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Abstract 

Coherent radar clutter statistics

Mohammed J ahangir

Ground surveillance radars have been used for a number o f years for target 

detection and terrain mapping. Neither of these tasks can be carried out without a 

proper understanding of the ground clutter statistics. Traditionally, radar signal 

processing has been optimised for Gaussian interference. However, ground clutter 

in high resolution systems is rarely Gaussian. Thus in this thesis the non-Gaussian 

statistics o f a coherent radar sensor are investigated.

The clutter statistics are a function of both the terrain features and the imaging 

process. One of the major influencing factors is the radar resolution ceU size. Thus 

as a prerequisite to studying the clutter characteristics the theory concerning radar 

resolution is discussed.

A review of the non-Guassian clutter models is carried out and the K- 

distribution is selected as a reasonable model for land clutter statistics based on 

empirical evidence. However, a major drawback with the K-distribution is a lack of 

efficient optimum estim ators for its parameters.

Neural nets are devised to give an optimum estimator for the order parameter 

o f the K-distribution. The minimum error is obtained with a net trained on the 

mean normalised log intensity and the amplitude contrast. A new estimator is pr o- 

posed based on the multiple moments model. It is shown that nearly optimum pe r- 

formance is achieved with the new estimator.

The parameter estimators are also investigated for a more general form of the 

K-distribution where the data statistics are such that a simple K-distribution is no 

longer sufficient to describe the clutter statistics. Estimators are proposed for the 

parameter values of generaksed-K and homodyned-K based on a large order p a- 

rameter approximation. Error analysis is carried out and a comparison is made 

between theoretical and simulated results.
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Chapter 1

1. Introduction

The Concise Oxford Dictionary gives the meaning o f clutter as 'crowded confu­

sion' or 'untidy state'. In a radar context clutter refers to unwanted signals - signals 

which confuse the detection of objects of interest. In ground surveillance radar the 

main objects o f interest for a military application are the man-made vehicles. The 

radar is being used for target detection and in this situation the signals from sea, 

ground, buildings and vegetation are considered as clutter. However, increasingly 

radar is being used for terrain mapping and, in this remote sensing application, the 

signals from land and sea are the ones which are of interest. Nevertheless in this 

thesis the term clutter will refer to the radar returns from land and sea irrespective 

of the application. The question arises why there is a requirement for studying 

clutter characteristics. The answer to this very much depends upon the application 

of the radar. Thus there are essentially two reasons for studying clutter which fol­

lows from the two distinct applications of the ground surveillance radar, i.e. target 

detection and terrain mapping. A review of these two applications o f ground sur­

veillance radar would give an appreciation for studying clutter characteristics.

1.1 Importance of understanding clutter

The principle of a radar is fairly straightforward. Radar is an active sensor whereby 

a signal is transmitted and the energy backscattered from an object is received by 

the radar antenna. The nature o f this signal provides information regarding the 

object. The delay between the transmitted pulse and the received echo from the 

object relates to its range. The strength o f the received echo relates to the object 

size, orientation and electromagnetic properties and is an indicator for the object
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CHAPTER!, INTRODUCTION 6

type. The use o f a directional antenna allows the radar to sense the angle o f arrival 

of the received echo and this identifies the angular location of the target.

From a target detection consideration the simplest case is where the target, the 

object o f interest, is in an isolated location, with no interfering clutter. This situa­

tion is typical o f airborne targets. During the second world war this usage o f the 

radar was first brought into service and deployed in air defence systems for de­

tecting attacking aircraft [65]. These original radar systems were noncoherent, in 

the sense that they transmitted a burst of Radar Frequency (RF) energy and de­

tected the amplitude of that proportion of the signal that came back from a target 

of interest. A receiver contains other spurious signals as well which are background 

electrical noise which invariably exists in the output o f a receiver. The echo re­

ceived from the target wiU thus only be detected once it can be discerned above 

this background electrical noise. On a radar video image such target returns show 

up as bright spots or 'blips' which are recognised by a trained human operator. In 

sophisticated radars, detection is performed automatically. The received signal is 

compared against a threshold and a target is registered only when it exceeds this 

threshold. The system wiU have some undetected targets because of the target sig­

nal being too low and it will also have some false alarms due to the noise signal 

exceeding the threshold level. The threshold is set according to the background 

signal level. The criteria for the signal processing are to minimise the false alarm 

rate and maximise the detection probability. When the target is just competing with 

the noise background it is easier to set this threshold.

The task becomes more difficult when the target also has to compete with si­

multaneous received echoes from interfering objects like ground. These clutter re­

turns may in some instances be stronger than the noise signal and the detection 

performance drops. Since clutter is always present for ground targets and for low 

flying targets there could be clutter at the same range as the target, this would seri­

ously limit the effectiveness of the radar system. Modern radars overcome this 

limitation by using a coherent system where the detection is based not only on the 

amplitude of the signal, but on its phase characteristics as well. The phase o f the 

signal changes linearly with target distance, providing a means to measure the ve­
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locity o f the target. When the target is moving the received, echo signal is shifted in 

frequency due to the target’s Doppler effect. This enables a radar to separate the 

signals from the desired moving target (such as vehicles) from stationary clutter 

even though the stationary echo signal may be many orders o f magnitude greater 

than the moving target. Thus coherent pulse radars use Doppler filtering to detect 

moving targets; a process that is termed Moving Target Indication (MTT). Ground 

based systems use this method to detect both airborne and ground based moving 

targets. For fixed antenna aU the returns from stationary clutter wiU be in zero 

Doppler and the Doppler returns from moving targets will be generally free of 

clutter interference. The detection threshold can, therefore, be set using simplified 

algorithms based on thermal noise limited data.

The clutter returns, however, do not always reside at zero Doppler. The clut­

ter can have real Doppler or apparent Doppler. Real Doppler is when the clutter 

has intrinsic motions. The internal clutter motions are mainly wind induced and 

this produces only limited Doppler spread. Apparent Doppler is due to one o f two 

reasons. A scanning antenna gives the clutter an apparent Doppler. The clutter 

Doppler varies linearly along the aperture resulting in a Doppler spread. The extent 

of the spread is dependent on the scan rate and the antenna beamwidth. Secondly, 

a moving platform, as in the case o f an airborne or spaceborne radar system, intro­

duces an apparent Doppler for the clutter. The apparent Doppler is due to the 

component o f platform motion in the direction of the clutter. Since the radar beam 

has a finite width there is a spread in the Doppler frequencies o f the clutter return. 

The extent of this spread depends up on the platform velocity and also on the an­

tenna pointing angle in relationship to the platform velocity vector. The widening 

o f the clutter band can be quite extensive due to the high speeds o f moving plat­

forms. Where the clutter Doppler spread is large, the target will only clear the 

clutter dominant region of the Doppler spectrum if it has a significant Doppler 

shift. In the case of the airborne targets where the velocities are relatively large the 

targets have a significant possibility of residing in the clutter free region o f the 

Doppler spectrum. However, ground moving targets are much slower and are far 

more likely to fall within the Doppler spread of the clutter. Traditionally, in radar
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image processing, regions which are clutter dominated are discarded [82], This re­

sults in a failure to detect any of the slow moving targets. Therefore, the airborne 

surveillance of ground targets has had limited success to date despite the strategic 

importance of such systems. In order to ensure that slow moving targets can be 

detected, the target detection has to be carried out in a clutter dominated back­

ground. This is not possible without a full understanding o f the statistical proper­

ties o f clutter. An improved understanding of the clutter characteristics wiU allow 

us to set appropriate detection threshold in clutter dominated regions hence ex­

tending the range of velocities at which a target can be detected. Considerable 

work has been done on understanding the characteristics o f land and sea clutter. A 

number o f statistical models have been put forward for the clutter data [17, 41, 52, 

74, 75, 82]. The bulk o f this work has been performed by empirical fitting o f distri­

bution to measured data [13, 16, 27, 86, 88, 94]. However, this work has to be put 

on a firmer physically based model.

The understanding of clutter characteristics also plays a vital role in interpret­

ing images of ground-mapping radar. These radars are generally side-looking. 

During flight the radar radiates a microwave beam typically at right angles to the 

aircraft, then detects and records the reflections received from the earth's surface. 

As it travels forwards, successive strips o f terrain are exposed to the radar beam 

and are detected at the aircraft. The reflections are used to produce a map o f the 

terrain covered. In these images the clutter is now the object of interest.

There is continuous push to produce maps with finer resolution. Improved 

range resolution is achieved using a narrower pulse. Improved azimuth resolution 

in conventional radar was achieved using a narrower beam either by employing a 

larger antenna or using shorter wavelength. In modern pulsed Doppler radar, azi­

muth resolution is achieved by deploying a technique called Synthetic Aperture 

Radar (SAR), whereby the aircraft forward motion is utilised to synthesize a very 

long antenna. This method produces near photographic quality images. High 

resolution radar mapping has proved particularly useful in areas that are un ­

mapped, poorly known, sparsely populated, intensively cloud covered and in areas 

that otherwise have not lent themselves to traditional aerial mapping methods.
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In order to extract useful information about the scene from such images post 

processing tasks such as image segmentation and classification are carried out. 

These techniques are based upon the statistics of the underlying cross section val­

ues o f the clutter [60]. An added complication with the coherent imaging process is 

that there is speckle noise present. Speckle is random noise which results from the 

interference of the coherent radar echo with the surface scatterer. This speckle, 

which gives a granular appearance to a SAR image, seriously degrades the image 

quality. Therefore, both the statistical variation in the underlying cross section val­

ues o f the background along with the statistical properties o f the speckle has to be 

taken into account for the proper modelling o f the observed data. This type o f co­

herent clutter statistics analysis is not unique to the radar sensor but other coherent 

imaging processes like sonar and laser have similar statistical behaviour and an 

identical approach can be applied to understanding the clutter statistics from such 

a scenario.

We have therefore established that studying the clutter properties is a vital Hnk 

in a) the detection o f radar targets and b) the understanding and interpretation o f 

images of coherent systems. In this thesis we address this task of characterising the 

clutter model. The discussion will be based on a coherent radar system but the 

modelling technique is a generic approach, applicable to other coherent imaging 

methods. One particular example of this is coherent sonar systems where clutter 

modelling techniques, developed for radar systems, are increasingly being applied.

The clutter characterisation problem can be broken down into a number of 

sub-questions:

1. What parameterised statistical model can be used to characterise the clutter?

2. What physical justification is there to use the statistical models?

3. What are the optimal parameter solutions to the statistical model?

4. What are the errors associated with estimating these parameter values?

These questions comprise the main aspects o f the clutter characterisation 

problem addressed in the following chapters.
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In the remainder of this introductory chapter an outline plan of the thesis is 

presented, the novel aspects of the research presented in this thesis are listed and a 

brief description is given o f the radar data that will be used in later chapters.

1.2 Outline

Before we can address the task o f understanding the clutter characteristics we need 

to establish a full understanding o f the imaging process. We need to know what 

the parameters of the radar systems are and what information is represented by the 

data. This is a general prerequisite for interpreting any type o f data. Hence in 

Chapter 2 the general theory of radar imaging is discussed. A pulsed Doppler sys­

tem and a high resolution SAR system is described, discussing in particular the im ­

age resolution achieved with each system. The information concerning the resolu­

tion o f the system wiH be used in later chapters to devise models for the clutter 

statistics.

After a brief explanation of the radar principles we go on to address the task 

of clutter characterisation covered by the questions highlighted above. The first 

two o f these questions are addressed in Chapter 3. A general review is carried out 

o f the clutter modelling techniques used by various researchers. A short back­

ground is given on direct modelling techniques based on the electromagnetic the­

ory followed by a detailed discussion of statistical based models used to describe 

the clutter statistics. The search for a proper phenomenological based model leads 

us to the K-distribution as an adequate representation o f the statistics o f medium 

resolution land clutter data. Evidence from goodness-of-fit tests on SAR and MTT 

data is used to justify the K-distribution model. The discussion on the K- 

distribution is extended in Chapter 4 where we address the third and fourth ques­

tion on clutter modelling regarding parameter estimation. Neural nets are used to 

investigate optimal parameter estimators for the K-distribution. A new multi­

moment estimator is proposed for the estimation of the parameter of the K- 

distribution and its error analysis is carried out. It is shown that near optimal pa­

rameter estimates are obtained with this hybrid estimator.
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In Chapter 5 we extend our discussion to high resolution clutter where the 

statistics deviate from a K-distribution. Once again we address the four questions 

as to what is the most suitable noise model and how to obtain the optimal pa­

rameter estimators. We introduce weak scattering models which are a more appro­

priate representation o f the scattering process when the phase o f the detected field 

is not uniformly distributed. Consideration o f a random walk in a weak scattering 

regime leads us to the generalised-K and the homodyned-K distribution. Estima­

tors are proposed for the parameters o f the distributions and error analysis is car­

ried out for the estimators.

Chapter 6 contains conclusions on the clutter statistics given the results in 

Chapter 3 to 5. It also suggests ideas for further research.

A number of appendices are included. Appendix A lists a complete evaluation 

of the predicted errors for the various estimators discussed in this thesis. Appendix 

B contains an extended proof of a result referred to in the main body o f the thesis. 

The details o f the chi-squared goodness-of-fit test and the maximum likelihood 

classification test used in the evaluation o f real radar data are described in appendi­

ces C and D  respectively. Appendix E lists the output distributions of basic binary 

operators in terms o f the distributions o f their inputs; these results are required at 

various stages in the main body o f the thesis. Appendix F is a glossary which 

briefly defines various mathematical functions and relationships referred to in the 

thesis. For ease o f reference topics listed in the glossary are printed in bold in the 

main body o f the thesis wherever the reader may require further explication o f the 

topic (e.g., where it is first introduced). Finally, appendix G  gives a list of symbols 

used in the thesis.

1.3 Novel aspects of the research

The main achievement of the results presented in this thesis is the development of 

suitable statistical models for surface clutter. New estimators for the most viable 

clutter distribution models are proposed and their performance assessed using 

theoretical predictions and simulated results. This work, on the main, built on the 

many years of research on sea and land surface scattering carried out by the Sur-
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face Surveillance group at DERA Malvern but also drew upon the work o f the 

wider radar clutter modelling research community. There are a number of original 

results presented in this thesis and these are listed as follows

• Using new SAR data for land, the K-distribution is shown to be a good em­

pirical model for medium resolution system which confirmed previously 

published results.

• New results are presented for the empirical fit to MTI data for land clutter 

which for the first time showed that the K-distribution is also a suitable non- 

Gaussian model for this case.

• Neural nets are used in a novel way to construct estimators for the t pa­

rameter of the K-distribution which outperformed existing texture measure 

estimators. A key element to the success o f the neural net estimators is the 

introduction o f the pre-processing stage. Thus instead of presenting directly 

the K-distributed intensity data, moments calculated from this data are pre­

sented to the input layer of the neural net which enables a much more suc­

cessful convergence of the neural nets' weights.

• A new hybrid estimator is proposed which combines the normalised log and 

the amplitude contrast texture measures to give a near optimal estimator for 

the t parameter of the K-distribution. A new expression is derived for the 

predicted error performance of this estimator which is compared with 

simulated results.

• The homodyned-K and the generalised-K distribution, which are candidate 

distribution for weak scattering, lacked any optimal parameter estimators. 

New results are presented which propose some simple estimators for the pa­

rameters of these distributions. The corresponding expressions for the error 

predictions are derived and their performance assessed using simulations.

1.4 Real radar data

Results presented in this thesis are based on a number of data sets from DERA 

Malvern airborne radars:
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Band Allocation

Frequency GHz Wavelength cm

C 5.25-5.35 5.71-5.62

X 9.50-9.80 3.16-3.06

Table 1.1 Frequency band allocations for radar remote sensing [89].

1. Single-look complex SAR data taken by the DERA Malvern Canberra X-band 

airborne system near Amesbury, Wiltshire, England.

2. Single polarisation MTI data taken by the DERA Malvern Canberra X-band 

airborne system o f the HuU area, England.

3. Single-look complex SAR data taken by the DERA Malvern Andover C-band 

airborne system near Pershore, Worcestershire, England.

The frequency allocations corresponding to the radar frequency bands referred to

above are listed in Table 1.1. Other relevant imaging parameters will be listed when

the need arises.



Chapter 2

2. Radar resolution theory

Radar resolution has a significant bearing on the statistics of the clutter returns. 

Thus in this chapter, as a prerequisite to studying clutter characteristics, the theory 

o f radar resolution for ground imaging surveillance systems is described. For m od­

ern surveillance systems there has been continuous pressure and desire to achieve 

finer resolution. There are a number of techniques available for improving radar 

resolution. An airborne system has certain limitations but there are also particular 

features which can be exploited to improve radar resolution. The high resolution 

techniques which are applicable to airborne surveillance systems are described in 

this chapter.

The resolution o f a system can be defined as a length scale which characterises 

how far apart two point targets must be for them to be distinguished as such in an 

image. A common choice for the resolution is the width o f the main lobe o f the 

point spread function (PSF) [70]. However, this is only a nominal resolution as the 

actual ability to resolve two scatterers depends upon their relative cross-section and 

phase difference [69]. Nevertheless, for the purpose o f the discussion here we wiU 

treat this nominal resolution as the system resolution.

Figure 2.1 shows a typical geometry for a sideways-looking radar mounted on 

an airborne platform. The aircraft flies along a straight line track. The direction of 

flight is known as the along-track or azimuth direction and the direction perpen­

dicular to this is known as the cross-track or range direction. As the aircraft flies 

along its track, it emits a continuous train of radar pulses. Each radar pulse ülumi-

14
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Figure 2.1: Geometry o f an airborne sideways-looking radar

nates the ground over a region determined by the antenna beamwidth. As a rule of 

thumb, the beamwidth of an antenna of length D  is [83]

Iff = I D  (2.1)

where À is the radar wavelength. Typically the antenna is rectangular with dimen­

sions X Dg, where a and e denote azimuth and elevation, respectively. Thus 

the antenna footprint has both a range and azimuth extent given by (2.1). These 

two spatial components make up the two-dimensional radar image. The range 

resolution of a sideways-looking radar is discussed in Section 2.1. The range reso­

lution is inversely proportional to the bandwidth of the radar pulse. High range
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resolution requires larger bandwidth which can be achieved by using frequency 

modulation. When linear modulation (i.e., a chirp pulse) is used the system re­

sponse is described by a sine function, provided no amplitude taper is used. The 

azimuth resolution for a real aperture antenna is described in Section 2.2. The azi­

muth resolution is inversely proportional to the aperture o f the antenna expressed 

as number of wavelengths. Higher azimuth resolution is achieved using SAR tech­

niques. The azimuth resolution for a fully focused synthetic aperture is equal to 

half the real aperture length, and the system response is described by a sine func­

tion.

An alternative to the two-dimensional spatial image is to represent the re­

ceived signal as a range Doppler map. The Doppler data is obtained by a frequency 

transformation of the azimuth data. The Doppler of a target is proportional to its 

radial velocity towards the radar. This feature is exploited in coherent MTI radars 

to separate the echoes of moving targets from stationary clutter. The clutter echoes 

also have a Doppler return determined by the platform speed, the antenna beam­

width and the antenna pointing direction. Section 2.3 discusses the Doppler reso­

lution in an MTI system. The Doppler resolution is equal to the reciprocal o f the 

coherent integration time. The total width of the Doppler spectrum is given by the 

Pulse Repetition Frequency (FRF).

The imaging geometry will assume a flat earth model. This is valid for airborne 

surveillance radar operating over a narrow swath width. However, surveillance 

systems which operate at a very long range, for example spaceborne surveillance 

radars, the imaging geometry must also take into account the Earth’s curvature and 

rotation, and the satellite orbit [25, 66]. However, these factors are not considered 

further since they affect only the details o f the range and azimuth processing rather 

than the general theory. The effect o f range curvature [90] will also be ignored.

2.1 Range resolution

The range component of a radar image is given by the time it takes a radar pulse to 

return from the target when it is broadside. This is termed the slant range. Figure

2.1 shows the range swath o f a sideways-looking radar.
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For a pulsed radar the width of the radar pulse determines the ability o f a radar to 

resolve closely spaced targets in range. Thus for a radar with a pulse width the

slant range resolution is given as

^sr -  (2-2)

where c is the speed of electromagnetic propagation through the atmosphere 

(c ~ 3 X 10^ m/s). For an unmodulated pulse, T^is approximately related to the 

bandwidth B  o f the radar as B . Therefore, the slant range can be written

as

d.r=~^ (2.3)

For clutter modelling, the resolution that is of interest is the corresponding ground 

range resolution. For (2.3) this is given as

where B is the local incident angle of the beam with the surface. Û changes over 

the range swath of the antenna footprint. The maximum attainable swath in the 

range direction is given by the antenna elevation beamwidth y/^ . For a side looking

radar flying at a height hac and looking down at an angle 0o the maximum range 

swath is [25]

S.., = h \  cot
2 y

(2.5)
K W ,  y , ,  < 1

COS y/̂  -  cos 200 sin 0q

The ground range resolution varies nonlinearly across this swath. This can have 

important consequences for image properties, particularly for spaceborne or short- 

range airborne systems. The actual slant range swath, bounded by the minimum 

and maximum range, is determined by the time between the pulse transmission 

and the start and end of the reception period. The swath is always selected to lie
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between the main lobe o f the elevation beam. Since transmission and reception 

cannot overlap, the slant swathwidth is restricted by the PRF, and the condition 

[60]

S.. <
2 x P R F

(2.6)

must hold to avoid range ambiguities. For real aperture systems there is no lower 

limit on the PRF, however, for SAR systems the PRF must exceed a certain lower 

limit (see Section 2.2).

A simple sinusoidal pulse of length 1 fJs wiU give a slant range resolution of 

the order of 150 m. To achieve higher range resolution would require a pulse with 

a much shorter length. This would require higher transmitter peak power to main­

tain the detection ranges. The bandwidth of the unmodulated 1 JLls pulse is 1 MHz. 

The range resolution can be improved by using frequency modulation, which in­

creases the bandwidth of the pulse without reducing the length o f the transmitted 

pulse. This results in the system response in range being a sine function [45, 58, 90] 

when no amplitude taper is used.

For a linear modulated pulse (i.e., a chirp) of bandwidth B and length ', 

where the frequency f { z )  at time T is given by

/ ( t i=
o '

(2.7)

and where fo is the carrier frequency, the transmitted pulse is of the form^

p ( t ) = e x p
f

fo - fo r  It I <  —  
' 2

(2.8)

The received pulse from a point target at range is a delayed and scaled version o f 

the transmitted pulse. Processing the return signal involves stripping off the carrier
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h r  (Xr)  / h r  (0 )

1 5  2 0

Figure 2,2: Compressed chirp pulse for 5  =100 MHz and '=  100 sec

Xt

frequency and performing a correlation with a copy of the transmitted signal (this 

is known as matched filtering [63]). The output for a point target is given by [62]

.nB 2 I j- -i2
expl -  + rect

y
ds

rect
ro

( r ;  " J j / y

(2.9)

where

( \ H - i
l o  H > -

(2 .10)

The time resolution r? (related to range resolution as = cr^/2) is given by the 

first positive zero of the sine function. This occurs when

B
—  T (T /-T ) = 1 (2 .11)
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which gives the solution for as

1 -  1 - (2 .12)

For high resolution systems, the time-bandmdth product is large and (2.12) ap­

proximates to

(2.13)

r^ris the compressed pulse length. Using (2.13) we get the expression for the coru- 

pression ratio as

T '
compression ratio = —  = (2.14)

Thus a pulse of length \ pis using a chirp with a compression ratio o f 100 wül

have a range resolution of 1.5 m. The corresponding bandwidth is 5  = 100 MHz. 

The plot o f the compressed chirp pulse for this system is shown in Figure 2.2, 

where the x-axis has been converted to distance units by the substitution = C T  .

2.2 Azimuth resolution

The azimuth information makes up the second component in a radar image. The 

azimuth resolution o f a real aperture radar is governed by its azimuth beamwidth. 

The azimuth geometry of a side looking radar imaging is illustrated by Figure 2.1.

The azimuth resolution at a slant range 7?o is given as

4  = (2.15)

Using (2.1) this gives

< i . = ^  (2.16)

The returns from a point scatterer at range Rq would be smeared out in azimuth by 

a distance given by (2.16). An X-band system using a 2-m antenna at a range o f 10
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Target

<■
0

Synthetic aperture o f length

Figure 2,3: Geometry o f the illumination o f a point target across a syn­

thetic aperture o f length L5.

km win have an azimuth resolution o f 150 m. For most imaging purposes this 

resolution is very poor. The bmte force method for increasing the azimuth resolu­

tion would be to a) reduce the wavelength of the transmitted signal, and b) increase 

the aperture o f the antenna. Neither of these solutions are practical for long range 

surveillance radars, the former due to high propagation losses for frequencies 

higher than X-band and the latter due to the constraint on the antenna size due to 

platform dimensions.

A more practical method for achieving higher azimuth resolution for a side­

ways-looking radar on a moving platform is to coherently add the returns from a 

series of different positions along the line of flight. This effectively forms a syn­

thetic aperture from which this method derives the name 'synthetic aperture radar’ 

(SAR). The geometry o f the illumination of a point target along a straight synthetic 

aperture of length Ls is shown in Figure 2.3.

As the radar beam passes over a point target, the range of the target to the 

platform changes. This produces a change in the phase o f the detected field at each 

point along the synthetic aperture. The range of a point target X  can be ex-
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pressed in terms of its range when it is broadside to the radar platform Rq, and its 

azimuth lag Xa, along the ground track o f the radar beam away from being broad­

side

+ x ;  (2.17)

For a narrow beam, X  is only illuminated when «  R^ in which case

R — Rq +
2R,

(2.18)

Thus the path difference ÔR between when a target is at an azimuth lag Xa com­

pared to when it is broadside of the antenna is given by

5R =
2&

(2.19)

where the corresponding two-way phase difference (50 as a function o f azimuth lag 

is given by

(50(x) =
XR,

(2.20)

I f  Eo is the field detected when the point target is broadside o f the antenna 

then the detected field F(%g) at point Xa along the synthetic aperture is given 

by

Eoexp U .  <  —

0 \x \  >

(2.21)

where the variations in the magnitude o f the detected field across the synthetic ap­

erture are ignored. This is a valid assumption as the variation in the target’s range 

across the synthetic aperture is small relative to the range itself. In the absence of 

any phase correction, only those returns for which (50 is less than a fraction of a 

cycle can be summed together. With proper phase correction, radar returns re­
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ceived over the full length o f the synthetic aperture can be summed together which 

results in very fine azimuth resolution.

Full phase correction involves convolving the detected field with the matched 

filter of the phase difference term. The azimuth response to a point target is then 

given as

K )  = p { ^ a ) * ex p (- j S ^ { - ))

= d k l +  y)exp(- j S ^ { -  y))dy

(

(2.22)

1- ^  sine
V

1-

for |x^ I < , otherwise it is zero^. The output response is a distorted sine function

with the first null occurring at

1-
J

=  1 (2.23)

which gives the solution for the azimuth resolution as

=
2Le

(2.24)

The maximum value for Ls is determined by the distance over which a target is 

within the main beam of the antenna. This is equal to the azimuth beamwidth. 

Thus substituting for maximum Ls from (2.16), the azimuth resolution o f a fully 

focused SAR is given as

(2.25)

The azimuth resolution is independent of range and wavelength and is determined 

solely by the azimuthal length of the real aperture. Thus an X-band system with a 

2-m antenna can achieve an azimuth resolution of 1 m. The associated cost of SAR

2 When the symbol * is used as in x , it represents the complex conjugate of x, whilst when used as a binary 
operator as in x * y, it represents the convolution of x and y.
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processing is high data storage since the Nyquist criterion demands that the sam­

pling rate must exceed the resolution length [90]. This imposes a lower limit on the 

PRF which then also limits the maximum slant swathwidth (see (2.6)).

The azimuth resolution, however, cannot be increased indefinitely by reducing 

the real aperture size. Firstly, reducing the size will lower the gain o f the antenna 

and thus the detection performance of the radar. Secondly, the required minimum 

PRF will increase, reducing the slant swathwidth [90]. Higher SAR resolution is, 

however, possible with spotlight mode SAR which uses beam steering to keep the 

target in the beam for a longer time and thus form a longer synthetic aperture. This 

gives considerable improvement on the azimuth resolution, however at the ex­

pense of spatial coverage [17].

2.3 Doppler resolution

A target can be defined in three state variables; range, azimuth and Doppler. The 

Doppler o f a target is a function o f its radial velocity toward the radar and is used 

in MTI radars to form range-Doppler maps which facilitate the detection of mov­

ing targets.

The Doppler frequency of a target is related to its radial velocity Vt, toward 

the radar, as [81]

/ ,  (2.26)

The maximum unambiguous Doppler is given by the PRF. In a coherent MTI 

system the received pulses are processed along the azimuth direction using a one­

dimensional Fast Fourier Transform (FFT) to generate a Doppler profile. The FFT 

is performed for each range gate. This produces a two dimensional range-Doppler 

map. The Doppler resolution is given as [83]

.  PRE
(2.27)
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where is the number o f pulses that are coherently integrated. N^ jP R F  = ,

the coherent integration time. Therefore, the Doppler resolution, and hence the 

bandwidth, is given as

A  (2-28)
înt

The total number of Doppler bins is equal to the number o f pulses that are coher­

ently integrated. The Doppler resolution is increased by extending the coherent 

integration interval. For a given PRF this is achieved by increasing the number of 

pulses that are processed together by the FFT operation. The upper bound on tmt 

is the dwell time on the target. The dwell time is a function o f antenna beamwidth, 

platform velocity and antenna scan rate. Therefore, there is a trade-off between 

azimuth accuracy, swath coverage and Doppler resolution. Furthermore, has to

be kept as short as possible to avoid target migrating through the resolution cells. 

A typical value o f for ground surveillance radar is 0.1 sec.

For a moving platform, ground clutter also has a relative velocity toward the 

radar which results in the clutter echo being shifted in Doppler. The relative clutter 

velocity depends on the aircraft velocity and the direction of the clutter relative to 

the platform velocity vector. The mean value of the clutter Doppler shift is given 

by

f c  =  COS00 c o s 00 (2 .29 )

where Vac is the platform velocity, 6o is the antenna’s azimuth angle, and 0o is the 

antenna’s depression angle. Since the radar footprint has a spatial extent (see Figure 

2.1) the clutter spectrum has a Doppler spread. For small depression angles, the 

Doppler spread from clutter returns is generally determined by the radar’s azimuth 

beamwidth. The Doppler spectral width is found by subtracting the radial Doppler 

frequency components, which occur at the half-power edges of the azimuth beam 

as [75]
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Af, =^^^cosi/>„[cos(0„ -v/^j2)-cos(e„ +V/-J2)]

2v f  (^30)^^acJo , ■ n=-----------y/̂  COS 00 Sin 00

for small azimuth beamwidths. An X-band airborne radar moving at 200 m /s with 

a 2-m antenna at 5® depression angle and pointing sideways wiU have a clutter 

spectral width due to platform motion of 199 Hz.

The clutter Doppler spectrum is divided into a number of Doppler bins de­

termined by the Doppler resolution. This has the effect o f dividing the azimuth

beamwidth into subapertures whose beamwidth is determined by the Doppler 

resolution. The Doppler frequency corresponding to the A;th subaperture is given 

as

U  = cos <k COS 0* (2.31)

where 6k is the azimuth angle between the kxh subaperture and the aircraft velocity 

vector. Since Doppler resolution is the frequency difference between adjacent 

Doppler bins, therefore

fd = 4 . .  -  u  = cos (j>̂ (cos 0̂ +1 -  COS 0, ) (2.32)

Letting AO he the differentiating angle represented by each subaperture such that 

^  A 0/2 and =0^  + A0/2 ,  where 0m is the medium angle to the

centre o f the clutter cell and substituting in (2.32) gives

fd  = cos0oA0sin0^ (2.33)

and solving for the azimuth resolution angle gives

A0 =  ---------------------^  (2.34)
2 ’'a c /o c o s ^ > „ s in 0 „

The Doppler processing has resulted in an azimuth resolution better than that 

achieved with just the real aperture. This technique is called Doppler beam sharp-
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ening [75]. Although the azimuth resolution achieved is inferior to that o f a fully 

focused SAR and it is not independent of range, it is used in MTI radars to pro­

duce simple clutter maps. For the example of the X-band system considered ear­

lier, a PRF of 1 kHz and an FFT of 64 pulses will give a Doppler resolution of 

16Hz. The corresponding azimuth angle resolution at 5® depression angle and 

sideways-looking antenna is 0.07®. At a slant range o f 10 km this equates to a spa­

tial azimuth resolution of 12 m. Thus in MTI radars, Doppler processing also ef­

fects the size o f the radar footprint on ground which in turn has a bearing on the 

statistics o f the observed scattering. Clutter models that are able to characterise the 

observed scattering are discussed in the following chapter.

2.4 Summary

In this chapter

• The theory of how a side looking radar down on a moving platform 

achieves high resolution in range, azimuth and Doppler domain has been 

described.

• It was shown that the range resolution is inversely proportional to radar 

bandwidth. The chirp pulse technique for achieving high range resolution 

was described and the system response to a point target was shown to be a 

sine function.

• The azimuth resolution improvement achieved with a synthetic aperture 

compared to a real aperture was discussed. The system response to a point 

target was shown to be again a sine function.

• The relationship between the coherent integration time and the Doppler 

resolution was described and the technique of Doppler beam sharpening for 

obtaining clutter maps was discussed.



Chapter 3

3. Clutter models

Clutter modelling is essential for optimising target detection and terrain classifica­

tion. The clutter echoes result from a coherent electromagnetic scattering process. 

When an electromagnetic wave scatters from a position (%, y) on the Earth’s sur­

face, the physical properties of the terrain cause changes in both the phase <P(x, y) 

and amplitude A(x, y) o f the wave. Therefore, the most direct method for model­

ling the clutter returns is to obtain a full wave solution using Maxwell’s equations 

while applying the appropriate boundary conditions. This method, however, suf­

fers from the difficulty of selecting and applying the correct boundary conditions 

to represent typical real surfaces. A more simplified approach is to represent the 

received complex signal as a sum of contributions from discrete elementary scat- 

terers. The statistical distribution of the received signal can then be modelled in 

terms o f the probability distribution o f the amplitude, phase and number o f the 

discrete scatterers. The choice o f statistical models can be based on some physical 

justification for the scatterer distribution or on ad hoc models based on empirical 

evidence. The major part o f this chapter is devoted to a discussion of the statistical 

models.

The forward problem  ̂ as the electromagnetic modelling of rough surface scat­

tering is commonly known, is briefly reviewed in Section 3.1. An in-depth study of 

the forward problem is outside the scope of this thesis and the discussion is limited 

to a general overview of the technique. This method predicts the scattered field 

based on the properties of the scattering medium and the incoming wave. The 

first results in this area were obtained for scattering from periodic surfaces. Subse-

28
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Refeience
plane

Figure 3.1: The Rayleigh criterion for smooth surfaces.

quent work addressed the problem of scattering from random rough surfaces. Sec­

tion 3.1.1 to 3.1.5 summarises the various approaches taken to solve the forward 

problem.

Although the forward problem analysis has helped to identify the dominant 

scattering mechanisms, the full wave solutions in most cases are unavailable. 

Therefore, an analysis of the statistics of the observed field is a more realistic ap­

proach for characterising the clutter models. The statistics of the received signal are 

investigated in terms of a general model for the electromagnetic field detected by a 

radar system; this is described in Section 3.2. When the resolution cell is large 

compared to the wavelength the phase of the scatterers is uniformly distributed 

and contains no information regarding the target. Therefore the useful information 

regarding the scattering surface is contained only within tlie intensity of the de­

tected field. For the completeness of the discussion we briefly describe the statis­

tics of the phase and complex components of the detected field in Section 3.2. 

Tliis is followed by a more extensive discussion of the statistics of the intensity of 

the detected fields in Section 3.2.1 onwards.
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A review is carried out of the statistical models used to describe the intensity 

characteristics o f ground clutter. Where applicable the physical models underlining 

the statistical models are described. For each model the probability density 

function (pdf), cumulative distribution function (cdf) and the moments are 

Hsted. The most promising of these models are selected for testing with real data. 

The results are quoted for goodness-of-hts using the chi-squared test.

3.1 Electromagnetic models

The problem of backscattering from a rough surface is o f interest to radar imaging, 

sonar detection and optics. There has been considerable work published on this 

subject in a wide spectrum of journals. The very first work published in this area 

was by Rayleigh [67] which analysed the scattering from sinusoidal surfaces for 

normal incidence. Schouten and De Hoop [76] extended this for any analytical 

rough surface. Although periodic surfaces proved useful in indicating the general 

behaviour of rough surfaces, real surfaces are rarely periodic. A number o f re­

searchers have investigated the scattering from random rough surfaces. Beckmann 

and Spizzichino [7] considered scattering from normally distributed rough surfaces 

using the Kirchhoff solution which assumes a slowly varying height profile. How­

ever, many surfaces o f practical interest are not normally distributed. The distribu­

tion o f terrain with sharp ridges and round valleys and that o f a rough sea is asym­

metric and therefore not normal. A standard approach for modelling scattering 

from non-Gaussian surfaces is the Small Perturbation Method (SPM) which is suit­

able when the surface roughness is small [68]. The purely analytical approach, 

however, is limited in the type of surface that can be modelled, due to the lack of 

closed form solutions. Various numerical solution based approaches have been 

used to analyse the scattering from arbitrarily defined rough surfaces. Section 3.1.1 

to 3.1.4 summarises each of these approaches. Besides these methods there have 

been a few other notable approaches, which are mentioned in Section 3.1.5.

3.1.1 Periodic surfaces

Historically, this class of rough surfaces was the first to be treated. A rough surface 

is represented with periodic irregularities such as sinusoidal undulations, saw-tooth
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profiles, protrusions of equal shape spaced at regular intervals, etc. This approach 

enables the problem to be solved in a simplified non-statistical way.

Rayleigh [67] analysed the problem for sinusoidal surfaces and developed the 

well-known Rajleigh criterion., for qualifying the roughness o f a surface. The process 

in which an incident wave is reflected depends upon the surface roughness. For 

smooth surfaces the reflection is specular. Specular reflection is directional and has 

a constant predictable phase with respect to the incident wave. In this case and

in Figure 3.1 wiU be equal and the reflections wUl add coherently to give a

strong return in a single direction. For rough surfaces, the reflection is diffused. 

Diffused reflection is much more dispersed and the phase o f scattered energy var­

ies over 0 - 2 n . Rayleigh stated that a surface may be regarded as smooth if the 

phase difference between two reflected waves is less that 7t/2. Using the geometry 

of Figure 3.1 this is

where A h  is the height difference, Oi is the incident angle and A is the wavelength 

o f the incident wave. (3.1) states that roughness of any scattering surface is not an 

intrinsic property of that surface but depends on the frequency and angle o f the 

incident wave. A surface appears rougher the smaUer the incident wavelength or 

the closer the angle o f incidence is to the surface normal. Although, the Rayleigh 

criterion was originaUy defined for periodic surfaces it has been universaUy adopted 

for aU type of rough surfaces, where A h  is replaced by Gh the standard deviation 

o f surface heights.

Rayleigh’s work was for the special case of normal incidence onto a sinusoidal 

surface which was extended by LaCasce and Tamarkin [47] to oblique angles. 

Deryugin [23] applied it to different profiles and Schouten and De Hoop [76] gen­

eralised it for any analytically given rough surface.
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Figure 3.2: Scattering from random rough surfaces.

3.1.2 N orm al distributed surfaces

The scattered field Ep observed at a point F  at a distance r from a point O on a 

surface S (Figure 3.2) is given by the Helmholtz integral [7] as

Ws diiç
(3.2)

where Es is the field on S, ils is a normal to the surface and y/s is given by

.2;: 
exp(y— r)

(3.3)

Beckmann and Spizzichino [7] derived an analytical solution to the scalar 

problem of (3.2) for a normally distributed surface using the Kirchhoff approxi­

mation whereby the field at any point on the surface is expressed as the sum of tlie 

incident and reflected field at the tangent at the considered point. Thus Es in (3.2) 

is replaced by

= (1 + Ko,Jf (3.4)

where Rcoeff is the reflectivity coefficient of a smooth plane and Ei is the incident 

field. This approximation is very good when the radius of curvature of the irregu-
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(a) (b)

Figure 3.3: The tangent plane at a general point of the rough surface. The 

radius of curvature is (a) small, and (b) large in comparison with the 

wavelength.

lari ties is very large compared to the wavelength (Figure 3.3b) but breaks down 

completely for sharp edges (Figure 3.3a). Thus the Karchhoff solution is suitable 

for smoothly varying normally distributed surfaces. The analyses produced by 

Beckmann and Spizzichino [7] assumed small slopes and small standard deviation 

of surface heights (J/,. Wu and Fung [98] extended this to surfaces with large (J/j 

using a vector formulation of the Kirchhoff method.

Many surfaces of practical importance are, however, not normally distributed. 

Beckmann [8] showed that the surface height probability distribution has a signifi­

cant bearing on the characteristics of the scattered field where the surface rough­

ness and the grazing angle of the incident wave are large. Introducing a correlation 

function into the Kirchhoff model can compensate for an incorrect surface model. 

Shaw and Dougan [80] proposed suitable correlations to model ocean-Hke sur­

faces. The assumption of gently undulating terrain, nevertheless severely limits the 

applicability of this model to land surface scattering and therefore there have been 

alternative techniques developed for predicting scattering from non-Gaussian sur­

faces. These are described in the following section.

3.1.3 N on-G aussian  surfaces

Rice [68] developed a scattering model suitable for non-Gaussian surfaces based
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on SPM analysis. Unlike the Kirchhoff method, SPM does not impose a restriction 

on the surface curvature and permits the surface height to vary within the distance 

of a wavelength. The method, however, is applicable only to slightly rough surfaces 

where

kG^ < 0.3 (3.5)

It also requires that Is, the average slope of the surface, should meet the criterion

- J 2 a j l ^ < 0 3  (3.6)

SPM calculates the field at any point in the scattering medium using the solutions 

for scattering from a smooth surface, together with ‘perturbative’ terms arising 

from the slight surface roughness. Under the assumption o f slightly rough surfaces 

the quantities that are a function of the surface height may be expanded as a Taylor 

series about their value on the mean scattering surface

where / i s  a quantity defined in the Cartesian co-ordinates x, y and z, and the mean

scattering plane is z =0. The accuracy o f the perturbation theory depends on the

number o f terms retained in the expansion o f (3.7). Perturbation theory assumes 

that the total scattered field Er may be written as a series

(3.8)

where is the contribution from the h term in (3.7). The earlier analysis o f the 

perturbation theory was carried out using just the first order terms 'm h  [15]. More 

recent work by Bass and Fuks [5] and Watson and Keller [96] carried out the 

analysis for the second order perturbation theory.

Wright [97] tested the SPM model for sea clutter and found good agreement 

to vertically polarised data. The gap between the Kirchhoff method, suitable for 

high frequencies, and the SPM, suitable for slightly rough surfaces, was bridged by 

Bahar [2] who produced a unified full wave solution to evaluate the scattering from
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7 z=0

(̂ ) (b)

Figure 3.4: The image method. The surface field in (a) is equivalent to the 

surface field in (b) where the conducting plane has been replaced by a 

mirror image of the surface protrusion.

rough surface with arbitrât}^ slopes. The full wave solution also extends the solu­

tion to take into account shadowing and multiple scattering.

3.1.4 N um erical solutions

This approach uses the numerical solutions of integral equations for the unknown 

surface fields to calculate the scattered field. The surface height function /z(x, y) is 

treated as a random correlated discrete variable. The numerical solutions are not 

restricted to an analytical expression for the scattering surface and thus the solution 

can be calculated for any realisation of surface height profile. A variety of methods 

have been adopted from spectral analysis to generate surface height profiles for 

example moving average methods and autoregressive processes [55]. Each set of 

generated data represents one surface realisation for which the scattered field may 

be calculated. The statistical parameters of the scattered field are then determined 

by generating large number of surface realisation and analysing the scattered fields 

from these surfaces. There is, however, a large price to pay in terms of increased 

computational effort with this method.
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Numerical solutions have been used to study the accuracy of the SPM [18, 30] 

and the Kirchhoff theory [29, 48] approximate techniques. A further use of nu­

merical simulation techniques is in the modelling of many aspects o f realistic scat­

tering geometries. Factors that complicate, and often preclude, analytical theory, 

such as non-planar incident waves with a spatially varying amplitude profile, inci­

dent pulses o f arbitrary form and finite-sized surfaces o f non-ideal shape, may aU 

be included in a numerical study, however, at the expense o f increased computa­

tional effort.

3.1.5 O ther m ethods

The methods described in the previous sections are for the more general type of 

rough surfaces. There has been other less general method developed which over 

come some o f the limitations of the more general models. Twersky [87] developed 

a scattering model based on mirror images. He considered a perfectly conducting 

surface with arbitrary shaped protrusions. Under this situation the field scattered 

by the protruding object under an incident plane wave Ei can be derived by evalu­

ating the field scattered from the object in free space illuminated by two incident 

waves. This is so since the surface field in both instances is the same, as illustrated 

diagramatically in Figure 3.4. The scattered field is easily derivable using this 

method and it allows the modelling of multiple scattering. This approach is par­

ticularly useful when the surface can be represented by a collection o f randomly 

located discrete scatterers. Fung and Ulaby [28] and others [19, 44] used the dis­

crete scatter model to represent scattering from vegetation clutter.

Rather then attempting to calculate the field from a realistic model o f a rough 

surface an alternate approach is to adopt a model of a rough surface that will scat­

ter a realistic field. A simple model of rough surfaces that wiU have this effect is 

one which consists o f plane facets of random slope where the random slopes are 

generated by a Markov chain (Figure 3.5). Beckmann [6] used this model to obtain 

an approximation to the scattered field. The analysis was simplified by assuming 

that the reflection are locally specular (this is tme when the facets are large com­

pared with the wavelength) and that the elementary waves reflected in the same
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Figure 3.5: Scattering by a surface of large plane facets.

direction (by facets of the same slope) are summed together with respect to their 

phases to form a single resultant wave in that direction. The plane facet approach 

is, however, more suited to man-made objects. The facets can be generated deter- 

ministically using the object geometry. This method has been used to generate ac­

curate scattering predictions for vehicles [34].

3.2 Statistical models

An image generated by a coherent imaging system is affected by coherent interfer­

ence between scatterers [32] which causes the detected intensity to fluctuate from 

resolution cell to resolution cell. This fluctuation in pixel intensities is evident in 

both MTI and SAR images (see Figure 3.6 and Figure 3.7) of land. The observed 

intensity fluctuations can be characterised by statistical model without performing 

a rigorous solution of the Maxwell equations for the scattering surface.

The statistical model assumes that the received electric field at an observation 

point r can be represented as a sum of contributions from elementar)^ scatterers 

[32, 37, 56, 60]
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^ ( r )  = S  (r) Gxp( j \  (r)) = A(r) exp( /<E>(r)) (3.9)
k=l

where (r) and 0^(r) are the amplitude and phase o f the A:th scatterer with respect 

to the observation point r. a^(r) includes experimental parameters, e.g. range, 

transmitter power etc. ajc and are assumed to be statistically independent ran­

dom variables. This discrete scatterer model representation is obviously very sim­

ple but is based on the belief that any model that gives the same value for the 

scattered field per pixel of the image may be regarded as an equivalent representa­

tion.

The detected field of (3.9) can be viewed as arising from an A^-step random 

walk in the complex plane where a^(r) and 0^(r) now constitute the length and ori­

entation of the random steps. The probability distribution o f the detected field in a 

given pixel can be analysed in terms of the probability distribution o f a^(r), 0)t(r) 

and N.

As long as a target is rough relative to the illuminating wavelength and inci­

dent angle, or the depth of the resolution cell is much greater than the wavelength, 

the phase o f the scatterers within the resolution cell wül be randomly distributed 

over many cycles. The phase of each of the scatterers wül then be uniformly dis­

tributed over the interval -71 and 71 and will be statistically independent o f its am­

plitude [32]. This implies a uniform distribution o f the step orientation in the ran­

dom walk. The resultant phase of the detected field will have a phase that is uni­

formly distributed and independent of the detected field amplitude.

The scatterers wiU not have a uniformly distributed phase when the resolution 

cell is only a few wavelengths in depth. At X and C-band (3 and 6 cm wavelength) 

this would occur at very high resolutions. In other situations, for example sonar 

scattering from sea bed, this type of scattering may occur at much lower frequency 

(a few tens o f kHz) owing to the slower velocity of propagation o f the signal. The 

random walk model represents this type of scattering process as a bias in the ran­

dom walk. Alternatively, if there is a smooth target, e.g. a corner reflector or a 

strong scatterer, immersed in a resolution cell otherwise containing scatterers with
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uniformly distributed phase, the detected field again will have a non uniformly dis­

tributed phase. The analysis of the statistical models resulting from a biased ran­

dom walk is a more complicated task and is dealt in Chapter 5. Before that, in this 

chapter, we consider the simple scenario of uniformly distributed phase for the 

scatterers and analyse the statistics of the detected field.

When analysing the data of a coherent imaging system we have the choice of 

working in the complex domain, phase domain or the intensity domain. However, 

when the scattering process results in the uniform distribution of the phase, the 

phase component contains no information. Similarly the complex components also 

have little information content. This is explained as follows:

When the phase of the detected field is uniformly distributed, the real and 

imaginary component of the detected field given by

N

(r) = X  (>■) cos (r) (3.10)
=̂1

^ j W  = X % ('')s in 0 t(r ) (3.11)
/t=l

will both have mean zero^

W ) = X ( “t('’)Xcos(/'i(r)) = 0 (3.12)
k=\

= X (" i(r ))(s in 0 t(r ))  = 0 (3.13)

equal variance, which depends only on the step length

(•■)̂  ) = E  E  (“ X r K  (r ))(cos cos (r)) = i  ̂  (a* (r)" ) (3.14)
(=1 k=l ^  k=l

i=l fe=l

3 The operator (•) indicates ensemble averaging.
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^  63

R a n g e  C e lls

Figure 3.6: MTI intensity image from DERA Canberra X-band radar 

containing 64 frequency bins and 1365 range bins. The clutter dominant 

frequency bins appear bright. The clutter band is several frequency bins 

wide. The data is from an imaging pass over the Hull area and the strong­

est clutter return corresponds to returns from the Humber bridge.

(a) (b)

Figure 3.7: Single look SAR intensit)^ images of rural area from two 

DERA airborne platforms (a) Andover C-band SAR and (b) Canberra X- 

band SAR. Woodlands appear as bright regions, whereas grass and fields 

appear as dark regions.
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(a)

(b) (c)

Figure 3.8: (a) the phase and, (b) and (c) the real and imaginary compo­

nents of the SAR image whose intensity is shown in Figure 3.7a.

and they will be uncorrelated [32]. This is because

|^:?(**)^jW) = SS(«-(* 'K W )(cos0,(r)sin0,(r)) = O = (£^(r))(£^(r)) (3.16)
1=1 k=\
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Equations (3.12) to (3.16) rely on the fact that when ^^(r) is an independent ran­

dom variable uniformly distributed on the interval

(cos0^(r)) = (sin 0^(r)) = 0 (3.17)

[1
(cos0.(r)cos0^(r)) = (sin(;^.(r)sin0^(r)) = ^2   ̂  ̂ (3.18)

[O

and

(cos^X r)sin^(r)) = 0 (3.19)

for aU i and k.

Figure 3.8 shows the phase and complex components o f the C-band SAR im­

age whose intensity is shown in Figure 3.7a. Structural features present in the in­

tensity image are barely discernible in the complex components. N o structure is 

apparent in the phase image. The results for the MTI data are similar as can be 

seen from Figure 3.9 which shows the phase and real component o f the MTI in­

tensity image shown in Figure 3.6. As most o f the information regarding clutter is 

in the intensity component, the remainder of the chapter wiU discuss the intensity 

statistics o f the detected field.

The initial statistical models used to described the radar clutter intensity were 

based on simple Gaussian scattering which gives rise to a negative exponential dis­

tribution for the intensity field; this is described in Section 3.2.1. As the radar sys­

tems became more sophisticated and the resolution achieved with these systems 

improved, the simple clutter models no longer represented the radar data ade­

quately. Recently, in an attempt to remedy this situation several non-Gaussian 

clutter models have been introduced. Some o f these models are purely empirical, 

whereas the K-distribution uses a plausible physical model based on the random 

walk in a complex plane to arrive at a pdf for the detected field intensity. In Sec­

tion 3.2.2 and 3.2.3 we describe the log-normal and the WeibuU distribution, two 

widely used empirical models prior to a detailed description of the K-distribution
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model in Section 3.2.4. We present results from real data to show the suitability of 

K-distribution for land clutter.

3.2.1 N egative  exponential distributed in tensity

A simple model for the scatterer distribution is where the number o f scatterers 

tends to infinity and the phase is uniformly distributed. The probability distribution 

for the detected field can be derived from the random walk model. Jakeman [38] 

used the characteristic function to derive the intensity pdf. The characteristics 

function for (3.9) is given as^

C(u) = (exp(/u .E ))

=  ( r T e x p ( / a t M C O s ( « » j + r ) ) \

where /depends on the components of u. Using the assumption that ak and (j)k are 

statistically independent, the product sign can be taken outside the average, so

N

C(u) = n  (exp( /o j  u cos(iAt + r ))) (3.21)
k=\

Integrating over (j) then gives

N

C(u) = rr(jo(fl^M )) (3.22)
k=l

where Jq is the zeroth order Bessel function of the first kind. Since aic are as­

sumed to be statistically independent, (3.22) becomes

C{^) = { h M Y  (3.23)

where {a) is the ensemble average of all possible realisations o f the step length. By 

scaling the step length a through a j VÏV and allowing N  to tend to infinity 

(3.23) becomes

The notation has been simplified by removing the explicit reference to r.
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Figure 3.9: (a) The phase and (b) the real component of the MTI image 

whose intensity is shown in Figure 3.6.

C ( u )  =  e x p (3.24)

This corresponds to the Rayleigh distribution for the amplitude A
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f M )  = 2(A /(A '))exp(- a V (a " )) (3.25)

Defining the intensity by

/  = A" (3.26)

leads to the negative exponential distribution for the intensity fluctuation

/ ; ( / )  = (l/(2>)exp(-7/(7>) (3.27)

Rewriting (3.27) in terms of a general random variable x  with mean fix gives the 

pdf as

/ , ( x )  = -y-exp
r'x

r \
X

the cumulative distribution function as

FĴ x) = 1 -exp

V

^ x '^

(3.28)

V ^ x j
(3.29)

and moments^ as

( v )  = r ( « + i K  (3.30)

From (3.27) and (3.28) the mean of the negative exponential intensity is given as

H, = (/> (3.31)

where the subscript I  indicates an intensity pdf. The resultant radar cross section o f 

the surface, is given by the mean of the intensity. Therefore,

p  = Pj = ( l)  (3.32)

The negative exponential model is based on the phenomenon that the resolution

cell contains a large number o f scatterers with no single scatterer dominating the

r{z )  is the gamma function.

 ̂The symbol p  is used for the radar cross-section of the surface rather than the more normal (7 so as not to 
confuse ( f  s indicating the radar cross-section of the surface with those indicating variances.
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Figure 3.10: Negative exponential pdf for three different values of the 

mean.

radar return. Figure 3.10 gives the plot of the intensity pdf for various values of the 

mean. As the mean increases the tail of the distribution gets longer.

The result that the detected intensit}  ̂ is negative exponentially distributed 

when the number the of independent scatters tends to infinit}  ̂can also be reached 

by applying the central limit theorem to the complex components of the de­

tected field [32]. In this case the real and imaginary parts of the vector E  will be 

independent Gaussian distributions with zero mean and the same variance. They 

will have a joint pdf given as

/ , ( £ ^ , £ j )  = ^ e x p (3.33)

where is the variance of both the real and imaginary components ((3.14), 

(3.15)). The joint pdf of the intensit}  ̂ and phase of the detected field is obtained 

from (3.33) by transforming to polar co-ordinates
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Figure 3.11: Flistograms showing the distribution of the (a) intensity, (b) 

phase, (c) real component and (d) imaginary component, of pixel values 

from a homogeneous region (128x128 pixels) in the image shown in 

Figure 3.7a. The cur\xs represent expected distributions fitted to the data, 

(a) negative exponential, (b) uniform, and (c) and (d) zero mean Gaus­

sian.

/ ^ ( / , 0 ) =  / ^ ( V 7 c o s 0 , v 7 s i n 0)1 y| = Gxp
2(7

(3.34)
E J
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where /  = 1/2  is the Jacobian of the transform. The marginal distribution o f the 

intensity is obtained by integrating over the phase which gives the negative expo­

nential distribution as expected

n 2

/ , ( / ) =  = — exp
-7 1  ' /

(3.35)

where = 2(7  ̂, Similarly, integrating over intensity confirms that the marginal

distribution of the phase is uniformly distributed

A W  = = ^  (3-36)

(3.34), (3.35) and (3.36) also confirm that the intensity and phase are independent 

and therefore circularly symmetric as the product of their marginal distribution 

gives their joint distribution

fE { l .6 )  = f ,U ) f e ( 0 )  (3.37)

Radar data from homogeneous clutter at low to medium resolution exhibit this 

type of statistical behaviour. Figure 3.11 shows the histograms o f the intensity, the 

phase and the complex component, of pixel values from a homogeneous region in 

a C-band SAR image (the grass field in the top left hand corner o f the image in 

Figure 3.7a). The histogram values are given by cross marks and the solid lines rep­

resent the expected distributions. For this set of data there is a good fit between 

histogram and expected distribution.

In order to get a more overall assessment o f the clutter statistics chi-squared 

goodness-of-fit test is performed over the whole of the SAR region in Figure 3.7a. 

Appendix C describes the procedure for performing the goodness-of-fit test. The 

test is performed using a stepping window of 5x9. Over each window a compari­

son is made between the observed histogram of the pixel intensities and the ex­

pected histogram from a negative exponential distribution using estimated pa­

rameters obtained from the data values. An indicator of the goodness-of-fit is the 

failure rate at the 5% level for the upper tail probabilities. In Figure 3.12,12.9% of
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Figure 3.12: The chi-squared failure rate at the 5% level on the upper tail 

probabilities for the negative exponential distribution applied to the An­

dover C-band SAR image of Figure 3.7a. The test was performed using a 

stepping window of 5x9. This reduces the 512x512 image to 102x56 im­

age. The white pixels mark a failure and the black pixels a success at the 

5% level for the data fitting to the negative exponential distribution.

the image fail at the 5% level with the negative exponential model. A majority of 

the failures are in regions of the image where the clutter exhibits significant texture 

variation. This suggests that the negative exponential distribution is an insufficient 

representation of the clutter characteristics. Similar tests on the X-band SAR image 

of Figure 3.7b and the MTI image of Figure 3.6 gave a failure rate of 28.3% and 

28.9% respectively. A possible explanation for the failure rate is that the resolution 

cell is too small for the assumption of a large number of scatterers to hold true. 

Therefore, the central limit theorem may not be invoked for the real and imaginar}^ 

parts of the scattered field in (3.33), and non-Gaussian statistics may arise. A num­

ber of non-Gaussian models have been considered for high resolution radar data. 

A few of the more widely used non-Gaussian models are described in the follow­

ing sections.



CHAPTERS. CLUTTER MODELS 50

3.2.2 Log-norm al distributed intensity

The log-normal distribution has been fitted to high resolution radar data from both 

land and sea clutter [26, 31, 62, 73, 86]. The log-normal is a two parameter distri­

bution. The pdf of the intensity log-normal data is given as

/,(/)=
1

exp (3.38)

where Im is the median value and (T  ̂j is the standard deviation o f the underlying 

normal generating distribution (i.e., standard deviation o f kiZ). The cumulative dis­

tribution function for this model is ^

m = \ 1 + erf

 ̂ r
7 ,

7 2 (T,„,
(3.39)

and the moments are given as

(/" ) = exp[n(ln/„ +ncr^,/2)] (3.40)

Since the log-normal distribution has two degrees o f freedom it can fit the tail of 

the data better where it deviates from the negative exponential distribution. Figure 

3.13 shows the plot o f the log-normal pdf for several values of and a median

value of 1. The mean-to-median ratio of the distribution is usually higher than 

those for members of the generalised chi-squared family.

The other attractive feature o f the log-normal distribution is that, like the 

negative exponential distribution, it has simple closed form solutions for its pa­

rameter values. Thus when using m  independent normalised log samples to esti­

mate the parameters Im and G^ j , the minimum variance estimators are given as 

[84]

2 erf(z) is the error function.
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Figure 3.13: The log-normal pdf for median 1 and standard deviation 

^in/ ~ 0.5, 1, 2.

/  m \
n / ,

V '=1 y
(3.41)

and

A 1 m
^In/ = — (3.42)

where the ‘hat’ symbol signifies an estimated quantity.

The log-normal distribution has been fitted to sea clutter [73, 86]. It has been 

found to be appropriate for urban clutter [95] where the data is very spiky. Oliver 

and Quegan [62] investigated the log-normal model for land clutter. Using C-band 

SAR data similar to that shown in Figure 3.7a they found a reasonable fit to homo­

geneous clutter from fields, but woodlands gave a very poor fit to the log-normal 

distribution. The texture variation of clutter in a wooded area did not follow a log­

normal distribution. The log-normal generally tends to overestimate the dynamic 

range of the real clutter distribution. Fay et al. [27] showed that the portion of the
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curve where the fit is poorest is the tail; this is the region most critical for setting 

False Alarm Rate (FAR). The log-normal distribution has a further drawback, that 

it predicts a zero probability at zero intensity which is not the case for coherent 

clutter. Due to these limitations and because of the lack o f a suitable physical 

model, the log-normal distribution is not considered as a strong candidate for the 

statistics of scattering from land.

3.2.3 W eibull distributed intensity

The Weibull family o f distributions, like the log-normal, is a two parameter family. 

The pdf of Weibull distributed clutter intensity is o f the form

/,(/) =
1 V"'-Yc'W 

\ ^ w  J
exp

j  \cw
(3.43)

where b y /  is the scale parameter relating to the median value o f the intensity and Cy/ 

is a parameter relating to the skewness of the distribution. The cumulative distri­

bution is given as

Fy(/) = l -e x p (3.44)

and the moments as

( r )  = V r ( i + « A „ ) (3.45)

Figure 3.14 shows the pdf plot o f the Weibull distribution for b y /  =10 and three 

values o f Cy/. The negative exponential distribution is a special case o f the Weibull 

model for = 1.

In the early 70’s there were many researchers investigating the non-Gaussian 

characteristics o f high resolution clutter statistics. The log-normal distribution de­

scribed in the previous section gave a better fit compared to the negative exponen­

tial model but still fell well short o f describing adequately the single point statistics 

o f coherent surface clutter. Goldstein [31] called attention to the Weibull distribu­

tion as a suitable candidate. Boothe [13] carried out an extensive study o f land
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Figure 3.14: Weibull pdf for -1 0  and Cw =0.5, 1, 2. For Cw =1 the 

Weibull distribution reduces to a negative exponential distribution.

clutter and showed a very good fit of the data to the Weibull distribution. This 

provided a strong stimulus for many other researchers to investigate the suitability 

of the Weibull distribution for describing clutter characteristics. Ekstrom [24] 

showed that the skewness of the Weibull distribution increases as the radar depres­

sion angle decreases. Schleher [74] investigated the Weibull distribution for both 

land and sea clutter and showed that generally the Weibull distribution represents 

the real clutter distribution more accurately then either the log-normal or the nega­

tive exponential model. Fay et. al. [27] using the DERA Canberra X-band radar 

data showed that the skewness of the distribution varies with the resolution cell 

size. Investigations carried out by Japanese researchers using L and X-band radar 

data showed that the Weibull distribution is appropriate for a wide range of clutter 

types ranging from land [79], sea [78], weather [77] and sea-ice [54].

The Weibull model gives a good empirical fit to high resolution radar clutter. 

The additional degree of freedom enables the model to get a much better fit to real 

clutter data compared to the single parameter negative exponential model. As the 

clutter data gets more spiky the skewness parameter of the Weibull distribution
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gets smaller. However, with such low skewness parameters the Weibull yields an 

incorrectly large probability for zero intensity [62].

The Weibull distribution, unlike the negative exponential and the log-normal 

distribution, does not have closed form solution for the parameter estimators [35]. 

The optimum parameter estimators have to be calculated using an iterative process 

which is computationally expensive and is undesirable in real time systems.

Despite the empirical evidence supporting the Weibull model there is no theo­

retical justification which links the discrete scatterer model to this distribution. This 

means that there is no definite way of linking the distribution parameter values to a 

physical model of the scattering scene. The gap between an acceptable empirical 

model and a plausible physical justification was bridged by the introduction o f the 

K-distribution model which is described in the next section.

3.2.4 K-distributed intensity

At low resolution many of the clutter features like trees and houses are much 

smaller than a resolution cell. The contributions from the radar cross section (RCS) 

fluctuations are averaged out so that no spatial variation is visible. However, at 

higher resolution the length scale of many o f the clutter features are longer than 

the resolution and the clutter RCS fluctuates from resolution cell to resolution cell. 

This variation in the underlying RCS is visible as a change in image contrast. This 

can be seen within the wooded region o f Figure 3.7a (the vertical narrow strip) and 

between the wooded and grass region.

A possible model to describe the scattered field is that it is the result o f a 

negative exponential process due to the coherent interference o f many scatterers, 

but the mean characterised by the underlying surface RCS is also random variable 

which depends on the physical properties (such as dielectric constant) o f those 

elements. The pdf of the intensity is then a combination o f the negative exponen­

tial pdf and the pdf o f the clutter RCS which is given by

= (3-46)
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where f]\p is the negative exponential distribution, termed the speckle component, 

and fp  is the RCS component. This representation o f the observed intensity statis­

tics as a product model [91] was a major breakthrough in the understanding of ra­

dar image properties.

Empirical analysis of sea clutter [91, 92] and land clutter [72] showed that the 

underlying surface RCS, was usually consistent with a gamma pdf, given by

f p[ p)  ~ r(v) p"'  ̂exp
vp

(3.47)

where fJLp is the mean RCS and V is the order parameter. The cumulative distribu­

tion is given as

^ ( p )  = l - e x p
vp

V PpJ /k=0 ^ •
(3.48)

and the moments as

( p " ) =
Pc

V

r(w + v) 
r(v) (3.49)

Figure 3.15 shows how the shape o f the gamma distribution changes with or­

der parameter. When V =1 the gamma distribution reduces to the negative expo­

nential distribution. As the order parameter tends to infinity the gamma distribu­

tion tends to a Gaussian distribution with mean Pp and zero variance.

For the gamma distributed RCS the integral in (3.46) has a closed form and is 

given by

/,(/) = /r(v)

■\ v+l

K v - l (3.50)

where p / is the mean, V the order parameter and [•] is the m odified Bessel 

function of the second kind of order V -1. This distribution has been termed the
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Figure 3.15: Gamma pdf of the underlying surface RCS for /Ip =10 and V 

=0.5, 1, 2, 10. As V gets large the gamma distribution tends to a Gaussian.

K-distribution and its mean and order parameters are same as those of the gamma 

distribution. The cumulative distribution is given as

0 (0 = 1- r(v) ]Im , V
2 . 1 ^  

Ml
(3.51)

and the moments as

r(v) (3.52)

Figure 3.16 shows the K-distribution for the intensity corresponding to the 

gamma distributed RCS shown in Figure 3.15. For large order parameter value the 

K-distribution is equivalent to a negative exponential model. This is so since the 

underlying gamma distributed surface RCS is constant for large order parameter 

values. For small values of V the tail of the distribution gets longer. Longer tails are 

a feature of spiky clutter which have a much higher contrast. This can be seen 

from the coefficient of variation, given as
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2 2 Vy = —7 = 1-1—  (3.53)
V

The square root o f the coefficient of variation gives the image contrast. For 

V ^  oo the right hand side of (3.53) is equal to 1 and the standard deviation of the 

intensity equals to its mean value. This means that the intensity will on average 

fluctuate away from its mean value by an amount equal to its mean value. This is 

often interpreted as a signal to noise ratio of one and is the case for negative expo­

nential distributed intensity. For smaller values of V, it is evident from (3.53) that 

the intensity wiU fluctuate away from its mean value by an amount significantly 

greater than its mean value.

One o f the first evidence that the K-distribution is a reasonable model for the 

scattered field was obtained for non-coherent sea clutter data [91]. Since then it has 

been fitted to coherent sea clutter [3, 94], land clutter [41, 56, 57] and weather 

clutter [53]. The essential features of the K-distribution results from the radar ob­

serving a multiscale process [93]. The scales smaller than the resolution cell size 

cause the negative exponential intensity ‘speckle’, whilst the larger scales are re­

solved by the radar and produce the modulation. Jakeman and Pusey [37] pro­

posed a theoretical model that provided important insight into the basis for this 

empirical model.

The simple scattering model considered by (3.9) assumed a fixed number of 

scatterers and in the limit o f  N  the detected field intensity is negative expo­

nentially distributed. However, at high resolution the effective number of scatterers 

within a resolution cell wiU undoubtedly fluctuate and therefore N  would be a ran­

dom variable itself. For the random walk model described in Section 3.2, Jakeman 

[38] suggested that the number of steps could be modelled by a Markov process 

controlled by the birth-death-immigration equation

dfN
d t -  +  l ) / ; v + i  “  ( ( w 5  +  - l )  +  ( 3 . 5 4 )
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Figure 3.16: Pdfs of K-distribution for jJ.i =10 and V =0.5, 1, 2, 10. At 

this linear scale a K-distribution with order parameter 10 or higher is 

virtually indistinguishable from a negative exponendal distribution with 

the same mean value.

where ^  is the birth rate, ^  is the death rate and ^  is the spontaneous immigra­

tion rate. An equilibrium solution to (3.54) exists when the death rate is greater 

than the birth rate, in which case tends to a negative binomial distribution given 

as

I n -
A  + V + r

N
LnIA

N  + v (3.55)

where the mean ~ the order parameter V = as

/ —> oo. The order parameter characterises the clustering or bunching of scatterers 

in a resolution cell and is related to the variance of the number of steps as
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Figure 3.17: The ML decision between the K-distribution and the nega­

tive exponential distribution for the Canberra X-band MTI image shown 

in Figure 3.6. For the original data, blocks of 91 range gates in each of the 

64 frequency bins are used for the ML decision. This gives an ML classi­

fied image which has 64 frequency bins (horizontal axis) and 15 blocks of 

data in range (vertical axis).

1 1
— + — (3.56)

Considering (3.23) for a negative binomial distributed N  and averaging over the 

fluctuations in N  gives

1 + (3.57)

Once again scaling the step length a through a j then in the Limit 

oo the characteristic function of the output is given as

lim = 1 +
4v

(3.58)

The Fourier inversion of (3.58) corresponds to the K-distribution amplitude pdf

r(v)

/ \ (v+ l ) /2

v - l 2 . t ^ A
A^)

(3.59)

for which the intensit)^ pdf is that of (3.50).
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Figure 3.18: The chi-squared test performed on the MTI image shown in 

Figure 3.6. The white pixels mark a failure and the black pixels a success 

at the 5% level for the data fitting to the distribution under test.

Thus when the distribution of the number of steps is negative binomial the re­

sultant intensity is K-distributed [37, 38]. The negative binomial distribution is in 

fact the discrete analogue of the gamma distribution, and it has been shown that 

the output of a continuous birth-death-immigration process, with a death rate 

greater than the birth rate, tends to a gamma distribution a s  f  — > [39]. The mean

and the order parameter of the gamma distribution (and therefore of the K- 

distribution) are then defined in the same way as the mean and order parameter of 

the negative binomial distribution in the discrete case.

A comparison was made between the suitabilit}  ̂of the K-distribution and the 

negative exponential distribution to model the intensity statistics of the MTI data 

shown in Figure 3.6. A maximum likelihood (ML) classifier (see Appendix D) was 

used to select the model which best describes the data. This test calculates the total 

probability of occurrence Pt for m random samples assuming a given probability 

distribution for the data samples and chooses the distribution for which P j  is 

maximum. The ML test was carried for blocks of 91 range gates in each of the 64 

frequency bins. Figure 3.17 shows that the whole of the clutter band and the side- 

lobe dominated region is classified as K-distribution. The area beyond the main
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clutter band comprises a mixture o f distributions. Altogether, 66% o f the image is 

classified as K-distributed data.

In order to get an idea about how well each o f the models fitted to the data 

the chi-squared test was carried out on the MTI data. The size of the data blocks 

selected for the chi-squared test were chosen to be same as those used for the ML 

classification test. The top image in Figure 3.18 shows 28.9% o f the image failed at 

the 5% level with the negative exponential model confirming the inadequacy of 

this type o f model to describe land clutter. The same test with the K-distribution 

gives a failure rate o f 17.8% (bottom image in Figure 3.18). This shows that K- 

distribution is a better fit than the negative exponential model, although this distri­

bution alone is not able to describe aU the features in land clutter.

The ML classification results for the SAR intensity images shown in Figure 3.7 

are given in Figure 3.19. The ML results were obtained using a stepping window of 

5x9, same as for the chi-squared test on the SAR image detailed in Section 3.2.1. 

43.3% of the C-band SAR (Figure 3.19a) and 30% of the X-band SAR image 

(Figure 3.19b) are classified as K-distributed. Area o f woodland and edges have 

been classified as K-distributed whereas low contrast areas of grass and fields as 

negative exponential distributed. Where the image is classified as negative expo­

nential the values of the ML ratio are close to 1 indicating that both distributions 

are equally suitable for the data. Thus whereas the negative exponential model fits 

the low contrast homogeneous regions, the K-distribution is a reasonable fit for 

the whole scene.

The chi-squared test and the ML classification were carried out by estimating 

parameters of the distribution from the data samples. The negative exponential is a 

single parameter distribution and the optimum estimate is just the average o f the 

data samples i.e.,

1 ^
= —  (3.60)

where m is the number of independent samples.
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f :

(b)

Figure 3.19: The ML decision between the K-distribution (marked as 

white pixels) and the negative exponential distribution (marked as black 

pixels) for (a) the Andover C-band and (b) the Canberra X-band SAR 

images shown in Figure 3.7. The ML test performed using a stepping 

window of 5x9 on a 512x512 intensity image.

The K-distribution, however, does not have a simple closed form solution for the 

optimum parameter estimates [36]. Numerous approximate solutions have been 

considered which aim to minimise the error on the estimates of the parameter val­

ues for the K-distribution. The next chapter addresses the problem of optimum
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parameter estimates for the K-distribution and derives a new estimator for the or­

der parameter.

3.3 Summary

In this chapter:

• An overview was given for the forward problem which solves the Maxwell 

equations to predict the scattered field from a rough surface.

• It was shown that solutions are available for only very simple scattering sce­

narios and the basic assumptions were described for the Kirchhoff and the 

SPM approximate methods. The scattered field from a surface with an arbi­

trarily defined surface height profile can be calculated using numerical solu­

tions. However, it was shown that for a realistic surface the computational 

complexity can be prohibitively large.

• It has been described how the field detected from a resolution cell may be 

represented as a sum of contributions from discrete elementary scatterers.

• The conditions required for strong scattering arising from uniformly distrib­

uted phase of the scatterers were described.

• It was shown that, for strong scattering, the phase and the complex compo­

nents of the detected field contained little information.

• It was shown how in the limit o f large number o f scatterers the observed 

field win have a negative exponential intensity distribution which is a reason­

able model for low resolution radar data. However, using chi-square good- 

ness-of-fit test on real examples of MTI and SAR data, it was shown that at 

high resolution the assumption of negative exponential distributed intensity 

is no longer valid.

• The shapes o f the log-normal and Weibull pdf were described and their suit­

ability for modelling non-Gaussian clutter was discussed.
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•  It was shown how the intensity of the detected field may be modelled as the 

product o f a negative exponential speckle process and a gamma distributed 

surface RCS which gives rise to the K-distribution.

• The K-distribution was shown to be the result o f a negative binomial distri­

bution in the number of effective scatterers in a resolution cell,

• Considering the results in open literature and the analysis carried out on SAR 

and MTI data it was concluded that the K-distribution is the preferred 

model for coherent land clutter.



Chapter 4

4. K-distribution parameter estima­

tors

Statistical models which can accurately describe coherent land clutter are used to 

define image analysis algorithms Hke detection, segmentation, despeclding and 

clutter classification. The statistical models are characterised by a finite number of 

parameters. These parameters for the statistical models are not known a priori and 

have to be estimated from the radar data using local statistics. Therefore, a major 

portion o f radar image analysis involves the estimation o f the parameters o f the 

clutter models.

In the previous chapter the K-distribution was shown to be a good model for 

coherent land clutter. The parameters that are required to be estimated from the 

data for this model are the mean intensity and the order parameter.

The optimum parameter estimate is obtained using the maximum Hkehhood 

(ML) solution. The K-distribution does not have a closed form for the ML esti­

mates. Therefore, sub-optimal estimators have to be devised for the K-distribution 

parameters. Before discussing the sub-optimal estimators, the full expression for 

the ML solution o f the K-distribution parameters is described in Section 4.1 and it 

is shown that it cannot be solved analytically to obtain the parameter estimates. A 

suitable sub-optimal estimator for mean intensity is simply the arithmetic average 

of the pixel intensities. This is in fact an optimum estimator for the mean intensity 

when there is no texture variation and the clutter is negative exponentially distrib­

uted. Section 4.2 derives the error performance for the mean intensity estimator.

65
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Estimating the second parameter o f the K-distribution is addressed in Section 4.3. 

Current texture measure estimators for the order parameter are shown to be 

suboptimal. A neural net based estimator is devised which improves upon the ex­

isting texture measure estimators. Prompted by the neural net results, a new hybrid 

texture measure estimator is proposed which almost matches the ML performance.

4.1 ML estimation of the mean and order parameter

The use o f statistical models to describe the detected field requires us to have suit­

able parameter values that can be assigned to the model. These parameters have to 

be estimated from the data in the absence of prior loiowledge. The ML estimation 

gives the optimal solution for the parameter estimators when the form o f the dis­

tribution to be estimated is known. This is because the limiting distribution of the 

ML estimate is normal around the true value as mean and with a variance achieving 

the Cramer-Rao lower bound [20].

I f  m independent random samples, drawn from a distri­

bution with I parameters, , « 2, . . . ,  CX,, then the total probability o f occurrence is

given as®

(hi H®!. « 2  a, )rfx = n  /̂ JC, [a,, ,..., a, )ci)c (4.1)
/=1

where |(X^,a2,...,(X, j is the pdf for the given statistical model. The ML so­

lution is then a set o f values d p  ^ 2, • • • > that maximises the likelihood function

, (X2, . . . ,  OC J  = }|ot^, OC2,. . . ,  0  ̂J  . Assuming that the joint pdf is uni-

modal, this is found by solving the partial differential equation

8L ( a i , a 2, . . . , ^ )  _

doc,  ̂  ̂ ^

where %  is the Ath parameter. Since the logarithm function for a positive real vari­

able is a stricdy monotonie increasing function, the ML estimate wiH also maximise

® denotes a vector containing all A) for i = 1 , . . m.
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the log-likelihood function, In L. The ML estimate is often more easily found by 

differentiating the log-likelihood with respect to the parameter values. The ML es­

timates for the parameters are then given as

a i n L ( a i , a 2, . . . , g ^ ) _  8 In f ]  
d a .

a g ,

(4.3)

Given m statistically identical independent K-distributed intensity values 

/p  / 2, . . . ,  with unknown mean and order parameter, the log-likelihood that 

they have mean /ilf and order parameter V is given by

In L{jÂj ,v )  = m In 2 + (in v -  In -  In r ( v )

1 m m

^ /=1 i=l

(4.4)

The ML estimates o f the mean and order parameter o f the K-distributed intensity 

are given by the values of JU/ and V which maximises the log-likelihood. Solving for 

where the derivatives of the log-likelihood with respect to the mean and the order 

parameter both equal zero, and using (F.14) gives [61]

1 ^"1 +
(4.5)

and ^

V m /=i m
(4.6)

V/(z) is the Digamma function.
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Figure 4.1: The likelihood surface for 256 samples of K-distributed inten- 

sit}̂  data with =1 and V =0.5. The likelihood values are increasing as 

the colour changes from dark to light. The arrow heads indicate the di­

rection of the slope at any point on the surface.

(4.5) and (4.6) do not have a closed form solution for jLli and V. The optimum so­

lution, therefore, requires a two dimensional numerical search over /i/ and V. This 

is computationally very expensive. Figure 4.1 shows the likelihood surface for 256 

K-distributed intensity samples with mean 1 and order parameter 0.5. Superim­

posed on the plot of the likelihood surface are arrow marks showing the direction 

in which the numerical search for optimum parameters of the K-distribution will 

progress at any point on the surface. The arrows indicate the convergence of the 

numerical solution to the peak on the surface. However, the convergence rate is 

very slow and this method for estimating the parameters is not very efficient. Con­

siderable attention has been given to various simpler estimators, suitable for real
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time evaluation, which approximate the ML solution for the K-distribution pa­

rameters. The following sections address the issue of non-optimal parameter esti­

mators for the K-distribution. The mean parameter has a reasonable estimator in 

terms of the average intensity and Section 4.2 analyses the performance of this es­

timator. A suitable estimator for the order parameter is less forthcoming and Sec­

tion 4.3 describes in detail the development of appropriate estimators.

4.2 Non-optimal estimation of the mean

A simple estimator for the mean value is the arithmetic average o f the pixel inten­

sities. This gives an unbiased estimate of the mean if the samples are from a sta­

tionary random process.

For a homogeneous region where the surface RCS is constant, which implies a 

negative exponentially distributed intensity, the ensemble average intensity gives 

the ML estimate of the mean intensity. From (4.1) the log-likelihood that the inten­

sity values have mean jii when the pixel intensities are negative exponentially dis­

tributed is given as

ln(4/i,)) = Inn-Lexp
i = l  P i

,  m -
—  = —m l n U r — —  /  (4.7)
P i )  Pi

where I  is the average intensity defined by

i A t l ,  (4.8)
^  /=1

Using (4.3) it can be shown by solving

d i l n L )  m  - m
- V - ^  = — 7  = 0 (4.9)

dn , n ,  n ,

that the ML estimate of the mean is given by the average intensity when the inten­

sities are negative exponentially distributed.

The performance of an estimator can be judged by the bias and the variance 

of the estimated quantity. The bias and variance of a function of estimated pa­

rameters may be approximated by expanding the function around the expected
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values of the estimate [64]. For the negative exponential distribution, the bias and 

the variance in the average intensity estimator of the mean can therefore be ap­

proximate by expanding /ly around the true mean value (see Appendix A.l) and 

are given by

A/iy = (/2y) — fij = 0  (4.10)

where m is the number of samples used to estimate the mean and the error predic­

tions are derived to first order in 1/m. The average intensity is an unbiased esti­

mate for the mean o f the negative exponential distribution and the variance o f the 

estimate decreases as the number of samples increases.

For the K-distribution, the first moment of the intensity also completely de­

fines the mean jJ ii (3.52). Therefore, the average o f m statistically independent K- 

distributed intensity pixels can also be used to estimate the unknown mean f i j .  This 

average intensity is also an unbiased estimate for the K-distribution mean but the 

variance o f the estimate is a function o f the order parameter and is given by (see 

Appendix A.l)

Thus the variance in the estimate o f the mean obtained from the average intensity 

is higher over a homogeneous region if the intensity values are K-distributed than 

if they were negative exponentially distributed with the same mean value. Figure 

4.2 compares the variance in the estimated intensity mean for K-distributed and 

negative exponential data. The variance o f the mean estimator for the K- 

distribution increases as V decreases, i.e. the estimate is poorer for spikier data. 

From (4.12) it can also be seen that the variance of the mean estimator is inversely 

proportional to the sample size. Therefore, this estimator will not be suitable for 

very small sample sizes.
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Figure 4.2: Comparison of the variance o f the average intensity estimator 

for the K-distribution and negative exponential distribution intensity for 

III =1 and m  =256 samples.

Although the local mean is not an optimum estimator for the mean o f the K- 

distribution, it greatly reduces the complexity of the two dimensional numerical 

search required to solve (4.5) and (4.6) for the optimum parameters o f the K- 

distribution. The one dimensional numerical search for the optimum value of V 

would still be computationally prohibitively expensive. In the following section 

various sub-optimum estimators for the V parameter of the K-distribution inten­

sity are discussed which attempt to approximate the ML solution for V.

4.3 Non-optimal estimation of the order parameter

The intensity contrast gives a simple estimate for V but has large errors for small V 

or small sample numbers [57]. Oliver [61] proposed an estimator based on the 

normalised log texture measure, which has a much better error performance.

Texture estimators consist of two operations. A texture measure is derived 

from the data followed by an inversion operation to obtain the order parameter.
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Analysis o f the estimator then involves evaluating the error in the texture measure 

and converting it into an error in the estimate of V,

Using first order approximation in the expansion of the estimate about its tme 

value the bias and variance in the estimate o f V from the normalised log measure 

can be derived [61]. Whilst this estimator is well behaved for small values o f V, the 

estimates become increasingly suboptimal as V gets larger. Lombardo and Oliver 

[50] demonstrated that the problem is associated with the highly non-linear inver­

sion process from the texture measure to the order parameter o f the (assumed) K- 

distributed texture. Introducing a reciprocal order parameter t = \Jv results in a 

more stable inversion since the texture measure now tends to a linear dependence 

on this parameter for large t. This estimator has a more direct physical relevance to 

the texture inhomogeneity since it is related to the variance o f the underlying 

gamma distribution.

Section 4.3.1 describes the intensity contrast estimator and drives the theoreti­

cal errors in estimating the order parameter. Section 4.3.2 then goes on to describe 

the normalised log estimator and derives the estimates in terms o f the t parameter. 

It is shown that this alternative estimator has better variance results compared to 

the V estimator. Although Lombardo and Oliver [50] proved that the normalised 

log provides the best performance of the measures they considered, it is still 

suboptimal. Joughin et al [42] demonstrated that the numerical ML approach does 

indeed give improved estimates.

Since radar detection and estimation performance in K-distributed clutter are 

limited by the errors in the estimate of t (and therefore V) parameter, there is a re­

quirement for estimators that can approach the optimum solution. In an attempt to 

obtain a better estimator for the t parameter of the K-distribution a neural net 

based solution is considered. Many authors have proposed the use o f neural nets 

for clutter classification [10, 22, 43, 59]. Neural nets provide a means for develop­

ing an estimator which carriers out the non-linear transformation o f the K- 

distributed data to the t parameter value. One particular drawback of texture based 

estimators is that they assume that independent samples are available for parameter
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estimation which is often not the case with high resolution images. Neural nets 

have the potential to perform parameter estimation with correlated data since they 

infer subtle unknown relationships from the data. However, since in this thesis we 

merely aim to demonstrate the viability of neural nets as a parameter estimator, we 

restrict the investigation to uncorrelated K-distributed data.

In Section 4.3.3 we discuss the development o f the neural net based estima­

tors. In using neural nets as functional estimators, the data have to have some ap­

propriate pre-processing before they can be presented to the net. When the pre­

processing involved just log scaling the intensity data the net was unable to pro­

duce a good solution. However, training the net on various texture measures o f the 

data resulted in better estimates for the t parameter. Experimentation with the neu­

ral nets showed that two texture measures, the mean normalised log and the con­

trast o f the amplitude, when used as a pair o f inputs to train the net resulted in an 

estimator which outperforms the normalised log estimator. So with the help o f the 

neural nets it was possible to identify a solution which closed the gap between the 

performance o f the texture measure estimators and the ML solution.

Prompted by the results of the neural net research a new estimator is pro­

posed which combines the normalised log and the amplitude contrast texture 

measure. The performance of this hybrid estimator depends upon the relative 

weighting of the two moments. A constant weighting provides a good estimate 

only over a certain range of the parameter values [36]. In order to obtain the best 

estimates over the whole o f range o f t values of interest optimum weight values are 

required which would minimise the variance on the values. These optimum weight 

values cannot be defined without knowing the parameter value. To overcome this 

problem an iterative procedure is adopted. An initial estimate o f t is made using an 

arbitrary weight value which is used to make a more informed guess o f the weight 

value. This weight value gives a better estimate on t which in turns allows for a 

better choice for the weight value. This way an estimate o f t can be made using the 

most appropriate weight value to be used in the texture measure. In Section 4.3.4 

we analyse the predicted errors for this new estimator and discuss the implications



CHAPTER 4. K-DISTRIBUTION PARAMETER ESTIMATORS 74

for optimal parameter estimation. It is shown that near optimal estimates are ob­

tained using an adapted weighting scheme for the hybrid normalised log estimator.

4.3.1 Intensity contrast estim ator

The intensity contrast can be used to encode the image texture information and is 

given by

( / ' )V = (4.13)

Using (3.52) this is related to the order parameter as

2
V =1 + — (4.14)

V

The expectation values are true theoretical values o f the moments which cannot be 

obtained by working within the constraint of a finite sample size. For m statistically

identical independent K-distributed intensity values with unknown parameter V,

the first moment can be estimated by (4.8) and the second moment by

A 1
(4.15)

therefore the estimated values o f the texture measure, represented by V , can be 

expressed in terms o f these quantities. The estimator error is the difference be­

tween the expectation value and the estimated quantity and establishes the useful­

ness o f the estimator. As the order parameter is obtained from the texture measure 

using the inversion relationship o f (4.14), the errors in the estimate o f the texture 

measure can be translated into errors in the estimate of the order parameter values.

In Appendix A.2 the error predictions for the intensity contrast estimator are 

derived to first order in 1/m  [50]. The fractional bias and the variance o f the esti­

mated texture measure V  are given as

V m \  v j
1 +  -  1 +  - (4.16)
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Figure 4.3: The predicted standard deviation o f V obtained using the in­

tensity contrast estimator for m =16, 64, 256.

1 +  -
V v ;

r
1 +  - (4.17)

(4.17) gives the theoretical error in obtaining the intensity contrast measure, V, 

from estimated quantities. This can then be translated into errors in V using the 

relationship (see Appendix B)

c r.?  =
\dV /  dv\'

which gives the predicted variance of V as

(4.18)

(4.19)

the square root of which gives the standard deviation o f the estimate o f the order 

parameter obtained using the intensity contrast estimator, which is a measure of 

the error in the estimate. Figure 4.3 shows the plot o f the error in the intensity



CHAPTER 4. K-DISTRIBUTION PARAMETER ESTIMATORS 76

contrast for various sample sizes as a function of the order parameter. For small 

sample sizes the error is very large. Although the error falls as the sample size in­

creases it is still large even for m =256. The intensity contrast estimator has a sim­

ple form and may be attractive in some circumstances where there are large hom o­

geneous regions within the clutter, however, for most high resolution images the 

number o f samples which can be used to estimate the parameter values are small 

and the contrast estimator would give a very sub-optimal performance.

4.3.2 N orm alised  log  estim ator

The expectation value for the normalised log texture measure (U) proposed by 

Oliver [61] is related to the order parameter through^')

U = (in l)  -  ln (/)  = \j/{v) -  In V -  7 ^  (4.20)

The fraction bias and the variance of the normalised texture measure are derived in 

Appendix A.3 and are given aŝ ^

AU 1 
U m

(4.22)

Using the relationship (4.18), the errors in the estimate o f the texture measure can 

be translated into errors in V estimate. This gives the predicted variance o f V as

\ \2 ' (4-23)
m[v\f/ { v ) - l )

y^is the Euler’s constant.

” is the Trigamma function.
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Figure 4.4: Standard deviation in V for the normalised log estimator with 

m =256  samples; (— ) prediction; (•) simulations, 10“̂ trials.

which can be compared with simulation results using uncorrelated K-distributed 

noise. The comparison is performed for a K-distribution mean value o f  unity as 

variation o f  the mean value simply scales the data and so does not affect the rela­

tive shape o f  the error curves. Tlie simulated data samples were obtained using the 

product model (3.46) whereby uncorrelated gamma distributed noise o f  mean one 

and defined order parameter is generated and multiplied with negative exponential 

generated noise o f  unity mean to give uncorrelated K-distribution samples with 

unity mean and order parameter V. As an example, the predicted errors in V for 

the normalised log texture measure are compared with simulations for a sample 

size o f  m =256. The simulation results were obtained by generating 256 uncorre­

lated K-distributed data samples o f  unity mean and given order parameter value 

for which V is estimated using the normalised log estimator. A total o f  10"̂  trials are 

carried out and the standard deviation in V measured. This is repeated for each
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point plotted along the V axis in Figure 4.4 and the error results are determined 

over the whole range of V values o f interest. For V >1 there is a discrepancy be­

tween theory and simulation. Lombardo and Oliver [50] attributed this discrepancy 

to the pronounced nonlinearity of the inversion process o f obtaining V from the 

texture measure. They proposed a reciprocal estimator ? = l/v , which tends to a 

linear dependence and therefore has a more stable inversion. This reciprocal esti­

mator is direcdy related to the variance of the texture, which is a measure o f the 

spikiness o f the data. Both the error and mean of this improved estimator, there­

fore, tend to zero as the texture contrast is reduced (i.e. as V tends to infinity).

Substituting for t  =  \ / v  in (4.23) gives the variance in t  for the normalised 

log estimator as

Figure 4.5 plots the predicted standard deviation in t  values together with the er­

rors obtained in estimating t  from simulated data. The close match between simu­

lated and predicted results shows that the derivation o f (4.24) to first order in 1 /m  

is valid. The errors are also compared to the numerical ML solution for the t  pa­

rameter in order to asses the optimality of the estimator. The ML solution was 

simplified by using the local mean (4.8) for jLLi. Despite this simplification that re­

duces the ML solution to a 1 dimensional search in t  , the computational load is 

still 500 times greater than the normalised log estimator. The crosses in Figure 4.5 

mark the ML error values and it is evident that the normalised log estimates for t  

are suboptimal.

These increased errors in the estimates o f t  translate into poorer performance 

in radar detection and classification tasks that make use o f the estimated parameter 

values. We need to improve upon the texture measure models to get closer to the 

ML solution without necessarily increasing the computational complexity o f the 

estimator.
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Figure 4.5: Comparison of standard deviation of t obtained with pa­

rameter estimators over m =256 samples; (—) normalised log prediction; 

(•) normalised log simulation, 10"̂  trials; (x) ML simulation, lO*̂  trials.

In the absence of a clear direction for modif)dng the texture model we use a 

neural net based technique to search for an improved parameter estimator. The 

next section details the work carried out using a neural net to obtain an estimator 

for the t parameter of the K-distribution.

4.3.3 N eural net based estim ator

The texture measure discussed in Section 4.3.2 provides for an approximate ML 

solution of the / parameter. The resultant errors in t depend upon the errors in the 

estimate of the texture measure which themselves depend upon the moments of 

the data which are used to obtain the texture measure. Thus the performance of 

the estimator is dictated by the moments used for the texture measure. There are 

various moments which can be used to write the texture measure and the error 

performance varies from texture measure to texture measure. However, it is not 

obvious which moments of the data most accurately encode the texture informa­

tion of the imaged data. This has hindered the development of improved models
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for the parameter estimation because an exhaustive search through possible com­

binations o f moments would be required to find the best texture measure. To 

overcome this problem a non-committal neural network was used whereby the 

properties of the data in relation to the order parameter are introduced through 

training.

Parameter estimation requires a non-Hnear mapping o f the K-distributed val­

ues to the t parameter. For the particular task considered in this paper labelled data 

is available with the labelling being defined by the simulation process. For this rea­

son, neural nets which adapt themselves to match a desired mapping have been 

used. The particular network on which this work is based is the multi-layer- 

perceptron (MLP) which has been described by, amongst others, Rumelhart and 

McClelland [71] and Lippmann [49]. A MLP consists o f a set o f simple processing 

elements, or nodes, interconnected via a set of weights. The MLP used in the 

course of the work of this thesis consists of an input layer, a hidden layer and an 

output layer. Data are presented to the input layer which has a number o f nodes 

equivalent to the sample size being used for the texture measure. Non-linear 

weights combine together the input data and the outcome is translated to the hid­

den layer nodes. The hidden layer node values are combined together using linear 

weights to give a single output which is the parameter value corresponding to the 

data presented to the net.

The net performance is influenced by a number o f parameters, for example 

the size and number of hidden layers, the type of weights used, the amount of 

training data etc. The choice for these parameters is made through experimenta­

tion. The operation of the neural net is carried out as a two stage process; a training 

stage and a test stage.

In the training stage the net starts with random weights. Simulated K- 

distributed data o f a fixed mean and a range of t values are presented to the input 

nodes of the neural net. The weights o f the net are adjusted through back propa­

gation [49]. The network passes each input pattern through the hidden layers to 

generate a result at the output node. It then subtracts the actual result from the tar­

get parameter value to find the output layer errors. These errors are then used to
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adjust the weights. This is called one epoch o f training. A large number o f epochs 

are required for training and the nets are regularly tested on unseen tuning data to 

note the output errors. When there is no more improvement on the error on the 

estimates for the tuning data the training is stopped. Further training will result in 

the net learning the training data rather then generalising for the t parameter.

The testing stage involves the net being presented with a large amount o f un­

seen data and measuring the standard deviation in the network estimate o f the K- 

distribution t parameter value. The performance of the neural net estimator is then

assessed by comparing its standard deviation in t with that obtained with a texture 

measure estimator.

Neural nets have the potential to infer subtle, unknown relationships from the 

data. Unlike the texture measure which has an exact analytical form, the neural net 

acquires the relationship between texture characterisation and the underlying pa­

rameter value through training on data. The training data has to include examples 

of data that covers parameter values over the whole range for which the net is to 

obtain estimates. There is a trade-off to be made between how representative the 

training data is to the parameter space, and the memory and processing capacity of 

the computer system used to implement the neural net. I f  not enough examples of 

data with different t values are included in the training set then the neural net will 

not generalise over the whole range of t parameter values. However, the number of 

images cannot be increased indefinitely due to consideration o f computational 

load. After some trial and error, eleven images were selected for the training data 

set. The images were simulated with a constant mean o f unity, and t parameter 

equal to 0.1, 0.5,1.0,1.5, 2.0, 3.0, 4.0, 5.0, 6.5, 8.0,10.0.

The size of each o f the images was 800 by 640 pixels. A 16 by 16 stepping 

window was used to select individual patterns to be presented to the neural net. 

The window size matched the input layer size o f the neural net. The input layer 

was chosen to be of this size so that a direct comparison can be made with the per­

formance o f the texture measure estimators for m =256 samples. A total of 2000
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independent realisations for the t value were obtained from each image using the 

stepping window.

In addition to the training data set, two further data sets were also generated. 

The first o f these was a tuning data set of eleven images containing the same range 

of t values as the training data set but only 80 by 640 pixels in size. For a 16 by 16 

stepping window this yielded 200 independent realisations for the t value per tun­

ing image. The tuning data set was used to check the neural net error for estimating 

t at every 50 epoch interval and to halt the training when the performance tailed-

off on the tuning data set (i.e. the standard deviation in t shows no further reduc­

tion). The second data set consisted of 33 test images. The size of each of the im ­

ages was kept same as those in the training data set. The test data set, however, 

incorporated 3 times as many examples of the t parameter values in the range 0.1 

to 10.0. This data set was used to measure the performance of the neural net esti­

mators. A complete list o f the size and the t parameter values o f the images used in 

each of the three data sets is given in Table 4.1.

Data

type

Image

Size

N o. of 16x16 

subimages

N o. of 

images

t  parameter for each image

Train 800x640 2000 11 0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.5 

8.0 10.0

Tune 80x640 200 11 0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.5 

8.0 10.0

Test 800x640 2000 33 0.1 0.25 0.5 0.75 1.0 1.25 1.5 1.75

2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75

4.0 4.25 4.5 4.75 5.0 5.25 5.5 5.75

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

Table 4.1: Description o f the neural net data sets.

Initially the net was trained on just the intensity K-distributed data. However, 

the net failed to converge. The intensity data were log-scaled to limit the dynamic
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range of the data. With this simple pre-processing the neural net was able to p ro ­

vide estimates of t when tested on unseen data but the standard deviation on t did 

not compare well with the normalised log estimator. Thus the neural net estimator, 

with this simple pre-processing, proved incapable o f automatically extracting the 

relevant texture measure information from the data.

From previous work on texture estimators [11, 50, 61] we know that the m o­

ments of the data are capable of coding the information regarding the underlying 

order parameter value of the imaged data. It was therefore decided to train the 

neural net on specific moments o f the data. The procedure then involves calculat­

ing the texture measure for the data samples over the 16 by 16 window and pre­

senting the net with the moment value. The input layer then has just a single node. 

The remainder of the structure of the MLP remains unchanged. Figure 4.6 shows 

the structure of the neural net estimator when using texture measures as input to 

the net. The training procedure for this type o f neural net is outlined as follows:

1. Select 11 equally sized simulated K-distributed images which have the same 

mean but different t values spanning the range from 0.1 to 10.0.

2. Using a 16x16 stepping window, calculate moments o f the data.

3. Present the moment images to the net and train the weights to give the true 

parameter value corresponding to each input image.

4. Test the performance of the net on a small set of tuning data and note the 

overall standard deviation. Stop training when the performance has tailed off 

on this tuning data.

5. Test the neural net on unseen data and note the standard deviation on t .

The neural net shown in Figure 4.6 has 16 nodes in the hidden layer. Various 

other configurations for the neural net were also tried with different number of 

nodes in the hidden layer but it was found that a net with 16 hidden nodes is com ­

plex enough to generalise for the t parameter value but stiU small enough to avoid 

learning the training data exactly.
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Figure 4.6; Neural net estimator using texture measures to estimate t pa­

rameter using 256 data samples. For the hidden layer,

/ ( ) ' )  = t  + expi)')} . For the output

layer, = E Z ,  .

The types of moments that can be calculated from the intensity data are infi­

nite. A key question in the design of the neural net estimator is what moment will 

result in the best estimator performance? A whole series of neural nets were 

trained using different moments of the K-distributed data as the input to the net. 

Most of the choices for the moments used to train the neural net came from pre­

vious estimators for the K-distribution parameters, for example the mean of the 

intensity^

•r,„ = (/)  (4.25)

the contrast of the intensity^



4.3 NON-OPTIMAL ESTIMATION OF THE ORDER PARAMETER 85

(4.26)

the normalised log intensity [61],

^in = ( l n / ) - l n ( / )  (4.27)

the contrast o f amplitude [51],

^in -  / f-\2 ~ 1 (4.28)
(V7)

and variance o f log of intensity [46]

^ ^ = ( l n ^ / ) - ( l n / ) ^  (4.29)

It was found that the net trained on some moments had standard deviation results 

for f  which were comparable to the normalised log estimator. These nets have 

acquired, through training, the appropriate texture measure inversion process to 

obtain the t parameter value. It was then decided to train the net using pairs of 

various moments as inputs to the net. The input layer then has two nodes corre­

sponding to the two measured moments. With this arrangement the nets gave 

some very good estimates for the t parameter. Figure 4.7 shows the error on the 

estimates for t obtained with three of these nets. The data statistics on which the 

three nets were trained are as follows:

1. variance of log of intensity (CT \i])  and contrast o f amplitude (CoA).

2. G \xi and normalised log.

3. CoA and normalised log.

In Figure 4.7 the error performance of each net has been compared to that o f

the normalised log estimator. The values of t for which the net estimates were ob­

tained are marked with the diamond symbols. The nets were trained on only a few 

examples o f the t parameter (see Table 4.1). Points in Figure 4.7 for which there 

was a corresponding t parameter image in the training data set are marked by 

shading the diamond symbols black. It can be seen by the plots in Figure 4.7 that
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(a)

Figure 4.7; Comparison of the error in f obtain using the normalised log

estimator (-----) with the neural net estimator (— ). The neural nets have

2 input nodes, 16 hidden nodes and a single output node. Results from 

three networks are shown. The texture measure used to train each of the 

nets were (a) G  - in /  and CoA, (b) G  4 n /  and normalised log and (c) CoA 

and normalised log. The t values of the test images used to obtain the 

neural net error results are marked as diamonds. The t values of those test 

images for which there was a corresponding training image with the same 

t value, are marked as black diamonds (continued on next page).

the nets have been able to interpolate between t parameter values which were not 

contained within the training data set. Thus a net trained on just a limited example 

of t parameter values is able to produce estimates over a continuous range of t val­

ues.
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Figure 1.7: (continued).
(c)

The comparison of the three nets shows that the Figure 4.7a net falls well 

short of the normalised log performance, the Figure 4.7b net outperforms it for



CHAPTER 4. K-DISTRIBUTION PARAMETER ESTIMATORS 88

only a few values of t whereas the Figure 4.7c net has been successful in achieving 

better errors for the majority of t values. From the neural net research it has 

emerged that the net trained on the normalised log and the CoA produces the best 

estimate for t. This net improved upon the normalised log estimator for a wide 

range of t values. The errors for the neural net for Figure 4.7c are much closer to 

the ML performance. However, comparing the results with Figure 4.5 it appears as 

if the net is producing lower errors for t , for values close to 10. This apparent im­

provement on the ML estimator is due to the fact that the net is only able to give 

estimates for t values which lie within the range of parameter values included in the 

training set. This restriction in the range of t values which the net is able to esti­

mate, lowers the standard deviation near the top of the range o f the t values. Thus 

in actual fact the neural nets never exceed the performance o f the ML estimator.

The test data used to produce the plots of Figure 4.7 had the same mean in­

tensity value as the training data. The nets were also tested on data which had dif­

ferent fXi values and error results identical to those o f Figure 4.7 were obtained. 

Thus the performance of the net is invariant to /i/ changes. So the fact that the 

same jLLi value has been used for aU the training data is not a limitation o f the neural 

net estimator.

Previous parameter estimators used just single moments o f the data to obtain 

the texture measure [46, 51, 61]. With those types o f estimators the normalised log 

proved to give the lowest error in regions of large t. The normalised log measure 

was also found to be the most accurate estimator with the neural nets when using 

just a single moment to calculate the texture measure . However, the net revealed 

that a better estimator is achieved if the amplitude contrast is also used to obtain 

the texture measure. Amplitude contrast is a reasonable estimator for the t pa­

rameter but is outperformed by the normalised log estimator for uncorrelated K- 

distributed data. However, for noisy K-distributed clutter data the amplitude con­

trast does rather better [51] and is the preferred estimator for the parameter. This 

is because the normalised log is sensitive to lower values of the K-distribution 

whereas the CoA is sensitive to higher values of the distribution which are not so
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affected by the additive noise. This sensitivity to different regions o f the distribu­

tion makes it possible for the two moments to contribute independent information 

to the texture measure. The variance o f the log, on the other hand, is sensitive to 

the same pdf region as the normalised log and hence a net trained on these two 

moments (see Figure 4.7b) shows no improvement on the normalised log measure. 

The net has now confirmed that there is independent information in the amplitude 

contrast which hence results in better estimates for t when combined with the in­

formation in the normalised log texture measure.

Neural net research has shown that multiple moments o f the data can be used 

to obtain improved texture measures since there is independent information to be 

had from the different texture measures. These improvements upon the current 

model for the approximate ML solution lead us to propose a new model which can 

be taken as a better approximation to the ML solution. The next section discusses 

the hybrid estimator for the t parameter of uncorrelated K-distributed data based 

on the pair o f moments: the normalised log intensity and the contrast o f the am ­

plitude.

4.3.4 H ybrid norm alised  log  estim ator

A new model is proposed for the t parameter estimate o f K-distributed clutter data 

which uses multiple moments to obtain more accurate texture measures. Following 

on from the neural net research it was found that a useful combination o f m o­

ments is the normalised log intensity and the contrast of the amplitude. The model 

can be written as

W = a ( ( ln / ) - ln ( 7 ) )  + ( l - a )

V \ / y

= cc(y(t ’) + I nÏ - ( l - o;) A V L _ i

(4.30)

where CC is the weight ratio according to which the two moments are combined.
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Figure 4.8: Optimum (X  values that minimise the error in t  for hybrid 

normalised log estimator.

Error predictions were derived to first order in 1/m  using the same approach 

as detailed in Section 4.3.2. The theoretical error in obtaining the hybrid normal­

ised log measure, W, from the estimated quantities is (see Appendix A.4)

om

+ 16
{ l - a f  r \ r ' )

m

+ 4

5 « r^ ( i« - .) )  (4.31)

y A r  [_  6 + 8 In 2 + 1 + 4y/(r') -  4v/(2+r'))
( f ' T  ’m

This can be translated into errors in t  using the relationship (see Appendix B)

(4.32)(Tf =
' \dW /dt\‘

This gives the predicted variance of t  as
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+  16

(4 .33)

m

+  4 — — —  ^  6  +  8 In 2  +  ? +  4 l / / ( r ‘) -  4 v /'( i+ /- ') ) )
m  "  ”

^ î+ r ^ ( V ') ^ ( ~   ̂ ~  - 1)

The weight variable (X controls the error obtained with this parameter estimator. 

For CK = 1, (4.30) simplifies to a normalised log estimator and the predicted error is 

then same as (4.24) given in Section 4.3.2. For (% = 0 , (4.30) reduces to a contrast 

o f amplitude estimator. For other values of Ct the estimator has a varying fraction 

of the two moments of the texture image combining together to obtain t values. 

The weight (X can be optimised to give the minimum variance on the estimates o f t 

by solving the partial derivative

da^
= 0 (4.34)

d a

for a. Figure 4.8 shows the plot o f optimum a  over a range o f t values. For large t 

the value of a  which would minimise the error approaches a constant value. H ow ­

ever, for t =0.5, the optimum a  becomes extremely large and for values of t <0.5, 

a  does not have a stable value which minimises cr3. Thus the value o f a  which

gives the optimum estimate depends on the value of t, which is the quantity that is 

being estimated in the first place.

The simplest form for the hybrid normalised log estimator would be to use a 

fixed value for a. The texture measure is then calculated using a linear combina­

tion o f the two moments which yields the t parameter estimate from (4.30). Figure 

4.9 shows the resultant standard deviation for t when several different values of a  

have been used to obtain the texture measure. The plot shows that different values
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Figure 4.9: Standard deviation of t  using hybrid normalised log estimator 

for m =256 samples and fixed values of a.

of CC give better estimates in different regions of the t  parameter space. For a  =0.8, 

the error is the lowest for all t  >0.5. This is significant, since over this range of t  

values, the error is lower than the normalised log estimator (CC =1 case). The lowest 

error over the range t  <0.5 is obtained when a  =0, for which the estimator is equal 

to the amplitude contrast texture measure. It emerges that a  =0.8 is the best com­

promise value which would give the lowest error over the widest range of t  values.

Using the fixed value of CC =0.8 to write the texture measure of the hybrid es­

timator, (4.30) takes the form

W s 0 .8 ( ( l n  / ) - l n { / »  +  0 .2 </> -1 (4.35)

Figure 4.10 compares the theoretical error obtained with this estimator with those 

of the normalised log estimator. The new estimator shows a clear improvement on 

the standard deviation in t for values of t >0.5. Simulation results obtained by es­

timating the Î parameter from uncorrelated K-distribution noise samples showed
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Figure 4.10; Comparison of standard deviation o f t obtained with pa­

rameter estimators over m =256 samples; (—) normalised log prediction;

(---- ) hybrid normalised log prediction, (0) normalised log simulation, 10"̂

trials; (x) ML simulation, 10'̂  trials

good agreement between theory and simulation. This modified estimator when 

compared with simulation results obtained from numerical ML solution shows that 

the errors are indistinguishable over the range t >0.5. Thus using a fixed weighted 

combination of the normalised log and the contrast of amplitude moment and per­

forming a single texture measure inversion, an estimator for t is obtained which is 

near optimal over a wide range of values of the t parameter. This estimator has 

been able to achieve this improvement at the cost of just doubling the computa­

tional load. For values of t close to the origin, the estimator is however sub- 

optimal. This is so because the values of OC which would minimise in this region

are fairly unstable and a constant a  is insufficient to give the best parameter esti­

mate.
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The neural nets were able to combine the two moments to give an improved 

estimate over a wide range of values o f the t  parameter (see Figure 4.7). The nets, 

therefore, must be adjusting the value o f CL in some form o f adaptive manner to 

minimise the error in the parameter estimate. With the analytical estimator an op ­

timal value for (X  has to be used in order to ensure minimum error on the estimate 

for t. Therefore, the texture measure estimator requires an optimum estimate for 

both t  and CL. Figure 4.11 shows the plot of the predicted errors in the estimate for 

t  when the hybrid normalised log estimator uses optimum CL values. The optimality 

of this estimator is assessed by comparing the errors with the ML solution. A l­

though, a closed form does not exist for the ML solution, BlackneU [11] derived an 

analytical expression for the standard deviation of the order parameter estimates 

when using large sample sizes. Figure 4.11, therefore, also shows the optimal error 

on t  estimates as given by the ML solution. The performance of the hybrid nor­

malised log estimator is so close to the ML result that the two graphs are barely 

separable. It is only for t  >S that there is a noticeable difference between the per­

formance of the two estimators. From this comparison it can be seen that the hy­

brid normalised log estimator produces near optimal estimates for the t  parameter.

A practical implementation of the hybrid normalised log estimator would re­

quire a two dimensional search in both t and CL. A simple iterative scheme is used 

to implement this two dimensional search. The estimation process begins with an 

estimate o f t with CL —  1. This estimated value of t is used to obtain the value of 

optimum CL from the graph shown in Figure 4.8. The texture measure value is re­

calculated with this new CL and a more accurate estimate o f t is obtained. This 

process is repeated until t value stabilises to within a certain accuracy. The error 

results for the hybrid normalised log estimator implemented using this iterative 

scheme on simulated data is shown in Figure 4.11 as cross marks. The simulations 

match the predicted performance over all values o f t except for those close to the 

origin. This is because for t values near the origin the CL values are unstable and it is 

not always easy to find the optimal value o f CL. In such cases the value o f CL is 

forced to be equal to one and the estimator then simplifies to the normalised log
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Figure 4.11; Comparison o f the hybrid normalised log error in t with the

ML performance for m =256 samples; ML predictions (___); hybrid

normalised log predictions using optimum a  (____ ); hybrid normalised

log simulations, 10"̂ trials (x).

texture measure estimator. The closeness of the match o f the simulated errors to 

the predicted performance gives us confidence in the iteration procedure used for 

implementing the hybrid normalised log estimator. Thus it is shown that an adap­

tive weighting scheme can be utilised to combine the two texture measures to 

achieve improved parameter estimates.

The errors in f  values are very close to the ML performance and for aU prac­

tical purposes may be considered the same. However, it has not been shown that a 

combination of the two statistics can equal the ML solution. The advantage of the 

hybrid normalised log estimator over the ML estimator is that it gives a close ap­

proximation to the ML solution using a computationally manageable simple form, 

albeit over a restricted range of order parameter values. This restriction in the 

range o f parameter values for which the estimator gives the best error performance 

is not a disadvantage as such since it is conceivable to have estimators which are 

tuned to different regions of the t parameter space and have a mechanism for se-
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lectively choosing between them such that the resultant errors are a minimum over 

the whole of the range of values of interest.

4.4 Summary

In this chapter:

•  Methods for estimating the two parameters that describe the K-distribution

have been discussed.

•  The ML estimates of the mean intensity and order parameter of K-distributed

intensity were derived but were found to be too complex to be used in prac­

tice.

•  It was shown that the average intensity, which is an optimum estimator for

negative exponential mean, is also an unbiased estimator for K-distributed 

mean intensity. The variance of the sub-optimal mean estimator, however, 

increases with increased data spikiness.

•  Two existing estimators for the order parameters o f the K-distribution, the

intensity contrast and the normalised log estimator, were both shown to be 

sup-optimal.

• It was shown that the analysis of the second parameter of the K-distribution

is simplified by considering the reciprocal order parameter t = If V which 

has a more stable inversion from the texture measures.

• A novel neural net based method was used to estimate the t parameter. It was

shown that the neural net performance is strongly influenced by the type of 

pre-processing performed on the input data. The best performance for the 

estimate o f t was obtained with a net trained on the normalised log and am­

plitude contrast moment of K-distributed intensity data.

• A new hybrid estimator, which uses adaptive weighting to combine the nor­

malised log and the contrast of amplitude texture measure, was used to esti­

mate t parameter values. Using theoretical predictions and simulation results 

it was shown that the new estimator achieves almost optimum performance.



Chapter 5

5. Weak scattering models

The statistical models studied in Chapter 3 assume a uniformly distributed phase 

for the detected field. The resultant phase is the sum of the phase contribution 

from individual scatterers within a resolution cell. The phase return from a scat- 

terer is the sum of the phase of the backscattering coefficient and the two-way 

path from the scatterer to the sensor. Therefore, the orientation and the position 

of the individual scatterer determine its phase and hence the phase distribution of 

the detected field. When the cell dimensions are several wavelengths in size then 

the phase overlaps many times as the co-ordinate values o f individual scatterers 

span from the near to far range and from left to right azimuth of a range cell. In 

such strong scattering regime the phase of the detected field will be uniformly dis­

tributed and the detected field can be adequately represented by the statistical 

models described in Chapter 3. It was shown that when the effective number of 

scatterers fluctuates according to a negative binomial distribution the resultant field 

statistics are K-distributed. However, when the resolution ceU is only a few wave­

lengths in depth the scatterers wül not have a uniformly distributed phase. Also if 

there is a bright target immersed in a resolution cell otherwise containing scatterers 

with uniformly distributed phase the net effect will again be a non-uniformly dis­

tributed phase for the detected field. In the random walk representation o f the 

scattering process the non-uniform phase manifests as a bias in the random walk. 

This type of scattering is termed ‘weak scattering’.

When the model deviates from strong scattering the K-distribution no longer 

accurately describes the single point statistics of the observed data. Blake et al. [12]

97
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showed that for very high resolution X-band SAR data, where the resolution cell 

size is o f the order of the wavelength, the single point statistics deviate from a K- 

distribution. Griffiths et al. [33] showed a similar non K-statistics behaviour for 

high resolution sonar reverberation from sea beds. Blake et al [12] found that a 

mixture of K-distributions provides a reasonable fit to the high resolution X-band 

data. However, such empirical fits lack any physical justification. It is therefore 

necessary to be able to consider models that have some physical basis for repre­

senting the weak scattering process.

Baraket [4] showed that by modelling the weak scattering as a directional bi­

ased random walk for which the phase distribution is nonuniform, the generalised 

K-distribution is obtained. Jakeman and Tough [40] demonstrated that a com­

pound representation of the generalised K-distribution is a Rice distribution with 

both the mean-square noise component and the coherent amplitude varying ac­

cording to a gamma distribution in a correlated manner. Although this is an attrac­

tive new process, the random walk from which it derives does not correctly model 

the effects generated by weak scattering media. Another model for weak scattering 

is the homodyned-K distribution process, which is modelled as a coherent sum of 

a constant vector with a K-distributed vector. Jakeman [38] proposed this model 

for the statistics of laser light scattered by a localised turbulent thermal plume. The 

compound model for the homodyned-K distribution is a Rice distribution with a 

mean-square noise component varying according to a gamma distribution but with 

a constant-amplitude coherent component. The homodyned-K model is supported 

by some experimental data. For some situations it has a plausible phenomenologi­

cal view for example the case of a single bright scatterer among a large number of 

smaller scatterers. The homodyned-K distribution is, therefore, attracting increas­

ing interest for modelling of weak scattering.

The introduction of new models that are suitable for weak scattering then ne­

cessitates the task o f devising optimal parameter estimates. There have been very 

few published results on parameter estimation of the homodyned-K and the gen- 

eralised-K distribution. The distributions have an additional offset parameter 

which is a measure of the degree o f bias in the random walk. The third parameter



5.7 HOMODYNED-KDISTRIBUTION 99

further complicates the expression for the distribution and there are no closed 

form solutions for the ML parameter estimate. Therefore, sub-optimal estimators 

have to be considered.

In this chapter the amplitude statistics for the weak scattering model are dis­

cussed, some simple parameter estimators are proposed and their performance 

evaluated. Firstly, Section 5.1.1 describes the amplitude statistics for homodyned-K 

distribution. A large V expansion of the homodyned-K distribution is used to de­

rive estimators for the offset and order parameter of the distribution and an error 

analysis is carried out using the small perturbation method in Section 5.1.2. The 

amplitude statistics for the generalised-K distribution are described in Section 5.2.1 

followed by a discussion o f the estimators for its parameters in Section 5.2.2.

5.1 Homodyned-K distribution

In this section the first of the two models proposed for the weak scattering is dis­

cussed. Initially the amplitude statistics for the homodyned-K distribution are de­

scribed, followed by a discussion of sub-optimal estimators for the parameters of 

the homodyned-K distribution.

5.1.1 H om od yn ed -K  am plitude statistics

The basis for strong scattering is a uniformly distributed phase. However, in high 

resolution systems the path variations associated with the position o f the effective 

scatterers are small and the phase overlaps with low probability. The resulting 

phase distribution is no longer uniformly distributed and becomes markedly con­

centrated around a deterministic value. One way o f modelling this non-biased 

phase in the detected field is to represent the detected field as a coherent sum of a 

constant vector and a random vector for which the phase is uniformly distributed. 

The expression for the random walk of (3.9) is then modified to

N
^ /'* ’) + A) exp(/O o)j (5.1)

f =  l

where Ao is the amplitude and 0o  the phase of the constant vector. The magnitude 

o f Ao determines the degree of bias in the random walk. When the number flue-
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tuation follows a negative binomial distribution, (5.1) is equivalent to the coherent 

sum of a constant vector with a K-distributed process. The statistic o f the resultant 

field is a homodyned-K distribution, the amplitude pdf of which is given by

f  , 1

1 (5-2)

h 4 b \ A > - A

v - k - -  2

v+k— 2

where è = v//X and (O, A:) = r(]/2+ t ) / ! r ( ] / 2-t)) is Hankel’s symbol. The expres­

sion for the pdf o f the homodyned-K distribution is very complex involving a sum 

over infinite terms. Jakeman and Tough [40] showed that a closed form expression 

for the homodyned-K pdf is obtained for integral values o f V. For V = 1 the pdf 

takes the form

f M )  = 4 A b l J 2 \ S ) K j 2 A ^ f b \ A  > A,
(5.3)

— 4 ^ 2 vAg > A

The pdf form for values o f V greater than 1 , where V  =  q  can be obtained by rec-

1 d
ognising that (l +  ̂ - l ) ) )  —  (y + %) . For V < 1, Tough [85]

showed that the pdf can also be written in closed form. For A >  Aq the pdf is 

given as

/ Q _ ^ \  \2  (^-4)
2  (2* +1 -  v)| (2A, (2AVÂ)
k=0

When A < 24q the arguments of the modified Bessel functions of the first and 

third kinds in this expression are interchanged. Thus it is possible to study the pdf

( l-v ) j is the Pochammer symbol r( l-v + ^ )/r( l-v )
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Figure 5.1: Comparison of the theoretical and simulated amplitude pdf of 

homodyned-K distribution for unit}̂  mean, V =1 and Aq = = 0, 1.0,

5.0, 10.0.

of the homodyned-K for processes which range from strongly non-Gaussian 

( v  <  1) to effectively Gaussian ( v  >  10) .

The homodyned-K distribution can also be represented in a compound form 

similar to that used for the K-distribution in Section 3.2.4. Thus the homodyned- 

K will have a speckle component arising from the coherent interference of many 

scatterers and a mean of the speckle, characterised by the underlying surface RCS, 

which is also be a random variable. The amplitude pdf of the homodyned-K distri­

bution in the compound form is given as

A  (-4) = I  f , i M p ) N p ) d P (5.5)

where fp is the RCS component which gives the fluctuation in the mean-square 

noise level and is the speckle component. As the number fluctuation in the

random walk of (5.1) is assumed to be a negative binomial process, the RCS com­

ponent is modelled as a gamma distribution and is given by (3.47). For the homo­

dyned-K distribution, since the phase is not uniformly distributed, the statistics of
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the speckle deviate from a pure Rayleigh amplitude and are given by a Rice distri­

bution as

\

h exp
{no+A^y

y ^  J [ p  )
(5.6)

V P .

where the intensity offset and the mean-square noise component varies

according to a gamma distribution.

The product model representation of the homodyned-K distribution also fa­

cilitates the generation of simulated data. Thus homodyned-K data o f unity mean, 

given order parameter value and offset value can be obtained by generating uncor­

related gamma distributed noise o f unity mean and defined order parameter and 

multiplying it by Rician generated noise of defined offset value and half mean- 

square noise value. The Rician data itself is obtained by generating zero mean half 

standard deviation Gaussian complex data and coherently adding the complex off­

set and taking the modulus of the resultant. Homodyned-K distribution data for a 

range of different parameter values were simulated and the histogram measured. 

Figure 5.1 shows the pdf obtained on simulated data for unity mean, V =1 and a 

range of Ao values. The corresponding theoretical pdf plots are also obtained, using

(5.3), and are shown as line graphs. There is a good match between the theoretical 

pdf and the simulated histogram, which validates the simulation process. As the 

offset value increases the pdf plot is shifted up along the amplitude axis. Figure 5.2 

shows the measured histogram for the homodyned-K distribution for values of V 

equal to 0.5 and 10 respectively. Here again the pdf plots are shifted in amplitude 

as the offset value increases. The shape of the histogram becomes Gaussian in the 

limit of large order parameter values. The results of the theoretical pdfs are not 

shown in Figure 5.2 since the expressions were too computationally cumbersome 

to calculate. However, Figure 5.1 suggests that the results would have been a close 

match.



5.1 HOMODYNED-K DISTRIBUTION 103

p d f

1

♦ O

■

0 . 8 ’♦ ■

0 . 6 .♦  o
Ü

■
♦ ■

0 . 4 o
♦ ■ ■

0 . 2 ♦ o
0

. ■
2 4

JtL.

Ao S i m u l

☆ 0 . ♦

☆ 1 .  0 O

5 . 0 ■

1 0 . 0 ☆

☆

☆ "A"

A m p l i t u d e

10 12 1 4

p d f  

1

0.8

0.6

0 . 4

0.2

♦ o

Ao S i m u l

0 . ♦

1 .  0 O

5 . 0 ■

1 0 . 0 ☆

A m p l i t u d e

10 12 1 4

(b)
Figure 5.2: Amplitude pdf of the homodyned-K distribution for unity: 

mean, \  = 0, 1.0, 5.0, 10.0 and V equal to (a) 0.5 and (b) 10.0.

So for it has been shown that the homodyned-K can be written in a com­

pound form and the pdf has a closed form under certain conditions. The expres­

sion for the even order moments of the homodyned-K can be written as
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/ x 2 . \  'z ! r ( l  + » ) r M V y  r ( » - A :  + v) ( j V Y  / c

 ̂ '  r(v) U J  S^!(M-^)!r(i+^)l A J  ̂ ^

The moments of the homodyned-K distribution cannot be solved direcdy to give a 

closed form solution for the optimal parameter estimates. In the next section alter­

native sub-optimal estimators are considered which are based upon a large V ex­

pansion o f the homodyned-K distribution.

5.1.2 Parameter estim ators for hom odyned-K  distribution based  

on a large v approxim ation.

The maximum likelihood solutions for the parameters o f this distribution do not 

have simple expressions in terms o f combinations of distribution moments. In the 

absence of such straight forward moment based estimators an approximate solu­

tion for the parameter values is considered. The approach taken is to perform an 

expansion appropriate to large V values. In the limit o f large V, the gamma distri­

bution in the product model tends to a delta function rendering a Rice distribution. 

This is more apparent once the distribution is re-parameterised in terms o f V and 

the mean power ( a^ )  of the homodyned-K noise process. Thus

The equation in this form allows us to show the effect o f large V while keeping the 

mean power level o f the noise process at a constant value. Setting this equal to 

unity causes no loss in generality, thus the integral becomes

A W  = exp(- vu)du (5.9)

Evaluation of this integral for large V yields [85]
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Figure 5.3: Comparison of the predicted and simulated relative variance 

of homodyned-K parameter for m =256. Each simulated result ob­

tained using 10"̂ trials.

/^(A) = exp(- + A-)) X ( 2 A / ,( 2 A ^ )  +

y [ '^ (2  + (W)+>1‘ ) +4(rt)A’ - ( r t )  + A‘ )))/|,(2A.^/rtJ’)+  (5.10)

2 A ' ^ ( 3 - 2 ( %  + A ') ) / , (2A ^ ) ] |

From (5.10) tlie second and fourth order moments for the homodyned-K distribu­

tion are given as

(a^ )  = 1 + Âo 

( a '̂ ) = 2  + 4 ^ 0  + —

(5.11)

(5.12)

Rearranging these yields expressions for the estimate of the parameters of homo­

dyned-K distribution. The viabilit}  ̂ of these estimators can then be demonstrated 

by performing an error analysis. Thus (5.11) gives an estimate for fio as

A

Â  = A ^ - l (5.13)
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The assessment of the error performance o f this estimator for the offset value of 

the homodyned-K is carried out by performing a small perturbation analysis about 

the mean parameter value similar to that carried out in Section 4.2 and 4.3 for the 

K-distribution parameter estimators. (5.13) is an unbiased estimator for /io and 

therefore its fractional bias is zero. Its relative variance is given as (see Appendix 

A.5)

(5.14)

The relative variance for the offset parameter has a dependence on both jM) and V 

values. Figure 5.3 shows the plot o f the relative variance in the estimate o f //o as a 

function o f V for a number of fJo values. In order to keep the analysis consistent 

with the results shown in Chapter 4 all the plots for the weak scattering models are 

obtained for a sample size of m =256. The predicted error performance is also 

compared with simulations. The method adopted for producing the simulated re­

sults is similar to that used in the previous chapter. 256 samples of homodyned-K 

distributed data for unity mean, given jAo and V values are generated and the fJU) pa­

rameter estimated. The homodyned-K data is generated using the method outlined 

in Section 5.1.1. The variance in is calculated using 10  ̂ trials. This is repeated 

for each set o f parameter values for which the experimental error analysis is carried 

out. The results of the simulation are shown as marks o f miscellaneous shapes in 

the same figure which contains the plot for the corresponding predicted error per­

formance. Figure 5.3 shows that the error in decreases with increasing v and JUq 

and there is good agreement between simulation and prediction.

In order to obtain an expression for the estimate of the order parameter, the 

first step is to obtain an expression for a moment based texture measure which can 

be written in terms of the order parameter. This can be obtained by combining 

(5.11) and (5.12) and rearranging the equations such that JLLo is eliminated. This 

leaves an expression for the texture measure which can be written as
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Figure 5.4 Comparison of the predicted and simulated results for the 

(a) fractional bias and (b) relative variance, for the texture measure Y of 

the homodyned-K distribution for m =256. Each simulated result ob­

tained using 10  ̂ trials.

(5.15)

that is completely defined by the order parameter of the homodyned-K. This result 

is, however, obtained using simplified second and fourth moment expression
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based upon a large V expansion of the homodyned-K pdf. Inverting the estimate 

of the texture measure provides an estimate for the order parameter value. The 

fractional bias and the relative variance of the texture measure o f (5.15) are given 

as (see Appendix A.6)

A Y  2 -h V +  2 v j U q  

Y ~ 2m (v -l)

.2 — 1 + lOv + V + 28v)Uq -i- 4v JUq + 3vjIq + 2v jIq

(5.16)

(5.17)

The fractional bias and the relative variance have a dependence on both the JJq and 

V values. There is also a singularity at V =1. Figure 5.4a compares the predicted and 

simulated result for the fractional bias of the texture measure o f the homodyned-K 

distribution whereas the corresponding results for relative variance o f the texture 

measure are shown in Figure 5.4b. These results are again produced for a sample 

size of m =256 and using 10  ̂trials for the simulations.

The results for the texture measure estimate show a good match between 

simulations and predictions for lafge V. In the limit of large V the error values in 

the texture estimates are reasonably low. However, as V approaches 1 the errors get 

very large. The offset jUo scales the errors such that they increase with increasing J io  

with the effect being more pronounced at smaller values o f V.

The required order parameter value of the homodyned-K distribution can be 

obtained by inverting the texture measure Y. However, it has been shown [50] that 

working in the space of t = \ jv  results in better error performance for the pa­

rameter value. Thus using (5.15) an expression can be obtained for t in terms of 

the estimates for the texture measure V  as

f  = ^ y + i  (5.18)

Using (5.16) and the relationship At = A Y jidY /d t^  the fractional bias for t o f the 

homodyned-K distribution is obtained to first-order approximation in m  as
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Figure 5.5: Comparison of the predicted and simulated results for the 

(a) fractional bias and (b) relative variance, for t of the homodyned-K 

distribution tor m =256. Each simulated result obtained using 10  ̂trials.

Af _ 1 (l + 2/ + 2 ^ )
t 2m t

(5.19)
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The corresponding relative variance for t is obtained from (5.17) and using the 

relationship o f  = Gy j\d Y / dt\ as

(yf 1 + 4/^q + 2/ ^  + 10? + 2StjXQ + 3?r? —
- t  = — -------- ------ -- -------- i---------- ------     (5.20)
r  m r

The plots for the predicted and simulated fractional bias o f t for the homodyned- 

K  distribution are shown in Figure 5.5a. The fractional bias decreases as t increases. 

The fractional bias is not as small as the fractional bias o f the texture measure Y 

from which the t parameter is derived. The effect of the fio parameter is to increase

the fractional bias of t . The effect of this increase is more noticeable for smaller

values o f t.

Figure 5.5b shows the predicted and simulated results for the relative variance 

of t for the homodyned-K distribution. According to the theoretical predictions, 

the relative variance of t reduces as t increases. However, according to the simu­

lated results, the errors are decreasing only for values of t <1. For ? >1, the errors 

in the estimate for t are increasing instead of decreasing as predicted by (5.20). The 

deviation from prediction highlights the limitation o f the small perturbation analy­

sis when the large V approximation is violated. Since these values correspond to 

spikier data, which is often the region o f interest, the large errors limit the effec­

tiveness of this estimator for obtaining the parameter values o f the homodyned-K. 

In addition to Figure 5.5b where there is a very strong disagreement between the­

ory and prediction for ? > 1, differences are also noticeable between the theoretical 

predictions and the simulated results for the error performance given in Figure 

5.4a, Figure 5.4b and Figure 5.5a. Although the differences are small and the gen­

eral trend for the simulation results broadly follows those o f the theoretical predic­

tions, nevertheless the differences reflect that the assumptions made for the small 

perturbation analysis are inadequate.

The estimators for the offset and the shape parameter for the homodyned-K 

distribution described in this section are obtained using an expansion o f the pdf of 

the distribution in the limits of large V. However, the observed errors are not as
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predicted especially for small V values. At small V values the error and, therefore, 

the uncertainty in V values is comparable to the actual value of the parameter itself, 

which makes it unacceptably high. Therefore, further development is required in 

order to obtain more reliable estimators for the parameters o f the homodyned-K 

distribution.

5.2 Generalised-K distribution

The generalised-K distribution is the second o f the two models being considered 

for the weak scattering process. First the general model and its amplitude statistics 

are discussed followed by an analysis o f parameter estimators for the generalised-K 

distribution.

5.2.1 G eneralised-K  am plitude statistics

The homodyned-K distribution is based on a random walk model that adds a con­

stant offset to an unbiased random walk to represent a weak scattering process. An 

alternative is to use a truly biased random walk to represent a weak scattering proc­

ess. I f  the number fluctuation is again assumed to be negative binomial this gives 

rise to a generalisation of the K-distribution and the amplitude pdf is given by

f À A )  =
r ( v ) l  fid

where

2d (  2 A v Y  , (  2 A ^

fi
K ,.,{dA )  (5.21)

i2 4v 4fÀQ
d = —  + — Y  (5.22)

m m '

As in the case of the homodyned-K distribution, the generalised-K has an addi­

tional third parameter, JUq which is the measure o f the degree o f bias in the random 

walk. In the limit /Iq 0 the unbiased K-distribution result is regained. As jdo in­

creases this adds an offset to the pdf until in the limit o f {Àq!}Ji ^  the equation 

reduces to a gamma distribution. The V parameter here again determines the de-
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gree o f spikiness of the data and now in the limit o f V —> co the distribution re­

duces to the Rice model

/ \ 2A 
lim /^ (a )  = —  I,

( 2 A ^ " f  
exp

y V
(5.23)

The generalised-K distribution can also be represented in a compound form simi­

lar to that o f (5.5). However, due to the difference in the way in which the bias in 

the random walk is modelled compared to the homodyned-K model, the speckle 

component amplitude statistics are given by a different Rician distribution which 

can be written as

(
----------  exp

2vp^

P

2\
(5.24)

This Rician distribution has a mean-square equal to p /2  and a coherent amplitude 

given by P->/m 0 / P • Th^ gamma distribution gives both the fluctuations in the

mean-square noise level and the coherent amplitude in a correlated manner. The 

scattering process is thus a modulated Rice distribution.

Simulated generalised-K distribution data can be generated using the product 

model representation. Zero mean, half standard deviation complex Gaussian data 

is generated and multiplied with gamma generated data o f given mean and order 

parameter value. The complex offset value is also multiplied by a gamma generated 

data o f given mean and order parameter value and normalised by the mean. The 

modulus o f the coherent sum of the modulated complex offset and the modulated 

complex Gaussian then results in generalised-K data of the given mean, order pa­

rameter and offset value. In Figure 5.6 the theoretical and simulated pdfs for the 

generalised-K distribution over a range of parameter values are plotted. There is 

good agreement between the predicted pdf and the measured histogram which 

validates the simulation process. As the order parameter increases the generaHsed- 

K  tends toward a Rician distribution. As the offset increases the peak o f the plot 

shifts along the amplitude axis.
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Figure 5.6: Comparison between the predicted and simulated amplitude 

pdf of the generalised-K distribution for unity mean, = 0, 1.0, 5.0, 

10.0 and V equals to (a) 0.5, (h) 1.0 and (c) 10.0.
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The even order moments for this distribution can be expressed as

(a - )  = / < i « ! r ( « + v )  (o.v-1 
vj  r(v) " 1+ 4 f t

v n j
(5.25)

where

k=0

i + P V i  + E'̂

y i - k ^
( x - r * ( x + i ) ‘ (5.26)

are the Jacobi polynomials. (5,26) does not have a closed form for the optimal pa­

rameter estimate for the generalised-K distribution. In the following section some 

approximate solutions for the parameter estimation o f the generalised-K distribu­

tion are considered.

5.2.2 Parameter estim ators for generalised-K  distribution u sin g  

even order m om ents

The first two even order moments of the generalised-K distribution can be written 

as

+ (5.27)

and

(a"^) =  — (2^  V  +  ^ jJLV lÀ Q  +  +  6 j J i l  +  +  V Vo ) (5.28)

The moments as they stand cannot be solved to extract the parameter values. 

There is not a large V expansion which can be carried out for the generalised-K 

distribution as it was done for the homodyned-K model. However, for the extreme 

case of V CO the first two even-order moments reduce to the form

(5.29)

and

(5.30)
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Eliminating fJL from (5.29) and (5.30) gives an expression for the estimate o f /io of 

the generalised-K distribution as

A

-  a (5.31)

Thus an estimate for the square o f the offset parameter for the generalised-K is 

obtained in terms of the second and fourth order amplitude moments. An error 

analysis can be carried out on this estimator using the same small perturbation 

technique as carried out for the other estimators studied in this thesis. As before 

the small perturbation expansion is restricted to terms of order (9(1/m). The frac­

tional bias and the relative variance are given as

A

A/ip

Mo

2 6 1 I'm 8 1 1 10 2 1 1 2— 10 + — +  — 3  +  —  +  — +  — Y +  —
m V V V Mo J V V Mo Mo > Mo Mo

(5.32)

1 1260 J
V4 + .,6

^2880 3018^

+  ■
1 576 4262 4656 780

2160 6360 2498
+  ■

/̂ o Mo M,0 J

Mo ^ Mo Mo ^ Mo V
36 952 2617 1214 22

Mo Mo
■ +

Mo Mo Mo.
m 1 "41 436 537 30 14) 1 f 10 64 23 6 4 )

+ “ T ~T  + + ~ T + “ ?■ + — + — + ~TV vMo Mo Mo Mo Mo / V Mo Mo Mo Mo Mo /
1 4 1 2

m5 ^ Mo ^ Mo ^ Mo

(5.33)

Figure 5.7 shows the plot for the fractional bias and the relative variance for the 

estimate o f the square of the offset parameter of the generalised-K distribution. 

From the plots it is clear that only in the limit of very large V the error performance 

is anything like acceptable. For smaller V values the error and, therefore, the un­

certainty in the estimate of the offset is much larger than the value o f the offset 

parameter rendering the estimate useless. The error increases both as V and /Âo de­

crease. Thus the estimator (5.31) is only useful over a very limited range of V and 

jLlo. Since for real clutter data V and jJo are likely to have a much wider range o f val­

ues this estimator is only of academic interest with a very limited practical use.
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Figure 5.7: Predicted error performance for the square of the offset pa­

rameter of the generalised-K distribution for a sample size of m =256 

(a) fractional bias and (b) relative variance.

For the order parameter of the generalised-K distribution the moments can 

not be manipulated to arrive at a closed form for the estimate of the parameter. 

This poses a severe limitation in using the generalised-K for modelling real clutter 

data.
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The investigation for the generaHsed-K distribution concludes that there are 

no simple moment based estimators for the generalised-K distribution which wül 

give a good approximation to the ML solution of the parameter estimates. This is 

because the expressions for the moments of the generalised-K distribution are 

quite complex and there is no close form solution for the ML parameter estimate. 

A possible approach which could overcome this problem is to approximate the 

generalised-K distribution by a model which has a closed form for the ML solution 

of the parameter estimate. The estimates for the parameters o f the generalised-K 

distribution would then by obtain by comparing the moments o f the two distribu­

tions. The success o f this approach would depend on how good the alternative 

model approximates the generalised-K distribution. One such distribution which 

has been proposed is the generalised gamma function [9]

(5.34)

which has three parameters ügr , Tj and The ML solution for these three 

parameters of the generalised gamma function has a closed form. Using a 

method o f moment comparison, the parameter values for the generalised-K 

distribution can then be deduced. An error analysis o f the parameter esti­

mates using this approximate model for the generalised-K distribution will 

show the usefulness o f this approach. However, the parameter estimates 

obtained using this method would be sub-optimal. We are therefore still 

some distance away from obtaining efficient optimal estimators for the pa­

rameters o f the generalised-K distribution.

5.3 Summary

In this chapter:

• It was shown that the condition for strong scattering, i.e. a uniformly distrib­

uted phase for the detected field, is violated when the size o f the resolution 

cell is small compared to the wavelength or the reflecting target is very 

smooth.
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• Two distributions were introduced which can model a weak scattering proc­

ess; the homodyned-K distribution and the generalised-K distribution.

• It was shown that the random walk model for the homodyned-K distribu­

tion can be represented by the coherent sum of a constant vector and one 

which is a K-distribution process. The amplitude pdf of this distribution was 

shown to have a closed form under only certain V parameter values. The 

compound representation, which is a Rice distribution with a mean-square 

noise component varying according to a gamma distribution and a constant- 

amplitude coherent component, was used to generate simulated data.

•  Approximate moment based estimators were derived for the offset and the 

order parameter of the homodyned-K distribution using a large V expansion 

of its pdf. The errors for the offset parameter estimate were shown to match 

the predicted performance over the whole range o f order parameter values 

and over a wide range o f offset values. The corresponding results for the t 

parameter were not so good, with the performance much worse for smaller 

values of the order parameter. It is concluded that further investigation is re­

quired to obtain good estimators for the parameters o f the homodyned-K 

distribution.

The model for the generaHsed-K distribution was described as a biased ran­

dom walk such that the resultant phase becomes markedly concentrated 

around a deterministic value. Using the compound representation, which is a 

Rician distribution where both the mean-square noise component and the 

coherent amplitude vary according to a gamma distribution in a correlated 

manner, simulated data were generated and good match was obtained be­

tween theoretical pdfs and measured histograms.

• In the limit o f V —> ©o the first two even order moments o f the generaksed- 

K  distribution were simplified to give an estimate for the offset parameter. 

However, its performance was shown to be very poor and further work is 

required in devising appropriate estimators for the parameters of the gener- 

alised-K distribution.



Chapter 6

6. Conclusion and future work

In this concluding chapter we shall examine to what extent the results presented in 

previous chapters answer the four main questions set out in the introduction re­

garding the clutter characterisation problem. We shall also highlight outstanding 

issues and make recommendations for future work.

6.1 Background theory

Before addressing the clutter characterisation problem the background theory- 

needed to carry out the analysis o f a coherent radar system was described in the 

first two chapters. In the introductory chapter a general description was given for a 

surveillance radar system. It was explained how such surveillance systems can be 

used either to detect ground moving targets or produce high resolution maps of 

the ground. For both of these applications it was shown that it is important to have 

a proper understanding of the clutter; in the former to get better clutter rejection 

and in the latter to attain optimum terrain classification.

The clutter statistics are measured on a pixel level. Each pixel is a single reso­

lution cell corresponds to a specific footprint o f the radar on the ground. The radar 

footprint has an important bearing on the clutter statistics since it determines the 

number of scatterers which are able to contribute toward the reflected energy ob­

served in any given pixel. The size and shape o f the radar footprint depend upon a 

number of system parameters which were described in Chapter 2. It was shown 

that for a SAR system the two spatial components that make up the two- 

dimensional radar image are range and azimuth. Range resolution was shown to be

119
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inversely proportional to the bandwidth of the radar pulse. It was shown that 

higher range resolution can be obtained using a chirp pulse which gives a sine 

function response to a point target. The azimuth resolution for a real beam system 

was shown to be inversely proportional to the aperture of the antenna expressed as 

a number of wavelengths. However, for a fliUy focused SAR it was shown that the 

azimuth resolution is equal to half the real aperture length and the system response 

to a point target is a sine function. For non-imaging radar it was shown that the 

observed scattering is arranged into a range-Doppler map where Doppler data is 

obtained by a frequency transformation of the azimuth data. The Doppler resolu­

tion was shown to be equal to the reciprocal of the coherent integration time. It 

was also shown that the Doppler resolution determines the azimuth dimension of 

the radar footprint and is utilised in Doppler beam sharpening to obtain finer 

resolution clutter maps. Thus in MTl system where each pixel is a range-Doppler 

cell with a corresponding unique radar footprint, the clutter statistics are then a 

function of the range and Doppler resolution.

6.2 Forward problem

The first question in the introduction asked what statistical models can be used to 

describe the surface scattering. The most direct method for determining the char­

acteristics o f the observed scattering is by solving the forward problem. However, 

in Chapter 3 it was shown that there is still a considerable gap to bridge before re­

alistic surfaces can be analysed using this approach. In forward problem, the ap­

proach taken is to define the surface height profile, specify the boundary condi­

tions and solve the Maxwell equations in order to calculate the scattered field ob­

served at a defined point in space. Considerable effort has been spent on devising 

approximate expressions for the scattering surface for which closed form analytical 

solutions are attainable. The Kirchhoff approximation was described which as­

sumes a slowly varying height profile and is applicable for normally distributed 

rough surfaces. Real surfaces are, however, rarely normally distributed. For non- 

Gaussian rough surface the SPM was described as another suitable approach pro­

vided the surface roughness is small. The Maxwell equations can also be solved 

numerically using simulated surface height profiles. This enables the analysis of
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non-ideal surfaces under realistic geometries, however, the computational load in­

creases significantly with the complexity of the model, although that is less o f a 

problem with ever increasing computer power.

The forward problem has been useful in building up an understanding o f the 

relationship between physical parameters of the surface and the clutter characteris­

tics, However, the techniques are still too underdeveloped to be used for devising 

optimum algorithms for target detection and clutter classification.

6.3 Strong scattering models

The latter part o f Chapter 3 dealt with the question o f how single or multiparame­

ter statistical distributions can be used to describe the fluctuations in the detected 

intensities. It also looked at what physical justiflcation can be associated with the 

statistical models. Starting from the assumption that the detected field is given by 

the sum of contributions from a large number of discrete elementary scatterers, it 

was shown that for strong scattering the phase wül be uniformly distributed and 

independent. At low resolution the number o f scatterers would tend to infinity and 

it was shown that for strong scattering the resultant field can be modelled as a 

Gaussian process with the intensity fluctuation given by a negative exponential 

distribution. However, it was observed that as resolution increases the clutter in 

both MTl and SAR images exhibit non-Gaussian statistics. The log-normal and 

WeibuU distribution were not considered to be suitable models for describing the 

coherent clutter statistics despite empirical evidence from a number o f researches 

since they cannot be represented by a discrete scatterer model. The K-distribution, 

on the other hand, was shown to be the result o f a negative binomial fluctuation of 

the number o f scatterers. This is quite a plausible model since as the size o f the 

resolution cell decreases the number of scatterers will be finite and, given the com ­

plex nature of the clutter, the scatterer number wül undoubtedly fluctuate. The K- 

distribution can also be expressed as product o f two statistical processes; a negative 

exponential intensity fluctuation arising from the coherent interference o f the 

scatterers and an intensity mean which fluctuates according to a gamma process 

associated with the underlying surface RCS fluctuation. It was shown that the o r­
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der parameter o f the distribution can be related to the clutter spikiness. Chi- 

squared goodness-of-fit test and ML classification on M Tl and SAR data gave em ­

pirical evidence to support the K-distribution as a reasonable descriptor for m e­

dium resolution clutter.

6.4 K-distribution parameter estimators

Having reached the conclusion that the K-distribution is a reasonable model for 

the coherent land clutter statistics the next task was to address the problem of op ­

timal parameter estimation. This was investigated in Chapter 4. It was shown that 

the ML solution does not have a closed form and a numerical search over the 

mean intensity and order parameter of the K-distribution is computationally very 

inefficient. An ML estimate for the mean intensity is given by the average intensity 

provide the clutter is homogeneous and the image surface cross-section is constant 

which is the case for negative exponentially distributed intensity. For K-distributed 

intensity, where the surface cross-section fluctuates according to a gamma distri­

bution, the average intensity can stiU be taken as a reasonable approximation for 

the mean intensity. A similar simple form for the optimum estimate for the order 

parameter is less forth coming. An example of a simple estimator for the order pa­

rameter o f the K-distribution is the intensity contrast texture measure but it was 

shown to have quite high error values especially for small sample sizes. The nor­

malised log texture measure was shown to be more reliable estimator. It was 

shown that better agreement is obtained between predicted errors and simulated 

results if the analysis is carried out in the t parameter space where t = \ j v  . How­

ever, overall the normalised log estimator was shown to be stiU sub-optimal com ­

pared to the ML estimator.

The texture measure estimators use the pdf of the statistical model to specify 

the relationship between the estimator and the model parameter. Neural net can 

obtain a similar connectivity between texture measure and model parameters 

through adaptive weighting. Thus a technique based on neural nets, in their capac­

ity as functional estimators, was used to devise a t parameter estimator. A large 

number of experiments were carried out using a whole range o f different neural
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nets and the standard deviation of the t parameter estimates was measured. A 

number of lessons were learnt regarding the optimum arrangement o f the neural 

net to carry out the task o f the t parameter estimates. A few o f the main point are 

summarised as follows.

1. A simple MLP with one hidden layer is sufficient to learn the problem. The 

weights connecting the input layer to the hidden layer nodes have to be 

non-linear to enable the neural net to have a non-linear mapping capability. 

On the other hand, for the neural net to give a real value output over a 

continuous range instead of the more common binary output, linear 

weights have to be used for connecting the hidden layer to the output 

node.

2. The output layer has just one node since only a single parameter estimate is 

required. The input layer wiH have number o f nodes equal to the sample 

size or the number of moments used to calculate the estimate. The neural 

nets were found to be able to learn the parameter estimation problem with 

just 16 nodes in the hidden layer. A net with a larger hidden layer would 

require fewer epochs to reach the solution although each epoch would take 

longer since there are more weights to update. However, the net size can­

not be increased indefinitely since it would then learn the training data ex­

actly without any generalisation.

3. An estimator for a continuous function can be formed by training the neu­

ral net on images which contain just a few selected examples o f the pa­

rameter values over the range o f interest. For the t parameter it was found 

that the sampling space can be gradually increased as the t parameter o f the 

simulated images increased. Thus for example, the difference in the t pa­

rameter values of the two images containing the data for the smallest pa­

rameter was 0.4 compared to the difference between the parameter values 

o f the two images containing the highest values which were 2.0. The train­

ing process for the neural net utilised a smaller independent tuning data set 

to determine the peak on the convergence curve and halt the training proc­
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ess. The testing o f the neural net estimator showed that it is capable o f in ­

terpolating between values of the parameter not included in the original 

training data set.

4. The convergence of the neural net is very sensitive to the dynamic range of 

the input data. The net failed to converge when trained directly on the in­

tensity data. Using log intensity data also did not produce any fruitful re­

sults with the neural net. However, it was shown that if the neural nets are 

trained on texture measures of K-distribution data, they are capable o f es­

timating the t parameter on unseen data when it is presented to the neural 

net with identical pre-processing as the training data.

The neural net research showed that good estimators for the t parameter of 

the K-distribution can be obtained provided the nets are trained on texture meas­

ures of the imaged data. The net found an optimal way of combining the normal­

ised log intensity moment and the amplitude contrast o f the data to give a very use­

ful estimator for the parameter. This estimator out-performed the simple normal­

ised log texture measure based estimator for a wide range o f values. The net high­

lighted the importance of using combinations of moments to achieve more accu­

rate texture measures.

The improvement in the t parameter estimate with the neural net estimator led 

us to propose a new hybrid estimator which combines the normalised log and the 

contrast o f amplitude to provide a more accurate texture measure. The theoretical 

errors for this estimator were derived and it was demonstrated that its performance 

depends on the weight according to which the two moments are combined. It was 

shown that there is a constant value of this weight for which the hybrid normalised 

log estimator gives better performance over existing texture measure estimators 

over a wide range of t values which are o f interest. However, for best performance 

an iterative scheme is used which selects the optimum CC for any given value o f t. It 

was shown that using a simple iterative scheme the hybrid normalised log estima­

tor is able to obtain errors that are almost indistinguishable from the ML perform­

ance. The advantage of this moment based estimator is that it is computationally
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more efficient than the numerical ML solution which makes it suitable for real time 

evaluation.

Neural nets have been able to obtain the parameter estimates without explic­

itly being told the ML criteria. This demonstrates the potential o f neural nets to 

provide accurate parameter estimates in situations where it is not possible to write 

down the exact ML criteria. Thus for example in estimating the parameter values 

for correlated data where the exact pdf of the statistical model is not known or for 

estimating the line width in correlated data where it not clear what the quantity 

ought to be which is to be maximised, neural nets have the potential to be an ef­

fective estimator.

6.5 Weak scattering models

In Chapter 5 the clutter analysis is extended to higher resolution systems. The 

phase o f the detected field can no longer be assumed to be uniformly distributed. 

This can be modelled by a weak scattering process for which the four clutter m od­

elling questions posed in the introduction are answered in Chapter 5. It was shown 

that the partially developed speckle can be modelled as either a biased random 

walk which gives rise to a generalised-K distribution for the amplitude statistics 

when the number o f steps fluctuates according to a negative binomial distribution. 

Alternatively, the weak scattering process can be modelled as a coherent sum o f a 

constant vector with a K-distributed process which gives rise to a homodyned-K 

distribution. Both o f these distributions can be expressed in a compound form 

similar to that of the K-distribution. It was shown that for the homodyned-K dis­

tribution it is given by a Rician distribution with a mean-square noise component 

varying according to a gamma distribution and a constant offset. The compound 

form for the generaHsed-K is also a gamma modulated Rice distribution but the 

gamma distribution gives both the fluctuations in the mean-square noise level and 

the coherent amplitude in a correlated manner. It was shown that the compound 

model can be used to generate simulated data for the weak scattering distributions. 

The simulation process was verified by getting a good match between the meas­

ured histograms and the predicted pdfs. However, the pdf comparison for the ho-
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modyned-K was restricted to V values equal to 1 due to a lack o f a closed form for 

the theoretical pdf, even though histogram plots o f the homodyned-K distribution 

for other V values were shown.

The task o f the optimal parameter estimation is complicated due to the intro­

duction o f a third offset parameter for the weak scattering models. For hom o­

dyned-K distribution a large V expansion o f the pdf is used to derive simplified 

expressions for the second and fourth moments. Using these expressions, an esti­

mator is proposed for the homodyned-K offset parameter. An expression for the 

predicted error in the estimate of the offset parameter is derived using the small 

perturbation analysis. A good agreement is obtained between theoretical predic­

tions and simulated results. An estimator is also proposed for the t parameter of 

the homodyned-K for which the error predictions are also derived. However, the 

shape parameter errors get unacceptably large as the assumption of large V breaks 

down. For the generalised-K distribution an estimator for /lo in the limit of 

V —> oo is proposed but the errors render the estimator ineffective. Further investi­

gations are required to obtain good estimates for the homodyned-K and the gener­

alised-K distribution. Furthermore, the ML error performance for the parameters 

of the weak scattering models needs to be established either through numerical 

simulations or by deriving the Cramer- Rao bound to get a proper assessment of 

the sub-optimal nature of the proposed estimators for the weak scattering models.

6.6 Future Work

In Chapter 4 it was shown that near optimal estimators for the parameters o f a 

non-Gaussian distribution can be obtained using a method of moment combina­

tion even though there is no closed form ML solution available. Although this 

showed only modest gains compared to previously known best texture measure 

estimator for the K-distribution, the main strength o f the technique is that it is ap­

plicable to any theoretical distribution. Some initial results have been quoted in 

Chapter 5 for the estimators for the weak scattering models using this moments 

combination technique, however, further development has to be carried out before 

reliable estimators are obtained. It may require an investigation using neural nets to
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determine the best combination o f moments for the weak scattering parameters as 

it is reported in Chapter 4 for the K-distribution parameter. However, the training 

data set would need to contain a representative samples o f both t and JM) parame­

ters which could force it to be quite large. Furthermore, the assessment o f the es­

timator performance would be greatly facilitated by a knowledge of the limit o f the 

ML performance. This could either be obtained by performing a numerical ML or 

deriving the Cramer-Rao bound for the ML solution. Only once reliable estimators 

for the weak scattering models are developed can these distributions become prac­

tical for real radar systems. Further empirical evidence should also be gauged for 

the suitability o f the weak scattering models for radar surface scattering and sonar 

seabed scattering.

In this thesis aU parameter estimation has been carried out assuming inde­

pendent data samples. However, in real radar data, clutter appears as correlated 

[62]. Using sub-sampling by an appropriate amount, independent samples can be 

obtained from correlated data, however, at the expense o f loosing information. It 

is therefore, highly desirable to develop estimators for the parameters o f correlated 

textures. This development has been hindered through the lack o f suitable pdf 

models for correlated non-Gaussian textures. The neural net may prove very ef­

fective in developing suitable estimators for correlated non-Gaussian textures since 

they do not require to be given an exact ML criterion. They have the potential of 

inferring the relevent single and multi-point statistics from the data using non­

linear weights. However, a closed form analytical expression for the correlated 

non-Gaussian pdf for the K-distribution or the weak scattering models will enable 

to carry out a small perturbation analysis on the parameter estimators which has 

been shown in this thesis to be a very useful analysis tool.

The main motivation for developing optimal estimators for the clutter distri­

butions, as stated in the introduction, is to improve target detection and clutter 

classification which uses the clutter models. Historically such algorithms have been 

developed assuming Gaussian statistics even though considerable evidence has 

been generated to show that surface clutter exhibits non-Gaussian statistics. Where 

non-Gaussian clutter models have been used the full potential performance has
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not been utilised due to sub-optimal estimators. The performance o f such algo­

rithms should be re-evaluated using the near optimal estimator proposed in this 

thesis for the K-distribution, This would then enable a comparison o f the im ­

provement gained in false alarm rate and clutter classification with the increased 

complexity of the algorithm. The same should be repeated for the weak scattering 

distributions once suitable optimal estimators have been developed. At higher 

resolution, land objects appear as targets extended over many pixels in a radar im ­

age. Therefore, for optimum target detection a multi-pixel detector has to be de­

veloped. This would enable to take proper account o f the target correlations which 

can then be distinguished from any clutter correlations. However, this requires 

proper model for the higher order statistics of clutter and targets (since a multi 

pixel target can be envisaged to contain texture information) and optimum pa­

rameter estimators for these. This developed will hopefully lead to improved target 

detection performance in high resolution surveillance systems.



Appendix A

A. Evaluation of errors of estimated 

quantities using small perturbation 

analysis

The bias and variance of a function of estimated parameters can be approximated 

by expanding the function around the expected values o f the estimates [64]. In 

Chapter 4 and 5 there were a number of quantities for which the predicted error 

performance was analysed using the small perturbation method. In the following 

sections the derivations for the theoretical expressions of the error performance 

for these quantities are shown.

A.1 Mean of variable x
The quantity and its estimate are defined by

f i , = { x )  (A.1)

%  = % = m ' T  (A.2)

We now expand the expression about its mean value. Thus (A.2) can be written as

f i x  = (A. 3)

where ^ {x) — 1. The expectation value o f the function and the square o f the

function are then given as
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(fiS) = W  +

(A.4) 

(A.5)

The bias and the variance of the estimated quantity are defined respectively, as

A ft = W ( l )  (A-6)

The expectation value for is given as

W
- 1 =  0

(A.7)

(A.8)

and for it is given as

( f )  =
/

Substituting for in (A.6) gives the bias as

Au = 0

(A.9)

(A. 10)

which shows that the mean of a variable is an unbiased estimate. Substituting for 

and in (A.7) gives the expression for the variance as

(A.11)

Now if X  is considered to be the intensity (i.e. x  = I) then for an assumed negative 

exponential distribution the moments can be substituted from (3.30) in (A. 11) that 

gives
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a l = — n j  (A.12)
‘ m

which is the result (4.11) used in Chapter 4. The corresponding expression for the 

variance of the mean estimate of the intensity for an assumed K-distribution can 

be obtained using (3.49) to give

which is the result (4.12) used in Chapter 4.

A.2 Contrast of the variable x
The measure and its estimate are defined by

(AT 4)
(%)

- 1  (A. 15)
1=] V (=1

The denominator of the estimate is expanded about its mean value and only terms 

up to first order in 1/m are maintained. Using the same procedure as in Section 

A.1 it can be shown that the bias and variance are given as

1 r ,1 (A-16)
= - - j 2 X ,  + X , - 3 X i ]

(A.17)
- ^ ( u r ) - ( v T

= - [ x , - 4 X , X , ~ X l  + X ]̂

where X- = ( x ') / (%)' are the norm alised m om ents o f x  Once again considering

the intensity variable, then for an assumed K-distribution, the moments are ob­

tained using (3.49) and the bias is given as
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Ay, = - 2 —
m

(A.18)

which leads to the fractional bias result (4.16) used in Chapter 4. Similarly the vari­

ance is given as

1 + 1
V v ;

( i+ i l
V v j

( i + l
V V

(A.19)

which is the result (4.17). The first order approximation for the variance o f V from 

the measure is obtained using the relationship (see Appendix B)

fT.? =
\ d V j  /  d v \

(A.20)

Therefore, for K-distributed intensity the predicted variance in the order parameter 

obtained using the intensity contrast estimator is gives as

<7,? =
V
m

r n r 4\ r 5^i + — 1 + - i + —
V yj V yJI yj

(A.21)

which is the result (4.19).

A 3  Norm alised log Ux of the variable x
The measure and it estimate are defined by

= (in x) -  ln(x)

- I  m f  - I  m

X;
1=1 y

(A.22)

(A.23)

Again expanding about the mean value and retaining terms up to the first order in 

1/m  gives

(A.24)
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= \j^2 ~ ^  “  2 XjZ/ + %2 “  l]
(A.25)

for the bias and variance, respectively, where In %)/(%)' and

L- = ^ln‘ . Using (3.49) for the intensity moments of the K-distribution gives 

the results quoted in Section 4.3.2. Using the relationship (B.6) the variance in V or 

t can be obtained from (A.25) which gives the result (4.23) and (4.24) respectively.

A,4 Hybrid normalised log Wx of the variable x
The measure and its estimate are defined by

= a((ln  x) -  ln(%)) + (l -  a ) - h L _ i

{ ^ r  ~ ,

(A.26)

i t - - 1 (A.27)

Again expanding about the mean value and retaining terms up to the first order in 

1/m  gives the variance as

=  —  +  2 Z 1 - 2 X 1 L + X 2 - I ]

+

a  
m  

{ I - o f
m

2 a (l -  a )

(A.28)

m
4T
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where X . ^  = (V%) and N . ^ L  = l^ [p  In y/(V%) . Again considering

X to be the intensity and assuming a K-distribution, (3.49) can be used to expand 

the moments in terms of the parameter values that leads to the expression (4.31). 

Using (B.6) to convert (A.28) into errors in t leads to the result (4.33) used in 

Chapter 4.

A.5 Offset second moment of the variable x
The measure and its estimate are defined by

(A.29)

m
(A.30)

i=]

Again expanding about the mean value and retaining terms up to the first order in 

1/m  gives the variance as

Assuming x  to be homodyned-K distributed amplitude then the expressions for 

the second and fourth moment can be substituted from (5.11) and (5.12) respec­

tively giving the result (5.14) for the relative variance in the offset parameter for the 

homodyned-K distribution.

A.6 Modified fourth central moment of the variable 

X

The measure and its estimate are defined by

K = ~ {{^^) + 1) {A.32)

(A.33)
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Again expanding about the mean value and retaining terms up to the first order in 

1/m  gives

(A.34)

+ -16^x^) + -  8^%^)

J_
m

(A.35)

for the bias and variance respectively. Again considering x  to be the amplitude and 

assuming a homodyned-K distribution, the expression for the moments o f the 

distribution can be substituted in (A.34) and (A.35) to arrive at the relationship 

(5.16) and (5.17) respectively. Using (B.6) to convert (A.34) and (A.35) into errors 

in t lead to the results (5.19) and (5.20) used in Chapter 5.
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B. Calculating the variance of a pa­

rameter ( p  from a measure Q

Consider a statistic Q which is related to a parameter Ç through a function g. The 

expectation value for Q is

Q = g{<p) (B.I)

An estimate for (p, namely (p, can be defined such that the measured statistic is 

related to the parameter estimate as

Q = (B.2)

In the asymptotic limit the measured statistic will take its expectation value and in 

this limit the inverse function o f the statistic wiU be the true value o f the parameter. 

The parameter estimate is thus asymptotically unbiased.

Using a Taylor series expansion

iv) H—  (B.3)

In the asymptotic limit, \ p j - ^ ( p  and substituting for the statistic Q in (B.3) gives

(<P)H—  (B.4)
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Taking the square of both sides and then taking the expectation values gives

(q - q ) )=J('P-('P))f-^Ü

+

y 

3
(B.5)

+ •

Assuming that i^(p -  (^ )) y «  where j  < 3 , then the variance in Q is re­

lated to the variances in the estimated quantity Ç as

^ 1 = ^ 1 (B .6 )

Simulations were used to compare the third order central moments o f t (and V )

values, obtained from the V , Ù and W  texture measures, to the variance in the 

estimated values and they were found to be an order of magnitude smaller. It will 

be assumed that the higher order central moments are also negligibly small. In this 

case the pdf of t (and V ) is very concentrated about its mean and the first order 

approximation used in (B.6) then holds true for the texture measures V, U and W.



Appendix C

C. Chi-squared significance test

This test is used to measure the goodness-of-fit. For a given set of random sam­

ples, we can test the hypothesis that the underlying distribution belongs to a spe­

cific family o f distributions.

The hypothesis is tested by first binning the samples into M  bins. The chi- 

squared statistic (%  ̂ is then found by comparing the actual histogram entries with 

the predicted mean entry values

. . . j f e c y i  , c „
/=i rn

where m, is the number o f entries in the histogram bin /,/• is the pdf value for the 

data of bin i and m  is the total number o f data points in the sample. A probability 

is then assigned to this recorded difference given by

9 I 2 j (  M - 3 ]  f  n / \

(C-2)

A useful way o f expressing the outcome of the chi-squared test is to observe the 

failure at the 5% level for the upper tail probabilities. The upper tail probability

f { x ^  > t )  is given as

=  (C .3 )
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The chi-squared goodness-of-fit test was carried out on all three of the real radar 

images discussed in Chapter 3 (see Figure 3.6 and 3.7). For the MTI image, blocks 

o f 91 range gates in each o f the 64 frequency bins were selected for the chi-squared 

test. The data had been over-sampled by 2 and this was corrected by sub-sampling 

by two which gave 45 independent samples to be used for the goodness-of-fit test. 

A histogram was constructed from this data using five bins and setting the bin 

spacing to get equal probability of occupancy. This would give on average 9 sam­

ples per bin which were considered to be sufficient to measure the chi-squared sta­

tistics. The bin spacing for a negative exponential distribution with mean jÀi can be 

set analytically using the expression

t̂/, = “ M/ j  (C.4)

for the upper bound of the ith. bin. The appropriate bin spacing required for an 

equal probability o f occupancy for a K-distribution with mean and order pa­

rameter V has to be determined using an iterative process.

Furthermore, the chi-squared statistic nominally has M  — 1 degrees of free­

dom. However, since the parameters of the distribution under test have to be esti­

mated using local statistics this effectively reduces the degrees o f freedom for the 

chi-squared test. Using simulated data and measuring the failure rate at the 5% 

level on the upper tail probabilities it was found that the effective degree o f free­

dom for the negative exponential distribution reduces to 3.0 and the K-distribution 

to 2.3. These were the values used for the goodness-of-fit results presented in 

Chapter 3.

The same procedure was carried out to perform the chi-squared test on the 

SAR images, the only difference being that a stepping window of 9x5 was used to 

select the independent samples. Thus for an original image o f 512x512, a good- 

ness-of-fit image of 102x56 was obtained.
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D. Maximum likelihood classifica­

tion

The ML classifier is used to select a model from a set o f candidate distributions 

that best describes the data. For m independent samples {xj, X2, . . . , x^} , the total 

probability of occurrence P t is given by

= (D.l)
( =  1

where is the pdf for the given distribution dk- The ML classifier selects

the distribution that yields the maximum value for ^ ( { a  }|^â:)- Th^ ML classifi­

cation is performed over small areas of the radar data to ensure that homogeneous 

regions are selected for this test. Where model parameters are not known a priori 

they are estimated from the data.

In Chapter 3 this test was used to select between negative exponential distri­

bution and the K-distribution for the three examples o f real images considered. 

The size of the stepping window used to select independent data samples for the 

ML classification test were kept identical to those used for the corresponding chi- 

squared test (see Appendix C). Thus for the MTI image (see Figure 3.6) the size of 

the stepping window used was 91 range cells by 1 frequency bin and the data was 

sub-sampled by 2. For the SAR images (see Figure 3.7) the corresponding size of 

the stepping window used was 5x9.
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E. Relationship between the input 

and output distributions of basic bi­

nary operators

Given two independent positive random variables Xi and X2 with pdfs (%) and 

{x) respectively, the pdfs of their sum, difference, absolute difference, product.2̂

ratio and normalised ration are

1. sum y = X, +

f y { y )  = f'  ̂ f , , { y - x ) f j x ) d x  (E.1)

which by the convolution theorem equals

= (E.2)

where 0 ^̂ ((d) and <P̂  (co) are the characteristic functions o fx i and %2.

2. difference y = x̂  -  X2

f j y + ( E . 3 )

3. absolute difference y = jx, — x^j

fy (y )  = r  k  (y + t i )  + A, (> + x)]dx  (E.4)
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4. product y =

X J

X,
5. ratio y = —

X2

fy{y) = j ’L,(y^)f,S^)xdx

/
6. normalised ratio y = min

(E.5)

(E.6)

fy(y) = r  [a  (^)+A A)A [yx)]xdx (E.1)
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F. Glossary

This glossary briefly defines various mathematical functions and relationship re­

ferred to in the main body of the thesis. For further details on topics listed see; [1] 

for mathematical functions, [14] for relationships involving the Fourier transform, 

and [21, 63] for the statistics of random variables and processes. For ease o f refer­

ence topics listed in the glossary are printed in bold in the main body o f the thesis 

wherever the reader may require further explication o f the topic (e.g., where it is 

first introduced), and when they are mentioned in the glossary under topic head­

ings other than their own.

Autocorrelation and Autocovariance

The autocorrelation function (ACF) r { t i  , o f a random process x { t )  at Ti 

and %2 is defined by

ff(T,.Tj) = (:((T,)x(Tj)) (F.l)

and the autocovariance ) of a random process x (f)  at T\ and %2 is de­

fined by

c(r„T^) = {x(T,)x(T^))-{x{t,)){x{T^))  (F.2)

The normalised autocorrelation function at Ti and T2 is derived by

dividing the autocorrelation function at Ti and T2 by the expected values of 

x { t )  at Ti and T2
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'  '(^i))(4^2)) (4 ^ i))(4 ^ 2 ))

The normalised autocovariance function c(tj , T^) is defined likewise

The correlation coefficient is given by dividing the autocovariance by the vari­

ance.

Where = Tq the above functions generate the following first order

statistics o f x{z)  at To. The autocorrelation function gives its second moment

« ( to,To) = ( 4 ^ o) ' )  (F-5)

the autocovariance gives its variance

c(t„ ,T o) = -  { x { r , ) y  = (F.6)

the normalised autocorrelation function gives its second normalised m o­

ment

/ , \\2 -

the normalised autocovariance function gives its coefficient of variation

' r o / /

When the random process %(T)is stationary its autocorrelation function only 

depends on T = i.e.

R {t)  = r (t, , Tj ) = r ( t 3 , T, ) (F.9)
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where T = = Tg — .

B essel functions

Bessel functions are solutions to the differential equations [1]

o d^w dw I j ^ _
z —r r  + Z—r  + WB̂  )w = 0 (F.IO)

d z d z

where a g = ±1. When = \ solutions include the Bessel function of the 

first kind y ^ (z ), and when a g = -1  solutions include the modified Bessel 

function of the second kind ( z ) . Here we list the main properties o f Bessel 

functions used in preceding chapters.

When V = Othe Bessel function of the first kind has an integral representation 

[1]-(9.1.21)

(F.ii)

and a series expansion [1]-(9.1.10)

The modified Bessel function of the second kind has an integral representa­

tion [1]-(9.6.24)

cosh(vy)d[y (F.l3)

where |Zz| < n j2  . The first derivative o f with respect to z is given by

[l]-(9.6.26)

(F.14)

Central lim it theorem

The central limit theorem states that under certain conditions the sum 

y = Xj -I—  of m independent continuous random variables tends to being
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Gaussian distributed with mean fX  ̂ = /tj H—  jJî  and variance

= G^ +” • (7  ̂as m increases.

Sufficient conditions for the central limit theorem to apply are [63]:

1. The variance of the sum must tend to infinity as the number o f variables 

tends to infinity.

2. For some number n >  2 the Mth moment of all the variables must be finite.

Characteristic function

The characteristic function of a random variable x  is given by the

Fourier transform of its probability density function (%)

‘*’4 " )  = £  A = { e ) (F .l5)

and the inverse Fourier transform o f the characteristic function gives the pdf 

A W  = ^ £  < ^ A c o y '“’dO) (F.16)

Substituting for by its series expansion given by [1]-(4.2.1)

= (F.17)
k=0

the characteristic function of x  is related to the moments by

= (F-18)
k=o ^  •

Thus the nth moment of x  can be generated from the characteristic function 

by taking the nth derivative of its characteristic function

and setting (0 = 0. The nth moment is then given by
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(F-20)

Circular sym m etry

A bivariate function is termed to be circularly symmetric if its value only de­

pends on the radial distance from the origin [63], i.e., the function f { x , y ^  is 

circularly symmetric if

= (F-21)

whenever

xf = x \  + y l  (¥22)

A complex random variable is said to be circularly symmetric if its probability 

density function is circularly symmetric; this will be the case if and only if the 

phase and amplitude are independent. The phase wiU then be uniformly dis­

tributed over the interval (—;r,7r). The real and imaginary components of a 

circularly symmetric random variable are uncorrelated but they can only be 

independent if and only if they are Gaussian, i.e., if the amplitude is Rayleigh 

distributed.

C oefficient o f  variation

The coefficient of variation o f a random variable x  with mean fJix and vari­

ance (T ,̂ is a measure o f the width of its distribution relative to its mean 

value. It is given by

2
(F-23)

The square root of the coefficient o f variation, i.e., standard deviation/mean, 

is normally used to measure contrast in an image degraded by multiplicative 

noise.

C onvolution theorem

Given two functions /^(x) and /^(x)w ith Fourier transforms F^{co)
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and respectively, the convolution theorem [63] states that their con­

volution f ( x )  = / j  (a:)* /2(x) defined by

fi^) = j_̂ fiiy)f2i -̂y)dy (f -24)

has a Fourier transform F{(o) equal to the product of the Fourier transforms 

of the two functions

F{(o) = (F.25)

It follows from the convolution theorem that the characteristic function o f the 

sum of two independent random variables wiU be given by the product of 

their characteristic functions. This is because the probability density 

function of the sum of two independent random variables is given by the 

convolution of their pdfs (E.l), and because the characteristic function of a 

random variable is just the Fourier transform o f its pdf.

This result can be extended to the sum y of m independent random variables

Xi, with the characteristic function of their sum O^(co) being given by the

product of the characteristic functions 0  ̂ (ft)) o f the variables

O /m ) = = (g/». )--{e'^-) = n<ï>,,(") (F-26)

Cum ulative distribution function

The probability that a random variable x  is less than y  is given by its cumula­

tive distribution function (cdf)

p r o b { x < y )  = p^{y)  (F.27)

The cdf of x  is derived from its probability density function by integrating 

the latter from — oo to y

PÀy) = L f x U ) ‘̂  (F-28)
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D igam m a function

The Digamma function [1] is defined

v . ( z ) = | m r ( z ) = ^  (F.29)

where T(z) is the gamma function. For positive integer values it is given by

k - i  2

V (k )  = - Y E + L -
i=] ^

when k > 2 ,  and

(F.30)

v^(l) = - Y e (F-31)

where = 0.57722... is Euler’s constant. As k

y / { k ) ^ \ n k  (F.32)

The first derivative of Digamma function y/'{z) is known as the Trigamma

function. For positive integer values it is given by

I \ ^  1
= (F-33)

U /=1 (

when k > 2 ,  and

r ( l )  = y  (F-34)

As A: —> oo

y / \ k ) - > 0  (F.35)

E n sem b le average

The ensemble average (or expected value) of a function u{x) of a continuous 

random variable x, is indicated by the operator (•), and is defined

{u{x)) = u{x)f^ (x)dx  (F.36)
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where (x) is the probability density function of x.

In the case of a discrete random variable k the ensemble average

{u (k ) )= f ,u {k ) f ,  (F.37)

erfiz) = exp(- y^)dy (F.38)

where is the probability density function of k.

Error function

The error function erf{z) is the integral o f the Gaussian distribution given 

by

2  
n *'0

E stim ation

Given a set of random variables x ^ , . . . ,x ^  described by some unknown pa­

rameter (p, an estimate (p o f  (p based on the observations x ^ , . . . ,x ^  is said to 

be unbiased if

{<p) = (p (F.39)

and the estimate is said to be consistent if

(p -^(p  (F.40)

as m ^  CO.

Fourier transform

The version of the Fourier transform F{(o) of a function f { x )  used in this 

thesis is defined

F((d) = J  f{x)e~^ '^dx  (F.41)

and the inverse Fourier transform is defined
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f { x )  = J  F{co)e^'^d(0 (F.42)

G am m a function

The gamma function F(z) is defined

r(z) = e~''x̂ ~̂ dx (F.43)

and has the property

r ( z  + 1) = z r (z )  (F.44)

For positive integer values k

T{k + l) = k \ = k ^ { k - \ ) , . 3 - 2 - \  (F.45)

and for z = —

(F.46)

G aussian distribution

A Gaussian (or normal) distributed random variable x  with mean fix and vari­

ance (Jx̂  has probability density function

and central moments (i.e., with mean normalised to zero)

In d ep en d en ce and Correlation

Two random variables x  and y  are statistically independent if and only if their

joint pdf y (%, y ) is equal to the product of their marginal pdfs (%) and
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f y{y)

/„(^ .3') = /x W /,W  (F-49)

this is equivalent to the condition that for aU moments

{x‘"y '^ )  = {x '"){y ’̂ )  (F.50)

When the above condition holds for the first moment (mean values)

{xy) = (x){y)  (F.51)

the random variables are said to be statistically uncorrelated. Thus independ­

ent random variables wül also be uncorrelated; the reverse is only necessarily

true if both random variables have Gaussian distributions.

Jacobian

Given two sets of m  random variables x  = and y = , . . . ,  re­

lated by the transform x. = g , ( y ) ,  their joint pdfs f^ {x )  and f y { y )  respec­

tively are related by

= (F-52)

where J, the Jacobian of the transform g ( y )  is given by

(F.53)

Joint and m arginal distributions

The joint probability that x, < y ,̂ . . . ,  < y^ is given by the joint cumula­

tive distribution function 7\.(y), where x = x^, . . . , x^ and y = y^, . . . ,  .

The joint probability density function of x is defined

Ai . . .  Aa
dx Ai

Al . . .  Am
Am Am

f x { y )= (F.54)
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Thus

' T (F-55)

The marginal pdf of Xi is derived from the joint pdf o f x  by integrating it over

, X-_̂  , . 5 X^

4 h )  = f _  " I . f x ( ^ ) ^ i ■ ■ ■ ■■■dx„ (F.56)

M ean

The mean value fix (or first moment) of a random variable x  gives its ex­

pected value and is defined by its ensemble average

&  = (^) (F-5V)

M om ents

The 72th moment of a random variable x  is defined

{x'") = j_^x ' 'f^{x)dx  (F.58)

where is the probability density function o f x. The moments of a

random variable can also be generated from its characteristic function.

N orm alised  m om ents

The nth normalised moment o f x  is given by dividing its 72th moment by its 

mean value raised to the power n

^ “ = 7 ^  (F.59)

Probability density function

The probability density function (pdf) of x  is given by differentiating its cu­

mulative density function

= ^  (F.60)
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Stationarity

A random variable x { t )  is considered to be strict-sense stationary if its statis­

tical properties are invariant to a change of origin. The process is considered 

to be wide-sense stationary if the mean is constant and its autocorrelation 

function only depends on T,— .

Variance and standard deviation

The variance (7  ̂ o f a random variable x  gives a measure o f the width o f its 

distribution and is defined

=(b-/̂ ,r)=(̂ ')-w (F-61)
where fJL̂ — {x) is the mean value of x. , the square-root o f the variance, 
gives the standard deviation o f x.
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G. List of Symbols

a  weight ratio for combining the two moments in the hybrid

normalised log texture measure

kth parameter of a distribution

p parameter of the Jacobi polynomial

/ chi-squared statistic

0 0 2-way phase difference

ÔR 2-way slant range path difference

Ml height difference between two points

Ajiix bias in mean of x

Afii bias in mean o f intensity

AO angular width o f a subaperture

AU, AUx bias of texture measure Ux

bias of texture measure Vx

bias of texture measure Yx

e parameter of the Jacobi polynomial

0 phase of the detected field
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phase of a wave at point r

phase o f a wave at point x  and y

0̂ depression angle

<Po phase o f constant vector

(pk, (pk(r) phase of the kth scatterer

Ï function of the components of u

nz) gamma function with argument z

Ye Euler’s constant

V parameter of the generalised gamma distribution

<P parameter of the statistic Q

Û local incident angle

A wavelength

!M) intensity offset

lii mean of intensity

l^N mean of number of steps in a random walk

fip mean of RCS

mean of random variable x

V order parameter

n 3.14159

e phase

Oo antenna azimuth angle

Oi incident angle o f a plane wave to a surface



157

mirror incident angle of a plane wave to a surface

Ojç azimuth angle between the start of the kth. subaperture and the

platform velocity vector

0^ azimuth angle between the middle o f the subaperture and the

platform velocity vector

Oj. reflective angle of a plane wave from a surface

reflective angle of a plane wave from a point X; on a surface

9̂ 2 reflective angle of a plane wave from a point %2 on a surface

p  surface radar cross-section

0£ standard deviation o f detected field E

O/j standard deviation o f surface height

Oj standard deviation of intensity

Oin/ Standard deviation o f log intensity

(7^ standard deviation of the mean of intensity offset

standard deviation of the mean of intensity 

(7̂  standard deviation o f the mean of x

0}v standard deviation of number o f steps in a random walk

Gy Standard deviation o f V

G t standard deviation of t

Gu, Gy standard deviation of U

G y , Gy  standard deviation of V

Gw, (7^ standard deviation of W
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Gx Standard deviation o f x

Gy , CJy standard deviation of Y

T time

nnt coherent integration time 

Tp width of unmodulated pulse

Tp ' width of modulated pulse

OJ dummy variable for frequency domain

error in the estimate of a quantity as a fraction o f the expecta­

tion value

y/ beamwidth

If ẑ) digamma function with argument z

y/(z) trigamma function with argument z

azimuth beamwidth 

elevation beamwidth

y/s (  .271
expl y y

surface term given b y ---------------- —

Ç parameter o f the generalised gamma distribution

a step length

A  amplitude

A(y) amplitude of a wave at r

A(x,y) amplitude of a wave at point x  and y
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Ao amplitude of constant vector

as Bessel differential equation constant

Qgp parameter o f the generalised gamma distribution

ük, amplitude of the kth scatterer

b the ratio v/ jA.

B bandwidth

birth rate

bw scalar parameter of the Weibull distribution

c speed of electromagnetic propagation through atmosphere,

3x10% ms"^

C(t) autocovariance function of a random process x(z) at time T

c(z) normalised autocovariance function o f a random process x(z)

at time Z

C(u), C ( ^  characteristic function

skewness of the Weibull distribution

" 4v 4 ^
the expression J —  + — ^

D  antenna length

death rate

da azimuth resolution

Da antenna azimuth length

De antenna height

dgr ground range resolution
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dk pdf of the kth distribution

dsr slant range resolution

E, E(r) detected field

Eg detected field at broadside

Ei incident field

Ej,, E Jr)  imaginary component of detected field

Ei mirror incident field

Ep scattered field observed at a point P

Er total scattered field

E ^ ,  E ^ r )  real component of detected field

scattered field contribution from the h!̂  th term 

Es field on surface S

f(  t)  frequency at time T

f(x) function of the quantity x

f(x,y,z) function of the quantities x, y and z

F(Xa) detected field at azimuth lag Xa

F(co) Fourier transform o f a function/fxj

fo carrier frequency

amplitude pdf 

fc clutter Doppler shift

f  2 chi-squared probability

fd Doppler resolution



161

Doppler velocity of the A:th subaperture 

joint pdf of the detected field 

fi  predicted pdf corresponding to the ith histogram bin

f j  intensity pdf

F  I intensity cdf

fj^ pdf of the number o f steps in a random walk

ft  target Doppler frequency

fx pdf o f random variable x

Fx cdf of random variable x

g(x) function of the variable x

h surface height

h(t) output o f  point target at time T

h(x,y) surface height at point x  and y  on surface S

h] surface height at point Xj

h2 surface height at point X2

ha(T) azimuth response o f  a point target at time T

hac platform altitude

h f  z) range response of a point target at time T

i loop counter, ith element of a Hst

I  intensity

li intensity of the ith data sample

7̂  median value o f intensity

j  loop counter, jth element in a Hst
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J  V“  1

J  Jacobian transform

^  immigration rate

JJ^-j zeroth order Bessel function

k  loop counter, kth element of a list

K^-)  modified Bessel function o f the second kind o f order V

/ number of parameters in a distribution

L  likelihood function o f a distribution with I parameters

log moments (in'Jt)

Is average slope of the surface S

Ls synthetic aperture length

m number of independent random samples

M  number of histogram bins

m/ number of data entries in the ith histogram bin

n number of moments

N  number of scatterers or steps in the random walk

Np number of pulses coherently integrated

ns normal to a surface S

P  observation point for the scattered field from a surface S

p (t) transmitted pulse at time T

Pac platform position

PRF  Pulse Repetition Frequency

P t total probability of occurrence of m  independent data samples
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Q a statistic related to the parameter (p through the function g

r distance between a point O on a surface S  to an observation

point P

r vector distance o f  an observation point from a point on a

scattering surface

R  slant range

r(t) normalised autocorrelation function o f  a random process x(t)

at time T

R(t)  autocorrelation function o f  a random process x(t)  at time T

R q slant range at broadside

Rcoeff reflectivity coefficient

Rg ground range

time resolution 

s dummy variable for integration

S rough surface

Ssr maximum slant range

t  reciprocal o f  V

u scalar variable

u vector variable

U, Ux normalised log texture measure

V, Vx intensity contrast texture measure

Vac platform velocity

V] coefficient o f  variation o f  intensity
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Vt target radial velocity

w dummy variable

W, Wx hybrid normalised log texture measure

 ̂ neural net weight connecting the jth node o f the input layer

with the kth node of the hidden layer

Wk,out neural net weight connecting the kth node o f the hidden layer

with the output layer node

X random variable, Cartesian coordinate

X  target position on ground

normalised moments

Xa azimuth lag

Xi the ith data sample from m independent random variables

normalised moments {x)‘

log normalised moments (%' In 

Xin value of the input node of a neural net

x.^ value of the jth node in the input layer o f a neural net

X ■f normalised square root moments j  (Vx ̂

^  log normalised square root moments (VV In x^ j  (Vx)

Xk value of the kth node in the hidden layer of a neural net

Xout value o f the out node of a neural net

Xr range lag

x^j bin spacing for the upper bound o f the ith histogram bin
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y  random variable, Cartesian coordinate

Y, Yx texture measure for homodyned-k distribution

Z argument of a function, random variable, Cartesian coordinate
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