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A bstract

This thesis addresses the problem of analyzing fractional factorial and other or­

thogonal experimental arrangements that are carried out without replication, so 

that the usual estimate of standard error computed from replications cannot be 

used.

Although the usefulness of unreplicated factorial experiments in industry was 

recognized soon after R. A. Fisher developed the basic ideas of statistical design of 

experiments, the influence of the Japanese ideas of quality improvement over the 

last few years has increased considerably the utilization of these experiments, and 

their analysis has become a major concern. Considering that these experiments are 

frequently analyzed by non-statisticians, it is desirable to provide easy to use and 

understand techniques to assess the significance of the estimates of the different 

effects involved in a particular experiment.

After a literature review, four methods for the analysis of unreplicated factori­

als are chosen, implemented, made comparable on an error rates basis, and applied 

to a substantial number of real experiments taken from the statistical literature 

and other sources.

In the process of making the methods comparable for the most common sizes 

of the experiments, one of the methods, which is found to be miscalibrated, is 

corrected.

On the basis of the result of the comparison of those methods, a modification of 

a procedure of statistical testing with half-normal plots is presented. The method



proposed, besides having the advantages of the half-normal plot, seems to be more 

powerful than other comparable methods, for experiments of small and moderate 

sizes.

Finally some ideas to make a Bayesian procedure proposed by Box and Meyer 

more general and robust are explored for situations suggested by 30 examples of 

small experiments.
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C hapter 1

T he quality revolution and  

unreplicated factorial 

experim ents

1.1 T he Japanese quality m ovem ent

In 1980 for the first time in its history Japan produced more cars than any other 

country in the world. A great number of these cars were exported to the US, 

the former main producer (see e.g. Ealey, 1988). This is only an indicator of the 

manufacturing shares that in different industries the US and the so-called West 

have lost to Japan.

Threatened by the Japanese competitiveness, US companies (and more recently 

UK and other western industries) have been interested in the Japanese systems of 

quality improvement. As Box, et al. (1988) pointed out, “in Japan quality control 

has become a cost saving approach, in contrast with the prevailing view in the 

West that high quality is associated with higher cost”.

Garvin (1988) relates extensively the evolution of the quality movement in



Japan. He recounts that within a month of Japan’s surrender in the World War 

II, the Supreme Commander for the Allied Forces established the Civil Commu­

nication Section whose Industrial Division was assigned to work with Japanese 

manufacturers of communication equipment to improve production methods. Be­

cause the poor reliability of the national communications network, quality became 

a principal concern.

It is interesting to note that some of the key engineers of the Industrial Division 

had work at Bell laboratories in the US, the place where in the 1920s and 1930s W. 

A. Shewhart developed the theoretical concepts of process in and out of control 

and the Shewhart chart.

Garvin reports that between 1945 and 1949 these engineers pursued a variety of 

activities, among them advising the new leaders of Japanese business on questions 

of production management with strong emphasis on quality.

When the Allied Command was disbanded, Japan was aware of the importance 

of quality for the future of its industry. In 1950 the Union of Japanese Scientists 

and Engineers (JUSE) invited the American expert in quality control W. Edwards 

Deming for a series of seminars (he returned to Japan in 1951 and 1952).

Deming had also worked at Bell Laboratories where he had been a leading 

disciple of W. A. Shewhart. And, as Cox (1990) notes, Deming was also well 

known for a number innovative technical ideas.

Deming pushed top managers to become actively involved in their companies’ 

quality improvement programs and urged them to focus on problems of variability 

and their causes. One of Deming’s (1982) main technical issues is No. 3 of his 14 

points for management.

Cease dependence on inspection to achieve quality. Build quality into 

the product during the product development stage. Mass inspection 

cannot compensate for bad design. Do it right the first time so there is 

no need for rectification later.



In 1951 JUSE established the Deming Prize which won national acclaim. Some 

authors have credited Deming with leading the Japanese quality revolution.

Two other American quality control experts who influenced the Japanese qual­

ity movement were J. M. Juran and A. Feigenbaum. Invited by JUSE, Juran ar­

rived in 1954 and conducted seminars for top- and mid-level executives, whereas 

Feigenbaum, as head of quality at General Electric, had extensive contact with 

such companies as Toshiba and Hitachi. Some of his publications in the 1950s 

were translated into Japanese.

A key Japanese individual in this movement is the engineer Kaoru Ishikawa. As 

secretary general of JUSE, Ishikawa was founder of the magazine Quality Control 

for the Foreman^ later renamed FQC. Its editorial encouraged the formation of the 

QC circles, groups of study and discussion headed by a foreman and participated 

in by his subordinate workers. Thousands of workers were given the so-called 

seven tools: check sheets, the Pareto chart, cause-effect diagrams, histograms, 

stratification, scatter plots and graphs (which include control charts); and QC 

circle conferences were promoted and became an annual event. In 1984 there were 

more than 180,000 such circles registered at the national level (Garvin, 1988). 

Ishikawa is also the author of several texts of quality control.

Another influential Japanese quality control expert is the engineer Genichi 

Taguchi. After some success in Japan, in 1980 Taguchi went to the US and visited 

AT&T Bell Laboratories to promote his sui generis approach to quality control. 

First his ideas found echo in few people, but as Nair (1992) points out, in the span 

of two years the interest grew, due perhaps to the widespread enthusiasm in the 

US for Japanese quality practices in the early 1980s, and a few individuals from 

AT&T, Ford, ITT, Xerox, and other places and organizations were instrumental 

in promoting the application of Taguchi ideas in industry. A few years later, 

Taguchi’s quality engineering approach (baptised in the US as Taguchi Methods) 

has had a great impact in western industry and has generated much discussion 

and controversy among statisticians. The methods employed by Taguchi include 

fractional factorials and other experimental orthogonal arrays tha t are used in the
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design phases of a product or process (this accounts for the term off-line quality 

control). In these experiments Taguchi suggests including noise factors tha t are 

environmental variables and other factors that are difficult or expensive to control 

and so are not to be controlled when the production is in progress. The idea is 

to find the conditions where the product or process is robust to variation of the 

noise factors. The quality approach to achieve robustness of products or processes 

by means of factorial experimentation is called parameter design or robust design. 

Param eter design intends to fulfil point No. 3 of Deming’s plan quoted above by 

designing quality into the product and process prior the manufacturing stage. It 

incorporates the idea that a product may be made robust to the variations in the 

user’s environment. Moreover the process which produces the product may be 

made robust to variations in materials, components and manufacturing before the 

normal production starts (for an extensive discussion of these ideas see Logothetis 

and Wynn, 1989).

The contribution to quality improvement that Taguchi has made with some of 

these ideas is widely recognized. However, some of the unusual statistical tech­

niques that he has promoted for the analysis of factorial experiments are unfor­

tunate. The use of signal to noise ratios, accumulation analysis, minute analysis, 

and unusual applications of analysis of variance have been widely criticized; either 

as inadequate, or as unnecessarily complicated and inefficient (see e.g. Box, 1988; 

Box and Bisgaard 1987; Box and Jones, 1986; Gunter, 1987; Hunter, 1987; Nair 

1986, 1992).

Nowadays the ultimate goal of a good quality system is to build in quality 

into every product and process at the design stage and to follow up every stage. 

According to Logothetis and Wynn (1989) “building in quality at the design stage 

represents the latest phase in the evolution of quality systems”. The use of Off-line 

quality control techniques can avoid re-design during production, inspection, and 

recall of a product after distribution; with the consequent reduction of costs.

An important element is the extensive and innovative utilisation of factorial 

experiments. As the number of factors involved is usually large, these experiments
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are often carried out without replication, hence the term unreplicated factorials.

1.2 B rief historical review of the use o f unrepli­

cated factorials

In the 1920s, while working at Rothamsted Agricultural Station in the UK, R. A. 

Fisher developed the batsic ideas of statistical design of experiments and introduced 

the concept of factorial experimentation where several factors may be studied 

simultaneously instead of experimenting with them one at a time.

When many factors are involved, replicates of a factorial experiment may be­

come difficult to carry out because of the large number of experimental units 

needed. However, it was recognized that often it would still be valuable to use a 

single replicate or even a fractional replicate. In the latter every contrast can be 

associated with one or more treatment effects. Therefore, the use of a fractional 

factorial design usually requires the assumption that interactions of certain orders 

are negligible, so previous knowledge and careful planning are needed to ensure 

that the confounding patterns do not destroy the value of the experiment.

One early example of the utilization of a fractional factorial design in industrial 

applications out of the agricultural field, is an experiment reported by Tippett 

(1935) who employed a 125th fraction of a 5® to discover the causes of problems 

in a cotton spinning machine.

Important contributions have been made by Yates (1935) who presented a 

comprehensive approach to full (complete) factorials and some ideas of fractional 

factorials. Fisher (1942) systematically constructed classes of fractional factorials, 

where each factor had the same prime number of levels. Finney (1945) provided 

a formal approach to fractional factorial designs.
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Placket t  and Burman (1946) gave a theory to construct saturated designs^ 

involving only two-level factors and provided initial settings and formulas to con­

struct these designs for n observations with n =  ik] k =  1, 2, . . .  ,25; except for 

n =  92. For the cases where n =  2 ,̂ Plackett and Burman designs are 2-level frac­

tional factorials of resolution^ III denoted as 2in. General and special methods for 

constructing orthogonal arrays were provided by Rao (1946, 1947).

After the second world war, complete (full) factorials as well as fractional 

factorials and Plackett and Burman designs were used consistently in industrial 

applications. Among sources of numerous examples are: Davies (1956), Johnson 

and Leone (1964), Daniel (1976) and Box, et al. (1978).

Factorial experimentation also plays an important role in response surface 

methodology, where factorial experiments are used sequentially to explore the 

behaviour of the response over the factor space in order to find the conditions 

that optimize the response. A variety of special designs including centre points 

and star points have been suggested in this area. Examples of early works on 

response surfaces are Box (1954), Box and Hunter (1957) and Box and Draper 

(1959). This methodology is described in considerable detail in Box and Draper

(1987).

During the last decade, the Japanese ideas of quality improvement have in­

creased considerably the awareness of the value that factorial experimental designs 

have in industry. Many companies have incorporated the use of factorial designs 

in their quality systems. Taguchi’s deficient statistical procedures are being over­

taken while the good ideas prevail. Factorial experiments are used at the design 

phases of projects in order to achieve quality by minimizing variability. It is com­

mon to study the effect of the factors on the variance as well as on the mean; 

here again, adequate transformations widely studied in the West have shown their

H n a  saturated experimental design, the number of observations is equal to the number of 
parameters to be estimated. These parameters are the main effects and the mean (see Dueker, 
1988).

^The resolution of a two-level factor design is defined by the confounding or alias structure 
(see Box, et al., 1978). In a resolution III design no main effect is confounded (aliased) with 
another main effect, although main effects may be aliased with two-factor interactions.
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value.

As these experiments are frequently conducted without replication, the analy­

sis of unreplicated factorials has become a major concern. Considering that these 

experiments are frequently analyzed by non-statisticians, it is desirable to provide 

easy to use and understand procedures, preferably with graphical displays, to as­

sess the significance of the estimates of the different effects involved in a particular 

experiment. This is the topic on which we will concentrate from the next chapter.

1.3 Exam ple

In order to illustrate some of the characteristics of unreplicated factorials as well 

as a typical Taguchi experiment, a shortened version of a parameter design exper­

iment presented by Byrne and Taguchi (1989) is analyzed here. The objective was 

to maximize the pull-off force of an elastomeric connector assembled to a nylon 

tube utilized in automotive engine components.

The idea in parameter design experiments is to find the optimal conditions 

(parameters) of control factors (factors easy to control) that minimise the per­

formance variation of products and processes in the face of noise factors (factors 

difficult or expensive to control) that are controlled at the stage of development 

for experimentation.

In this case the experimenters identified four control factors (A-D) and three 

noise factors (E-G) that they felt could affect the pull-off force of the assembly. 

They decided to vary the control factors over three equally spaced levels and the 

noise factors, which are uncontrolled during normal operations, were controlled at 

two levels during the experiment. However Byrne and Taguchi (1989) observed 

that, in this particular example, the experimenters could have combined the three 

noise factors into one (N) at two levels representing two extremes of environmental 

conditions, which would have reduced the number of observations from 72 to 18, 

leading basically to the same conclusions. In order to simplify the exposition this
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TABLE 1.1
Factors, levels and codes for the connector experiment

Factors Levels (codes)

co n tro l
A Interference Low (1) Medium (2) High (3)
B Wall thickness Thin (1) Medium (2) Thick (3)
C Insertion depth Shallow (1) Medium (2) Deep (3)
D Percentage adhesive Low (1) Medium (2) High (3)

N o ise
N Environmental conditions Level 1 ( 1 )  Level 2 (2)

shortened version of the experiment is presented here. The list of factors, their 

levels and codes is provided in Table 1.1.

Taguchi suggests the use of two orthogonal arrays, one for the control factors 

(inner array) and one for the noise factors (outer array). The two arrays are 

multiplied, i.e. for each factor-level combination in the inner array all factor-level 

combinations of the outer array are run to produce the variability due to noise 

factors. In Taguchi’s context most interactions among control and among noise 

factors can often be assumed to be negligible. However interactions between con­

trol and noise factors are looked for; the basic idea is to use these interactions 

to identify appropriate settings of control factors at which the variability of the 

quality characteristic (response) is minimized, then use control factors that alfect 

the mean but not the variability to bring the quality characteristic on to target.

In this experiment, the control factors were assigned to the orthogonal array 

0Ag(3'*) (Taguchi’s Lg) to generate a 3^"^ fractional factorial for the inner array. 

The outer array for the shortened experiment consists of two levels of the noise 

factor N. So only 18 out of the 72 observations originally considered are used. 

These are presented in Table 1.2.

Note that by using the array 0Ag(3^), the experimenters are assuming that 

the effects of first and higher order interactions among the four control factors are 

all negligible, otherwise the experiment will be of little value.

In order to analyze parameter design experiments Taguchi suggests different
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TABLE 1.2
Experimental layout and results 
for the connector experiment

control
factors

Noise factor 

N

A B C D 1 2

1 1 1 1 15.6 19.1
1 2 2 2 15.0 21.9
1 3 3 3 16.3 20.4
2 1 2 3 18.3 24.7
2 2 3 1 19.7 25.3
2 3 1 2 16.2 24.7
3 1 3 2 16.1 21.6
3 2 1 3 14.2 24.4
3 3 2 1 16.1 28.6

performance measures called signal-to-noise ratios or SN ratios. For each setting 

of the control factors the SN is computed from the observations of the noise array. 

The specific expression for the SN ratio depends on the ideal value of the quality 

characteristic (see e.g., Taguchi, 1986; Bendell et al., 1989). When, as in this 

example, the quality characteristic (in this case pull-off force) is of the larger-is- 

better type, the signal to noise ratio recommended by Taguchi is:

SNi = — l O l o g i o (1.1)

where n is the number of settings in the outer array. In this example n =  2.

In order to decide which effects are significant Taguchi recommends estimating 

error variance by pooling the smallest mean squares, up to about half of the degrees 

of freedom, and then performing F-tests. Then the results are used to find the 

conditions of the control factors that maximize SN. This is supposedly a good 

compromise between minimizing the variability provoked by the noise factor and 

maximizing the mean response.

SN ratios have been criticized for being unnecessarily complicated and restric­

tive (see e.g. Box, 1988). Moreover, Shoemaker, et al. (1991) have shown the 

advantages of combining inner and outer arrays and modelling the response as a 

joint function of the control and noise factors.
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On the other hand, the bias introduced by the nonstandard application of the 

analysis of variance recommended by Taguchi is well known. To show it, Box

(1988) simulated five null experiments of size 15 and conducted an ANOVA by 

pooling the seven smallest sums of squares to test the remaining eight. The average 

percentage of effects found to be significant at 5% in the five random samples was 

31%.

A natural alternative is to combine control and noise factors in a single design 

m atrix and model the response instead of a performance measure. If we make 

the usual independence and normality assumptions, a standard linear model with 

dummy variables as predictors can be used. As each of the control factors is stud­

ied at three equally spaced levels, it is convenient to use orthogonal polynomials to 

obtain separately contrasts measuring linear and quadratic effects. Let Ai and Aq 

denote the linear and quadratic effects of factor A and consider similar notation 

for factors B, C and D, and let N denote the effect of the noise factor. Then there 

are eight main effects of interest for the control factors and one for the noise fac­

tor. But the experimenters were also interested in interactions between noise and 

control factors. As the noise factor was experimented at its two levels for each 

setting of the control factors, it is possible to study the first order interactions 

between the noise factor and each component of the control factors. These are 

denoted by putting together the names of the elements involved, e.g. the inter­

action between Cq and N  is denoted CqN.  All these effects are considered in the 

following regression model

y  =  X p + e  (1.2)

where y  is the 18 x 1 vector of observations of pull-off force, X  is the 18 x 18 

m atrix of predictors including a column of Is, p =  (po, p i , . . . ,  pi?)^ is a vector of 

unknown coefficients, and e is an 1 8 x 1  vector of independent random variables 

from a normal distribution with mean zero and variance <7 .̂

Table 1.3 shows the values of y, X  =  (xq,Xi , . . .  ,Xit) and the names of the 

effects of interest. The latter are presented at the top of the columns of X  that 

they are associated with.
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TABLE 1.3
Effect names, X  m atrix and pull-off force data y  for the connector experiment

X l lX9X5 X6 X7Xl

15.6
15.0
16.3
18.3
19.7 
16.2
16.1
14.2 
16.1 
19.1 
21.9
20.4
24.7
25.3
24.7 
21.6
24.4 
28.6



The least squares estimate of (i is

il = (X'X)-iX'y. (1.3)

As X  is orthogonal, each element of (i can be computed using only the corre­

sponding vector of X,

At =  2 =  0 , . . . , 17 .  (1.4)
X,'X,'

Note that Ai; - - -1 Ai? &re contrasts that estimate the 17 effects of interest 

A i, . . .   ̂DqN. In fact each of these contrasts estimates a string of effects which 

are confounded with the effect of interest but that have been assumed to be neg­

ligible. The problem now is to decide which, if any, of the 17 contrasts are active 

(i.e. have nonzero mean). According to experience only a small proportion of 

these contrasts are expected to be active. A popular analysis for unreplicated 

factorials is by visually inspecting a half-normal plot of the contrasts. This tech­

nique was proposed by Daniel (1959) to interpret 2?"* factorials. However this 

procedure can be used also for experiments including factors with more than two 

levels by scaling the full set of orthogonal contrasts so that all of them have the 

same variance. Consider the arbitrary contrast At (i > 0) in (1.4). Its variance is

^  ( ^ )  "  5 ^

Thus Ai can be scaled or standardized by multiplying it by (xjx,)^/^, to give 

the standardized contrast

Ui =  (1.6)

whose variance is a^.

Note that the standardization could have been done in (1.2) by multiplying 

each element of the column xj of X  by (x-xj)"^/^ (i =  1 , . . . ,  17).

A half-normal plot is constructed by plotting the n — 1 =  m ordered absolute 

contrasts against the approximate expected order statistics for a sample of size m  

from the half-normal distribution. If all contrasts are null, the full collection should
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Figure 1.1: Half-normal plot of the standardized contrasts for the elastomeric 
connector example

fall near a straight line through the origin; the slope of the line is the standard 

deviation of the null contrasts. If a small number of real (active) contrasts are 

present, the corresponding absolute values should plot well off the straight line.

The half-normal plot of the 17 standardized contrasts of the elastomeric con­

nector example is shown in Figure 1.1. Only the largest absolute contrast, which 

measures the effect of the noise factor N, is obviously significant. Therefore there 

is no evidence that any particular setting of the control factors, within the ranges 

studied, could either dampen the effect of the noise factor, or affect the mean 

pull-off force.

The most frequently noted disadvantage of making conclusions based on visual 

inspections is that these procedures are somewhat subjective. Although in this 

example most people surely would coincide in deeming only the estimated contrast 

measuring the effect of factor N to be significant, in other not so clear situations 

two people judging the same plot might well arrive at different conclusions. Con­

sequently, it has been suggested that these plots should be supplemented with a

20



more formal method.

In the next chapter a literature review of methods for assessing the significance 

of estimated contrasts for unreplicated factorials is presented.
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C hapter 2

M ethods for assessing th e  

significance of contrasts for 

unreplicated factorials

2.1 A ssum ptions and description o f the prob­

lem

The attention will be restricted to unreplicated factorial experiments that can be 

described by the following linear model.

y  =  X p + e  (2.1)

where y is an n x 1 vector of independent observations at n experimental condi­

tions; X  is an n X n orthogonal matrix with rank n, whose first column Xq is a 

column of Is and the rest of the columns X i . . .  x ^  (m =  n — 1) are assumed to 

have been standardized so that xj-x» =  1, i =  1, . . . ,  m; p is a vector of unknown 

coefficients, say \i' =  (/^o,/^i,. • • , /im); and e  is a vector of n random variables 

independent and identically distributed according to the normal probability law 

with mean 0 and common variance <7 .̂ We shall use the standard notation and

22



refer to the elements of e as iid N(0,o-^).

The least squares estimators of //i, . . . ,  //̂ n are the orthogonal contrasts

H i  — U i  —  , 2 =  1 , . . . ,  772. ( 2 .2 )

Each one of the squares Z{ =  (xjy)^, i =  1 , . . . ,  m has one degree of freedom 

and it may be verified that

y y — =  Zi +  • • • +  Zm. (2.3)

A common assumption for these experiments is that of effect sparsity, the idea 

that only a small number of contrasts are expected to have nonzero means, those 

being called real or active contrasts.

The relevant problem is to infer, on the basis of one set of observations y i , . . . ,  

which, if any, of the orthogonal contrasts, have mean different from zero.

Note that (2.1) covers unreplicated two-level fractional factorials and Plackett 

and Burman designs for which the column vectors of the design matrix X  do not 

need to be standardized. The assumption of standardized columns (with the ex­

ception of column Xq) has been included in order to cover also fractional factorials 

and other experimental orthogonal arrangements with factors with more than two 

levels and those combining factors with different levels. Care should be taken in 

choosing the convenient standardized orthogonal contrasts to separate the desired 

comparisons. When the levels are equally spaced points of a quantitative char­

acteristic, standardized orthogonal polynomials are specially useful. Orthogonal 

comparisons for different kind of factors can be found, e.g., in Cochran and Cox 

(1957).

2.2 Traditional pooling

Perhaps the most traditional practice for assessing the significance of contrasts in 

unreplicated factorials is to pool some arbitrary number of sums of squares into
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an estimate of error variance and then use the F-test in the usual ANOVA way.

It is common to pool (when available) high-order interactions on the grounds 

that effects of this kind are often negligible. According to Davies (1956), in order 

not to bicLS the procedure, one should decide before the experiment is performed 

which interactions are likely to be null so their sums of squares are to be used to 

estimate the error variance.

Although this method is often considered as suitable practice, it is frequently 

violated as soon as the data are seen. If, for example, one of the high-order 

interactions happens to be large the experimenter might be led to exclude it in 

order to obtain an “improved” estimate of error, biasing the procedure in this way. 

For further common violations of this procedure see Daniel (1976, p.72).

One of the disadvantages of this procedure is that the experimenters are not 

always able to decide a priori which contrasts should be used to estimate error.

2.3 60% pooling

Berk and Picard (1991) investigated an approach based on the standard ANOVA 

table, but without involving tests based on the F  distribution. In the absence 

of an independent estimate of error variance, they suggest pooling 60% of the 

smallest mean squares into a baseline and forming F-like ratios of large mean 

squares with the mean square for the baseline as denominator. By simulation of 

the empirical distribution of such ratios they obtained critical values for testing 

individual contrasts at significance levels of 0.05, 0.01 and 0.001 for experiments 

with n =  8, 12, 16, 20 and 32 observations.

Berk and Picard carried out a simulation study involving different numbers of 

real effects of several sizes and compared some operating characteristics of this 

method with those proposed by Zahn (1975a), Box and Meyer (1986), Voss (1988) 

and Lenth (1989), all of which are described or commented on below. Berk and
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Picard concluded that based on the situations simulated, all the procedures seemed 

to perform “quite comparably”.

2.4 t margins of error

Lenth (1989) proposed a technique based on the idea of using the usual ^-test. Let 

f/i, I =  1, . . . ,  m, be the contrasts as defined before, and let

So =  1.5 • median \U{\. (2.4)

The pseudo standard error (FSE) of the contrasts is defined to be

FSE = 1.5 • median lUA. (2.5)
|l/< l< 2 .5S o  ' '  ̂ ^

Lenth shows that, under the assumption of effect sparsity, FSE is a good 

estimate of a.

Fitting the empirical distribution of FSE^ by scaled chi-squared distributions, 

Lenth considers the appropriate number of degrees of freedom to be d =  m /3 so, 

with the tables provided in Lenth (1989), approximate confidence intervals may 

be computed in the natural way.

It is suggested to compute a margin of error (ME) as

ME = 4®̂ "' • PSE (2.6)

where is the 0.975th quantile of a < distribution with d degrees of freedom. 

And taking into account that several inferences are being made simultaneously it 

is also suggested to compute a simultaneous margin of error (SME) as

SME = tj*’ • PSE (2.7)

where 7 =  (1 -1- 0.95^/”̂ )/2.

If \Ui\ > SME the respective contrast is declared to be active; if \Ui\ < ME

the respective contrast is declared to be null. Those in between are indeterminate

and become a m atter for the experimenter’s judgement.
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Lenth suggested presenting this information in a bar graph in which the mag­

nitude and sign of each contrast are displayed along with reference lines at diME 

and at dbSME.

The tables provided allow the computation of ME and SME for experiments 

with m =  7, 15, 31, 63, 127 and 255.

Stephenson (1991) presented a computer program for the application of this 

procedure.

2.5 Inference w ith  half-normal p lots

Along with the visual inspection of a half-normal plot, Daniel (1959) suggested 

a more formal procedure for assessing sequentially the significance of the largest 

contrasts. Let f / i , . . . ,  Um denote the orthogonal standardized contrasts from an 

experimental array with n =  m 4-1 observations. Under the assumptions stated 

in Section 2.1 f / i , . . . ,  Um are independent normally distributed random variables 

with respective means / i i , . .  .,/im and unknown variance The problem is to 

infer on the basis of one set of observed values of (7i,. . . ,  Um which, if any, of the 

means are nonzero.

Note that if Y is A(0,cr^), X  = \Y\ is a half-normal random variable with 

parameter and P ( X  <  cr) =  0.683.

Let V(i),. . . ,  V(m) denote the ordered absolute contrasts. The test statistics 

suggested by Daniel are

Tk =  À; =  m ,m  — 1, . . . , 0 -1-1 (2.8)
V{a)

with V(a) such that (o—0.5)/m is most nearly 0.683. As is standard, Daniel approx­

imated the expected order statistics by the percentiles (i — 0.5)/m , i =  1 , . . . ,  m, 

thus V(a) is the order statistic that is expected to be closest to <7. Simulating 

the empirical distributions of (2.8), Daniel obtained critical values and presented
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special grids for the cases m =  15, 31, 63 and 127 (a =  11, 22, 44, and 88) in­

cluding guard rails to detect up to r =  m — a real contrasts. These critical values 

were corrected by Zahn (1975a) who also investigated alternative methods (Zahn, 

1975b).

Daniel’s procedure is as follows.

i) Compute V(,)/V(a); i = l , . . . , m  and plot them on the appropriate half­

normal grid.

ii) Examine V(m)/V(o)- If it is plotted above the corresponding guard rail, 

declare the contrast significant and examine V^m-i)/y{a)- Proceed until a value 

plotted beneath the guard rail is encountered or until V(o)/V(a) is met. Declare 

that contrast and all the smaller ones insignificant.

Regarding Daniel’s critical values, Zahn argued that in order to control the 

probability of a nonzero family error rate (PER)^, using the terminology of Miller 

(1966), to be no greater than a  in Daniel’s procedure, the critical values should 

be as follows.

Let Vĥ m denote the hih order statistic from a sample of size m, and let a  

denote the probability of at least one false positive in a null experiment. Zahn’s 

q;-level critical values are such that

n I Pm— * < Crn-i \ Pi = . . .  = Pm-i =  0) = 1  — 0 , 2 =  0, . . . , r  — 1. (2.9)

Zahn (1975a) computed the set of critical values defined by (2.9) for a  =  0.05, 

0.20 and 0.40 revising in this way those given by Daniel (1959), and made other 

minor improvements to Daniel’s procedure.

W ith these critical values, Daniel’s procedure will give (in the null situation) 

one false positive if and only if the largest contrast is declared significant, i.e. if 

> Cm- Hence to control the PER =  o  in a null experiment Cm would

^When inferences about p parameters are carried out, one statement is made for each param­
eter. The PER is defined as the probability of at least one incorrect statement in the family of 
p statements
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suffice. The set of critical values Cm-i for z =  — 1 are used during the

procedure for determining which fi's will be considered different from zero when 

the null case has been rejected. The smaller these critical values, the higher the 

detection rates in non-null situations but the larger the expected number of false 

positives. W ith the set of critical values defined by (2.9) Zahn intended to control 

the PER < a  even in non-null situations. In fact this is analogous to the multiple 

modulus tests in the sense of Newman and Keuls (see Miller, 1966).

By means of simulation Zahn (1975b) compared empirically the operating char­

acteristics of several variations of Daniel’s corrected procedure for the case m =  15, 

and concluded that the method that he called version S  (and we will call Zahn’s 

method) seemed superior at least for m =  15, and he provided critical values 

for significance levels of 0.05, 0.20 and 0.40. Zahn’s method differs from Daniel’s 

corrected method with respect to the denominator of the test statistics used dur­

ing the procedure. Let Wi;m, • • •, Winrm, denote the expected values of the order 

statistics of a sample of size m from the standard (a =  1) half-normal distribu­

tion. Zahn’s suggested that better results may be obtained if the statistics (2.8) 

are replaced by

Tfc =  g f -T - A ;  =  m , m - l , . . . , o 4 - l  ( 2 . 1 0 )
b L (a , m )

where SL(a, m) is the slope of the ordinary least squares regression through the 

origin of V on W using the points (Wi:,;i, V(,)), z =  1 , . . . ,  a, i.e.

S L ( a ,m )  =  5 k h 2 ^ .  (2 .1 1 )

The idea that motivated this alternative is that in the null case SL(a, m) esti­

mates (7 and the ratios T- =  VJ,)/SL(a,m) estimate W,:m? z =  1, . . . ,  m.

A limitation of these methods is that they assume that at most r  =  4 real 

contrasts may be present in an experiment of size 15.

Voss (1988) studied another variant of Daniel’s procedure using a generalized

modulus-ratio statistic, but the detection rates obtained were poorer than those

of Zahn’s recommended version.
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2.6 A Bayesian approach

Box and Meyer (1986) developed a Bayesian procedure. Starting with an apriori 

probability for a contrast to be active (real) and assuming a normal distribution 

for the active contrasts, a posterior probability that it is active is computed for 

each contrast.

Let t / i , . . . ,  Um be the estimated contrasts. A random effects model is assumed, 

that is, for an inert (null) contrast U{ = e,- and for an active contrast Ui = rji +  e,-, 

where the e,- are iid Æ(0,T^) and the rji are iid Â (0,r,^).

Assume that a contrast is active with probability a  and let =  (r^ +  t^ ) / t^ , 

then U i , . . . ,  Um are iid from the scale contaminated normal distribution denoted

by

(1 -  a)N{0, T^) +  aN(0, Pr^) .  (2.12)

Bayes’ theorem is used to compute the posterior probability that a single esti­

m ated contrast Ui comes from the distribution Æ(0, given r .  Then numerical

integration over the posterior distribution of r  given Um is used to compute

the unconditional posterior probability pi that a contrast Ui is active.

Two parameters are required: a , the probability of an active contrast, and k 

the inflation factor of the standard deviation produced by an active contrast.

From information on the behaviour of several unreplicated fractional factorials 

reported in the literature. Box and Meyer took o: from the average proportion 

of contrasts declared significant by the authors, which was about 0.20; and k^ 

from the average of the ratios of mean squared significant contrasts over the mean 

squared null contrasts, which gave k about 10.

The bias introduced by restricting attention to published examples is recog­

nized, but Box and Meyer argued that the conclusions to be drawn from the 

analysis are usually insensitive to moderate changes in a  and k.

They suggest presenting the results in a graphical form known as a Bayes plot
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accompanied by normal plots.

2.7 T he chain-pooling m ethod

This is a quite complicated procedure presented by Holms and Berrettoni (1969). 

It is based on a modification of the Cochran (1941) method for testing homogeneity 

of variance. It does not require the effect sparsity assumption as only a few 

contrasts s >  1 are assumed to be null.

Let Z i , . . . ,  Zm be the ordered mean squares of the contrasts; the test statistics

are

Rj  =  jZ j / {Z i  H h Zj) j  =  2, . . . ,  m. (2.13)

Chain pooling is carried out in two steps:

i) Testing starts with j  =  s + 1 and a large nominal significance level ap (e.g.

0.25 or 0.50). Proceeding sequentially, all Zj testing nonsignificant remain in the 

denominator until some Zj is significant. As ap is large, this is expected to occur 

early in the chain.

ii) A new significance level a /  < Qp (e.g. 0.01 or 0.05) is imposed and the same 

Zj  is tested at level a / .  If Zj is significant again, all Zk {k > j )  are concluded to 

be significant. If Zj is not significant, continue testing Zj+i , . . .  until some Zk is 

significant, but only the first j  — I mean squares, plus the one being tested, are 

pooled into the denominator. The test statistic for the kih. mean square is then

Rj  =  jZk/{Zi  +  • • • +  Zj-i  4- Zk). (2.14)

The selection of the values (s,ap,o:/) is called the statistician’s strategy.

Holms and Berretoni presented a summary of an extensive Monte Carlo study 

made by Holms (1966) about the operating characteristics of different strategies for 

the 2  ̂ experiment. The aim was to find robust strategies that produce reasonably
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small type I and type II error rates for different numbers and sizes of real contrasts. 

Tables and charts were given in order to help the statistician to choose his/her 

own strategy.

The overall recommended procedure starts with s = 1 and a rough guess 

about the number of null contrasts ?/, this leads to an estimate A second chain 

pooling is then performed by selecting s in accordance with rj and using the charts 

to select ap and aj.  One limitation of this procedure is that it is not feasible to 

predetermine a bound on the probability of a type I error.

2.8 Testing norm ality and outliers

Benski (1989) presented a sequential method that uses Olson’s (1979) version 

of the Shapiro-Wilk tests of normality, supplemented by a test of outliers. Let 

17(1), • • • ? f/(m) be the ordered contrasts; Olson’s test statistic is

T  =  (2.15)

where are the approximate expected values of i =  1, . . . ,  m, and 

Ü = Y:Ui/m.

To detect the presence of outliers a robust test described by Hoaglin (1983) is 

suggested.

Testing starts with T  which gives a significance level If Pi is small, the out­

liers test is performed giving a significance level P2. Pi and P2 are then combined 

by Fisher’s combination method (Stephens, 1986). This gives a significance level 

Pc which is obtained using the fact that, under the null hypothesis, 2 In ( l / f i T^ )  

has approximately a distribution with 4 degrees of freedom. If Pc is small the 

largest absolute contrast is removed and T  is computed with the remaining values. 

The procedure continues until either Pi or Pc is not small. The contrasts removed 

during the procedure are declared significant.
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2.9 A procedure based on hom ogeneity o f m ean  

squares

Bissell (1989) proposed “tentatively” a procedure based on a modification by Box 

(1949) of B artlett’s (1937) test for variance homogeneity. Let be the

mean squares of the m  contrasts, the test statistic is

/  1  m  \  1 m

B =  In I — ^  Z* j  ]^lnZ ,-. (2.16)

The procedure consists of computing B and comparing it with critical values 

given in Bissell’s paper. If B is significant, the largest mean square is deleted and 

B is computed with the remaining mean squares. One then proceeds until B is 

not significant. The contrasts corresponding to the mean squares removed during 

the procedure are considered to be active.

2.10 A m ethod based on the coefficient 1 }̂

Hamada and Wu (1991) suggested the following procedure based on the statistic 

77̂ . A straight line is fitted through the smallest contrasts (over 50% in number) 

and its value is observed. Then the remaining contrasts are added one at a 

time, fitting a new line each time and looking for an drop of 0.1 or more from 

the last fitted line. At the first such drop, the currently added contrast and the 

remaining larger contrasts are identified as significant.

2.11 D iscussion

At this stage no best approach to the analysis of unreplicated factorials is ap­

parent. The operating characteristics of some procedures have been compared by 

simulation of a variety of situations in several studies. Zahn (1975b) compared
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different methods based on Daniel’s half normal plots for experiments with 15 

contrasts. Berk and Picard (1991) obtained critical values for the 60% method 

giving the same probabilities of error as those used for the procedures given by 

Box and Meyer (1986), Lenth (1991) and Zahn (1975a), and presented results of 

operating characteristics for experiments with 7 and 15 contrasts.

Taking the case of 15 contrasts, which has been studied most extensively, the 

following points summarize the main features of the results obtained so far. In all 

cases the operating characteristics were obtained from 1000 samples simulated.

1.- Zahn’s recommended version for half-normal plots showed larger detection 

rates (power) than Daniel’s corrected version, especially in situations with 4 real 

contrasts where the difference was “often by as much as 0.07” (Zahn, 1975b).

2.- In all the situations in which they were compared, the detection rates ob­

tained by Zahn’s method (Zahn, 1975b; Berk and Picard, 1991) are either equal to 

or greater than those obtained by the 60% procedure. In one of the situations the 

difference obtained was as large as 0.11. Zahn’s procedure however, is restricted 

to testing no more than 4 contrasts, so for situations with 5 or 6 real contrasts it 

is ineffective.

3.- The detection rates of the procedure suggested by Box and Meyer (1986) 

exceeded those of the 60% method in situations with 2 and 3 real contrasts while 

in situations with 6 real contrasts the 60% method seems to be more powerful.

4.- Regarding comparisons with the method proposed by Lenth (1989), the 

60% procedure seems more powerful in situations with 1 and 2 real contrasts 

while Lenth’s appeared more powerful when there were 4 and 6 real contrasts.

Although these results comprise important contributions, they are not con­

clusive and may lead to contradictory interpretations. For instance, although the 

effect sparsity assumption, which is based on the experience accumulated through­

out the years, is generally accepted, there is no general agreement about the degree 

of effect sparsity that should be considered. Thus if it is thought that in experi-
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ment s with 15 contrasts there will be no more than 4 real contrasts, Zahn’s method 

will be preferred over any other procedure. But if it is thought that there may be 

5 or 6 then Zahn’s method should be avoided.

Similarly, the lack of knowledge about the numbers and sizes of real contrasts 

that are likely to occur prevents the definite preference of any of the other proce­

dures compared.

It would be possible to extend the simulation studies to a richer range of situ­

ations. However this would imply mahing more assumptions about the situations 

that are likely to arise in practice, and will not help very much to discriminate 

among the methods.

Instead, it was decided to study the performance of the four procedures men­

tioned above on real data using for this purpose a substantial number of experi­

ments published in the statistical literature and other sources. The four procedures 

are the ones proposed by Box and Meyer (1986), Berk and Picard (1991), Lenth 

(1989), and Zahn (1975a).

Although the selection of these four procedures is somewhat arbitrary, they 

have been chosen according to the following criteria: once implemented, they are 

easy to apply and interpret; the interpretation can be effectively helped by graph­

ical displays; and they seem to have been accepted by the statistical community 

as the most promising.

The exercise of comparing these methods on real data cannot be expected to 

answer all the questions that have not been answered by simulation studies. In 

fact, since the numbers of null and real contrasts and the sizes of the latter ones 

will remain unknown, it cannot not be expected that, at the end, it will be possible 

to make any statement that implied their previous knowledge.

W hat is expected instead, is that the problems that usually arise in practice 

will appear, showing for example, the limitations of one procedure compared with 

the other ones. And hopefully, some other points that arise only when one is
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dealing with real data will emerge.

In practice the model assumptions are rarely wholly satisfied. For example, 

it would be naive to think that all the assumed null contrasts are actually null, 

and although in most cases they may be small enough to be considered as being 

negligible for practical purposes, those small nonzero contrasts might affect the 

effectiveness of the procedures in different ways.

It is expected that in most of the examples the procedures will coincide, so 

attention will be paid to those cases where they do not agree, looking for clues 

to the possible reasons. At the end, it will be interesting to analyse the global 

performance of each procedure compared with the others. The results of the 

simulation studies described above might be useful as a reference background.

It is im portant that the procedures are applied using the same probability error 

rates, either for individual or multiple inferences, but also it is desirable that they 

are applied in the way they have been proposed. Thus it may require compromise 

between these two ideas to make the procedures at least roughly comparable and 

try  to keep as close as possible to the original proposals. The examples selected 

as well as the implementation of the methods are presented in the next chapter.

35



C hapter 3

E xam ples and im plem entation  o f  

selected  m ethods

In the discussion at the end of the last chapter it was decided to investigate four 

methods by applying them to a substantial number of real experiments. The 

methods are: The Bayesian procedure suggested by Box and Meyer (1986) which 

will be referred to as BM; the 60% method by Berk and Picard (1991) which will 

be referred to as BP; Lenth’s (1989) method which will be referred to as LE; and 

Zahn’s version of Daniel’s procedure for half-normal plots, which will be referred 

to as ZA.

The results of the search for real examples of unreplicated factorials are pre­

sented in Section 3.1. Some technical details of the implementation and supple­

mentation of the four procedures to make them readily available and applicable 

to all sizes of experiments collected are exhibited in Section 3.2. In Section 3.3 

graphical displays of the four methods are illustrated with an example.
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3.1 Exam ples collected

A search for examples of unreplicated factorials in the statistical literature and 

other sources was carried out. There is a great variety of examples but the most 

numerous are of the type 2^“ ,̂ with p — ç =  3, 4, 5, 6. Thus it was decided 

to use two-level factor examples to study the performance of the four procedures 

selected. The examples were carefully scrutinized in order to avoid repetitions and 

making the best effort not to include simulated data. The final list contained 102 

examples of factorial experiments distributed as follows.

• 30 ex am ples w ith  7 co n trasts . Design and, within brackets, number of 

examples with that design.

2" (12), 2ÎV* (6), (5), 2 ^^  (2), 2^5  ̂ (5).

• 54 ex am ples w ith  15 co n trasts .

2" (18), 2 ,̂-* (6), 2 ^ '  (6), 2^:" (5), (10), 2^» (4), 2}?f ® (2), 2}ff "  (2),

Plackett and Burman (1).

• 9 exam p les  w ith  31 con trasts .

2= (6), 2 t l ‘ (1), (1), (1).

• 9 exam p les  w ith  63 co n trasts .

2« (3), 2^-" (5), 2 } f f (1).

The complete list of examples is presented in Appendix A, where they have 

been labelled as [1], [2], ..., [102] for reference purposes.

The set of contrasts for each example was computed and all the sets were 

organized in a data base for their manipulation and processing.
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3.2 Im plem entation of selected m ethods

The four methods were implemented in the matrix programming language GAUSS. 

The characteristics and amount of the mathematical and computing work involved 

varied from method to method as is shown below.

3.2.1 Bayesian approach (BM )

In the Bayesian method proposed by Box and Meyer (1986) outlined in the previ­

ous chapter, the standardized contrasts Um are considered as a sample of

independent random variables with density

f i U M u r )  = & 1
\2k^T^

, (z =  1 , . . . ,  m) (3.1)

where is a random variable that takes the value 1 when the contrast i is active 

and 0 when it is inert, and for which the prior probability distribution is

f{(i)  =  A^'(l -  & =  0,1. (3.2)

Direct application of Bayes’ theorem leads to the posterior probability that a 

particular contrast i is active given U{ and the standard deviation r

Note that this is independent of the remaining Ui , . . . ,  Ui_i, t / ,+i , . . . ,  Um-

To compute the unconditional posterior probability that the contrast T{ is ac­

tive, the parameter r  must be integrated out of (3.3) over its posterior distribution 

/ ( r |U ) ,  where U  =  ( t / i , .. .,  Um)-

The prior distribution for r  used by Box and Meyer is

/ ( r )  oc i .  (3.4)
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Using Bayes’ theorem again, the posterior distribution of r  given the contrasts U,

IS

/M U )  =  (3.5)

where

( - W
+  ( l - a ) e x p ( ^ (3.6)

and

f ( V ) = r f { r , V ) d r .  (3.7)
Jo

Finally, removing the conditioning on r  the posterior probability that an individual 

contrast i is active given U  is

Jroo
I P r[6 =  l|U ;,r]/(r |U )< ir
0

=  l|C/,-,r]/(r,U)<fr
/(U)

(3.8)

Rather than expanding the integrands in (3.8), the integrals are computed by 

numerical integration as suggested by Box and Meyer (1986), so the main compu­

tational work was the writing of the integrand’s functions. The GAUSS routine 

used is INTQUADl which uses Gauss-Legendre quadrature.

3.2.2 Zahn’s m ethod (ZA)

As Zahn (1975a) presented critical values for ZA for the case of 15 contrasts only, 

it is necessary to compute critical values for the cases with 7, 31 and 63 contrasts.

The computation of the denominator SL of the statistic (2.10) requires the 

expected values of order statistics of samples of the standard half-normal distribu­

tion (HEOS). Since these are tabulated only for small sample sizes (Zahn, 1975a),
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an expression to compute suitable close approximations for any sample size is 

obtained below.

A random variable is said to be standard half-normal if its probability distri­

bution function is

^ 2/tt exp{—x^/2}, for T >  0 

0, for a; <  0.
9{x) = (3.9)

Let G{x) denote its cumulative distribution function, i.e.

/•CO

G(x) =  / g{x)dx. (3.10)
Jo

Let X i  < X 2 < ' "  ^  Xm denote the order statistics of an independent random 

sample of size m  from this distribution and let F{{x) {i =  l , . . . , m )  denote the 

cumulative distribution function of the ith order statistic AT,-, then

F i(i)  =  Pr[X< < 2) =  ™ )  [G(z)K[l -  (3.11)

The expected value of X{ is (see David, 1970)

m  — ] 
i - 1

F[X,] =  m ( "* M  /  z[G (z)]'- '[l -  G{x)]"‘- 'g{x)dx.  (3.12)

Instead of solving this equation by numerical integration, which would require 

extensive computational work, general results from David and Johnson (1954) 

may be applied. These authors obtained expressions to approximate the cumulants 

of order statistics from continuous populations up to order (m -f 2)“^. For our 

particular case we found that using the expression for approximation to order 

(m -f 2)~^ is enough to reproduce the 11 values (with three decimal places) used 

by Zahn for the case of m =  15. Thus the general expression for approximations 

to order (m -f 2)“ ,̂ also presented by David (1970), is used here.

Let Pi =  1), g* =  1 — p,-, and Hi =  G~^(p,), where G~^ is the inverse of

3.10. The expected value of Xi  is to order (m -f- 2)“^

E[ Xi ]  =  H i +
2(m +  2) ' 2(m +  2)2
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where H ”' and are the 2nd, 3rd and 4th derivatives of G  ̂ evaluated at 

X = Pi. To obtain them note that

(3.14)

then

Hence

53(G->(x)) S^(G->(x))

(3.15)

(3.16)

as (3.9) is such that g'{x) =  —xg{x). 

Continuing it is found that

dx^
G (x) =

l + 2 G - ' ( x )

g3(G -'(x))
(3.17)

and
G -'( x){7  +  6 [G -'(x)P}

( * ) = — 7 ( G = m —
(3.18)

Taking x  =  pi and replacing H ”., H ’" and H ”" in (3.13) we obtain the expression 

to approximate the expected values of order statistics from the samples of the 

standard half-normal distribution (HEOS) to order (m -f- 2)“ .̂ This is

Pi<li
2(m -f- 2)

Hi

+ Pi«i
(m +  2)'

((. -  p .)( l +  z m  ^  PiUHiCi +  6 # f )
3 p :(# ) m H i )

. (3.19)

The values Hi can be obtained from tables of the standard normal distribution 

or from most statistical packages using the relation

G -'(p ) =  $ -*  ( ^ ) ,  0 < p < l , (3.20)

where $(a;) denotes the standard normal cumulative distribution function.
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Sets of HEOS that were computed using (3.19) are presented in Table 5.6 at 

the end of Chapter 5 for several values of m. The sets for m =  7, 15, 31 and 63 

were used in obtaining, via simulation, critical values for the ratios involved in 

the sequential procedure described in Chapter 2 for PER at 0.05, 0.20 and 0.40. 

Further details are given in Chapter 4.

3.2.3 60% procedure (B P)

Berk and Picard (1991) presented critical values for significance levels p =  0.05, 

0.01, 0.001 for testing individual contrasts for several sizes of experiments. How­

ever they did not present values for the case of 63 contrasts, so they were computed 

following the same calibration process followed by Berk and Picard which can be 

described as follows.

According to this procedure, for the case m  =  63, 25 ratios are formed by 

dividing the 25 largest mean squares by the average of the smallest 38 mean 

squares. For a significance level p the critical value has to be such that the expected 

proportion of false rejections in a null experiment is p x 63 out of 63. As only 25 

are actually tested, the proportion of the 25 expected to be rejected is {p x 63)/25.

One million sets of independent samples of 63 null contrasts were simulated to 

obtain the 1 — (p x 63)/25 percentiles for p =  0.001, 0.01, 0.05.

The procedure was then supplemented with this set of critical values and with 

a bar graph display of the ratios and reference lines at the critical values as shown 

in the example below.

3.2.4 L enth’s m ethod (LE)

Programming Lenth’s procedure is a straightforward task, however as will be seen 

in the next chapter, the values tabulated by Lenth (1989) are far from producing 

the error rates they are supposed to, making it appear too conservative for small
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and moderate sizes of experiments.

3.3 Exam ple

The graphical displays of the four procedures are illustrated using a 2® example 

(labelled [92] in Appendix 3A), reported by Kempthorne (1952). It is a classic 

experiment conducted at Rothamsted to study the effects of five fertilizers on 

the yield of mangolds. The fertilizers were amounts of sulphate of ammonia S, 

superphosphate P, muriate of potash K, agricultural salt N and dung D. The 

experiment was arranged in four blocks of eight plots, confounding the interactions 

SNP, PKD, and SKND with block effects. The 31 contrasts are listed in Table 3.1 

in standard order.

Figures 3.1, 3.2, 3.3, 3.4 show the graphical displays of the methods BM, BP, 

LE and ZA respectively.

The four procedures agree in deeming three contrasts as being highly signifi­

cant. These are the contrasts measuring the main effects of the factors S, D and N. 

The procedures BP and LE also find that two other contrasts are significant at the 

0.05 significance level for testing of individual contrasts; however as it is discussed 

in the next chapter this rule might be too liberal for this size of experiment. It is 

interesting to note that the half-normal plot bends slightly upwards at about the 

13th order statistic suggesting that the basic assumptions might not be properly 

satisfied.
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TABLE 3.1 
Contrasts for the Rothamsted mangolds 
example in standard order

No Name Value

1 S 5328
2 P 312
3 SP 104
4 K 152
5 SK 1240
6 PK -448
7 SPK -96
8 N 2152
9 SN 728
10 PN 432
11 SPN (block) -96
12 KN 992
13 SKN -592
14 PKN -40
15 SPKN 104
16 D 2896
17 SD -96
18 PD -56
19 SPD 760
20 KD -168
21 SKD 776
22 PKD (block) 1248
23 SPKD -656
24 ND -664
25 SND -88
26 PND -176
27 SPND -752
28 KND 160
29 SKND (block) -352
30 PKND 408
31 SPKND 216
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Figure 3.1: Posterior probabilities of being active for contrasts of the Rothamsted 
mangolds experiment
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Figure 3.2: Ratios and significance lines at 0.05, 0.01 and 0.001 for the Rothamsted 
mangolds example
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L e n t h ’s p r o c e d u r e  (LE)
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Figure 3.3: Margin of error and simultaneous margin of error for contrasts of the 
Rothamsted mangolds experiment
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Figure 3.4: Half-normal plot for the Rothamsted mangolds example with ZA 
guardrails at PER=0.05 0.20 and 0.40
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C hapter 4

C om parison of four selected  

m ethods

4.1 Error rates

As it was stated in Chapter 2, the relevant problem analyzing unreplicated fac­

torials is to decide which, if any, of the m  contrasts under study have nonzero 

mean. Using the notation introduced in section 2.1 this is equivalent to testing 

the following family of null hypotheses:

Hi : fii = 0̂  i =  l , . . . , m .  (4.1)

The intersection of all the members of the family is called the overall null hypoth­

esis. Classical approaches to simultaneous testing of a number of hypotheses are 

commonly based on extensions of the Neyman-Pearson paradigm for testing of 

a single null hypothesis. Critical values of certain tests statistic are obtained to 

control, under the overall null hypothesis, one or both of the following error rate 

criteria: (a) The expected proportion of the total number of tests that result in 

false rejections, and (b) the probability of one or more false rejections. The latter 

is the probability of a nonzero family error rate (PER), defined in chapter 2. As
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with other concepts in simultaneous inference there is not a standard term  for this 

idea. It is also called experimentwise error rate.

The terms to be used here are EPE for criterion (a) and PER for criterion (b).

In practice experimenters tend to test each contrast at some standard signif­

icance level 6 (typically 0.05 or 0.01). The use of this criterion is equivalent to 

testing each member of the family at significance level S. As, under the overall 

null hypothesis, the expected proportion of false rejections in the whole family is 

the average of the expected proportion of the members of the family, the use of 

this criterion controls EPE at level 6. However, the probability of rejecting the 

overall null hypothesis, i.e. the probability of at least one false rejection PER, can 

be then much greater than S.

For a given value 6 of EPE there corresponds a value, 7 say, of PER and 

vice versa. The functional relationship between the two values, depends on the 

joint distribution of the test statistics involved in each procedure. When the test 

statistics are independent the following relationship holds:

PER =  l - ( l - E P E ) ”̂ . (4.2)

The methods BP and LE offer critical values that allow for the control of EPE, 

while ZA and again LE present critical values that control PER. However in none 

of these methods are the test statistics independent, because of the denominator 

used in each case. Note also that because of the effect sparsity assumption, in 

each of these methods only a subfamily of (4.1) is actually tested. Nevertheless, 

the critical values in each case have been defined with regard to the whole family. 

For instance, the use of a significance level equal to 6 say in BP means that under 

the null hypothesis a proportion S out of the m are expected to be significant.

The Bayesian procedure BM, produces for each contrast its posterior probabil­

ity of being active. In order to be able to obtain EPE and PER for this procedure 

we will use a frequentist interpretation and consider a contrast to be active if, using
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the prior information suggested by Box and Meyer (1986), its posterior probability 

of being active is larger than a certain critical value, 77 say.

One way of looking for a fair basis for comparisons among the methods is to 

use the sets of critical values presented for each procedure and, via simulation, 

obtain empirically the values of both EPE and PER. These are then examined to 

see if there are critical values at which the four methods have similar error rates. 

If not, new sets of critical values may be obtained. This should be done trying to 

conserve the original idea of each method as much as possible.

Table 4.1 shows the EPE and PER characteristics for experiments with 7, 15, 

31, and 63 contrasts, when the critical values used for LE and BP are supposed to 

control EPE at 0.05; the critical values used for ZA are supposed to control PER 

at 0.40; and the criterion used for BM is to deem a contrast to be significant if 

its posterior probably of being active is larger than 0.5. The values were obtained 

from 100,000 samples of standardized contrasts simulated for BP, LE and ZA, and 

10,000 for BM which requires much more processing time.

There are some interesting features in this table. First, the relationships be­

tween the PER and EPE values reveal that the test statistics in each procedure are 

not independent. Take m =  15 for instance, according to (4.2) if the test statistics 

were independent a value of EPE =  0.05 should match to a value of PER =  0.54. 

Second, the fact that, when either of the values EPE or PER is similar in two 

procedures the other one is also similar for the same number of contrasts. This 

will facilitate the choosing of cut off points for comparisons.

Another discovery from Table 4.1 is the fact that the critical values for LE given 

by Lenth (1989) do not produce the empirical error rate they are supposed to. The 

critical values to construct the margin of error ME for several sizes of experiments 

should produce values of EPE of 0.05 approximately. However, the empirical 

EPEs obtained using those critical values are much smaller than 0.05, making 

the “margin of error” ME, too conservative. The inaccuracy is greater for small 

experiments. Recall that Lenth computed these critical values on the grounds that
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the ratios L/^/PSE are distributed approximately as t with m /3 degrees of freedom. 

However these results indicate that for the sizes of experiments considered here, 

at least in the tails of the distributions, the approximations are rather inaccurate. 

This has been seen before by Berk and Picard (1991) but they did not seem to be 

aware of the implications. In their simulation study the “proportion judged reaF 

for the null case is equivalent to our empirical EPE. The values obtained by Berk 

and Picard are 0.019 for m =  7 and 0.028 for m =  15 from 1,000 simulated data 

sets.

TABLE 4.1
Some empirical error rate characteristics of the four procedures 

for experiments with 7, 15, 31 and 63 contrasts.

Number of contrasts (m)

7 15 31 63

Method EPE PER EPE PER EPE PER EPE PER

BM 0.045 0.21 0.027 0.26 0.019 0.38 0.016 0.58

BP 0.050 0.26 0.050 0.46 0.050 0.70 0.050 0.91

LE 0.020 0.10 0.029 0.25 0.037 0.53 0.044 0.84

ZA 0.088 0.40 0.052 0.40 0.026 0.40 0.011 0.40

The inaccuracy of Lenth’s critical values for the “simultaneous margin of error” 

SME is expected to be larger since, besides the lack of precision of the approxima­

tions, they were obtained under the assumption (only approximately true) that 

the test statistics are independent.

In order to solve this problem, new sets of critical values controlling EPE and 

PER at 0.05 were obtained empirically as described below.

4.2 Corrected critical values for LE

Table 4.2 shows the critical values given by Lenth (1989) and the set of new values 

for experiments with m=7, 15, 31, and 63 contrasts. The new (empirical) critical
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values were obtained by means of simulation. For each size of experiment, 100,000 

sets of standardized contrasts were simulated and, for a range of possible critical 

values, EPE and PER were computed. Lenth’s critical values are also exhibited 

in this table to show the difference between the two sets. This is large for the 

case m =7 and decreases gradually as the size of experiment increases. Note that 

if the values in the column “Empirical EPE =  0.05” are shifted one line down 

they are very close to Lenth’s values in the column Lsrsjrf. Similarly with the 

columns “Empirical PER =  0.05” and Lenth’s value for the SME where in 

two occasions the corrected critical value is equal to one of Lenth’s but for different 

m. This is mere coincidence but exhibits the magnitude of the inaccuracy.

From now onwards, LE with corrected critical values will be referred to as LE '. 

TABLE 4.2
Quantiles of the t distribution with d =  m /3  degrees of freedom (given by 

Lenth) and quantiles of the empirical distribution obtained from 100,000 

samples simulated.

m

Lenth

t.975;<f

Empirical

EPE=0.05

Lenth Empirical

PE R =0.05

7 3.76 2.30 9.01 4.86

15 2.57 2.15 5.22 4.22

31 2.22 2.07 4.22 3.91

63 2.08 2.01 3.91 3.81

Note: 7 =  (1 +  0.95^/"*)/2.

4.3 Error rate characteristics for com parison  

criteria

A brief exploration of the empirical error rates of the four methods using several 

critical values revealed the following characteristics.

For experiments with number of contrasts m =7 and m =15, the use of the 

critical values controlling EPE at 0.05 for BP and LE ' give values of PER  not
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too far away from 0.20 and 0.40 respectively. Recall that ZA offers critical values 

controlling the PER at 0.05, 0.20 and 0.40. The use of critical values of ZA 

controlling the PER at 0.20 for m —7 and 0.40 for m=20 give values of EPE that 

are not far away from 0.05. BM gives similar values of EPE (not far from 0.05) 

and PER (close to 0.20 for m=7 and close to 0.40 for m=15) when the criterion 

used is to declare a contrast to be significant if its posterior probability of being 

active is greater than 0.5 for m=7 and 0.33 for m=15.

Something similar happens for experiments with m=31 and m=63, but using 

the critical values controlling EPE at 0.01 for BP and LE '. This meant obtaining 

critical values for LE' controlling EPE at a value not originally considered by 

Lenth. The use of these critical values gives values of PER not far away from 0.20 

(m =  31) and 0.40 (m = 63) which are levels suggested for ZA. The criteria that 

produce similar values for BM are to declare a contrast to be significant when 

its posterior probability of being active is greater than 0.65 for m=31 and 0.6 for 

m=15.

Table 4.3 shows the criteria adopted for the comparison of the four procedures 

on real data. The values of EPE and PER were obtained from 100,000 samples of 

standardized contrasts simulated for BP, LE and ZA and 10,000 for BM. Critical 

values for ZA, which uses several for each size of experiment, (one per step in the 

sequential procedure) are presented in Table 4.4.

There is a certain arbitrariness in all this. The procedures BP and L E ' are, 

by definition, strictly comparable in terms of EPE. The remaining criteria are a 

compromise between common usage and the desire of make the four procedures 

at least roughly comparable. The idea is to apply them to the sets of real data 

compiled and examine the results for features that may not be explained by the 

differences in error rate characteristics shown in Table 4.3.
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TABLE 4.3
Critical values (c.v.) and empirical error rate characteristics of the four methods for 
the criteria to be used for comparisons on real data.

Number of contrasts
7 15 31 6 3

M e th o d c .v . E P E P E R c .v . E P E P E R c .v . E P E P E R c .v . E P E P E R

B M 0 .5 0 0 .0 4 5 0 .2 1 0 .3 3 0 .0 4 9 0 .4 4 0 .6 5 0 .0 1 0 0 .2 3 0 .6 0 0 .0 1 1 0 .4 5

B P 2 3 .7 6 0 .0 5 0 0 .2 6 1 8 .9 3 0 .0 5 0 0 .4 6 3 3 .6 2 0 .0 1 0 0 .2 2 3 2 .7 6 0 .0 1 0 0 .4 0

L E ' 2 .3 0 0 .0 5 0 0 .2 3 2 .1 5 0 .0 5 0 0 .4 0 3 .0 3 0 .0 1 0 0 .1 9 2 .7 4 0 .0 1 1 0 .3 8

Z A t 0 .041 0 .2 0 t 0 .0 5 2 0 .4 0 t 0 .0 1 0 0 .2 0 t 0 .0 1 1 0 .4 0

t C r i t i c a l  v a lu e s  f o r  Z A  a re  g iv e n  in  T a b le  4 .4 .

TABLE 4.4
PER = 0.40, 0.20, and 0.05 level critical values for ZA, for experiments with m 
contrasts. The sequential procedure starts with the critical values zX k = m.

m  — 7 

k

P E R m  =  6 3  

k

P E R

0 .4 0 0 .2 0 0 .0 5 0 .4 0 0 .2 0 0 .0 5

6 1 .42 1 .7 7 2 .5 8 45 1 .53 1 .6 9 1 .9 8

7 1 .85 2 .3 7 3 .5 3 46 1.61 1 .7 9 2 .1 0

47 1 .6 8 1 .8 8 2 .2 2

48 1 .75 1 .9 6 2 .31

m  =  15 P E R 49 1 .82 2 .0 4 2 .4 1

k 0 .4 0 0 .2 0 0 .0 5 50 1 .8 9 2 .1 2 2 .5 0

12 1 .48 1 .7 3 2 .2 2 51 1 .95 2 .1 9 2 .5 8

13 1 .72 2 .0 4 2 .6 5 52 2 .02 2 .2 7 2 .6 7

14 1 .94 2 .32 3 .0 4 53 2 .0 8 2 .3 4 2 .7 5

15 2 .1 7 2 .6 0 3.41 54 2 .1 4 2 .41 2 .8 4

55 2.21 2 .4 8 2 .9 2

56 2 .2 7 2 .5 4 3 .0 0

m  =  31 P E R 57 2 .3 3 2 .6 1 3 .0 9

k 0 .4 0 0 .2 0 0 .0 5 58 2 .3 9 2 .6 8 3 .1 7

23 1 .4 8 1 .6 7 2 .0 2 59 2 .4 5 2 .7 5 3 .2 5

24 1.61 1 .84 2 .2 5 60 2.51 2 .8 2 3 .3 3

25 1 .74 1 .9 9 2 .45 61 2 .5 6 2 .8 8 3 .4 0

26 1 .8 6 2 .14 2 .6 3 62 2 .62 2 .9 5 3 .4 8

27 1 .99 2 .2 9 2 .81 63 2 .6 8 3 .0 1 3 .5 7

28 2 .1 0 2 .42 2 .9 8

29 2.21 2 .5 6 3 .1 4

3 0 2 .33 2 .6 9 3 .3 2

31 2 .4 4 2 .8 3 3 .4 9
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4.4 Com parative performance on real data

In this section the main features of the results of applying the four methods to 

the 102 sets of real data described in Chapter 3 are presented. The methods 

were applied using the criteria exhibited in Table 4.3 and 4.4. The exposition is 

organized by the number m  of contrasts.

4.4.1 Case m = 7

The results of applying the four methods to the 30 examples with 7 contrasts 

exhibited a complete agreement among the four methods in the contrasts deemed 

to be significant in 24 out of the 30 examples. The main features of the differences 

on the remaining 6 examples are analyzed below.

Table 4,5 shows the distributions of significant contrasts per experiment and 

total numbers of significant contrasts for the four methods. This suggests that 

the inability of ZA to examine more than 30% (in this case 2) of the contrasts is 

a serious drawback.

TABLE 4.5
Distribution of numbers of significant contrasts per experiment 

for four methods applied to 30 experiments with 7 contrasts

Number of 

significant 

contrasts BM BP

Method

I E ZA

0 13 12 13 14

1 4 4 3 3

2 9 12 11 13

3 4 2 3 0

44- 0 0 0 0

Total no. of

significant 34 34 34 29

contrasts
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Most other differences are a consequence of borderline contrasts, i.e. contrasts 

that were just significant using one method and nearly significant using another. 

However there is one example that deserves closer examination. It is a 2  ̂ pre­

sented by Box and Draper (1987) and labelled [1] in Appendix A. The aim of 

the experiment was to determine the effect of amounts of carbon (C), manganese 

(Mn) and nickel (Ni) on the temperature at which martensite starts being formed 

in a steel. The 7 contrasts are shown in Table 4.6.

TABLE 4.6
Contrasts of example 

[1] in standard order

Name Value

C -287.5

Mn -45.0

Ni -32.5

C.Mn 5.0

C.Ni 7.5

Mn.Ni 5.0

C.Mn.Ni -5.0

The application of BP and LE ' resulted in the three main contrasts (C, Mn and 

Ni) being detected as significant while ZA deemed to be significant the 2 largest 

contrasts. The surprise was that the application of BM resulted in only the largest 

contrast being significant. The reason for the disagreement of BM with the other 

procedures in this example is not difficult to find. BM assumes that the contrasts 

come from one of two Normal populations, both with mean zero but one more 

highly variable than the other. As the variance is unknown, the particularly large 

contrast C makes it more likely that all the others come from the less variable 

population. On the other hand BP and LE ' measure the variability from the 

smallest 4 contrasts. This situation will be studied further in Chapter 6.
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4.4.2 Case m =  15

As a result of applying the four methods to the 54 experiments with 15 contrasts 

using the criteria described above, the agreement in the contrasts considered to 

be significant was complete in 33 out of the 54 examples.

Table 4.7 shows the distributions of numbers of significant contrasts per ex­

periment and the total numbers of significant contrasts per method. These results 

again suggest a problem with ZA: its inability to examine more than 4 contrasts 

appears, on this evidence, to be an undesirable limitation. It is also interesting 

to note that BP seems slightly less powerful than the other methods despite a 

slightly higher PER (Table 4.3).

TABLE 4.7
Distribution of numbers of significant contrasts per experiment 

for five methods applied to 54 experiments with 15 contrasts

Number of 

significant 

contrasts BM BP

M ethod

LE ZA

0 6 6 6 6

1 13 12 11 9

2 15 18 20 19

3 9 9 6 7

4 6 5 5 13

5 4 4 4 0

6 0 0 2 0

7 1 0 0 0

8-1- 0 0 0 0

Total no, of

significant 121 115 121 120

contrasts

In most of the examples for which the methods disagree, the differences (leaving 

out ZA’s limitation), are due to contrasts close to the critical values, however there 

are some odd examples. The most apparent is the set of dispersion contrasts in
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an experiment on piston ring spacers presented by Grove and Davis (1992) and 

labelled [60] in Appendix A. The result of applying the 4 methods to this example 

exhibited the following numbers of contrasts deemed to be significant per method: 

BM, 7; BP, 4; LE ', 6; ZA, 4. However, the authors considered that none of the 

15 dispersion contrasts was active and, in any case, the magnitude of the largest 

ones was small for any practical purposes. The reason for these disagreements is 

apparent in the half-normal plot presented by Grove and Davis; the smallest 9 

contrasts, assumed to be null (the effect sparsity principle), do not form a straight 

line, in fact the ordered absolute contrasts seem to plot exponentially against the 

half-normal scores. This possible violation of a basic assumption seems to have 

affected the four methods in a similar way. An advantage of the half-normal plot 

is that violation of some basic assumptions as well as the presence of one faulty 

observation can be spotted by visually inspecting the graph (see Daniel, 1959).

4.4.3 Case m =  31

Table 4.8 shows the total numbers of significant contrasts and the maximum num­

ber of significant contrasts found in a single experiment as a result of applying 

BM, BP, LE and ZA on 9 examples with 31 contrasts. The methods were applied 

with the critical values that produced empirical values of EPE =  0.01 and of PER 

about 0.20 for the four methods as shown in Table 4.3.

There was a perfect agreement between BP and LE ' on one hand, and between 

BM and ZA on the other hand. The latter two methods identified two more 

contrasts as being active in the total. In this case ZA is able to examine up to 9 

contrasts, which seems, for these examples and for PER =  0.20, to be adequate.
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TABLE 4.8
Total numbers of significant contrasts and maximum per experiment 

for four methods applied to 9 experiments with 31 contrasts

BM BP LE ZA

Total number 

of significant 

contrasts

19 17 17 19

Maximum in 

a single 

experiment

5 5 5 5

4.4 .4  Case m =  63

Table 4.9 shows the total numbers of significant contrasts and the maximum num­

ber of significant contrasts found in a single experiment as a result of applying the 

4 methods to 9 examples with 63 contrasts. The methods were applied with the 

critical values exhibited in Table 4.3.

The results showed few surprises. There was complete agreement among the 

four methods in 6 out of the 9 experiments. For one of the remainder the applica­

tion of ZA resulted in 10 contrasts being deemed significant while the application 

of BM, BP and LE ' resulted in 6 significant contrasts. However the 4 contrasts 

which made the difference are very similar and very close to be significant using 

these methods. The differences in the results for the other 2 examples are the 

consequence of similar situations, giving the total numbers of significant contrasts 

shown in Table 4.9.

The value of PER of about 0.40 used in this case corresponds to ZA’s most 

liberal criterion. The maximum number of contrasts that this method is able to 

examine, which is 12, seems to be adequate.
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TABLE 4.9
Total numbers of significant contrasts and maximum per experiment 

for four methods applied to 9 experiments with 31 contrasts

BM BP LE ZA

Total number 

of significant 

contrasts

28 26 27 30

Maximum in 

a single 

experiment

6 6 6 10

4.5 Concluding remarks

In order to make possible the comparison of the four methods it was decided to 

analyze empirically, for null experiments, the behaviour of the two main criteria 

used in simultaneous inference: the expected proportion of false rejections (EPE) 

and the probability of at least one false rejection (PER).

This led to the conclusion that the critical values in LE were quite inaccurate. 

The approximation of the t distribution used by Lenth (1989) is not adequate for 

small and moderate size of experiments, which are the most common. Another 

source of inaccuracy was Lenth’s assumption of independence of the test statistics 

in the definition of the simultaneous margin of error (SME). New sets of critical 

values were obtained by means of simulation controlling the values of EPE at 0.05 

for the margin of error (ME) and PER at 0.05 for the SME. Two extra critical 

values were obtained controlling EPE at about 0.01 for the cases of m =  31, 63 

to match with the other procedures for the comparison on real data.

Eventually, it was possible to find sets of critical values matching the values 

of EPE and PER approximately for the four methods for each of the four sizes of 

experiments used.

On basis of critical values giving similar error rates, in most examples the
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four procedures wholly agreed in the identification of the contrasts that should be 

deemed to be significant; the differences, in many cases, were small and unimpor­

tant. However, in some cases, it was possible to identify practical situations in 

which some of the methods will lead to a wrong interpretation.

For example, it was apparent that BM may overlook some real contrasts in 

situations where, besides these real contrasts, there is a very large contrast, which 

makes the others appear negligible. But the most serious problem was tha t the 

range of degrees of effect sparsity considered by ZA is, compared with the other 

procedures, unrealistic, at least for small and moderate sizes of experiment. This 

might be one of the reasons for the lack of popularity of ZA. An alternative, which 

considers a more appropriate number of contrasts assumed to be null, is presented 

in the next chapter.
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C hapter 5

A n alternative m ethod o f  

inference using half-norm al p lots

One of the features of the results of the previous chapter is that the maximum 

number of contrasts that can be assessed for significance using ZA seems to be 

inappropriate. In this chapter several modifications are analyzed and one which 

allows the examination of a more sensible number of contrasts is proposed.

5.1 A nalysis o f alternatives

Recall that ZA is a modification of the method of statistical testing with half­

normal plots proposed by Daniel (1959). A more general statement of the detection 

process is set up here by considering the number of contrasts assumed to be null 

(effect sparsity), in an experiment with m contrasts, as a certain function 6(m). 

Then the information available will be used to find a compromise definition for 

6(m).

Let Vi:m, , Vm:m denote the ordered absolute contrasts of an experiment with 

m  contrasts and let . . . ,  denote the expected values of the order statis­
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tics of a sample of size m  from the standard (cr =  1) half-normal distribution. The 

procedure, in this more general way, uses sequentially the following test statistics:

T{k, b{m)) = TTTTT̂ T— ÿ  =  m, m -  1, . . . ,  b{m) +  1 (5.1)
i j  y O \ j n j , 772 j

where

(5.2)
2 ^ i= l  ^  i'.m

The detection process starts by comparing the ratio T(m, b{m)) with a critical 

value Cm,b{m)  which controls the PER at certain level 7 , i.e., under the assumption 

that all the contrasts are null, Cm,b{m)  is such that

P r{ r(m , 6 (772))  < =  1 - 7 . (5.3)

If the statistic is smaller than the critical value, all the contrasts are deemed to 

be inert and the procedure stops; otherwise the largest contrast is declared to be 

significant and T{m — 1 ,6(772)) is compared with the critical value c,n-i,6(m) which, 

under the assumption that the remaining 772 — 1 contrasts are null, is such that

Pr{T(772 -  1, 6 (772))  <  =  1 -  7 , (5.4)

and so on. The procedure stops when either a test statistic is smaller than its 

corresponding critical value or the statistic T'(6(m), 6 ( 772))  is encountered. Conse­

quently the procedure is unable to assess the significance of more than m  — 6 ( 772) 

contrasts in a single experiment. The presence of more than m  — 6 ( 772) real con­

trasts would also contaminate the test statistic denominator (5.2) reducing the 

procedure’s power.

A particular choice of 6 ( 772) originates what will be referred to as a variant of 

the detection process. In this sense ZA is a variant which sets 6 ( 772) as the integer 

number nearest to 0.683772 -f 0.5. The results of the analyses made in Chapter 4, 

suggested that this is not appropriate. For example, for 772 =  7 and for m  =  15, 

only up to 2 and 4 contrasts respectively may be examined using this variant, 

but about 10% of the examples for these sizes of experiment analyzed in Chapter 

4 presented greater numbers of contrasts deemed to be significant as a result of 

applying BM, BP or LE ' at the standard significance level EPE =  0.05.
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It is natural to look for a variant that uses a definition of b[m) considering 

smaller numbers of contrasts assumed to be null in (5.2), as this will allow as­

sessment of the significance of a larger number of contrasts. However, this also 

will increase the variation of the test statistics (5.1), because the sums in (5.2) 

will be over smaller numbers, and therefore increase the magnitude of the critical 

values at fixed PER, with negative effects on the power for situations covered by 

ZA. Hence, the value eventually adopted should be a result of a trade off between 

these two ideas.

The 0.60, 0.80 and 0.95 quantiles of the empirical cumulative distribution func­

tions of the null distribution of the test statistic ratios T(k,b{m))  that would be 

involved in the procedure described above, for different choices of 6(m), were ob­

tained via computer simulation for m =  7, 15, 31, 63. Then the variants were 

applied to the 102 experiments in Appendix A. The results are analyzed below.

5.1.1 Case m =  7

Figure 5.1 shows, for m =  7, the relevant segments of the the empirical cumulative 

distribution functions of the ratios T(7,6(m)), i.e. those involved in the first step 

of the procedure, for the variants 6(7) =  5 (ZA), 6(7) =  4, and 6(7) =  3. As 

expected, the smaller 6(7) the larger the 0.60, 0.80 and 0.95 quantiles to be used 

as critical values. The differences between the 1 — PER =  0.95 quantiles for two 

successive values of 6(7) are specially noticeable as they strongly affect the power. 

When 6(7) changes from 5 (ZA) to 4, the difference is 0.65 standard deviations 

and 1.15 standard deviations when 6(7) varies from 4 to 3.

The empirical cumulative distribution functions for the second largest ratio 

T(6, 6(7)) for the same variants are exhibited Figure 5.2. The differences among 

them are similar to those for the largest ratio.

These three variants were applied to the 30 examples with 7 contrasts ana­

lyzed in Chapter 4. Table 5.1 shows the distributions of significant contrasts per
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Empi r i cal  cdfs of V ( 7 : 7 ; f ) ,  f = 5 , 4 , 3

1.00

0 .9 5

0 .9 0

0 .8 5

0 .8 0

0 .7 5

0 .7 0

0 .6 5

0 .6 0

f = 5  (ZA) 
f - 40 .5 5

0 .5 0
1 .0  1 .5 2.0 2 .5 3 .0 6.03 .5 4 .0 4 .5 5 .0 5 .5

Figure 5.1: Empirical cumulative distribution function of the ratios T(7, 6(7)) for 
b(7)=5,4,3

Empirical cd f s  of V (6 :6 ; f ) /S L ( f , 7 ) ,  f =  5 ,4 , 3
1.00
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—  f » 4
■ ■■ f = 3
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Figure 5.2: Empirical cumulative distribution function of the ratios T (6 ,6(7)) for 
b(7)=5,4,3
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experiment and total numbers of significant contrasts as a result of applying the 

three variants to those examples using PER =  0.05.

TABLE 5.1
Distribution of numbers of significant contrasts per experiment for four 

variants of ZA applied to 30 experiments with 7 contrasts.

Number of 

significant 

contrasts 6(7) =  5 (ZA)

V arian t  

6(7) =  4 6(7) =  3

0 16 16 22

1 6 7 6

2 8 5 2

3 - 2 0

44- - - 0

Total no. of

significant 22 23 10

contrasts

This, together with the results in Chapter 4, suggests that taking 6(7) =  4 

is a good compromise. Despite having larger critical values the possibility of 

examining up to three contracts made this variant appear slightly more powerful 

on these examples. When 6(7) is changed from 4 to 3 the total number of contrasts 

deemed to be significant falls sharply.

5.1.2 Case m =  15

For m =  15 the variants analyzed ranged from taking 6(15) =  11 (ZA) down to 

6(15) =  7. The shapes of the empirical cumulative distribution functions of the 

test statistics were similar to those for the case m =  7, although the increments 

found between the PER =  0.05 critical values for consecutive values of 6(15) were 

smaller, varying from 0.14 standard deviations when 6(15) changed from 11 to 10, 

to 0.25 standard deviations when 6(15) was varied from 8 to 7.
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The 5 variants were applied to 53 examples with 15 contrasts analyzed in 

Chapter 4 (the troublesome example [60] was left out). Table 5.2 shows the dis­

tributions of significant contrasts per experiment ajid total numbers of significant 

contrasts as a result of applying the 5 variants using PER =  0.05.

TABLE 5.2
Distribution of numbers of significant contrasts per experiment of five variants 

applied to 53 experiments with 15 contrasts

Number of 

significant 

contrasts 6(15) =  11 (ZA) 6(15) =  10

Variant 

6(15) =  9 6(15) =  8 6(15) =  7

0 21 21 24 26 26

1 14 15 13 10 11

2 8 7 6 7 5

3 5 5 5 5 5

4 5 2 2 2 4

5 - 3 3 3 1

6 - - 0 0 0

7 - - - 0 0

8+ - - - - 0

Total no. of

significant

contrasts

65 67 63 62 60

When the value of 6(15) was changed from 11 to 10, three examples appeared 

with 5 contrasts deemed to be significant and the total number of significant 

contrasts increased from 65 to 67. Subsequent reductions in the value of 6(15) 

resulted in a decrease in the total number of contrasts deemed to be significant. 

However, the use of 6(15) =  10 may be too restrictive as, for the examples [59] and 

[69] the authors suspected that there might be as many as 6 real contrasts in each. 

W ith the use of the more permissive PER =  0.40, up to 3 examples appeared to 

have 6 significant contrasts detected with the variants using 6(15) <  9, however no 

variant resulted in the detection of more than 6 significant contrasts, suggesting
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that a good compromise is taking 6(15) =  9. Note that the compromises of 6(7) =  4 

and 6(15) =  9 are both about 0.6 times m. This coincides with the proportion of 

contrasts used by Berk and Picard (1991) for constructing the baseline for BP.

5.1.3 Cases m =  31 and m =  63

For m =  31 and m =  63 there are many possible variants and few examples to 

base a choice on so the criterion 6(m) = 0.60m was extended to these cases giving 

6(31) =  19 and 6(63) =  38. The application of these variants to the examples with 

31 and 63 contrasts analyzed in Chapter 4, as is shown below, gave virtually the 

same results as applying ZA and the other procedures compared in Chapter 4.

5.2 M ethod H P

A compromise value of 6(m) of about 60% of m seems to be quite safe in avoiding 

the contamination of 5(6(m), m) by large contrasts in small and moderate sizes of 

experiments (m =  7,15), and does not seem to affect greatly the power in large 

experiments (m =  31,63). The method with this definition of 6(m) will be called 

HP (after half-normal plot).

Although the analysis of the detection process that led to HP hcLS been made 

without the half-normal plot, the idea is to use it with this plot (also called the 

Daniel plot). The beauty of the plot is that, besides aiding the interpretation, it 

may be used to examine the contrasts for departures from the basic assumptions 

(see Daniel, 1959). In order to facilitate the application of HP using the Daniel 

plot a macro in MINITAB code (macro HP) is presented in Appendix B.

Sets of critical values for the use of HP for different sizes of recommended 

designs up to m =  31 are presented in Table 5.5 at the end of this chapter. All 

sets of critical values were obtained with a minimum of 500,000 simulated sam­

ples. Although the expected values of order statistics of samples of the standard
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half-normal distribution (HEOS) required for the computation of S(6(m),m) are 

computed by the macro HP using the expression (3.19) obtained in Chapter 3, 

sets of these values for the same designs are presented in Table 5.6 next to the 

critical values.

5.3 Com parative perform ance o f H P

In order to compare the performance of HP on real data with the four methods 

compared in Chapter 4, HP was applied to the same examples and using similar 

error rates, following the criteria presented in Table 4.3, i.e. PER =  0.20 for m =  7 

and 31 and PER =  0.40 for m =  15 and 63. This gives EPE slightly greater than 

0.05 for m =  7 and 15, and EPE slightly greater than 0.01 for m =  31 and 63.

A summary of the results of the application of the five methods to the examples 

analyzed in Chapter 4 using similar error rates is given in Table 5.3.

TABLE 5.3
Total numbers of contrasts deemed to be significant as a result o f applying 

5 methods to 102 examples using comparable error rates.

Number of 

contrasts

Number of 

examples BM BP

M ethod

LE' ZA HP

7 30 34 34 34 29 37

15 54 121 115 121 120 138

31 9 19 17 17 19 18

63 9 28 26 27 30 30

For experiments with 7 and 15 contrasts, HP appears, on the examples ana­

lyzed, to have greater power to detect active contrasts, while for experiments with 

31 and 63, the performance of HP was comparable with other methods.
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5.4 Exam ple

To illustrate the use of HP consider the example labelled [56] in Appendix A from 

Grove and Davis (1992). The experimenters investigated the effects of 8 factors 

at two levels on the number of flow marks in the manufacture of plastic lids for 

car glove boxes. The factors were assigned to columns of the so called Lie(2^^) 

orthogonal array, to generate a 2^"* design.

Table 5.4 shows the ordered absolute contrasts, the expected values of order 

statistics from the standard half-normal distribution (HEOS), the factors and the 

alias structure (up to order 2). The one-letter codes (A-H) for the factors are used 

here for brevity.

Figure 5.3 shows the half-normal plot with guard rails using PER =  0.40, 0.20 

and 0.05. Rather than using the ratios T{k,  6(m)), the ordered absolute contrasts 

are plotted against the HEOS in Table 5.6. The regression through the origin 

using the 9 smallest pairs gives the coeflficient 5(9,15) =  0.635. The products of 

this coefficient and the critical values given in Table 5.5 are plotted against the 

6 largest order statistics and the points are joined by lines to improve the visual 

impact.

The procedure is to compare first the largest contrast with the guard rail 

corresponding to the desired PER. If it is plotted above the guard rail, this contrast 

is declared significant and the next largest contrast is examined. When a contrast 

plotted beneath the guard rail is met (or the guard rail has ended), that contrast 

and all the smaller ones are declared insignificant. The main effects of factors B 

(Melt temperature) and C (Mould temperature) are clearly active. Using the more 

liberal rule, PER =  0.40, there are three more contrasts that may be deemed to 

be active. The alias structure of Table 5.4 indicates that the aliased combination 

estimated by the 3rd largest absolute contrast involves the interaction EC, this 

makes it more likely to be active.
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TABLE 5.4 
The glove box lid example (Grove and Davis, 1992)

Order
number

Absolute
contrast

Expected order 
statistics (HEOS)t

Factors and 
alias structure

1 0.038 0.079 Nozzle aperture (D)
2 0.088 t 0.158 AH +  BD -b CE -b EG
3 0.088 0.239 AD -b BE -b CF +  EG
4 0.263 t 0.322 AB +  CG -b DH -b EF
5 0.338 t 0.407 Injection stroke (A)
6 0.338 t 0.496 Second-stage injection speed (E)
7 0.388 0.589 First-stage injection speed (F)
8 0.438 0.688 Change-over point (G)
9 0.438 t 0.794 AE -b BF +  CH -b DG
10 0.563 t 0.910 AF -b BE -b CD -b GH
11 0.988 t 1.040 Mould clamping force (H)
12 1.113 1.191 AC “b BG “b DF *b EH
13 1.163 t 1.376 AG 4- BC -b DE -b FH
14 2.438 t 1.625 Mould temperature (C)
15 2.963 t 2.052 Melt temperature (B)

$These values were obtained from Table 5.6.
fThese values were negative before absolute values were taken.

3 . 2 6

2 . 9 6

2.66

w 2 . 3 7  
</)
o  2 . 0 7

c
oo 1.78 PER=0.20

PER=0.40 ■

0 . 5 9

•  •0 . 3 0

0.00
0.0 2 . 50 . 5 1.0 2.01.5

Expected order s ta t i s t i c s

Figure 5.3: Half-normal plot of the glove box lid data with HP guard rails

70



5.5 A note about power

The main criterion followed for the specification of HP has been to make it ap­

propriate for the degree of effect sparsity suggested by the experiments analyzed. 

However, in section 5.3, it was shown that for experiments with 7 and 15 contrasts 

HP identified larger numbers of contrasts as being active than the other methods 

when they were applied using similar error rates, and it was said that this fact 

suggested HP having greater power. It may be argued that perhaps the contrasts 

that made the difference could all be false positives.

Monte Carlo studies on power have shown that the detection rates exhibited by 

BP, BM and LE (Berk and Picard, 1991) as well as ZA (Zahn, 1975b) are rather 

low even for situations with active contrasts as large as 4cr. The explanation of 

these results can be found in the nature of the problem itself; for instance, as the 

expected value of the largest absolute contrast in a null experiment is about 2cr, 

any procedure would need much larger error rates than those recommended if it is 

to have a high detection rate for contrasts of that magnitude. Therefore, it would 

be sensible to expect that the larger set of contrasts deemed to be active by HP 

consists of a larger number of active contrasts correctly detected and a number of 

false positives that is also larger. However, since these experiments are typically 

used for the screening of factors, having some false positives does not m atter as 

much as failing to identify active contrasts, as presumably all the contrasts deemed 

to be active will be exposed in later experiments.

5.6 Concluding remarks

The idea proposed by Daniel of using half-normal plots to assess the significance 

of orthogonal contrasts has been used mainly without any formal tests of signif­

icance. A simple modification of one of Zahn’s versions of Daniel’s procedure of 

statistical testing with half-normal plots has been described. Its utilization only 

requires a little effort beyond that usually involved in obtaining these plots with
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the advantage that more objective decisions may be made.

The procedure suggested exhibited at least similar power for detecting active 

contrasts as other comparable methods when they were applied to a substantial 

number of unreplicated factorials published in the literature.

Analyzing unreplicated factorials involves examining the data, contrasts and 

residuals in different manners. Daniel (1976) has found it particularly useful to 

examine the signed contrasts in standard order and the full normal plots of the 

residuals. The method suggested here is intended to be an aid at the stage of 

deciding which contrasts should be considered to be active. Provided that the 

key assumptions are reasonably satisfied the experimenter may be confident in 

declaring to be active contrasts detected using the guard rail at PER =  0.05 as 

in the example given in section 5.4. In that example three other contrasts were 

significant using the more liberal rule of PER =  0.40. These need more careful 

consideration, and the experimenters should bear in mind the alias pattern as well 

as their own knowledge of the phenomenon being investigated before making their 

judgement.
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TABLE 5.5

PER  =  0.40, 0.20, and 0.05 level critical values for experiments with m  contrasts. 
The entries each subtable are the 1—PER quantiles of the ratios T(fc; b{m))  for the

m  = 7 
k

P E R m  =  19 

k
P E R m  =  2 7  

k
P E R

0 .4 0 0 .2 0 0 .0 5 0 .4 0 0 .2 0 0 .0 5 0 .4 0 0 .2 0 0 .0 5
5 1 .1 3 1 .45 2 .2 3 12 1 .13 1 .3 2 1 .6 9 17 1 .1 8 1 .35 1 .6 7
6 1 .5 3 2 .03 3 .21 13 1.31 1 .5 6 2 .0 2 18 1 .3 2 1 .5 3 1.91
7 1 .9 2 2 .59 4 .1 8 14 1 .4 8 1 .7 7 2 .3 2 19 1 .4 5 1 .6 9 2 .1 2

15 1 .65 1 .9 8 2 .6 0 20 1 .5 8 1 .85 2 .3 2
16 1.81 2 .1 9 2 .8 8 21 1 .7 0 2 .0 0 2 .5 3
17 1 .9 8 2 .3 9 3 .1 6 22 1 .8 2 2 .1 4 2 .71

m  =  8 P E R 18 2 .14 2 .5 9 3 .4 3 23 1 .9 4 2 .2 9 2 .9 0
k 0 .4 0 0 .2 0 0 .0 5 19 2 .30 2 .7 9 3 .7 1 24 2 .0 7 2 .4 4 3 .0 9
6 1 .2 3 1 .53 2.21 25 2 .1 9 2 .5 7 3 .2 7
7 1 .5 9 2 .04 3 .0 3 26 2 .3 0 2 .7 2 3 .4 6
8 1 .95 2 .5 3 3 .8 2 27 2 .4 2 2 .8 6 3 .6 4

m  =  23 P E R
k 0 .4 0 0 .2 0 0 .0 5

15 1 .20 1 .3 9 1 .74
m  =  11 P E R 16 1 .3 6 1 .5 9 2 .0 2 m  =  31 P E R

k 0 .4 0 0 .2 0 0 .0 5 17 1.52 1 .7 8 2 .2 7 k 0 .4 0 0 .2 0 0 .0 5
8 1 .2 4 1 .50 2 .0 4 18 1 .6 6 1 .9 6 2 .51 20 1 .2 3 1.41 1 .72
9 1 .5 3 1 .88 2 .61 19 1.81 2 .1 3 2 .7 3 21 1 .3 6 1 .5 7 1 .9 3

10 1 .8 0 2 .25 3 .1 5 20 1 .94 2 .3 0 2 .9 5 22 1 .4 8 1.71 2 .1 2
11 2 .0 8 2.61 3 .6 9 21 2 .0 8 2 .4 8 3 .1 8 23 1 .6 0 1 .85 2 .2 9

22 2 .22 2 .6 4 3 .4 0 24 1 .71 1 .9 8 2 .4 7
23 2 .3 6 2 .81 3 .6 3 25 1 .8 2 2 .1 2 2 .6 4

26 1 .9 3 2 .2 4 2 .8 0
m  =  15 P E R 27 2 .0 4 2 .3 7 2 .9 6

k 0 .4 0 0 .2 0 0 .0 5 28 2 .1 5 2 .5 0 3 .1 2
10 1 .1 7 1 .3 8 1.81 m  =  26 P E R 29 2 .2 5 2 .6 3 3 .2 8
11 1 .3 9 1 .6 7 2 .2 3 k 0 .4 0 0 .2 0 0 .0 5 3 0 2 .3 6 2 .7 5 3 .4 4

12 1 .6 0 1 .94 2 .62 17 1 .23 1 .41 1 .75 31 2 .4 6 2 .8 7 3 .6 1
13 1 .8 0 2 .2 0 2 .9 8 18 1 .3 7 1 .5 9 1 .9 9
14 2 .01 2 .4 6 3 .3 4 19 1.51 1 .7 6 2.21
15 2 .21 2 .72 3 .71 20 1 .64 1 .92 2 .4 2

21 1 .77 2 .0 8 2 .6 3
22 1 .9 0 2 .2 3 2 .8 2
23 2 .0 3 2 .3 9 3 .0 2

m  =  17 P E R 24 2 .1 5 2 .5 3 3 .21
k 0 .4 0 0 .2 0 0 .0 5 25 2 .2 8 2 .6 8 3 .41

11 1 .1 5 1 .35 1 .7 4 26 2 .4 0 2 .8 3 3 .61

12 1 .3 4 1.61 2 .11
13 1 .5 3 1 .85 2 .4 5
14 1 .7 2 2 .0 8 2 .7 7
15 1 .9 0 2.31 3 .0 9
16 2 .0 8 2 .5 3 3 .3 9
17 2 .2 6 2 .7 6 3 .7 1
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TABLE 5.6

Expected values of the order statistics of sample size m from the standard half-normal 
distribution

Order
number m

k 7 8 11 15 17 19 23 26 27 31

1 0.160 0.141 0.105 0.079 0.070 0.063 0.052 0.047 0.045 0.039
2 0.326 0.287 0.213 0.158 0.140 0.126 0.105 0.093 0.090 0.079
3 0.504 0.441 0.323 0.239 0.212 0.190 0.158 0.140 0.135 0.118
4 0.702 0.608 0.439 0.322 0.285 0.255 0.212 0.188 0.181 0.158
5 0.934 0.795 0.561 0.407 0.359 0.321 0.266 0.235 0.227 0.198
6 1.233 1.017 0.692 0.496 0.436 0.389 0.321 0.284 0.273 0.238
7 1.722 1.306 0.838 0.589 0.516 0.459 0.377 0.333 0.321 0.279
8 1.782 1.004 0.688 0.599 0.531 0.435 0.383 0.369 0.320
9 1.205 0.794 0.686 0.606 0.494 0.434 0.418 0.362
10 1.472 0.910 0.780 0.685 0.555 0.486 0.467 0.405
11 1.922 1.040 0.881 0.769 0.618 0.540 0.519 0.448
12 1.191 0.992 0.858 0.683 0.596 0.571 0.492
13 1.376 1.117 0.955 0.752 0.653 0.626 0.538
14 1.625 1.263 1.062 0.825 0.712 0.682 0.584
15 2.052 1.442 1.183 0.902 0.775 0.741 0.632
16 1.685 1.324 0.986 0.840 0.802 0.681
17 2.104 1.499 1.077 0.910 0.866 0.732
18 1.736 1.177 0.984 0.935 0.785
19 2.148 1.292 1.064 1.008 0.840
20 1.427 1.151 1.087 0.899
21 1.594 1.248 1.173 0.960
22 1.823 1.359 1.270 1.025
23 2.224 1.490 1.380 1.095
24 1.653 1.510 1.171
25 1.877 1.671 1.254
26 2.271 1.894 1.347
27 2.286 1.453
28 1.579
29 1.736
30 1.954
31 2.338
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C hapter 6

Exploring extensions to  th e  

B ayesian approach BM

Recall from Chapter 4, that the application of BM to one of the examples with 7 

contrasts resulted in only one contrast being deemed to be active while two other 

seemingly active contrasts were overlooked.

The example is a 2  ̂ design presented by Box and Draper (1987) and labelled 

[1] in Appendix A. The aim of the experiment was to determine the effects of 

amounts of carbon (C), manganese (Mn) and nickel (Ni) on the tem perature at 

which m artensite starts being formed in a steel. The 7 contrasts are shown in 

Table 6.1.

The application of BP and LE ' resulted in the three main contrasts (C, Mn 

and Ni) being detected as significant. HP, the alternative for ZA is in agreement 

with this. However the application of BM resulted in only the largest contrast 

being deemed active. Indeed, as it is shown in Figure 6.1, only C has posterior 

probability of being active larger than 0.5, the critical value for BM according to 

the comparison criteria defined in Chapter 4.
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TABLE 6.1
Contrasts of example 

[1] in standard order

Name Value

C -287.5

Mn -45.0

Ni -32.5

C.Mn 5.0

C.Ni 7.5

Mn.Ni 5.0

C.M n.Ni -5.0

1.0

0.9

0.8

0.7

0.6

a  0.5

0.4

0.3

0.2

0.1

0.0
71 2 3 5 64

Input o r d er

Figure 6.1; Posterior probabilities of being active for contrasts of the Martensite 
example, when oc = 0.20 and k — 10.

BM assumes that the contrasts are independent realizations of a random vari­

able whose distribution is a mixture of the form (1 — a)Fi +  aF2 where Fi is 

7V’(0,r^) and F2 is A"(0, {kT^) with & > 1. If, as suggested by the other methods, 

the three largest contrasts in this example are active, the values of a  = 0.20 and 

k = \0 proposed by Box and Meyer (1986) are far from covering this particular
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situation. The specially large contrast C makes it more likely that all the others 

come from the less variable population Fi.

If the experimenters had an idea a-priori that a particularly large contrast 

would be present and suspected that one or two other contrasts would also be 

active but of more moderate size then they would have reason to choose a much 

larger value for k (e.g. k = 30 o t  k = 40) and, as they would expect more than 

20% of contrasts to be active, they also should choose a larger value for a  (e.g. 

a  =  0.25 or a  =  0.30). Figure 6.2 shows the posterior probabilities of being 

active for the seven contrasts when a  =  0.25 and k =  30. The contrasts Mn and 

Ni as well as C have posterior probabilities of being active larger than 0.5 thus, 

according to our criterion for this size of experiment defined in Chapter 4, these 

contrasts are deemed to be active. However, when the method is applied with 

these values of a  and k to the other 29 of the 30 examples with 7 contrasts listed 

in Appendix A, the results are different to those obtained when the recommended 

values a  =  0.20 and A: =  10 were used. Since we are dealing with real data it is 

not possible to know which contrasts are actually real and which are not. However 

in 27 of those 29 examples the number of contrasts deemed to be significant when 

BM is applied using the recommended values a  =  0.20 and A: =  10 is in complete 

agreement with at least two other of the methods BP, LE ', and HP when they 

were applied using comparable error rates. These examples (identified by the 

labels given in Appendix A) along with the numbers of contrasts deemed to be 

active are exhibited in Table 6.2.

It will be assumed here that the three largest contrasts in example [1] are 

observations of real effects and that the inferences for the 27 examples shown in 

Table 6.2 are sensible. The idea, then, is to explore modifications to BM in order 

to make it robust enough to deal with situations like the one suggested by example 

[1], but giving, for the 27 examples mentioned, basically the same results that were 

obtained using the recommended values. The criterion to follow is that of Chapter 

4 for the case m =  7 contrasts, i.e. contrasts with posterior probabilities larger 

than 0.5 are declared to be active, and the error rates EPE and PER are to be
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Figure 6.2: Posterior probabilities of being active for contrasts of the Martensite 
starts temperature example, when q = 0.25 and k = 30.

kept about 0.05 and 0.20 respectively.

TABLE 6.2
Examples with 7 contrasts for which the number of contrasts deemed 

to be significant by BM coincided with at least two other m ethods.

No. of significant contrasts Examples

0 [4] [51 [6] [15] [17] [19] [22]

[23] [24] [26] [27] [28] [30]

1 [10] [12] [16]

2 [2] [7] [8] [11] [13]

[20] [21] [25] [29]

3 [14] [18]



6.1 Considering prior distributions for the pa­

ram eters a  and k

In order to tackle situations like the one suggested in example [1] without biasing 

the inferences too much for the more common situations, the experimenters may 

wish to be able to express their prior beliefs about specific values of a  and k by 

assigning certain prior probabilities to the values suggested by Box and Meyer 

and certain prior probabilities to other (including larger) values. In general, the 

procedure will be more flexible if the experimenters have the option of stipulating 

prior distributions for a  and k.

In order not to make the numerical integration too heavy a burden in the com­

putation of the posterior probability that a contrast is active, discrete distributions 

are assumed for these parameters. Let f{ctj)^ j  =  1 , . . . ,  r  and f{k i), / =  1 , . . . ,  s 

denote the independent prior probability mass functions of a  and k respectively. 

Continuing with the notation of section 3.2 of Chapter 3, for a particular value of 

k = ki the estimated contrasts C/i,. . . ,  Um are considered as a sample of indepen­

dent random variables with density

+ ( 1 - W
1

■y/ïir
exp 2t2 , (z =  1 , . . .  ,m ) (6.1)

where is a random variable that takes the value 1 when the contrast i is active 

and 0 when it is inert, and whose prior probability distribution is, for a particular 

value of q: =  aj

(i =  0,1- (6.2)

By direct application of Bayes’ theorem, the posterior probability that the ith  

contrast is active given f/,-, r ,  and the particular values aj and ki is
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aj

«i +  (1 -  a ,  )
(6.3)

The aim is to compute the unconditional posterior probability that ,̂ =  1, i = 

1 , . . . ,  m given U  = (Ui,..., Um) i.e.

J L  roo
Pr[& = m  = /((< = 1- «i. kl, r\V)dr

i=i  1=1

=  1ŸTTÎ S  2  /  Pr[& =  l | “ j. k ,  T, U ) / (U |a , - ,  k ,  T) f ( a j ,  k ,  T)dr  (6.4)
j=i 1=1 *'0

where

/(U| aj 
—  exp

-U ]

( - U \
+  ( l - a i ) e x p | ^ ^  

f { r , a j , k )  =  ^f { Qj ) f ( k i )

(6.5)

(6.6)

and
y  , *  ro o

/ ( U )  =  5 2  2 /  / ( ’■)/(U)|T,Qj,fc,)(iT. (6.7)
i=i 1=1

The evaluation of the integrals can be made with the software written for the 

standard case. It was found that the desired results were almost obtained when 

the following prior distributions for a  and k were used.

f ( a )  =

f ( k )  =

1/3, for a  =  0.05,0.25,0.45 

0, elsewhere,

1/3, for A; =  5,25,45 

0, elsewhere.

(6.8)

(6.9)
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The application of the procedure using these priors to example [1] resulted in 

the three main contrasts being declared active while the other 4 were not. The 

results of the application to the 27 examples differed from those exhibited in Table 

6.2 only for examples [12], for which this version of the procedure resulted in 2 

contrasts deemed to be active and [14], for which 2 contrasts were deemed to be 

active; although in the latter the posterior probability of being active for the third 

largest contrast is 0.499 so, the result almost coincides with the one presented in 

Table 6.2

Note that the values for a  and k in (6.8) and (6.9) are equally spaced within 

reasonable intervals and with uniform probabilities. The empirical error rates of 

this version of the procedure, obtained from 10,000 simulated samples are EPE =

0.052 and PER =  0.18, pretty close to those of the comparison criterion used in 

Chapter 4.

6.2 A ssum ing a heavier-tailed distribution  for 

th e active contrasts

Another idea motivated by example [1] is to consider that the active contrasts come 

from a heavier-tailed distribution than the normal, which could better explain the 

appearance of the largest contrast in that example. Such a distribution would be 

the Student’s t with a small number u of degrees of freedom and scale parameter r . 

Incorporating this assumption, and still considering prior distributions / (« j ) ,  j  =

1 , . . . ,  r  for a  and /(/?/), / =  1 , . . . ,  s for fc, the estimated contrasts U i, . .. ,Um are 

independent random variables with density

r ( ^ )
fc |T v ^ r ( f )  V

+  ( 1 - 6 )
1 f-u?

V5Ï V 
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where

(6 .11)

Proceeding in the same way as in the previous section, the unconditional pos­

terior probability that the zth contrast is active is

Pr[6- =  1|U] =  /  /K ' =  l,a j,A :/,r |U )d r
i=i /=!

1 ^  ^  fOO
= -fTTn'HY, /  (6.12)

/  V ^  ;  j = i  1=1 •'0

where

=  l \ U i , T , a j , k i ]

« i
r(4^ ) ( ,  . I/? \  ^

kirV^ri^) u k f r ^ J

« i
r(4^ ) A  I uf \  ^ +  (1 -  Otj) 7 7 ^  exp  ( ^ )

(6.13)

and

a .
f { V \ T , a j , k )  =  H i  / Ô -

. ' = 1  I  ry/ZTT
r(^ ) ( .  , u ?
k , m )  \

2r2

i=i/=i

(6.14)

(6.15)

/ ‘ O O

/ ( U )  =  E  E  / ( « i ) / ( * 0  /  / ( ’■)/(U) |r ,  k , ) d r .  (6.16)
•'0

The computation of the posterior probabilities (6.12) can be made by simple 

modifications to the software written for the standard case, but one has to be 

careful in specifying approximately the relevant interval for the variable of inte­

gration when using the GAUSS routines for numerical integration. In this case
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the relevant interval for r  is approximately (0,25) while in the normal case it is 

approximately (0,10).

If we fix a  =  0.20 and k = 10 (Box and Meyer’s recommended values) and 

use z/ =  3, the application of this version of the procedure to the 30 examples, 

reproduces exactly the results obtained with Box and Meyer’s version for the 

examples [2],...,[30]. The application to example [1] resulted in the two largest 

contrasts presenting posterior probabilities of being active larger than 0.5, while 

for the third largest contrast the posterior probability of being active was 0.46, so 

the desired results were almost reached.

Considering prior densities for a  and k it was found that the desired results 

were obtained for u = 3 and the following prior distributions for a  and k:

f{a )  =

m  =

1/3, fo ra  =  0.10,0.20,0.30
(6.17)

0, elsewhere.

1/3, for A: =  5,10,15
(6.18)

0, elsewhere.

In fact, the results differed only for example [12], for which the application of 

this version of the procedure resulted in two contrasts instead of one deemed to 

be active. However the posterior probability of being active for the second largest 

contrast was just over 0.5.

6.3 Concluding remarks

One of the 30 examples with seven contrasts suggested that there may be situations 

in which an especially large contrast may be present along with some other real 

contrasts of more moderate size. The application of BM to experiments with this 

feature may result in the smaller real contrasts being overlooked. Some ideas to 

make the procedure more general and robust in situations like the one suggested
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have been explored in this chapter. It has been shown that stipulating prior 

distributions for the parameters a  and k, as well as considering a heavier-tailed 

distribution for the active contrasts, can effectively help to solve the problem. It 

was found that the use of the t distribution for the active contrasts alone did make 

the procedure more robust, but not enough for the extreme situation suggested 

by example [1].
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C hapter 7

D iscussion  and Conclusions

Factorial experimentation, and in particular unreplicated factorial experiments, 

plays an important role in today’s approach to quality. For this reason, over the 

last few years there has been an increasing interest in developing procedures to 

decide which factors have active effects in these experiments in which the usual 

estimate of the standard error cannot be used.

Most methods have been developed to analyze two-level factor designs, however 

they can be applied to orthogonal designs involving factors with more than two 

levels if all the effects are standardized. In the statement of the problem in section

2.1, this idea was formalized. For the standardized effects the more general term 

contrasts has been used throughout this dissertation.

The aim of the research was to find the procedure(s) that can most effectively 

help experimenters in the industrial field to analyze unreplicated factorials. We 

decided to study and compare four methods that we thought, after a literature 

review, were the most promising.

It was found that most of the work in this area has involved simulation studies 

in which the operating characteristics of the methods are investigated for situa­

tions (number and magnitude of real contrasts in an experiment) that have been
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arbitrarily chosen by the analysts. However it is not difficult to find examples 

of real data that suggest situations quite different of those usually included in 

simulation studies.

Consequently it was decided to analyze the performance of the procedures in 

the light of the results of applying them to a substantial number of real examples. 

We were aware of the difficulties that this involves. Using real data we do not 

know the true numbers and sizes of the real effects. However, each set of data is a 

reflection of the underlying situation. In this sense, we know that at least we are 

being realistic.

Most of the data sets found in an extensive search in the literature were from 

experiments involving only two-level factors, the most common being those with 

m =  7, 15, 31, and 63 contrasts, so the four methods were implemented for these 

sizes of experiments.

At this point one of the main problems was to obtain critical values for ZA 

(Zahn’s version of Daniel’s procedure for half-normal plots) for m =  7, 31 and 

63. The Daniel plot is constructed by plotting the ordered absolute contrasts 

. . . ,  against their approximate expected values under the assumption of 

a null experiment. It is common to approximate these expected values by G“^(p,), 

where G is the standard half-normal cumulative distribution function, and pi are 

conventional probability levels such as p,- =  (i — l/2 ) /m  o rp , =  i/{m  +  1). When 

decisions are made on the basis of a visual inspection of the plot, it does not make 

much difference which of these (or any other sensible choice of the p,) are used.

For the more formal method ZA, Zahn (1975) used the exact expected values 

to obtain critical values for m  =  15. Applying general results by David and 

Johnson (1954) we derived an expression to obtain, to the desired precision, the 

expected values of the order statistics of samples from the half-normal distribution. 

An advantage of having such an expression is that those expected values can be 

obtained with any statistical package able to provide values of the inverse Normal 

cumulative distribution function. This facilitates the implementation of ZA (and
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HP, the method proposed in Chapter 5).

The method BP proposed by Berk and Picard (1989) was also supplemented 

with critical values for m =  63,

For the four methods, the behaviour of the proportion of false rejections (EPE) 

and the probability of at least one false rejection (PER) were analyzed empirically 

for m null contrasts. From the relation between these two values in the four 

methods, it was seen that, for m =  31 and m  =  63, the use of EPE = 0.05, which 

is often used, is too permissive, as this is equivalent to use values of PER about

0.70 for m =  31, and about 0.90 for m =  63, which means that most analyses of 

null experiments will result in at least one false positive.

It was found that the values tabulated by Lenth (1989) for the method named 

LE were miscalibrated making this procedure too conservative. This is im portant 

since software for the use of this method has been published e.g. by Stephenson 

(1991), and examples have been analyzed using this method e.g. by Berk and 

Picard (1991) who seemed to be unaware of the errors in Tenth’s values.

New sets of values which effectively control EPE =  0.05 for the margin of error 

(ME) and PER =  0.05 for the simultaneous margin of error (SME), were obtained 

empirically and presented in Table 4.2.

Eventually it was possible to set up a comparison criteria matching the values 

EPE and PER approximately. With this purpose, extra sets of critical values were 

obtained for some methods.

The results of applying the four methods, using comparable levels, to the sets of 

data for the four sizes of experiments, showed a healthy harmony. The percentages 

of experiments for which the four methods were in complete agreement about the 

contrasts deemed to be significant were, by experiment size, as follows: for m =  7, 

80%; for m =  15, 61%; for m =  31, 56%; and for m =  63, 67%.

The differences for many of the remaining examples were small and unimpor­

tant. However, it was possible to identify practical situations in which some of the
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methods will lead to a wrong interpretation.

The most serious problem suggested by the analyses of these examples was the 

inability of ZA to examine more than 30% of the contrasts in a single experiment. 

This was evident for the cases with m =  7 and m  =  15. An investigation of various 

alternatives, in Chapter 5, led to the suggestion of HP as a sensible alternative 

which, besides overcoming ZA’s drawback, seems to be, on the examples analyzed, 

slightly more powerful than the other procedures for experiments of small and 

moderate sizes. However this should be confirmed with further research.

Sets of critical values for HP were obtained to make possible the application 

of this method to ten sizes of recommended designs. In order to facilitate the 

application of this method a macro in MINITAB code was written. The macro 

computes the expected values of order statistics of samples from the half-normal 

distribution with the expression derived in Chapter 3. Those values are used as 

plotting positions. The half-normal plot is produced with the HP guardrails using 

PER =  0.05, 0.20 and 0.40 following Daniel’s recommendation. The macro HP 

along with an output is presented in Appendix B.

One of the 30 examples with 7 contrasts suggested that BM, the Bayesian 

approach proposed by Box and Meyer (1986) may overlook some active contrasts 

in situations where, there is a very large contrast which makes the others appear 

to be inert. Some extensions of this method that resolve this particular problem 

were obtained in Chapter 6. Further investigations using simulations based on 

situations like the one suggested by example [1], may lead to a more general and 

flexible procedure.

A final assessment of the methods analyzed is as follows:

1. The method LE proposed by Lenth (1989) is too conservative. It may be 

recommended only when used with the corrected values (i.e. LE ') presented in 

Chapter 4.

2. ZA (Zahn’s version of Daniel’s procedure for half-normal plots) is not recom­
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mended for experiments with less than 31 contrasts, since an im portant proportion 

of experiments with 7 and 15 contrasts may present more active effects than the 

number that ZA examines.

3. The methods BP, LE ', BM and HP should produce identical results in most 

experiments, with HP seemingly slightly more powerful, followed by BM, LE and 

BP. Applying BM one should be alert to extreme situations like the one suggested 

by example [1]. HP has the additional advantage that the half-normal plot can 

be used to examine the contrasts for departures from the basic assumptions as 

proposed by Daniel (1959).

Discussing the effect sparsity assumption is difficult as this is mainly based on 

practical experience throughout the years and it does not seem to be possible at 

this stage, to make a precise definition. The methods analyzed here all assume the 

sparsity principle, and the investigation which led to HP in Chapter 5 suggests 

that assuming that about 60% of the smallest contrasts are inert is quite safe. This 

coincides with the judgement made by Berk and Picard (1991) who reserved about 

the 60% smallest contrasts for the construction of the baseline for BP. Violation 

of the effect sparsity assumption however, except in extreme situations, may be 

spotted by visually inspecting the half-normal plot.

It is important to point out that the procedures analyzed here are intended 

to be an aid at the stage of deciding which contrasts should be deemed to be 

active. Careful planning and checking on the assumptions as well as the experience, 

knowledge and good judgement of the experimenters are essential.
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A ppendix  A

List o f exam ples

E xam ples w ith 7 contrasts

1]. Box and Draper (1987), p .137, 2  ̂ “martensite start tem perature” .

2]. Bennet and Franklin (1954), p.499, 2  ̂ “spinning band laboratory fractionating 

column”.

3]. Box, Hunter and Hunter (1978), p.307, 2^, “pilot plant investigation”;

4] . ---- , p.354, 2^, “development of screening facility”, response: solids removed,

phase (a).

5] . ----- , --------------------- , response: solids removed, phase (b).

6] . ----- , --------------------- , response: flow retreated, phase (b).

7] .  , p.422, 2^“ ,̂ “stability of new product” .

8] .  , p.424, “bottleneck at the filtration stage of an industrial plant” .

9]. Daniel (1976), p.54, 2^, “thickening time of cement” .

10]. Davies (1956), p.258, 2^, “investigation of a nitration process” .

11] . ---- , p.454, 2'*“ ,̂ “preparation of a dyestuff” .

12] . ---- , p.457, 2jfl^ “yield of a medicinal product”.

13] . ---- , p.511, 2ii7  ̂ “chemical reaction”.

14] . ----, ----- , “chemical reaction stage 2”.

15] . -----, p.541, 2  ̂ “yield surface”.

16]. Grove and Davis (1992), p.4, 2^^  ̂ “carburettor assembly”.

17] . ---- , p.29, 2  ̂ “sled test” .
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[18

[19

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29

[30

. ---- , p .198, 2]^ “tee clamps, stage 2”, location contrasts.

. ----, ----- , dispersion contrasts.

. Johnson and Leone (1977), p.797, 2^, “strength of steel”.

. John (1990), p.307, 2  ̂ “mullet fish”.

. Pignatello and Ramberg (1985), 2;([^ “leaf springs” (response Z). 

. Taguchi (1986), p.l26 2;()^ “weeir in a pump”.

. Taguchi (1987), p .166, 2g)^ “Ina Tile”, number of defectives.

. W interbottom (1992), “Ina Tile”, size, location contrasts.

. ----, ----- , dispersion contrasts.

. Fearn (1993), 2^“*IV “puff pastry”, response: pastry height.

. ----, ----- , response: pastry score.

. ----, ----- , response: pastry length.

. ----, ----- , response: pastry moisture content.

E xam ples w ith 15 contrasts

[31]. Box and Draper (1987), p .140, 2̂  “Chang-Konomenko-Franklin”, response 1: 

PDA.

[32] . --- , ------, response 2: DMP.

[33] . --- , ------, response 3: PD.

[34] . --- , ------, response 4: R.

[35] . ---- , p. 172, 2^^ , “business at Ozzie’s bar” .

[36] . ---- , p. 174, 2^^ “plywood adhesives”.

[37] . ---- , p. 180, 2[v^ “packing times”.

[38] . ---- , p. 184, 2v~  ̂ “process in drug manufacture”.

[39]. Bendell, et al. (1989), p .101, 2®”  ̂ “epitaxial-process” , location contrasts.

[40] . --- , ------, dispersion contrasts.

[41] . ---- , p.231, 2iv'* “refractory properties”, green density.

[42] . --- , ------, fired density.

[43] . --- , ------, modulus of rupture.

[44] . ---- , p.257, 2{fj“ '^ “Quinlan on shrinkage” (log data), mean.
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45]. — , — , log(S).

46]. Bennett and Franklin (1954), p.257, “moisture content” .

47]. Box, Hunter and Hunter (1978), p.324, 2̂* “process development study”.

48] . ---- , p.376, 2^"^ “reactor example” .

49] . ---- , p.398, 2®”'̂  “injection moulding”.

50] . ---- , p.424, 2^“  ̂“bottleneck at the filtration stage”.

51] . ---- , p.429, 2®”  ̂“model-controller-aircraft system”.

52]. Daniel (1976), p.71, 2̂* “stone drill”.

53]. Davies (1956), p.274, 2"* “preparation of an isatin”.

54] . ---- , p.462, 2®”  ̂ “quality of a basic dyestuff” .

55] . ---- , p.466, 2^“  ̂ “yield of penicillin” .

56]. Grove and Davis (1992), p.56, 2*““* “moulding of glove box lids”.

57]. ---- , p.247, 2®“  ̂ “welding process for fuel tanks” (untransformed data), re­

sponse: strength (location contrasts).

58] . ----, ----- , response: strength (dispersion contrasts).

59] . ---- , p.267, 2^“  ̂ “oil control piston ring spacers”, location contrasts.

60] . ----, ----- , dispersion contrasts.

61]. Holms and Berrettoni (1969), 2^“ '  “stress rupture times” .

62]. Johnson and Leone (1964), p .196, 2  ̂ “rifle performance” .

63]. John (1990), p.293, 2'̂  “manufacture of tires”

64] . ---- , p.307, 2  ̂ “thickness of film”,response: average thickness.

65] . ----, ----- , response: uniformity.

66]. Montgomery (1992), p.291, 2̂* “filtration rate of a chemical product” .

67] . ---- , p.301, “manufacture of panels”.

68] . ---- , p.345, 2®"̂  “manufacture process for an integrated circuit”.

69] . ---- , p.353, 2®”  ̂ “injection moulding process”.

70] . ---- , p.371, 2^“  ̂ “eye focus time”.

71] . ---- , p.385, “wine testing” (mean only).

72]. Pignatello and Ramberg (1985), 2®“ ,̂ “leaf springs” (response Zi).

73]. Stowe and Mayer (1966), Plackett and Burman “quality of a catalyst” .

74]. Taguchi (1987), p .189, 2®"® “electric welding”, response: tensile strength.
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[75] . ----, -----, response: elongation.

[76] . ----- , p.217, 2^“  ̂ “sodium silicate”.

[77] . ----- , p.417, 2®“'* “Ina Tile” (monetary yield).

[78] .  , p.431, 2^°“® “dewaxing apparatus” , response: increa.se of yield.

[79] . ----, -----, response: coagulation point.

[80]. Taguchi and Wu (1980), 2®“® “tensile strength” .

[81]. Fearn (1993), 2̂* “puff pastry”, response: pastry specific height.

[82] . ----, -----, response: pastry length.

[83] . ----, -----, response: pastry shrinkage.

[84] . ----, -----, response: pastry eccentricity.

E xam ples w ith 31 contrasts

[85]. Bennett and Franklin (1954), p.585, 2®“  ̂ “yield of alfalfa” .

[86]. Box, Hunter and Hunter (1978), p.376, 2® “reactor example” .

[87]. Cochran and Cox (1957), p. 2® “texture on icing in cakes” .

[88]. Daniel (1976), p.129, “Yates’ 2® on beans” .

[89] . ---- , p. 136, “Davies’ 2® on penicillin”.

[90]. Grove and Davis (1992), p.224, “seat belt”.

[91]. Johnson and Leone (1977), p.801, 2® “residual acidity in a purification pro­

cess” .

[92]. Kempthorne (1952), p.269, 2® “Rothamsted’s on mangolds” .

[93]. Montgomery (1992), p.363, 2®“® “machine’s blade profile” .

E xam ples w ith 63 contrasts

[94]. Box and Draper (1987), p .115, 2® “study of dyestuffs manufacture” , response: 

strength.

[95] . ----, -----, response: hue.

[96] . ----, -----, response: brightness.

[97]. Taguchi (1987), p.444, 2̂ ®“ ®̂ “wool washing and carding” .

[98]. Fearn (1993), 2®“  ̂ “puff pastry”, response: pastry height.
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[99] . ---- ,  , response: pastry length.

[100] . --- , ------ , response: pastry width.

[101] . --- , ------ , response: pastry score.

[102] . --- , ------ , response: pastry moisture content.
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A ppendix  B

M IN IT A B  macro H P

This macro has been design for MINITAB, Release 8. It produces a half-normal 

plot with HP guard rails for m  contrasts using the appropriate sets of critical 

values given in Table 5.5.

Figure B .l shows the output produced by the macro for the glove box lid data 

analyzed in Chapter 5.

The macro uses 12 consecutive columns of the MINITAB worksheet. The first 

4 of these columns are for the user to set the critical values and data, the rest are 

used by HP for computations. The macro also uses constants k47 to k60 as well 

as the constant klOO where MINITAB (Release 8) stores the constant tt.

The macro is used as follows:

1. Store the three columns of critical values from the appropriate subtable in 

Table 5.5 as the first three columns (e.g. c l, c2, c3).

2. Store the contrasts (in any order) in the fourth column (e.g. c4).

3. Set the constant k47 equal to the number of the column where the contrasts 

have been stored (e.g. let k47=4).

4. Execute macro HP.
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note Macro begins 
brief 0
note Prepares column numbers to be used (k47-k58)
let k47=k50-3
let k58=k50+8
set ck58
k47:k58
end
copy ck58 k47-k58
note Computes the expected values of order statistics (HEOS)
let k60=count(ck50)
set ck51
l:k60
end
let ck51=ck51/(k60+l) 
let ck52=(H-ck51)/2 
invcdf ck52 ck52 
let ck53=(l-ck51) 
let ck54=ck51*ck53 
let k59=(k60+2)
let ck55=sqrt(2/kl00)*expo(-ck52**2/2) 
let ck56=ck52+ck54*ck52/(2*k59*ck55**2)
let ck56=ck56+ck54*(ck53-ck51)*(l+2*ck52**2)/(3*k59**2*ck55**3) 
let ck56=ck56+ck54**2*ck52*(7+6*ck52**2)/(8*k59**2*ck55**4) 
let ck51=(l/1000)*round(1000*ck56) 
erase ck52-ck56
note Makes half-normal plot with HP guardrails
let k61=round(0.6*k60)
let k62=k61+l
let ck50=sort(abs(ck50))
copy ck50 ck52;
use l:k61.
copy ck51 ck53;
use l:k61.
copy ck51 ck58;
use k62:k60.
noconstant.
regres ck52 1 ck53;
coeficients ck54.
let ck55=ck47*ck54(l)
let ck56=ck48*ck54(l)
let ck57=ck49*ck54(l)
GPlot ck50 ck51;
title ’Half-normal plot with HP guard rails’;
XLabel ’expected order statistics’;
YLabel ’absolute contrasts’;
Line 0 2 ck55 ck58;

96



Line 0 7 ck56 ck58; 
Line 0 3 ck57 ck58. 
let k50=ck54(l) 
ercLse ck52-ck58 
brief 2
note end of macro

3.0

15 ••

0.0 -

H olf-nam d plot with I f  guard rails

/
. . .X

X X
X X

X X

0.00 0.40 0.80 1.20 1.60 2.00
expected order statistics

Figure B.l: Output of macro HP for the example [56] analyzed in Chapter 5
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