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A B S T R A C T

Consider a forecaster who observes a sequence of da ta  on-line and after each new ob­

servation makes a forecast (a point estimate or a full probability distribution) for the 

next observation. A general theory of assessment of such prequential (p?’edictive- 

sequential) forecasting systems was introduced by Dawid (1984). W ith in  this fram e­

work the  notion of efficiency of probability forecasting systems was introduced, and 

it was shown th a t  Bayesian probability forecasting systems are efficient.

In this thesis the concept of prequential efficiency is studied further by present­

ing some new results. We focus especially on a class of non-Bayesian statistical 

forecasting systems, the plug-in systems, and we study their efficiency. We show 

th a t  under suitable conditions the plug-in systems are efficient, bu t we also show, 

using counterexamples, tha t for some models no plug-in system is efficient.

Next, we extend the notion of efficiency to point prediction systems. The effi­

ciency of Bayesian point prediction systems is established, and sufficient conditions 

are presented for the efficiency of plug-in systems. The results are applied to tim e 

series forecasting.

By adopting a predictive point of view, we also study the  consistency of ex­

trem um  estimators for possibly misspecihed models. We show, using martingale 

arguments, th a t  an estimator defined as the minimizer of a statistical criterion m ea­

suring predictive performance, converges to the value of the param eter  indexing the 

model th a t  issues the “best” one step ahead predictions for the  da ta  at hand. In 

order to prove our results we establish a martingale version of the uniform law of 

large numbers.
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C h ap ter 1

In trod u ction

The objective of this thesis is to study the asymptotic behaviour of different fore­

casting systems, using the prequential (predictive sequential) framework which was 

introduced by Dawid (1984). More specifically we study the efficiency of forecast­

ing systems for probability forecasting and point prediction systems, and also the 

consistency of predictive rules for possibly misspecihed models.

In C hapter 2 we begin by presenting the prequential framework, which is based 

on the principle th a t  any statistical model should be assessed by the quality of the 

forecasts it produces for the specihc data  at hand. For example, we discuss how 

a joint distribution for the data  can be seen as a m ethod of issuing sequentially 

probability forecasts for the data , and how this view can be extended to arb itrary  

statistical models, i.e. collections of probability distributions. By converting a 

s tatistical model to a probability forecasting system, we can then  use probability 

assessment techniques to assess its validity, and to compare it w ith another model. 

In the same chapter the notion of prequential efficiency is presented as an optim ality  

criterion necessary for the successful replacement of a statistical model by a unique 

probability forecasting system for inferential purposes.

In C hapter 3, we discuss a specific non-Bayesian m ethod of converting a sta tis­

tical model to a probability forecasting system, the plug-in m ethod, and we study



its prequential efïiciency. We study statistical models based on countable and un­

countable param eter sets separately, and for the  uncountable case we present results 

using two different approaches using the Kullback-Liebler and the  distances. We 

also dem onstrate, using counterexamples, th a t  the  plug-in m ethod can be inefficient 

for statistical models where the  information from the da ta  grows too fast.

In C hapter 4, we introduce the notion of a point prediction system, as a pre­

dictive rule th a t  issues one step ahead point predictions. We show how th e  notion 

of prequential efficiency can be extended to point prediction, and we study the  

efficiency of Bayesian and non-Bayesian m ethods of making point predictions us­

ing this framework. We establish, under weak conditions, the efficiency of Bayesian 

point prediction systems, and we give sufficient conditions for the efficiency of plug­

in point prediction systems. We apply the results to probability forecasting using 

the Brier score, and stochastic regression models.

In C hapter 5 we study the  property of asym ptotic consistency. By considering 

a statistical model as a forecasting system, we show how estimators based on the 

minimization of a predictive penalty, are consistent, in the sense of converging 

to the model tha t gives the “best*’ predictions. We allow our class of models to 

be misspecihed, and we show how our approach overcomes some jDroblems th a t  

other theories of consistency under misspecihcation face in some non-ergodic cases. 

A basic tool for our results is a martingale uniform law of large num bers which 

we prove. We end the chapter with some examples which include a proof of the 

consistency of least squares estimators in nonlinear stochastic regression models.

In C hapter  6, we summarize the results and discuss future lines of research.



C h ap ter 2

T h e P req u en tia l Fram ew ork

2.1 In trod u ction

The theoretical framework th a t  we will use for the study of a forecasting system, 

is the prequential framework  (predictive sequential) proposed by Dawid (1984) and 

explored further by him and his co-workers in a series of papers (Dawid, 1991; 

Seillier-Moiseiwitsch et ah, 1992; Dawid, 1992a; Dawid, 1992b; Dawid, 1997).

The prequential framework is not just a framework for the  s tudy and evaluation 

of forecasting systems. It represents a completely new approach to the trad itional 

problems of statistical inference, based on the principle th a t  is more meaningful to 

make inferential sta tem ents  in terms of observable quantities, ra ther  than  in term s 

of unobservable components of a model, such as unknown param eters. Different 

statistical m ethods can then be assessed by the validity of their  forecasts for some 

observable quantities, and statistical inferential problems such as model testing, 

model choice, and robustness can be studied from this perspective.

In this chapter we present the prequential framework in detail, together with 

some new results.



2.2 P rob ab ility  F orecasting  S y stem s

In order to introduce the framework, assume th a t  a sequence of random  quantities 

y  =  ( y i , y 2, ...) will be observed, and, at every step  ̂ >  1, after we observe = 

( y i , . . . , y t ) ,  our task is to issue a “forecast” for the next observation y + i .  The 

stochastic quantities ( y )  can be real numbers or vectors, and it is assumed th a t  

they are generated sequentially.

The prequential framework is very general and can incorporate different forms 

of forecasts such as point prediction, mean-variance prediction, predictive confi­

dence intervals etc. (Dawid, 1992b). In Chapters 2 and 3 we focus on probability 

forecasting, and therefore the forecasts we consider initially are probability d istri­

butions, bu t later it will become clear tha t other forms of forecasts can be studied 

within the same framework. In Chapter 4 we discuss the case of point prediction, 

where the forecasts are scalars or vectors.

The first notion we introduce is th a t  of a probability forecasting system (PFS)^ 

which is a rule th a t  associates with any observed set of da ta  y^ a forecast distribution 

for the next observation Yt+i. Any PFS determines a unique joint probability 

distribution for Y  (Dawid, 1984), and from any distribution for Y  we can construct 

a PFS. For this reason we will identify a PFS with a probability distribution.

We denote a distribution or, equivalently, a PFS for Y  by a bold le tter, F  

for example. The restriction of F  to the first t observations ( y , y , . . . ,  y ) will 

be denoted by F \  and the predictive distribution F (y + i |y * )  by F^+i. Although 

the  predictive distribution F^+i depends on the  observed d a ta  y^, we suppress this 

from the  nota tion  for simplicity. We use small bold letters to  denote densities with 

respect to some underlying measure, usually Lebesgue or counting measure. For 

example the  density of F^ is F .



2.3 P req u en tia l A ssessm en t

Faced with a specific forecasting problem, theoretically any PFS  can be used to 

forecast the uncertain quantities (%). Intuitively we understand th a t  some P F S ’s 

will perform well and some badly, depending on the problem and the d a ta  a t hand. 

It is im portan t therefore to have a m ethod, or a collection of m ethods, for assessing 

the performance of a PFS and comparing it with tha t of another PFS.

The sequential nature  of the problem suggests tha t any assessment m ethod 

should judge the PFS within sequence, and not between sequences. By th a t  we 

mean th a t  we are not interested in assessing the expected performance of a PFS 

(averaged over all possible realisations), since this will include da ta  which were 

never observed, and forecasts which were never issued. The prequential point of 

view suggests tha t a PFS F  should be assessed by a method which compares the 

realized forecast distributions (Ft)  with the realized outcomes (yt) of (Tj), and does 

not make use of the full s tructure of F  as a PFS for Y.  This last property  was 

proposed by Dawid (1984) as an inferential principle for the assessment of a PFS, 

and was term ed the prequential principle.

Many probability assessment techniques th a t  have been developed, especially 

in the field of meteorology for the assessment of weather forecasters, respect the 

prequential principle and can be used to assess the performance of a PFS. These 

include calibration plots, probability integral transforms, scoring rules etc. The 

field of probability forecasting assessment is reviewed in Dawid (1986).

2.3.1 Scoring R u les

In this thesis we will focus on the assessment of a PFS using scoring rules. Scoring 

rules are defined as functions S{Y t,F t)  of the outcome Fi, and the  forecast proba­

bility distribution F^. Although they may be seen also as gains to be maximized, 

we will consider them as penalties th a t  the forecaster should minimize. A scoring
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rule is called proper if

E r . { S ( Y u F t ) ]  < £ f ,{ 5 ( K „ P , ) } ,  (2.1)

for any distributions Ft and P*. It is called strictly proper if (2.1) holds with 

inequality when Ft ^  P t  The above property means th a t  the  expected penalty  

for the  true  distribution will be less than  or equal to (proper) or strictly less than  

(strictly proper) the average penalty for any other distribution.

Many different scoring rules can be used for the assessment of a forecast distri­

bution. One im portant special case is the logarithmic scoring rule defined as:

^ ( y ; , F , ) : = - i o g f , ( ] i ) ,

where ff(K^) is the density of F^ with respect to some fixed underlying measure. 

This is a proper scoring rule.

Another proper scoring rule is the Brier score. If the outcome Yt is discrete, 

taking values ( o i , . . . ,  a^ ) ,  then  it is defined as
m

5 ( y „ F , )  :=  ^ { / ( y  =  a.) -  F , ( y  =
2 = 1

where I  is the  indicator function, and F * (y  =  Oi) is the probability th a t  Yt is equal 

to Qi under the predictive distribution F<.

Using scoring rules we might measure the actual perfomance of a PFS F  by its 

cumulative score

5 ( y ^ , F )  =  f ; 5 ( y , F 0 .
/=1

An assessment based on this cumulative score satisfies the prequential principle, 

since it involves only the observed outcomes and the sequence of the forecast dis­

tributions {F<}.

2 .3 .2  P req u en tia l L ikelihood

Using the  logarithmic score, this assessment of the performance of a PFS F  is 

essentially its prequential log-likelihood., which is defined for d a ta  =  (y^,..., y r)

11



by ^

i r ( y ^ , F )  : = ^ l o g f , W  =  l o g F ( / ) .
t =  l

Any two P F S ’s, F  and Q, can be compared, in the light of the  d a ta  by the  

difference of their prequential log-likelihoods:

A r ( Q ,  F )  :=  I t ( / ,  Q) -  Xt ( / ,  F).

We might prefer the PFS F  if the above difference is negative and the PFS Q  if 

it is positive. In particular if A]r(Q, F) oo , as T oo, we might consider F  

u ltim ately  discredited in favour of Q, and the  opposite if A r ( Q , F )  —> —oo. If 

the  difference stays bounded above and below, we cannot definitively distinguish 

between the two P F S ’s, which can then be considered equivalent.

If Y  ~  F , the prequential likelihood ratio e x p ( A j ( Q ,F ) )  is a martingale, and 

so, using s tandard martingale arguments, we can show th a t ,  with F-probability  

one,

^im A r (Q ,  F ) <  oo.

This implies tha t the PFS corresponding to a “tru e” distribution of the da ta  can 

not (with probability one) be discredited in favour of any other PFS.

2.4 S ta tistica l F orecasting S ystem s

In most situations the forecaster does not know the true distribution of the  data , 

bu t he may be able to specify a suitable class of possible distributions. This class 

is usually formulated in m athem atical term s as a param etric  family V  = {Pg) of 

distributions, where $ is an unknown param eter taking values in some set 0 .

Two im portan t inferential issues tha t arise in this case are model verification^ 

i.e. the question of the validity of the param etric  family P ,  and model selection^ 

i.e. the comparison of the family V  with another family of distributions, say Q = 

{ Q ^ ,7  G T). The prequential approach to these inferential problems is to replace

12



a family of distributions for F  by a single PFS. The evaluation of the validity of 

a family of distributions, or its comparison with another family, reduce then  to 

the simpler problems of assessing the validity of a PFS for F ,  or the problem of 

comparing two candidate P F S ’s for Y  respectively.

In this case the forecaster’s aim should be to construct a PFS which will, in 

a suitable sense to be m ade precise below, perform at least as well as any other 

possible PFS, for almost all possible values of 6. Preferably such a PFS should use 

the assumption of the param etric model, together with any information gathered 

from the da ta  about the unknown param eter 0, in order to issue its next forecast. 

Such a PFS  will be termed a statistical forecasting system (SFS).

The question of how to extract information about 9 from the da ta  is one of 

the main issues in statistical inference, and different methodologies exist, based on 

different philosophical approaches.

The Bayesian approach accepts tha t our initial uncertainty for 0 should be 

quantified by a prior distribution for 9, and later, after we observe the data , it 

should be updated using Bayes’s theorem. The Bayesian joint distribution for Y  is 

the  m ixture

B : =  f  P ô 7 T { 9 ) d 9 ,
J  ©

where 7t { 9 )  is the prior density. The forecast distribution ;=  is

constructed by conditioning on the observed da ta  and is equivalent to a m ix ture  

of the forecast distributions of Tj+i under Fg, using the posterior distribution of 9:

Bi+i =  f  Pt+i,e '^t{9) d9, 
J  ©

where 7rt{9) is the posterior distribution of 9 based on the prior and the d a ta  yh 

We will call such a forecasting system a Bayesian Forecasting System  (BFS).

A nother approach, which avoids the specification of a prior distribution for 

is the plug-in (or estimative) approach. A plug-in SFS, say Q, is constructed by 

calculating at every step t an estim ate 9t of 9 based on the current da ta  and then

13



using it to specify the predictive distribution for the next observation by replacing 

the unknown param eter 9 w ith 9t  ̂ i.e.

Q<+i •“  Iz/ )

There are other ways of constructing forecasting systems, e.g. fiducial SFS’s 

(Dawid, 1984). They are all based on different methods of eliminating the  unknown 

param eter 9 in order to generate a forecast distribution. In this thesis we restrict 

our a ttention to Bayesian and plug-in SFS’s.

As was described above, a SFS can incorporate the assumption of the param etric  

model plus a learning rule, and different rules will result in different SFS’s. A SFS 

can have an inferential as well as a purely predictive use, and for both  purposes it 

is im portan t to identify a class of "optimal” SFS which compare favourably with 

any other SFS based on the same param etric model. Then, any assessment based 

on such SFS will not address the efficacy of the  learning process, only the model 

adequacy. For these reasons the following property  of a SFS was introduced by 

Dawid (1984).

We define a SFS F  to be efficient if for any o ther PFS Q, with probability one 

for all ^ in 0 ,  except perhaps for a subset of m easure zero,

lim sup A r (Q ,  F) =  lim sup{T r(y^ , Q) -  -^r(y^, F)} <  oo. (2.2)
T —CO T —oo

If 0  is a subset of we use Lebesgue measure as the underlying measure. If 0  is 

countable set we use counting measure, which requires th a t  condition (2.2) should 

hold for all P F S ’s Q and all ^ in 0 .

The difference A (Q , F) measures the relative predictive performance of the  two 

SFS’s for the da ta  at hand. According to the above definition a SFS is efficient if 

it is at least as good as (and possibly better than) any other P FS, and therefore it 

can not be discredited as a valid model for the data. In th a t  sense, it is the  best we 

can do in modelling the true  da ta  generation process. Dawid (1984, 1992a) offers 

further discussion and justification of the notion of prequential efficiency.

14



It has been shown tha t a Bayesian statistical forecasting system based on an 

almost everywhere positive prior density is efficient. An arb itrary  SFS is efficient if 

and only if it is asymptotically equivalent to a BFS {cf. Lem m a 2.1). Model selec­

tion based on the difference of the prequential log-likelihoods of efficient SFS ’s for 

the various models extends the method of log-Bayes factors to non-Bayesian m od­

els, and leads to consistent model selection (Dawid, 1992a). It is interesting then  

to consider the efficiency of plug-in SFS’s, since they are proposed as non-Bayesian 

alternative models for the data, which are free from any prior distributions.

Different authors have discussed the use of plug-in SFS’s for model selection. 

Phillips (1996) discussed the plug-in SFS based on the m axim um  likelihood es tim a­

tor and presented an informal argument for its asym ptotic  equivalence with a BFS. 

In Phillips and Ploberger (1994) the asym ptotic equivalence of a BFS and the m ax­

imum likelihood estimator plug-in SFS is established for linear stochastic regression 

models with Gaussian errors. The use of a plug-in SFS for model selection is also 

related to Rissanen’s predictive minimum description length principle (Rissanen, 

1986. 1987, 1989). See also Qian, Gabor, and G u p ta  (1996) for an application to 

generalised linear model selection.

Our aim in the next chapter is to present a more general and rigorous s tudy of 

the plug-in SFS’s, and to present sufficient conditions for their prequential efficiency. 

In the next section we present some results which are necessary for the  study  of 

the efficiency of a SFS.

2.5 A b solu te C on tin u ity  and E fficiency

If C is a subset of 0  then we use the expression {Pg, C}-as for an event th a t  has 

probability one under Pg, for all 6 in C, except perhaps for a set of param eter  values 

of measure zero. If F{x)  and G{x)  are two distributions for a random  variable 

and f { x )  and g{x)  are their densities with respect to some underlying m easure //,

15



then  by H{F,  G)  we denote the  Hellinger distance:

H( F , G )  =  [ J W f { x )  -  yyg{x)yf i {dx)y^^ ,  

by K{ F^ G)  the Kullback-Leibler distance:

and by G)  the chi-square distance:

y ( F , G )  =  i ? ; { l - ^ L

Although we refer to the Kullback-Leibler and as distances, they are not metrics, 

as usually A'(G,F) and f

Using the fact tha t any BFS is efficient, Seillier-Moiseiwitsch, Sweeting, and 

Dawid (1992) proved the following lemma:

L e m m a  2.1 .4 SFS  Q is prequentially efficient i f  and only i f  there exists a B F S  B  , 

based on an almost everywhere positive prior density, which is absolutely contin uous 

with respect to Q (written B  <C QJ,

By relating efficiency of a SFS to absolute continuity of two distributions, results 

from probability theory can be used to study the efficiency of a forecasting system.

T h e o r e m  2.1 (K a b a n o v ,  L ip t s e r ,  a n d  S h i ry a y e v  (1 9 7 8 ))  I f K a n d S  are two

distributions fo r  Y , and fo r  every t <C then a necessary and sufficient con­

dition fo r  R  <C S is
00

^  i /^ (R i ,  Si) <  00 R -a .s .
Y=1

If we combine the previous two results we get the following necessary and suf­

ficient conditions for the prequential efficiency of a SFS Q:

L e m m a  2.2 A SFS  W  is efficient i f  and only i f  there exists a B F S  B  such that, 

fo r  all t, B* <C W \  and, { P g ,0 } -a s ,
00

<  00.
t=i
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We can also prove the following more general result:

L em m a 2.3 Let W  be an efficient SFS, and Q  he a SF S  such that fo r  every t, 

<C Then Q is efficient i f  and only if, {Pg,

00
x ; h 2(q „ w , ) < oo.
t=i

P ro o f  of L em m a 2.3. The SFS W  is efficient, and therefore, from Lem m a 2.2, 

there exists a BFS B such th a t  <C <C for every t, and {Pg, 0}-as

1 = \

Using the inequality

{a — b y  < 2 (a^ +  b^)

it is easy to show that

i /- (B ,,  Q,) <  2 {iJ^(B„ W ,) +  Qt)] ,

and therefore if {Pg ,0}-as

t = i

then {Pg, 0}-a.s

t =  l

and sufficiency is established using Lem ma 2.2.

Next we prove necessity. W hen the SFS Q is efficient, then  there exists a BFS 

B  such th a t  B^ <C and B^ <C for every t, and {Pg, 0} -as

oo 

t =  l

and
oo

y ; j î ' ( B „ w , )  <  00.
t=i

17



Again we can use the inequality

Qt) < 2 W O  +  Q O )

to show th a t  {Pg, 0}-as
oo

f=l

□

The previous lemma shows tha t,  with probability one for almost all the fore­

cast distributions of any two efficient SFS Q and W  are asymptotically equivalent 

for the infinite future {P g ,0 } -as ,  in the strong sense tha t,

oo

lim ^ ^ ' ( Q „ W O  = 0.

See also Blackwell and Dubins (1962) for a similar result.

Next we present a sufficient condition for the efficiency of a SFS similar to the 

condition in Lemma 2.3, bu t based on the Kullback-Leibler and distances. This 

result is useful in cases where the Hellinger distance is difficult to use.

L e m m a  2.4  An SFS  Q is efficient i f  there is an efficient SF S  W  such that fo r  

every t, <C Q \  and {Pg,0}-a5
CO

Y^dt(Wt,Qt) < oo
<=i

where d t ( Wt ^ Qt )  can he any o f  the distances 7F(W<,Qt), 7f(Q^, W^), X^(W<,Q<) 

or X '( Q , ,W , ) .

P ro o f  of L e m m a  2.4. We show tha t,  for any two distributions F  and (?, when 

the  Kullback-Leibler and the chi-square distances are finite, they are larger than  

the  squared Hellinger distance. Then the result follows from Lem m a 2.3. F irst we 

show th a t  this is true for the  Kullback-Leibler distance. By the  definition of the  

Hellinger distance.

1 -

2 J

18
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Also we can show tha t

- 2 1 o g £ , ( ^ / / s )  <  E,{ \og{gl f) ]  =  K(G, F) .

Therefore

_ l o g { i _ £ ! Ç ^ } < i A ' ( G , F ) ,

and  using the  inequality

(a: <  1),

we haA'e

H \ F , G ) < K { G , F ) .

The same argum ent can be used to show tha t G) < K{ F,  G).

For the  chi-square distance;

H^{F, G) = j W f -  ^ g f d g  < J ( V f -  V 9 f ^ F l ± y ^ d g  = x \F ,  G),

and also by symmetry H'^{F.G) < F ) .  □

A nother sufficient condition for the efficiency of a SFS Q can be given in term s 

of the  Kullback-Leibler distance between the joint distributions and Qb

L em m a 2.5 Let Q be a SFS. I f  there exists an efficient forecasting system W  sack  

that

sup Q^) <  oo
t

then Q is prequentially efficient.

P r o o f  of L em m a 2.5. W hen the condition of the Lem ma holds, then for every t 

the  distance K ( W \ Q ^ )  is finite, which implies th a t  <C for every t. If we 

define S t  =  A^(W<, Q<), then S t  is a non-negative sub-martingale under W .

According to the submartingale convergence theorem  if sup^^ E-y / ( S t ) is finite then.
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with probability one under W ,  S j  converges to a  finite limit. It is straightforward 

to  show th a t

£ w { V (W „ Q < )}  =  / ! : ( W ' ,Q ‘) -  V ( W ' - \ Q ' - ’ ),

and  therefore

E w {St ) =  / i ( W ^ , Q ^ ) .

T he  result is established using Lemma 2.4, and the fact th a t  if an event holds with 

probability one under W ,  then it holds {Pg, 0}-as. □

The next lemma will be useful when working with unbounded param eter sets. 

It allows us to prove efficiency of a SFS by comparing it to SFS’s which are efficient 

for a subfamily of 0 ,  e.g. Bayesian forecasting systems based on priors with support 

on a bounded subset of 0 .

L e m m a  2.6 Let (C,, ? =  1 ,2 ,. ..)  he a countable fam ily  o f subsets o f Q, such that 

0  =  U S i C{. A SFS  Q is efficient if  and only i f  fo r  every i there exists a SF S  R(z) 

which is efficient for  the subfamily V{ =  {Pg, ^ G C,} , and R(z) <C Q.

P r o o f  o f  L e m m a  2.6. We will prove only the efficiency of Q  when for every i 

R(z) <C Q, as the other direction is trivial. Let R  be the SFS defined as

R  =  f : 2 - ' R ( î ) .
i = l

For any SFS W ,  the difference of the prequential log-likelihoods A ^(W , R )  con­

verges to a finite limit {Pg, C,)-as for every i. Since 0  is the  countable union of 

Q ,  i >  1, it is easy to see th a t  A<(W, R ) converges to a finite limit {Pg, 0 } -as ,  

and therefore the SFS R  is efficient for the whole family V  =  {Pg, ^ G 0 } .  Since, 

for every f, R (i)  <C Q, then R  <C Q and the result is established. □

C o r o l l a r y  2.1 I f  Q is countable, then a SF S  P  is prequentially efficient i f  and 

only if, fo r  every 6, Pg <C P .
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P ro o f  of Corollary 2.1. W ithout loss of generality assume th a t  0  =  { 1 ,2 , . .

If we set Ci = {%} and apply Lem ma 2.6, we have th a t  a SFS P  is efficient if, for 

every z, P  ̂ <C P Also if P is efficient then P  ̂ <C P by the  countability of the 

param eter  set. □
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C hapter 3 

E fficiency and Inefficiency o f  

P lu g-in  S F S ’s

3.1 In trod u ction

In this chapter we present a rigorous study of the  efficiency and inefficiency of plug­

in SFS’s, which, as was discussed in §2.4, are proposed as non-Bayesian alternative 

models for the data  generation process.

In section 3.2 we discuss some advantages and disadvantages of the plug-in 

approach, and in §3.3 we highlight some problems with the first few observations. 

In §3.4 we present some general results, and then  we study separately the case 

where the param eter set is countable (section 3.5), and uncountable (section 3.6). 

For the  la tte r  case we present two different approaches one based on the Kullback 

distance (§3.6.1), and one based on the distance (§3.6.2). In §3.7 we show, by 

means of counterexamples, th a t  plug-in SFS’s can be inefficient. We discuss briefly 

the results in §3.8.
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3.2 P lu g -in  Forecasting sy stem s

As in §2.4, a plug-in SFS is generated by replacing, in the predictive distribution 

P t(^ ) ,  the unknown param eter 9 with an estim ate based on yh

A plug-in SFS may appeal to a non-Bayesian statistician, since it is constructed 

w ithout the need for the specification of a prior distribution for 6. Another a t t r a c ­

tion is th a t  in most cases a plug-in SFS is easier to use than  a Bayesian SFS, since 

the analytical form of a Bayesian predictive distribution is usually in tractab le  and 

numerical m ethods have to be used to approximate it.

A plug-in SFS also has some disadvantages. Most im portan t,  the uncertain ty  

of the  estim ator of 9 is not incorporated in the predictive distribution. Replacing 

the unknown param eter with an estimate is equivalent to accepting the es tim ate  as 

the true  param eter value. The fact that the estim ator is a stochastic quantity, with 

uncertainty attached to it, is not considered. A value for the estim ate  may have 

been calculated from 10 or 10,000 observations, bu t this is considered irrelevant 

in the construction of the predictive distribution of a plug-in SFS. This may lead 

to underestimation of the uncertainty of the future observation I'i+i. As we show 

later, in some cases this a ttr ibu te  can result in the  prequential inefficiency of the 

plug-in SFS’s.

Ait chi son (1975) considered the same problem in the context of param etric  

density estimation, and presented examples where the forecast d istribution of a 

Bayesian SFS is uniformly be tte r  (for every 9) th an  the  forecast distribution of a 

plug-in SFS based on the m aximum likelihood estimator. His criterion was the 

expected Kullback-Leibler distance between the true  distribution and the forecast 

d istribution of the SFS. Our investigation is different, because we focus on the 

asym ptotic  and within-sequence performance of a SFS, and not on its expected 

performance. Also we study general models, not only independent identically dis­

tr ibu ted  observations. We will show tha t for the  examples presented by Aitchinson,

23



although the  Bayesian SFS’s are slightly b e tte r  than  the plug-in SFS’s in te rm s of 

the  average discrepancy from the true  distribution, asym ptotically their perfor­

mances are equivalent.

It is obvious tha t different estimators result in different SFS’s, and performance 

depends on the estimator sequence used. We will relate the  estim ative properties 

of an estim ator to the efficiency of the SFS it generates, and apply the  results to 

specific estimators and examples.

3.3 S tart-U p

In constructing a plug-in SFS we may face some start-up problems. Perhaps for 

the first few observations the estimator of 9 is not defined, since not enough da ta  

are available to calculate it, or, although the estim ator may exist, the predictive 

distribution based on it may not have the same support as the  true  predictive 

distribution. This may lead to a non-zero probability th a t  the prequential likelihood 

will be zero.

E x a m p l e  3.1 A sequence of independent identically d istributed Bernoulli obser­

vations (F/) is to be observed. The probability P[Yi =  1) =  ^, 0 < ^ < 1 .  Let Q 

be the plug-in SFS based on the m axim um  likelihood es tim ator d j  — A:/T, where 

k is the num ber of I 's  in the first T  observations. The predictive distribution Q i 

for A’l is not defined since we have no da ta  to calculate the MLE.

Even if we ignore the above problem, we can also observe th a t  w ithout any 

modification the SFS Q will be inefficient since initially, until we have seen at least 

one 0 and one 1, the MLE estimator takes the  value 0 or 1. This means th a t  the 

forecast distribution gives probability zero to one of the two possible outcomes. □

In practice a plug-in SFS is used only when a sufficiently large sample is avail­

able, and a starting value for the estimator can be calculated. Since our interest is
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in asym ptotic properties, we avoid these anomalies by assuming th a t  there  exists 

a modification of the initial SFS which avoids these problems, and asym ptotically  

issues identical predictions with the initial SFS. For instance, in Exam ple 3.1, when 

the estim ator 6t  is not defined or takes the values 0 or 1, we can replace it w ith the 

estim ator 6t = {k- \ - l ) / {T  +  1), k > 0. The two SFS’s will eventually issue identical 

forecasts with probability one for every 0. and therefore by studying the  efficiency 

of the modified SFS we study the efficiency of the original SFS Q  conditioned on 

the event th a t  the MLE estimator is used only when it is defined, and is not equal 

to 0 or 1. Of course there may be cases where no such modifications exist, and the 

plug-in SFS is inefficient.

E x a m p le  3.2  Assume tha t we will observe a sequence of independent identically 

distributed Uniform [0,^] observations. 0 G (0,1). The support of the forecast 

distribution of a plug-in SFS depends on the estim ator used to construct it, bu t 

with non-zero probability (for non-trivial estimators) it will be smaller th an  the 

support of the forecast distribution of any BFS. In th a t  case the  plug-in SFS is 

inefficient since a necessary condition for any SFS to be efficient is th a t ,  for every 

t, the support of its predictive density should include th a t  of a Bayesian SFS. □

In order to have a well defined plug-in SFS, in the following sections we assume 

th a t  for every t >  0 the estimator §t used to construct the SFS exists, takes values 

in 0 ,  and is unique. Also we make the assumption th a t  the support of the  density 

Pg of does not depend on the param eter 0, for every t.

3.4 P ro jection s

We now show th a t  an efficient plug-in SFS exists if and only if, for any BFS B , 

the plug-in SFS based on the Bellinger projection of the forecast distribution 

into the family of predictive distributions Vt+i =  {P^+i(^),^  € 0 }  is efficient. By 

P<+i(^) or P t+ 1,5 we denote the  predictive distribution P(T^+i|?/\
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L em m a 3.1 Assume that there exists an efficient plug-in system. For a B F S  B, 

let W  he the plug-in SFS  based on the estimator Ot defined by

èt = argm inseeH {B t+ i ,P t+ i{ s )} .

Then W  is efficient.

P ro o f  o f L em m a 3.1. Let Q. based on the estim ator (6 )̂, be efficient. From 

Lem m a 2.2, for every BFS B, {Pg, 0}-as

CO

t=i

The result follows from

f=l <=1

and the  fact tha t,  for every t, B^ <C W L  □

Lem m a 3.1 shows tha t if there is a value of 0 th a t  minimizes the Bellinger 

distance between the predictive distribution P<+i,0 and the Bayesian predictive 

distribution B^+i, and there is at least one efficient plug-in SFS, then the plug-in 

SFS based on these Bellinger projections is efficient as well.

Similar lemmas can be proven for the Kullback-Lei bier and %^-distance. We 

present the  result for the Kullback-Leibler projection of the forecast distribution of 

a BFS since in this case the projection is easy to com pute and has a special form.

L em m a 3.2 Assume that there is an efficient plug-in SF S  Q, based on a sequence 

of  estimators Ot, and there is a B F S  B  such that, { P ^ ,0 } -a s ;

< oo.
i = l

/ / W  is the plug-in SFS  generated by the sequence of  the estimators (Ot) defined as

Ot = argminsee f  K{Pt+i{0) ,P t+i{s )]  TTt dO, (3.1)
J  0

then the S F S  W  is efficient.
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P r o o f  o f  L e m m a  3.2. If is an estimator of 0 then the Kullback-Leibler distance 

A"{B<+i,Pt+i(e/)} can be w ritten  as

A '{B ,+ i,P ,+ i(e ,)}  =  £ 9 | . ' [A '{ P m W ,P ,+ i{ e , )} ]

Therefore the estimator Ot which minimises the first te rm  of the  right hand side of 

the above equation minimises the Kullback-Leibler distance between any plug-in 

forecast distribution and Consequently

A {B^+i. Pi+i(^t)} <  A’t-|.i{Bi+i, P<+i(^^)},

and the result is established by Lemma 2.4. □

Note th a t  the estimator Ot defined in equation (3.1) is the Bayes estim ator when 

the decision problem is the estimation of the predictive distribution P^+i(^), and 

the loss function is the Kullback distance. It is also the Kullback projection of 

the Bayesian predictive distribution B^+i into the family of distributions Vt+i = 

{P^+i(6'),^ G 0 } ,  since it can be shown to minimise A 'jB f + i ,P<^.i(iî)} over all 

param eter values s € 0 .

3.5 C ountab le P aram eter  set

Throughout this section we take 0  to be countable. By Corollary 2.1 a sufficient 

and necessary condition for a plug-in SFS Q to be efficient is th a t ,  w ith probability 

one for every 0̂
OO

^ ^ y P , ( g ) , Q , ) < œ .  (3.2)
t =  l

We call an estim ator consistent if, with probability one for all 0, it is eventually 

equal to the true  param eter value. We will study how the efficiency of a plug-in 

SFS is related to the consistency properties of the  estim ator used.

Suppose th a t  a consistent estimator exists. Then the SFS based on it will be 

efficient, since with probability one eventually the  Bellinger distance between the
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predictive distribution of the SFS and the true  predictive distribution will be zero, 

and therefore with probability one, for all condition (3.2) holds.

Now a consistent estimator exists if and only if the distributions {Fg} are m u­

tually singular. For, first assume tha t a consistent estim ator exists. Then the  

event “ê  =  0 eventually” has probability one under Pg, and zero for any other 

distribution in the family. Therefore the distributions are mutually  singular. If on 

the other hand the distributions are mutually singular, then it is easy to construct 

a consistent estimator. First we specify a prior density 7rg on 0, such th a t  ttq > 0 

and 7Tg =  1. Let 6t be the posterior mode of i.e. the value th a t  maximises 

the adjusted likelihood ttq ■ p^(y^O) (in cases th a t  there are more than  one values 

of 9 th a t  maximise the adjusted likelihood, choose any of them ). Then it can be 

shown, as in §6.4 of Dawid (1992a), tha t the posterior mode is consistent.

We have shown therefore th a t  consistency is a sufficient condition for the effi­

ciency of a plug-in SFS, and how this is related to the m utual singularity of the 

distributions in the family. B ut is consistency a necessary condition for prequential 

efficiency? The answer is negative, unless we add an ex tra  assumption.

L e m m a  3 .3  Suppose that, fo r  every 0, with Pe-prohability one

] \m m i[ m i  > 0.
t-<-oo s ^ 6

Let 6t be a sequence of  estimators, and Q the SFS  they generate. Then  Q  is 

prequentially efficient i f  and only i f  the estimator 9t is consistent.

P r o o f  o f  L e m m a  3.3. First suppose tha t the SFS Q is efficient. We denote by 

^2) the Hellinger distance Lf{P^(^i),P^(^2)} between the  predictive distri­

butions, under Pg^ and Pg^, for Yt given the da ta  y^~^. Then for every 0 (since

P« <  Q ),
00

< 00} =  1,

and therefore

Pe\^Hf{9 ,9t - i )  < eg eventually} =  1.
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This implies th a t

(0, ^i_i) =  0 eventually} =  1,

and thus

=  6t eventually} =  1.

But, if for every Pg{0 =  9t eventually} =  1, then

CO

f = l

and therefore for all P^ <C Q. □

A corollary of the above Lem ma is tha t for independent identically d istributed 

observations an efficient plug-in SFS must be based on a consistent estimator.

The above discussion has dem onstrated the  following result.

L e m m a  3.4  Let the parameter set 0  he countable, and the family of distributions 

(Pe) be mutually singular. The SFS  based on the posterior mode $t is efficient.

If 0  has a finite number of elements, say K ,  and, for every 6, ttq =  1 /A \  the 

posterior mode Ot is the m axim um  likelihood estimator, and therefore for a finite set 

of m utually  singular distributions the MLE plug-in SFS is always efficient. W hen 

0  is infinite the MLE estim ator does not belong to the class of estimators th a t  

maximise the  adjusted likelihood. The following example shows th a t  the  MLE SFS 

can be inefhcient even when the distributions {P#} are m utually  singular.

E x a m p l e  3 .3  We will observe a sequence of random  variables which take the  val­

ues 0 and 1. The true model consists of the countable family of distributions defined 

as follows:

First num ber all the finite sequences of 0 and I ’s as follows:

1 denotes the sequence 0

2 denotes the sequence 1
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3 denotes the sequence

4 denotes the sequence

5 denotes the sequence

6 denotes the sequence 11

7 denotes the sequence 000

00

01

10

and so on. Under ^ =  1,2 .. . . .  first we will observe the finite sequence num ber 

(as defined above), and then a sequence of independent identically d istribu ted  

Bernoulli observations for which the probability of getting a zero is l / { k  2). Any 

two models in this family of distributions are singular since there is a value to such 

th a t  for every t > to the Hellinger distance between their forecast d istributions for 

is constant and larger than  zero.

For every step f , there is only a finite number of models such th a t  their  forecast 

distributions for the next observation U+i give non-zero probability to bo th  possible 

outcomes. In order to have well defined plug-in forecasting systems we define the 

posterior mode and the MLE estimator to be the  param eter values th a t  maximise 

the adjusted likelihood and the  likelihood respectively within the  set of these values.

For any sequence of positive prior probabilities (Trjt), the BFS, and the  plug-in 

SFS based on the posterior mode, are efficient. But the MLE SFS will be inefficient 

since, regardless of the da ta  the MLE estimate is always larger than  2̂  — 1 and, 

as the num ber of observations tends to infinity the  MLE estim ator tends to infinity. 

Inefficiency follows from Lem m a 3.3. □

3.6 U n cou n tab le  param eter set

In this Section we assume th a t  the param eter set is uncountable, and an open 

subset of (or, more generally, having boundary of Lebesgue m easure zero). We
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present two different ways of studying the efficiency of a  plug-in SFS. The first uses 

the Kullback-Leibler distance, and the second the  distance. Both approaches 

establish the  efficiency of a plug-in SFS by finding an upper bound for the distance 

between the  predictive distribution of the plug-in SFS and th a t  of a BFS. W hen 

the BFS has support on the whole set 0 ,  and 0  is unbounded, one usually has to 

use strong conditions on the tail behaviour of the posterior distributions of 0 in 

order to achieve this bound. Using Lemma 2.6, we see th a t  it is sufficient to find 

a countable cover {C,} of the param eter set 0 ,  and for every i. to compare the 

plug-in SFS with a BFS with support on C,. This implies th a t  it is sufficient for 

our purposes to work on an appropriate subset of 0 ,  which we denote by C, and 

to give sufficient conditions for the efficiency of the plug-in SFS for the subfamily 

P c  =  {Pg, ^ G C}. When we apply the results, we can choose the cover {C,} in a 

suitable way in order to show the efficiency of the plug-in SFS for the whole family 

0 .  Any BFS we use in this section is based on a prior density which has positive 

support on C, and is equal to zero elsewhere.

3.6.1 K u llback-L eib ler D is ta n c e

The first approach is based on Lemma 2.5, which shows th a t  a plug-in SFS Q is 

efficient if the Kullback-Leibler distance between the joint distributions of a BFS B  

and Q for the first t observations K* stays finite as t tends to infinity. The distance 

Q^) can be decomposed as the difference of two term s ;

A '(B‘, Q ‘) =  J j K ( P l Q ‘) - K { P l B ‘)}w {e )de

=  E 4 K ( P l , q ‘) } - E 4 K { P l , B ' ) } ,  (3.3)

where the  last expectations are with respect to the prior distribution. Since for any 

forecasting system W

W ')}  =  ^ E ,[E g { A r ( P , . , ,W , . ) } ] ,
i=i
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the  two term s in equation (3.3) can be interpreted as the overall Bayes risks of the  

two SFS’s Q and B  for the estimation of the predictive distributions ( P i ,^ , . . . ,  

using the Kullback-Leibler distance as the loss function. It easy to show th a t  the 

BFS B  achieves the m inim um  Bayes risk, and therefore a SFS is efficient if its 

Bayes risk is sufficiently close to the minim um  risk achieved by B .

The second term  F^,r{A^(P^, B^)} also has many other interpretations. It is the  

Kullback-Leibler distance between the joint density 7t{6) p^(F^), and the  product of 

marginals 7i{0) and bb This quantity  is the Shannon m utual information between 

the param eter 9 and the sample I ' j , . . . .  I'j, and also the expected Kullback-Leibler 

distance between the posterior and prior densities of 0. In Information Theory it 

is also the minimal average redundancy of a code (Clarke and Barron, 1994). We 

denote this quantity by / (C ,  T’̂ ), i.e.

'C

suppressing its dependence on the prior density from the notation.

The m utual information I {C .Y ^ )  is a quantity  th a t  has been well studied for 

smooth models and independent identically distributed observations (Ibragimov 

and Hasminskii (1973), Clarke (1989), Clarke and Barron (1990), Clarke and Barron 

(1994)). Under weak conditions

7 ( C , y ‘) =  ^ log(<) +  0 ( l ) ,  (3,4)

where p is the dimension of C. As in the decomposition of 7 F (B \ Q^) the  m utual

information appears with a negative sign, it will be sufficient to  establish th a t

lim inf { /(C ,  W ) — |  log (t)} > - o o .  (3.5)

Following Clarke (1989), page 76, it can be shown tha t,  for the  above result to

hold, it is sufficient tha t there be an estimator such th a t

limsupdet[E;rEg{^ {6 — et){6 — e^)'}] <  oo.
t—̂oo
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On the other hand, the risk ET:Ee{Kt^i(6^0t)}  has

been studied by Cencov (1981), who showed th a t ,  for smooth models and indepen­

dent identically distributed observations, if 9% is the  m axim um  likelihood es tim ator 

then

E,E s{ l< i+ ^{eÂ )}  < Y i +  (3.6)

If Q  is a plug-in SFS, based on an arbitrary estim ator which achieves the bound

(3.6), then

E ^ E e { K ( V l q ! ) }  = E , E ) { j 2 K , ( e j , - , ) }  < ^ l o g (<) +  0 (1 ) .  (3.7)
;=i

It follows from equations (3.3), (3.5), and (3.7) th a t  the SFS Q is efficient since 

A ^ B \ Q n  =  0 ( l ) .

Using the same arguments we can show the following result which can be applied 

not only to independent identically distributed observations, bu t to any param etric  

family and any estimator for which the assumptions hold.

T h e o r e m  3.1 Assume that there is a B F S  B  such that the mutual information  

7(C, y^) is lou'tr hounded as in equation (3.5). Let Ot be an estimator which satisfies 

the following condition:

ET:Ee{Kt+i{O^Ot)} ^  ^

where ht is a sequence such that Ylt^i < oo. I f  Q  is the SE S  based on Ot, then  Q 

is efficient fo r  the subfamily P c  =  (Pg, ^ € C).

E x a m p l e  3.4 Assume tha t under Pg the sequence of observations (y<) are in­

dependent identically distributed having a Normal distribution with m ean 0 and 

variance known. Let 0  =  R, C =  0 ,  and B  be the BFS based on a A^(0,1) 

prior. Then

; ( c , r )  =rn _  l0g(t +  1)
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and if the estim ator 9t is the m axim um  likelihood estim ator based on then

E e { K , ^ , ( 9 À ) }  = Y f

It follows th a t  the plug-in SFS based on the m axim um  likelihood estim ator is 

efficient from Theorem 3.1. This result is in contrast to  the  result of Aitchison 

(1975), who showed tha t some B F S ’s have a uniformly (for all 6) smaller risk than  

the  MLE plug-in SFS when the  loss function is the Kullback-Leibler distance. These 

differences in the risk are small, usually of order 0 ( t “^), so th a t  the difference in the  

overall risks (when we sum for all t) stays finite. This means th a t  asym ptotically 

the performances of the two forecasting systems are equivalent. □

The Kullback-Leibler distance is not always finite and this may create some 

problems, especially in cases when E{KiJ^\{9^dt)] = oo for every t. Since we focus 

on a subset C of the set 0  we can avoid this problem by choosing C  in such a way 

th a t  the Kullback-Leibler distances between the predictive distributions of different 

param eter values in C  are always finite. This by itself does not solve the problem 

since the estimator 9̂  takes values in 0 ,  and not in C.  In cases like these, it may 

be helpful to construct a second estimator ^t,c which takes values in C, being equal 

to 9t whenever 9t is in C, and is defined so th a t

ETrEe{Kt+i{9,9t,c)}  <  ^  +  6̂ ,

where bt is a sequence such th a t  YltLi < oo. Then we can apply theorem  (3.1) to 

show th a t  the plug-in SFS based on 9t,c-> say W ,  is efficient for C.  If we can then  

show th a t  for almost all ^ in C

^e{9t  G C , eventually) =  1, 

then  the SFS Q based on 9t will be efficient for C, since {Pg, C}-as

OO

< oo.
t = 0

In the next example we apply this m ethod to the Poisson case.
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E xam ple  3.5 Let (Y\^Y2, . . .) be independent identically d istributed observations 

having a Poisson distribution with unknown param eter  ^ >  0. In this case the 

Kullback-Leibler distance between two distributions Poisson(^i) and Poisson(^2) is 

equal to:

A (^1, ^2) =  1̂ l o g ( ^ )  -Y O2 — Oi,
(72

and for every 6

Ee{K {0 ,è t )}  = 00, 

since there is a non-zero probability th a t  6 t=0 .

Let Q  be the SFS based on the m axim um  likelihood estim ator Ot of used of 

course only when Ot > 0. Let C = [a, b] where 0 <  a <  6, let B  be the BFS based 

on the uniform prior ~{$) =  1/(6 — a) on C, and let §t,c be an estim ator defined 

as follows:
a \i t = 0 OT Ot < a 

\ . c  —  ̂ Ot if G [u, 6]

6 \i Ot> h .

Since the  true  value of 0̂  and the estimator Ot ĉ take values in C, we can use a 

Taylor expansion argument to show th a t  for every ^ in C

h t + \  (0  ̂Ot^c) =  ^  • { l o g ( ^ )  —  l o g ( ^ ( , c ) }  — {0 — Ot^c) E: - ^ [ 0  — Ôt ,cŸ  +

Since

and

we have

s u p £ '9 |« - 0 , . c | "  =  O ( r " / ' )
eec

Since sup^ (0 — OtY) < 00, we also have th a t

l im in f{ /(C ,K ^) -  | l o g ( t ) }  >  - 00,
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and therefore the SFS W  based on the  estimator 6t^c is efficient for C.  This implies 

th a t  the  SFS Q is also efficient for C  as the estim ator 6t is (strongly) consistent. 

Since Q is efficient for any subset C = [a, 6], then Q is efficient for the whole family 

0  =  R+ =  u g i [ i / z j : ] .  □

3 .6 .2  C hi-square D is ta n c e

Next we present an approach based on the distance. In order to be able to use 

Taylor expansions we make the  assumption th a t  the subset C  is open and convex. 

Q is the  plug-in SFS based on an estimator Ot, and B is a BFS based on a prior 

7r[0) with support on C  and zero everywhere else.

In order to establish th a t  the plug-in SFS Q is efficient, we have to show tha t,  

with probabilit}^ one for almost all ^ in C,

OO 

< = 1

and next we give sufficient conditions for this to hold. By we denote the

conditional expectation and by A max A the m axim um  eigenvalue of a

m atrix  A.

C O N D IT IO N S  

C ondition  C l .

The conditional density Pt(^) is twice continuously ditferentiable with derivatives 

D i ' \ e )  and Let

(3.8)

and

4" ’( f ) : =  sup {h'D['^\e)h}. (3.9)
{h:h’h=l}
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C o n d i t i o n  C2.

There exist constants 0 <  6 <  1, and e >  0, such th a t  {Pg, C}-as 

and

J ; n(2)//n \ n(2)sup
)] ,̂ 2 CC"

\ei-92\-‘ sup A ' { D r ( C , ) - D r ( ^ 2)}A dFi =  0 ( l ) .  (3,11)
h :h 'h = l

C o n d i t i o n  C3.

The estim ator $t is strongly consistent for almost all 9 in C, and, if we denote by 

£'g|y'((-) the  expectation with respect to the posterior density 7T((^), then

E e iv ^ W t  {9 -  9t)] =  (3.12)

and

E e \ Y . { W i ( 6 - ê , ) Ÿ + ‘] = 0 { l ) ,  (3.13)

where e is the constant used in condition 02. The above orders should hold

{Pg ,C }-as ,  or in expectation for almost all 9 in C, or in expectation under the

BFS B.

T h e o r e m  3.2  Assume that the conditions C1-C3 hold. Then  {P g ,C }-c5
CO

^ / f ^ ( B „ Q , ) < o o ,
t =  l

and the S F S  Q  is efficient.

C o m m e n t s :

(1) Condition C l is a smoothness condition. Since we are using this condition in 

order to bound the Hellinger distances, it is sufficient th a t  the  conditional densities 

Pt(^) are eventually differentiable {Pg,C}-as.

(2) Condition C2 asks for uniformly bounded derivatives on C.  Equation (3.11) 

describes a condition which is weaker than  a uniform bound on the th ird  deriva­

tive. We can avoid this condition if we make stronger the condition described in
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equation (3.10). Condition C2 is restrictive, in the sense th a t  it does not allow the 

information from each observation to grow to infinity, bu t we do not th ink th a t  it 

can be relaxed except in special cases. As we will show in the next section, when 

the information grows very fast the plug-in SFS’s are inefficient.

(3) Condition C3 describes the conditions th a t  the estim ator 9t should satisfy. 

According to equation (3.12) the squared posterior bias of the estim ator 6t should 

go to zero, at least with rate  0 ( 1 /  log^(f)}, which means tha t 9t should be close to 

the posterior mean of 9 (under the Bayesian measure B). Equation (3.13) controls 

the behaviour of higher moments. There exist results in the bibliography which 

can be used to verify condition C3 (Johnson, 1970; Crowder, 1988; Ibragimov and 

Hasminskii, 1980), especially for m axim um  likelihood estimators.

(4) A different interpretation can be given to condition (3.12) when we consider it 

in expectation under the BFS B. If by 9̂  we denote the posterior mean of 9 under 

B , then

{ \ / t  {9 — )} — t\9i — 9t\ — E0\yt{t [9 — 9t) ] — Es\yt{t  (9 — 9t) ).

If we calculate the expectation of the above under B  we have

E - .  E f ,
2

(^ -  ^f)}j =  / jGg(f 1̂  -  7T( )̂ /  Eg(f 1̂  -  ;r(^) a .

(3.14)

For an estim ator e ,̂ let

R M ) : = E ^ { E e ( \ e t - 6 \ ' ^ ) ) .

Then equation (3.14) shows th a t  an estimator 9t can produce an efficient SFS if 

its risk R2{9t) is sufficiently close to the m inim um  risk i?2(^0 achieved by the 

posterior m ean 9t. If we consider R 2 {&t) as a measure of the (Bayesian) estim ative 

efficiency of the estimator e<, then this verifies Dawid’s conjecture (Dawid, 1984) 

th a t  efficient estimators produce efficient SFS’s under suitable regularity conditions. 

The conjecture does not hold for the classical notion of efficiency which is based on
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the variance of the asymptotic distribution of the  estimator. See the next section 

for further discussion.

Before we give the proof of Theorem 3.2 we need the following Lemma,

L e m m a  3.5 Let f { x )  be a prohability density which is positive on the set S .  I f  

g{x) is a non-negative function on S  such that

y / ( z )  -  \/gr(z) dT < oo,

then for  every 0 <  e < 1

V f { ^ )  -  V g i ^ )  dx < E f
/(a-) l + e

P ro o f .

J  \Vfi^^)  -  V 9 ( ^ ) f d x  = /  \ ^ / f {x )  -  y^g{x)\^ '\y^f{x)  -  y/g(x)
2 - 2 e

dx

<
2e

y / ( z )  +  y^(a;)
2e

<
/(a;) -^f(a:) l - e  f

f { x ) - g ( x )  dx =

{ \ / / ( : c ) - y p ( a : )  } ^da;

2e  l + e
/(a;) - ^ ( z )

■dx = E f
f { x ) - ÿ ( x )

/ ( ^ )

l + e □

P r o o f  o f  T h e o r e m  3.2. Let 6t be the posterior mean of 6:

6t = 9 7rt{6) dO,

and R  the plug-in SFS based on it. By b^+i, r^+i and we denote the predictive 

densities of the distributions Bf+i,R<+i and Q^+i respectively. In order to show 

th a t  {Pg, C )-as
oo 

t =  l

it is sufficient to show th a t  {P g ,C }-as

oo oo

< 0 0  and <  oo,
t =  l t =  l

39



since We begin with the  Hellinger

distance R^+i). Using the conditions C l  and 02, for every t and every 0

in C, we have

Pt+i(^) — Pt+i(^0 =  (^ — ^t) +  (1/2) (^ — OtY {0 — 6t)

+ ( 1/ 2) (e -  è,Y { a ‘+\(«*) -  D % ( & ) )  {6 -  9,),

where 6* is a point which lies on the line joining 6 and 9t. Using the  fact th a t  

\0 — 0*\ < \0 — 6t\ we have

Pt+i(^) — P/+i(^r) — { (  ̂— t̂) — (1/2) D ^^ \6 t )  {0 — èi)

< ( l / 2 ) | ^ - ( 9 , | ' + ' r , + i ,  (3.15)

where U +i :=  sup^^ [|^i -  ^2! ' \Ji'{D\%{0i) -  D l% ( 0 2 )}h

fine

. De-

Ut+, := m a x { 0 ,p ,+ i (« , )  +  ^ ( 1/ 2) (g -  %)' (g -  g,) ,r,(g) dg}.

Then

^^(Bf+i. Rf+i) =  J  — \/p<+i(^<)} d y t + i

=  j  — \/u i+ i +  \/u t+ i — \ /p t+ i (^ t ) }  dyt+i

< 2 J  { y ^ t + i  — y /u i+ iŸ  d y t + i 2 J  {\/^t+i “  \/Pi+i(^<)} dyt+i (3.16)

Using Lem m a 3.5, equation (3.15), and the fact th a t

X  { A '1 \ («<)}' (« -  ^'0} d9 =  0,

we have

J  (\/b<+i — V ' ^ t + i Ÿ  d y t + i  <  J  |b^+i — d y t + i

<  (1/2) ^  /  W t ( e - ê t ) \ ^ ^ ‘ w , { 9 ) d 9  J  r,+,rfj/,+i (3.17)
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and also

<  ̂ { f W H S - 9 i ) \ ^ ^ , ( 0 ) d e y ^ ‘ ^ ^ p E , , , { ^ i ^ y ^ '  (3.18)
 ̂JC  ̂ e^C *'P*4-1 Ĉ Hf W  V M, .V ; J ' " l p ,+ i ( g )

We would like now to show th a t ,  {Pg, C}-as,
oo .

y i  J  (\/b<+i — \ /u i+ iŸ  dyt+i < oo,
t=i

and also
OO p 2

y i  /  ~  %/Pi+i(^0} dytj^i < oo,
<=i

because then  we can use equation (3.16) to show th a t  R<) <  oo. There

are two ways to do this, depending on the version of condition C3 we use. If for 

example we know tha t Ee\yt{ \y / t (d  — is of order 0 (1 )  {Pg, 0 ) - a s ,  then,

from condition C2, the terms in equations (3.17) and (3.18) are of order 

and {Pg, 0}-as respectively, and then  using equation 3.16 there exists a

sufficiently small d > 0 such th a t

/ / ^ ( B „ R , )  =  0 ( ^ )  {P«,C}-as,

and therefore, {Pg, 0}-as,
OO

^ i r ' ( B „ R , )  <  oo, (3.19)
t =  l

In order to  use condition C3 with the orders holding in expectation for almost all 

d, or under B , observe th a t  the  terms in equations 3.17 and 3.18 are positive, and 

therefore when you sum them  you get a submartingale. In order to show th a t  the 

sum stays finite {Pg, C}-as it is sufficient to show th a t  it stays finite in expectation. 

The same result 3.19 follows on observing tha t the last factor in each equation is 

0 (1 )  {Pg, 0 } -as  from condition C2, and also th a t  if an event has probability one 

under B , it has probability one for almost all 6 in C.

Next, we tu rn  our a ttention to the Hellinger distance 77(R^+i, Q<+i) which for 

simplicity we also denote by 9i). We want to show th a t  Qf+i) <

oo in order to complete the proof.
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From condition C3 we have that {Pg. C}-as there is a to, which may depend on 

the sequence, such tha t for all t > to the estim ator 0̂  is in the set C.  Then we can 

use a Taylor expansion. For every t > to let

gt+i = max[0.p^+i(^r) +  ~  ^01-

Then using Lemma 3.5 we have

p ^ + ] ) ~  \ / P f + i ) j  dyt+i 

P i  +  l { ^ t )  ~  \ / 9 i + l  +  \ / 9 i + l  ~  \ / P /  +  l ( ^ i ) }  ^ V i + l  

P^+i(^/) “  \/5'/+]I dyt+1 4-2 I — \/p(+i(^<)) dyt+i< 2

< — 6i\'  ̂ sup El A
6ec

Pi+ i(^0

E "2,\èi — 6tŸ sup Et^e 
eec p<+l(^)

5  \dt ~  { sup Ei^o
gee }

<

f(log^):

using conditions C2 and C3 (where the orders hold { P g .C j-a s ) .  It follow^s th a t  

{Pg ,C }-as

(3.20)
i = 0

Again observe th a t  the term s in the above inequalities are all positive, and the re­

fore their sum is a submartingale which implies th a t  condition C3 can be used in 

expectation.

The theorem has been established since equations (3.19) and (3.20) imply th a t

< æ .
t =  l

□
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Next we present an example in order to show how the theorem  (3.2) can be 

applied in specific cases.

E xam ple  3.6 Let (L)) be independent identically d istributed  observations having 

an exponential distribution with mean I/O. Then

and

d0^

Then if C =  (a, 6),

P t W

d ? \B )  _  2 2</,
^  ■ ' ‘ “ T -

and condition (3.10) is easily verified. For condition (3.11) observe th a t  (using the 

third derivative)

<  («1 -  N y ' e - » '  (3 -  ay ,) ,

which means th a t

sup [(«1 -  g , ) - '  { D Y \ B , )  -  A  '(«2)}] <  Vt (3 -  ay,),
,̂ 2 EC

and condition (3.11) can now be verified.

Now, for any specific estim ator we have to verify condition C3. A SFS based 

on the m axim um  likelihood is efficient since the MLE estim ator is consistent, 

{Pg, C}-as \6t — Otl'  ̂ = for some e >  0, and the  posterior m om ents

are of the appropriate order (Ibragimov and Hasminskii, 1980). □
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3.7  C ou n terexam p les

111 previous sections we presented sufficient conditions for the  efficiency of a plug­

in SFS, and we tried to relate the estimative properties of an estim ator to  the  

efficiency of the SFS it produces. In this section we present some examples which 

show th a t  plug-in SFS’s can be inefficient.

The first example shows th a t  even in the  case of independent identically dis­

tr ibu ted  observations a SFS based on a Fisher efficient estim ator can be inefficient, 

and therefore prequential efficiency is a stronger property than  Fisher efficiency. 

The same example shows why in the approach we needed condition C3 (espe­

cially (3.12)), and in the Kullback-Leibler approach we required the second te rm  

in the expected risk of the estimator

^  - f i

to be such th a t  Y^iht < oo.

E x a m p l e  3 .7  Let (Yt) be independent identically d istributed  Normal observations 

with unknown mean 9 and known variance As was shown in example (3.4) the 

plug-in SFS based on the sample mean 9t :=  is efficient. Let =

+  l / ( ^ t  log(/)). Then for every 9

.2a
Eg(^ -  ^,)" =

and
(j2
t t - \ o g ( t ) '

The estim ator is asymptotically efficient since t ■ Ee(9 — e^)^ converges to cr .̂ 

Let Q be the  SFS based on 9t, and R  the SFS based on e .̂ Under Q and R ,  

Y  = (]fi, ]-2, ...) is a Gaussian process, and therefore a necessary condition for Q  

and R  to be equivalent (Shiryayev, 1996, page 533) is th a t  {Pg, 0}-as

£ ^ < 0 0 .
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Simple calculations show tha t

^ ( g . - e , r  1 ^ 1
S  0-2 <72 i • log (<)

and therefore the SFS R  is inefhcient.

In this example the estim ator 6t is hrst order efhcient, bu t the ex tra  te rm

1 / yjt log(t) introduces an inefhciency of order l / ( t  • log(t)) which, although it does 

not affect the hrst order asymptotics in estimation terms, does affect the  prequential 

efhciency of the plug-in SFS.

The next example shows tha t there are cases where, although the support of the 

forecast distributions does not depend on the param eter there  are no efhcient 

plug-in SFS. This is because the Fisher information of every new observation is 

large with respect to the Fisher information of the previous data.

E xam ple  3.8 Let (I'i) be independent Normal observations with unknown m ean 

d and variance known and positive for all t. Let the prior for 6 be a Normal 

distribution with mean 0 and variance 1. Then the Bayesian predictive distribution 

for the observation Ti+i, given I ’L is a normal distribution with variance ly+i:

l-'t + l =  c l ,  +

where St =  This yields an efhcient SFS. The predictive distribution of a

plug-in system will be Normal with variance since the variance is known. U n­

der both  the  BFS and any plug-in SFS the sequence Y  = (Ui, ¥ 2 ^....) is a Gaussian 

process, bu t of course with different means and variances. A necessary condi­

tion then for the plug-in SFS to be efhcient is th a t  (Shiryayev, 1996, page 533) 

{ P g ,0 )-as

But
K+i . 1

-  1 = .2q \ i  ( 1 +
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and therefore if the variance is small with respect to (1 +  St)~^.  then there 

exist no efficient plug-in SFS. For example this is the  case when there is a. constant 

Cl such th a t  for every t

Actually, because under the two measures the process F  is a Gaussian process the 

two measures are then singular, and therefore {Pg, 0}-as

which means th a t  any plug-in system is infinitely worse than  the BFS.

We m ust note tha t in this example the MLE estim ator satisfies almost every 

optim ality  criterion for estimation, but the fact th a t  the uncertainty of dt is not 

incorporated in the predictive distribution makes the plug-in SFS inefficient. □

Another example where no efficient plug-in forecasting systems exist is presented 

next.

E xam p le  3.9 (Stochastic  Linear Regression) Assume th a t  the observations 

{Yt) are generated from the following model:

Y t  =  O ' x t  +  Cf, ( 3 . 2 1 )

where 6 is an unknown vector of order p. the predictors Xt are fixed or predictable 

with respect to the filtration J^t =  cr(Fl, . . . ,  F^), and the  errors tt are Normal 

with m ean zero and variance <7̂ , known and positive.

Let B be a BFS based on a Normal prior with mean zero and variance-covariance 

m atrix  the  p x p identity m atrix  Ip. The predictive distribution of B for the 

observation is a Normal distribution with m ean $t Xt+i and variance <7̂  {1 +  

2:{+i (X^X t  4- /p )“  ̂Xt+i}, where
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and

Y , =

Also let Q be the plug-in PFS based on the estim ator dt. The predictive distribution 

Qt+i is also a Normal distribution with m ean 9t and variance equal to cr ,̂

since it is considered known.

The BFS B is efficient, and the plug-in PFS Q will be efficient if and only if 

{ P e ,0 } -a s

<  oo, (3.22)
t =  l

This condition follows from the fact th a t  under B  and Q the process Y  is a G aus­

sian processes (Shiryayev, 1996). It can be shown th a t  when (3.22) fails, there 

are no efficient plug-in SFS’s. Note tha t when x[j^-^{X[Xt)~'^Xt^i is bounded be­

low, neither the BFS nor the plug-in SFS are consistent, in th a t  HiFt+i^e.^ t+i)  

and H(Pt+i.e-,'Pt+'[j,) do not converge to zero. Nevertheless, the  BFS is efficient 

according to our definition : no other SFS can do any better.

If we apply the above result to the case of an autoregressive model of order 

one, i.e. when ay is TNi, it can be shown (Wei, 1987) th a t  (3.22) holds only when 

1̂ 1 <  1. As a result, we see th a t  there are no efficient plug-in SFS’s for an explosive 

AR(1) model. When |^| <  1, a SFS based on the least squares estim ator or any 

ridge estim ator is efficient. □

3.8 D iscu ssion

Our investigation showed th a t  a class of non-Bayesian SFS’s, the  plug-in SFS’s, are 

efficient, under suitable regularity conditions, and can thus be used either for pre-
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diction or model selection. The main advantage of these SFS’s is th a t  in most cases 

they are easy to use, as well as being good approximations to “better"  forecasting 

systems.

We also showed tha t a plug-in SFS should not be used w ithout some investiga­

tion of the properties of the param etric model, since, as the  counterexamples show, 

it could behave very badly, especially in cases where the Fisher information of the  

next observation is large with respect to the information for the d a ta  a t hand. 

In such cases, while a Bayesian forecasting system will produce good forecasts, a 

plug-in SFS will be heavily penalised for the fact th a t  it does not incorporate the 

uncertain ty  for the estimator of 9 in its predictive distribution. In these cases a 

modification of the plug-in SFS may improve it. For example, instead of a plug-in 

IDredictive distribution we might use any of the predictive distributions proposed by 

Harris (1989),E1-Sayyad et al. (1989), Kuboki (1993) and Basu and Harris (1994). 

The efficiency of such systems remains to be investigated.

The definition of prequential efficiency is based on the predictive assessment 

of a forecasting system using the logarithmic score. Can we extend this property  

to other forms of prediction and loss functions? A first step in this direction is 

described in the next chapter, where a similar property of efficiency is defined and 

studied for point prediction under squared error loss.
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C hapter 4 

E fficient P o in t P red ictio n  

S y stem s

4.1 In trod u ction

Our m ain  objective in this chapter is to extend the notion of prequential efficiency 

for probability forecasting systems to point prediction, and to study the efficiency 

of different methods of constructing predictions. Specifically, we show th a t ,  under 

weak conditions, Bayesian predictors are efficient.

In a decision-theoretic framework an optimal point predictor is defined as th a t  

which minimises the expected loss. For example, if we observe X  and want to 

predict Y  under squared-error loss, then the predictor g { X )  th a t  minimizes E { Y  — 

g{X)}'^ is the  conditional m ean E { Y \ X ) .  This is called the m inim um  m ean squared 

error predictor of Y  given X .

The problem with the above definition is th a t  it presupposes knowledge of the 

joint distribution of X  and Y .  In most situations we do not have this information. 

Suppose instead tha t we can assume th a t  the joint distribution of {X,  Y )  belongs 

to a param etric  family of distributions, indexed by a param eter  6. In this case we
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typically cannot use the above optimal predictor, since for every 0 we will have a 

different optimal predictor E { Y \ X , 0 ) .  There are now two sources of uncertainty, 

the predictand Y  and the unknown param eter 9.

One simple and common way to proceed is to replace the unknown param eter  

6 in the optimal predictor with a suitable estim ate of 6 based on the observation 

of X .  This is the plug-in approach, similar to the  plug-in m ethod  for probability 

forecasting discussed in Chapter 3, and usually this m ethod gives reasonable point 

predictions.

There is also a Bayesian method of issuing point predictions. We specify a 

prior distribution on the set of values for 6, thus completing the joint distribution 

of (^..Y, W). Given a suitable loss function for prediction, the  optimal predictor, 

from a decision-theoretic point of view, is th a t  minimising the  Bayes risk. For 

example, when the loss function is squared prediction error, the Bayes predictor 

is the function g{X)  which minimises the overall expectation E { Y  — g ( X ) y ,  viz. 

jF (y  |A'), where the expectations are calculated in the joint distribution of (,Y, W) 

after marginalising over the random variable 0.

However, this method is not likely to be acceptable to a non-Bayesian s ta t is t i­

cian unless it can be shown to have good properties under the  true model. Such 

properties are often phrased in terms of expectations conditional on bu t these 

in tu rn  might be objectionable to the Bayesian. In order to side-step such con­

troversies, we introduce a new notion of optimality, in an asym ptotic  sequential 

framework. Our definition is based on the actual empirical performance of the  

prediction rule, and avoids references to conceptual replications of the setup for its 

justification. It is perhaps a disadvantage th a t  our definition is based on infinite 

sequences and asymptotic arguments. Nevertheless, it can be used to study the  

actual performance of s tandard methods of constructing predictors, and help us 

discuss issues of optimality from a different perspective.

In this chapter we investigate this new approach for point predictors assessed
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by squared prediction error loss, and we show tha t,  under weak conditions, there 

exists a class of optimal predictors which we te rm  efficient.

In §4.2 we describe the setup, introduce the  notion of a point prediction system  

(PPS)  as a rule th a t  generates predictions sequentially, and present our definition of 

efficiency for P P S ’s. In §4.3 we study the case when the true  distribution is known. 

This will provide us with the  tools to show in §4.4 th a t  efficient P P S ’s exist for 

general param etric  families, by establishing th a t  efficient P P S ’s can be constructed 

using a Bayesian approach. In §4.5 we discuss the relationship between efficient 

point prediction systems, and efficient probability forecasting systems. In §4.6 we 

present sufficient conditions for the efficiency of plug-in P P S ’s. In §4.7 we discuss 

some applications in probability forecasting and stochastic regression models.

4.2 E fficiency o f P oint P red iction  S y stem s

We use a framework similar to the ones used in the previous chapters. Assume th a t  

a forecaster observes a sequence of random vectors Y  = (]^),  ̂ >  1, with Y] G 

His task at each step t is to issue a point prediction for the next observation Iq+i 

using the  past observations ( T i , . . . ,  Yt). The dimension k could change with

A bu t for simplicity we consider it fixed.

In order to issue his predictions the forecaster uses a rule, which for every 

set of outcomes for and any other external information he may have at th a t  

time, specifies a point forecast for Yt+\. We call such a rule a Point Prediction 

System (PPS).  The class of all P P S ’s is extremely broad, including any m ethod of 

constructing one step ahead predictions.

To be more rigorous, let the sequence of the observed variables Y  = (Yt) be 

defined on a filtered probability space (0 ,  JF, P ) .  The filtration [Tt)  represents 

the  information available to the forecaster at each time point t. W hen the  only 

information available at tim e t is the past observations then  T t  is the cr-field
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generated by F b

Following standard term inology (Shiryayev, 1996), we call a sequence of random  

elem ents (e.g. variables, vectors or m atrices), U =  ([/<), a stochastic sequence if, 

for every t, Ut is .Frm easurable; and predictable if each Ut is ^ f_ i-m easu rab le . We 

assume th a t the  sequence of observables (F )  is a stochastic sequence of vectors in 

Since any point prediction for F + i should be based only on the  inform ation 

available to the  forecaster at tim e t. any PPS is equivalent to a predictab le sequence 

of vectors in and vice-versa.

If A  is a PPS, and (.4i, .4 2 , . . . ,  A j)  are the predictions it issues for the  first 

T  observations I'F • • •, Ffi), then the em pirical perform ance of A  up to tim e T  

may be assessed by the sum of the squared prediction errors:

5 r(-4 ) =  f ; | | y , - A f ,
 ̂= 1

where || • || denotes the Euclidean norm  in R^'. This criterion also covers the  seem ­

ingly more general case where we want to assess the perform ance of a PPS  using 

weighted squared prediction errors

T
S" '{A )  = Y ; ^ { Y , - A t y w , ( Y , - A t ) ,

t = l

where W  = (1F<) is a sequence of predictable sym m etric positive definite m atrices. 

This is because we can m ake the transform ations Yw,t = and Aw^t =

At,  and use the criterion Sj( - )  on the transform ed variables and PPS.

In the  light of any sequence of data, we can com pare two P P S ’s, say A  and 

D,  using the  difference between the cum ulative loss for A,  S t {A),  and th a t for D,  

,9T(D):

D T (Æ D ) =  ^ T (v 4 ) -^ r (D ) .

For any PPS .4, S t { A )  is increasing in T ,  and typically tends to  infinity. If for a 

specific infinite sequence of outcomes the difference D t { A , D )  tends to —oo, then  

we can consider th a t the PPS A  has performed b e tte r than  D,  and th e  opposite if
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D t { A ,D )  tends to  +co. W hen the difference D t (A^D)  stays bounded bo th  above 

and below, we cannot effectively distinguish between the  two P P S ’s, which can 

then  be considered equivalent.

The above consideration m otivates the following definition of an efficieiit PPS.

D e f in it io n  4 .1  Let V  =  {Pg : ^ G 0  Ç be a parametric family o f  prohability 

measures on (fl, A P P S  A  will be called efficient fo r  the family V  if, fo r

any other P P S  D,

lim supT)j(y4, D) <  oo, (4.1)
T —oo

with P q-probability one for  almost all 9 in 0  (i.e. excepting perhaps a set of  

Lebesgue-measure zero).

W hen 0  is countable, the same definition can be used, on replacing Lebesgue 

m easure w ith counting m easure (and thus rendering unnecessary the  qualification 

“alm ost all” ).

According to  our definition, a PPS is efficient if, w ith probability  one for alm ost 

all its em pirical predictive perform ance will be at least as good as th a t of any 

o ther PPS. This is a strong property, and indeed when 0  is uncountable we cannot 

expect to find a PPS for which property (4.1) holds for all 9 E 0 .  This is because 

it is typically easy to construct a PPS which is exceptionally good for some specific 

values or values of 9 {e.g. based on assuming some particu lar value to  be th a t gen­

erating  the  data). This phenom enon is akin to th a t of “super-efficiency” . We shall 

see th a t, w ith the ex tra  qualification “almost all” , th is difficulty can be avoided.

O ur notion of efficiency is sim ilar to  the notion of prequential efficiency for prob­

ability  forecasting systems introduced by Dawid (1984), and discussed in C hapters 

2 and 3. B oth are based on the idea th a t a prediction rule should be assessed by 

its em pirical perform ance for the actual da ta  arising. An efficient prediction sys­

tem  is then  one th a t can be alm ost guaranteed to deliver op tim al perform ance, so 

long as the  d a ta  sequence arises from some probability  d istribu tion  in the  fam ily
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considered. W ith  the im portan t exception of th e  in terp re ta tion  of “alm ost” in th is 

s ta tem en t, these definitions m ake no references to  hypothetical replications of the  

setup, a lternative  data  sequences, or events th a t did not occur. In particu lar, no 

concept of expected perform ance has any rôle to  play.

4.3 K n ow n  P robab ility  D is tr ib u tio n

In th is prelim inary  section we assume th a t the  probability  m easure P is fully known, 

and for every t the conditional means

Mt :=

and covariance m atrices

5, :=  £ p ,,- i  {(y; -  M ,){Y , -  M ,Y ]  ,

are defined P a s., where £ ’?,<(•) denotes the conditional expectation  Ep{- \Tt ) .  For 

every t, St is a non-negative definite m atrix . We denote its m axim um  eigenvalue 

by A m ax St. Since the d istribution of Y  = ( y ,  . . . )  is known, a PPS  is efficient

if p roperty  (4.1) holds w ith probability one under P.

A lthough we assume th a t the conditional m eans Mt  exist P a s., we do not 

m ake any assum ptions on the  overall expectation of y ,  and all th e  conditional ex­

pectations we use are generalized conditional expectations, as defined in Shiryayev 

(1996, chap ter 7). Thus the stochastic sequence U t  = YlJ=i{yt — Mt)  is a generalized 

m artingale  (Shiryayev, 1996, page 476), bu t not necessarily a m artingale.

T he sequence of the conditional means M  = (M^) is a p redic tab le sequence 

of vectors, and hence a PPS. For every f, the  prediction Mt  m inim ises the  one- 

step-ahead predictive risk, Ep^t-i{\\yt — g \ f )  over all ^ f_ i-m easu rab le  functions 

and consequently M  specifies the optim al (in decision-theoretic term s) sequence of 

one-step-ahead predictions. The next theorem  studies the  asym pto tic  perform ance
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of the  PPS  M  w ith respect to  any other PPS. For two events Ei  and E 2 we say 

th a t P  a s. El  => E 2 if the event th a t Ei  holds bu t E 2 fails has P -p robab ility  zero.

T heorem  4.1 For any P P S  A  = {At), P-a.s.

{sup A m ax Ft < 00} => { lim D t { M ,A )  exists and is less than  00}.
t T—CO

More specifically, P-a.s.

js u p  A m ax Ft <  oc and ^  ||A/f — A t \ f  < o o | |  —cx) <  ^ im  D t { M , A )  < o o | ,

and

I  sup A m ax St < 0 0  and ^  \\Mt — At\\'^ =  o o | => |  ̂ im  D t { M ,  A)  =  —00 j  . 

P ro o f  of T heorem  4.1. F irst we prove the following lemma:

L em m a 4.1 I f  Si is a generalized martingale then S f  is a generalized suhmartin-  

gale, and i f  At is the compensator of  S^ then P-a.s.

Aoo < 00 = >  St converges to a finite limit

Proof. This proof is a sim ple adaptation  of Theorem  3 in page 518 of Shiryayev 

(1996) for generalized subm artingales, but we present it for com pleteness. The 

stochastic sequence {St +  1)^ is a nonnegative generalized subm artingale w ith com ­

pensator At P I. We know (Shiryayev, 1996, page 523) th a t for a nonnegative 

generalized subm artingale if the  lim it of the com pensator is finite then  P -a .s . the 

subm artingale converges to a finite lim it. Therefore S^ and {St -f 1)^ converge to 

finite lim its, and therefore St converges to a finite lim it since

2

P r o o f  o f  T h e o re m . It is easy to show th a t

E p , t -M \y t  -  =  E p ,,_ i(||%  -  M t f )  +  \\Mt -  /I,II'.
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The stochastic sequence (A j) ,  where

T
A t  =  D T ( M , A )  +  Y , \ \ M , - A , f

i= l

— 2 — M iy iY i  — Aff),
i=l

is a generalized m artingale.

C a se  1. sup, A m ax St < oo and \\At — Mt||^ <  oo.

Since

^ P , t { ^ t +i ) ~  A r  T  4 (A t +i — S t +i {A t +i — AIt +i )-,

the  sequence ( A j)  is a generalized subm artingale, w ith com pensator C r  =  4 (At 

Mt) 'S t (A t  — Mt)  which can be bounded above:

T
2C t  <  4 m ^ A m a x 5 i  ^  \\At — Mt\\  .

i=l

It follows th a t if \\At — < oo, then C t is finite, and using Lem m a (4.1),

A t converges to  a finite lim it P -a.s.. The stochastic sequence D t ( M , A )  also con­

verges P -a .s . to a finite lim it since D t (M ^A)  =  A t  — \\At — Mt\\^.

C a se  2. sup, A m ax St < oo and \\At — M<||^ =  oo.

Let ÜT =  m a x ( l ,X i^ i l|A< — Mt\\^). Consider the  generalized m artingale

t=l

Then W }  is a nonnegative generalized subm artingale w ith com pensator

^   ̂ (At  — M t ) ' S t ( A t  — M t)

which is bounded above by

r  MX ii2
4 \ m ax A m ax St > 

I t<T j

\\At -  M t\\‘
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Using Lem m a 4.1 we see th a t the sequence [ W j )  converges P -a .s . to  a finite lim it. 

Since
A t E L
a j  ÜT

from K ronecker’s lemma, P -a.s.

lim —  =  0,
T—‘OO Qj'

and

T — oo Qj-

It follows th a t liniT—00 D t [M,  ^4) =  —oc, and the  theorem  has been established. □

Theorem  4.1 shows th a t when the covariance m atrices St stay  bounded in all di­

rections P -a.s., then the PPS M  is efficient. Any o ther PPS A  is also efficient if and 

only if it issues predictions which are asym ptotically  equivalent to  the predictions 

issued by the PPS M .  i.e. if and only if P-a.s.

oo
^ ] I I I I  <C oo.
i = \

Note th a t any two efficient P P S ’s, say A = {At) and D = ( A ) ,  asym ptotically  

issue equivalent predictions not only for the next observation, bu t for th e  whole 

infinite future, in the sense th a t, P -a.s.,

oo
h m Y . \ \ A - D , f  = 0,

which holds since

||At — A ||^  — 2 I W^t — At\f  +  l|4̂ < “  ^
t= T  \ t = T  t= T

, If

The next exam ple shows th a t, in order to establish th e  above results, we do 

need to  bound somehow the increase of the covariances. O therw ise we can get 

surprising results: for exam ple, there exist cases where efficient system s do exist, 

b u t M  is not one of them .
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E x a m p le  4 .1  Assume th a t we observe a sequence of independent observations 

(Yt), w ith  P(l"i =  t^) =  1/t^ and P(}^ =  0) =  1 — 1/t^. Then, for every t, 

Mt  =  E{Yt)  =  1 and according to  the PPS M  th e  best prediction for each Yt is 1. 

B u t noting th a t
oo oo 1

t = l  t = l  ^

we have, from  th e  Borel-Cantelli lem m a, th a t P -a.s. there  exists to (depending 

on th e  outcom e sequence) such th a t, for every t > to, Y\ =  0. Therefore the  best 

sequence of predictions in th is case comes from  a PPS, say Z  = (Zt),  which for 

every t predicts 0 for Yt. W ith  probability one, the  loss S t (Z)  stays finite as T  

tends to  infinity, and any o ther PPS A = (At),  is efficient if and only if P -a.s.

<  oo.
i = l

It follows th a t the  PPS M  is not efficient, since

H  =  OO.
f=l ï=l

□

In view of the  above exam ple we see th a t, w ithout further conditions, op tim ality  

defined in term s of the m inim ization of the one-step ahead risk does not necessarily 

im ply optim ality  in term s of the  asym ptotic em pirical perform ance of a prediction 

rule.

4.4 P aram etric  Fam ily o f  D istr ib u tion s

Assum e now th a t P  is an unknown m em ber of a param etric  family of probability  

m easures V  = {Pg : ^ G 0 }  on (Q ,E ,  (Et)) ,  w here 0  is a subset of p >  1. 

For an event A,  and subset C  of 0 ,  we say th a t A  holds {Pg, C}-as if Pg(A ) =  1 

for alm ost all 6 in C (i.e. excepting perhaps a set of Lebesgue m easure zero). We 

rem ind th a t for any probability  m easure Q on ( ü , E , ( E t ) ) ,  we denote by E q  X ')
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the  conditional expectation and by mt{9)  th e  conditional m ean of Yt

given J- i- \  under Pg, i.e.

m.t{6)  : =  E e { Y i \ T t - i )  : =  E e , i - \ { Y t ) .

We now show how efficient P P S ’s can be constructed using a Bayesian approach. 

Let 'k {9) be a prior probability  density for 9̂  which is alm ost everywhere positive 

on 0 .  Then we can define the  Bayesian m arginal m easure on (0 ,

B  = f  Pe7r{9)d9. (4.2)
J  0

At tim e we can calculate the  posterior density 7Tt{9) of 9 given E t .  If we assum e 

th a t {Pg, 0 ) -a s  the conditional means

MB,t =  EB,t- i{yt)

and covariances

Sba =  EB,t-i {{Yt  -  MB,t){yt -  

are finite for every t. and

sup A m ax < oo, {Pg, 0 ) -a s ,  (4.3)

then we can prove the following theorem .

T h e o r e m  4 .2  Let B be defined as in (4.2), and assume that it satisfies assumption  

(4.3). I f  M b  '■= {Mb a ) -̂5 the Bayesian P P S  (EPPS) based on the conditional means  

o /B ,  and A  = (At) is any other PPS, then {Pg, 0 } -a s

lim D t {Mb i  A)  < oo.
T —’■oo

More specifically, {Pg, 0 } -aa

and

~  ^<11̂  <  oo) => { —oo <  ^ i r ^ ^ ^ ( M b , A) <  —oo),
i=l

oo

i Y l  P^B ,i -  =  oo} => { lim D t ( M b , A )  =  - o o ) .
t=i
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P r o o f  o f  T h e o re m  4 .2 . Using Theorem  4.1 we know th a t, for any o ther PPS  

^

{sup A max S's f <  00} =4> { lim  D t {M b i  A)  < 00}, B  a s. (4.4)
t ’ T -+00

If an event has probability one under B , then  it has probability  one for all 9

in 0 ,  except perhaps for a set of Lebesgue m easure zero, since the  prior density

7t{6) is alm ost everywhere positive on 0 .  Therefore (4.4) holds {Pg, 0 )-a s . From 

assum ption  (4.3), the event

sup A max 5 b ,/ <  00
t

holds {Pg, 0  j-as and therefore {Pg, 0}-as

lim D t {Mb ^A) < 00,
T—00

and {Pg, 0} -as

00

{sup A m ax 5 b  < <  oc and ^  ||A/b < — < 00} { — 00 <  lim A) < —o c } ,
t ’ t=i ’

00

{sup A m ax 5 b  t < 00 and ^  ||M b < — A/||^ =  co} =#> { l i m  D t {M^^ A)  = —oc'}.
< ’ (=1

□

Thus, as the last theorem  shows, a PPS based on the  conditional m eans of 

a Bayesian m easure is efficient under the m inim al assum ption th a t its  predictive 

covariance m atrices (calculated under the m arginal m easure B ) stay bounded w ith 

probability  one for almost all 6. It is easy to  show th a t

^ B , t  = /  rrit{0) 7rt-i{6)d9, 
JQ

and therefore the Bayesian prediction is a weighted average of th e  conditional m eans 

mt{9),  where the posterior density of 0 given provides th e  weights for

the  different Ô s.
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For an arb itra ry  PPS D = {Dt) we can establish its efficiency by com paring its 

predictions w ith  those of an efficient B PPS, and by using the  fact th a t D  is efficient 

if and only if asym ptotically  th e  predictions of the  two P P S ’s are equivalent, i.e. if

£  P ^B ,i -  A ll^  <  oo, { P g ,0 } -as . (4.5)
i = l

Using the  subm artingale convergence theorem  it can be shown th a t a sufficient 

condition for (4.5) to hold is th a t

T

s u p ^ £ ’B(||MB,i -  A ||^ )  <  oo.
^  t = i

A typical expectation in the  above sum can be w ritten  as

-  D t \ f  = E^Ee\\mt(0)  -  A ||^  ~  ET:Ee\\mt{6) -  M B,<||\

where, for every term , the first expectation is w ith respect to the  prior density tc{6), 

and the  second with respect to  the probability m easure Pg. Thus the  expectation  

||dfB,f — Ei\\ ‘̂ is equal to  the  difference betw een the  Bayes risks of M ba  and 

Dt for the  estim ation of the  conditional m ean nit(9) under squared error loss. 

The prediction M b ,î m inimizes this risk, and hence a sufficient condition for the  

efficiency of the  PPS D  is th a t its cum ulative Bayes risk be sufficiently close to  the  

m inim um , achieved by the Bayesian PPS.

For the  case where the  probability  m easure P  was known, we were able to  show 

th a t any two efficient P P S ’s issue asym ptotically  equivalent predictions not only 

for the  next observation, bu t for the  infinite fu ture. This result can be ex tended  to  

the  case of a param etric  family.

T h e o re m  4 .3  Let 3  be a Bayesian m.easure, and assume that  (4.3) holds. Let 

D = (Dt) and A  = (At) be any two efficient P P S  fo r  the family V . Then  { P g ,0 } -a s

oo

lim ,̂11̂  =  0.
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P r o o f  o f  T h e o re m  4 .3 . Let AI-q =  {AÎB,t) be the  B PPS based on the  conditional 

m eans of B . Then using Theorem  4.2, M-q is efficient and the  P P S ’s D = {Dt)  and 

A  =  (v4 )̂ are efficient if and only if {Pg, 0}-as

t=i

and

Clearly then  {P ^ ,0 } -a s

and finally {Pg, 0}-as

t =  l

IIA — 'd(ii^ <  oo,
t=i

hm  f ; | | A - A | |  =  0.
^ - ^ t = T

□

4.5 Efficient SFS and P oint P red iction

The notion of a statistical forecasting system  (SFS) was in troduced in section 2.4. 

For com pleteness we repeat here th a t a SFS is a prediction rule which, for every t 

and every realisation of the outcom e of specifies a predictive d istribu tion  for the  

next observation Yt+i. Any SFS is consistent w ith at least one jo in t d istribu tion  Q 

on (n , (A ))-  The property of (prequential) efficiency for probability  forecasting

system s was defined in section 2.4, in the sim plest context w ith  A  =  cr{T l,. . . ,  1'^}. 

W hen th e  distribution Q is uniquely determ ined and m ay thus be equated  w ith  

the  SFS, this is as follows:

D e f in it io n  4 .2  Let Q be a SFS, and Q* its restriction to T%. Then  Q  is termed  

efficient if, fo r  any other PF S  S, the Radon-Nikodym derivative of  with respect 

to Qfi-

A . ( S , Q ) : = g ,
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converges to a finite limit with probability one fo r  almost all 6 in 0 .

In Seillier-Moiseiwitsch, Sweeting, and Dawid (1992) it was shown th a t any Bayesian 

probability  forecasting system  based on an alm ost everywhere positive prior is ef­

ficient, and any other PFS Q  is efficient if and only if there is a BPS B  such th a t 

B  <C Q. T he result extends to  cases where cr{Yi^. . .  ,Yt]  d  T t .

In the  previous section it was established, under a weak condition, th a t a PPS  

based on a Bayesian SFS is efficient. It is na tu ra l then to ask if the sam e result 

can be extended to any efficient probability forecasting system . The following 

theorem  shows th a t this is possible, under a sim ilar weak condition on the predictive 

variances of the  efficient probability  forecasting system .

T h e o r e m  4 .4  Let Q be a probability measure on {Lt, , and assume that

there exists a Bayesian PF S  B  such that B  <C Q . Let denote the conditional  

covariance matrix ofY\  under  Q . Then ? /{ P ^ ,0 } -a s

sup A m ax Fq^^ <  oo,

then the P P S  based on the conditional means o f  (Tt) under  Q  is efficient.

P r o o f  o f  T h e o re m  4.4 . Since B <C Q, then  any event th a t has probability  one 

under Q has probability one under B . The proof continues in the  same way as the  

proof of Theorem  4.2. □

This theorem  shows th a t one way of constructing an efficient PPS for param etric  

families is by using efficient probability  forecasting systems. The only assum ption 

th a t we have to check is w hether the predictive covariance m atrices stay bounded 

in all directions.

4.6 P lu g-in  P P S ’s

A popular m ethod of forming predictions is by replacing the  unknown param eter 

0 in the  predictive mean w ith an estim ate  $t based on the available d a ta
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at tim e t. Then the prediction for Yt+i is We will call a PPS  based on

this rule a plug-in PPS.

One m ethod of establishing the efficiency of a plug-in PPS  is by showing th a t 

it is generated by an efficient plug-in probability  forecasting system , and verify the  

ex tra  condition of Theorem  4.4. Sufficient conditions for the  efficiency of a plug-in 

PFS are presented in C hapter 3.

A nother more direct m ethod is to  com pare the  predictions of the  plug-in PPS 

w ith the predictions of an efficient Bayesian PPS. Using th is idea we next present 

sufficient conditions for the efficiency of a plug-in PPS. We assum e th a t th e  plug-in 

PPS is based on some estim ator sequence (§t). The only property  th a t the  estim ato r 

sequence should satisfy is described in Condition 4. In order to  have a well-defined 

plug-in PPS, we assume th a t 6t is defined for any f >  0, and takes values in 0 .  

This does not affect the generality of the results, since they are asym ptotic.

C ondition 1.

Let B be a Bayesian m easure based on a prior probability density Tr(^) for 

alm ost everywhere positive, such th a t (4.3) holds. Let 9t denote th e  posterior 

m ean of 9 based on the d a ta  =  (Ti, FT - -, Ft), and % the  posterior expectation  

of 11̂  — The n {Pg, 0 ) -a s
OO

E
t = i

C ondition 2.

The param eter set 0  is open, convex, and {Pg, 0 ) -a s  the predictive m eans mt{9)  

are twice continuously differentiable w ith respect to w ith derivatives D^^hnt{9) 

and D^^hnt{9).

C ondition 3.

Let

=  \\D^^'>mt{9)\\ and d['^\9) =  sup \h' D^^^mt(9) h\.
{ h \ h ' h = l }
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Then {Pg, 0}-as

sup sup j <  oo.
t  0 e &

C o n d i t io n  4.

For the  sequence of estim ators (^^), {Pg, 0} -as

y i  II <  oo.
i =  l

T h e o r e m  4 .5  Assume that Conditions 1~4 hold. Then the plug-in P P S  D based 

on the estimator sequence {9t) is efficient.

C o m m e n ts :

(а) C ondition 1 guarantees the existence of an efficient B P P S , which we use to 

establish  th e  efficiency of the plug-in PPS. It also controls th e  behaA'iour of the 

posterior variance. This is a weak condition since typically th e  posterior variance 

is of order The sum YA=\^t  is positive and increasing, and therefore a 

subm artingale  under any Pg or B . A sufficient condition for the  second p art of 

Condition 1 to hold is th a t this sum stay finite in expectation for alm ost all <9, or 

under B . This can be shown using the  subm artingale convergence theorem .

(б) Conditions 2 and 3 are smoothness conditions. Condition 3 is restrictiA’e since 

it sta tes th a t the  derivatives stay bounded, bu t see com m ent (d).

(c) C ondition 4 is the only condition th a t the estim ator 6t should satisfy. A lthough 

th is condition seems restrictive, it is alm ost a necessary condition as it is easy to  

construct exam ples where Condition 4 fails, and the  PPS based on 6t is not efficient. 

For exam ple assum e th a t the observations (Vi) are independent, having the  N orm al
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distribu tion  N { 0 , 1). The PPS based on the  sequence of th e  posterior m eans of Ô 

for any Bayesian m easure, based on a proper prior density, is efficient, and any 

plug-in PPS  is efficient if and only if Condition 4 holds.

If dt is a m axim um  likelihood estim ator (M LE), then  typically  (when th e  ob­

served inform ation grows a t ra te  t) its distance from  the posterior m ean is of order 

for some e > 0 (Johnson (1970), Ibragim ov and Hasm inskii (1980), 

Crowder (1988)). Therefore Condition 4 seems to  be a weak condition for the  

MLE.

T he sum  of the squared distances between 6t and the  posterior m ean 6t is an 

increasing positive sequence, and therefore a subm artingale under any Pg and under 

B . Using again the subm artingale convergence theorem  we have th a t a sufficient 

condition for Condition 4 to hold is th a t the sum  stay finite in expectation  for 

alm ost all 0 or for B . For exam ple if

s u p E e  ll^t -  <  oo, (4.6)

then  Condition 4 holds. Observe th a t

-  è.w" = E^EeWê, -  g || ' -  E^EsWèt -  g | | \

The estim ato r 9t minimizes the  risk E,rEg||e< — over all estim ators e ,̂ and th e re ­

fore in order to establish th a t Condition 4 holds using (4.6), it is sufficient to show 

th a t the  estim ative Bayes risk (under quadratic loss) of the  estim ato r 9t is close to 

the  m inim um  risk, achieved from the posterior m ean 9t.

{d) A lthough in the s tatem ent of the theorem  we used the  whole p aram eter set 

0 ,  the  sam e assum ptions and theorem  can be used to  show th a t a plug-in PPS  is 

efficient for a subset C  of 0 ,  using the results in section 2.5. Since C ondition 3 

involves suprem a over the param eter set, in m any situations it will not hold for the  

whole set 0 .  W hat we can do then is to find a su itab le countable cover of 0 ,  i.e.
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a collection of subsets (Cj)jeN of 0  such th a t

0  =  U  Q ,
i€ N

and to use th e  theorem  for every one of the C /s  in order to show th a t th e  plug-in 

PPS  is efficient for the  subfam ily of d istributions P c j =  {Pg : 6 G Cj ]  for every j .

The subsets Cj  should be chosen in a way such th a t Conditions 1-4 are satisfied 

for every one of them . Then, since it can be shown (Lem m a 2.6) th a t if an event 

E  is {P ô ,C j}-as for every j .  then  it is {Pg, 0}-as, the plug-in PPS is efficient for 

the  whole fam ily V.

(e) It is possible th a t, while Conditions 1-4 do not hold in the  original param etrisa- 

tion, they m ight do so after a transform ation of the param eter. T hen the conclusion 

of the Theorem  would hold, since it does not depend on the  param etrisa tion  used.

P ro o f  of Theorem  4.5. Let M-q be the B PPS based on B. Since the conditional 

variance m atrices stay bounded, M-q is an efficient PPS. In order to show th a t 

D  is efficient, it is sufficient to  upper bound the squared distances between the  

predictions of M q  and D  w ith suitable functions in order to establish th a t
OO

t =  l

Using Condition 2, for every ^ G 0  there is a 0* (which m ay depend on 0) such 

th a t

— {0 — èt ) 'D\^^i{6t)W =  III (^  — Ot)' [6 — ^ f ) | |

<  s u p d % (s )
4 s€0

and therefore

I I ^ ^ B x + i  ~  ^^^<+i(^f)| | ^  IK^f — ^ t ) ' +  | | M B , f + i  — rrit+i{Ot) — (Ot — ^ t ) ' D % ( ^ (

=  II(̂ < — 9t)'D[Ji{Ot)\\ 4- II/@ m t+i(^) 7Tf( )̂ — mt+i{9t) — {9t — êt)'D[]^-^(9t)\\

^  ll f̂ — ^f|| sup d { |\(s) +  % +  ll^ï — <̂11 )  su p d |^ \(s ) .
s£&  4 \ /  s€©
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Then

< 2 ll t̂ — ét|l | s u p 4 +i(<s)| -{■ (Vt ll t̂ — t̂ll j  | s u p  4+1(5)

<  2 II4  —4 II is u p  4 +1(5)!" + 2  II4  —4 II iS lip  4 % ( 5) !
L 5E0  J l̂ sG© j

+  2 %  ̂ jsu p  4+1(5) j  .

It follows th a t

H  II /© "^<+1W t̂{0) de -  mt+i(4 ) if <
<=0

2 jsiip  sup 4+1(5)} ^  ||4  -  4 if
[ t < T  s e e  J ^=0

+  2 ( su p  sup 4+1(5)} I ]  II4  -  4 if +  2 }sup sup 4+1(5)}
[ i < T  s e e  j  t = o  [ t < T  s e e  J <=0

By Condition 3, the  quantities {sup^<j sup^g© 4+ i(5)}^  and {sup^<j sup^g© 4+ \(5)}^

stay bounded {Pg, 0}-as. If we also use Conditions 1 and 4, it is clear th a t the

three sums stay bounded {Pg, 0}-as, as T  tends to infinity. T hen { P g ,0 } -a s  the

sum
00 00 2

X ]  ||-''^5,i+l — A + l  i f  =  5 3  P ^ 5 ,t + l  — 7?7/+ i ( 4 ) | |
t = 0  t = 0

°° 2 
=  H  II j© 77%<+i(̂ ) 7T<(̂ ) -  m<+i(^<)||

t = 0

is finite. The proof is com plete. □

The next exam ple illustrates how Conditions 1-4 can be verified in specific 

exam ples.

E xam ple  4.2 (Poisson Loglinear M odel) Assume th a t are independent Pois­

son observations w ith m eans =  exp(j:^^), where Xt 6 R  are fixed explanatory  

variables, and the  unknown param eter 6 takes values in E . Then

mt{9) = exp{xi9)

68



and therefore

S ^ \ 0 )  = |z f |exp (z f^ )

and

S ‘̂ \6 )  — exp(j:<^).

If we restric t our atten tion  to  a bounded subset C  =  (a , /9) of 0 ,  then  Conditions 

2 and 3 hold if sup^ \xt\ < oo, since the param eter 6 is bounded. Using the  results 

in Crowder (1988) we can verify Conditions 1 and 4, for any Bayesian m easure B, 

if l im j—,^ T~^ H?=i > 0. Therefore a PPS based on the m axim um  likelihood 

estim ator is efficient for any subset (a , jS) of 0 ,  and therefore efficient for th e  whole 

fam ily since

j=i
□

4.7 A pplications

In th is section we present some applications of our results to probability  forecasting 

and stochastic regression.

E xam ple  4.3 (Brier Score.) Let E  = {Et) be a sequence of events of in terest, 

and D = {Dt) a PPS which issues a probability  prediction Dt  for Et. For such a 

forecasting system  the Brier score is defined as:

B i .(£>) =  E  {/(£<)
t = l

where /(•) denotes indicator function. If P  is th e  true  probability  m easure, we 

denote by M p =  (M p^J the PPS  based on P , w ith

M p , =  E p  { I { E t ) \ E t - , }  = P { E t \E t - i ) .

A pplying Theorem  4.1 we have th a t P-a.s.

^im  {B r(M p ) — B t { D ) }  < oo.
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and indeed P -a .s . each of the  events

oo

~  D t Ÿ  < oo
t=\

and

lim  { B t { M p )  — B t’(jD)} >  —oo 
T  —foo

im plies the o ther. This result means th a t the Brier score can be used as a consistent 

m odel selection rule for two distributions, since, w ith probability  one, the  true  

d istribu tion  P  will eventually have a smaller B rier score th an  any o ther d istribu tion  

Q , except in th e  case where the  two distributions issue asym ptotically  equivalent 

forecasts.

W hen the true  probability m easure is not known, bu t belongs to a param etric  

family, we can show, using the  results in §3 and §4, th a t any Bayesian PPS  is 

efficient in term s of the Brier score.

T he above results continue to hold when a t any step t th e  forecaster has to 

specify his probability  forecasts for a finite num ber m  of events { E n , . . . ,  Etm).  In 

th is case the prediction is a 777,-dimensional vector Dt = { D n , . . . ,  Dtm)-, and the 

Brier score is defined as

T m 

<=i j=i

□

E xam p le  4.4 (Stochastic  Linear Regression) Assume th a t the  observations 

(]^) are generated from the  following model:

Yt =  OiXti +  . . .  +  OpXtp +  (4.7)

w here 0' = { O i , , Op) is a vector of unknown param eters, and (ct) is an indepen­

dent sequence of unobservable errors, each having a Norm al d istribu tion  w ith m ean

zero and variance a' .̂ We assum e for the m om ent th a t cr̂  is known, bu t la ter we
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will relax this assum ption. Also let x[ = . ^ X t p )  and X t  = { x j k ) i < j < t , i < k < p -

The regressor vector m ay depend on th e  previous responses and regressors 

a:i, y i , . . . ,  X t ,  y t .  Thus, if is the cr-held generated by X t  and =  ( F i , . . . ,  Y t ) ' ,  

the  vector is J^rnieasurable. W ithout loss of generality we assum e th a t is 

fixed.

Let B be a Bayesian m easure based on a prior d istribution  for 0 which is N orm al 

w ith m ean zero and variance covariance m atrix  A“ ^ /, where I  is th e  identity  m atrix . 

Then the predictive d istribution under B for the  observation Y t + i  is N orm al w ith

m ean Ot{Xyxt+i and variance {1 +  +  XyXt)~^Xt+i},  where

A PPS based on the predictive means of B is efficient (see Theorem  4.2) if

sup {.t;^ i ( A /+  A 'A 't)“ hr^+i} <  oc, { P ^ ,0 } -a s . (4.8)

This is a weak condition, since typically the eigenvalues of the  m a trix  {XI +  % ^A \)'^ 

tend  to  zero faster than the ra te  of increase of ||a:t+i||^. If {X^Xt)~^  exists for t >  to, 

we can use the fact th a t the m atrix

( % ;% ,) - '- ( A 7 +  % ;% ,)- '

is positive definite for every A > 0 to show th a t (4.8) holds if

sup < oo, (4.9)
t > t o  '' ■'

or equivalently if

sup <  1.
t > t o   ̂ ^

Since for any value of A the PPS is efficient if one of the  above conditions holds, 

then  we also have th a t w ith probability one for alm ost all 9

oo  ̂ 2

{^<(Ai)'a:<+i — 9 t { X 2 ) ' X t + i ^  <  o o ,
t=i
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for any A%, A2 >  0. This m eans th a t the  sequences of predictions from any two 

ridge estim ators are asym ptotically equivalent.

The efficiency of the PPS based on the ridge estim ators holds for every variance 

(7 ,̂ and therefore the assum ption of a known variance is not necessary, and can 

be dropped. If th e  m atrix  (X^Xt)  eventually has an inverse, then it can also be 

shown th a t a plug-in PPS based on the  least squares estim ato r is efficient and 

issues predictions asym ptotically equivalent to those of any PPS based on a ridge 

estim ator. □

E xam p le  4.5 (Autoregressive M odels.) Assume th a t Vt follows an autoregres­

sive m odel of order p, i.e.

Vt = +  .. • +  dpYi-p +  ,

where are independent Normal w ith m ean 0 and variance cr ,̂ and ^ =  (^1, ^2  ̂ • • •, ^p) 

is such th a t all the  roots of the  characteristic polynom ial

(j){z) = — 9iz^~^ — . . .  — Op

are inside or on the  unit circle (non-explosive case). Then we can apply th e  results 

of the  previous exam ple to show th a t any PPS based on a ridge estim ator or the  

least squares estim ator of 0 is efficient. The only difficulty is to show th a t (4.8) 

or (4.9) hold w ith probability one, and this has been established by Lai and Wei 

(1983).

In the  special case of an autoregressive model of order 1, (4.9) holds alm ost 

surely regardless of the value of 0 (Wei, 1987), and in this case any PPS based on 

the  least squares estim ator or any ridge estim ator is efficient. In §3.7 it was shown 

th a t, for an AR(1) model w ith ^ >  1, any plug-in probability  forecasting system  is 

inefficient, and therefore the AR(1) m odel is an exam ple where an inefficient PFS 

can produce an efficient PPS. The inefficiency of the  plug-in probability  forecasting 

system s is due to their underestim ation of the  predictive variances. However, th is
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does not aiFect the  optim ality  of their im plied plug-in point predictions, since all 

th a t is required  a t every step is a good estim ate  of the  conditional m ean of the 

next observation. The fact th a t these means are linear functions of the  param eter 

9 reduces th e  problem  of optim al prediction to  th a t of op tim al estim ation. □
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C hapter 5

C on sisten cy  and M issp ecifica tion

5.1 In trod u ction

In the previous chapters we discussed the issue of prequential efficiency of fore­

casting system s, as is applied to probability forecasting and poin t prediction. In 

th is chapter we study another asym ptotic property  for predictive rules, th a t of 

consistency.

Most problem s in sta tistical modelling can be described as follows: a sequence of 

quantities F  =  ( F ,  F , . . . )  is to be observed, and a class of m odels =  { M {0)^9 E 

0 }  indexed by a param eter taking values in a set 0 ,  is proposed as a su itable 

descrijDtion of some properties of F , which are of in terest to  the  m odeller. For 

exam ple, M.  m ay be a class of probability distributions, or a sem i-param etric model 

th a t describes the means and variances of (F ) ,  or a regression m odel which models 

the  relationship between different com ponents of F .

In the m ajo rity  of the statistical literatu re , it is assum ed th a t the  d a ta  ( F )  are 

generated by a data generation process (DGP)  and th a t there  is a value E 0  

such th a t M [ 9 q) is the “true" model, in the  sense th a t it describes th e  properties 

of in terest accurately. This assum ption may be reasonable in some situations.
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bu t usually we cannot expect our model to  have captured  all th e  properties and 

relationships among the observed data , which may be very complex. T he best we 

can hope for is th a t the fam ily of models A i is a good approxim ation, in some sense 

which needs to be specified, to  the  d a ta  generating process.

The purpose of any sta tis tica l m odelling based on th e  assum ption of th e  exis­

tence of a “tru e ” model w ithin our class of models is well defined: we would like 

to  identify the  “true"’ model and m ake inferences about it. B ut when A i is a mis- 

specihed class of models, then  w hat is the purpose of the  m odelling, and w hat are 

the  consequences of m isspecification on inferential procedures? It is obvious th a t 

in this case we need to th ink very carefully about the usefulness and lim itations of 

our chosen models.

As a very simple exam ple th a t clarifies the  above point, consider a sequence 

of i.i.d. observation (Ti), w ith  m ean 6. We believe th a t the  d istribu tion  of Y\ is 

Norm al w ith  m ean to  be estim ated  from the data , and variance equal to  1. Then, 

A t =  {M{d)  =  A' (^ , l ) , ^  G M}, where # ( - ,  -) denotes the  N orm al d istribu tion . 

The fam ily M  may not include the  true  d istribution, since it m ay not be a N orm al 

d is tribu tion  and also the variance m ay be different from 1. If we focus our in terest 

on estim ating  the  unknown param eter say by the  m axim um  likelihood estim ato r 

Ot  =  (1 /T ) Ylï=i then, if the  variance is finite, the  estim ator 6^ is consistent 

regardless of the true d istribu tion  and the value of 9. This consistency p roperty  

does not m ean th a t we have discovered the  “tru e” d istribu tion  of the  d a ta , bu t 

only th a t a  specific property of this d istribution, the  m ean, can be consistently  

estim ated . Any effort to use the  model for o ther inferential purposes, for exam ple 

prediction intervals, may be unsuccessful.

It is therefore im portan t when we m odel some data , using possibly m isspecihed 

models, to  have a clear understanding of the  properties of th e  d a ta  we w ant to  

m odel, to  use a statistical m ethodology th a t identifies (at least for large sam ples) 

the  m odel in A4 which is m ost suitable for our purposes, and to  have a  good
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understanding of the properties of our inferential procedures under m isspecification.

In this chapter we adopt th e  predictiv ist point of view, which considers a s ta ­

tistica l m odel as a m ethod of making sta tem en ts  about the  observable quan tities 

{Yi). These statem ents can be phrased as forecasts, and therefore each m odel can 

be seen as a predictive system . We will assum e therefore th a t th e  m odeller’s aim  

is to  identify the model in M.  which issues predictions, which are “closer” to  the 

optim al predictions under the  true  DGP.

In order to  formalize the  above thoughts, we need a m athem atical fram ework. 

Assume th a t the sequence of variables Y' = (^ 1, ^ 2- • • •) are defined on a com plete 

filtered probability space (H, JF, P). The increasing sequence of a-subalgebras 

{T t)  describes the available inform ation at each t ime f, and in the  sim plest case

= cr{Y^) = . . . ,  Kt). By Et- i(- )  we denote the conditional expectation

We try  to model the da ta  using a family of models M  =  {M{6) ,  ^ G 0 } , indexed 

by the  param eter 6 taking values in a com pact separable m etric space (0 ,  d). Each 

m odel M{6)  is to be considered as a predictive rule th a t issues forecasts sequentially, 

i.e. it m ay represent a probability forecasting system , or a point prediction system , 

or any other forecasting model. We let 0  be a m etric space in order to  allow th e  

results to be applicable in infinite-dim ensional param eter spaces. T he cr-algebra 

used to define m easurability on 0  is the Borel cr-algebra generated by th e  open sets 

o f 0 .

Now assume th a t after we observe the  observation Yt the  m odel M{6)  is pe­

nalized with a m easurable loss function lt{io,6), w G H, which depends on th e  

forecast of M{6),  the realized outcom e of Yt, and possibly any o ther inform ation 

th a t is described by Et.  The norm alized cum ulative loss is denoted : =

I /^ T  Z/(w, ^), where (A j)  is a norm alizing sequence. We will discuss in the  

following sections how this sequence should be chosen. The function L t {uj.,0) is a 

JF j-m easurable real function, and represents a sta tistical criterion, which m easures
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the  em pirical predictive perform ance of the m odel M {6) up to tim e T.

For a specific set of observed d a ta  of , a standard  m ethod of choosing a 

m odel from A4 is to  prefer th e  one th a t corresponds to  the  value of 9 th a t m ini­

mizes L x i y ^ i  9). These estim ators are called extremum  estim ators (G ourieroux and 

M onfort, 1995), and include m any different estim ators th a t are currently  used in 

param etric  and non-param etric setups, like prediction error estim ators, m axim um  

and pseudo-m axim um  likelihood estim ators, least squares estim ators etc. O ur in­

te rest lies in studying the asym ptotic behaviour of the  ex trem um  estim ator 9t 

which minimizes L t {^-,9)^ i.e. P  a s.

L t {u;.,9t ) = m m T r(c j,^ ) .

For th e  study of the perform ance of these ex trem um  estim ators, we need a theory 

of inference th a t allows for the  possibility of m isspecification. Using the fact th a t 

in our framework each model is a predictive system , we can replace the notion of 

a “tru e ” model with th a t of a “best” model, where by “b est” we define the  model 

in A4 which issues the best predictions under the  true  DGP. T hen, we would hope 

th a t the  extrem um  estim ator 9t would converge, under suitable conditions, to this 

best value as the  num ber of observations tends to  infinity.

The aim  of this chapter is to discuss the  issue of consistency of ex trem um  

estim ators for possibly misspecihed models. In §5.2 we present a specihc theory 

of inference for misspecihed models (W hite, 1994), which one m ay apply to our 

problem , bu t in §5.3 we show th a t this theory is not applicable to  some non-ergodic 

m odels. In §5.4 we show how the  theory can be extended using a m artingale uniform  

law of large num bers which we prove in §5.6. In §5.7 we present some exam ples.

5.2 W h ite ’s approach

A theory  of inference under m isspecihcation has been developed by W hite  and his 

co-workers (see G allant and W hite (1988), W hite  (1994) and references therein).
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We give a short description of his approach to the  problem  of consistency.

The rationale behind W hite 's approach is th a t since 9t  m inim izes 0),

then , under th e  assum ption th a t converges to  its overall m ean L^{9)  :=

#)}, the  estim ator 9t  should tend to  the  value of 9̂  say th a t m inim izes 

Lj{9) .  Since 0  indexes a collection of models, and 9) m easures the  em pirical

perform ance of each of these models, then can be in terp re ted  as the  value of 9 

th a t represents the  model th a t performs best, in this average sense.

In order to  prove th a t the difference between the estim ato r 9 j  and the  “b es t” 

value 9 j  tends to zero, as T  tends to infinity, the following two assum ptions are 

introduced (G allant and W hite, 1988; W hite, 1994).

A s s u m p t io n  W l .  [ Id e n tif ia b le  U n iq u e n e ss ]

For all e >  0,

l i m i n f  I  m i n  L*rpi9) — L y ( 9 ^ ) \  >  0.r^co I e:d(6>j,6)> c  ̂ J V j /j

A s s u m p t io n  W 2 . [U n ifo rm  L aw  o f L a rg e  N u m b e rs ]

The sequence L t (î '-9) — L j{9 )  obeys the strong uniform  law of large num bers 

(ULLN):

s u p \Lt (oj, 9) — Lj{9) \  0 P  a s.
eee

The assum ption W l is used to make sure th a t the functions L j [ 9 )  do not becom e 

flat around 9^^ as T  tends to infinity. This assum ption can be weakened, as in Davis 

and V inter (1985), if we allow the lim it of [9t  — 9j)  to  be a set. Using the  above 

assum ptions, the following theorem  can be established (G allan t and W hite, 1988; 

W hite, 1994; W hite and Wooldridge, 1991)

T h e o re m  5.1 Under the assumptions W l  and W2, d(^T, 0; P -a .5 ..

A lthough this result can have more general in terpreta tions, in our predictive fram e­

work it establishes th a t the extrem um  estim ator 9t  converges to  th e  value of th e
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param eter 0  which labels the  m odel in the fam ily M. th a t issues th e  best predictions 

in term s of the  overall expected predictive loss,

5.3 C ou n terexam p les

T he approach described in th e  previous section fails in cases w here the  function 

does not converge to  its overall m ean, as the following exam ples show.

E xam ple  5.1 (Stochastic  level, Dawid, 1991) Let (A \), f >  0, be a sequence 

of i.i.d. Norm al variables w ith zero mean and unit variance. Let =  A'o +  

t > I. Our class of models is based on the assum ption th a t = 9, and

therefore according to this m odel the best prediction for the  observation I'L in 

term s of the  predictive squared error loss, is 9. If =  (1 /T ) — 9)'^,

then  è j  = (1 /T ) The expected loss Lj{9 )  is equal to  2 +  and therefore

9 j  =  0. If W hite’s result were applicable, the estim ator 9 j  should converge to  0. 

B ut, it is easily seen th a t the  estim ator 9 j  converges alm ost surely to the  observed 

value To of Xq. In this exam ple the extrem um  estim ator 9 t  converges to  a d a ta  

dependent lim it. □

E xam ple  5.2 (M ixture of D istributions) A sequence of i.i.d. random  vari­

ables (]"^), t > 1 will be observed, and our param etric fam ily of m odels V  = 

{P g ,^  =  I ,. . , / :}  consists of a finite num ber of singular probability  d istribu tions 

for Y  = (^ 1, ^ 2, • • •)• Let p ^ (^ ) denote the  density (w ith respect to  th e  Lebesgue 

m easure) of the jo int d istribution  for and p^(^) the  conditional density of Yt 

given under Pg. Let L t ( Y ^ ,  9) ~ { l / T )  log p ^(^ ) =  (1 /T ) E L i  “  log P<(^)-

The estim ator 9 j  is the m axim um  likelihood estim ator of 9.

W hen the true  model belongs to P ,  then the  estim ator 9t  converges alm ost 

surely to  the  true  value of and is consistent. Assume now th a t the  tru e  m odel 

does not lie in P ,  bu t it is a m ix ture of the above models, i.e. P  =
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w ith  Gg =  1. Let and denote th e  restric tions of P  and Pg to th e  first

T  observations. Then, under P , the expectation of L t { Y ^ , 0 )  is m inim ized a t th e  

value which minimizes th e  Kullback-Leibler d istance , P j )  (we assum e for

sim plicity th a t is unique). The sequence of m inim izers (#^J is determ inistic , and 

if W h ite ’s result were applicable we would expect the estim ator $t  to  converge to 

0’̂  w ith  probability  one under P . B ut this is not the  case, since it is easily seen 

th a t P{Ot  0} = ag. This is another case where the estim ator Oj converges to  a 

d a ta  dependent lim it. □

E x a m p le  5 .3  (L in e a r  S to c h a s t ic  R e g re s s io n )  The observed variables (Y]) are 

generated from  the  following model :

Yf — 111% T

where (e^) is a m artingale difference sequence, w ith respect to  an increasing se­

quence of subalgebras (J^<), and thus is the  conditional m ean of Y\ given the  

past, i.e. E {e t \T t - \ )  — 0, and =  E{Y t \T t - \ ) -  Suppose th a t we try  to m odel Yt

using a linear model

such th a t 9 G and the  regressors Xt G are E t - \  m easurable. W hen ???.< is 

not equal to 9 ' Xt  ̂ then our model is misspecihed. Let X'^  ( x i , . . . ,  a:^) and 

L t { Y ^ , X ^ , 9) := Y j - i ( Y t  — 9' XtY.  The value of 9 th a t m inim izes L t ( Y ^ , X ^ ,9)  

is the  least squares estim ator 9t  = {YÎt=i ^tYt-

In th is exam ple the expected value of L t { Y ^ ^ X ^ ^9) m ay not exist w ithout 

fu rther assum ptions on th e  overall expectations of the stochastic regressors (.t*). 

Even then , the  value of 9 which minimizes the  overall expectation  of L t { Y ^ ,  X ^ ,  9) 

depends on th e  overall expectations of Y ^  and X'^,  although th e  lim iting behaviour 

of 9t  depends on the observed (and not the expected) values of the  sequence 

as the  following lem m a shows.
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L em m a 5.1 Let 9 ^  =  {Y.ï=i ^ t^ t)   ̂ Assum e that with probability one

sup <  oo (for some a > 2),
t

and that almost surely Am in(f) —> oo  ̂ and log{A m ax =  o{A m in(/)} , where 

A m in(t) and A m axt are the m in im um  and m axim um  eigenvalues o f  

Then with pi^obability one under P ||^T — 6^*\\ 0.

Proof. T he estim ator Oj is equal to:

T T

t = l  t = l

=  + et)
t = i  t = i

t=l t=l

Now using the results in Lai and Wei (1982), it can be shown th a t the difference 

\\6 t  — 9^\\  converges to zero. □

In all the  above examples, we see th a t under m isspecification the  estim ato r Ot 

converges to  a stochastic lim it. Two questions arise in this case. F irst, w hat is the  

in terp re ta tion  of such a lim it, and second, how can we extend the  theory in order 

to cover these cases as well? In the next section we propose some answers to  these 

questions.

5.4 A n  a ltern ative  v iew  o f co n sisten cy

As we discussed in the  in troduction of this chapter, for each one of the  exam ples 

in the  previous section the loss function Lt(oj^9)  is in terp reted  as a cum ulative 

m easure of the predictive ability  of a s ta tistical model. W h ite ’s result suggests 

th a t we should expect Oj to  converge to  the value of 6  th a t m inim izes the  predic­

tive risk which is based on an overall expectation. This expected loss does
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not take into account the sequential na tu re  of prediction, and the  fact th a t the  

optim al predictor for the  observation Yt, under the  true  d istribution  P ,  depends 

on the  observed inform ation up to  tim e t — 1 . U nder m isspecification for different 

sequences of observed d a ta  we m ay have different one step ahead optim al predic­

tions, and therefore the best approxim ation (in term s of predictive ability) to the  

d a ta  generating process, from  w ithin our fam ily of models, m ay be dependent on 

the  observed sequence of da ta . This will be the  case for non-ergodic m odels, and 

for observations with long-term  dependencies th a t do not die sufficiently fast.

An alternative view, is to  try  to  relate the behaviour of the  loss function L t ( ^ .  0) 

w ith  th a t of the  sum of the conditionally expected one-step ahead prediction losses 

(Dawid, 1991). The same idea is also briefly discussed in Caines (1988), bu t is not 

explored fu rther there.

In m athem atical term s since =  (1 //!^ ) ^<(w, ^), for some T f

m easurable functions lt{uj,6 ), then it m ay be m ore relevant to  try  to  com pare 

9 t  w ith the  sequence { 9 j )  of m inimizers of the  function

< = 1

instead  of

L'j{e) = E { { \ i A T ) Y . k { . ^ , e ) ] ,
t=l

since the  conditional expectation Et-i{lt[<jj,0 )] is the  conditional predictive risk, 

based on all observations up to  tim e t —1 , whereas the  overall expectation  E{lt{uj, 0)} 

is the  unconditional predictive risk which does not take into account the observed 

d a ta  up to  tim e t — This approach may also allow us to  use a non-determ inistic 

sequence A t  for the denom inator. This can be very useful since usually th e  se­

quence A t  is related to the inform ation available in the  data , and for some m odels 

the  grow th of this inform ation is stochastic, and varies for different sequences.

Using this approach we can re-exam ine exam ples 5.1-5.3, and give a na tu ra l 

in terp re ta tion  to the lim iting behaviour of 6 t -
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E xam ple  5.1 (contd.) Let T j  be the algebra generated by ( L i , . . . ,  Y t) .  Observe 

th a t although th e  overall predictive risk E { { l / T )  — 0)^} is m inim ized for

^ =  0, the  average one-step ahead predictive risk (1 /T ) J2 Ï=i ^ t - i { { Y t  — 9 Y }  is 

m inim ized for =  (1 — and \9t — 9 ^ \  - ^ 0 .  □

E xam ple  5.2 (contd.) A lthough under each P^, the  observations {Yt) are in­

dependent identically d istributed , under the  m ix tu re  P ,  th e  variables (Li) are ex­

changeable, bu t not independent. Let T t  = (%(]^, ] '2, . . . ,  Yt), L(w, 9) = — log p<(^) 

and observe th a t L j (9 )  =  (1 /T ) J2Ï=i 9). D enote by pt+i th e  conditional d is tri­

bution of given y* under P . Then, it is well known th a t p t+ i =  at(^)p^+ i(^),

where {a^(^}} is the posterior d istribution of 9 given the observations TL Since the 

d istribu tions Pg are singular, then P-a.s. the posterior probability  at{9t) converges 

to one. This implies th a t the Kullback distance K{pt+i,pt+i{9t) )  converges to 0, 

and for all 9 ^  lim/ 9t. it stays positive, i.e. lim inL  /L (p t+ ], p^+i(^)) >  0.

The function =  (1 /T ) T't_i{/t(u.’, ^)} is m inim ized a t the  sam e

value th a t minimizes the function (1 /T ) A"(pf, p<(^)), which, as was discussed 

above, is asym ptotically  minim ized at the value lim^ Therefore \9j  — 0.

□

E xam ple  5.3 (contd). Observe th a t 9’̂  — ^ ï = i  is the  value

of 9 th a t minimizes L " { Y ^ , X ^ , 9 )  =  J2t=i T < -i{ (y  — 9' Xt)"^}. □

In each one of the exam ples the extrem um  estim ato r 9t  converges to  the  value 

of 9 th a t m inim izes the sum of the conditional one step ahead predictive risks. We 

will present an extension of W hite’s theory th a t can cover these cases.

5.5 A  G eneral C on sisten cy  T h eorem

Based on the  ideas of the previous section, we can now present a general theorem  

on the  behaviour of extrem um  estim ators under m odel m isspecification.
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F irst we need to establish the  existence and m easurability  of the  estim ators $ t  

and 6 ^ .

5.5 .1  E x is ten c e

We in troduce the  following assumptions:

A ssu m p tion  E l .  The m etric space (0 ,d )  is com pact and separable.

A ssu m p tio n  E2. (a) For every the loss function h{' ,0)  : E  U {—oo, 00}

is .Ff-m easurable, for each 6  in 0 .  The function /^(u;,-) is continuous on 0  alm ost 

surely, i.e. it is continuous for all uj in an event Ft E F t  such th a t P(Ft) = 1.

(b) For every t, the  function {/<(•, ^)} : ft —̂ E u { —00, 00} is jFy_i-m easurable, 

for each 6  in 0 . The function -)} is continuous on 0  alm ost surely, i.e.

it is continuous for all u: in an event Ft-i  E F t~ \  such th a t P (F }_i) =  1.

W hen th e  assum ptions E \  and E 2  hold, then  alm ost surely the  estim ators d j  

and exist, and are m easurable as the following lem m a shows (G allant and W hite, 

1988; W hite , 1994; W hite and Wooldridge, 1991).

L em m a 5.2 Let i f l .F )  he a ineasvi'ahle space, and let (0 ,d )  he a compact, separa- 

hle metric space. Let Q  : H x 0  —> E u {  —00, 00} he such that Q{ - , 6 )  is F-measurahle  

fo r  each 6  in 0 ,  and Q(w, •) is continuous fo r  all w in an event F  E  F .  Then there 

exists a function 6 : ft Q such that 0 is F-measurahle and fo r  all to in F

Q{üj,è{uj)) =  inf Q(w,6)).

5 .5 .2  C o n s is ten cy

In order to  prove th a t 9t converges to we need the  following assum ptions, which 

are m odified versions of conditions W l and W2.

A ssu m p tio n  C l .  [A sym ptotic Identifiability]
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The function L'Y : x 0  —> R U {—00, 00} is J^t - i m easurable, and P -a .s . has a

m inim um  on 0  a t for every T  sufficiently large. Let e >  0 and B^{e)  :=

G 0  : d( 6 , 6 Y )  > e}. T hen P -a.s.

~ )} >  O' (5T)

A ssu m p tion  C2. [M artingale Uniform  Law of Large N um bers]

W ith  probability  one under P ,

sup |L r(a;, ^) — L j  (cj, ^)| —)■ 0. (5.2)
0G0

T heorem  5.2 Assume that conditions Cl, 0 2  hold. Let 6t  be an estimator that, 

P-a.s.. m inim izes Lt{cu\ 6 ), fo r  all T  sufficiently large. Then, with ■prohahility one 

under P,

0.

P ro o f  of th eorem  5.2. T he following events have all probability  one under P:

Fi =  {cj G n  : LY{oJ,6) has a unique m inim um  at 6 Y  for all T  sufficiently large}.

F 2 =  {w G n  : Lt(u j ,0)  has a unique m inim um  at 9 t  for all T  sufficiently large},

Fs = {w G n  : for all e > 0 , lim in f f m in j >  0},

F 4 = {u; G n  : sup |Lr(ü;, ^) — T j  (a;, ^  0}.
ee<è

It follows th a t the  event F  Fi f l -̂ 2 f l -̂ 3 P i-̂ 4 has also probability  one under P . 

Given e >  0, for all w in F ,  th e re  is T\ :=  Ti(w, e) <  00, such th a t

(5(e) :=  inf ( m in L ^ (w ,^ ) — ) > 0 . ̂  ̂ T>Ty \0GS^(e)  ̂  ̂ ’ 1 \   ̂ 1 J j

Also, for all uj £ F ,  and all T  > T 2 {uj,6 (c)) 

so th a t

L;r(w, ^;r) > Irfw , ) -  <5(e)/2 >  LT(w, & ) -  6(e)/2,
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and for all w G F  and T  > 6(e))

T hen

< F;r(w,i9r)-TT(w,^T)+<5(e)/2 < # ( e ) / 2 + 6 ( e ) / 2  =  6(e),

and it follows th a t d(0j*,6T) < t. for all w G F ,  and all T  > m ax{F i, F2, Fa}. Since 

e is arb itrary , and P (F )  =  1, it follows th a t P -a.s.

O'

□

5.6 A  U niform  Law o f Large N u m b ers for M ar­

tin ga les

The m ain  difference between our approach and W h ite ’s approach is th a t we replace 

the  uniform  law of large num bers with a m artingale uniform  law of large num bers. 

To the  best of our knowledge such a law has not been proven yet, and our aim  in 

this section is to present sufficient conditions for a m artingale ULLN, which can be 

used to verify condition C2 in order to establish consistency.

O ur approach is based on a modification of the generic laws of large num bers 

presented by Andrews(1987, 1992), which can not be applied d irectly  for reasons 

th a t will becom e apparent later.

To give a more general result assume th a t (Yt , t  >  1) is a sequence of stochastic 

elem ents, taking values in a set y ,  defined on a com plete filtered probability  space 

{ f ) ,F ,  (jFt), P } . For each t, l t iY t . 6 ) is a m easurable function from  F  x 0  to  E , 

for some m etric  space (0 ,  d). Let B(6^p)  be the  open ball around 6 of radius p. 

Define:

l t{Yt ,6,p)  = sup h{Y t , s ) ,
sÇ.B{0,p)
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l t{Yt ,e ,p)  =  inf /,(y ,,5 ) .
seB[0,p)

Let A t  be a predictable increasing sequence w ith A i  > 1 and limy A t  =  oo. A 

sequence of real random  variables {Zt) is said to  satisfy a pointwise m artingale  

strong law of large num bers (w ith denom inator A t )  if, w ith probability  one,

One of the  m ain reasons why Andrews’s result is not applicable to our case is th a t 

we w ant to  use a predictable, and not a determ inistic, denom inator.

In order to  prove the m ain result we introduce the following assum ptions. 

A s s u m p t io n  U l .  The m etric  space (0 ,d )  is com pact.

A s s u m p t io n  U 2. For any 6  ^  Q there is p(6 ) such th a t for all p < p[0) the 

sequence of random  variables ( (Tf, p) ) and ( U{Yt^ p) ) satisfy pointwise strong 

m artingale  LLN’s (with com mon denom inator an increasing predictable sequence 

A t ) .

A s s u m p t io n  U 3. For all 0 G 0 ,  P -a.s.,

1 ^
Wm\ims\iip —  ^Et - i { l t { Yt , 0 , p )  -  l t{Yt,0,p)}  =  0 . 
p-o T>i A t

A lthough our assum ptions are sim ilar to A ndrew s’s (1987) assum ptions, they 

are weaker because the use of conditional expectations, instead of unconditional 

expectations, weakens the degree of dependence th a t the  conditions im pose on the  

variables (y^). Using the above conditions we can now prove the  following theorem :

T h e o r e m  5 .3  (M a r t in g a le  U L L N ) I f  Assumptions U1-U3 hold, then P-a.s. ,

sup
eee

Y i [ i t { Y „ e ) - E , M h { Y u e ) } ]
t=\

0 .

P r o o f  o f  th e o r e m  5.3. The proof will follow the  same m ethod as in Andrews 

(1987). Using assum ption U3, for a given e > 0 and ^ € 0 ,  there  is an event F { 6 ),
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w ith P { F (^ )}  =  1, such th a t for all uj G F{9)  we can choose p = p{6 ) >  0 such 

th a t for all T  >  Ti(uj^9)^

-7~ E t - i {  9. p) — lt{Yt^ 0 ,^ )}  <  e.
t = i

T he collection of balls {B{9^ p{9)),9  G 0 } , is an open cover of the  com pact set 0 ,  

and therefore has a finite subcover {B{9j.  p(9j))  : j  = 1 , 2 , J}.

Let Fo =  n /= i F(9j).  For all u j  G Fq, and any s G B{9i^ p{9i)),  we have for all 

T  > m a x jT i i 'u j ,  9j )

t = l  <=1

and

A t  =̂1
^  X̂ [ -5) — F i - i { l t { Y t , s ) } ]  >  (^h{Yt ,9i ,  p { 9 i ) )  — E t - i [ l t ( Y t , 9 i ,  p { 9 i ) ) Ÿ j

Then for every a; G Fo and ^ G 0 ,

^ {k . 0' ' t , 9 i ,  p { 9 i ) )  — E t - i [ h ( Y t , 9 i ,  p { 9 i ) ) ] j  — e

~ ^t-illt(Yt,9j, p{9j))]  ̂ - t

< — ' ^ [ U { Y t , 9 ) - E t - i { l t { Y t , 9 ) } ]
A t  t = i

~  ~  F t - i [ l t { Y t , 9 j ,  p { 9 j ) ) ] ^  e.

From  assum ption U2 the above upper and the  lower lim its converge to  e and —e 

respectively for all u j  in an event Fi which has probability  one. Since e >  0 is 

arb itrary , and F (Fh Q F i) =  1 the  proof of the theorem  is com plete. □

In m ost cases assum ptions U1-U3 are difhcult to  verify, and  then  we m ay use 

the  following assumptions:
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A ssum ption  U 4. For each 6 E Q ,  there is a constant r  >  0 such th a t d(6 .s)  <  t  

implies th a t for every t > I, P -a .s.,

\ I t {Y„$)  -  h { Y , , s ) \ < B , { Y , ) h { d { e , s ) ] ,

where is a sequence of jT^-measurable functions such th a t P -a .s .,

1 ^
W m s u p  E t - i { B t { Y t ) }  <  cx),

and h[-) is a non-random  function such th a t h(y) I  h(0) =  0 as y |  0. The null 

sets, and also f, Bf(-), and h m ay depend on 6.

A ssum ption  U 5. 0  is subset of It{Yu6)  is differentiable w ith respect to  6 

in a neighborhood of ^o, P -a .s ., for every t and for all G 0* , where 0* is some 

convex open set tha t contains 0 .  Also d lt(Yt,6) fdO and suptqQ*\\dlt(Yt,s) /dô\\

are random  variables for any ^ € 0 ,  and f >  1, and P -a.s.,

l i m s u p ^ ^ F ; < _ i { s u p ^ e © * | | 5 / i ( y t , 5 ) / 0 ^ | | |  <  CO.
T—oo ■Aj'

A ssum ption  U 6. W ith P probability one

s—I—

A ssum ption  U 7. There is e >  0 such th a t P -a.s.

( £<-i{sup I h ( Y „ e )  = 0 { A t ).
,=i

L em m a 5 .3  The following hold :

(а) Assumption U4 implies Assumption US.

(б) Assumption U5 implies Assumption U4 .

(c) Assumption U6 implies Assumption U2.
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[d) Assumption U7 implies Assumption U2.

P ro o f  of lem m a 5.3.

(a) A ssum ption  U 4 im plies  A ssum ption  U3.

Let  ̂ G 0 .  Then we can see th a t U4 im plies US as,

1 ^

<  lim sup —-  ^  E ^ _ i { | p )  — I t{Yt,0)\ A  \ li{Yt,0) — lt{Yt,6, p ) \}  
p ^ o  T > i  A t

1 ^
<  2lh-nh{p)  sup — =  0. 

p - o  T > i  A t

□

(b) A ssum ption  U5 im plies A ssum ption  U4.

In order to establish th a t U5 implies U4, we can use the  m ean value theorem  

to  show th a t, P -a.s.,

\ l , ( Y„s )  -  l , { Y „ e ) \ < s u p s . ^ e -  II d h { Y „ e ' ) / d e  | | - | h - e | |

Then by setting h{y) = y and

= II II

we get U4. □

(c) A ssum ption  U6 im plies A ssum ption  U2.

For every 0 and p small enough we have,

s u p m y ; , ^ ) l ' >  1 % ,^ , / ) )  |:̂
ÛE&

and therefore

Thus,
^ v , . ^ { k { Y „ e , p } }

A 2  ^  OO,
i = l
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where K _i(-) is the conditional variance given Using th e  m artingale SLLN

for square integrable m artingales (Shiryayev, 1996) we get th a t

~T~ 2Z[ P) ~  p) }] —̂ 0.
t=i

The sam e argum ent can be used for h{Yt, 0̂  p) and 0) • O

(d) A s s u m p t io n  U 7 im p lie s  A s s u m p tio n  U 2 .

We will use a similar m ethod as in (c). For every 9 and p sm all enough we have,

sup I U[Yi,9) 1̂ >  I U[Yt,9,p)  
eee

and therefore

^  {sup I ^) n  >  E  (5.3)
i=l ^€0 t=i

as in (c) above. From (Lai and W ei, 1982) we know th a t

j 2 [ U y , : S .  P) -  £ ,-1  { U{Yu9.. p) }] =  o ({  f :  !/,-:{  r(>-„ e, p)
/=1 <=1

Using (5.3) and the fact tha t

{sup l/ ,(y „ « )  =
\= 1  6G© ^

we get

i  p) -  E t - ,  { U Y u 9, p) }] ^  0.
t=l

T he sam e argum ent can be used for h(Yt. d, p) and lt(Yt, 6) .  □

5.7 E xam ples

In this section we present some examples, where the  results of th is chapter can be 

applied, in order to highlight some points on consistency for m isspecihed models.
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E x a m p le  5.4 (A R (1) m od el)  Let Lq =  0 and assum e th a t

Yt =■ OqYi- i 4-

w here (et) is a m artingale difference sequence w ith constant variance. We fit the  

m odel :

B(YtlV^-^) =  Û,

and estim ate  Û using least squares. Then, it is easily seen th a t Ût =  Y t, =  0, 

and 9’̂  = ^ o (l — 1/T ) T r - i .  If |^o| <  1, then  the  true  m odel is stationary , and 

lim j =  liniT — lim j^J*  =  0. W hen |^o| >  1, the  true  m odel is not stationary ,

and \ 't  does not converge to  9j.  B ut, 9 j  — 9’̂  — ( l/T )X lJ= i and therefore 

\ 9t  “  0- This exam ple shows th a t our approach can be applied to  non-

stationary , non-ergodic models. □

The next exam ple shows th a t under m isspecification different loss functions lead 

to  different estim ators, and therefore we should be careful to choose the appropia te  

loss function for our prediction/decision problem .

E x a m p le  5.5 (A R (2) m od el)  Let To =  T_i =  0 and assum e th a t (Yt) follows 

th e  following AR(2) stationary  model:

Yt =  9iYt^i  +  92Yt-2 +  Q,

where (e<) is a m artingale difference sequence w ith  constant variance. Assume th a t 

we use the  model:

E(Yt\Y^-^)  = 9Y t-„

and, after we observe the d a ta  Y ^ , we are in terested in predicting two steps ahead 

in th e  fu ture.

T here are two m ethods of obtaining a two-step ahead prediction. One is to 

e s tim ate  9 using least squares, and then substitu te  9 in the form ula E ( Y t+ 2 \Y'^) =
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B'^Yt w ith th e  least squares estim ator, or we can estim ate <f) = B'̂  d irectly  by 

m inim izing the  2-step ahead prediction errors — <j)Yt-2 Y '

If we use Lem m a 5.1, we see th a t by m inim izing the  one step ahead prediction 

errors •> our estim ate B \ j  converges to  p ( l) , i.e. th e  autocorrelation

at lag one. T hen, for large T , our 2-step ahead prediction is approxim ately  î i , r +2 =  

p i i y Y j .  Using the  same lem m a, we see th a t if we use th e  second m ethod w ith an 

unrestric ted  value for ÿ, then converges to the  autocorrelation a t lag 2, p(2), and 

asym ptotically  our prediction is T2.T+2 =  /9(2)}T' Since p(2) m ay be different from 

p(l)^ , we see th a t different loss functions result in different estim ators of and

therefore different predictions. It is also clear th a t the second m ethod  gives the

best predictions.

The explanation for the above result is simple. The definition of w hat is the 

“best"' value of B under misspecification depends on the loss function we use. If we 

minim ize the one step ahead prediction errors, then  our estim ato r converges to the 

value of B th a t issues the best one step ahead predictions. If, on the  o ther hand, 

we m inim ize the  two steps ahead prediction errors then the  estim ato r converges 

to the value of B th a t issues the best two step ahead predictions. A lthough in a 

well specified m odel the two values are the  sam e, i.e. the  tru e  value of in a 

misspecified m odel different loss functions give different approxim ations to  th e  true  

model. We should be careful therefore first to  specify the  decision problem  we want

to solve, and then to estim ate B. □

E x a m p le  5 .6  ( E r r o r  in  v a r ia b le s )  Assume th a t the  variables (]^) are generated  

from the  model:

Yi =  BqXi -f Cf,

where (e<) is a sequence of i.i.d. variables w ith finite variance, and (z<) is a sequence 

of random  variables such th a t (1 /T ) converges to a positive random  variable

X .  Instead of the sequence (xt)  we observe the sequence (zf), such th a t Zt =  +

where (vt) is a. sequence of variables, independent of (x^), w ith m ean zero and such
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th a t (1 /T ) J2Ï=i converges to a positive random  variable V.  We m ay th ink  of Vt 

as th e  error in m easuring the  regressor x*. If we model th e  d a ta  using the  m odel

E(Yt\zi) = 6zt,

and estim ate 0 using least squares, then we get d j  =  Y j=i{y t^ t ) /  Ylt=i ^r* — 

/ Y J = i using Lem m a (5.1) we have \6t  — ^̂ *1 0- Since

a ..  _  Ef=i(a;i^i) _  a 12Ï=i{x^ + XtVt) a
C/J- — C/Q J’ 2 — ^0 / 2 I 2 I o \ 0Ef=i z? E l ,  +  c? +  2x,v,) X  + V '

we see th a t is estim ation inconsistent, in the  sense th a t it does not converges to

the  value h u t it is prediction consistent since it converges to  the  value of 9 th a t

issues asym ptotically  the best one step ahead predictions. □

The next exam ple presents sufficient conditions for the consistency of least 

squares estim ators in non-linear stochastic regression models, when the m odel is 

well specified. We present this exam ple to show th a t our approach is useful in 

cases where a model is specified using a m artingale structu re , and also because it 

illustrates how the  techniques of this chapter can be adopted to  specific problem s.

E x a m p le  5 .7  (N o n -L in e a r  S to c h a s t ic  R e g re s s io n  M o d e ls )  Assume th a t the  

d a ta  (%) are defined on the filtered probability  space (fl, T", (T "i),P ), and are gen­

erated  from the non-linear stochastic regression model:

K, =  M 0 )  +  (5.4)

w here for every T ft{9) is a j^t_i-m easurable function of ^ G the  param eter 9 

takes values in a compact param eter set 0  C R^, and the  sequence of errors {e^} 

is a m artingale difference sequence w ith respect to (T"<) such th a t P -a .s .,

supE t_ i(e^) <  oo. (5.5)
i

T he above class of models is very general, and for exam ple f t{9)  can be a func­

tion of th e  past observations and other exogenous inputs. M any nonlinear models,
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such as nonlinear autoregressive models w ith exogenous regressors, used in tim e se­

ries, adap tive control, stochastic approxim ation, and sequential design, obey m odel 

(5.4).

T he unknown param eter B can be estim ated  using the  least squares estim ato r 

which is defined as the param eter value Bt  th a t minimizes th e  sum  of squared errors

S t {B) :=  ' ^ { y t  -  ‘
t=\

The strong consistency of th e  estim ate Bj  is a very im portan t problem , especially 

for identification and control. This property  has been studied extensively for lin­

ear and nonlinear regreesion models (Anderson and Taylor, 1979; C hristopeit and 

Helmes, 1980; Wu, 1981; Lai and Wei, 1982; Lai, 1994), bu t consistency for non­

linear stochastic regression models has been proven under s tric t conditions by Lai 

(1994), which include sm oothness conditions on all partia l derivatives up to  order 

p. In th is exam ple we use an approach based on Theorem  5.2 which does not 

m ake any assum ptions on the  existence of derivatives. We in troduce the  following 

assum ptions:

Assumption  S R I  The param eter set 0  is a com pact subset of RL

Assumption S R 2  Let denote the true  value of B. For every \  ^  Bq th e re  exists 

1 <  Pa <  2, and an open ball centered at A (denoted by B ( \ ) )  such th a t:

:=  ^ g f,.I]{ /t( 'S )  -  f t{Bo)Y  oo P -a .s ., (5.6)

sup {/^(s) - /t(^o)}^ =  0(AJ^") P -a .s ., (5.7)
i=i seB{x)

and also there  is a sequence of jF^-measurable variables Mt[X)  such th a t for all 

61,52 in B(A),

| / t ( 6i) — / t ( 62)| <  ^ (l|6l — 62II) Mi(A), (5.8)
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and
T

^ £ ,_ i {M (A )}  = 0 ( ^ r )  P a s . ,  (5.9)
t = \

w here /i(-) is a non-random  function such th a t h[y)  |  h{0) =  0, as y |  0.

T h eorem  5.4 Let the assumptions S R I  and S R 2  hold. Then with probability one 

\ \ 0 t  —  ^ o || —  ̂ 0 .

P ro o f  or theorem  5.4 Since, from assum ption SR I, the  set 0  is com pact, it 

follows th a t the set 0  — {^o} can be covered by a finite num ber of balls B(A), 

A ^0, such th a t assum ption SR2 holds for each one of them . We cannot apply 

T heorem  5.2 directly, because for each one of the  balls we need to use a different 

norm alizing sequence { Aj } -  Nevertheless, the  proof follows sim ilar steps. Since 

there is a finite num ber of balls th a t cover 0  — {#o}, it is sufficient to  focus on an 

open ball B(A), and to show th a t infggg(A){'$'r(^) — h'r(^o)} —̂ oo.

The least squares estim ator Oj  minimizes S t (0), and therefore it can equiva­

lently be defined as the param eter value th a t m inimizes S t {0) — S t (Oq). We define 

(for every 9 in B ( \ ) .  and also 6q)

L t {uj,9)  :=  - t- { S t {9) -  S t {9q)],
A t

where A t  is defined in equation (5.6). Then for 9 G B(A)

L*r^ (u j ,  9) — 9q) = —  ' ^ { f t ( 9 )  — ft{9o)]^ > 1,
t=i

which m eans th a t 9 ^  = 9q. Since A t  oo, it rem ains to show th a t P -a .s .,

1
sup —  

eeB{\) A t

or m ore specifically th a t P -a.s.

Lt(u;, 9) -  9) = o(l).

sup M ^ o ) }  = o(l),
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which calls for an application of Theorem  5.3. It is sufficient to  verify only th e  

assum ptions U7 and U4, since assum ption U l follows im m ediately  from SR I. 

A ssum ption U7 holds since

f ^ E ,_ i { s u p  =  s u p { / , M - / , ( ^ o ) r  =  0 (A ^ ') ,
t=i eeB{x) eeB{x)

using (5.5) and (5.7). The last assum ption we need to  verify is U4. Now, for all 

^1,^2 G B( X)  we have

— {f t i^2)  — fi{^o)} = — ^  l^tl /^(ll^l —^2||)-^A(A),

where th e  last inequality follows from (5.8). Since sup^ <  oo, then  sup^ |c |̂ <

oo, which together with (5.9) im ply th a t condition U4 holds. □
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C hapter 6 

C onclusions and Further  

R esearch

Prequential S tatistical Forecasting System can be viewed from  two different per­

spectives. F irst, they can be seen as purely predictive tools. For exam ple S tatistical 

Forecasting System s are rules for probability forecasting, and P o in t P rediction Sys­

tem s are point prediction rules. B ut, a S tatistical Forecasting System  can also be 

seen as an inferential tool. The prequential point of view considers every sta tistica l 

model as a hum an a ttem p t to explain nature, whose validity is to  be assessed by 

the  quality  of the  forecasts it produces. A S tatistical Forecasting System  can then  

been seen as a replacem ent of the  statistical model which can be used to  assess its 

validity, and to  com pare it w ith  another model. In either case, e ither for optim al 

prediction or for inferential purposes, the p roperty  of efficiency of a forecasting 

system  (which holds for a Bayesian forecasting system ) is of g reat im portance. 

In particu lar, prequential m odel selection based on efficient SFS’s leads to consis­

ten t model selection. It was interesting therefore to  study under w hat conditions 

efficient non-Bayesian SFS’s exist.

In th is thesis we showed th a t for regular models, under su itab le  conditions, 

plug-in SFS’s can be efficient although they do not incorporate  th e  param eter
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uncertain ty  in their predictive distributions. We also dem onstra ted  th a t plug-in 

SFS’s can be inefficient, especially in cases where the inform ation from th e  d a ta  

grows fast.

There still rem ain some interesting open problems. An im p o rtan t question is 

how close is a prequentially efficient SFS to each Pg in 7 .̂ We m ight call a SFS Q 

consistent if AT(Pt,e,Qt) — 0, under Pg, for alm ost all ^ G 0 .  According to  this 

definition, efficiency is not a stronger property  than  consistency, since as it was 

discussed in Exam ple 3.9, when does not converge to 0, then  we

can have an efficient SFS (the BFS) which is not consistent (since the predictive 

variance never converges to the  true one). However, we conjecture (but have not 

as yet shown) th a t, whenever there does exist a consistent SFS, then  any efficient 

SFS will be consistent (although the converse is of course false).

A nother interesting direction for fu ture research is the  study  of the notion of 

prequential efficiency applied to non-param etric families of sam pling d istributions. 

In th a t case 0  is not a Euclidean space, and care is now needed w ith the  in terp re­

ta tion  of “for alm ost all Eor exam ple we m ay be able to define efficient density 

estim ators in non-param etric density estim ation.

Also of great interest is the  case where we have a sequence of param etric  families 

Vt^ of increasing dimension, which approxim ate some “large” lim iting m odel Poo- 

W hen is a m ethod, efficient for |J^ P<, also efficient for Poo? If no t so, how well can 

one do w ith m ethods based on |J< P P

In C hap ter 4, we presented a new notion of efficiency for sequential point pre­

dictions, based on asym ptotic em pirical perform ance. We have shown th a t efficient 

predictors exist for general param etric  families, under the  weak and na tu ra l con­

dition th a t their predictive variance stay bounded. The definition is applicable to  

linear and non-linear predictors, and to ergodic and non-ergodic models (Basaw a 

and Scott, 1983). We showed th a t Bayesian Point Prediction System s are efficient, 

when the ir predictive variances stay bounded, and presented sufficient conditions
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for the  efficiency of plug-in P P S ’s.

It would be interesting and im portan t to  develop sufficient conditions under 

which th e  predictive variances of Bayesian P P S ’s stay bounded alm ost surely, es­

pecially for non-ergodic m odels. One im portan t special case is the  autoregressive 

m odel w ith  some of the roots inside and some outside the  u n it circle. Also it m ay 

be possible to  weaken our conditions for efficiency of a plug-in P P S , especially for 

m axim um  likelihood estim ators.

The notions of efficiency we have discussed are lim ited to  probability  forecasting 

and point prediction, using the  squared prediction error as th e  loss function in the 

la tte r  case. It would clearly be of interest to develop sim ilar notions of efficiency 

for m ore general loss functions.

In C hap ter 5, we showed how the notion of consistency under m isspecihcation 

can be studied  using a predictive point of view. O ur results suggest th a t, under 

su itable conditions, the estim ator based on the  m inim ization of some sta tistica l 

criterion th a t measures predictive perform ance converges to  the  param eter value 

th a t indexes the  model th a t issues the best one step ahead predictions. This “b es t” 

m odel can vary for different sequences, and in order to  overcome this difficulty we 

adopted  a m artingale fram ework, and proved a m artingale version of the  uniform  

law of large num bers. These results of course are also applicable in the  case where 

our m odel is not misspecihed, and may lead to  some weakening of th e  standard  

conditions used for establishing consistency of ex trem um  estim ators. We have 

showed how this can be achieved for least squares estim ators in nonlinear stochastic 

regression models.
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