. + ; KV—I(ZJ’—“%}

The ML estimates of the mean and order parameter of the K-distributed intensity

4.4

are given by the values of Uy and v which maximises the log-likelihood. Solving for
where the derivatives of the log-likelihood with respect to the mean and the order

parameter both equal zero, and using (F.14) gives [61]

K(Z “’j+1< [2 V’)
%(vﬂ):iz,/li & & (45)
v-1 Hy

and ?

9 g (2 "’fj
m v-1 0.

Iny(v)+In % =i2ﬁ+l Jv a (4.6)
R

9 Y(2) is the Digamma function.
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Figure 4.1: The likelihood surface for 256 samples of K-distributed inten-
sit} data with =]/ and V=0.5. The likelihood values are increasing as
the colour changes from dark to light. The arrow heads indicate the di-

rection of the slope at any point on the surface.

(4.5) and (4.6) do not have a closed form solution for jui and V. The optimum so-
lution, therefore, requires a two dimensional numerical search over /i/ and V. This
is computationally very expensive. Figure 4.1 shows the likelihood surface for 256
K-distributed intensity samples with mean 1 and order parameter 0.5. Superim-
posed on the plot of the likelihood surface are arrow marks showing the direction
in which the numerical search for optimum parameters of the K-distribution will
progress at any point on the surface. The arrows indicate the convergence of the
numerical solution to the peak on the surface. However, the convergence rate is
very slow and this method for estimating the parameters is not very efficient. Con-

siderable attention has been given to various simpler estimators, suitable for real
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time evaluation, which approximate the ML solution for the K-distribution pa-
rameters. The following sections address the issue of non-optimal parameter esti-
mators for the K-distribution. The mean parameter has a reasonable estimator in
terms of the average intensity and Section 4.2 analyses the performance of this es-
timator. A suitable estimator for the order parameter is less forthcoming and Sec-

tion 4.3 describes in detail the development of appropriate estimators.

4.2 Non-optimal estimation of the mean

A simple estimator for the mean value is the arithmetic average of the pixel inten-
sities. This gives an unbiased estimate of the mean if the samples are from a sta-

tionary random process.

For a homogeneous region where the surface RCS is constant, which implies a
negative exponentially distributed intensity, the ensemble average intensity gives
the ML estimate of the mean intensity. From (4.1) the log-likelihood that the inten-
sity values have mean [ when the pixel intensities are negative exponentially dis-

tributed is given as

1 I A
ln(l(,u,)):ln ];llzl-exp[— ;’I—) =-mlny, —-/T—I .7

1

where [ is the average intensity defined by

m

21 48)

~ 1
I=—
m i

Using (4.3) it can be shown by solving

dinl) _m; m_, 4.9)
du, WwooW

that the ML estimate of the mean is given by the average intensity when the inten-

sities are negative exponentially distributed.

The performance of an estimator can be judged by the bias and the variance
of the estimated quantity. The bias and variance of a function of estimated pa-

rameters may be approximated by expanding the function around the expected
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values of the estimate [64]. For the negative exponential distribution, the bias and
the variance in the average intensity estimator of the mean can therefore be ap-

proximate by expanding fi, around the true mean value (see Appendix A.1) and
are given by

Ay =)~ =0 (4.10)
o n 1
o) = <u, 2>—(u,)2 =—u (411)

where m is the number of samples used to estimate the mean and the error predic-
tions are detived to first order in 1/m. The average intensity is an unbiased esti-
mate for the mean of the negative exponential distribution and the variance of the

estimate decreases as the number of samples increases.

For the K-distribution, the first moment of the intensity also completely de-
fines the mean fy (3.52). Therefore, the average of m statistically independent K-

distributed intensity pixels can also be used to estimate the unknown mean (. This
average intensity is also an unbiased estimate for the K-distribution mean but the
variance of the estimate is a function of the order parameter and is given by (see
Appendix A.1)

2

. _ 1 2( )
2=l 1+ = 4.12
O'#I mlul v ( )

Thus the variance in the estimate of the mean obtained from the average intensity
is higher over a2 homogeneous region if the intensity values are K-distributed than
if they were negative exponentially distributed with the same mean value. Figure
4.2 compares the variance in the estimated intensity mean for K-distributed and
negative exponential data. The variance of the mean estimator for the K-
distribution increases as V decreases, ie. the estimate is poorer for spikier data.
From (4.12) it can also be seen that the variance of the mean estimator is inversely
proportional to the sample size. Therefore, this estimator will not be suitable for

very small sample sizes.
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K-dist
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Figure 4.2: Comparison of the variance of the average intensity estimator

for the K-distribution and negative exponential distribution intensity for

Uy =1 and m =256 samples.

Although the local mean is not an optimum estimator for the mean of the K-
distribution, it greatly reduces the complexity of the two dimensional numerical

search required to solve (4.5) and (4.6) for the optimum parameters of the K-
distribution. The one dimensional numerical search for the optimum value of v
would still be computationally prohibitively expensive. In the following section
various sub-optimum estimators for the v parameter of the K-distribution inten-

sity are discussed which attempt to approximate the ML solution for V.

4.3 Non-optimal estimation of the order parameter

The intensity contrast gives a simple estimate for V but has large errors for small v
or small sample numbers [57]. Oliver [61] proposed an estimator based on the

normalised log texture measure, which has a much better error performance.

Texture estimators consist of two operations. A texture measure is derived

from the data followed by an inversion operation to obtain the order parameter.
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Analysis of the estimator then involves evaluating the error in the texture measure

and converting it into an error in the estimate of V.

Using first order approximation in the expansion of the estimate about its true
value the bias and variance in the estimate of V from the normalised log measure
can be derived [61]. Whilst this estimator is well behaved for small values of v, the

estimates become incteasingly suboptimal as V gets larger. Lombardo and Oliver
[50] demonstrated that the problem is associated with the highly non-linear inver-
sion process from the texture measure to the order parameter of the (assumed) K-
distributed texture. Introducing a reciprocal order parameter ¢ =1/V results in a
more stable inversion since the texture measure now tends to a linear dependence
on this parameter for large #. This estimator has a more direct physical televance to
the texture inhomogeneity since it is related to the variance of the underlying

gamma distribution.

Section 4.3.1 describes the intensity contrast estimator and drives the theoreti-
cal errofs in estimating the order parameter. Section 4.3.2 then goes on to desctibe
the normalised log estimator and derives the estimates in terms of the f parameter.
It is shown that this alternative estimator has better vatiance results compared to
the v estimator. Although Lombardo and Oliver [50] proved that the normalised
log provides the best performance of the measutes they considered, it is still
suboptimal. Joughin e# 4/ [42] demonstrated that the numerical ML approach does

indeed give improved estimates.

Since radar detection and estimation performance in K-distributed clutter are
limited by the errors in the estimate of # (and thetefore V) parameter, thete is a re-
quirement for estimators that can approach the optimum solution. In an attempt to
obtain a better estimator for the ¢ parameter of the K-distribution a neural net
based solution is considered. Many authors have proposed the use of neural nets
for clutter classification [10, 22, 43, 59]. Neural nets provide a means for develop-
ing an estimator which carriers out the non-linear transformation of the K-
distributed data to the ¢ parameter value. One particular drawback of texture based

estimators is that they assume that independent samples are available for parameter
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estimation which is often not the case with high resolution images. Neural nets
have the potential to perform parameter estimation with correlated data since they
infer subtle unknown relationships from the data. However, since in this thesis we
merely aim to demonstrate the viability of neural nets as a parameter estimator, we

restrict the investigation to uncorrelated K-distributed data.

In Section 4.3.3 we discuss the development of the neural net based estima-
tors. In using neural nets as functional estimators, the data have to have some ap-
propriate pre-processing before they can be presented to the net. When the pre-
processing involved just log scaling the intensity data the net was unable to pro-
duce a good solution. However, training the net on various texture measures of the
data resulted in better estimates for the # parameter. Experimentation with the neu-
ral nets showed that two texture measures, the mean normalised log and the con-
trast of the amplitude, when used as a pair of inputs to train the net resulted in an
estimator which outperforms the normalised log estimator. So with the help of the
neural nets it was possible to identify a solution which closed the gap between the

performance of the texture measure estimators and the ML solution.

Prompted by the results of the neural net research a new estimator is pro-
posed which combines the normalised log and the amplitude contrast texture
measure. The performance of this hybrid estimator depends upon the relative
weighting of the two moments. A constant weighting provides a good estimate
only over a certain range of the parameter values [36]. In order to obtain the best
estimates over the whole of range of ¢ values of interest optimum weight values are
required which would minimise the variance on the values. These optimum weight
values cannot be defined without knowing the parameter value. To overcome this
problem an iterative procedure is adopted. An initial estimate of # is made using an
arbitrary weight value which is used to make a more informed guess of the weight
value. This weight value gives a better estimate on ¢ which in turns allows for a
better choice for the weight value. This way an estimate of f can be made using the
most appropriate weight value to be used in the texture measure. In Section 4.3.4

we analyse the predicted errors for this new estimator and discuss the implications
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for optimal parameter estimation. It is shown that near optimal estimates are ob-

tained using an adapted weighting scheme for the hybrid normalised log estimator.

4.3.1 Intensity contrast estimator
The intensity contrast can be used to encode the image texture information and is

given by

-1 (4.13)
Using (3.52) this is related to the order parameter as
2
V=1+— 4.14
: @14

The expectation values are true theoretical values of the moments which cannot be
obtained by working within the constraint of a finite sample size. For m statistically
identical independent K-distributed intensity values with unknown parameter V,

the first moment can be estimated by (4.8) and the second moment by
P=—=yr1 (4.15)

therefore the estimated values of the texture measure, represented by V, can be
expressed in terms of these quantities. The estimator error is the difference be-
tween the expectation value and the estimated quantity and establishes the useful-
ness of the estimator. As the order parameter is obtained from the texture measure
using the inversion relationship of (4.14), the errors in the estimate of the texture

measure can be translated into errors in the estimate of the order parameter values.

In Appendix A.2 the error predictions for the intensity contrast estimator are

derived to first order in 1/m [50]. The fractional bias and the variance of the esti-

mated texture measure V' are given as

AV 1( 1 6 2\
- - —25(”;)(“;)[“;) (4.10)
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Figure 4.3: The predicted standard deviation of V obtained using the in-

tensity contrast estimator for m =16, 64, 256.

o) = 4-;;(“%)(“%)(” %) 4.17)

(4.17) gives the theoretical error in obtaining the intensity contrast measure, V,
from estimated quantities. This can then be translated into errors in V using the
relationship (see Appendix B)

Io

Yo av i av? @19

which gives the predicted variance of V as

ol=—|1+=|1+—| 1+= (4.19)
m \% 1% \%

the square root of which gives the standard deviation of the estimate of the order
parameter obtained using the intensity contrast estimator, which is a measure of

the error in the estimate. Figure 4.3 shows the plot of the error in the intensity
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contrast for various sample sizes as a function of the order parameter. For small
sample sizes the error is very large. Although the error falls as the sample size in-
creases it is still large even for m =256. The intensity contrast estimator has a sim-
ple form and may be attractive in some circumstances where there are large homo-
geneous regions within the clutter, however, for most high resolution images the
number of samples which can be used to estimate the parameter values are small

and the contrast estimator would give a very sub-optimal performance.

4.3.2 Normalised log estimator

The expectation value for the normalised log texture measure (U) proposed by

Oliver [61] is related to the order parameter through0
U=(InD)-In{)=y(v)-Inv-y, (4.20)

The fraction bias and the variance of the normalised texture measure are derived in

Appendix A.3 and are given as!!
AU 1 2 -1
—=—|1+—|(w(v)-Inv- 4.21
o m[ v)(w( )=Inv-v;) (4.21)
1 n*
Z=—|y'(v)+—-1 4.22
o, m(w( ) < ] (4.22)

Using the relationship (4.18), the errors in the estimate of the texture measure can

be translated into errors in V estimate. This gives the predicted vatiance of V as

v: (w’(v) + %2 - 1)
m(vy’(v) - 1)2

ol = (4.23)

v

10 Y is the Euler’s constant.

1 l//’(Z) is the Trigamma function.
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Figure 4.4: Standard deviation in VvV for the normalised log estimator with

m =256 samples; (—) prediction; (*) simulations, 10“trials.

which can be compared with simulation results using uncorrelated K-distributed
noise. The comparison is performed for a K-distribution mean value of unity as
variation of the mean value simply scales the data and so does not affect the rela-
tive shape of the error curves. Tlie simulated data samples were obtained using the
product model (3.46) whereby uncorrelated gamma distributed noise of mean one
and defined order parameter is generated and multiplied with negative exponential
generated noise of unity mean to give uncorrelated K-distribution samples with
unity mean and order parameter V. As an example, the predicted errors in vV for
the normalised log texture measure are compared with simulations for a sample
size of m =256. The simulation results were obtained by generating 256 uncorre-
lated K-distributed data samples of unity mean and given order parameter value

for which Vis estimated using the normalised log estimator. A total of 10" trials are

carried out and the standard deviation in V measured. This is repeated for each
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point plotted along the V axis in Figure 4.4 and the error results are determined
over the whole range of V values of interest. For v >1 there is a discrepancy be-
tween theory and simulation. Lombardo and Oliver [50] attributed this discrepancy
to the pronounced nonlinearity of the inversion process of obtaining V from the
texture measure. They proposed a reciprocal estimator ¢ =1/v , which tends to a

linear dependence and therefore has a more stable inversion. This reciprocal esti-
mator is directly related to the variance of the texture, which is a measure of the

spikiness of the data. Both the error and mean of this improved estimator, there-

fore, tend to zero as the texture contrast is reduced (i.e. as V tends to infinity).

Substituting for ¢ =1/v in (4.23) gives the variance in 7 for the normalised

log estimator as

~

tz(w’(l/t)+%—1)

ol = (4.24)

mly" (1)1 1~ 1)2

Figure 4.5 plots the predicted standard deviation in 7 values together with the er-
rors obtained in estimating ¢ from simulated data. The close match between simu-
lated and predicted tesults shows that the detivation of (4.24) to first order in 1/m
is valid. The etrors are also compared to the numerical ML solution for the ¢ pa-
rameter in order to asses the optimality of the estimator. The ML solution was
simplified by using the local mean (4.8) for ;. Despite this simplification that re-
duces the ML solution to a 1 dimensional search in 7 , the computational load is
still 500 times greater than the normalised log estimator. The crosses in Figure 4.5
mark the ML error values and it is evident that the normalised log estimates for ¢

are suboptimal.

These increased errors in the estimates of ¢ translate into poorer performance
in radar detection and classification tasks that make use of the estimated parameter
values. We need to improve upon the texture measure models to get closer to the
ML solution without necessarily increasing the computational complexity of the

estimatot.
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Figure 4.5: Comparison of standard deviation of ¢ obtained with pa-
rameter estimators over m =256 samples; (—) normalised log prediction;

(*) normalised log simulation, 10" trials; (x) ML simulation, 10* trials.

In the absence of a clear direction for modif)dng the texture model we use a
neural net based technique to search for an improved parameter estimator. The
next section details the work carried out using a neural net to obtain an estimator

for the ¢ parameter of the K-distribution.

4.3.3 Neural net based estimator

The texture measure discussed in Section 4.3.2 provides for an approximate ML
solution of the / parameter. The resultant errors in ¢ depend upon the errors in the
estimate of the texture measure which themselves depend upon the moments of
the data which are used to obtain the texture measure. Thus the performance of
the estimator is dictated by the moments used for the texture measure. There are
various moments which can be used to write the texture measure and the error
performance varies from texture measure to texture measure. However, it is not
obvious which moments of the data most accurately encode the texture informa-

tion of the imaged data. This has hindered the development of improved models
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for the parameter estimation because an exhaustive search through possible com-
binations of moments would be required to find the best texture measure. To
overcome this problem a non-committal neural network was used whereby the
properties of the data in relation to the order parameter are introduced through
training.

Parameter estimation requires a non-linear mapping of the K-distributed val-
ues to the ¢ parameter. For the particular task considered in this paper labelled data
is available with the labelling being defined by the simulation process. For this rea-
son, neural nets which adapt themselves to match a desired mapping have been
used. The particular network on which this work is based is the multi-layer-
perceptron (MLP) which has been described by, amongst others, Rumelhart and
McClelland [71] and Lippmann [49]. A MLP consists of a set of simple processing
elements, or nodes, interconnected via a set of weights. The MLP used in the
course of the work of this thesis consists of an input layer, a hidden layer and an
output layer. Data are presented to the input layer which has a number of nodes
equivalent to the sample size being used for the texture measure. Non-linear
weights combine together the input data and the outcome is translated to the hid-
den layer nodes. The hidden layer node values are combined together using linear
weights to give a single output which is the parameter value corresponding to the

data presented to the net.

The net performance is influenced by a number of parameters, for example
the size and number of hidden layers, the type of weights used, the amount of
training data etc. The choice for these parameters is made through experimenta-
tion. The operation of the neural net is carried out as a two stage process; a training

stage and a test stage.

In the training stage the net starts with random weights. Simulated K-
distributed data of a fixed mean and a range of ¢ values are presented to the input
nodes of the neural net. The weights of the net are adjusted through back propa-
gation [49]. The network passes each input pattern through the hidden layers to
generate a result at the output node. It then subtracts the actual result from the tat-

get parameter value to find the output layer errors. These errors are then used to
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adjust the weights. This is called one epoch of training. A large number of epochs
are required for training and the nets are regularly tested on unseen tuning data to
note the output errors. When there is no more improvement on the error on the
estimates for the tuning data the training is stopped. Further training will result in

the net learning the training data rather then generalising for the # parameter.

The testing stage involves the net being presented with a large amount of un-
seen data and measuring the standard deviation in the network estimate of the K-

distribution ¢ parameter value. The performance of the neural net estimator is then

assessed by compating its standard deviation in f with that obtained with a texture

measure estimatot.

Neural nets have the potential to infer subtle, unknown relationships from the
data. Unlike the texture measure which has an exact analytical form, the neural net
acquires the relationship between texture characterisation and the undetlying pa-
rameter value through training on data. The training data has to include examples
of data that covers parameter values over the whole range for which the net is to
obtain estimates. There is a trade-off to be made between how tepresentative the
training data is to the parameter space, and the memory and processing capacity of
the computer system used to implement the neural net. If not enough examples of
data with different ¢ values are included in the training set then the neural net will
not generalise over the whole range of ¢ parameter values. However, the number of
images cannot be increased indefinitely due to consideration of computational
load. After some trial and error, eleven images were selected for the training data
set. The images were simulated with a constant mean of unity, and ¢ parameter

equal to 0.1, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.5, 8.0, 10.0.

The size of each of the images was 800 by 640 pixels. A 16 by 16 stepping
window was used to select individual patterns to be presented to the neural net.
The window size matched the input layer size of the neural net. The input layer
was chosen to be of this size so that a direct comparison can be made with the pet-

formance of the texture measure estimators for m =256 samples. A total of 2000
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independent realisations for the ¢ value were obtained from each image using the
stepping window.

In addition to the training data set, two further data sets were also generated.
The first of these was a tuning data set of eleven images containing the same range
of ¢ values as the training data set but only 80 by 640 pixels in size. For a 16 by 16
stepping window this yielded 200 independent realisations for the # value per tun-
ing image. The tuning data set was used to check the neural net error for estimating
t at every 50 epoch interval and to halt the training when the performance tailed-
off on the tuning data set (i.e. the standard deviation in 7 shows no further reduc-
tion). The second data set consisted of 33 test images. The size of each of the im-
ages was kept same as those in the training data set. The test data set, however,
incorporated 3 times as many examples of the f parameter values in the range 0.1
to 10.0. This data set was used to measure the performance of the neural net esti-
mators. A complete list of the size and the ¢ parameter values of the images used in

each of the three data sets is given in Table 4.1.

Data | Image | No.of16x16 | No. of | f parameter for each image

type | Size subimages images

Train | 800x640 | 2000 11 0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.5
8.010.0

Tune | 80x640 | 200 11 0.1 05 1.0 15 2.0 3.0 4.0 5.0 6.5
8.010.0

Test | 800x640 | 2000 33 0.1 0.25 0.5 0.75 1.0 1.25 1.5 1.75

2.02.2525 275 3.0 3.25 3.5 3.75
4.0 425 4.5 475 5.0 5.25 5.5 5.75
6.06.57.07.58.0859.09.510.0

Table 4.1: Description of the neural net data sets.

Initially the net was trained on just the intensity K-distributed data. However,

the net failed to converge. The intensity data were log-scaled to limit the dynamic
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range of the data. With this simple pre-processing the neural net was able to pro-

vide estimates of f when tested on unseen data but the standard deviation on ¢ did
not compare well with the normalised log estimator. Thus the neural net estimator,
with this simple pre-processing, proved incapable of automatically extracting the

relevant texture measure information from the data.

From previous work on texture estimators [11, 50, 61] we know that the mo-
ments of the data are capable of coding the information regarding the undetlying
order parameter value of the imaged data. It was therefore decided to train the
neural net on specific moments of the data. The procedure then involves calculat-
ing the texture measure for the data samples over the 16 by 16 window and pre-
senting the net with the moment value. The input layer then has just a single node.
The remainder of the structure of the MLP remains unchanged. Figure 4.6 shows
the structure of the neural net estimator when using texture measures as input to

the net. The training procedure for this type of neural net is outlined as follows:

1. Select 11 equally sized simulated K-distributed images which have the same

mean but different ¢ values spanning the range from 0.1 to 10.0.

2. Using a 16X16 stepping window, calculate moments of the data.

3. Present the moment images to the net and train the weights to give the true

parameter value corresponding to each input image.

4. Test the performance of the net on a small set of tuning data and note the
overall standard deviation. Stop training when the performance has tailed off

on this tuning data.

5. Test the neural net on unseen data and note the standard deviation on 7 .

The neural net shown in Figure 4.6 has 16 nodes in the hidden layer. Various
other configurations for the neural net were also tried with different number of
nodes in the hidden layer but it was found that a net with 16 hidden nodes is com-
plex enough to generalise for the ¢ parameter value but still small enough to avoid

learning the training data exactly.
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Figure 4.6; Neural net estimator using texture measures to estimate ¢ pa-

rameter using 256 data samples. For the hidden Ilayer,
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The types of moments that can be calculated from the intensity data are infi-
nite. A key question in the design of the neural net estimator is what moment will
result in the best estimator performance? A whole series of neural nets were
trained using different moments of the K-distributed data as the input to the net.
Most of the choices for the moments used to train the neural net came from pre-
vious estimators for the K-distribution parameters, for example the mean of the

intensity”
*,,, = (/) (4.25)

the contrast of the intensity”
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-1 (4.26)

the normalised log intensity [61],
x,, ={InI)—In(I) (4.27)

the contrast of amplitude [51],

X, = -1 (4.28)

and variance of log of intensity [40]
x, ={n* 1)~ (In 1)’ (4.29)

It was found that the net trained on some moments had standard deviation results
for  which were comparable to the normalised log estimator. These nets have
acquired, through training, the appropriate texture measure inversion process to
obtain the ¢ parameter value. It was then decided to train the net using pairs of
various moments as inputs to the net. The input layer then has two nodes corre-
sponding to the two measured moments. With this arrangement the nets gave
some very good estimates for the ¢ parameter. Figure 4.7 shows the error on the
estimates for ¢ obtained with three of these nets. The data statistics on which the

three nets were trained are as follows:
1. variance of log of intensity (0 4y ) and contrast of amplitude (CoA).

2. 0 %y and normalised log.
3. CoA and normalised log.

In Figure 4.7 the error performance of each net has been compared to that of
the normalised log estimator. The values of ¢ for which the net estimates were ob-
tained are marked with the diamond symbols. The nets were trained on only a few
examples of the t parameter (see Table 4.1). Points in Figure 4.7 for which there
was a corresponding f parameter image in the training data set are marked by

shading the diamond symbols black. It can be seen by the plots in Figure 4.7 that



CHAPTER 4. K-DISTRIBUTION PARAMETER ESTIMATORS 86

0.70

0.50

0.40-

2.00 4.00 6.00 8.00 10.00

(@)

Figure 4.7, Comparison of the error in f obtain using the normalised log
estimator (-----) with the neural net estimator (—). The neural nets have
2 input nodes, 16 hidden nodes and a single output node. Results from

three networks are shown. The texture measure used to train each of the
nets were (a) G -in/ and CoA, (b) G 4n/ and normalised log and (c) CoA
and normalised log. The ¢ values of the test images used to obtain the
neural net error results are marked as diamonds. The ¢ values of those test
images for which there was a corresponding training image with the same

t value, are marked as black diamonds (continued on next page).

the nets have been able to interpolate between ¢ parameter values which were not
contained within the training data set. Thus a net trained on just a limited example
of ¢t parameter values is able to produce estimates over a continuous range of ¢ val-

ues.
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Figure 1.7: (continued).

The comparison of the three nets shows that the Figure 4.7a net falls well

short of the normalised log performance, the Figure 4.7b net outperforms it for
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only a few values of # whereas the Figure 4.7c net has been successful in achieving
better errors for the majority of ¢ values. From the neural net research it has
emerged that the net trained on the normalised log and the CoA produces the best
estimate for ¢ This net improved upon the normalised log estimator for a wide
range of # values. The errors for the neural net for Figure 4.7c are much closer to
the ML performance. However, comparing the results with Figure 4.5 it appears as
if the net is producing lower errors for 7 , for values close to 10. This apparent im-
provement on the ML estimator is due to the fact that the net is only able to give
estimates for ¢ values which lie within the range of parameter values included in the
training set. This restriction in the range of ¢ values which the net is able to esti-
mate, lowers the standard deviation near the top of the range of the ¢ values. Thus

in actual fact the neural nets never exceed the performance of the ML estimator.

The test data used to produce the plots of Figure 4.7 had the same mean in-

tensity value as the training data. The nets were also tested on data which had dif-
ferent u; values and error results identical to those of Figure 4.7 were obtained.
Thus the performance of the net is invariant to ty changes. So the fact that the
same Uy value has been used for all the training data is not a limitation of the neural

net estimatot.

Previous parameter estimators used just single moments of the data to obtain
the texture measure [46, 51, 61]. With those types of estimators the normalised log
proved to give the lowest error in regions of large . The normalised log measure
was also found to be the most accurate estimator with the neural nets when using
just a single moment to calculate the texture measure . However, the net revealed
that a better estimator is achieved if the amplitude contrast is also used to obtain
the texture measure. Amplitude contrast is a reasonable estimator for the ¢ pa-
rameter but is outperformed by the normalised log estimator for uncotrelated K-
distributed data. However, for noisy K-distributed clutter data the amplitude con-
trast does rather better [51] and is the preferred estimator for the parameter. This
is because the normalised log is sensitive to lower values of the K-distribution

whereas the CoA is sensitive to higher values of the distribution which are not so
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affected by the additive noise. This sensitivity to different regions of the distribu-
tion makes it possible for the two moments to contribute independent information
to the texture measure. The variance of the log, on the other hand, is sensitive to
the same pdf region as the normalised log and hence a net trained on these two
moments (see Figure 4.7b) shows no improvement on the normalised log measure.
The net has now confirmed that there is independent information in the amplitude
contrast which hence results in better estimates for # when combined with the in-

formation in the normalised log texture measure.

Neural net research has shown that multiple moments of the data can be used
to obtain improved texture measures since there is independent information to be
had from the different texture measures. These improvements upon the current
model for the approximate ML solution lead us to propose a new model which can
be taken as a better approximation to the ML solution. The next section discusses
the hybrid estimator for the ¢ parameter of uncorrelated K-distributed data based
on the pair of moments: the normalised log intensity and the contrast of the am-

plitude.

4.3.4 Hybrid normalised log estimator

A new model is proposed for the f parameter estimate of K-distributed clutter data
which uses multiple moments to obtain more accurate texture measures. Following
on from the neural net research it was found that a useful combination of mo-
ments is the normalised log intensity and the contrast of the amplitude. The model

can be written as

W=al(n 1)~ n(D))+(1-a <7<%—2-1

4r?(¢™
=a(u/(t“)+lnt—yE)+(1—a mTz((z:—Jr)%)_l

(4.30)

where ¢ is the weight ratio according to which the two moments are combined.
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Figure 4.8: Optimum ¢ values that minimise the error in 7 for hybrid

normalised log estimator.

Error predictions were derived to first otder in 1/m using the same approach
as detailed in Section 4.3.2. The theoretical error in obtaining the hybrid normal-

ised log measure, W, from the estimated quantities is (see Appendix A.4)

2 2

2 o ’ 4
. = —— ¢! ——1
o, m(w( )+ 7 )

(1-a)® T
m 7r3t3F6(%+r‘

ia all-a) T?*()

m er (%H“

+16

] (1672() - mPr2 () - s (o)) @31)

) (— 6+8In2+t+4y()—- 41//(%“—1))

This can be translated into errors in  using the relationship (see Appendix B)

2

2 Oy
s 32

This gives the predicted vatiance of f as
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The weight variable ¢ controls the error obtained with this parameter estimator.

For a¢ =1, (4.30) simplifies to a normalised log estimator and the predicted error is

then same as (4.24) given in Section 4.3.2. For & =0, (4.30) reduces to a contrast
of amplitude estimator. For other values of « the estimator has a varying fraction
of the two moments of the texture image combining together to obtain 7 values.
The weight & can be optimised to give the minimum variance on the estimates of ¢

by solving the partial detivative

do?
=0 (4.34)

for c. Figure 4.8 shows the plot of optimum ¢ over a range of # values. For large ¢
the value of & which would minimise the error approaches a constant value. How-
ever, for £ =0.5, the optimum ¢ becomes extremely large and for values of ¢ <0.5,
O does not have a stable value which minimises O‘;Z . Thus the value of & which
gives the optimum estimate depends on the value of £, which is the quantity that is
being estimated in the first place.

The simplest form for the hybrid normalised log estimator would be to use a
fixed value for o The texture measure is then calculated using a linear combina-
tion of the two moments which yields the ¢ parameter estimate from (4.30). Figure

4.9 shows the resultant standard deviation for f when several different values of &

have been used to obtain the texture measure. The plot shows that different values



CHAPTER 4. K-DISTRIBUTION PARAMETER ESTIMATORS 92

0
0
a=1.0
0 a=0 .5
a=0.
0
2 4 6 8 10

Figure 4.9: Standard deviation of + using hybrid normalised log estimator

for m =256 samples and fixed values of a.

of acgive better estimates in different regions of the + parameter space. For « =0.8,
the error is the lowest for all + >0.5. This is significant, since over this range of «
values, the error is lower than the normalised log estimator (cc =/ case). The lowest
error over the range + <0.5 is obtained when « =0, for which the estimator is equal
to the amplitude contrast texture measure. It emerges that ¢ =0.8 is the best com-

promise value which would give the lowest error over the widest range of + values.

Using the fixed value of a=0.8 to write the texture measure of the hybrid es-
timator, (4.30) takes the form

W s0.8((In /)-1n {/» + 0.2 <> -1 (4.35)

Figure 4.10 compares the theoretical error obtained with this estimator with those

of the normalised log estimator. The new estimator shows a clear improvement on

the standard deviation in ¢ for values of # >0.5. Simulation results obtained by es-

timating the / parameter from uncorrelated K-distribution noise samples showed
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Figure 4.10; Comparison of standard deviation of ¢ obtained with pa-
rameter estimators over m =256 samples; (—) normalised log prediction;
(—--) hybrid normalised log prediction, (0) normalised log simulation, 10™

trials; (x) ML simulation, 10" trials

good agreement between theory and simulation. This modified estimator when
compared with simulation results obtained from numerical ML solution shows that
the errors are indistinguishable over the range ¢ >0.5. Thus using a fixed weighted
combination of the normalised log and the contrast of amplitude moment and per-
forming a single texture measure inversion, an estimator for ¢ is obtained which is
near optimal over a wide range of values of the ¢ parameter. This estimator has
been able to achieve this improvement at the cost of just doubling the computa-
tional load. For values of ¢ close to the origin, the estimator is however sub-

optimal. This is so because the values of acwhich would minimise in this region

are fairly unstable and a constant a is insufficient to give the best parameter esti-

mate.
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The neural nets were able to combine the two moments to give an improved
estimate over a wide range of values of the t parameter (see Figure 4.7). The nets,
therefore, must be adjusting the value of & in some form of adaptive manner to
minimise the error in the parameter estimate. With the analytical estimator an op-
timal value for ¢ has to be used in order to ensure minimum error on the estimate
for t. Therefore, the texture measure estimator requires an optimum estimate for
both ¢ and c. Figure 4.11 shows the plot of the predicted errors in the estimate for
t when the hybrid normalised log estimator uses optimum ¢ values. The optimality
of this estimator is assessed by comparing the errors with the ML solution. Al-
though, a closed form does not exist for the ML solution, Blacknell [11] derived an
analytical expression for the standard deviation of the order parameter estimates
when using large sample sizes. Figure 4.11, therefore, also shows the optimal etror
on ¢ estimates as given by the ML solution. The performance of the hybrid not-
malised log estimator is so close to the ML result that the two graphs are barely
separable. It is only for # >8 that there is a noticeable difference between the per-
formance of the two estimators. From this comparison it can be seen that the hy-

brid normalised log estimator produces neat optimal estimates for the f parameter.

A practical implementation of the hybtid normalised log estimator would re-
quire a two dimensional search in both # and . A simple iterative scheme is used
to implement this two dimensional search. The estimation process begins with an
estimate of ¢ with @ = 1. This estimated value of ¢ is used to obtain the value of
optimum ¢ from the graph shown in Figure 4.8. The texture measure value is re-
calculated with this new « and a more accurate estimate of t is obtained. This
process is repeated until ¢ value stabilises to within a certain accuracy. The error
results for the hybrid normalised log estimator implemented using this iterative
scheme on simulated data is shown in Figure 4.11 as cross marks. The simulations
match the predicted performance over all values of ¢ except for those close to the
origin. This is because for  values near the origin the & values are unstable and it is
not always easy to find the optimal value of €. In such cases the value of « is

forced to be equal to one and the estimator then simplifies to the normalised log
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Figure 4.11: Comparison of the hybrid normalised log error in 7 with the
ML performance for m =256 samples; ML predictions (___); hybrid
normalised log predictions using optimum & (_ _ _); hybrid normalised

log simulations, 10# trials (X).

texture measure estimator. The closeness of the match of the simulated etrots to
the predicted performance gives us confidence in the iteration procedure used for
implementing the hybrid normalised log estimator. Thus it is shown that an adap-
tive weighting scheme can be utilised to combine the two texture measures to

achieve improved parameter estimates.

The errors in I values are very close to the ML performance and for all prac-
tical purposes may be considered the same. However, it has not been shown that a
combination of the two statistics can equal the ML solution. The advantage of the
hybrid normalised log estimator over the ML estimator is that it gives a close ap-
proximation to the ML solution using a computationally manageable simple form,
albeit over a restricted range of order parameter values. This restriction in the
range of parameter values for which the estimator gives the best error performance
is not a disadvantage as such since it is conceivable to have estimators which are

tuned to different regions of the f parameter space and have a mechanism for se-
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lectively choosing between them such that the resultant errors are a minimum over

the whole of the range of values of interest.

4.4 Summary

In this chapter:

® Methods for estimating the two parameters that desctibe the K-distribution

have been discussed.

¢ The ML estimates of the mean intensity and order parameter of K-distributed
intensity were derived but were found to be too complex to be used in prac-

tice.

o It was shown that the average intensity, which is an optimum estimator for
negative exponential mean, is also an unbiased estimator for K-distributed
mean intensity. The variance of the sub-optimal mean estimator, however,

increases with increased data spikiness.

® Two existing estimators for the order parameters of the K-distribution, the
intensity contrast and the normalised log estimator, were both shown to be

sup-optimal.

e It was shown that the analysis of the second parameter of the K-distribution
is simplified by considering the reciprocal order parameter ¢ =1/V which

has a mote stable inversion from the texture measures.

¢ A novel neural net based method was used to estimate the ¢ patameter. It was
shown that the neural net performance is strongly influenced by the type of
pre-processing performed on the input data. The best performance for the
estimate of ¢ was obtained with a net trained on the normalised log and am-

plitude contrast moment of K-distributed intensity data.

e A new hybrid estimator, which uses adaptive weighting to combine the not-
malised log and the contrast of amplitude texture measure, was used to esti-
mate ¢ parameter values. Using theoretical predictions and simulation results

it was shown that the new estimator achieves almost optimum performance.



Chapter 5

5. Weak scattering models

The statistical models studied in Chapter 3 assume a uniformly distributed phase
for the detected field. The resultant phase is the sum of the phase contribution
from individual scatterers within a resolution cell. The phase return from a scat-
terer is the sum of the phase of the backscattering coefficient and the two-way
path from the scatterer to the sensor. Therefore, the orientation and the position
of the individual scatterer determine its phase and hence the phase distribution of
the detected field. When the cell dimensions are several wavelengths in size then
the phase ovetlaps many times as the co-ordinate values of individual scatterers
span from the near to far range and from left to right azimuth of a range cell. In
such strong scattering regime the phase of the detected field will be uniformly dis-
tributed and the detected field can be adequately represented by the statistical
models described in Chapter 3. It was shown that when the effective number of
scatterers fluctuates according to a negative binomial distribution the resultant field
statistics are KK-distributed. However, when the resolution cell is only a few wave-
lengths in depth the scatterers will not have a uniformly distributed phase. Also if
there is a bright target immersed in a resolution cell otherwise containing scatterers
with uniformly distributed phase the net effect will again be a non-uniformly dis-
tributed phase for the detected field. In the random walk representation of the
scattering process the non-uniform phase manifests as a bias in the random walk.

This type of scattering is termed ‘weak scattering’.

When the model deviates from strong scattering the K-distribution no longer

accurately describes the single point statistics of the observed data. Blake ez 4/. [12]

97
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showed that for very high resolution X-band SAR data, where the resolution cell
size is of the order of the wavelength, the single point statistics deviate from a K-
distribution. Griffiths e 4/ [33] showed a similar non K-statistics behaviour for
high resolution sonar reverberation from sea beds. Blake ez 4/ [12] found that a
mixture of K-distributions provides a reasonable fit to the high resolution X-band
data. However, such empirical fits lack any physical justification. It is therefore
necessary to be able to consider models that have some physical basis for repre-

senting the weak scattering process.

Baraket [4] showed that by modelling the weak scattering as a directional bi-
ased random walk for which the phase distribution is nonuniform, the generalised
K-distribution is obtained. Jakeman and Tough [40] demonstrated that a com-
pound representation of the generalised K-distribution is a Rice distribution with
both the mean-square noise component and the coherent amplitude vatying ac-
cording to a gamma distribution in a correlated manner. Although this is an attrac-
tive new process, the random walk from which it derives does not cotrectly model
the effects generated by weak scattering media. Another model for weak scattering
is the homodyned-K distribution process, which is modelled as a coherent sum of
a constant vector with a K-distributed vector. Jakeman [38] proposed this model
for the statistics of laser light scattered by a localised turbulent thermal plume. The
compound model for the homodyned-K distribution is a Rice distribution with a
mean-square noise component varying according to a gamma distribution but with
a constant-amplitude coherent component. The homodyned-K model is supported
by some experimental data. For some situations it has a plausible phenomenologi-
cal view for example the case of a single bright scatterer among a large number of
smaller scatterers. The homodyned-K distribution is, therefore, attracting increas-

ing interest for modelling of weak scattering.

The introduction of new models that are suitable for weak scattering then ne-
cessitates the task of devising optimal parameter estimates. There have been very
few published results on parameter estimation of the homodyned-K and the gen-
eralised-K distribution. The distributions have an additional offset parameter

which is a measure of the degree of bias in the random walk. The third parameter
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further complicates the expression for the distribution and there are no closed
form solutions for the ML parameter estimate. Therefore, sub-optimal estimators

have to be considered.

In this chapter the amplitude statistics for the weak scattering model ate dis-
cussed, some simple parameter estimators are proposed and their performance
evaluated. Firstly, Section 5.1.1 describes the amplitude statistics for homodyned-K
distribution. A large Vv expansion of the homodyned-K disttibution is used to de-
rive estimators for the offset and order parameter of the distribution and an etror
analysis is catried out using the small perturbation method in Section 5.1.2. The
amplitude statistics for the generalised-K distribution are described in Section 5.2.1

followed by a discussion of the estimators for its parameters in Section 5.2.2.

5.1 Homodyned-K distribution

In this section the first of the two models proposed for the weak scattering is dis-
cussed. Initially the amplitude statistics for the homodyned-K disttibution are de-
scribed, followed by a discussion of sub-optimal estimators for the parameters of

the homodyned-K distribution.

5.1.1 Homodyned-K amplitude statistics

The basis for strong scattering is a uniformly distributed phase. However, in high
resolution systems the path variations associated with the position of the effective
scatterers are small and the phase ovetlaps with low probability. The resulting
phase distribution is no longer uniformly distributed and becomes markedly con-
centrated around a deterministic value. One way of modelling this non-biased
phase in the detected field is to represent the detected field as a coherent sum of a
constant vector and a random vector for which the phase is uniformly distributed.
The expression for the random walk of (3.9) is then modified to
N

E =Y (Aexp(/®@)+ A, exp( /@,)) G.1)

i=1

where Ao is the amplitude and ®o the phase of the constant vector. The magnitude

of Ao determines the degree of bias in the random walk. When the number fluc-
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tuation follows a negative binomial distribution, (5.1) is equivalent to the coherent
sum of a constant vector with a IK-distributed process. The statistic of the resultant

field is 2 homodyned-K distribution, the amplitude pdf of which is given by

2= o 225 omfony

O)
(5.2)

(74 -4

K 2E A 4]

where b=Vv/u and (0, k) = F(1/2+k)/ (k r (l/2—-k)) is Hankel’s symbol. The expres-
sion for the pdf of the homodyned-K distribution is very complex involving a sum
over infinite terms. Jakeman and Tough [40] showed that a closed form expression
for the homodyned-K pdf is obtained for integral values of V. For v =1 the pdf

takes the form

f4(A) = 44b1,(24,VB)K, (24D A > 4,

= 4401, (2AVD K, (24,Vb ) A, > A )

The pdf form for values of V greater than 1, where V = g can be obtained by rec-
.. -q -1 d q—l -1
ognising that (1+x) = ((q - 1) !) — (y + x) |y=1 . For v<1, Tough [85]

showed that the pdf can also be written in closed form. For A > A, the pdf is

given as!?

e

R L Y Yy

k=0

(5.4)

When A< A, the arguments of the modified Bessel functions of the first and
third kinds in this expression are interchanged. Thus it is possible to study the pdf

12 (l—v)k is the Pochammer symbol F(l—v+k)/l‘(1—v) .
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Figure 5.1: Comparison of the theoretical and simulated amplitude pdf of
homodyned-K distribution for unit}* mean, V=1 and AQ= =0, 1.0,

5.0, 10.0.

of the homodyned-K for processes which range from strongly non-Gaussian

(v < 1) to effectively Gaussian (v > 10).

The homodyned-K distribution can also be represented in a compound form
similar to that used for the K-distribution in Section 3.2.4. Thus the homodyned-
K will have a speckle component arising from the coherent interference of many
scatterers and a mean of the speckle, characterised by the underlying surface RCS,
which is also be a random variable. The amplitude pdf of the homodyned-K distri-

bution in the compound form is given as

A(4)=1fiMp)Np)dP (5.5)

where fp is the RCS component which gives the fluctuation in the mean-square

noise level and is the speckle component. As the number fluctuation in the

random walk of (5.1) is assumed to be a negative binomial process, the RCS com-
ponent is modelled as a gamma distribution and is given by (3.47). For the homo-

dyned-K distribution, since the phase is not uniformly distributed, the statistics of
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the speckle deviate from a pure Rayleigh amplitude and are given by a Rice distri-

bution as

o P

fap(Alo)= (2—A) I°[%j CXP[— M] (5.6)

. . 2 . .
where the intensity offset 4, = A; and the mean-square noise component varies

according to a gamma distribution.

The product model representation of the homodyned-K distribution also fa-
cilitates the generation of simulated data. Thus homodyned-K data of unity mean,
given order parameter value and offset value can be obtained by generating uncot-
related gamma distributed noise of unity mean and defined order parameter and
multiplying it by Rician generated noise of defined offset value and half mean-
square noise value. The Rician data itself is obtained by generating zero mean half
standard deviation Gaussian complex data and coherently adding the complex off-
set and taking the modulus of the resultant. Homodyned-K distribution data for a
range of different parameter values were simulated and the histogram measured.
Figure 5.1 shows the pdf obtained on simulated data for unity mean, v =1 and a
range of Ag values. The corresponding theoretical pdf plots are also obtained, using
(5.3), and are shown as line graphs. Thete is a good match between the theoretical
pdf and the simulated histogram, which validates the simulation process. As the
offset value increases the pdf plot is shifted up along the amplitude axis. Figure 5.2
shows the measured histogram for the homodyned-K distribution for values of v
equal to 0.5 and 10 respectively. Here again the pdf plots are shifted in amplitude
as the offset value increases. The shape of the histogram becomes Gaussian in the
limit of large order parameter values. The results of the theoretical pdfs are not
shown in Figure 5.2 since the expressions were too computationally cumbersome
to calculate. However, Figure 5.1 suggests that the results would have been a close

match.
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Figure 5.2: Amplitude pdf of the homodyned-K distribution for unity:

mean, | =0, 1.0, 5.0, 10.0 and V equal to (a) 0.5 and (b) 10.0.

So for it has been shown that the homodyned-K can be written in a com-
pound form and the pdf has a closed form under certain conditions. The expres-

sion for the even order moments of the homodyned-K can be written as
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(A2 = n'l"(l+n)(v)i F(n-k+v) (on)k 657

I'(v) Sk (n—-k)TA+k)\ A

The moments of the homodyned-K distribution cannot be solved directly to give a
closed form solution for the optimal parameter estimates. In the next section altet-
native sub-optimal estimators are considered which are based upon a large V ex-

pansion of the homodyned-K distribution.

5.1.2 Parameter estimators for homodyned-K distribution based

on a large v approximation.

The maximum likelihood solutions for the parameters of this distribution do not
have simple expressions in terms of combinations of distribution moments. In the
absence of such straight forward moment based estimators an approximate solu-
tion for the parameter values is considered. The approach taken is to perform an
expansion appropriate to large V values. In the limit of large v, the gamma distri-
bution in the product model tends to a delta function rendering a Rice distribution.

This is more apparent once the distribution is re-parameterised in terms of Vv and

the mean power <A2> of the homodyned-K noise process. Thus

24v¥ 71 24y !u0+A2 ) v-1
filA)=7———= —I( 0)ex (- u  expl—vu)du 5.8)
A( ) <A2>F(V)'(|; u 0 <A2>u p <A2>u ( ) (
The equation in this form allows us to show the effect of large v while keeping the

mean power level of the noise process at a constant value. Setting this equal to

unity causes no loss in generality, thus the integral becomes

£.(4) = 2AVY ]-‘% ( A ;40) (_ #0:A2 )uv—l exp(— vie)du (5.9

Evaluation of this integral for large v yields [85]
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/MA) = exp(- +A-)X(2A/,(2AN) +
y['"M(2 + (W)+>1°) +4(rt)A’ -(rt) + A°)))/|,QANtI)+ (5.10)
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From (5.10) tlie second and fourth order moments for the homodyned-K distribu-

tion are given as
(a) = 1+ Ao (5.1
(A" =12+ 40 +— (5.12)

Rearranging these yields expressions for the estimate of the parameters of homo-

dyned-K distribution. The viabilit}" of these estimators can then be demonstrated

by performing an error analysis. Thus (5.11) gives an estimate for fio as

A = A"-1 (5.13)
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The assessment of the error performance of this estimator for the offset value of
the homodyned-K is cartied out by performing a small perturbation analysis about
the mean parameter value similar to that carried out in Section 4.2 and 4.3 for the
K-distribution parameter estimators. (5.13) is an unbiased estimator for o and

therefore its fractional bias is zero. Its relative variance is given as (see Appendix

A5)

fi:_l_[2+v+2vuo} 514

b om\ iy

The relative variance for the offset parameter has a dependence on both ty and v
values. Figure 5.3 shows the plot of the relative variance in the estimate of Lo as a
function of V for a number of Ho values. In order to keep the analysis consistent
with the results shown in Chapter 4 all the plots for the weak scattering models are
obtained for a sample size of m =256. The predicted etror performance is also
compared with simulations. The method adopted for producing the simulated re-
sults is similar to that used in the previous chapter. 256 samples of homodyned-K
distributed data for unity mean, given Lo and V values are generated and the o pa-
rameter estimated. The homodyned-K data is generated using the method outlined
in Section 5.1.1. The variance in fl, is calculated using 105 trials. This is repeated
for each set of parameter values for which the experimental error analysis is carried
out. The results of the simulation are shown as marks of miscellaneous shapes in
the same figure which contains the plot for the corresponding predicted error per-

formance. Figure 5.3 shows that the error in fi, decreases with increasing v and o

and there is good agreement between simulation and prediction.

In order to obtain an expression for the estimate of the order parameter, the
first step is to obtain an expression for a moment based texture measure which can
be written in terms of the order parameter. This can be obtained by combining
(5.11) and (5.12) and rearranging the equations such that L is eliminated. This

leaves an expression for the texture measure which can be written as
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Figure 5.4 Comparison of the predicted and simulated results for the

(a) fractional bias and (b) relative variance, for the texture measure Y of
the homodyned-K distribution for m =256. Each simulated result ob-

tained using 10" trials.

(5.15)

that is completely defined by the order parameter of the homodyned-K. This result

is, however, obtained using simplified second and fourth moment expression
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based upon a large Vv expansion of the homodyned-K pdf. Inverting the estimate
of the texture measure provides an estimate for the order parameter value. The
fractional bias and the relative variance of the texture measure of (5.15) are given

as (see Appendix A.6)

AY  2+v+2vy

= 5.16
Y  2m(v-1) (16
O;  —1+10V+V? + 28V, + 4V, +3vid + 2v2ul
= 3 (5.17)
Y m(v —1)

The fractional bias and the relative variance have a dependence on both the L and

v values. There is also a singularity at vV =1. Figure 5.4a compares the predicted and
simulated result for the fractional bias of the texture measure of the homodyned-K
distribution whereas the corresponding results for relative variance of the texture
measure are shown in Figure 5.4b. These results are again produced for a sample

size of m =256 and using 103 trials for the simulations.

The results for the texture measure estimate show a good match between
simulations and predictions for large V. In the limit of large V the error values in
the texture estimates are reasonably low. However, as V approaches 1 the errors get
very large. The offset Uo scales the errors such that they increase with increasing Lo

with the effect being more pronounced at smaller values of V.

The required order parameter value of the homodyned-K distribution can be
obtained by inverting the texture measure Y. However, it has been shown [50] that

working in the space of t =1/v results in better etror performance for the pa-

rameter value. Thus using (5.15) an expression can be obtained for f in terms of

the estimates for the texture measure V as

==Y+l (5.18)

| =

Using (5.16) and the relationship Az = AY, / (dY / dt) the fractional bias for # of the

homodyned-K distribution is obtained to first-order approximation in m as
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The corresponding relative variance for f is obtained from (5.17) and using the

relationship 67 = o7} / ‘dY / dt|2 as

1+4u, +2u? +10z + 28¢u, + 3tu’ — 1>
(Moyoz.uo:uo) 520

o L

1 m t
The plots for the predicted and simulated fractional bias of 7 for the homodyned-
K distribution are shown in Figure 5.5a. The fractional bias decreases as f increases.
The fractional bias is not as small as the fractional bias of the texture measure Y

from which the # parameter is derived. The effect of the Lo parameter is to increase

the fractional bias of 7 . The effect of this increase is more noticeable for smaller

values of 7.

Figure 5.5b shows the predicted and simulated results for the relative vatiance
of ¢ for the homodyned-K distribution. According to the theoretical predictions,
the relative variance of 7 reduces as t increases. However, according to the simu-
lated results, the errors are decreasing only for values of ¢ <1. For ¢ >1, the errors
in the estimate for # are increasing instead of decreasing as predicted by (5.20). The
deviation from prediction highlights the limitation of the small perturbation analy-
sis when the large V approximation is violated. Since these values correspond to
spikier data, which is often the region of interest, the large errors limit the effec-
tiveness of this estimator for obtaining the parameter values of the homodyned-K.
In addition to Figure 5.5b where there is a very strong disagreement between the-
ory and prediction for ¢ >1, differences are also noticeable between the theoretical
predictions and the simulated results for the error performance given in Figure
5.4a, Figure 5.4b and Figure 5.5a. Although the differences are small and the gen-
eral trend for the simulation results broadly follows those of the theoretical predic-
tions, nevertheless the differences reflect that the assumptions made for the small

perturbation analysis are inadequate.

The estimators for the offset and the shape parameter for the homodyned-K

distribution described in this section are obtained using an expansion of the pdf of

the distribution in the limits of large V. However, the observed errors are not as
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predicted especially for small v values. At small v values the error and, therefore,

the uncertainty in V values is comparable to the actual value of the parameter itself,
which makes it unacceptably high. Therefore, further development is required in
order to obtain more reliable estimators for the parameters of the homodyned-K

distribution.

5.2 Generalised-K distribution

The generalised-K distribution is the second of the two models being considered
for the weak scattering process. First the general model and its amplitude statistics
are discussed followed by an analysis of parameter estimators for the generalised-K

distribution.

5.2.1 Generalised-K amplitude statistics

The homodyned-K distribution is based on a random walk model that adds a con-
stant offset to an unbiased random walk to represent a weak scattering process. An
alternative is to use a truly biased random walk to represent a weak scattering proc-
ess. If the number fluctuation is again assumed to be negative binomial this gives

rise to a generalisation of the K-disttibution and the amplitude pdf is given by

2d (24v) [ 2A{u,
A)=——| 22| | 250 k) (a4 5.21
=228 [ , J( ) )
where
g2 = A (5.22)
T

As in the case of the homodyned-K distribution, the generalised-K has an addi-
tional third parameter, Uo which is the measure of the degree of bias in the random
walk. In the limit (4, — O the unbiased K-distribution result is regained. As fp in-
creases this adds an offset to the pdf until in the limit of /[ — = the equation

reduces to a gamma distribution. The V parameter here again determines the de-
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gree of spikiness of the data and now in the limit of V — oo the distribution re-

duces to the Rice model

2 2
lim f,(A)= 24 I{—AX—EJ exp(— oyt A ) (5.23)

V— oo M M

The generalised-K distribution can also be represented in a compound form simi-
lar to that of (5.5). However, due to the difference in the way in which the bias in
the random walk is modelled compared to the homodyned-K model, the speckle
component amplitude statistics are given by a different Rician distribution which

can be written as

2A) (24 2vp?  A?
fA|p(A|P)=[—jlo{ \/EJeXP(— "é’ ——) (5.24)

P W uoop

This Rician distribution has a mean-square equal to /2 and a coherent amplitude

given by p\/; o / U . The gamma distribution gives both the fluctuations in the

mean-square noise level and the coherent amplitude in a correlated manner. The

scattering process is thus a modulated Rice distribution.

Simulated generalised-K distribution data can be generated using the product
model representation. Zero mean, half standard deviation complex Gaussian data
is generated and multiplied with gamma generated data of given mean and order
parameter value. The complex offset value is also multiplied by a gamma generated
data of given mean and order parameter value and normalised by the mean. The
modulus of the coherent sum of the modulated complex offset and the modulated
complex Gaussian then results in generalised-K data of the given mean, order pa-
rameter and offset value. In Figure 5.6 the theoretical and simulated pdfs for the
generalised-K distribution over a range of parameter values are plotted. Thete is
good agreement between the predicted pdf and the measured histogram which
validates the simulation process. As the order parameter increases the generalised-
K tends toward a Rician distribution. As the offset increases the peak of the plot

shifts along the amplitude axis.
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The even order moments for this distribution can be expressed as

(%) = (ﬁ) n(ntv) P(o,v-l)(l N 4_“gj (5.25)

v) T(v) " VU

where

S (AT

are the Jacobi polynomials. (5.26) does not have a closed form for the optimal pa-
rameter estimate for the generalised-K distribution. In the following section some
approximate solutions for the parameter estimation of the generalised-K distribu-

tion are considered.

5.2.2 Parameter estimators for generalised-K distribution using

even order moments
The first two even order moments of the generalised-K distribution can be written

as
(A7) =ty + 22 (5.27)

and

(%) = (1:3‘/) (202 + 8uvpty + 4pv2iy + 642 +5Svi2 +v2u?) (5.28)

The moments as they stand cannot be solved to extract the parameter values.

There is not a large V expansion which can be carried out for the generalised-K
distribution as it was done for the homodyned-K model. However, for the extreme

case of Vv — oo the first two even-order moments reduce to the form

(A%) = p+ bt (5.29)

and

(A*) = 20 + 4y + u? (5.30)
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Eliminating (4 from (5.29) and (5.30) gives an expression for the estimate of o of
the generalised-K distribution as

AN /\2 A

He =2A% - A* (5.31)

Thus an estimate for the square of the offset parameter for the generalised-K is
obtained in terms of the second and fourth order amplitude moments. An etror
analysis can be carried out on this estimator using the same small perturbation
technique as carried out for the other estimators studied in this thesis. As before
the small perturbation expansion is restricted to terms of order O(1/m). The frac-

tional bias and the relative variance are given as

A
Au: 216 1 8 1 100 2 1 2
—#z— —3+—7(10+—)+—(3+——+——2)+——+—
Ho mv:. v Ho) V Hy Mo Ho Mo

(5.32)
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Figure 5.7 shows the plot for the fractional bias and the relative variance for the

estimate of the square of the offset parameter of the generalised-K distribution.
From the plots it is clear that only in the limit of very large V the error performance
is anything like acceptable. For smaller v values the error and, therefore, the un-
certainty in the estimate of the offset is much larger than the value of the offset
parameter rendering the estimate useless. The error increases both as vV and Lo de-
crease. Thus the estimator (5.31) is only useful over a very limited range of v and

Ho. Since for real clutter data v and Lo are likely to have a much wider range of val-

ues this estimator is only of academic interest with a very limited practical use.
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Figure 5.7: Predicted error performance for the square of the offset pa-
rameter of the generalised-K distribution for a sample size of m =256

(a) fractional bias and (b) relative variance.

For the order parameter of the generalised-K distribution the moments can
not be manipulated to arrive at a closed form for the estimate of the parameter.
This poses a severe limitation in using the generalised-K for modelling real clutter

data.
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The investigation for the generalised-K distribution concludes that there are
no simple moment based estimators for the generalised-K distribution which will
give a good approximation to the ML solution of the parameter estimates. This is
because the expressions for the moments of the generalised-K distribution are
quite complex and there is no close form solution for the ML parameter estimate.
A possible approach which could ovetcome this problem is to approximate the
generalised-K distribution by a model which has a closed form for the ML solution
of the parameter estimate. The estimates for the parameters of the generalised-K
distribution would then by obtain by comparing the moments of the two distribu-
tions. The success of this approach would depend on how good the alternative
model approximates the generalised-K distribution. One such distribution which

has been proposed is the generalised gamma function [9]

n
£,(r)= ) Y™ exp —[é] (5.34)
which has three parameters agr, 7 and { The ML solution for these three
parameters of the generalised gamma function has a closed form. Using a
method of moment comparison, the parameter values for the generalised-K
distribution can then be deduced. An error analysis of the parameter esti-
mates using this approximate model for the generalised-K distribution will
show the usefulness of this approach. However, the parameter estimates
obtained using this method would be sub-optimal. We are therefore still
some distance away from obtaining efficient optimal estimators for the pa-

rameters of the generalised-K distribution.

5.3 Summary

In this chapter:

e It was shown that the condition for strong scattering, i.e. a uniformly disttib-
uted phase for the detected field, is violated when the size of the resolution
cell is small compared to the wavelength or the reflecting target is very

smooth.
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e Two distributions were introduced which can model a weak scattering proc-

ess; the homodyned-K distribution and the generalised-K distribution.

e It was shown that the random walk model for the homodyned-K distribu-
tion can be represented by the coherent sum of a constant vector and one
which is a K-distribution process. The amplitude pdf of this distribution was
shown to have a closed form under only certain V parameter values. The
compound representation, which is a Rice distribution with a mean-squate
noise component vatying according to a gamma distribution and a constant-

amplitude coherent component, was used to generate simulated data.

e Approximate moment based estimators were derived for the offset and the
order parameter of the homodyned-K distribution using a large V expansion
of its pdf. The errors for the offset parameter estimate were shown to match
the predicted performance over the whole range of order parameter values
and over a wide range of offset values. The corresponding results for the ¢
parameter were not so good, with the performance much worse for smaller
values of the order parameter. It is concluded that further investigation is re-
quired to obtain good estimators for the parameters of the homodyned-K

distribution.

¢ The model for the generalised-K distribution was described as a biased ran-
dom walk such that the resultant phase becomes markedly concentrated
around a deterministic value. Using the compound representation, which is a
Rician distribution where both the mean-square noise component and the
coherent amplitude vary according to a gamma distribution in a cotrelated
manner, simulated data were generated and good match was obtained be-

tween theoretical pdfs and measured histograms.

e In the limit of V — oo the first two even order moments of the generalised-
K distribution were simplified to give an estimate for the offset parameter.
However, its performance was shown to be very poor and further work is
required in devising appropriate estimators for the parameters of the gener-

alised-K distribution.



Chapter 6

6. Conclusion and future work

In this concluding chapter we shall examine to what extent the results presented in
previous chapters answer the four main questions set out in the introduction re-
garding the clutter characterisation problem. We shall also highlight outstanding

1ssues and make recommendations for future work.

6.1 Background theory

Before addressing the clutter characterisation problem the background theory
needed to carry out the analysis of a coherent radar system was described in the
first two chapters. In the introductory chapter a general description was given for a
surveillance radar system. It was explained how such surveillance systems can be
used either to detect ground moving targets or produce high resolution maps of
the ground. For both of these applications it was shown that it is important to have
a proper understanding of the clutter; in the former to get better clutter rejection

and in the latter to attain optimum terrain classification.

The clutter statistics are measured on a pixel level. Each pixel is a single reso-
lution cell corresponds to a specific footprint of the radar on the ground. The radar
footprint has an important bearing on the clutter statistics since it determines the
number of scatterers which are able to contribute toward the reflected energy ob-
served in any given pixel. The size and shape of the radar footprint depend upon a
number of system parameters which were described in Chapter 2. It was shown
that for a SAR system the two spatial components that make up the two-

dimensional radar image are range and azimuth. Range resolution was shown to be

119
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inversely proportional to the bandwidth of the radar pulse. It was shown that
higher range resolution can be obtained using a chirp pulse which gives a sinc
function response to a point target. The azimuth resolution for a real beam system
was shown to be inversely proportional to the aperture of the antenna expressed as
a number of wavelengths. However, for a fully focused SAR it was shown that the
azimuth resolution is equal to half the real aperture length and the system response
to a point target is a sinc function. For non-imaging radar it was shown that the
observed scattering is arranged into a range-Doppler map where Doppler data is
obtained by a frequency transformation of the azimuth data. The Doppler resolu-
tion was shown to be equal to the reciprocal of the coherent integration time. It
was also shown that the Doppler resolution determines the azimuth dimension of
the radar footprint and is utilised in Doppler beam sharpening to obtain finer
resolution clutter maps. Thus in MTI system where each pixel is a range-Doppler
cell with a corresponding unique radar footprint, the clutter statistics are then a

function of the range and Doppler resolution.

6.2 Forward problem

The first question in the introduction asked what statistical models can be used to
describe the surface scattering. The most direct method for determining the chax-
acteristics of the observed scattering is by solving the forward problem. However,
in Chapter 3 it was shown that there is still a considerable gap to bridge before re-
alistic surfaces can be analysed using this approach. In forward problem, the ap-
proach taken is to define the surface height profile, specify the boundary condi-
tions and solve the Maxwell equations in order to calculate the scattered field ob-
served at a defined point in space. Considerable effort has been spent on devising
approximate expressions for the scattering surface for which closed form analytical
solutions are attainable. The Kirchhoff approximation was desctibed which as-
sumes a slowly varying height profile and is applicable for normally distributed
rough surfaces. Real surfaces are, however, rarely normally distributed. For non-
Gaussian rough surface the SPM was described as another suitable approach pro-
vided the surface roughness is small. The Maxwell equations can also be solved

numerically using simulated surface height profiles. This enables the analysis of
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non-ideal surfaces under realistic geometries, however, the computational load in-
creases significantly with the complexity of the model, although that is less of a

problem with ever increasing computer power.

The forward problem has been useful in building up an understanding of the
relationship between physical parameters of the surface and the clutter characteris-
tics. However, the techniques are still too underdeveloped to be used for devising

optimum algorithms for target detection and clutter classification.

6.3 Strong scattering models

The latter part of Chapter 3 dealt with the question of how single or multiparame-
ter statistical distributions can be used to describe the fluctuations in the detected
intensities. It also looked at what physical justification can be associated with the
statistical models. Starting from the assumption that the detected field is given by
the sum of contributions from a large number of discrete elementary scatterers, it
was shown that for strong scattering the phase will be uniformly distributed and
independent. At low resolution the number of scatterers would tend to infinity and
it was shown that for strong scattering the resultant field can be modelled as a
Gaussian process with the intensity fluctuation given by a negative exponential
distribution. However, it was observed that as resolution increases the clutter in
both MTI and SAR images exhibit non-Gaussian statistics. The log-normal and
Weibull distribution were not considered to be suitable models for describing the
coherent clutter statistics despite empirical evidence from a number of researches
since they cannot be represented by a discrete scatterer model. The K-distribution,
on the other hand, was shown to be the result of a negative binomial fluctuation of
the number of scatterers. This is quite a plausible model since as the size of the
resolution cell decreases the number of scatterers will be finite and, given the com-
plex nature of the clutter, the scatterer number will undoubtedly fluctuate. The K-
distribution can also be expressed as product of two statistical processes; a negative
exponential intensity fluctuation arising from the coherent interference of the
scatterers and an intensity mean which fluctuates according to a gamma process

associated with the underlying surface RCS fluctuation. It was shown that the ot-
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der parameter of the distribution can be related to the clutter spikiness. Chi-
squared goodness-of-fit test and ML classification on MTT and SAR data gave em-
pirical evidence to support the K-distribution as a teasonable descriptor for me-

dium resolution cluttet.

6.4 K-distribution parameter estimators

Having reached the conclusion that the K-distribution is a reasonable model for
the coherent land clutter statistics the next task was to address the problem of op-
timal parameter estimation. This was investigated in Chapter 4. It was shown that
the ML solution does not have a closed form and a numerical search over the
mean intensity and order parameter of the K-distribution is computationally very
inefficient. An ML estimate for the mean intensity is given by the average intensity
provide the clutter is homogeneous and the image sutface cross-section is constant
which is the case for negative exponentially distributed intensity. For K-distributed
intensity, where the surface cross-section fluctuates according to a gamma distri-
bution, the average intensity can still be taken as a reasonable approximation for
the mean intensity. A similar simple form for the optimum estimate for the order
parameter is less forth coming. An example of a simple estimator for the order pa-
rameter of the K-distribution is the intensity contrast texture measure but it was
shown to have quite high error values especially for small sample sizes. The noz-
malised log texture measure was shown to be more reliable estimator. It was
shown that better agreement is obtained between predicted errors and simulated

results if the analysis is carried out in the ¢ parameter space where ¢ =1/v. How-

ever, overall the normalised log estimator was shown to be still sub-optimal com-

pared to the ML estimator.

The texture measure estimators use the pdf of the statistical model to specify
the relationship between the estimator and the model parameter. Neural net can
obtain a similar connectivity between texture measure and model parameters
through adaptive weighting. Thus a technique based on neural nets, in their capac-
ity as functional estimators, was used to devise a t parameter estimator. A large

number of experiments were carried out using a whole range of different neural
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nets and the standard deviation of the f parameter estimates was measured. A
number of lessons were learnt regarding the optimum arrangement of the neural
net to carry out the task of the ¢ parameter estimates. A few of the main point are

summuarised as follows.

1. A simple MLP with one hidden layer is sufficient to learn the problem. The
weights connecting the input layer to the hidden layer nodes have to be
non-linear to enable the neural net to have a non-linear mapping capability.
On the other hand, for the neural net to give a real value output over a
continuous range instead of the more common binary output, linear
weights have to be used for connecting the hidden layer to the output

node.

2. The output layer has just one node since only a single parameter estimate is
required. The input layer will have number of nodes equal to the sample
size or the number of moments used to calculate the estimate. The neural
nets were found to be able to learn the parameter estimation problem with
just 16 nodes in the hidden layer. A net with a larger hidden layer would
require fewer epochs to reach the solution although each epoch would take
longer since there are more weights to update. However, the net size can-
not be increased indefinitely since it would then learn the training data ex-

actly without any generalisation.

3. An estimator for a continuous function can be formed by training the neu-
ral net on images which contain just a few selected examples of the pa-
rameter values over the range of interest. For the ¢ parameter it was found
that the sampling space can be gradually increased as the ¢ parameter of the
simulated images increased. Thus for example, the difference in the ¢ pa-
rameter values of the two images containing the data for the smallest pa-
rameter was 0.4 compared to the difference between the parameter values
of the two images containing the highest values which were 2.0. The train-
ing process for the neural net utilised a smaller independent tuning data set

to determine the peak on the convergence curve and halt the training proc-
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ess. The testing of the neural net estimator showed that it is capable of in-
terpolating between values of the parameter not included in the original

training data set.

4. The convergence of the neural net is very sensitive to the dynamic range of
the input data. The net failed to converge when trained directly on the in-
tensity data. Using log intensity data also did not produce any fruitful re-
sults with the neural net. However, it was shown that if the neural nets are
trained on texture measures of K-distribution data, they are capable of es-
timating the ¢ parameter on unseen data when it is presented to the neural

net with identical pre-processing as the training data.

The neural net research showed that good estimators for the t parameter of
the K-distribution can be obtained provided the nets are trained on texture meas-
ures of the imaged data. The net found an optimal way of combining the normal-
ised log intensity moment and the amplitude contrast of the data to give a very use-
ful estimator for the parameter. This estimator out-performed the simple normal-
ised log texture measure based estimator for a wide range of values. The net high-
lighted the importance of using combinations of moments to achieve more accu-

rate texture measures.

The improvement in the # parameter estimate with the neural net estimator led
us to propose a new hybrid estimator which combines the normalised log and the
contrast of amplitude to provide a more accurate texture measure. The theoretical
errors for this estimator were derived and it was demonstrated that its performance
depends on the weight according to which the two moments ate combined. It was
shown that there is a constant value of this weight for which the hybtid normalised
log estimator gives better performance over existing textute measure estimators

over a wide range of ¢ values which are of interest. However, for best performance

an iterative scheme is used which selects the optimum ¢« for any given value of . It
was shown that using a simple iterative scheme the hybrid normalised log estima-
tor is able to obtain errors that are almost indistinguishable from the ML perform-

ance. The advantage of this moment based estimator is that it is computationally



6.5 WEAK SCATTERING MODELS 125

morte efficient than the numerical ML solution which makes it suitable for real time

evaluation.

Neural nets have been able to obtain the parameter estimates without explic-
itly being told the ML criteria. This demonstrates the potential of neural nets to
provide accurate parameter estimates in situations where it is not possible to write
down the exact ML criteria. Thus for example in estimating the parameter values
for correlated data where the exact pdf of the statistical model is not known or for
estimating the line width in correlated data where it not clear what the quantity
ought to be which is to be maximised, neural nets have the potential to be an ef-

fective estimatot.

6.5 Weak scattering models

In Chapter 5 the clutter analysis is extended to higher resolution systems. The
phase of the detected field can no longer be assumed to be uniformly distributed.
This can be modelled by a weak scattering process for which the four clutter mod-
elling questions posed in the introduction are answered in Chapter 5. It was shown
that the partially developed speckle can be modelled as either a biased random
walk which gives rise to a generalised-K distribution for the amplitude statistics
when the number of steps fluctuates according to a negative binomial distribution.
Alternatively, the weak scattering process can be modelled as a coherent sum of a
constant vector with a K-distributed process which gives rise to a homodyned-K
distribution. Both of these distributions can be expressed in a compound form
similar to that of the K-distribution. It was shown that for the homodyned-K dis-
tribution it is given by a Rician distribution with a mean-square noise component
varying according to a gamma distribution and a constant offset. The compound
form for the generalised-K is also a gamma modulated Rice distribution but the
gamma distribution gives both the fluctuations in the mean-square noise level and
the coherent amplitude in a correlated manner. It was shown that the compound
model can be used to generate simulated data for the weak scattering disttibutions.
The simulation process was verified by getting a good match between the meas-

ured histograms and the predicted pdfs. However, the pdf comparison fot the ho-
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modyned-K was restricted to V values equal to 1 due to a lack of a closed form for
the theoretical pdf, even though histogram plots of the homodyned-K distribution

for other Vv values were shown.

The task of the optimal parameter estimation is complicated due to the intro-
duction of a third offset parameter for the weak scattering models. For homo-
dyned-K distribution a large V expansion of the pdf is used to detive simplified
expressions for the second and fourth moments. Using these expressions, an esti-
mator is proposed for the homodyned-K offset parameter. An expression for the
predicted error in the estimate of the offset parameter is derived using the small
perturbation analysis. A good agreement is obtained between theoretical predic-
tions and simulated results. An estimator is also proposed for the ¢ parameter of
the homodyned-K for which the error predictions are also derived. However, the

shape parameter errors get unacceptably large as the assumption of large V breaks

down. For the generalised-K distribution an estimator for Ho in the limit of
V — oo is proposed but the etrors render the estimator ineffective. Further investi-
gations are required to obtain good estimates for the homodyned-K and the gener-
alised-K distribution. Furthermore, the ML error performance for the parameters
of the weak scattering models needs to be established either through numerical
simulations or by deriving the Cramer- Rao bound to get a proper assessment of

the sub-optimal nature of the proposed estimators for the weak scattering models.

6.6 Future Work

In Chapter 4 it was shown that near optimal estimators for the parameters of a
non-Gaussian distribution can be obtained using a method of moment combina-
tion even though there is no closed form ML solution available. Although this
showed only modest gains compared to previously known best texture measute
estimator for the K-distribution, the main strength of the technique is that it is ap-
plicable to any theoretical distribution. Some initial results have been quoted in
Chapter 5 for the estimators for the weak scattering models using this moments
combination technique, however, further development has to be carried out before

reliable estimators are obtained. It may require an investigation using neural nets to
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determine the best combination of moments for the weak scattering parameters as
it is reported in Chapter 4 for the K-distribution parameter. However, the training
data set would need to contain a representative samples of both f and Uo parame-
ters which could force it to be quite large. Furthermore, the assessment of the es-
timator performance would be greatly facilitated by a knowledge of the limit of the
ML performance. This could either be obtained by performing a numerical ML or
deriving the Cramer-Rao bound for the ML solution. Only once reliable estimators
for the weak scattering models are developed can these distributions become prac-
tical for real radar systems. Further empirical evidence should also be gauged for
the suitability of the weak scattering models for radar surface scattering and sonar

seabed scattering.

In this thesis all parameter estimation has been carried out assuming inde-
pendent data samples. However, in real radar data, clutter appeats as correlated
[62]. Using sub-sampling by an appropriate amount, independent samples can be
obtained from correlated data, however, at the expense of loosing information. It
is therefore, highly desirable to develop estimators for the parameters of correlated
textures. This development has been hindered through the lack of suitable pdf
models for correlated non-Gaussian textures. The neural net may prove very ef-
fective in developing suitable estimators for correlated non-Gaussian textures since
they do not require to be given an exact ML criterion. They have the potential of
inferring the relevent single and multi-point statistics from the data using non-
linear weights. However, a closed form analytical expression for the correlated
non-Gaussian pdf for the K-distribution or the weak scattering models will enable
to carry out a small perturbation analysis on the parameter estimators which has

been shown in this thesis to be a very useful analysis tool.

The main motivation for developing optimal estimators for the clutter distri-
butions, as stated in the introduction, is to improve target detection and clutter
classification which uses the clutter models. Historically such algorithms have been
developed assuming Gaussian statistics even though considerable evidence has
been generated to show that surface clutter exhibits non-Gaussian statistics. Where

non-Gaussian clutter models have been used the full potential performance has
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not been utilised due to sub-optimal estimators. The performance of such algo-
rithms should be re-evaluated using the near optimal estimator proposed in this
thesis for the K-distribution. This would then enable a comparison of the im-
provement gained in false alarm rate and clutter classification with the increased
complexity of the algorithm. The same should be repeated for the weak scatteting
distributions once suitable optimal estimators have been developed. At higher
resolution, land objects appear as targets extended over many pixels in a radar im-
age. Therefore, for optimum target detection a multi-pixel detector has to be de-
veloped. This would enable to take proper account of the target correlations which
can then be distinguished from any clutter correlations. However, this requires
proper model for the higher order statistics of clutter and targets (since a mult
pixel target can be envisaged to contain texture information) and optimum pa-
rameter estimators for these. This developed will hopefully lead to improved target

detection performance in high resolution surveillance systems.



Appendix A

A. Evaluation of errors of estimated
quantities using small perturbation

analysis

The bias and vatiance of a function of estimated parameters can be approximated
by expanding the function around the expected values of the estimates [64]. In
Chapter 4 and 5 there were a number of quantities for which the predicted error
performance was analysed using the small perturbaton method. In the following
sections the derivations for the theoretical expressions of the error performance

for these quantities are shown.

A.1 Mean of variable x

The quantity and its estimate are defined by
t, =(x) A1)
fo=i=m" x, (A.2)
We now expand the expression about its mean value. Thus (A.2) can be written as

A, =(x)(1+¢) (A3)

where &= fc/ (x)—1. The expectation value of the function and the squate of the

function are then given as

129
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(A,)=(x)+(x)&) (A.4)
<(‘ﬁ'x )2> = (x)" +2(x)"(&) + (x)*(&*) (A.5)

The bias and the variance of the estimated quantity are defined respectively, as

A, = () -, = (x)E) (A6)

(A7)

(&)= <( <i> - 1]) =0 (A.8)
and for (£2) it is given as

<§2>:<(<i) —1)2>=%(t—;>—1j (A.9)

Substituting for <§> in (A.6) gives the bias as

Au, =0 (A.10)
which shows that the mean of a variable is an unbiased estimate. Substituting for

<§> and <€2> in (A.7) gives the expression for the variance as

ol :l(<x2>—<x>2) (A1)

Now if x is considered to be the intensity (i.e. x = I) then for an assumed negative
exponential distribution the moments can be substituted from (3.30) in (A.11) that

gives
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1
oy =M (A.12)
m

which is the result (4.11) used in Chapter 4. The corresponding expression for the
variance of the mean estimate of the intensity for an assumed K-distribution can

be obtained using (3.49) to give

2 1 2 2
o, =— M| 1+— (A.13)

T m 1%

which is the result (4.12) used in Chapter 4.

A.2 Contrast V, of the variable x

The measure and its estimate are defined by

V <x2> 1

T
V, = m_lixf/(m_lixi) ~1 (A.15)

i=1

(A.14)

The denominator of the estimate is expanded about its mean value and only terms
up to first order in 1/ m are maintained. Using the same procedure as in Section

A.1 it can be shown that the bias and variance are given as

AV, =(V,)-V,
] (A.16)
=-—[2x, + x, -3x2]
m
o; =((v, Ny
=)0 .

= %[}q ~4X,X, ~ X} + X}]

where X, = <xi> / (x)" are the normalised moments of x. Once again consideting

the intensity variable, then for an assumed K-distribution, the moments ate ob-

tained using (3.49) and the bias is given as
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N 1 1 6
AV, ==2—|1+—|[1+— (A.18)
m Vv Vv
which leads to the fractional bias result (4.16) used in Chapter 4. Similarly the vari-
ance is given as
1 1 4 5
o) = 4—(1 + —)(1 + —)(1 + —) (A.19)
! m v 1% \4

which is the result (4.17). The first order approximation for the variance of V from

the measure V, is obtained using the relationship (see Appendix B)

2
Vi

AT

O
(A.20)

Therefore, for K-distributed intensity the predicted variance in the order parameter

obtained using the intensity contrast estimator is gives as

o2 =—|1+—|1+—| 1+ (A.21)
m v \% 1%

which is the result (4.19).

A.3 Normalised log U, of the variable x

The measure and it estimate are defined by

U, =(Inx)—1In{x) (A.22)

i Inx, - ln(% E'n: xij (A.23)

1
m’
Again expanding about the mean value and retaining terms up to the first order in

1/ m gives

1 (A.24)
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(A.25)

[L, - +2L, -2X,L+ X, -1]

for the bias and variance, respectively, where X,L= <xi In x> / (x)' and
L= (lni x>. Using (3.49) for the intensity moments of the K-distribution gives

the results quoted in Section 4.3.2. Using the relationship (B.6) the variance in V or

t can be obtained from (A.25) which gives the result (4.23) and (4.24) respectively.

A.4 Hybrid normalised log W, of the variable x

The measure and its estimate are defined by

W, = a(lnx)—In(x))+(1- o () -1 (A.26)

x

i=1

m

1
1 m 1 m —2 'xi
W, O{——Eln X, —ln(— xl)] +(1-«a ﬁi—z—l (A.27)
" " 13)
i=1 l
Again expanding about the mean value and retaining terms up to the first order in

1/ m gives the variance as

o5, = {00, )~ ()

&L, -+21,-2X,L+ X, -1]
m
1-a) 2 2 (A.28)

N 20(1-«x)
m

o
|iX2fL—2X2J—XfL+ XzJ’L+2X3J’_X2J'_ XZJ—:I
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where Xi,/— = <\/?>/<w/;>l and XiJ_L = <\/; In x>/<w/;>l . Again considering
x to be the intensity and assuming a K-distribution, (3.49) can be used to expand
the moments in terms of the parameter values that leads to the expression (4.31).
Using (B.6) to convert (A.28) into errors in f leads to the result (4.33) used in
Chapter 4.

A.5 Offset second moment L, of the variable x

The measure and its estimate ate defined by

ty =(x*) -1 (A.29)

m

oy = xl -1 (A.30)

1
m g

Again expanding about the mean value and retaining terms up to the first order in

l/ m gives the variance as
(A31)

Assuming x to be homodyned-K distributed amplitude then the expressions for
the second and fourth moment can be substituted from (5.11) and (5.12) respec-
tively giving the result (5.14) for the relative variance in the offset parameter for the

homodyned-K distribution.

A.6 Modified fourth central moment Y, of the variable

X

The measure and its estimate are defined by

Y, = (x*) - ((x*) +1)° (A.32)

i=1

m m 2
xt - (i Y oxZ+ 1j (A.33)
m
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Again expanding about the mean value and retaining terms up to the first order in

1/m gives
AY, =(%,)-¥,
=) ()] 9
o =((%))- (%)
x8> - 4<)c6 <x2> - 5<x“>2 + 13<x4><x2>2 - 4<x6> (A.35)

1
m| o 16<x4><x2> - 16<x2>3 + 6<x4> - 6<x2>2 - 8<x2>4

for the bias and variance respectively. Again considering x to be the amplitude and
assuming a homodyned-K distribution, the expression for the moments of the
distribution can be substituted in (A.34) and (A.35) to atrive at the relatonship
(5.16) and (5.17) respectively. Using (B.G) to convert (A.34) and (A.35) into errors
in t lead to the results (5.19) and (5.20) used in Chapter 5.
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B. Calculating the variance of a pa-

rameter @ from a measure Q

Consider a statistic Q which is related to a parameter @ through a function g. The

expectation value for Q is

0=g(p) B.1)

An estimate for @, namely ¢, can be defined such that the measured statistic is

related to the parameter estimate as

A

0=¢(9) ®.2)

In the asymptotic limit the measured statistic will take its expectation value and in
this limit the inverse function of the statistic will be the true value of the parameter.

The parameter estimate is thus asymptotically unbiased.
Using a Taylor series expansion

+@—@W3%
() 2 ¢

£(0)- £((9))=(6-(9)) 5 ot ©Y

In the asymptotic limit, ((ﬁ) — @ and substituting for the statistic Q in (B.3) gives

(6-(0) o
[0 () 2 a(ijz

CR B.4)
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Taking the square of both sides and then taking the expectation values gives

(@-0))=] (¢—<<a>)2[§gr|¢ff¢<¢)d“

+[(o- 8§0

(B.5)

¢

A

Assuming that <(¢7 - <(/3>)j> << O'q{ where j <3, then the variance in Q is re-

lated to the variances in the estimated quantity ¢ as

0'—0'( Ij B.6)

Simulations were used to compare the third order central moments of ¢ (and V)
values, obtained from the 1% , U and W texture measures, to the variance in the
estimated values and they were found to be an order of magnitude smaller. It will
be assumed that the higher order central moments ate also negligibly small. In this

case the pdf of 7 (and V) is very concentrated about its mean and the first order

approximation used in (B.6) then holds true for the texture measures V, U and W.



Appendix C

C. Chi-squared significance test

This test is used to measure the goodness-of-fit. For a given set of random sam-
ples, we can test the hypothesis that the undetlying distribution belongs to a spe-

cific family of distributions.

The hypothesis is tested by first binning the samples into M bins. The chi-
squared statistic ()X?) is then found by comparing the actual histogram entries with

the predicted mean entry values

7 = f} (m :n”}f) C.1)

where m; is the number of entties in the histogram bin i, f; is the pdf value for the
data of bin i and m is the total number of data points in the sample. A probability
is then assigned to this recorded difference given by
M-1
2{ 2 ) M3 2
£a(x?)= ) () ) exp(— ’% ) (C2)

A useful way of expressing the outcome of the chi-squared test is to obsetve the

failure at the 5% level for the upper tail probabilities. The upper tail probability
f()(2 > t) is given as

o >0)=] 1 (x*)ax (C3)

t
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The chi-squared goodness-of-fit test was carried out on all three of the real radar
images discussed in Chapter 3 (see Figure 3.6 and 3.7). For the MTT image, blocks
of 91 range gates in each of the 64 frequency bins were selected for the chi-squared
test. The data had been over-sampled by 2 and this was corrected by sub-sampling
by two which gave 45 independent samples to be used for the goodness-of-fit test.
A histogram was constructed from this data using five bins and setting the bin
spacing to get equal probability of occupancy. This would give on average 9 sam-
ples per bin which were considered to be sufficient to measure the chi-squared sta-
tistics. The bin spacing for a negative exponential distribution with mean l; can be
set analytically using the expression

PR ln(l - ﬁ) C.4)

for the upper bound of the ith bin. The appropriate bin spacing required for an
equal probability of occupancy for a K-distribution with mean f; and order pa-

rameter V has to be determined using an iterative process.

Furthermore, the chi-squared statistic nominally has M —1 degrees of free-
dom. However, since the patameters of the distribution under test have to be esti-
mated using local statistics this effectively reduces the degrees of freedom for the
chi-squared test. Using simulated data and measuring the failure rate at the 5%
level on the upper tail probabilities it was found that the effective degree of free-
dom for the negative exponential distribution reduces to 3.0 and the K-distribution
to 2.3. These were the values used for the goodness-of-fit results presented in
Chapter 3.

The same procedure was carried out to petform the chi-squared test on the
SAR images, the only difference being that a stepping window of 9X5 was used to
select the independent samples. Thus for an original image of 512X512, a good-

ness-of-fit image of 102X56 was obtained.
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D. Maximum likelihood classifica-

tion

The ML classifier is used to select a model from a set of candidate distributions
that best describes the data. For m independent samples {x1 I S xm} , the total

probability of occurrence Pris given by
B ({x Ya, Jax =TT £,(xd, Jax D.1)
i=1

where f, (xl.ld k) is the pdf for the given distribution di. The ML classifier selects

the distribution that yields the maximum value for P, ({xi}ldk). The ML classifi-

cation is performed over small areas of the radar data to ensure that homogeneous
regions are selected for this test. Where model parameters are not known a priori

they are estimated from the data.

In Chapter 3 this test was used to select between negative exponential distri-
bution and the K-distribution for the three examples of real images considered.
The size of the stepping window used to select independent data samples for the
ML classification test were kept identical to those used for the corresponding chi-
squared test (see Appendix C). Thus for the MTI image (see Figure 3.6) the size of
the stepping window used was 91 range cells by 1 frequency bin and the data was

sub-sampled by 2. For the SAR images (see Figure 3.7) the corresponding size of

the stepping window used was 5X9.
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E. Relationship between the input
and output distributions of basic bi-

nary operators

Given two independent positive random variables x1 and x with pdfs f, (x) and

fx2 (x) respectively, the pdfs of their sum, difference, absolute difference, product,

ratio and normalised ration are:

l.sum y=x, +x,
y
£,0)=] £y =21, (x)dx ED)
which by the convolution theorem equals
1 ¢ .
:EL ®, (), (w)e " do (E.2)
where ® (w) and D, (w) are the characteristic functions of x1 and x».
2. difference y = x, — x,
y
H,0)=[0 g fe b+ 2)f, () (B.3)

3. absolute difference y = ‘xl - xz'

5,0) =L [£. 5+ 0)f, 0+ £, @), (3 + x)Jax .4
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4. product y = x,x,
y y 1
= = —dx
£, ()=, f,{,(x)fch ()
. X
5. ratio y =—

£,0)= [ £, ()£, (x)xax

. . X X,
6. normalised ratio y = min{ —,—=
X X4

£,0) = [ 1 00) o )+ £, () F,, ()|
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Appendix F

F. Glossary

This glossaty briefly defines various mathematical functions and relationship re-
ferred to in the main body of the thesis. For further details on topics listed see; [1]
for mathematical functions, [14] for relationships involving the Fourier transform,
and [21, 63] for the statistics of random variables and processes. For ease of refer-
ence topics listed in the glossary are printed in bold in the main body of the thesis
wherever the reader may require further explication of the topic (e.g., whete it is
first introduced), and when they are mentioned in the glossary under topic head-
ings other than their own.

Autocorrelation and Autocovariance

The autocorrelation function (ACF) R(‘L‘l , 1'2) of a random process x(7) at T

and 7, is defined by
R(TI,T2) = <x(1‘1)x(1'2 )> (F.1)

and the autocovariance C (Tl, 72) of a random process x(7) at 7 and 7, is de-

fined by

C(TI,T2) = <x(r, )x(r2)> - <x(T] )><x(12)> (F.2)

The normalised autocorrelation function r(T],TZ) at 71 and 72 is derived by

dividing the autocorrelation function at 71 and 72 by the expected values of

)C(T) at Ty and T
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_ R(Tl’fz) <x Tl)x(TZ» 3
o) T e)) e ol ©

The normalised autocovatiance function c(’L’I , Tz) is defined likewise

_ C(r,,rz) B <x(71)x(72)> _1 4
S o 0

The correlation coefficient is given by dividing the autocovariance by the vari-

ance.

Where T, =7, =7, the above functions generate the following first order

statistics of x(7) at 7. The autocotrelation function gives its second moment

R(ty,7,) = <x(TO)2> (F.5)
the autocovariance gives its variance
C(79,75) = <x(ro )2> - <x(1‘0 )>2 = O'f(fo) (F.6)

the normalised autocorrelation function gives its second normalised mo-

ment

r('l'o, TO) = = x(TO )(2) F.7

the normalised autocovariance function gives its coefficient of variation

oy )G
R

When the random process x(7)is stationary its autocorrelation function only

=2 (F.8)

dependson T =17, — 7,, ie.

R(t)=R(z,,7,)= R(z,,7,) (F.9)
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whete T=17, -7, =17, - 1,.

Bessel functions
Bessel functions are solutions to the differential equations [1]
,d’w  dw

FE +zd—z+(a522—v2)w:0 (F.10)

Z

where a, =*1. When a, =1 solutions include the Bessel function of the
first kind J,(z), and when a, =—1 solutions include the modified Bessel

function of the second kind K, (z) . Here we list the main properties of Bessel

functions used in preceding chapters.

When v = 0the Bessel function of the first kind has an integral representation
[1]-9.1.21)

1 =
Jo(z)==—| e/***%do 11
@)=o-]e E.11)

and a series expansion [1]-(9.1.10)

Jo(2) = i(‘—l)k—zi (F.12)

The modified Bessel function of the second kind has an integral representa-
tion [1]-(9.6.24)

K, (z)= f: ™™™ cosh(vy)dy (F.13)

where |£z| < 7/2 . The first derivative of K,(z) with respect to Z is given by

[1]-9.6.26)

K\:—l(z) =

(KV(Z)+ KV_Z(Z)J (F14)

2

Central limit theorem
The central limit theorem states that under certain conditions the sum

Yy = x;++-x,, of m independent continuous random variables tends to being
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Gaussian  distributed with mean W4, = py+--U4, and variance
2 _ 2 2 :
0, = 0, t+ 0, as m Increases.

Sufficient conditions for the central limit theorem to apply are [63]:

1. The variance of the sum must tend to infinity as the number of variables

tends to infinity.

2. For some number n > 2 the nth moment of all the variables must be finite.

Characteristic function

The characteristic function @ (@) of a random variable x is given by the

Fourier transform of its probability density function £, (x)
®, (@)= f.(x)e/ " dx = (/™) (F.15)
and the inverse Fourier transform of the characteristic function gives the pdf
() =" @, (k" do (F.16)
X 2 n oo X

Substituting for e’ i by its series expansion given by [1]-(4.2.1)

e/ = i(/wx) (F.17)

@x(w):g(’:‘;) (x*) (F.18)

Thus the nth moment of x can be generated from the characteristic function

by taking the nth derivative of its characteristic function

d"® (0) < /ffo ) ..
dws =§/k! (x4 (F.19)

and setting @ = 0. The nth moment is then given by
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(x")= /= (F.20)

Circular symmetry

A bivariate function is termed to be circulatly symmetric if its value only de-
pends on the radial distance from the origin [63], i.e., the function f (x, y) 1s

circularly symmetric if

f(xl’yl):f(xZ’yZ) (F.21)
whenever
Xy =Xy, (F.22)

A complex random variable is said to be circulatly symmetric if its probability
density function is circularly symmetric; this will be the case if and only if the
phase and amplitude are independent. The phase will then be uniformly dis-

tributed over the interval (— T ) The real and imaginary components of a

circularly symmetric random vatiable ate uncotrelated but they can only be
independent if and only if they are Gaussian, i.., if the amplitude is Rayleigh
distributed.

Coefficient of variation
The coefficient of variation of a random variable x with mean p, and vari-
ance O'xz, is a measure of the width of its distribution relative to its mean

value. It is given by

v:=—% (F.23)

The square root of the coefficient of variation, i.e., standard deviation/mean,
is normally used to measure contrast in an image degraded by multiplicative

noise.

Convolution theorem

Given two functions f,(x) and f,(x)with Fourier transforms F,(w)
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and Fz(w) respectively, the convolution theorem [63] states that their con-

volution f(x) = f,(x)* f,(x) defined by

F&) =" A= y)ay (F.24)

has a Foutier transform F(w) equal to the product of the Fourier transforms

of the two functions
F(0) = F(0)F,(0) (F.25)

It follows from the convolution theorem that the characteristic function of the
sum of two independent random variables will be given by the product of
their characteristic functions. This is because the probability density
function of the sum of two independent random vatiables is given by the
convolution of their pdfs (E.1), and because the characteristic function of a

random vatiable is just the Foutier transform of its pdf.

This result can be extended to the sum y of m independent random variables

X;, with the characteristic function of their sum @ y(a)) being given by the

product of the characteristic functions @ (@) of the variables
@ (w)= <e/'wy> - <e/'w(x1+---+x,,.)> - <e/'wx, > ,,<e/'wx,,,> _ ﬁ ®, (@) (F.26)

i=1

Cumulative distribution function
The probability that a random variable x is less than y is given by its cumula-

tive distribution function (cdf)

prob(x < y) = px(y) F.27)

The cdf of x is derived from its probability density function by integrating

the latter from —e° toy

p.(y)=]" £.(x)x (F.28)
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Digamma function

The Digamma function [1] is defined

w(e) =L 1nr(e) =

iz I(z) (F.29)

where T'(z) is the gamma function. For positive integer values it is given by

k-1 1
w(k)=-vz+ 2~ (F.30)

when k22, and

v(1)=-7; (F.31)
where ¥y, =0.57722... is Euler’s constant. As k — oo

w(k)— Ink (F.32)

The first derivative of Digamma function v’(z) is known as the Trigamma

function. For positive integer values it is given by

r &l
w'(k) = 6 &7 (F.33)
when k > 2, and
7
y(1)=" (F.34)
As k— oo
w'(k)—0 (F.35)

Ensemble average

The ensemble average (or expected value) of a function u(x) of a continuous

random variable x, is indicated by the operator (-), and is defined

() = [~ ulx)f,(x)x (F36)
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where f_(x) is the probability density function of x.

In the case of a discrete random variable k the ensemble average

(k)= X u(k) , (F.37)

where f, is the probability density function of k.

Error function

The error function erf(z) is the integral of the Gaussian distribution given

by
2 ,
erf(z) = ;f exp(- y*)dy (F.38)

Estimation

Given a set of random variables x,,...,x,, described by some unknown pa-
rameter ¢, an estimate @ of @ based on the observations Xy,..., X, is said to

be unbiased if

(0)=0 (F.39)
and the estimate is said to be consistent if

R ) (F.40)
as m—» oo,

Fourier transform

The version of the Fourier transform F(w) of a function f(x)used in this

thesis is defined
F(o)= [ f(x)e/dx (FA1)

and the inverse Fourier transform is defined
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1 = .
fx)=5- [ F(@)e/dw (FA42)

Gamma function
The gamma function ['(z) is defined
I(z) =] e™x*ldx (F43)
and has the property
(z+1)=z(z) (F.44)
For positive integer values k

Me+)=k!=k-(k-1)..3-2-1 (F.45)

d f =—
and for z >

r(l) = (F.46)

Gaussian distribution
A Gaussian (or normal) distributed random variable x with mean U, and vari-
ance 0y? has probability density function

_(x —Hx )2

e 2 (F.47)

1
2no,

fx)=

and central moments (i.e., with mean normalised to zero)

R

0 n odd

Independence and Correlation

Two random variables x and y are statistically independent if and only if their

joint pdf f, (x, y) is equal to the product of their marginal pdfs f,(x) and
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£,0)

fo,(.9)= £, £,(3) (F.49)

this is equivalent to the condition that for all moments

(xmym) =) (y™) (F.50)

When the above condition holds for the first moment (mean values)

() ={x)(y) (F.51)

the random variables are said to be statistically uncorrelated. Thus independ-
ent random variables will also be uncorrelated; the reverse is only necessarily

true if both random variables have Gaussian distributions.

Jacobian

Given two sets of m random variables x = x,,...,x,, and y=y,,...,y, re-
lated by the transform x, = gi(y), their joint pdfs f,(x) and fy(y) respec-

tively are related by

£,)=£.(80) - 8.()M1 (F.52)

where J, the Jacobian of the transform g(y) is given by

WL

& |% d
J=—=|" : (F.53)

O P

‘%’m aym

Joint and marginal distributions
The joint probability that x;, < y,,...,x,, <, is given by the joint cumula-
tive distribution function Fx(y), where x =x;,...,x,, and y=y,,...,¥,.

The joint probability density function of x is defined

£(y)= IED)

D0y, (F.54)
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Thus
F(y)=["[" f(x)dx,...dx, (€.55)
The matginal pdf of x; is derived from the joint pdf of x by integrating it over
Xpyeos Xis Xpygreeer Xy
fo)= [ f)dx,...dx dx,,...dx, (F.56)
Mean

The mean value U, (ot first moment) of a random vatiable x gives its ex-

pected value and is defined by its ensemble average
u, =(x) F.57)

Moments

The nth moment of a random variable x is defined
(x7) =[x f(x)ax (F.58)

where f

x

(x) is the probability density function of x. The moments of a

random variable can also be generated from its characteristic function.

Normalised moments
The nth normalised moment of x is given by dividing its #th moment by its

mean value raised to the power n

(n)

(F.59)

Probability density function
The probability density function (pdf) of x is given by differentiating its cu-

mulative density function

£l =22 )
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Stationarity
A random variable x(7) is considered to be strict-sense stationary if its statis-

tical properties are invariant to a change of origin. The process is considered
to be wide-sense stationary if the mean is constant and its autocorrelation

function only depends on 7—7,.

Variance and standard deviation

The variance 0 of a random variable x gives a measure of the width of its

distribution and is defined
o2 =((x-p,)") = (*) = (x) (F.61)

where 4, = (x) is the mean value of x. 0, , the square-root of the variance,
gives the standard deviation of x.
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G. List of Symbols

a weight ratio for combining the two moments in the hybrid

normalised log texture measure

o kth parameter of a distribution

parameter of the Jacobi polynomial

™

Ve chi-squated statistic

5P 2-way phase difference

OoR 2-way slant range path difference
Ah height difference between two points on a sutface S
Ay bias in mean of x

Ay bias in mean of intensity

AB angular width of a subaperture

AU, AU, bias of texture measure U,

AV, AV, bias of texture measure V,

AY, AY, bias of texture measure Y,

€ parameter of the Jacobi polynomial
D phase of the detected field

155
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dr)
Dx.y)
o

Dy

O, )
Y

I1z)

Ye

M
HUn
Ho

P

phase of a wave at point r

phase of a wave at point x and y
depression angle

phase of constant vector

phase of the kth scatterer
function of the components of u
gamma function with argument z

Eulet’s constant

parameter of the generalised gamma distribution

parameter of the statistic Q
local incident angle
wavelength

intensity offset

mean of intensity

mean of number of steps in a random walk
mean of RCS

mean of random variable x
order parameter
3.14159.....

phase

antenna azimuth angle

incident angle of a plane wave to a surface
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OF
O
0J4

Ot

Ky

M
Oy
Oy
O

Oy, Oy

Oy, O'V,

Oow, O-W,
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mirror incident angle of a plane wave to a surface

azimuth angle between the start of the kth subaperture and the

platform velocity vector

azimuth angle between the middle of the subaperture and the

platform velocity vector

reflective angle of a plane wave from a surface

reflective angle of a plane wave from a point x; on a surface
reflective angle of a plane wave from a point x; on a surface
surface radar cross-section

standard deviation of detected field £

standard deviation of surface height
standard deviation of intensity
standard deviation of log intensity

standard deviation of the mean of intensity offset
standard deviation of the mean of intensity

standard deviation of the mean of x

standard deviation of number of steps in a random walk

standard deviation of v
standard deviation of ¢

standard deviation of U
standard deviation of V

standard deviation of W
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Oy standard deviation of x

Oy, Oy, standard deviation of Y

T time

Tint coherent integration time

T, width of unmodulated pulse

7, width of modulated pulse

W dummy variable for frequency domain

£ error in the estimate of a quantity as a fraction of the expecta-
tion value

v beamwidth

W(z) digamma function with argument z

v(z) trigamma function with argument z

Va azimuth beamwidth

Ve elevation beamwidth

Vs exp( ¥, 2n )
surface term given by +

4 parameter of the generalised gamma distribution

a step length
A amplitude
A(r) amplitude of a wave at r

A(x,y) amplitude of a wave at point x and y



Ao

ag

agr

ax, ayr)
b

B

5

bw

C(7)

1)

C(u), C(w)

Cw

S o

&
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amplitude of constant vector

Bessel differential equation constant

parameter of the generalised gamma distribution
amplitude of the kth scatterer

the ratio v/u

bandwidth

birth rate

scalar parameter of the Weibull distribution

speed of electromagnetic propagation through atmosphere,

3%x108 ms'!
autocovariance function of a random process x(7) at time T

normalised autocovariance function of a random process x(7)

at time T
characteristic function

skewness of the Weibull distribution

4v 4
the expression _|— + —'Lio

U

antenna length

death rate

azimuth resolution
antenna azimuth length
antenna height

ground range resolution
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di
dsr

E, E(r)

fi7)
fx)
fxy.2)
F{(xa)
Flw)
Jfo

fa

fe

Ja

pdf of the kth distribution
slant range resolution
detected field

detected field at broadside
incident field

imaginary component of detected field

mirror incident field
scattered field observed at a point P
total scattered field

real component of detected field

scattered field contribution from the A* th term
field on sutface S

frequency at time 7

function of the quantity x

function of the quantities x, y and z

detected field at azimuth lag x,

Fourier transform of a function f{x)

carrier frequency

amplitude pdf

clutter Doppler shift

chi-squared probability

Doppler resolution
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Ja, Doppler velocity of the kth subaperture
e joint pdf of the detected field
fi predicted pdf corresponding to the ith histogram bin
fi intensity pdf
Fi intensity cdf
I pdf of the number of steps in a random walk
fi target Doppler frequency
S pdf of random variable x
F, cdf of random wvariable x
g(x) function of the variable x
h surface height
h(7) output of point target at time T
h(x,y) surface height at point x and y on surface S
h; surface height at point x;
hy surface height at point x;
ha(7) azimuth response of a point target at time T
hge platform altitude
h{7) range response of a point target at time T
i loop counter, ith element of a list
1 intensity
I; intensity of the ith data sample
In median value of intensity

j loop counter, jth element in a list
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/ V-1

J Jacobian transform

p—’ immigration rate

Jo(*) zeroth order Bessel function

k loop counter, kth element of a list

K(-) modified Bessel function of the second kind of order v
l number of parameters in a distribution

L likelihood function of a distribution with / parameters
L; log moments <1ni x>

Is average slope of the surface S

Lg synthetic aperture length

m number of independent random samples

M number of histogram bins

m; number of data entries in the ith histogram bin

n number of moments

number of scatterers or steps in the random walk

N, number of pulses coherently integrated

ns normal to a surface S

P observation point for the scattered field from a surface §
p(7) transmitted pulse at time 7

P platform position

PRF Pulse Repetition Frequency

Pr total probability of occurrence of m independent data samples



r(7)

R(7)
Ro

Rcoeﬁ

U, Ux
V, Vx
vac

Vi
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a statistic related to the parameter @ through the function g

distance between a point O on a surface S to an observation

point P

vector distance of an observation point from a point on a

scattering surface

slant range

normalised autocorrelation function of a random process x(7)

at time 7

autocorrelation function of a random process x(7) at time T
slant range at broadside
reflectivity coefficient

ground range

time resolution

dummy variable for integration
rough surface

maximum slant range

reciprocal of v

scalar variable

vector variable

normalised log texture measure
intensity contrast texture measure
platform velocity

coetficient of variation of intensity
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Vi

W, Wy

inj,k

Wk,out

X
Xa

Xi

Xk

Xout

X

target radial velocity
dummy variable
hybrid normalised log texture measure

neural net weight connecting the jth node of the input layer

with the kth node of the hidden layer

neural net weight connecting the kth node of the hidden layer

with the output layer node

random variable, Cartesian coordinate

target position on ground

normalised moments

azimuth lag

the ith data sample from m independent random variables

i

normalised moments <xi> / (x)

log normalised moments <xi In x> / (x)i
value of the input node of a neural net

value of the jth node in the input layer of a neural net

normalised square root moments <\/_x_' > / <\/; >[

log normalised square root moments <\/x_' In x> / <\/; >i

value of the kth node in the hidden layer of a neural net
value of the out node of a neural net
range lag

bin spacing for the upper bound of the ith histogram bin



Y, Y,

165

random variable, Cartesian coordinate
texture measure for homodyned-k distribution

argument of a function, random variable, Cartesian coordinate
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