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ABSTRACT

Consider a forecaster who observes a sequence of data on-line and after each new ob-
servation makes a forecast (a point estimate or a full probability distribution) for the
next observation. A general theory of assessment of such prequential (predictive-
sequential) forecasting systems was introduced by Dawid (1984). Within this frame-
work the notion of efliciency of probability forecasting systems was introduced, and
it was shown that Bayesian probability forecasting systems are efficient.

In this thesis the concept of prequential efficiency is studied further by present-
ing some new results. We focus especially on a class of non-Bayesian statistical
forecasting systems, the plug-in systems, and we study their efficiency. We show
that under suitable conditions the plug-in systems are efficient, but we also show,
using counterexamples, that for some models no plug-in system is efficient.

Next, we extend the notion of efficiency to point prediction systems. The efhi-
ciency of Bayesian point prediction systems is established, and sufficient conditions
are presented for the efficiency of plug-in systems. The results are applied to time
series forecasting.

By adopting a predictive point of view, we also study the consistency of ex-
tremum estimators for possibly misspecified models. We show, using martingale
arguments, that an estimator defined as the minimizer of a statistical criterion mea-
suring predictive performance, converges to the value of the parameter indexing the
model that issues the “best” one step ahead predictions for the data at hand. In
order to prove our results we establish a martingale version of the uniform law of

large numbers.
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Chapter 1

Introduction

The objective of this thesis is to study the asymptotic behaviour of different fore-
casting systems, using the prequential (predictive sequential) framework which was
introduced by Dawid (1984). More specifically we study the efficiency of forecast-
ing systems for probability forecasting and point prediction systems, and also the

consistency of predictive rules for possibly misspecified models.

In Chapter 2 we begin by presenting the prequential framework, which is based
on the principle that any statistical model should be assessed by the quality of the
forecasts it produces for the specific data at hand. For example, we discuss how
a joint distribution for the data can be seen as a method of issuing sequentially
probability forecasts for the data, and how this view can be extended to arbitrary
statistical models, i.e. collections of probability distributions. By converting a
statistical model to a probability forecasting system, we can then use probability
assessment techniques to assess its validity, and to compare it with another model.
In the same chapter the notion of prequential efficiency is presented as an optimality
criterion necessary for the successful replacement of a statistical model by a unique

probability forecasting system for inferential purposes.

In Chapter 3, we discuss a specific non-Bayesian method of converting a statis-

tical model to a probability forecasting system, the plug-in method, and we study



its prequential efficiency. We study statistical models based on countable and un-
countable parameter sets separately, and for the uncountable case we present results
using two different approaches using the Kullback-Liebler and the x? distances. We
also demonstrate, using counterexamples, that the plug-in method can be inefficient

for statistical models where the information from the data grows too fast.

In Chapter 4, we introduce the notion of a point prediction system, as a pre-
dictive rule that issues one step ahead point predictions. We show how the notion
of prequential efficiency can be extended to point prediction, and we study the
efficiency of Bayesian and non-Bayesian methods of making point predictions us-
ing this framework. We establish, under weak conditions, the efficiency of Bayesian
point prediction systems, and we give sufficient conditions for the efficiency of plug-
in point prediction systems. We apply the results to probability forecasting using
the Brier score, and stochastic regression models.

In Chapter 5 we study the property of asymptotic consistency. By considering
a statistical model as a forecasting system, we show how estimators based on the
minimization of a predictive penalty, are consistent, in the sense of converging
to the model that gives the “best” predictions. We allow our class of models to
be misspecified, and we show how our approach overcomes some problems that
other theories of consistency under misspecification face in some non-ergodic cases.
A basic tool for our results is a martingale uniform law of large numbers which
we prove. We end the chapter with some examples which include a proof of the

consistency of least squares estimators in nonlinear stochastic regression models.

In Chapter 6, we summarize the results and discuss future lines of research.



Chapter 2

The Prequential Framework

2.1 Introduction

The theoretical framework that we will use for the study of a forecasting system,
is the prequential framework (predictive sequential) proposed by Dawid (1984) and
explored further by him and his co-workers in a series of papers (Dawid, 1991;
Seillier-Moiseiwitsch et al., 1992; Dawid, 1992a; Dawid, 1992b; Dawid, 1997).

The prequential framework is not just a framework for the study and evaluation
of forecasting systems. It represents a completely new approach to the traditional
problems of statistical inference, based on the principle that is more meaningful to
make inferential statements in terms of observable quantities, rather than in terms
of unobservable components of a model, such as unknown parameters. Different
statistical methods can then be assessed by the validity of their forecasts for some
observable quantities, and statistical inferential problems such as model testing,

model choice, and robustness can be studied from this perspective.

In this chapter we present the prequential framework in detail, together with

some new results.



2.2 Probability Forecasting Systems

In order to introduce the framework, assume that a sequence of random quantities
Y = (Y1,Yz,...) will be observed, and, at every step ¢t > 1, after we observe y' =
(y1,-..,91), our task is to issue a “forecast” for the next observation Y;;;. The
stochastic quantities (Y;) can be real numbers or vectors, and it is assumed that

they are generated sequentially.

The prequential framework is very general and can incorporate different forms
of forecasts such as point prediction, mean-variance prediction, predictive confi-
dence intervals etc. (Dawid, 1992b). In Chapters 2 and 3 we focus on probability
forecasting, and therefore the forecasts we consider initially are probability distri-
butions, but later it will become clear that other forms of forecasts can be studied
within the same framework. In Chapter 4 we discuss the case of point prediction,

where the forecasts are scalars or vectors.

The first notion we introduce is that of a probability forecasting system (PFS),
which is a rule that associates with any observed set of data y* a forecast distribution
for the next observation Y;4;. Any PFS determines a unique joint probability
distribution for Y (Dawid, 1984), and from any distribution for ¥ we can construct

a PFS. For this reason we will identify a PFS with a probability distribution.

We denote a distribution or, equivalently, a PFS for Y by a bold letter, F
for example. The restriction of F to the first ¢ observations (Y3,Y,,...,Y;) will
be denoted by F*, and the predictive distribution F(Y;41]y?) by Fiy. Although
the predictive distribution F,.; depends on the observed data y?, we suppress this
from the notation for simplicity. We use small bold letters to denote densities with
respect to some underlying measure, usually Lebesgue or counting measure. For

example the density of F* is f*.



2.3 Prequential Assessment

Faced with a specific forecasting problem, theoretically any PFS can be used to
forecast the uncertain quantities (Y;). Intuitively we understand that some PFS’s
will perform well and some badly, depending on the problem and the data at hand.
It is important therefore to have a method, or a collection of methods, for assessing

the performance of a PFS and comparing it with that of another PFS.

The sequential nature of the problem suggests that any assessment method
should judge the PFS within sequence. and not between sequences. By that we
mean that we are not interested in assessing the expected performance of a PFS
(averaged over all possible realisations), since this will include data which were
never observed, and forecasts which were never issued. The prequential point of
view suggests that a PFS F should be assessed by a method which compares the
realized forecast distributions (F;) with the realized outcomes (y;) of (¥;), and does
not make use of the full structure of F as a PFS for Y. This last property was
proposed by Dawid (1984) as an inferential principle for the assessment of a PFS,

and was termed the prequential principle.

Many probability assessment techniques that have been developed, especially
in the field of meteorology for the assessment of weather forecasters, respect the
prequential principle and can be used to assess the performance of a PFS. These
include calibration plots, probability integral transforms, scoring rules etc. The

field of probability forecasting assessment is reviewed in Dawid (1986).

2.3.1 Scoring Rules

In this thesis we will focus on the assessment of a PFS using scoring rules. Scoring
rules are defined as functions S(Y;, F;) of the outcome Y}, and the forecast proba-
bility distribution F,. Although they may be seen also as gains to be maximized,

we will consider them as penalties that the forecaster should minimize. A scoring

10



rule is called proper if
Er {S(YoF.)} < Ep {S(¥:, P}, 2.1)

for any distributions F, and P,. It is called strictly proper if (2.1) holds with
inequality when F; # P;. The above property means that the expected penalty
for the true distribution will be less than or equal to (proper) or strictly less than

(strictly proper) the average penalty for any other distribution.

Many different scoring rules can be used for the assessment of a forecast distri-

bution. One important special case is the logarithmic scoring rule defined as:
S(Yy, Fy) := —logfi(17),

where f;(Y}) is the density of F, with respect to some fixed underlying measure.
This is a proper scoring rule.
Another proper scoring rule is the Brier score. If the outcome Y; is discrete,

taking values (ay,....a,), then it is defined as
S(Y:, Fo) o= 3 _{I(Y: = ai) = F(Y = a))}?,
=1

where I is the indicator function, and F;(Y = a;) is the probability that Y; is equal

to a; under the predictive distribution F;.

Using scoring rules we might measure the actual perfomance of a PFS F by its

cumulative score
T

S(YT,F) = > S(Y, Fy).
t=1
An assessment based on this cumulative score satisfies the prequential principle,

since it involves only the observed outcomes and the sequence of the forecast dis-

tributions {F,}.

2.3.2 Prequential Likelihood

Using the logarithmic score, this assessment of the performance of a PFS F is

essentially its prequential log-likelihood, which is defined for data y¥ = (y1,...,y7)

11



by
T
Lr(y",F) := Y logfi(y.) = log £ (y7).

t=1

Any two PFS’s, F and Q, can be compared, in the light of the data y?, by the

difference of their prequential log-likelihoods:

AT(Q: F) = LT(yTa Q) - LT(yT‘/ F)

We might prefer the PFS F if the above difference i1s negative and the PFS Q if
it is positive. In particular if A7(Q,F) — 0o , as T' — oo, we might consider F
ultimately discredited in favour of Q, and the opposite if A7(Q,F) — —oc. If
the difference stays bounded above and below, we cannot definitively distinguish
between the two PFS’s, which can then be considered equivalent.

If Y ~ F, the prequential likelihood ratio exp (A7(Q, F)) is a martingale. and
so, using standard martingale arguments, we can show that, with F-probability

one,

lim A7(Q, F) < oo.

This implies that the PFS corresponding to a “true” distribution of the data can

not (with probability one) be discredited in favour of any other PFS.

2.4 Statistical Forecasting Systems

In most situations the forecaster does not know the true distribution of the data,
but he may be able to specify a suitable class of possible distributions. This class
is usually formulated in mathematical terms as a parametric family P = {P4} of

distributions, where 6 is an unknown parameter taking values in some set O.

Two important inferential 1ssues that arise in this case are model verification,
l.e. the question of the validity of the parametric family P, and model selection,
i.e. the comparison of the family P with another family of distributions, say @ =

{Q,,,y € T'}. The prequential approach to these inferential problems is to replace

12
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a family of distributions for ¥ by a single PFS. The evaluation of the validity of
a family of distributions, or its comparison with another family, reduce then to
the simpler problems of assessing the validity of a PFS for Y, or the problem of

comparing two candidate PFS’s for Y respectively.

In this case the forecaster’s aim should be to construct a PFS which will, in
a suitable sense to be made precise below, perform at least as well as any other
possible PFS, for almost all possible values of §. Preferably such a PFS should use
the assumption of the parametric model, together with any information gathered
from the data about the unknown parameter 8, in order to issue its next forecast.

Such a PFS will be termed a statistical forecasting system (SFS).

The question of how to extract information about # from the data is one of
the main issues in statistical inference, and different methodologies exist, based on

different philosophical approaches.

The Bayesian approach accepts that our initial uncertainty for 6 should be
quantified by a prior distribution for 4, and later, after we observe the data, it
should be updated using Bayes’s theorem. The Bayesian joint distribution for ¥ is

the mixture
B = / Py 7(6) do,
[C]
where 7(8) is the prior density. The forecast distribution B;i; := B(Yi41]y') is
constructed by conditioning on the observed data y?, and is equivalent to a mixture

of the forecast distributions of Y34, under Py, using the posterior distribution of 6:

By = /@Pt+1,0 Wt(g) de,

where m(8) is the posterior distribution of 6 based on the prior and the data y*.

We will call such a forecasting system a Bayesian Forecasting System (BFS).
Another approach, which avoids the specification of a prior distribution for 6,

is the plug-in (or estimative) approach. A plug-in SFS, say Q, is constructed by

calculating at every step ¢ an estimate 6; of 6 based on the current data y', and then

13



using it to specify the predictive distribution for the next observation by replacing

the unknown parameter 6 with b, i.e.
Qig1 1= Pé,(}?’rl'yt) = Pt+1,ét'

There are other ways of constructing forecasting systems, e.g. fiducial SFS’s
(Dawid, 1984). They are all based on different methods of eliminating the unknown
parameter 6§ in order to generate a forecast distribution. In this thesis we restrict

our attention to Bayesian and plug-in SFS’s.

As was described above, a SFS can incorporate the assumption of the parametric
model plus a learning rule, and different rules will result in different SFS’s. A SFS
can have an inferential as well as a purely predictive use, and for both purposes it
is important to identify a class of “optimal” SFS which compare favourably with
any other SFS based on the same parametric model. Then, any assessment based
on such SFS will not address the efficacy of the learning process, only the model
adequacy. For these reasons the following property of a SFS was introduced by
Dawid (1984).

We define a SFS F to be efficient if for any other PFS Q, with probability one

for all 6 in ©, except perhaps for a subset of measure zero,

limsup Ar(Q, F) = limsup{Lr(y7,Q) — Lr(y7,F)} < . (2.2)
T—o0

T—o0
If O is a subset of R? we use Lebesgue measure as the underlying measure. If O is

countable set we use counting measure, which requires that condition (2.2) should

hold for all PFS’s Q and all § in O.

The difference A(Q, F) measures the relative predictive performance of the two
SFS’s for the data at hand. According to the above definition a SFS is efficient if
it is at least as good as (and possibly better than) any other PFS, and therefore it
can not be discredited as a valid model for the data. In that sense, it is the best we
can do in modelling the true data generation process. Dawid (1984, 1992a) offers

further discussion and justification of the notion of prequential efficiency.

14



It has been shown that a Bayesian statistical forecasting system based on an
almost everywhere positive prior density is eficient. An arbitrary SFS is efficient if
and only if it is asymptotically equivalent to a BFS (¢f. Lemma 2.1). Model selec-
tion based on the difference of the prequential log-likelihoods of efficient SFS’s for
the various models extends the method of log-Bayes factors to non-Bayesian mod-
els, and leads to consistent model selection (Dawid, 1992a). It is interesting then
to consider the efficiency of plug-in SFS’s, since they are proposed as non-Bayesian

alternative models for the data, which are free from any prior distributions.

Different authors have discussed the use of plug-in SFS’s for model selection.
Phillips (1996) discussed the plug-in SFS based on the maximum likelihood estima-
tor and presented an informal argument for its asymptotic equivalence with a BFS.
In Phillips and Ploberger (1994) the asymptotic equivalence of a BFS and the max-
imum likelihood estimator plug-in SFS is established for linear stochastic regression
models with Gaussian errors. The use of a plug-in SEFS for model selection is also
related to Rissanen’s predictive minimum description length principle (Rissanen,
1986. 1987, 1989). See also Qian, Gabor, and Gupta (1996) for an application to
generalised linear model selection.

Our aim in the next chapter is to present a more general and rigorous study of
the plug-in SFS’s. and to present sufficient conditions for their prequential efficiency.

In the next section we present some results which are necessary for the study of

the efficiency of a SFS.

2.5 Absolute Continuity and Efficiency

If C is a subset of © then we use the expression {Py,C}-as for an event that has
probability one under Py, for all 8 in C, except perhaps for a set of parameter values
of measure zero. If F(z) and G(z) are two distributions for a random variable X,

and f(z) and g(z) are their densities with respect to some underlying measure p,

15



then by H(F,G) we denote the Hellinger distance:

1/2

H(F,G) = | [{vf(2) - Va(@))u(da)] ",
by K(F,G) the Kullback-Leibler distance:

K(F,G) = Ef{log %}

and by x*(F, G) the chi-square distance:

2 X)12
ARG = E{1- $5aY

Although we refer to the Kullback-Leibler and x? as distances, they are not metrics,
as usually K (F,G) # K(G, F) and x*(F,G) # x*(G, F).
Using the fact that any BFS is efficient, Seillier-Moiseiwitsch, Sweeting, and

Dawid (1992) proved the following lemma:

Lemma 2.1 A SFS Q s prequentially efficient if and only if there exists a BFS B,
based on an almost everywhere positive prior density, which is absolutely continuous

with respect to Q (uritten B < Q).

By relating efficiency of a SF'S to absolute continuity of two distributions, results

from probability theory can be used to study the efficiency of a forecasting system.

Theorem 2.1 (Kabanov, Liptser, and Shiryayev (1978)) IfR and S are two
distributions for Y, and for every t R' « S, then a necessary and sufficient con-
dition for R < S 1s

in(Rt,St) < 00 R-a.s.

=1

If we combine the previous two results we get the following necessary and suf-

ficient conditions for the prequential efficiency of a SFS Q:

Lemma 2.2 A SFS W s efficient if and only if there exists a BFS B such that,
for all t, Bt < W' and, {P4,0}-as,

Z Hg(Bt,Wt) < o0.

t=1

16



We can also prove the following more general result:

Lemma 2.3 Let W be an efficient SFS, and Q be a SFS such that for every t,
W' <« Qt. Then Q is efficient if and only if, {Pg,O}-as,

H2(Qt,W1) < o0

]38

1

-
Il

Proof of Lemma 2.3. The SFS W is efficient, and therefore, from Lemma 2.2,
there exists a BFS B such that B! « W! <« QF for every ¢, and {P;, ©}-as

Hz(Bt,Wt) < oo

2

1]
—

Using the inequality

(a —b)* <2(a® + %)
it 1s easy to show that
(Bt Qf) S 2{ (B13W1)+H2(W13Qf)}’
and therefore if {Pg.0}-as

T HA(W,, Q) < oo,

=1
then {Pj,0}-as

> H! (B Q) < o,
and sufficiency is established using Lemma 2.2.

Next we prove necessity. When the SFS Q is efficient, then there exists a BFS
B such that B* < Q' and B* <« W! for every ¢, and {Pg,0}-as

H2(Bt, Qi) < o0

NgE

~
1
-

and

Hz(Bt,Wt) < oo

N

o~
I
—

17



Again we can use the inequality
H* (W, Q) <2{H*(B,, W,) + H*(B;,Q,)}

to show that {Pg,0}-as
S H(W. Q) <
N O
The previous lemma shows that, with probability one for almost all 8, the fore-

cast distributions of any two efficient SFS Q and W are asymptotically equivalent
for the infinite future {Pg, ©}-as, in the strong sense that,

lim 3 H*(Q, W) = 0.

T—oa =
See also Blackwell and Dubins (1962) for a similar result.

Next we present a sufficient condition for the efficiency of a SFS similar to the
condition in Lemma 2.3, but based on the Kullback-Leibler and 3 ? distances. This

result is useful in cases where the Hellinger distance is difficult to use.

Lemma 2.4 An SFS Q is efficient if there is an efficient SFS W such that for
every t, W <« Qt, and {Py,0}-as

Z Wb Qt

where di(Wy, Q) can be any of the distances K(Wy,Qq), K(Q¢, Wy), x3 (W4, Q;)
or x3(Qi, Wy).

Proof of Lemma 2.4. We show that, for any two distributions F' and G, when
the Kullback-Leibler and the chi-square distances are finite, they are larger than
the squared Hellinger distance. Then the result follows from Lemma 2.3. First we
show that this is true for the Kullback-Leibler distance. By the definition of the

Hellinger distance,

-G [ tgdn = i),

18



Also we can show that

—2log Ey(v/f/9) < Es{log(g/f)} = K(G, F).

Therefore
H?(

—log{1- #G)} < %K(G,F),

and using the inequality

xSIogl (z < 1),

-z
we have

H*(F,G) < K(G,F).
The same argument can be used to show that H*(F,G) < K(F,G).

For the chi-square distance:

H(RG) = [(v1 = ordn s [(/5 - vor g, - ),

and also by symmetry H*(F,G) < x*(G. F). O
Another sufficient condition for the efficiency of a SFS Q can be given in terms

of the Kullback-Leibler distance between the joint distributions W* and Q.

Lemma 2.5 Let Q be a SFS. If there exists an efficient forecasting system W such
that
sup K(W*, Q") < o0
¢

then Q is prequentially efficient.
Proof of Lemma 2.5. When the condition of the Lemma holds, then for every ¢
the distance K(W?, Q) is finite, which implies that W* <« Q! for every ¢. If we

define S = YL, K(W,,Q,), then St is a non-negative sub-martingale under W.

According to the submartingale convergence theorem if supy Evwy (St) is finite then,

19



with probability one under W, St converges to a finite limit. It is straightforward

to show that
Ew{K(W;,Q,)} = K(W', Q) — K(W'! Q')

and therefore

Ew(S7) = K(WT,QT).

The result is established using Lemma 2.4, and the fact that if an event holds with
probability one under W, then it holds {P4, ©}-as. O

The next lemma will be useful when working with unbounded parameter sets.
It allows us to prove efficiency of a SFS by comparing it to SFS’s which are efficient
for a subfamily of O, e.g. Bayesian forecasting systems based on priors with support

on a bounded subset of ©.

Lemma 2.6 Let (Ci.1 = 1,2,...) be a countable family of subsets of O, such that
O =UX,C;i. ASFSQ is efficient if and only if for every ¢ there exists a SFS R(z)
which is efficient for the subfamily P; = {Pg,0 € C:}, and R(i) < Q.

Proof of Lemma 2.6. We will prove only the efficiency of Q when for every ¢

R(:) <« Q, as the other direction is trivial. Let R be the SFS defined as
R =) 27R(:).
=1

For any SFS W, the difference of the prequential log-likelihoods A;(W,R) con-
verges to a finite limit {Py, C;}-as for every i. Since © is the countable union of
Ci, 1 > 1, it is easy to see that A{(W,R) converges to a finite limit {Py, ©}-as,
and therefore the SFS R is efficient for the whole family P = {Py,8 € ©}. Since,
for every ¢, R(7) € Q, then R « Q and the result is established. O

Corollary 2.1 If © is countable, then a SFS P is prequentially efficient if and
only if, for every §, Py < P.



Proof of Corollary 2.1. Without loss of generality assume that © = {1,2,...}.
If we set C; = {i} and apply Lemma 2.6, we have that a SFS P is efficient if, for
every ¢, P; < P. Also if P is efficient then P; < P by the countability of the

parameter set. O



Chapter 3

Efficiency and Inefficiency of
Plug-in SFS’s

3.1 Introduction

In this chapter we present a rigorous study of the efficiency and inefficiency of plug-
in SFS’s, which, as was discussed in §2.4, are proposed as non-Bayesian alternative

models for the data generation process.

In section 3.2 we discuss some advantages and disadvantages of the plug-in
approach, and in §3.3 we highlight some problems with the first few observations.
In §3.4 we present some general results, and then we study separately the case
where the parameter set is countable (section 3.5), and uncountable (section 3.6).
For the latter case we present two different approaches one based on the Kullback
distance (§3.6.1), and one based on the y? distance (§3.6.2). In §3.7 we show, by
means of counterexamples, that plug-in SFS’s can be inefficient. We discuss briefly

the results in §3.8.
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3.2 Plug-in Forecasting systems

As in §2.4, a plug-in SFS is generated by replacing, in the predictive distribution
P,(0), the unknown parameter § with an estimate based on y*.

A plug-in SFS may appeal to a non-Bayesian statistician, since 1t is constructed
without the need for the specification of a prior distribution for §. Another attrac-
tion is that in most cases a plug-in SFS is easier to use than a Bayesian SFS, since
the analytical form of a Bayesian predictive distribution is usually intractable and

numerical methods have to be used to approximate it.

A plug-in SFS also has some disadvantages. Most important, the uncertainty
of the estimator of 4 is not incorporated in the predictive distribution. Replacing
the unknown parameter with an estimate is equivalent to accepting the estimate as
the true parameter value. The fact that the estimator is a stochastic quantity, with
uncertainty attached to it, is not considered. A value for the estimate may have
been calculated from 10 or 10,000 observations, but this is considered irrelevant
in the construction of the predictive distribution of a plug-in SFS. This may lead
to underestimation of the uncertainty of the future observation Yi;;. As we show
later, in some cases this attribute can result in the prequential inefficiency of the
plug-in SFS’s.

Aitchison (1975) considered the same problem in the context of parametric
density estimation, and presented examples where the forecast distribution of a
Bayesian SF'S is uniformly better (for every §) than the forecast distribution of a
plug-in SFS based on the maximum likelihood estimator. His criterion was the
expected Kullback-Leibler distance between the true distribution and the forecast
distribution of the SFS. Our investigation is different, because we focus on the
asymptotic and within-sequence performance of a SFS, and not on its expected
performance. Also we study general models, not only independent identically dis-

tributed observations. We will show that for the examples presented by Aitchinson,
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although the Bayesian SFS’s are slightly better than the plug-in SFS’s in terms of
the average discrepancy from the true distribution, asymptotically their perfor-

mances are equivalent.

It is obvious that different estimators result in different SFS’s, and performance
depends on the estimator sequence used. We will relate the estimative properties
of an estimator to the efficiency of the SFS it generates, and apply the results to

specific estimators and examples.

3.3 Start-Up

In constructing a plug-in SFS we may face some start-up problems. Perhaps for
the first few observations the estimator of § is not defined, since not enough data
are available to calculate it, or, although the estimator may exist, the predictive
distribution based on it may not have the same support as the true predictive
distribution. This may lead to a non-zero probability that the prequential likelihood

will be zero.

Example 3.1 A sequence of independent identically distributed Bernoulli obser-
vations (Y;) is to be observed. The probability P(Y; =1) =6,0 < 6 < 1. Let Q
be the plug-in SFS based on the maximum likelihood estimator 7 = k/T, where
k is the number of 1's in the first T' observations. The predictive distribution Q;
for X; is not defined since we have no data to calculate the MLE.

Even if we ignore the above problem, we can also observe that without any
modification the SFS Q will be inefficient since initially, until we have seen at least
one 0 and one 1, the MLE estimator takes the value 0 or 1. This means that the

forecast distribution gives probability zero to one of the two possible outcomes. O

In practice a plug-in SF'S is used only when a sufficiently large sample is avail-

able, and a starting value for the estimator can be calculated. Since our interest is
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in asymptotic properties, we avoid these anomalies by assuming that there exists
a modification of the initial SF'S which avoids these problems, and asymptotically
issues identical predictions with the initial SF'S. For instance, in Example 3.1, when
the estimator 67 is not defined or takes the values 0 or 1, we can replace it with the
estimator 07 = (k+1)/(T+1), k > 0. The two SFS’s will eventually issue identical
forecasts with probability one for every §. and therefore by studying the efficiency
of the modified SFS we study the efliciency of the original SFS Q conditioned on
the event that the MLE estimator is used only when it is defined, and is not equal
to 0 or 1. Of course there may be cases where no such modifications exist, and the

plug-in SFS is inefficient.

Example 3.2 Assume that we will observe a sequence of independent identically
distributed Uniform [0, 8] observations. § € (0,1). The support of the forecast
distribution of a plug-in SFS depends on the estimator used to construct it, but
with non-zero probability (for non-trivial estimators) it will be smaller than the
support of the forecast distribution of any BFS. In that case the plug-in SFS is
inefficient since a necessary condition for any SFS to be efficient is that, for every

t, the support of its predictive density should include that of a Bayesian SFS. O

In order to have a well defined plug-in SFS, in the following sections we assume
that for every ¢ > 0 the estimator ét used to construct the SFS exists, takes values
in O, and is unique. Also we make the assumption that the support of the density

pj of Y does not depend on the parameter 8, for every t.

3.4 Projections

We now show that an efficient plug-in SFS exists if and only if, for any BFS B,
the plug-in SFS based on the Hellinger projection of the forecast distribution B,y
into the family of predictive distributions Py4; = {P41(8),0 € O} is efficient. By
P.+1(8) or Pyyy19 we denote the predictive distribution P(Yi41]y?, 6).
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Lemma 3.1 Assume that there ezists an efficient plug-in system. For a BFS B,
let W be the plug-in SFS based on the estimator 0, defined by

ét = aT‘g77’L'I:n5€@H{Bt+1, Pt+1(3)}.
Then W is efficient.

Proof of Lemma 3.1. Let Q, based on the estimator (ét), be efficient. From
Lemma 2.2, for every BFS B, {P4,0}-as

i HZ{Bt, Pt(éi—l)} < 0.
t=1

The result follows from

XT: HQ{B:-, Pt(ét—l)} < ZT: Hz{Bta Pt(ét—l)}a

and the fact that, for every t, Bt < W1, O
Lemma 3.1 shows that if there is a value of § that minimizes the Hellinger
distance between the predictive distribution Pyy1¢ and the Bayesian predictive
distribution B;41, and there is at least one efficient plug-in SFS, then the plug-in
SFS based on these Hellinger projections is efficient as well.
Similar lemmas can be proven for the Kullback-Leibler and y%-distance. We
present the result for the Kullback-Leibler projection of the forecast distribution of

a BFS since in this case the projection is easy to compute and has a special form.

Lemma 3.2 Assume that there is an efficient plug-in SFS Q, based on a sequence
of estimators 0;, and there is « BFS B such that, {Pg,0}-as:

i]({Bt,Pt(ét_l)} < 0.

t=1

If W is the plug-in SFS generated by the sequence of the estimators (91) defined as
0, = argmingco /@ K{P41(0),Pry1(s)} 7, d6, (3.1)

then the SFS W s efficient.




Proof of Lemma 3.2. If ¢, is an estimator of § then the Kullback-Leibler distance

K{B;1,P,11(e:)} can be written as

K{Bus1, Pria(es)} = Egpye [K{P141(0), Pega(e) Y — Egiyt [K{Pr41(8), Bega }).

Therefore the estimator §; which minimises the first term of the right hand side of
the above equation minimises the Kullback-Leibler distance between any plug-in

forecast distribution and B:;,. Consequently

K{Bi41,Pui(8)} < Ki11{Bi41, Piy1(6:)},

and the result is established by Lemma 2.4. ]

Note that the estimator §; defined in equation (3.1) is the Bayes estimator when
the decision problem is the estimation of the predictive distribution P,.;(6), and
the loss function is the Kullback distance. It is also the Kullback projection of
the Bavesian predictive distribution B,y; into the family of distributions P,y; =
{P4+1(8),0 € O}, since it can be shown to minimise K {By1,P;11(s)} over all

parameter values s € O.

3.5 Countable Parameter set

Throughout this section we take © to be countable. By Corollary 2.1 a sufficient
and necessary condition for a plug-in SFS Q to be efficient is that, with probability

one for every 0,
S H*{P,(0),Q:} < oo (3.2)
t=1

We call an estimator consistent if, with probability one for all 8, it is eventually
equal to the true parameter value. We will study how the efficiency of a plug-in

SFS is related to the consistency properties of the estimator used.

Suppose that a consistent estimator exists. Then the SFS based on it will be

efficient, since with probability one eventually the Hellinger distance between the
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predictive distribution of the SFS and the true predictive distribution will be zero,

and therefore with probability one, for all 8, condition (3.2) holds.

Now a consistent estimator exists if and only if the distributions { P} are mu-
tually singular. For, first assume that a consistent estimator e; exists. Then the
event “e; = 6 eventually” has probability one under Py, and zero for any other
distribution in the family. Therefore the distributions are mutually singular. If on
the other hand the distributions are mutually singular, then it is easy to construct
a consistent estimator. First we specify a prior density #y on 6, such that =5 > 0
and Yg7ms = 1. Let ; be the posterior mode of 8, i.e. the value that maximises
the adjusted likelihood 74 - p*(y'|#) (in cases that there are more than one values
of # that maximise the adjusted likelihood, choose any of them). Then it can be

shown, as in §6.4 of Dawid (1992a), that the posterior mode is consistent.

We have shown therefore that consistency is a sufficient condition for the effi-
ciency of a plug-in SFS, and how this is related to the mutual singularity of the
distributions in the family. But is consistency a necessary condition for prequential

efficiency? The answer is negative, unless we add an extra assumption.

Lemma 3.3 Suppose that, for every 8, with Pg-probability one

]iminf[isxégH{Pt(ﬁ),P,(s)}] > 0.

t—00

Let 0, be a sequence of estimators, and Q the SFS they generate. Then Q is

prequentially efficient if and only if the estimator 8, is consistent.

Proof of Lemma 3.3. First suppose that the SFS Q is efficient. We denote by
Hi(61,0,) the Hellinger distance H{P;(6;),P:(62)} between the predictive distri-
butions, under Py, and Pg,, for Y; given the data y*~!.

P0 < Q))

Then for every 6 (since

Po{ S H}0,0i1) <o} =1,
t=1
and therefore

Pg{Hf(H,ét_l) < € eventually} =1.
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This implies that
Pg{Hf(G,ét_l) =0 eventually} =1,

and thus
P9{9 = ét eventually} = 1.

But, if for every 6, Pg{6 = g, eventually} =1, then

Po{ Y H2(0,6,) < oo} =1
t=1

and therefore for all 4, Py < Q. ]

A corollary of the above Lemma is that for independent identically distributed

observations an efficient plug-in SF'S must be based on a consistent estimator.

The above discussion has demonstrated the following result.

Lemma 3.4 Let the parameter set © be countable, and the family of distributions

(Py) be mutually singular. The SES W based on the posterior mode 8, is efficient.

If © has a finite number of elements, say K, and, for every 0, 7y = 1/K, the
posterior mode , is the maximum likelihood estimator, and therefore for a finite set
of mutually singular distributions the MLE plug-in SFS is always efficient. When
© is infinite the MLE estimator does not belong to the class of estimators that
maximise the adjusted likelihood. The following example shows that the MLE SFS

can be ineflicient even when the distributions {Ps} are mutually singular.

Example 3.3 We will observe a sequence of random variables which take the val-
ues 0 and 1. The true model consists of the countable family of distributions defined

as follows:

First number all the finite sequences of 0 and 1’s as follows:

1 denotes the sequence 0

2 denotes the sequence 1
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3 denotes the sequence 00
4 denotes the sequence 01
5 denotes the sequence 10
6 denotes the sequence 11

7 denotes the sequence 000

and so on. Under Py, & = 1,2...., first we will observe the finite sequence number
k, (as defined above), and then a sequence of independent identically distributed
Bernoulli observations for which the probability of getting a zero is 1/(k +2). Any
two models in this family of distributions are singular since there is a value ¢y such
that for every ¢t > ¢, the Hellinger distance between their forecast distributions for

Yi4+1 1s constant and larger than zero.

For every step i, there 1s only a finite number of models such that their forecast
distributions for the next observation Y;;; give non-zero probability to both possible
outcomes. In order to have well defined plug-in forecasting systems we define the
posterior mode and the MLE estimator to be the parameter values that maximise

the adjusted likelihood and the likelihood respectively within the set of these values.

For any sequence of positive prior probabilities (7x), the BFS, and the plug-in
SFS based on the posterior mode, are efficient. But the MLE SFS will be inefficient
since, regardless of the data y', the MLE estimate is always larger than 2! — 1 and,
as the number of observations tends to infinity the MLE estimator tends to infinity.

Inefficiency follows from Lemma 3.3. a

3.6 Uncountable parameter set

In this Section we assume that the parameter set is uncountable, and an open

subset of R” (or, more generally, having boundary of Lebesgue measure zero). We
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present two different ways of studying the efficiency of a plug-in SF'S. The first uses
the Kullback-Leibler distance, and the second the x? distance. Both approaches
establish the efficiency of a plug-in SFS by finding an upper bound for the distance
between the predictive distribution of the plug-in SFS and that of a BFS. When
the BFS has support on the whole set ©, and © is unbounded, one usually has to
use strong conditions on the tail behaviour of the posterior distributions of 6 in
order to achieve this bound. Using Lemma 2.6, we see that it is sufficient to find
a countable cover {C;} of the parameter set ©, and for every i, to compare the
plug-in SFS with a BFS with support on C;. This implies that it is sufficient for
our purposes to work on an appropriate subset of ©, which we denote by (', and
to give sufficient conditions for the efficiency of the plug-in SFS for the subfamily
Pc = {Py,0 € C}. When we apply the results, we can choose the cover {C;} in a
suitable way in order to show the efficiency of the plug-in SFS for the whole family
©. Any BFS we use in this section is based on a prior density which has positive

support on C, and is equal to zero elsewhere.

3.6.1 Kullback-Leibler Distance

The first approach is based on Lemma 2.5, which shows that a plug-in SFS Q is
efficient if the Kullback-Leibler distance between the joint distributions of a BFS B
and Q for the first ¢ observations Y* stays finite as ¢ tends to infinity. The distance

K (B, Q") can be decomposed as the difference of two terms :
K(B,Q) = [{K(PY,Q)— K(PhB)}(6)ds

= EW{[{(Péz Qt)} - Eﬂ{]{(P‘t‘hBl)}? (33)

where the last expectations are with respect to the prior distribution. Since for any

forecasting system W

E{K(P}, WY} = iEﬂ[Ea{K(Pj.e,Wj)}],

i=1
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the two terms in equation (3.3) can be interpreted as the overall Bayes risks of the
two SFS’s Q and B for the estimation of the predictive distributions (P 6,...,P;4)
using the Kullback-Leibler distance as the loss function. It easy to show that the
BFS B achieves the minimum Bayes risk, and therefore a SFS is efficient if its

Bayes risk is sufficiently close to the minimum risk achieved by B.

The second term E,{K (P, B")} also has many other interpretations. It is the
Kullback-Leibler distance between the joint density 7(8) p;(Y*), and the product of
marginals 7(#) and b?. This quantity is the Shannon mutual information between
the parameter § and the sample Y7, ....Y;, and also the expected Kullback-Leibler
distance between the posterior and prior densities of . In Information Theory it

is also the minimal average redundancy of a code (Clarke and Barron, 1994). We

denote this quantity by I(C,¥"), i.e.
]WX%:LMHB%MM&

suppressing its dependence on the prior density from the notation.

The mutual information 7(C,Y") is a quantity that has been well studied for
smooth models and independent identically distributed observations (Ibragimov
and Hasminskii (1973), Clarke (1989), Clarke and Barron (1990), Clarke and Barron
(1994)). Under weak conditions

HQYU=§MMU+OUL (3.4)

where p is the dimension of C. As in the decomposition of K (B?*, Q') the mutual
information appears with a negative sign, it will be sufficient to establish that

liminf {1(C,Y") - glog (t)} > ~co. (3.5)

Following Clarke (1989), page 76, it can be shown that, for the above result to

hold, it is sufficient that there be an estimator e; such that

limsupdet[E; Eg{t (0 — €,)(0 — e,)'}] < c0.

t—o0
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On the other hand, the risk ErEg{Kt.H(G,ét)} = E:Eg{K(Pi116,P,,,4,)} has
been studied by Cencov (1981), who showed that, for smooth models and indepen-
dent identically distributed observations, if §; is the maximum likelihood estimator
then

ErEo{Ker(6,6)) < QPZ Ot (3.6)

If Q 1s a plug-in SF'S, based on an arbitrary estimator 0,, which achieves the bound

(3.6), then

E.Eo{K(P},QY)} = E.Eo{3_ K,(6,6;.1)} < g]og(t) +0(1).  (3.7)

j=1
It follows from equations (3.3), (3.5), and (3.7) that the SFS Q is efficient since
K (B, QY = 0(1).
Using the same arguments we can show the following result which can be applied
not only to independent identically distributed observations, but to any parametric

family and any estimator for which the assumptions hold.

Theorem 3.1 Assume that there is a BFS B such that the mutual information
I(C,Y") is lower bounded as in equation (3.5). Let 0, be an estimator which satisfies
the following condition:

ErEo{Kp41(0,6,)} < -2% + by

where by is a sequence such that 3 jo; by < 00. If Q is the SFS based on éi, then Q
is efficient for the subfamily Pc = (Pg,0 € C).

Example 3.4 Assume that under Py the sequence of observations (Y;) are in-
dependent identically distributed having a Normal distribution with mean € and
variance o2, known. Let © = R, C = O, and B be the BFS based on a N(0,1)

prior. Then
1(c,yt) = et +1) (t2+ b,
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and if the estimator 4, is the maximum likelihood estimator based on Y, then

P 1
Eo{]{t+1(9, 91)} = 'é't—

It follows that the plug-in SFS based on the maximum likelihood estimator is
efficient from Theorem 3.1. This result is in contrast to the result of Aitchison
(1975), who showed that some BFS’s have a uniformly (for all §) smaller risk than
the MLE plug-in SFS when the loss function is the Kullback-Leibler distance. These
differences in the risk are small, usually of order O(¢=%), so that the difference in the
overall risks (when we sum for all ¢) stays finite. This means that asymptotically

the performances of the two forecasting systems are equivalent. O

The Kullback-Leibler distance is not always finite and this may create some
problems, especially in cases when E{K;41(6,6;)} = oo for every ¢. Since we focus
on a subset C of the set © we can avoid this problem by choosing C in such a way
that the Kullback-Leibler distances between the predictive distributions of different
parameter values in C are always finite. This by itself does not solve the problem
since the estimator §; takes values in O, and not in C. In cases like these, it may
be helpful to construct a second estimator ét,c which takes values in C, being equal

to §, whenever ét is in C, and is defined so that
B, Eo{Ku1(6,0:0)} < o7 + by,

where b, is a sequence such that 3772, b, < co. Then we can apply theorem (3.1) to
show that the plug-in SFS based on éi,c, say W, is efficient for C'. If we can then
show that for almost all 8 in C

Pg(ét € C, eventually) = 1,
then the SFS Q based on §; will be efficient for C, since {Py, C}-as

> H12+1(ét,c‘a é,) < 0.

t=0

In the next example we apply this method to the Poisson case.
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Example 3.5 Let (}},Y5,...) be independent identically distributed observations
having a Poisson distribution with unknown parameter § > 0. In this case the
Kullback-Leibler distance between two distributions Poisson(6;) and Poisson(8;) is

equal to:

9
Kwh%y=&bg§)+@—oh
2

and for every §

Ee{K(6,8,)} = oo,
since there is a non-zero probability that 6,=0.

Let Q be the SFS based on the maximum likelihood estimator 8, of 6, used of
course only when 6, > 0. Let C = [a,b] where 0 < a < b, let B be the BFS based
on the uniform prior #(8) = 1/(b — a) on C, and let f,c be an estimator defined

as follows:
a ift:Oorét<a

ét,C = ét if ét € [a, b]
b itd,>b.
Since the true value of 6, and the estimator é,,c take values in C, we can use a

Taylor expansion argument to show that for every 6 in C

" R o 1 A b .
]X,t_}.] (9, 91,0) = 6 . {1og(9) —_ log(auc)} —_ (0 —_ Ht,C) S _(0 -_ 91,0)2 + —‘—‘]9 — 9{_'013.
20 6a3
Since
Eo(0 — 0,0)* < Eg(6 — 6,)* =0/t

and

sup Egl8 — 6, ¢c|® = O(t7%/?)

geC
we have

i 1
EnE(?{]X’¢+1(9, Gt,c)} < ﬂ + O(t—B/z)'

Since sup, E,E¢{t (8 — 6,)?} < o0, we also have that
liminf{1(C,Y*) - = log (t)} > —o0,
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and therefore the SFS W based on the estimator ét,c is efficient for C'. This implies
that the SFS Q is also efficient for C as the estimator 4, is (strongly) consistent.

Since Q is efficient for any subset C = [a, b], then Q is efficient for the whole family
0 =Rt =Ug,[1/i,1]. D

3.6.2 Chi-square Distance

Next we present an approach based on the x? distance. In order to be able to use
Taylor expansions we make the assumption that the subset C is open and convex.
Q is the plug-in SFS based on an estimator §;, and B is a BFS based on a prior

7(6) with support on C and zero everywhere else.

In order to establish that the plug-in SFS Q is efficient, we have to show that,

with probability one for almost all 6 in C,

i (B, Q) <

and next we give sufficient conditions for this to hold. By E;_;4(-) we denote the
conditional expectation Eg(-|Y*™!), and by Amax A the maximum eigenvalue of a

matrix A.

CONDITIONS

Condition C1.
The conditional density p.() is twice continuously differentiable with derivatives

DM (6) and D (6). Let

dM(9) := {DV(6)} DM (8), (3.8)

and

dP@) = sup {
{h:h’h:l}

B D (9) h|}. (3.9)
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Condition C2.

There exist constants 0 < § < 1, and € > 0, such that {P,, C}-as

a1 d20) pey _
s Fesell |+ o | 1 =00, (310

and

/ sup [I91—92|_‘ sup

61,62€C h:h'h=1

WD (6:) — DY (62)} h|]dY, = 0(1).  (3.11)

Condition C3.
The estimator §; is strongly consistent for almost all § in C, and, if we denote by

Egy«(-) the expectation with respect to the posterior density m;(f), then

Eay {1(0 = 60} = O(1o-) (3.12)
and
Egy{|Vt(8 - 0)*} = 0(1), (3.13)

where € is the constant used in condition C2. The above orders should hold
{Pg,C}-as, or in expectation for almost all § in C, or in expectation under the

BFS B.

Theorem 3.2 Assume that the conditions C1-C3 hold. Then {Pgy,C}-as
ZHZ(Btht) < oo,
t=1

and the SFS Q s efficient.

Comments:

(1) Condition C1 is a smoothness condition. Since we are using this condition in
order to bound the Hellinger distances, it is sufficient that the conditional densities
p:(0) are eventually differentiable {Pg, C'}-as.

(2) Condition C2 asks for uniformly bounded derivatives on C. Equation (3.11)
describes a condition which is weaker than a uniform bound on the third deriva-

tive. We can avoid this condition if we make stronger the condition described in
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equation (3.10). Condition C2 is restrictive, in the sense that it does not allow the
information from each observation to grow to infinity, but we do not think that it
can be relaxed except in special cases. As we will show in the next section, when

the information grows very fast the plug-in SFS’s are ineflicient.

(3) Condition C3 describes the conditions that the estimator §, should satisfy.
According to equation (3.12) the squared posterior bias of the estimator 6, should
go to zero, at least with rate O{1/log?(t)}, which means that 6, should be close to
the posterior mean of # (under the Bayesian measure B). Equation (3.13) controls
the behaviour of higher moments. There exist results in the bibliography which
can be used to verify condition C3 (Johnson, 1970; Crowder, 1988; Ibragimov and
Hasminskii, 1980), especially for maximum likelihood estimators.

(4) A different interpretation can be given to condition (3.12) when we consider it
in expectation under the BFS B. If by §; we denote the posterior mean of § under

B, then

~ 2 ~ ~ N ~
[Eﬁn”{\/t (0 - 9,)}} = 1[0: = 6:]" = Egy{t (0 = 0.)"} = Egpy+ {1 (6 — 6,)}.
If we calculate the expectation of the above under B we have

Er Es | Eqye{n/t(0 =0} = [ Ea(t10—8.)n(0)d8 — [ Eo(t]0—0,*)7(6) ao.
(3.14)

For an estimator ;. let
Ra(e&1) := E{Egs(le; — 6]*)}.

Then equation (3.14) shows that an estimator §, can produce an efficient SFS if
its risk Ry(f;) is sufficiently close to the minimum risk Ry(6,) achieved by the
posterior mean 0;. If we consider Ry(e;) as a measure of the (Bayesian) estimative
efficiency of the estimator e, then this verifies Dawid’s conjecture (Dawid, 1984)
that efficient estimators produce eflicient SFS’s under suitable regularity conditions.

The conjecture does not hold for the classical notion of efficiency which is based on
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the variance of the asymptotic distribution of the estimator. See the next section

for further discussion.

Before we give the proof of Theorem 3.2 we need the following Lemma,

Lemma 3.5 Let f(z) be a probability density which is positive on the set S. If

g(z) is a non-negative function on S such that

/|\/f Vo(@)| dz < oo,

then for every 0 < e <1

/lx/f Va(z )| dzr < Ef‘____(_)g_(ﬂ’ne'

Proof.

22e
| da

i) =va)de = [ [Vi(z) = vo@)||v/#(@) - V()

_ 1 W@ - Ve[ Vi) + Vet
<,

@) {Wf — Vo(@)[ )~ da
|£(2) = g(2)
S/s' {F(@))e

2e 1+e

e @@ @) ~ ()
|f(l)“9($)| d:r—/s {f(2)}° dx_Ef'T

Proof of Theorem 3.2. Let 6; be the posterior mean of 6:
6, = /C 6 7.(8) do,

and R the plug-in SFS based on it. By by, ri+1 and q;+; we denote the predictive
densities of the distributions By1, Ry417 and Q41 respectively. In order to show
that {Pg, C}-as

iﬂz(Bt,Qt) < oo,

t=

it is sufficient to show that {Pg,C}-as

ZHz(Bt,Rz) < o0 and ZHZ(Rt,Qt) < 00,
=1

t=1
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since H*(B;,Q.) < 2{H
dlstance H(BH.], Ri+1)

2(B;,Ry) + H*(R4,Q¢)}. We begin with the Hellinger
Using the conditions C1 and C2, for every ¢ and every 6

in C, we have

pi31(8) — pea(8) = {Dt+1(91)}' (0—0,)+ (1/2) (6 — 8,) DD(4,) (6 - b))
+(1/2) (6 - 6.y {D1(67) — DS (6.)} (6 — 6y),

where 6 is a point which lies on the line joining 6 and 0, Using the fact that

6 — 67| <0 — 6;] we have

Pr(8) — Praa(B) — {DIEL(B)Y (6 - B — (1/2) (6 - 0y DP@) (6 - by)|
< (1/2)16 = 0:** T1g1, (3.15)

where I'iy1 i= supg, 4.¢c “91 ~ 02| sup gy ‘/1,’{D§i)1(91) - DH,1 (62) }hl]. De-

fine
uesy = max {0, prs1(0:) +/ ) (0 — 6. DP(8,) (0 - 6,) 7.(0) do}.
Then

H2(B,+1,R,+1) = /{\/bt+1 - \/Pt+1(ét)}2 dyi41
= /{\/bm — Vg + Vug — \/Il‘t+1((§t)}2 dyi+1
2 /(\/bt+1 — Vus1)? dyer +2 /{\/“t-u - \/Pt+1(ét)}2 dyi41 (3.16)

Using Lemma 3.5, equation (3.15), and the fact that

/{Dt+l (6 - 91)} 1(0)df =0,

we have

/(\/bt+1 — Vu1)® dyipr < / b1 — usp1]| dysr

< (1/2) tTgm /c [Vt (6 = 6)]*+ w,(6) d6 /Ft+1 dyi41 (3.17)
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and also

. \2 - 0
/(\/ut+1 _ \/le(gt)) dyeas < Et,§t|Ut+1 pt:l-l( t)|1+5
Pe+1(6:)

d® (0) y1+6
E i+1
P ""{pm(e)}

146

< s { Ve (0 =8 x(6) ds) (3.18)

We would like now to show that, {Pg,C}-as,

il/(\/le — Vuip)® dyr < oo,
t=
and also

i/ {\/Ut+1 - \/pz+1(ét)}2 dyi41 < 00,
because then we can use equation (3.16) to show that 52, H*(B;, R;) < co. There
are two ways to do this, depending on the version of condition C3 we use. If for
example we know that Egy«{|v/t (8 — 0:)]**¢} is of order O(1) {P4, C}-as, then,
from condition C2, the terms in equations (3.17) and (3.18) are of order O(¢~1~¢/2)
and O(t™17%) {Py, C}-as respectively, and then using equation 3.16 there exists a

sufficiently small d > 0 such that

1
Hz(Bi,Rt) = O(m) {Pg, C}—as,
and therefore, {Pg, C'}-as,
> H*B,R,) < c0. (3.19)

t=1
In order to use condition C3 with the orders holding in expectation for almost all

0, or under B, observe that the terms in equations 3.17 and 3.18 are positive, and
therefore when you sum them you get a submartingale. In order to show that the
sum stays finite {Pg, C'}-as it is sufficient to show that it stays finite in expectation.
The same result 3.19 follows on observing that the last factor in each equation is
O(1) {Py,C}-as from condition C2, and also that if an event has probability one

under B, it has probability one for almost all 4 in C.

Next, we turn our attention to the Hellinger distance H(Ry41, Qi41) which for
simplicity we also denote by Hyy1(6, 91) We want to show that 32, H*(Ri41, Qi41) <

oo in order to complete the proof.
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From condition C3 we have that {Pg. C}-as there is a 1y, which may depend on
the sequence, such that for all ¢ > ¢ the estimator 91 i1s in the set C'. Then we can

use a Taylor expansion. For every t > ¢, let

Ji+1 = max[O. pt+1 )+ {Dz+1( )}/ (ét - ét)]

Then using Lemma 3.5 we have

1{;2+1(é,.é1) = /{\/Pr+1(ér) - \/Pf+1(91)}2 dyi41
= /{\/le(éf) — V041 + V941 — \/p1+1(ét)}2dyf+l

N 2 ~ 2
< 2 /{\/pf+1(61) - \/gr+1} dyiy1 + 2 /{\/QHI - \/Pt+1(9t)} dyi41
. 6,) — 2
< 2 /IPt+1(91) — g1l dyrp1 +2 {pea (@) ~gt+1} dyi41
Pz+1(91)
N ) (0) 4 (0)
< 10, = 6,% sup Ey gl -]+ 216, — 6 Fy ol L
- I ! 1| Zlellc) 10‘Pr+1 0)‘ ’ t i’ SU]J te‘Ptﬂ(e)l
_ 0) ©)
< 16— 6, E e +2 sup Ey p| =
< 10 =8 {sup 16'Pt+1(9)l zlelg i ‘Pt+1(6){ }
) (6) (6) 2
< ] _ 0 2:) E t+1 t+1
- logt) Vi log() (0~ 0) set to{lpt+1 9) .+ ’Pt+1 9)' }
1
= O{ 2} {Ps. C}-as

t (logt)
using conditions C2 and C3 (where the orders hold {Py,C}-as). It follows that
{Py,C}-as ’
iﬂfﬂ(éi,ét) < 0. (3.20)

t=0

Again observe that the terms in the above inequalities are all positive, and there-
fore their sum is a submartingale which implies that condition C3 can be used in

expectation.

The theorem has been established since equations (3.19) and (3.20) imply that

" H2(B,, Q) < o0
t=1



Next we present an example in order to show how the theorem (3.2) can be

applied in specific cases.

Example 3.6 Let (Y;) be independent identically distributed observations having

an exponential distribution with mean 1/6. Then
Py, 0) = e
and

D) = e fv (1 -8y,
DP(G) = yet¥ 8y, —2)
(

dSPt 9) —6y:
d@g = y126 v (Bﬁgyi)
Then if C = (a,b),
de) 1
p) 8
di(6) _ 2 2y
p(0) 70

and condition (3.10) is easily verified. For condition (3.11) observe that (using the

third derivative)
D{(6)) — DI (6)) < (61 — 02)y? €% (3 — ayy),
which means that

els,eliléc[(91 — 62)7 {DP(6:) — DP(6:)}] <yl e ¥ (3 — ayy),
and condition (3.11) can now be verified.
Now, for any specific estimator we have to verify condition C3. A SFS based
on the maximum likelihood is efficient since the MLE estimator is consistent,
{Py,C}-as |6, — 6,]> = O(t=(1+)) for some e > 0, and the posterior moments

are of the appropriate order (Ibragimov and Hasminskii, 1980). O
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3.7 Counterexamples

In previous sections we presented sufficient conditions for the efficiency of a plug-
in SFS, and we tried to relate the estimative properties of an estimator to the
efficiency of the SFS it produces. In this section we present some examples which

show that plug-in SFS’s can be inefficient.

The first example shows that even in the case of independent identically dis-
tributed observations a SFS based on a Fisher efficient estimator can be inefficient,
and therefore prequential efficiency is a stronger property than Fisher efficiency.
The same example shows why in the yx? approach we needed condition C3 (espe-

cially (3.12)), and in the Kullback-Leibler approach we required the second term

in the expected risk of the estimator
- 5 p
E.Eg{K:1(0,0,)} < 57 + b,
to be such that Y, b, < oo.
Example 3.7 Let (Y;) be independent identically distributed Normal observations
with unknown mean § and known variance o?. As was shown in example (3.4) the

plug-in SFS based on the sample mean §;, := Y1 Y;/t is efficient. Let ¢, =
8, +1/(;/t log(t)). Then for every 0

. 2
Eo(0— 6, = UT
and
2
1
Ep@—e)?=L 4+ =~
o(0—e)” = T Tog(®)

The estimator e, is asymptotically efficient since ¢ - E4(6 — €;)® converges to o2
Let Q be the SFS based on 9}, and R the SFS based on e;. Under Q and R,
Y = (Y1,Y2,...) is a Gaussian process, and therefore a necessary condition for Q

and R to be equivalent (Shiryayev, 1996, page 533) is that {Pg, ©}-as

oo 6‘_ 2
PICE BRI
t=1 4
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Simple calculations show that

DLIic BT

=1 t=1

t- log

o~

and therefore the SFS R is inefficient.

In this example the estimator 6, is first order efficient, but the extra term
1/4/t log(t) introduces an inefficiency of order 1/(t-log(t)) which, although it does
not affect the first order asymptotics in estimation terms, does affect the prequential

efficiency of the plug-in SFS.

The next example shows that there are cases where, although the support of the
forecast distributions does not depend on the parameter 8, there are no efficient
plug-in SES. This is because the Fisher information of every new observation is

large with respect to the Fisher information of the previous data.

Example 3.8 Let (1}) be independent Normal observations with unknown mean
§ and variance o?, known and positive for all . Let the prior for § be a Normal
distribution with mean 0 and variance 1. Then the Bayesian predictive distribution
for the observation Yi4;, given Y, is a normal distribution with variance V;;;:

Vi = ol + g
where S; = }:1 1/03». This yields an efficient SFS. The predictive distribution of a
plug-in system will be Normal with variance ¢7,,, since the variance is known. Un-
der both the BFS and any plug-in SFS the sequence Y = (Y1,Y5,....) is a Gaussian

process, but of course with different means and variances. A necessary condi-

tion then for the plug-in SFS to be efficient is that (Shiryayev, 1996, page 533)

{Py,0}-as
( Z-H — 1) < 00
t=1 \%t+1
But
Vi _ 1
ol (L+S) ol
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and therefore if the variance o7, is small with respect to (1 + S;)!, then there
exist no efficient plug-in SFS. For example this is the case when there is a constant
¢y such that for every ¢
2 (5] \/t
Oi41 < ——57—
Actually, because under the two measures the process Y is a Gaussian process the

two measures are then singular, and therefore {P4,0}-as

which means that any plug-in system is infinitely worse than the BFS.

We must note that in this example the MLE estimator satisfies almost every
optimality criterion for estimation, but the fact that the uncertainty of 4, is not

incorporated in the predictive distribution makes the plug-in SFS inefficient. O

Another example where no efficient plug-in forecasting systems exist is presented

next.

Example 3.9 (Stochastic Linear Regression) Assume that the observations

(Y;) are generated from the following model:
)/t = 9':1} + €ty (321)

where § is an unknown vector of order p, the predictors z, are fixed or predictable
with respect to the filtration F; = o(Y¥3,Y2,...,Y:), and the errors ¢, are Normal

with mean zero and variance o2, known and positive.

Let B be a BFS based on a Normal prior with mean zero and variance-covariance
matrix the p x p identity matrix I,. The predictive distribution of B for the
observation Y747 is a Normal distribution with mean 5t’xt+1 and variance % {1 +

Ty (X; X+ 1) 2441}, where
0= (X! X, + L)' X, Yy,
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and

Y, =(1,Y,..., 7).

Also let Q be the plug-in PFS based on the estimator 0;. The predictive distribution
Q:41 is also a Normal distribution with mean 5tla',+1, and variance equal to o?,

since 1t is considered known.

The BFS B is efficient, and the plug-in PFS Q will be efficient if and only if
{Pg,0}-as

o ¢]

S {zi (X X+ L) g )2 < oo, (3.22)

t=1
This condition follows from the fact that under B and Q the process Y is a Gaus-

sian processes (Shirvayev, 1996). It can be shown that when (3.22) fails, there
are no efficient plug-in SFS’s. Note that when zj ,(X{X;) 'z is bounded be-
low, neither the BFS nor the plug-in SFS are consistent, in that H(Pi4+16,Bi41)
and H(Py414.P

++1.6,) do not converge to zero. Nevertheless, the BFS is efficient

according to our definition : no other SFS can do any better.

If we apply the above result to the case of an autoregressive model of order
one, i.e. when x; is Y;_y, it can be shown (Wei, 1987) that (3.22) holds only when
|] < 1. As a result, we see that there are no efficient plug-in SF'S’s for an explosive
AR(1) model. When |f| < 1, a SFS based on the least squares estimator or any

ridge estimator is efficient. O

3.8 Discussion

Our investigation showed that a class of non-Bayesian SFS’s, the plug-in SFS’s, are

efficient, under suitable regularity conditions, and can thus be used either for pre-
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diction or model selection. The main advantage of these SFS’s is that in most cases
they are easy to use, as well as being good approximations to “better” forecasting

systems.

We also showed that a plug-in SFS should not be used without some investiga-
tion of the properties of the parametric model, since, as the counterexamples show,
it could behave very badly, especially in cases where the Fisher information of the
next observation is large with respect to the information for the data at hand.
In such cases, while a Bayesian forecasting system will produce good forecasts, a
plug-in SFS will be heavily penalised for the fact that it does not incorporate the
uncertainty for the estimator of 4 in its predictive distribution. In these cases a
modification of the plug-in SFS may improve it. For example, instead of a plug-in
predictive distribution we might use any of the predictive distributions proposed by
Harris (1989),El-Sayvad et al. (1989), Kuboki (1993) and Basu and Harris (1994).
The efficiency of such systems remains to be investigated.

The definition of prequential efficiency is based on the predictive assessment
of a forecasting system using the logarithmic score. Can we extend this property
to other forms of prediction and loss functions? A first step in this direction is
described in the next chapter, where a similar property of efficiency is defined and

studied for point prediction under squared error loss.
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Chapter 4

Efficient Point Prediction

Systems

4.1 Introduction

Our main objective in this chapter is to extend the notion of prequential efficiency
for probability forecasting systems to point prediction, and to study the efficiency
of different methods of constructing predictions. Specifically, we show that, under

weak conditions, Bayesian predictors are efficient.

In a decision-theoretic framework an optimal point predictor is defined as that
which minimises the expected loss. For example, if we observe X and want to
predict Y under squared-error loss, then the predictor g(X) that minimizes E{Y —
g(X)}? is the conditional mean E(Y|X). This is called the minimum mean squared
error predictor of Y given X.

The problem with the above definition is that it presupposes knowledge of the
joint distribution of X and Y. In most situations we do not have this information.
Suppose instead that we can assume that the joint distribution of (X,Y’) belongs

to a parametric family of distributions, indexed by a parameter §. In this case we
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typically cannot use the above optimal predictor, since for every 6 we will have a
different optimal predictor E(Y|X,8). There are now two sources of uncertainty,

the predictand Y and the unknown parameter 6.

One simple and common way to proceed is to replace the unknown parameter
6 in the optimal predictor with a suitable estimate of § based on the observation
of X. This is the plug-in approach, similar to the plug-in method for probability
forecasting discussed in Chapter 3, and usually this method gives reasonable point

predictions.

There is also a Bayesian method of issuing point predictions. We specify a
prior distribution on the set of values for 6, thus completing the joint distribution
of (6. X,Y). Given a suitable loss function for prediction, the optimal predictor,
from a decision-theoretic point of view, is that minimising the Bayes risk. For
example, when the loss function is squared prediction error, the Bayes predictor
is the function ¢g(X') which minimises the overall expectation E{Y — ¢g(.X)}?, viz.
E(Y]X), where the expectations are calculated in the joint distribution of (X,Y)

after marginalising over the random variable 4.

However, this method is not likely to be acceptable to a non-Bayesian statisti-
cian unless it can be shown to have good properties under the true model. Such
properties are often phrased in terms of expectations conditional on 6, but these
in turn might be objectionable to the Bayesian. In order to side-step such con-
troversies, we introduce a new notion of optimality, in an asymptotic sequential
framework. Our definition is based on the actual empirical performance of the
prediction rule, and avoids references to conceptual replications of the setup for its
justification. It is perhaps a disadvantage that our definition is based on infinite
sequences and asymptotic arguments. Nevertheless, it can be used to study the
actual performance of standard methods of constructing predictors, and help us

discuss issues of optimality from a different perspective.

In this chapter we investigate this new approach for point predictors assessed
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by squared prediction error loss, and we show that, under weak conditions, there

exists a class of optimal predictors which we term efficient.

In §4.2 we describe the setup, introduce the notion of a point prediction system
(PPS) as a rule that generates predictions sequentially, and present our definition of
efficiency for PPS’s. In §4.3 we study the case when the true distribution is known.
This will provide us with the tools to show in §4.4 that efficient PPS’s exist for
general parametric families, by establishing that efficient PPS’s can be constructed
using a Bayesian approach. In §4.5 we discuss the relationship between efficient
point prediction systems, and efficient probability forecasting systems. In §4.6 we
present sufficient conditions for the efficiency of plug-in PPS’s. In §4.7 we discuss

some applications in probability forecasting and stochastic regression models.

4.2 Efficiency of Point Prediction Systems

We use a framework similar to the ones used in the previous chapters. Assume that
a forecaster observes a sequence of random vectors ¥ = (¥}), ¢t > 1, with ¥} € R*.
His task at each step ¢ is to issue a point prediction for the next observation Yi4;
using the past observations Y* := (¥,...,Y;). The dimension k could change with

t, but for simplicity we consider it fixed.

In order to issue his predictions the forecaster uses a rule, which for every
set of outcomes for Y*', and any other external information he may have at that
time, specifies a point forecast for Y;;;. We call such a rule a Point Prediction
System (PPS). The class of all PPS’s is extremely broad, including any method of

constructing one step ahead predictions.

To be more rigorous, let the sequence of the observed variables Y = (Y;) be
defined on a filtered probability space (2, F, (F:), P). The filtration (F,) represents
the information available to the forecaster at each time point t. When the only

information available at time ¢ is the past observations Y, then F; is the o-field
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generated by Y.

Following standard terminology (Shiryayev, 1996), we call a sequence of random
elements (e.g. variables, vectors or matrices), U = (U;), a stochastic sequence if,
for every t, U; is Fi-measurable; and predictable if each U, is F;_;-measurable. We
assume that the sequence of observables (Y;) is a stochastic sequence of vectors in
R*. Since any point prediction for Y;; should be based only on the information
available to the forecaster at time ¢, any PPS is equivalent to a predictable sequence
of vectors in R¥, and vice-versa.

If Ais a PPS, and (A4, A,....,Ar) are the predictions it issues for the first
T observations (¥7.Y5....,Y¥7), then the empirical performance of A up to time T

may be assessed by the sum of the squared prediction errors:
d 2
St(4) =3 IIVi = Adl%,
t=1

where || - || denotes the Euclidean norm in R¥. This criterion also covers the seem-
ingly more general case where we want to assess the performance of a PPS using
weighted squared prediction errors

T

SY(A) =Y (Vi — A W, (Y, — Ay),

=1
where W = (1) is a sequence of predictable symmetric positive definite matrices.
This is because we can make the transformations Yw; = W}lﬁ'Yt and Aw,; =
th/2 Ay, and use the criterion S7(-) on the transformed variables and PPS.

In the light of any sequence of data, we can compare two PPS’s, say A and
D, using the difference between the cumulative loss for A, Sp(A), and that for D,
Sr(D):
Dr(A, D) = St(A) — Sr(D).

For any PPS A, St(A) is increasing in T, and typically tends to infinity. If for a
specific infinite sequence of outcomes the difference Dr(A, D) tends to —oco, then

we can consider that the PPS A has performed better than D, and the opposite if
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Dr(A, D) tends to +0o. When the difference Dr(A, D) stays bounded both above
and below, we cannot effectively distinguish between the two PPS’s, which can

then be considered equivalent.

The above consideration motivates the following definition of an efficient PPS.

Definition 4.1 Let P = {Py : § € © C R?} be a parametric family of probability
measures on (0, F,(Fy)). A PPS A will be called efficient for the family P if, for
any other PPS D,

lim sup D1 (A4, D) < oo, (4.1)

T—o

with Pg-probability one for almost all § in © (i.e. excepting perhaps a sel of

Lebesgue-measure zero).

When O is countable, the same definition can be used, on replacing Lebesgue
measure with counting measure (and thus rendering unnecessary the qualification

“almost all”).

According to our definition, a PPS is efficient if, with probability one for almost
all 8, 1ts empirical predictive performance will be at least as good as that of any
other PPS. This is a strong property, and indeed when © is uncountable we cannot
expect to find a PPS for which property (4.1) holds for all § € ©. This is because
1t 1s typically easy to construct a PPS which is exceptionally good for some specific
values or values of § (e.g. based on assuming some particular value to be that gen-
erating the data). This phenomenon is akin to that of “super-efficiency”. We shall

see that, with the extra qualification “almost all”, this difficulty can be avoided.

Our notion of efliciency is similar to the notion of prequential efficiency for prob-
ability forecasting systems introduced by Dawid (1984), and discussed in Chapters
2 and 3. Both are based on the idea that a prediction rule should be assessed by
its empirical performance for the actual data arising. An efficient prediction sys-
tem is then one that can be almost guaranteed to deliver optimal performance, so

long as the data sequence arises from some probability distribution in the family
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considered. With the important exception of the interpretation of “almost” in this
statement, these definitions make no references to hypothetical replications of the
setup, alternative data sequences, or events that did not occur. In particular, no

concept of erpected performance has any role to play.

4.3 Known Probability Distribution

In this preliminary section we assume that the probability measure P is fully known,

and for every t the conditional means
M= EP,t—l(Yz)a
and covariance matrices
Sy = Epa_q {(Ye = M) (Y: — M)’}

are defined P-a.s., where Ep 4(-) denotes the conditional expectation Ep(-|F;). For
every t, S; is a non-negative definite matrix. We denote its maximum eigenvalue
by Amax S;. Since the distribution of Y = (Y3,Y2,...) is known, a PPS is efficient

if property (4.1) holds with probability one under P.

Although we assume that the conditional means M, exist P-a.s., we do not
make any assumptions on the overall expectation of Y}, and all the conditional ex-
pectations we use are generalized conditional expectations, as defined in Shiryayev
(1996, chapter 7). Thus the stochastic sequence Ur = "L, (Y;— M,) is a generalized

martingale (Shiryayev, 1996, page 476), but not necessarily a martingale.

The sequence of the conditional means M = (M) is a predictable sequence
of vectors, and hence a PPS. For every t, the prediction M; minimises the one-
step-ahead predictive risk, Ep ,_;(||Y; — g||°) over all F,_;-measurable functions g,
and consequently M specifies the optimal (in decision-theoretic terms) sequence of

one-step-ahead predictions. The next theorem studies the asymptotic performance

54



of the PPS M with respect to any other PPS. For two events F; and F, we say
that P-a.s. E; = E, if the event that E; holds but E, fails has P-probability zero.

Theorem 4.1 For any PPS A = (A;), P-a.s.
{sup Amax S§; < o} = {jlim D7(M, A) exists and is less than oco}.
t —00
More specifically, P-a.s.

{sup/\max Sy < oo and Y ||M; - A < oo} = {—oo < Tlim Dr(M,A) < oo} )
t t=1 —ee
and

{sup)\max S; < o0 and Z | M — At||2 = oo} = {Tlim Dr(M,A) = ~—oo} .
t —o0

t=1
Proof of Theorem 4.1. First we prove the following lemma:

Lemma 4.1 [f S, is a generalized martingale then S? is a generalized submartin-

gale, and if A; is the compensator of S? then P-a.s.

A < 00 => S; converges to a finite limit

Proof. This proof is a simple adaptation of Theorem 3 in page 518 of Shiryayev
(1996) for generalized submartingales, but we present it for completeness. The
stochastic sequence (S; +1)? is a nonnegative generalized submartingale with com-
pensator A; + 1. We know (Shiryayev, 1996, page 523) that for a nonnegative
generalized submartingale if the limit of the compensator is finite then P-a.s. the
submartingale converges to a finite limit. Therefore S? and (S; + 1) converge to

finite limits, and therefore S; converges to a finite limit since
1
S, = 5{(5;+1)2-53—1}.
Proof of Theorem. It is easy to show that
Ep1(IYs = Adl®) = Epya(IY: = Mil[") + | M — Al
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The stochastic sequence (A7), where

T
Ar = Dr(M,A)+ Y ||M; - A

t=1

M=

= 2) (A— M) (Y- M),

i=1

is a generalized martingale.

Case 1. sup, A\max S; < oo and ¥2, [|4; — M;|* < .

Since

Ep (A1) = AT + 4 (A1 — Mr4a)'Sria(Arsr — Mry),

the sequence (A% ) is a generalized submartingale, with compensator Cr = 4 °7_ (A,—
M) S;(A; — M;) which can be bounded above:
T
Cr<4 1}1Sa£rx)\max S ; | As — My|)%.
It follows that if 32, [|A; — M,]|* < oo, then Cr is finite, and using Lemma (4.1),
Ar converges to a finite limit P-a.s.. The stochastic sequence D7 (M, A) also con-

verges P-a.s. to a finite limit since Dr(M, A) = Ar — L, || Ar — M,|]%.

Case 2. sup, A\max S, < oo and Y2, ||4; — My||* = 0.

Let ar = max(1, Y%, ||A; — Mi||*). Consider the generalized martingale

T 2(A, - My)(Y, — M)

Wr=>" :

t=1 at

Then W3 is a nonnegative generalized submartingale with compensator

T ’
Ay — M) Si(A; — M,
CT=4Z( t t)azt( 1 t)’
i=1 t
which is bounded above by
LA - M|
4 {rtriaTx/\maxSt} ;a—?
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Using Lemma 4.1 we see that the sequence (Wr) converges P-a.s. to a finite limit.

Since
Ar T8, a(Ws = Wia)

)

ar ar
from Kronecker’s lemma, P-a.s.
Ar

lim — =0,
T—o00 a‘T

a.nd
DT AM A
Iim __i____)

T—o GT

= -1

It follows that limr_, Dr(Af, A) = —oc, and the theorem has been established. O
Theorem 4.1 shows that when the covariance matrices S; stay bounded in all di-
rections P-a.s., then the PPS A is efficient. Any other PPS A is also efficient if and

only if it issues predictions which are asymptotically equivalent to the predictions
issued by the PPS AI. i.e. if and only if P-a.s.

oo

Z “A-{t — ‘41Hz < ocC.

t=1
Note that any two efficient PPS’s, say A = (A,;) and D = (D), asymptotically
issue equivalent predictions not only for the next observation, but for the whole

infinite future, in the sense that. P-a.s.,
o
Th_{lgo; | Ae — Dt”2 =0,
which holds since

o0 o0 [e o)
5 c= DiF <2 (32 13 AP + 3 1M~ D).
t=T t=T t=T
The next example shows that, in order to establish the above results, we do
need to bound somehow the increase of the covariances. Otherwise we can get

surprising results: for example, there exist cases where efficient systems do exist,

but M is not one of them.
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Example 4.1 Assume that we observe a sequence of independent observations
(Y;), with P(Y; = t?) = 1/t* and P(Y; = 0) = 1 — 1/t>. Then, for every t,
M,; = E(Y;) = 1 and according to the PPS M the best prediction for each Y; is 1.
But noting that

S P A0 =) 5 <o,
t=1 t:lt

we have, from the Borel-Cantelli lemma, that P-a.s. there exists ¢y, (depending
on the outcome sequence) such that, for every ¢ > tg, ¥; = 0. Therefore the best
sequence of predictions in this case comes from a PPS, say Z = (Z;), which for
every t predicts 0 for ¥;. With probability one, the loss Sr(Z) stays finite as T’
tends to infinity, and any other PPS A = (A,), is efficient if and only if P-a.s.

inAtu? < oo.

It follows that the PPS A is not efficient, since

SIMP=Y1=0
t=1 i=1

O

In view of the above example we see that, without further conditions, optimality
defined in terms of the minimization of the one-step ahead risk does not necessarily
imply optimality in terms of the asymptotic empirical performance of a prediction

rule.

4.4 Parametric Family of Distributions

Assume now that P is an unknown member of a parametric family of probability
measures P = {Py : § € O} on (,F,(F;)), where © is a subset of R?, p > 1.
For an event A, and subset C of O, we say that A holds {Pg,C}-as if P4(A) =1
for almost all 6 in C (i.e. excepting perhaps a set of Lebesgue measure zero). We

remind that for any probability measure Q on (2, F,(F)), we denote by Eq,(-)
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the conditional expectation Eq(-|F;), and by m(6) the conditional mean of Y,

given F,_; under Py, i.e.
my(0) := Eg(Yi|Fi-1) := Egs-1(V2).

We now show how eflicient PPS’s can be constructed using a Bayesian approach.
Let 7(8) be a prior probability density for , which is almost everywhere positive

on O. Then we can define the Bayesian marginal measure on (Q, F, (F;)):
B = /@Pg 7(6) df. (4.2)

At time t, we can calculate the posterior density () of § given F,. If we assume

that {Py, ©}-as the conditional means
Mp, = Ep:.1(Y1)

and covariances
SB,t = EB,t—l {(Y; - AMB,t)(Yt - ]MB,t)I}
are finite for every t. and
sup Amax Sp; < oo, {Py, O}-as, (4.3)
t

then we can prove the following theorem.

Theorem 4.2 Let B be defined as in (4.2), and assume that it satisfies assumption
(4.3). If Mg := (Mp,) is the Bayesian PPS (BPPS) based on the conditional means
of B, and A = (A,) is any other PPS, then {Pg,0}-as

jlim Dr(Mgp, A) < 0.
More specifically, {Pg,0}-as

{3 IMB, = Adl” < 00} = {~00 < Jim Dr(Mp, A) < ~o0},
t=1 (]
and

{3 M, — Adl* = 00} = {lim Dr(Mg, A) = —oo}.

t=1
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Proof of Theorem 4.2. Using Theorem 4.1 we know that, for any other PPS
A — (At),

{sup Amax Sp; < o0} = {Thm Dr(Mp, A) < o0}, B-as. (4.4)
4 —00

If an event has probability one under B, then it has probability one for all 4
in O, except perhaps for a set of Lebesgue measure zero, since the prior density
7(6) is almost everywhere positive on ©. Therefore (4.4) holds {Pg,O}-as. From

assumption (4.3), the event
sgp Amax Sp; < o0
holds {Pg, ©}-as and therefore {Pg, O}-as
712130 Dr(Mp, A) < o,

and {Py,0}-as

{sup Amax Sp, < o0 and Y |[Mp, — A/’ < 0} = {-oc0< Jlim Dr(Mp. A) < —o0},
t — 00

t=1

{sup Amax Sp; < 00 and Y |[|Mp; — A/’ =0} = {Tlim Dr(Mg,A) = —oc}.
t —+00

t=1
]

Thus, as the last theorem shows, a PPS based on the conditional means of

a Bayesian measure is efficient under the minimal assumption that its predictive
covariance matrices (calculated under the marginal measure B) stay bounded with

probability one for almost all §. It is easy to show that
Mg, = /@ me(8) Te_1(6) d6,

and therefore the Bayesian prediction is a weighted average of the conditional means
my(8), where the posterior density 7,—;(6) of § given F,_; provides the weights for
the different 8’s.
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For an arbitrary PPS D = (D;) we can establish its efficiency by comparing its
predictions with those of an efficient BPPS, and by using the fact that D is efficient

if and only if asymptotically the predictions of the two PPS’s are equivalent, i.e. if
S IMp; — D> < o0, {Pg,0}-as. (4.5)
t=1

Using the submartingale convergence theorem it can be shown that a sufficient

condition for (4.5) to hold is that

T
SI%PZEB(H]WB,t — Dy|?) < 0.

t=1

A typical expectation in the above sum can be written as
Eg||Mp, — Di||* = E.Eg|/ms(0) — Di||* — ExEg|/mi(8) — Ms %,

where, for every term, the first expectation is with respect to the prior density = (4),
and the second with respect to the probability measure Py. Thus the expectation
Ep||Mp, — Di||” is equal to the difference between the Bayes risks of Mg, and
D, for the estimation of the conditional mean m;(f) under squared error loss.
The prediction Mp,; minimizes this risk, and hence a sufficient condition for the
efficiency of the PPS D is that its cumulative Bayes risk be sufficiently close to the

minimum, achieved by the Bayesian PPS.

For the case where the probability measure P was known, we were able to show
that any two efficient PPS’s issue asymptotically equivalent predictions not only
for the next observation, but for the infinite future. This result can be extended to

the case of a parametric family.

Theorem 4.3 Let B be a Bayesian measure, and assume that (4.3) holds. Let
D = (Dy) and A = (A;) be any two efficient PPS for the family P. Then {Py,0}-as

lim 3 ||D, — A* = 0.
T—rooizT
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Proof of Theorem 4.3. Let Mp = (Mp ;) be the BPPS based on the conditional
means of B. Then using Theorem 4.2, AMp is efficient and the PPS’s D = (D;) and
A = (A;) are efficient if and only if {Pg, @}-as

Z ”AIB,t - Dt“2 < oo
t=1

and

ST IMp, — Ad)? < o

t=1

Clearly then {Py, ©}-as
S ID = Ad® < o0,

t=1

and finally {Pg, ©}-as
Jim $10.- 4 =0,

4.5 Efficient SFS and Point Prediction

The notion of a statistical forecasting system (SFS) was introduced in section 2.4.
For completeness we repeat here that a SFS is a prediction rule which, for every ¢
and every realisation of the outcome of F, specifies a predictive distribution for the
next observation Y;1;. Any SFS is consistent with at least one joint distribution Q
on (2, F,(F:)). The property of (prequential) efficiency for probability forecasting
systems was defined in section 2.4, in the simplest context with F, = o{Y},..., ¥;}.
When the distribution Q is uniquely determined and may thus be equated with
the SF'S, this is as follows:

Definition 4.2 Let Q be a SFS, and Q' its restriction to F;. Then Q is termed
efficient if, for any other PFS S, the Radon-Nikodym derivative of St with respect
to Qt:

dS?
At(sa Q) = 'd_QTa
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converges to a finite limit with probability one for almost all 6 in ©.

In Seillier-Moiseiwitsch, Sweeting, and Dawid (1992) it was shown that any Bayesian
probability forecasting system based on an almost everywhere positive prior is ef-
ficient, and any other PFS Q is efficient if and only if there is a BFS B such that
B < Q. The result extends to cases where o{Y3,...,Y;} C F;.

In the previous section it was established, under a weak condition, that a PPS
based on a Bayesian SFS is efficient. It is natural then to ask if the same result
can be extended to any eflicient probability forecasting system. The following
theorem shows that this is possible, under a similar weak condition on the predictive

variances of the efficient probability forecasting system.

Theorem 4.4 Let Q be a probability measure on (Q,F,(Fy)), and assume that
there exists a Bayesian PFS B such that B < Q. Let Sq. denote the conditional
covariance matriz of Yy under Q. Then if {Pg, ©}-as

sup Amax Sq, < 00,
t
then the PPS based on the conditional means of (Y;) under Q s efficient.
Proof of Theorem 4.4. Since B « Q, then any event that has probability one

under Q has probability one under B. The proof continues in the same way as the

proof of Theorem 4.2. m]

This theorem shows that one way of constructing an efficient PPS for parametric
families is by using efficient probability forecasting systems. The only assumption
that we have to check is whether the predictive covariance matrices stay bounded

in all directions.

4.6 Plug-in PPS’s

A popular method of forming predictions is by replacing the unknown parameter

6 in the predictive mean my4;(6), with an estimate ét based on the available data
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at time ¢. Then the prediction for Yi4; is me1(6;). We will call a PPS based on

this rule a plug-in PPS.

One method of establishing the efficiency of a plug-in PPS is by showing that
it is generated by an efficient plug-in probability forecasting system, and verify the
extra condition of Theorem 4.4. Sufficient conditions for the efficiency of a plug-in

PFS are presented in Chapter 3.

Another more direct method is to compare the predictions of the plug-in PPS
with the predictions of an efficient Bayesian PPS. Using this idea we next present
sufficient conditions for the efficiency of a plug-in PPS. We assume that the plug-in
PPS is based on some estimator sequence (ét) The only property that the estimator
sequence should satisfy is described in Condition 4. In order to have a well-defined
plug-in PPS, we assume that d, is defined for any t > 0, and takes values in ©.

This does not affect the generality of the results, since they are asymptotic.

Condition 1.

Let B be a Bayesian measure based on a prior probability density =(8) for 0,
almost everywhere positive, such that (4.3) holds. Let 0, denote the posterior
mean of § based on the data ¥Y* = (¥3,Y5,...,Y;), and V; the posterior expectation

of ||6 — ét“z. Then {Py,O}-as
Z‘QQ < oo0.
t=1

Condition 2.

The parameter set © is open, convex, and {Pg, ©}-as the predictive means m,(6)
are twice continuously differentiable with respect to 8, with derivatives D®)m,(8)

and D@m,(8).

Condition 3.

Let

di(0) = | DWm(6)]| and d{(6) = WP |B' D@ m,(6) h|.
th'h=1
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Then {Py,0}-as

sup sup {dgl)(ﬂ) + dgz)(ﬁ)} < 0.
t 6eo©

Condition 4.

For the sequence of estimators (4,), {Ps, O}-as

o . 9
t=1

Theorem 4.5 Assume that Conditions 1-4 hold. Then the plug-in PPS D based

on the estimator sequence (6;) is efficient.

Comments:

(a) Condition 1 guarantees the existence of an efficient BPPS, which we use to
establish the efficiency of the plug-in PPS. It also controls the behaviour of the
posterior variance. This is a weak condition since typically the posterior variance
is of order O(t~'). The sum YL, V;? is positive and increasing, and therefore a
submartingale under any Py or B. A sufficient condition for the second part of
Condition 1 to hold is that this sum stay finite in expectation for almost all 6, or

under B. This can be shown using the submartingale convergence theorem.

(b) Conditions 2 and 3 are smoothness conditions. Condition 3 is restrictive since

it states that the derivatives stay bounded, but see comment (d).

(¢) Condition 4 is the only condition that the estimator §; should satisfy. Although
this condition seems restrictive, it is almost a necessary condition as it is easy to
construct examples where Condition 4 fails, and the PPS based on ét 1s not efficient.

For example assume that the observations (Y;) are independent, having the Normal
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distribution N(6,1). The PPS based on the sequence of the posterior means of §
for any Bayesian measure, based on a proper prior density, is efficient, and any

plug-in PPS is efficient if and only if Condition 4 holds.

If 6, is a maximum likelihood estimator (MLE), then typically (when the ob-
served information grows at rate t) its distance from the posterior mean is of order
O(1/t1/%*¢) for some € > 0 (Johnson (1970), Ibragimov and Hasminskii (1980),
Crowder (1988)). Therefore Condition 4 seems to be a weak condition for the

MLE.

The sum of the squared distances between 0, and the posterior mean 6, is an
increasing positive sequence, and therefore a submartingale under any Py and under
B. Using again the submartingale convergence theorem we have that a sufficient
condition for Condition 4 to hold is that the sum stay finite in expectation for
almost all 6 or for B. For example if

T~ =2
sup Ep (; 116, — 6:]| ) < 00, (4.6)

then Condition 4 holds. Observe that
" ~ 2 A 2 ~ 2
Ellb, — 0.|| = E-E||6; — 0| — E.Eq||0, — 6| .

The estimator 6; minimizes the risk E, Eg||e; — || over all estimators e;, and there-
fore in order to establish that Condition 4 holds using (4.6), it is sufficient to show
that the estimative Bayes risk (under quadratic loss) of the estimator g, is close to

the minimum risk, achieved from the posterior mean 6,.

(d) Although in the statement of the theorem we used the whole parameter set
O, the same assumptions and theorem can be used to show that a plug-in PPS is
efficient for a subset C of O, using the results in section 2.5. Since Condition 3
involves suprema over the parameter set, in many situations it will not hold for the

whole set ©. What we can do then is to find a suitable countable cover of O, i.e.
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a collection of subsets (C;);jen of © such that
0=J¢,
JEN

and to use the theorem for every one of the C;’s in order to show that the plug-in
PPS is efficient for the subfamily of distributions Pg; = {Pg : 8 € C;} for every j.
The subsets C; should be chosen in a way such that Conditions 1-4 are satisfied
for every one of them. Then, since it can be shown (Lemma 2.6) that if an event
E is {Py,C;}-as for every j, then it is {Pg, ©}-as, the plug-in PPS is efficient for
the whole family P.

(e) It is possible that, while Conditions 1-4 do not hold in the original parametrisa-
tion, they might do so after a transformation of the parameter. Then the conclusion

of the Theorem would hold, since it does not depend on the parametrisation used.

Proof of Theorem 4.5. Let Afg be the BPPS based on B. Since the conditional
variance matrices stay bounded, AMp is an efficient PPS. In order to show that
D is efficient, it is sufficient to upper bound the squared distances between the

predictions of My and D with suitable functions in order to establish that

oo

2

t=1

Mp, — D|* < oo.

Using Condition 2, for every 6 € O there is a 6* (which may depend on ) such
that

m641(6) = mea(8) — (8 = 6D (G| = |28 —8.) D2y (67) (8 - 6,)]

1 A2
3 16— 8" sup dii(s)

IA

and therefore

”MB,t+1 - mt+1(ét)||

=110 = Y DEL @I + || Jo mes(6) mi(6) d6 — musa(8:) — (b — 6.) DEL (B
1

~ A ~ a2
<16~ dilisupdh(s) + 5 (Ve 16— O°) sup (o)
S€EO < SEO

IN
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Then

N 2 ~ 2
IMB 41 = menn () = || Jo met1(0) 7:(6) A0 — myya (6r)|

2 2 2
~ A 2 ~ A2
216; — 64| {sggdﬁ)l(s)} +(Vt+|wt—etll> {sugdﬁ?l(s)}
s s€

IN

2

IN

2
~ A2 ~ A 4
2nm—mn{wpaﬂ<ﬁ +2WV—M|{mp¢Huﬁ

s€EO

2
v2v; fadtio)}

It follows that

T
a2
Z Il fo My41(0) T(0) df — myq (0:)|| <
t=0
2 { llp Sup di+1 } Z ||6~t - 01”
t<T s€©

2 [e.@)
+2 {supsupclt+1 } Z]|€t—01|l +2 {supsupdi+l } ZVtz.
1=

t<T s€O® t=0

By Condition 3, the quantities {sup,<7 supee dt}H(s)}2 and {sup;<7 Sup;co d,_2*_)1(s)}2
stay bounded {Pg,O}-as. If we also use Conditions 1 and 4, it is clear that the
three sums stay bounded {Pj,0}-as, as T tends to infinity. Then {Py, ©}-as the

sum
oo 2 o0 R 2
Z ||MB,t+1 - Dt+1|| = Z ||MB t+1 — 7721-}-1(01!)”
t=0 t=0
e A2
= Z o M41(8) m(0) df — my 1 (6:)|
is finite. The proof is complete. a

The next example illustrates how Conditions 1-4 can be verified in specific

examples.

Example 4.2 (Poisson Loglinear Model) Assume that Y; are independent Pois-
son observations with means A\; = exp(z.0), where z; € R are fixed explanatory

variables, and the unknown parameter 6 takes values in R. Then
my(6) = exp(z:0)
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and therefore

d(l)(a) = |z.|exp(z.0)
and

dD(8) = |z|* exp(z,0).

If we restrict our attention to a bounded subset C = (a, ) of O, then Conditions
2 and 3 hold if sup, |z;] < oo, since the parameter 6 is bounded. Using the results
in Crowder (1988) we can verify Conditions 1 and 4, for any Bayesian measure B,
if limy_.. T~'ST 22 > 0. Therefore a PPS based on the maximum likelihood
estimator is efficient for any subset (a, 3) of ©, and therefore efficient for the whole
family since

0= D('—]])

i=1

4.7 Applications

In this section we present some applications of our results to probability forecasting

and stochastic regression.

Example 4.3 (Brier Score.) Let £ = (E,;) be a sequence of events of interest,
and D = (D) a PPS which issues a probability prediction D, for E,. For such a

forecasting system the Brier score is defined as:

T
Br(D) = Z{I(Et) - Dy}’

where I(-) denotes indicator function. If P is the true probability measure, we

denote by Mp = (Mp,) the PPS based on P, with
AIPJ == EP {](Et)’ft—l} = P(Eglft_]).
Applying Theorem 4.1 we have that P-a.s.

Jim {Br(Mp) - Br(D)} < e,
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and indeed P-a.s. each of the events

oo
Z MPt <OO
t=1

and

lim {Bz(Mp) - Bz(D)} > —c0

implies the other. This result means that the Brier score can be used as a consistent
model selection rule for two distributions, since, with probability one, the true
distribution P will eventually have a smaller Brier score than any other distribution
Q, except in the case where the two distributions issue asymptotically equivalent

forecasts.

When the true probability measure is not known, but belongs to a parametric
family, we can show, using the results in §3 and §4, that any Bayesian PPS is

efficient in terms of the Brier score.

The above results continue to hold when at any step ¢ the forecaster has to
specify his probability forecasts for a finite number m of events (Ey,..., Eiy). In
this case the prediction is a m-dimensional vector Dy = (Dy1,...,Din), and the
Brier score is defined as

= Zi {I(Es;) — Dy},

t=1 j=1

Example 4.4 (Stochastic Linear Regression) Assume that the observations

(Y;) are generated from the following model:
Y; = 011‘t1 +...+ gpl'ip + €, (47)

where ' = (6y,...,0,) is a vector of unknown parameters, and (¢,) is an indepen-
dent sequence of unobservable errors, each having a Normal distribution with mean

zero and variance o2, We assume for the moment that ¢? is known, but later we
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will relax this assumption. Also let zj = (z4,...,24) and X; = (Z)x)1<j<t1<k<p-
The regressor vector z;4; may depend on the previous responses and regressors
T1,Y1,---5Ze, Yz Thus, if Fy is the o-field generated by X; and Y* = (V;,...,Y;), '
the vector x;41 1s Fi-measurable. Without loss of generality we assume that z; is

fixed.

Let B be a Bayesian measure based on a prior distribution for § which is Normal
with mean zero and variance covariance matrix A™'1, where I is the identity matrix.
Then the predictive distribution under B for the observation Y;;; is Normal with

mean 6,(\)'z4; and variance o2 {1 + T (M + X[ X;) 2441}, where
0:(0) = (M + X/ X)X, Yt
A PPS based on the predictive means of B is efficient (see Theorem 4.2) if
sup {.T;_H(/\] + X{Xt)_]a‘iﬂ} < 0o, {Pg,0}-as. (4.8)

This is a weak condition, since typically the eigenvalues of the matrix (A7 +X,X;)™!
tend to zero faster than the rate of increase of ||z,41]|>. If (X! X,)™! exists for t > to,

we can use the fact that the matrix
(X Xe) ™ = (M + XiX) ™
is positive definite for every A > 0 to show that (4.8) holds if

sup {a:;_,_l(Xt',Y,)_lxt.,.l} < 00, (4.9)

t>1o

or equivalently if

sup {:z:;(Xt'Xt)'lxt} < 1.

t>1p
Since for any value of A the PPS is efficient if one of the above conditions holds,

then we also have that with probability one for almost all 8
= [z ’ 0 ’ :
Z {91(/\1) Top1 — 04(A2) $r+1} < 00,
t=1
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for any A;, A2 > 0. This means that the sequences of predictions from any two

ridge estimators are asymptotically equivalent.

The efficiency of the PPS based on the ridge estimators holds for every variance
0%, and therefore the assumption of a known variance is not necessary, and can
be dropped. If the matrix (X;X;) eventually has an inverse, then it can also be
shown that a plug-in PPS based on the least squares estimator is efficient and
issues predictions asymptotically equivalent to those of any PPS based on a ridge

estimator. O

Example 4.5 (Autoregressive Models.) Assume that ¥; follows an autoregres-

sive model of order p, i.e.
Yi=0Yiaa+...+6,Yi, + e,

where {¢;} are independent Normal with mean 0 and variance o2, and 6 = (6,,6,, ...

is such that all the roots of the characteristic polynomial
Hz)=2"—0,2P1 — ... -4,

are inside or on the unit circle (non-explosive case). Then we can apply the results
of the previous example to show that any PPS based on a ridge estimator or the
least squares estimator of 4 is efficient. The only difficulty is to show that (4.8)
or (4.9) hold with probability one, and this has been established by Lai and Wei
(1983).

In the special case of an autoregressive model of order 1, (4.9) holds almost
surely regardless of the value of § (Wei, 1987), and in this case any PPS based on
the least squares estimator or any ridge estimator is efficient. In §3.7 it was shown
that, for an AR(1) model with § > 1, any plug-in probability forecasting system is
inefficient, and therefore the AR(1) model is an example where an inefficient PFS
can produce an efficient PPS. The inefficiency of the plug-in probability forecasting

systems 1s due to their underestimation of the predictive variances. However, this
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does not affect the optimality of their implied plug-in point predictions, since all
that is required at every step is a good estimate of the conditional mean of the
next observation. The fact that these means are linear functions of the parameter

6 reduces the problem of optimal prediction to that of optimal estimation. O

73



Chapter 5

Consistency and Misspecification

5.1 Introduction

In the previous chapters we discussed the issue of prequential efficiency of fore-
casting systems, as is applied to probability forecasting and point prediction. In
this chapter we study another asymptotic property for predictive rules, that of
consistency.

Most problems in statistical modelling can be described as follows: a sequence of
quantities Y = (¥7,Y2,...) is to be observed, and a class of models M = {A{(6),6 €
O} indexed by a parameter 8, taking values in a set O, is proposed as a suitable
description of some properties of Y, which are of interest to the modeller. For
example, M may be a class of probability distributions, or a semi-parametric model
that describes the means and variances of (Y;), or a regression model which models

the relationship between different components of Y.

In the majority of the statistical literature, it is assumed that the data (Y;) are
generated by a data generation process (DGP) and that there is a value 6, € ©
such that M(§p) is the “true” model, in the sense that it describes the properties

of interest accurately. This assumption may be reasonable in some situations,

74



but usually we cannot expect our model to have captured all the properties and
relationships among the observed data, which may be very complex. The best we
can hope for is that the family of models M is a good approximation, in some sense

which needs to be specified, to the data generating process.

The purpose of any statistical modelling based on the assumption of the exis-
tence of a “true” model within our class of models is well defined: we would like
to identify the “true” model and make inferences about it. But when M is a mis-
specified class of models, then what is the purpose of the modelling, and what are
the consequences of misspecification on inferential procedures? It is obvious that
in this case we need to think very carefully about the usefulness and limitations of

our chosen models.

As a very simple example that clarifies the above point, consider a sequence
of 1.i.d. observation (Y;), with mean §. We believe that the distribution of Y} is
Normal with mean 6, to be estimated from the data, and variance equal to 1. Then,
M = {M(0) = N(0,1),0 € R}, where N(-,-) denotes the Normal distribution.
The family M may not include the true distribution, since it may not be a Normal
distribution and also the variance may be different from 1. If we focus our interest
on estimating the unknown parameter 6, say by the maximum likelihood estimator
67 = (1/T) L, Vi, then, if the variance is finite, the estimator fr is consistent
regardless of the true distribution and the value of §. This consistency property
does not mean that we have discovered the “true” distribution of the data, but
only that a specific property of this distribution, the mean, can be consistently
estimated. Any effort to use the model for other inferential purposes, for example

prediction intervals, may be unsuccessful.

It is therefore important when we model some data, using possibly misspecified
models, to have a clear understanding of the properties of the data we want to
model, to use a statistical methodology that identifies (at least for large samples)

the model in M which is most suitable for our purposes, and to have a good
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understanding of the properties of our inferential procedures under misspecification.

In this chapter we adopt the predictivist point of view, which considers a sta-
tistical model as a method of making statements about the observable quantities
(Y;). These statements can be phrased as forecasts, and therefore each model can
be seen as a predictive system. We will assume therefore that the modeller’s aim
is to identify the model in M which issues predictions, which are “closer” to the

optimal predictions under the true DGP.

In order to formalize the above thoughts, we need a mathematical framework.
Assume that the sequence of variables ¥ = (Y7, Y,....) are defined on a complete
filtered probability space (2, F, (F;),P). The increasing sequence of o-subalgebras
(F:) describes the available information at each time ¢, and in the simplest case
Fi = oY) = o(¥1,...,Y)). By E;_1(-) we denote the conditional expectation
E(-|Fi-1).

We try to model the data using a family of models M = {M(6),60 € O}, indexed
by the parameter § taking values in a compact separable metric space (0, d). Each
model () is to be considered as a predictive rule that issues forecasts sequentially,
i.e. 1t may represent a probability forecasting system. or a point prediction system,
or any other forecasting model. We let © be a metric space in order to allow the
results to be applicable in infinite-dimensional parameter spaces. The c-algebra

used to define measurability on O is the Borel o-algebra generated by the open sets

of 6.

Now assume that after we observe the observation ¥; the model M(8) is pe-
nalized with a F-measurable loss function ly(w,8), w € ), which depends on the
forecast of M(#), the realized outcome of Y;, and possibly any other information
that is described by F,. The normalized cumulative loss is denoted Lr(w,8) :=
1/Ar 5L, I,(w,8), where (A7) is a normalizing sequence. We will discuss in the
following sections how this sequence should be chosen. The function Lz(w,8) is a

Fr-measurable real function, and represents a statistical criterion, which measures
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the empirical predictive performance of the model M(8) up to time T.

For a specific set of observed data yT of Y7, a standard method of choosing a
model from M is to prefer the one that corresponds to the value of 8 that mini-
mizes L1(yT, ). These estimators are called eztremum estimators (Gourieroux and
Monfort, 1995), and include many different estimators that are currently used in
parametric and non-parametric setups, like prediction error estimators, maximum
and pseudo-maximum likelihood estimators, least squares estimators etc. Our in-
terest lies in studying the asymptotic behaviour of the extremum estimator O

which minimizes Lr(w,8), i.e. P-a.s.

A

LT((“)’ gT) = %.13%1 LT(wa 9)

For the study of the performance of these extremum estimators, we need a theory
of inference that allows for the possibility of misspecification. Using the fact that
in our framework each model is a predictive system, we can replace the notion of
a “true” model with that of a “best” model, where by “best” we define the model
in M which issues the best predictions under the true DGP. Then, we would hope
that the extremum estimator 67 would converge, under suitable conditions, to this

best value as the number of observations tends to infinity.

The aim of this chapter is to discuss the issue of consistency of extremum
estimators for possibly misspecified models. In §5.2 we present a specific theory
of inference for misspecified models (White, 1994), which one may apply to our
problem, but in §5.3 we show that this theory is not applicable to some non-ergodic
models. In §5.4 we show how the theory can be extended using a martingale uniform

law of large numbers which we prove in §5.6. In §5.7 we present some examples.

5.2 White’s approach

A theory of inference under misspecification has been developed by White and his

co-workers (see Gallant and White (1988), White (1994) and references therein).
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We give a short description of his approach to the problem of consistency.

The rationale behind White’s approach is that since §7 minimizes L(w,8),
then, under the assumption that Lr(w,f) converges to its overall mean L3(6) :=
E{Lz(w,8)}, the estimator 67 should tend to the value of 8, say 8%, that minimizes
L%7(6). Since O indexes a collection of models, and Lr(w, ) measures the empirical
performance of each of these models, then 67 can be interpreted as the value of

that represents the model that performs best, in this average sense.

In order to prove that the difference between the estimator 7 and the “best”

value 07 tends to zero, as T' tends to infinity, the following two assumptions are

introduced (Gallant and White, 1988; White, 1994).

Assumption W1. [Identifiable Uniqueness]
For all ¢ > 0,

i g, 50~ 300) >0

Assumption W2. [Uniform Law of Large Numbers]
The sequence Lr(w.8) — L7(8) obeys the strong uniform law of large numbers
(ULLN):

sup |Lr(w,0) — L3(8)] — 0 P-a.s.
6€0©

The assumption W1 is used to make sure that the functions L}(6) do not become
flat around 67, as T tends to infinity. This assumption can be weakened, as in Davis
and Vinter (1985), if we allow the limit of (67 — 63) to be a set. Using the above
assumptions, the following theorem can be established (Gallant and White, 1988;
White, 1994; White and Wooldridge, 1991)

Theorem 5.1 Under the assumptions W1 and W2, d(éT,H}) — 0, P-a.s..

Although this result can have more general interpretations, in our predictive frame-

work it establishes that the extremum estimator f7 converges to the value of the
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parameter § which labels the model in the family M that issues the best predictions

in terms of the overall expected predictive loss.

5.3 Counterexamples

The approach described in the previous section fails in cases where the function

L7(w,8) does not converge to its overall mean, as the following examples show.

Example 5.1 (Stochastic level, Dawid, 1991) Let (X}), ¢ > 0, be a sequence
of 1.i.d. Normal variables with zero mean and unit variance. Let Y; = Xy + X;,
t > 1. Our class of models is based on the assumption that E(Y;|Y*"!) = 6, and
therefore according to this model the best prediction for the observation Y;, in
terms of the predictive squared error loss, is 6. If Ly(w,6) = (1/T) S, (Y; — 6)?,
then fr = (1/T) L, Y. The expected loss Lx(6) is equal to 2 + 62, and therefore
07 = 0. If White’s result were applicable, the estimator f7 should converge to 0.
But, it is easily seen that the estimator Or converges almost surely to the observed
value rg of Xo. In this example the extremum estimator éT converges to a data

dependent limit. O

Example 5.2 (Mixture of Distributions) A sequence of i.i.d. random vari-
ables (Y;), t > 1 will be observed, and our parametric family of models P =
{Pg,0 = 1,..,k} consists of a finite number of singular probability distributions
for Y = (Y1,Ys,...). Let pT(6) denote the density (with respect to the Lebesgue
measure) of the joint distribution for Y7, and p,(6) the conditional density of Y,
given Y"1 under Py. Let Lr(Y7T,0) := —(1/T)logp () = (1/T) "L, — log p:(6).
The estimator 07 is the maximum likelihood estimator of 4.

When the true model belongs to P, then the estimator 7 converges almost
surely to the true value of 8, and is consistent. Assume now that the true model

does not lie in P, but it is a mixture of the above models, i.e. P = Y ;a4 Py,

79



with Y ,as = 1. Let PT and Pg denote the restrictions of P and Py to the first
T observations. Then, under P, the expectation of Lr(Y7,#) is minimized at the
value 6% which minimizes the Kullback-Leibler distance K (PT,P¥) (we assume for
simplicity that 6% is unique). The sequence of minimizers (67) is deterministic, and
if White’s result were applicable we would expect the estimator b7 to converge to
01 with probability one under P. But this is not the case, since it is easily seen
that P{éT — 0} = ag. This is another case where the estimator b converges to a

data dependent limit. 0

Example 5.3 (Linear Stochastic Regression) The observed variables (Y;) are

generated from the following model :
Yi=m+ ¢

where (¢) is a martingale difference sequence, with respect to an increasing se-
quence of subalgebras (F;), and thus m, is the conditional mean of Y; given the
past, i.e. E(e|Fi—1) =0, and my = E(Y{|F;-1). Suppose that we try to model Y}
using a linear model

E(Y:|Fia) = 0 24,

such that 8 € RP?, and the regressors z; € R? are F;_; measurable. When m, is
not equal to @ z;, then our model is misspecified. Let XT := (z;,...,z7) and
Lr(YT,X7T,0) := YL (V; — ¢ z,)%. The value of 8 that minimizes L7(YT, X7, 4)
is the least squares estimator or = (ZzT=1 z.x)) ! Zthl z.Ys.

In this example the expected value of Ly(Y7T, X7T,60) may not exist without
further assumptions on the overall expectations of the stochastic regressors (x;).
Even then, the value of § which minimizes the overall expectation of Lr(Y7T, X7, 4)
depends on the overall expectations of Y7 and X7, although the limiting behaviour
of Or depends on the observed (and not the expected) values of the sequence X7,

as the following lemma shows.
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Lemma 5.1 Let 05 = (X1, z,2))" ' L, 2,m,. Assume that with probability one
sup E(|e]*|Fi-1) < o0 (for some a > 2),
t

and that almost surely Amin(t) — oo, and log{Amaxt} = o{Amin(t)}, where
Amin(t) and Amaxt are the minimum and mazimum eigenvalues of Zthl T4Ty.

Then with probability one under P ||6p — 57| — 0.

Proof. The estimator 67 is equal to:

~

T
br = (thl’;)—l
t=1

T
= (O )™
t=1 1

T T
= 0%- + (Z CL't.'l';)_] Z.Z'tft.
t=1

t=1

Tty

M=

t=1

M=

z(my + &)

o
1

Now using the results in Lai and Wei (1982), it can be shown that the difference

67 — 65%|| converges to zero. O

In all the above examples, we see that under misspecification the estimator 07
converges to a stochastic limit. Two questions arise in this case. First, what is the
interpretation of such a limit, and second, how can we extend the theory in order
to cover these cases as well? In the next section we propose some answers to these

questions.

5.4 An alternative view of consistency

As we discussed in the introduction of this chapter, for each one of the examples
in the previous section the loss function L7(w,#) is interpreted as a cumulative
measure of the predictive ability of a statistical model. White’s result suggests
that we should expect f7 to converge to the value of § that minimizes the predic-

tive risk L3(8), which is based on an overall expectation. This expected loss does
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not take into account the sequential nature of prediction, and the fact that the
optimal predictor for the observation Y;, under the true distribution P, depends
on the observed information up to time ¢t — 1. Under misspecification for different
sequences of observed data we may have different one step ahead optimal predic-
tions, and therefore the best approximation (in terms of predictive ability) to the
data generating process, from within our family of models, may be dependent on
the observed sequence of data. This will be the case for non-ergodic models, and

for observations with long-term dependencies that do not die sufficiently fast.

An alternative view, is to try to relate the behaviour of the loss function L1 (w,8)
with that of the sum of the conditionally expected one-step ahead prediction losses
(Dawid, 1991). The same idea is also briefly discussed in Caines (1988), but is not

explored further there.

In mathematical terms since Lr(w,8) = (1/Ar) L%, l(w,8), for some F-
measurable functions [(w,8), then it may be more relevant to try to compare
f7 with the sequence (857) of minimizers of the function

T
I (©,0) = (1/A7) 32 Bl ),
instead of

T
Ly(8) = E{(1/A7) Y l(w,0)},

t=1

since the conditional expectation E,_;{l;(w,8)} is the conditional predictive risk,
based on all observations up to time t—1, whereas the overall expectation E{l;(w, 6)}
is the unconditional predictive risk which does not take into account the observed
data up to time t — 1. This approach may also allow us to use a non-deterministic
sequence Ar for the denominator. This can be very useful since usually the se-
quence A7 is related to the information available in the data, and for some models

the growth of this information is stochastic, and varies for different sequences.

Using this approach we can re-examine examples 5.1-5.3, and give a natural

interpretation to the limiting behaviour of 7.
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Example 5.1 (contd.) Let Fr be the algebra generated by (Y7,...,Yr). Observe
that although the overall predictive risk E{(1/T) =L ,(Y; — 6)?} is minimized for
§ = 0, the average one-step ahead predictive risk (1/T) L1, Ei_1{(Y; — 6)?} is
minimized for 03* = (1 — 1/T)ér, and |67 — 857] — 0. O

Example 5.2 (contd.) Although under each Py, the observations (Y;) are in-
dependent identically distributed, under the mixture P, the variables (Y;) are ex-
changeable, but not independent. Let F; = o(Y1,Y2,..., Y1), ly(w,8) = —log p.(9)
and observe that L7(8) = (1/T) XL, l(w, ). Denote by ps41 the conditional distri-
bution of Y;41 given Y under P. Then, it is well known that p;41 = Y5 a:(8)pr41(9),
where {a,(8)} is the posterior distribution of 8 given the observations ¥*. Since the
distributions Py are singular, then P-a.s. the posterior probability at(ét) converges
to one. This implies that the Kullback distance K (pi41, pt+1(ét)) converges to 0,
and for all 8 # lim, 0,. it stays positive, i.e. liminf; K(pey1, Pe+1(6)) > 0.

The function Ly (w.8) = (1/T) L, Eio1{l(w.6)} is minimized at the same
value that minimizes the function (1/T) T2, K (ps, p:(8)), which, as was discussed
above, is asymptotically minimized at the value limyr f7. Therefore |éT - 07| — 0.

O

Example 5.3 (contd). Observe that 85 = (XL, z,2})"' ¥L, 2;m, is the value

of 0 that minimizes L7 (YT, XT,0) = ST B, {(Y; — 6 z,)?}. ]

In each one of the examples the extremum estimator éT converges to the value
of 6 that minimizes the sum of the conditional one step ahead predictive risks. We

will present an extension of White’s theory that can cover these cases.

5.5 A General Consistency Theorem

Based on the ideas of the previous section, we can now present a general theorem

on the behaviour of extremum estimators under model misspecification.
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First we need to establish the existence and measurability of the estimators b7

and 07

5.5.1 Existence

We introduce the following assumptions:

Assumption E1. The metric space (O, d) is compact and separable.

Assumption E2. (a) For every t, the loss function /;(-,0) : @ — R U {—oc, o0}
is Fi-measurable, for each 6 in ©. The function /;(w,-) is continuous on © almost
surely, i.e. it is continuous for all w in an event F; € F, such that P(F}) = 1.

(b) For every t, the function Ey_1{l;(-,0)} : @ - RU{—00,00} is F;_;-measurable,
for each 6 in ©. The function E;_1{li(w,-)} is continuous on © almost surely, i.e.

it is continuous for all w in an event F;_; € F;_; such that P(F;_;) = 1.

When the assumptions E1 and E2 hold, then almost surely the estimators f7
and 65" exist, and are measurable as the following lemma shows (Gallant and White,

1988; White, 1994; White and Wooldridge, 1991).

Lemma 5.2 Let (2, F) be a measurable space, and let (©,d) be a compact, separa-
ble metric space. Let @Q : Ax 0O — RU{—o00,00} be such that Q(-,8) is F-measurable
for each 8 in ©, and Q(w,-) is continuous for all w in an event F' € F. Then there

ezists a function § : Q — © such that § is F-measurable and for all w in F

Q(w,0(w)) = inf Q(w, 0).

5.5.2 Consistency

In order to prove that b7 converges to 87 we need the following assumptions, which

are modified versions of conditions W1 and W2.
Assumption C1. [Asymptotic Identifiability]
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The function LF : @ x © — RU {—o00,00} is Fr_; measurable, and P-a.s. has a

minimum on © at 67 (w), for every T sufficiently large. Let € > 0 and B%(e) :=
{0 € ©:d(0,67) > €}. Then P-as.

hmlnf{ En];m L7 (w,0) — L}*(w,ﬁ}*)} > 0. (5.1)

Assumption C2. [Martingale Uniform Law of Large Numbers]
With probability one under P,

sup |Lr(w,8) — LT (w,8)] — 0. (5.2)
6e®

Theorem 5.2 Assume that conditions C1, C2 hold. Let b7 be an estimator that,
P-a.s.. minimizes Ly(w.8), for all T sufficiently large. Then, with probability one
under P,

d(b7,05) — 0

Proof of theorem 5.2. The following events have all probability one under P:

Fi = {weQ: LT (w,0) has a unique minimum at 7" for all T sufficiently large},
F, = {wé€Q:Lr(w,d) has a unique minimum at f7 for all T sufficiently large},
F; = {weQ: forale> O,liminf( min L7 (w,0) — L}*(w,ﬂ}*)) > 0},
T—oo \#€B%(e)
Fy = {weQ:sup|lr(w,d) — LT (w,8)| — 0}.
6€0©

It follows that the event F' := F; () Fo(\ F3() Fy has also probability one under P.
Given € > 0, for all w in F, there is T} := T3(w, €) < oo, such that
6(e) = T1£11f“] (eerggge)L *(w,0) — Ly (w, 07 )) > 0.
Also, for all w € F, and all T > T,(w, 6(¢))
|Lr(w, 07) — LT (0, 07)] < 8(€)/2,

so that
L7 (w,07) > Lr(w,07) — 6(€)/2 > Lr(w,07) — 6(€)/2,
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and for allw € F and T > T3(w, é(¢))
L7 (w,6r) — Lr(w, b7)| < 8(e)/2.
Then
Ly (w,07) = L7 (w,07) < L7 (w,07) = Lr(w, 0r)+6(€) /2 < +6(€) /2+6(e) /2 = é(e),

and it follows that d(@}*,éT) < e forallw € F,and all T > max{T1,T>,T3}. Since
¢ is arbitrary, and P(F') = 1, it follows that P-a.s.

d(f7,05) — 0.

5.6 A Uniform Law of Large Numbers for Mar-

tingales

The main difference between our approach and White’s approach is that we replace
the uniform law of large numbers with a martingale uniform law of large numbers.
To the best of our knowledge such a law has not been proven yet, and our aim in
this section is to present suflicient conditions for a martingale ULLN, which can be

used to verify condition C2 in order to establish consistency.

Our approach is based on a modification of the generic laws of large numbers
presented by Andrews(1987, 1992), which can not be applied directly for reasons

that will become apparent later.

To give a more general result assume that (Y;,¢ > 1) is a sequence of stochastic
elements, taking values in a set ), defined on a complete filtered probability space
{Q,F,(F:),P}. For each t, ,(Y;,0) is a measurable function from ) x © to R,
for some metric space (©,d). Let B(6,p) be the open ball around 6 of radius p.
Define:

Zi(}/;707p) = Ssup lt()/h‘s)v
s€B(8,0)
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l_t(Yt’ 0’ P) = se}Bn((fi,p) li(K’ 5) :

Let A7 be a predictable increasing sequence with A; > 1 and limr Ar = co. A
sequence of real random variables (Z;) is said to satisfy a pointwise martingale

strong law of large numbers (with denominator Ar) if, with probability one,

%l{&‘;z:{zt Et 1 Zt)} = O

One of the main reasons why Andrews’s result is not applicable to our case is that

we want to use a predictable, and not a deterministic, denominator.

In order to prove the main result we introduce the following assumptions.
Assumption Ul. The metric space (0, d) is compact.

Assumption U2. For any 6 € O there is p() such that for all p < p(6) the
sequence of random variables (1;(Y;, 0, p) ) and (1,(Y3, 0, p) ) satisfy pointwise strong
martingale LLN’s (with common denominator an increasing predictable sequence

AT).
Assumption U3. For all § € O, P-a.s.,

hmhmsup———ZEt { 1Y, 8,p) — L(Yi,0,p)} = 0.
p—0 T>1 T =1
Although our assumptions are similar to Andrews’s (1987) assumptions, they
are weaker because the use of conditional expectations, instead of unconditional
expectations, weakens the degree of dependence that the conditions impose on the

variables (Y;). Using the above conditions we can now prove the following theorem:

Theorem 5.3 (Martingale ULLN) If Assumptions UI-U3 hold, then P-a.s.,

1 T
L,(Y,,0) — B, { (V3,0 0.
EEGI;IAT;[ (Y2, ) i-1{ L(Y2 )}]I_’

Proof of theorem 5.3. The proof will follow the same method as in Andrews

(1987). Using assumption U3, for a given € > 0 and § € O, there is an event F(6),

87



with P{F(6)} = 1, such that for all w € F(#) we can choose p = p(f) > 0 such
that for all 7' > Ty (w,9),
1 -

‘4_ Z Et—l{ lt(Y;,e: P) - _ll(thv 6, p) } <e

AT =1
The collection of balls {B(6, p(8)),0 € O}, is an open cover of the compact set O,
and therefore has a finite subcover {B(4;,p(8;)):j =1,2,..,J}.

Let Fo = }; F(4;). For all w € Fo, and any s € B(61, p(61)), we have for all

T > maz;Ty(w,b;)

. T
—/j_T?___.;[[t( /0 8) = B {l(Ye,8)}] < ALTt:Zl (E(Yi,el,ﬂ(%)) - E¢_1[!1(Y},91,p(91))])
T
< _41—2 (E(}’z,@l,ﬂwl)) - Et-l[z(}';aela/)(gl))]) te
AT =1
and
1 Ly _
A—TE[h(Yt,B) C B {L(Yes))] > A_T_; (Q(Yt,&,p(ﬁl)) — Et_l[lt()/;,elaﬂ(el))])
T
> L3 (060 0(00) = Ba L0 . 0(0)]) —

Then for every w € Fy and 8 € O,

T
minL > (h(y;?@j,p(ﬁj)) — E [ L(Y3, 05, p(65)) ]) —¢

18J AT t=1

< AiTz[z,(n,a) — B {L(¥,,0)}]

t=1

ks

1 & - —
< I}JS%XZ—E (lt(Y,,Gj,p(Hj)) - Et-][lt(}/;,ej,p(ej))]> + e

T t=1
From assumption U2 the above upper and the lower limits converge to € and —e
respectively for all w in an event F; which has probability one. Since ¢ > 0 is
arbitrary, and P(Fy(\F1) =1 the proof of the theorem is complete. ]

In most cases assumptions Ul-U3 are difficult to verify, and then we may use

the following assumptions:
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Assumption U4. For each § € O, there is a constant 7 > 0 such that d(4,s) < 7

implies that for every ¢t > 1, P-a.s.,
|b(Y:,0) — L(Yy,s)| < Bu(Y:) R{d(0,5)},
where {B;(-)} is a sequence of F;-measurable functions such that P-a.s.,
1 T
li — ) E 1{By(Y})} < o0,
lstuP A7 ; i-1{B:(¥1)} < o0

and h(-) is a non-random function such that h(y) | 2(0) = 0 as y | 0. The null
sets, and also t, By(+), and h may depend on 6.

Assumption U5. O is subset of R?, [,(Y;,6) is differentiable with respect to
in a neighborhood of 6y, P-a.s., for every t and for all 8, € ©*, where ©* is some

9l(Yy,5) /00

convex open set that contains ©. Also d[;(Y;,0) /06 and supicen

are random variables for any § € O, and ¢t > 1, and P-a.s.,

h;n_sup Z— Z E, l{sup,ee.

d1(Y:, ) /96]|} < oo.

Assumption U6. With P probability one

i Et_l{sup(;e@ | lt(Yta 9) |2}
t=1 At

< oo.
Assumption U7. There is € > 0 such that P-a.s.

(;Ei sup [1(%.0) 1)) = 0(4n).
Lemma 5.3 The following hold :

(a) Assumption Uj implies Assumption US.
(b) Assumption U5 implies Assumption UJ.

(¢) Assumption U6 implies Assumption U2.
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(d) Assumption U7 implies Assumption U2.

Proof of lemma 5.3.
(a) Assumption U4 implies Assumption U3.

Let 8 € ©. Then we can see that U4 implies U3 as,

hmsupA_ZEt l{lt(}/ta ,P) Z(K,H,P)}

n>1 AT ;4

< hmsup—ZEf {I1(Y5,0,0) — LY, 0) |+ [ 1Y, 0) — L(Yi,6,p) [}

p—0T>l P ‘l 1
32})@%11( )sup—ZEt 1{B:(Yy)} =0.

T>1 AT 4

(b) Assumption U5 implies Assumption U4.

In order to establish that U5 implies U4, we can use the mean value theorem

to show that, P-a.s.,
| 1(Yes) — 1(Yy, 0) | < supgreo- || OL(Y,07)/00 || - || s — 6 ||
Then by setting h(y) =y and
By(Y:) = supg-ce- || 0L(Y:,67)/00 ||

we get U4. O
(c) Assumption U6 implies Assumption U2.

For every 6 and p small enough we have,
sup [ 1(Y, 0) | 2 | 1(Y2, 0, 0) |°
6o

and therefore

Eir{supsee | (Yo 0) '} o Ber{T(Ye,0,0) [}
A? - A? '

Thus,

i W-I{Eggae')p)}

< 00,
1=1
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where V;_;(-) is the conditional variance given F;_;. Using the martingale SLLN
for square integrable martingales (Shiryayev, 1996) we get that
1 & ~
TZ Yfae P Et—l{li(yivg’p) }] — 0.
T =1
The same argument can be used for (Y}, 6, p)and (Y3, 0). ]
(d) Assumption U7 implies Assumption U2.

We will use a similar method as in (¢). For every § and p small enough we have,
sup | 1(Y:,0) [ > | L(Y;, 0. p) I
6c0
and therefore
T T
> Eia{sup [L(.0) 1) 2 Ve 6.0)}. (5.3)
=1 60 t=1
as in (c¢) above. From (Lai and Wei, 1982) we know that
T T
- (14¢)/2
SUIT(Ye0.p) = Eca {1300, 9) ) = o({ X Veer{ L(¥5,6,0) ) ).
t=1 t=1

Using (5.3) and the fact that

(ZEt sup [1(Y:,0)| N~ o(ar).

1=1
we get
1 & —
A—Z «(¥1,0,p) — B {1i(Y,0,p) }] — 0.
The same argument can be used for [;(Y3,0,p)and 1,(Y3,0). O

5.7 Examples

In this section we present some examples, where the results of this chapter can be

applied, in order to highlight some points on consistency for misspecified models.
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Example 5.4 (AR(1) model) Let Y5 = 0 and assume that
Y =00Y1 + €,

where () is a martingale difference sequence with constant variance. We fit the

model :

E(%|y=") =6,

and estimate § using least squares. Then, it is easily seen that 0p = Yr, 05 = 0,
and 07 = 6o (1 — 1/7) Yr_1. If |66] < 1, then the true model is stationary, and
limg 07 = limg 0% = limr 67 = 0. When || > 1, the true model is not stationary,
and Y7 does not converge to 85 But, §7 — 657 = (1/T)TL, €, and therefore
léT — 7] — 0. This example shows that our approach can be applied to non-

stationary, non-ergodic models. 0

The next example shows that under misspecification different loss functions lead
to different estimators, and therefore we should be careful to choose the appropiate

loss function for our prediction/decision problem.

Example 5.5 (AR(2) model) Let Yy = Y_; = 0 and assume that (Y;) follows

the following AR(2) stationary model:
i =011 + 0.Yi2 + e,

where (¢,) is a martingale difference sequence with constant variance. Assume that

we use the model:

E(Y|Y*) = Y4,

and, after we observe the data Y7, we are interested in predicting two steps ahead

1n the future.

There are two methods of obtaining a two-step ahead prediction. One is to

estimate 6 using least squares, and then substitute 6 in the formula E(Yr,,|Y7T) =
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6?Yr with the least squares estimator, or we can estimate ¢ = 6? directly by
minimizing the 2-step ahead prediction errors 3L, (Y; — ¢Yi_5)2.

If we use Lemma 5.1, we see that by minimizing the one step ahead prediction
€ITors Zthl (Y;—0Y;_1)?, our estimate él,;r converges to p(1), i.e. the autocorrelation
at lag one. Then, for large T', our 2-step ahead prediction is approximately YLT“ =
p(1)?Yr. Using the same lemma. we see that if we use the second method with an
unrestricted value for ¢ then ¢ converges to the autocorrelation at lag 2, p(2), and
asymptotically our prediction is Yy 142 = p(2)Yr. Since p(2) may be different from
p(1)?, we see that different loss functions result in different estimators of 4, and
therefore different predictions. It is also clear that the second method gives the

best predictions.

The explanation for the above result is simple. The definition of what is the
“best” value of § under misspecification depends on the loss function we use. If we
minimize the one step ahead prediction errors, then our estimator converges to the
value of @ that issues the best one step ahead predictions. If, on the other hand,
we minimize the two steps ahead prediction errors then the estimator converges
to the value of # that issues the best two step ahead predictions. Although in a
well specified model the two values are the same, i.e. the true value of 4, in a
misspecified model different loss functions give different approximations to the true
model. We should be careful therefore first to specify the decision problem we want

to solve, and then to estimate 6. m]

Example 5.6 (Error in variables) Assume that the variables (Y;) are generated
from the model:

Y; = 90$t + €t,

where (¢;) is a sequence of i.i.d. variables with finite variance, and (z) is a sequence
of random variables such that (1/T) YL, z2 converges to a positive random variable
X. Instead of the sequence (z;) we observe the sequence (z;), such that z; = z,+v;,

where (v;) is a sequence of variables, independent of (z;), with mean zero and such
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that (1/7) L, v? converges to a positive random variable V. We may think of v,

as the error in measuring the regressor z;. If we model the data using the model
E(Ytlzt) = 02’1,

and estimate § using least squares, then we get 7 = ST (yz)) S 22 0 =

0o XL (z42,)/ XX, 22, and using Lemma (5.1) we have |07 — 65| — 0. Since

ziTzl(:L'izt) =0, Z{:l(x? + mivf) — 00 ‘X
Yo 7 (22 + v} 4 2zp00) X+V

03 = 6,

we see that f7 is estimation inconsistent, in the sense that it does not converges to
the value fp, but it is prediction consistent since it converges to the value of § that

issues asymptotically the best one step ahead predictions. 0

The next example presents sufficient conditions for the consistency of least
squares estimators in non-linear stochastic regression models, when the model is
well specified. We present this example to show that our approach is useful in
cases where a model is specified using a martingale structure, and also because it

illustrates how the techniques of this chapter can be adopted to specific problems.

Example 5.7 (Non-Linear Stochastic Regression Models) Assume that the
data (Y;) are defined on the filtered probability space (Q, F, (F;),P), and are gen-

erated from the non-linear stochastic regression model:

Y, = £.(0) + e, (5.4)

where for every t, fi(8) is a F;-,-measurable function of § € R?, the parameter §
takes values in a compact parameter set © C R?, and the sequence of errors {e,}

is a martingale difference sequence with respect to (F;) such that P-a.s.,
sup E;_1(€?) < oo. (5.5)
t

The above class of models is very general, and for example f;(8) can be a func-

tion of the past observations and other exogenous inputs. Many nonlinear models,
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such as nonlinear autoregressive models with exogenous regressors, used in time se-
ries, adaptive control, stochastic approximation, and sequential design, obey model
(5.4).

The unknown parameter § can be estimated using the least squares estimator

which is defined as the parameter value fr that minimizes the sum of squared errors
T
Sr(6) = 3 _{y: — fi(6)}".
t=1

The strong consistency of the estimate b7 is a very important problem, especially
for identification and control. This property has been studied extensively for lin-
ear and nonlinear regreesion models (Anderson and Taylor, 1979; Christopeit and
Helmes, 1980; Wu, 1981; Lai and Wei, 1982; Lai, 1994), but consistency for non-
linear stochastic regression models has been proven under strict conditions by Lai
(1994), which include smoothness conditions on all partial derivatives up to order
p. In this example we use an approach based on Theorem 5.2 which does not
make any assumptions on the existence of derivatives. We introduce the following

assumptions:

Assumption SR1 The parameter set © is a compact subset of RP.

Assumption SR2 Let 6y denote the true value of 8. For every A # 6y there exists

1 < px < 2, and an open ball centered at A (denoted by B(A)) such that:

T
Ap = sgg{/\);{ft(s) — fu(60)}* = P-as., (5.6)
T
> sup {fi(s) — fi(6)}* = O (AF) P-a.s., (5.7)
t=1 sEB()\)

and also there is a sequence of F;-measurable variables M;(A) such that for all
81,82 in B()\),
|fi(s1) = fi(s2)] < h(lls1 = s2]) Ma (), (5.8)
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and
T
z_: E 1{M,(N)} =0 (Ar) P-as., (5.9)

where A(-) is a non-random function such that A(y) | 2(0) =0, as y | 0.

Theorem 5.4 Let the assumptions SR1 and SR2 hold. Then with probability one
167 — 6o]| — 0.

Proof or theorem 5.4 Since, from assumption SR1, the set © is compact, it
follows that the set @ — {6y} can be covered by a finite number of balls B(A),
A # B, such that assumption SR2 holds for each one of them. We cannot apply
Theorem 5.2 directly. because for each one of the balls we need to use a different
normalizing sequence {Ar}. Nevertheless, the proof follows similar steps. Since
there is a finite number of balls that cover © — {6y}, it is sufficient to focus on an

open ball B(}), and to show that infgep(,){ST(8) — S7(6o)} — oc.

The least squares estimator f7 minimizes St(8), and therefore it can equiva-
lently be defined as the parameter value that minimizes St(6) — St(6y). We define

(for every 6 in B(A). and also )
1
Lr(w,0) := -={57(8) — Sr(60)},
T
where Ar is defined in equation (5.6). Then for 8 € B(})
L7 (w,0) — Ly (w,6o) = —Z{ft — fi(60)}* > 1,
which means that 87 = 6. Since Ar — o0, it remains to show that P-a.s.,
sup ‘LT (w, 8) L*T*(w,(‘))} =o(1)

seB()) AT

or more specifically that P-a.s.

sup |Eft{ft — fi 90)” o(1),

seB() AT}
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which calls for an application of Theorem 5.3. It is sufficient to verify only the

assumptions U7 and U4, since assumption Ul follows immediately from SR1.

Assumption U7 holds since

T T
Z Et_l{ezgg) e {fi(0) — f(60)}*} = Z E,_1(e}) aég&{f:((’) — fi(60)}* = O(A),

using (5.5) and (5.7). The last assumption we need to verify is U4. Now, for all
61,0, € B()) we have

e {183) = fi(Bo)} e { £i(62)— Fi(B0)}| = |ec { £i(61)— £u(62)}] < leel h([|62—02]]) M(),

where the last inequality follows from (5.8). Since sup, Ei—1]€:|* < oo, then sup, E;_1e] <

oo, which together with (5.9) imply that condition U4 holds. O
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Chapter 6

Conclusions and Further

Research

Prequential Statistical Forecasting System can be viewed from two different per-
spectives. First, they can be seen as purely predictive tools. For example Statistical
Forecasting Systems are rules for probability forecasting, and Point Prediction Sys-
tems are point prediction rules. But, a Statistical Forecasting System can also be
seen as an inferential tool. The prequential point of view considers every statistical
model as a human attempt to explain nature, whose validity is to be assessed by
the quality of the forecasts it produces. A Statistical Forecasting System can then
been seen as a replacement of the statistical model which can be used to assess its
validity, and to compare it with another model. In either case, either for optimal
prediction or for inferential purposes, the property of efficiency of a forecasting
system (which holds for a Bayesian forecasting system) is of great importance.
In particular, prequential model selection based on efficient SFS’s leads to consis-
tent model selection. It was interesting therefore to study under what conditions

efficient non-Bayesian SFS’s exist.

In this thesis we showed that for regular models, under suitable conditions,

plug-in SFS’s can be efficient although they do not incorporate the parameter
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uncertainty in their predictive distributions. We also demonstrated that plug-in
SFS’s can be inefficient, especially in cases where the information from the data

grows fast.

There still remain some interesting open problems. An important question is
how close is a prequentially efficient SF'S to each Py in P. We might call a SFS Q
consistent if H(Pyg,Q;) — 0, under Py, for almost all § € ©. According to this
definition, efficiency is not a stronger property than consistency, since as it was
discussed in Example 3.9, when z};(X{X;) " 241 does not converge to 0, then we
can have an efficient SFS (the BFS) which is not consistent (since the predictive
variance never converges to the true one). However, we conjecture (but have not
as yet shown) that, whenever there does exist a consistent SFS, then any efficient

SFS will be consistent (although the converse is of course false).

Another interesting direction for future research is the study of the notion of
prequential efficiency applied to non-parametric families of sampling distributions.
In that case © is not a Euclidean space, and care is now needed with the interpre-
tation of “for almost all §”. For example we may be able to define efficient density

estimators in non-parametric density estimation.

Also of great interest is the case where we have a sequence of parametric families
P, of increasing dimension, which approximate some “large” limiting model P.
When is a method, efficient for |J, Py, also efficient for P.,? If not so, how well can

one do with methods based on |, P,?

In Chapter 4, we presented a new notion of efficiency for sequential point pre-
dictions, based on asymptotic empirical performance. We have shown that efficient
predictors exist for general parametric families, under the weak and natural con-
dition that their predictive variance stay bounded. The definition is applicable to
linear and non-linear predictors, and to ergodic and non-ergodic models (Basawa
and Scott, 1983). We showed that Bayesian Point Prediction Systems are efficient,

when their predictive variances stay bounded, and presented sufficient conditions
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for the efficiency of plug-in PPS’s.

It would be interesting and important to develop sufficient conditions under
which the predictive variances of Bayesian PPS’s stay bounded almost surely, es-
pecially for non-ergodic models. One important special case is the autoregressive
model with some of the roots inside and some outside the unit circle. Also it may
be possible to weaken our conditions for efficiency of a plug-in PPS, especially for

maximum likelihood estimators.

The notions of efficiency we have discussed are limited to probability forecasting
and point prediction, using the squared prediction error as the loss function in the
latter case. It would clearly be of interest to develop similar notions of efficiency

for more general loss functions.

In Chapter 5, we showed how the notion of consistency under misspecification
can be studied using a predictive point of view. Our results suggest that, under
suitable conditions, the estimator based on the minimization of some statistical
criterion that measures predictive performance converges to the parameter value
that indexes the model that issues the best one step ahead predictions. This “best”
model can vary for different sequences, and in order to overcome this difficulty we
adopted a martingale framework, and proved a martingale version of the uniform
law of large numbers. These results of course are also applicable in the case where
our model is not misspecified, and may lead to some weakening of the standard
conditions used for establishing consistency of extremum estimators. We have
showed how this can be achieved for least squares estimators in nonlinear stochastic

regression models.

100



References

Aitchison, J. (1975). Goodness of prediction fit. Biometrika, 62, 547-554.

Anderson, T. W. and Taylor, J. (1979). Strong consistency of least squares estima-

tors in dynamic models. Annals of Statistics, 7, 484-489.

Andrews, D. W. K. (1987). Consistency in nonlinear econometric models : A

generic uniform law of large numbers. Econometrica, 55, 1465-1471.

Andrews, D. W. K. (1992). Generic uniform convergence. Econometric Theory, 8,

241-257.

Basawa, I. and Scott, D. (1983). Asymptotic Optimal Inference for non-ergodic
Models. Springer Verlag.

Basu, A. and Harris, I. (1994). Robust predictive distributions for exponential
families. Biometrika, 81, 790-794.

Blackwell, D. and Dubins, L. E. (1962). Merging of opinions with increasing infor-
mation. Annals of Mathematical Statistics, 33, 882-886.

Caines, P. E. (1988). Linear Stochastic Systems. Wiley Series in Probability and
Mathematical Statistics.

Cencov, N. N. (1981). Statistical Decision Rules and Optimal Inference. Addison-
Wesley.

101



Christopeit, N. and Helmes, K. (1980). Strong consistency of least squares estima-

tors in linear regression models. Annals of Statistics, 8, T78-788.

Clarke, B. S. and Barron, A. R. (1990). Information-theoretic asymptotics of Bayes
methods. IEEE Transactions on information theory, 36, 453-471.

Clarke, B. S. and Barron, A. R. (1994). Jeflreys’ prior is asympotically least fa-
vorable under entropy risk. Journal of Statistical Planning and Inference, 41,

37-60.

Clarke, B. (1989). Asymptotic Cumulative Risk and Bayes Risk under Entropy Loss
with Applications. Ph.D. thesis, University of Illinois.

Crowder, M. (1988). Asymptotic expansions of posterior expectations, distributions

and densities for stochastic processes. Ann. Inst. Statist. Math., 40, 297-309.

Davis, M. H. A. and Vinter, R. B. (1985). Stochastic Modelling and Control.
Chapman and Hall.

Dawid, A. P. (1984). Statistical theory. The prequential approach (with Discussion).
Journal of Royal Statistical Society, Series A, 147, 278-292.

Dawid, A. P. (1986). Probability forecasting. Encyclopedia of Statistical Sciences,
7, 210-218.

Dawid, A. P. (1991). Fisherian inference in likelihood and prequential frames of
reference. Journal of Royal Statistical Society, Series B, 53, 79-109.

Dawid, A. P. (1992a). Prequential analysis, stochastic complexity and Bayesian
inference. Bayesian Statistics 4, 115-125.

Dawid, A. P. (1992b). Prequential data analysis. In Ghosh, M. and Pathak, P.
(Eds.), Current Issues in Statistical Inference : Essays in Honor of D. Basu.

IMS Lecture Notes-Monograph Series, Vol. 17, pp. 113-126.

102



Dawid, A. P. (1997). Prequential analysis. FEncyclopedia of Statistical Sciences
Update Volume 1, Samuel Kotz, Editor-in-Chief, 464-469.

El-Sayyad, G. M., Samiuddin, M., and Al-Harbey, A. A. (1989). On parametric
density estimation. Biometrica, 76, 343-348.

Gallant, A. R. and White, H. (1988). A Unified Theory of Estimation and Inference
for Nonlinear Dynamic Models. Basil Blackwell.

Gourieroux, C. and Monfort, A. (1995). Statistics and Econometric Models. Vol-

umes One and Two. Cambridge University Press.

Harris, I. R. (1989). Predictive fit for natural exponential families. Biometrika, 76,
675-684.

Ibragimov, I. A. and Hasminskii, R. Z. (1973). On the information in a sample
about a parameter. Second International Symposium on Information Theory

Akademiai, Kiado, Budapest, 295-309.

Ibragimov, I. A. and Hasminskii, R. Z. (1980). Statistical Estimation : Asymptotic

Theory. Springer-Verlag.

Johnson, R. A. (1970). Asymptotic expansions associated with posterior distribu-

tions. Annals of Mathematical Statistics, 41, 851-864.

Kabanov, Y. M., Liptser, R., and Shiryayev, A. N. (1978). Absolute continuity
and singularity of locally absolute continuous probability distributions. Math.

USSR Sb., 35, 631-680.

Kuboki, H. (1993). Inferential distributions for non-Bayesian predictive fit. Ann.
Inst. Statist. Math., 45, 567-578.

Lai, T. and Wei, C. (1982). Least squares estimates in stochastic regression models
with appications to identification and control systems. Annals of Statistics,

10, 154-166.

103



Lai, T. and Wei, C. (1983). Asymptotic properties of general autoregressive models
and strong consistency of least squares estimates of their parameters. Journal

of Multivariate Analysis, 13, 1-23.

Lai, T. L. (1994). Asymptotic properties of nonlinear least squares estimates in

stochastic regression models. Annals of Statistics, 22, 1917-1930.

Phillips, P. C. B. and Ploberger, W. (1994). Posterior odds testing for a unit root

with data-based model selection. Econometric Theory, 10, T74-808.

Phillips, P. C. B. (1996). Econometric model determination. Econometrica, 64,
763-812.

Qian, G., Gabor, G., and Gupta, R. P. (1996). Generalised linear model selection

by the predictive least quasi-deviance criterion. Biometrika, 83, 41-54.

Rissanen, J. (1986). Stochastic complexity and modeling. Annals of Statistics, 14,
1080-1100.

Rissanen, J. (1987). Stochastic complexity. Journal of Royal Statistical Society,
Series B, 49, 223-239.

Rissanen, J. (1989). Stochastic Complezity in Statistical Inquiry. Singapore : World

Scientific.

Seillier-Moiseiwitsch, F., Sweeting, T. J., and Dawid, A. P. (1992). Prequential
tests of model fit. Scand. J. Statist., 19, 45-60.

Shiryayev, A. (1996). Probability (Second Edition). Springer-Verlag.

Wei, C. (1987). Adaptive prediction by least squares predictors in stochastic re-
gression models with applications to time series. Annals of Statistics, 15,

1667-1682.

104



White, H. and Wooldridge, J. (1991). Sieve estimation with dependent observa-
tions. In Barnett, W., Powell, J., and Tauchen, G. (Eds.), Nonparametric and
Semiparametric Methods in Econometrics and Statistics, pp. 459-493. New
York : Cambridge University Press.

White, H. (1994). Estimation, Inference and Specification Analysis. Cambridge

University Press.

Wu, C. F. (1981). Asymptotic theory of nonlinear least squares estimation. Annals

of Statistics, 9, 501-513.

105



