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Abstract

In this note we will explore some applications of the recently constructed piecewise affine, H1-conforming element that
fits in a discrete de Rham complex (Christiansen and Hu, 2018). In particular we show how the element leads to locking free
methods for incompressible elasticity and viscosity robust methods for the Brinkman model.
c⃝ 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

It is well known that standard finite element methods are not in general well-suited for the approximation of
nearly incompressible elasticity or incompressible flow problems. Indeed, in particular low order approximation
spaces often suffer from locking in the incompressible limit [1]. They may typically also exhibit instability when
Darcy flow is considered if the element was designed for Stokes’ problem [2]. These problems can be alleviated
using stabilization [3–5], but such stabilizing terms, although weakly consistent to the right order, may upset local
conservation of e.g. mass, momentum, and introduce an additional layer of complexity to the computational method
and its analysis. Drawing on pioneering work by Scott and Vogelius in the mid-eighties [6], recently some new
results on H 1-conforming piecewise polynomial approximation spaces compatible with the de Rham complex have
been published [7–12]. Such elements are interesting, since they provide a tool for the robust approximation of
models in mechanics where a divergence constraint is present. Herein we will focus on the piecewise affine element
derived by Christiansen and Hu in [12]. The advantage of this approach is that it offers a simple and economical low
order locking free element in arbitrary space dimensions. Observe that for the Scott–Vogelius element the polynomial
order of the spaces typically depends on the number of dimensions [11]. The linear system also becomes very large
when the Scott–Vogelius element is used. Assume that the spaces are defined on triangular mesh with nno vertices,
nele elements and n f faces, on which a Clough–Tocher split (see Fig. 1, middle) is performed. Approximating
the degrees of freedom Ndof of the system in two space dimensions for the case of quadratic velocities and
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Fig. 1. A triangle T (left) is once divided into Clough–Tocher triangles (middle) which are further divided to Powell–Sabin triangles (right).

piecewise affine discontinuous pressures, neglecting effects of the boundary, we get using that nele ≈ 2 × nno and
n f ≈ 3/2 × nele,

Ndof ≈ 2 × (4 × nele + nno + n f ) + 9 × nele ≈ 42 × nno.

The piecewise affine element on the other hand has a data structure similar to that of the Bernardi–Raugel
element [13], with nodal degrees of freedom, a vector degree of freedom on each face and only one pressure
degree of freedom on each macro element. Approximating the global number of degrees of freedom yields

Ndof ≈ 2 × nno + n f + nele ≈ 7 × nno.

It follows that the quadratic/affine Scott–Vogelius element requires about six times as many degrees of freedom as
the low order affine/constant element of Christiansen–Hu.

We discuss how this element can be implemented in engineering practice and show the basic, robust, error
estimates that may be obtained for linear elasticity and incompressible flow. In this paper we will consider two
different models, linear elasticity and the Brinkman model for porous media flow. The idea is to show the locking
free property of the element on the elasticity model and then illustrate how the element seamlessly can change
between the Stokes’ equations modelling free flow and Darcy’s equations modelling porous media flow, while
remaining H 1-conforming. Observe that previous work on inf–sup stable elements that are robust both for Stokes’
and Darcy flow typically have been nonconforming, see [2,14,15]. The two models are introduced in Section 2. The
construction of the element is discussed in Section 3 and the finite element discretizations of the model problems
and their analysis are the topics of Sections 4 and 5. In Section 6 we discuss how boundary conditions may be
imposed weakly using Nitsche’s method, without sacrificing the good properties of the element. Finally Section 7
gives some numerical illustrations to the theory.

2. Model problems: linear elasticity and the Brinkman model

We will consider two model problems with solutions in V := [H 1(Ω )]d , initially assuming homogeneous
Dirichlet boundary conditions. Let Ω ⊂ Rd , d = 2, 3 denote a convex polyhedral domain with boundary ∂Ω .
The first model problem is linear elasticity. Here we wish to find u ∈ V 0, where V 0

:= V ∩ [H 1
0 (Ω )]d , such that

− ∇ · σ (u) = f , in Ω , (2.1)

where σ (u) = 2µ∇
su + λ∇ · u I, with ∇

s the symmetric part of the gradient tensor, I the identity matrix and
µ, λ > 0 the Lamé coefficients and f ∈ [L2(Ω )]d . This system can be written on weak form: find u ∈ V 0 such that

aE (u, v) = l(v), for all v ∈ V 0,

where

aE (w, v) :=

∫
Ω

σ (u) : ∇
sv dx, (2.2)

where the tensor product is defined by A : B :=
∑d

i, j=1 ai j bi j and

l(v) :=

∫
Ω

f · v dx . (2.3)
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It is well-known that the problem (2.1) admits a unique weak solution in the space V 0 through application of
Lax–Milgram’s lemma, and that the following regularity holds [16],

∥u∥H2(Ω) + λ∥∇ · u∥H1(Ω) ≤ CR∥f∥Ω for µ ∈ [µ1, µ2] and λ ∈ (0, ∞). (2.4)

The second model problem is the Brinkman problem where we look for a velocity–pressure couple (u, p) ∈

V 0
× Q, where Q := L2

0(Ω ) denotes the set of square integrable functions with mean zero, such that

−µ∆u + σu + ∇ p = f in Ω
∇ · u = g in Ω .

(2.5)

Here f ∈ [L2(Ω )]d , g ∈ L2
0(Ω ), µ > 0 is the viscosity coefficient and σ a possibly space dependent coefficient

modelling friction due to the porous medium. Observe that if µ = 0 we recover the Darcy model for porous media
flow and if σ = 0 we obtain the classical Stokes’ system for creeping incompressible flow.

The corresponding weak formulation reads: find (u, p) ∈ V 0
× Q such that:

AB[(u, p), (v, q)] = l(v), for all (v, q) ∈ V 0
× Q.

Here the bilinear forms are given by

AB[(u, p), (v, q)] := aB(u, v) − b(p, v) + b(q, u) (2.6)

with

aB(w, v) :=

∫
Ω

µ∇w : ∇v + σw · v dx,

b(q, v) :=

∫
Ω

q∇ · v dx

and

lB(v, q) :=

∫
Ω

f · v dx +

∫
Ω

gq dx . (2.7)

By the surjectivity of the divergence operator we may write u = u0 + ug where ∇ · ug = g. Unique existence of
the u0 part of the solution is ensured through the application of the Lax–Milgram lemma in the space H div

0 , where

H div
0 := {v ∈ V : ∇ · v = 0}.

A unique pressure is then guaranteed by the Ladyzhenskaya–Babuska–Brezzi condition [1].

3. The finite element space

Let Th denote a conforming, shape regular tesselation of Ω into simplices T . We denote the set of faces of the
simplices in T by F and the subset of faces that lie on the boundary ∂Ω by Fb. We let Xh denote the space of
functions in L2(Ω ) that are constant on each element,

Xh := {x ∈ L2(Ω ) : x |T ∈ P0(T ); ∀T ∈ Th}.

The L2-projection on Xh , π0 : L2(Ω ) ↦→ Xh is defined by (π0v, xh)Ω = (v, xh)Ω for all xh ∈ Xh . π0 satisfies the
stability ∥π0v∥Ω ≤ ∥v∥Ω for all v ∈ L2(Ω ) and the approximation error estimate

∥π0v − v∥Ω ≤ Ch|v|H1(Ω), ∀v ∈ H 1(Ω ).

We also introduce the L2-projection of the trace of a function

π̃0 : L2(∂Ω ) ↦→ ∂ Xh

where

∂ Xh := {x ∈ L2(∂Ω ) : x |F ∈ P0(F); ∀F ∈ Fb}

where Fb is the set of faces in Th such that F = F ∩ ∂Ω . We let Wh denote the space of vectorial piecewise affine
functions on Th ,

Wh := {v ∈ [H 1(Ω )]d
: v|T ∈ [P1(T )]d

; ∀T ∈ Th}
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and define Qh := Xh ∩ Q. It is well known that the space Wh is not robust for nearly incompressible elasticity and
that the velocity–pressure space Wh ×Qh is unstable for incompressible flow problems. To rectify this we will enrich
the space with vectorial bubbles on the faces, following the design in [12], that allows us to remain conforming
in H 1, resulting in an extended space, that we will denote Vh . The detailed construction of this space is the topic
of the next Section. We then apply Vh in the finite element method for the system of compressible elasticity and
Vh × Qh for the Brinkman system. For the space with built in homogeneous Dirichlet boundary conditions we write
V 0

h := Vh ∩ [H 1
0 (Ω )]d . Observe that by construction all functions vh ∈ V 0

h satisfy ∇ · vh ∈ Xh .

3.1. Construction of the finite element space Vh

The finite element space is constructed by decomposing every simplex in subelements. On these subelements
face bubbles are constructed, similar to the face bubbles used in the Bernardi–Raugel element [13], but in this
case they are constructed using piecewise affine elements. Using the subgrid degrees of freedom similar degrees
of freedoms as in the Bernardi–Raugel element are designed as well. The upshot here is that the piecewise affine
basis functions are designed so that the divergence restricted to each simplex in the original tesselation is constant.
The pressure space then consists of one constant pressure degree of freedom per (macro) simplex, allowing for
exact imposition of the divergence free condition. Although the numerical examples in this work are restricted to
the two-dimensional case below, for completeness we also give a detailed description of the construction in three
space dimensions.

We first treat the 2D case for which our numerical examples are implemented and then describe how this extends
to the three dimensional case. Consider a triangular element T twice subdivided, first by a Clough–Tocher split [17],
and then by a Powell–Sabin split [18], cf. Fig. 1. The first subdivision is created by joining the centroid of triangle
T with its corner nodes. The second subdivision splits each Clough–Tocher triangle by the line joining the centroid
of T with the centroid of its neighbouring triangle sharing the edge to be split. On the boundary we have a free
choice of how to split the edge; we here choose to split the edge along the line in the direction of the normal to
the boundary. On T the approximation is piecewise linear with two velocity degrees of freedom in each corner
node. On Powell–Sabin triangles we add a hierarchical “bubble” approximation in the following way. To the node
i on the exterior edge E of T is assigned a unit vector νi along the line L of the Powell–Sabin split, see Fig. 2.
The unknown in the corresponding edge node i is the vector aiνi where ai is a hierarchical scalar unknown. The
centroid-to-centroid nature of the split then ensures continuity of the discrete solution. In the centroid node the
bubble has two velocity components (uxm, u ym) determined a priori by setting the divergence d equal (with ai = 1)
on the triangles sharing node i and the Clough–Tocher triangles not being split by L . The divergence is set by

d :=

∫
E

νi · nE ds.

The hierarchical bubble is then piecewise linear on these non-split Clough–Tocher triangles and the Powell–Sabin
triangles sharing node i . Thus, each edge on triangle T has its own unique hierarchical bubble and the total
approximation is the sum of the linear function on T and the three (vector-valued) bubbles.

A closed form for the velocities defining the bubble associated with an edge can be computed beforehand. With
the location of the corner, centre, and edge nodes according to Fig. 2, with A the area of triangle T , we find

um = D(xm − xo) (3.1)

where

D :=
xr (ym − yl) + xm(yl − yr ) + xl(yr − ym)

2A|xi − xm |
.

This gives equal divergence d on all subtriangles.

3.2. The construction of Vh in three space dimensions

The construction in 3D is analogous to the one in 2D: any given tetrahedron T is decomposed using the Worsey–
Farin (WF) split [19], defined as follows. An inpoint is chosen for the tetrahedron, typically (but not necessarily)
the centre of the inscribed sphere. As inpoint on the (triangular) faces, one chooses (crucially) the point on the line
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Fig. 2. Quantities used to define the hierarchical bubble associated with edge E .

joining the inpoints on the two neighbouring tetrahedra. The faces are then split in three subfaces by joining the
inpoint to its vertices. The tetrahedron is split in 12 small tetrahedra, three for each face, based on a subface and
with summit at the inpoint of the tetrahedron.

The finite element space on the tetrahedron can then be described as the space K (T ) of continuous P1 vector
fields on the WF split which are divergence free, to which one adds one vector field with constant divergence on
T , namely x ↦→ x. As shown in [12] this space has dimension 16. It contains the P1 vector fields on T (dimension
12), and four bubbles attached to faces (dimension 4). Indeed, for a P1 vector field u, write u = (u − v) + v with
v the vector field defined by v(x) = (1/3∇ · u)x and note that u − v is a divergence free P1 vector field on T , so
is in K (T ). As degrees of freedom one may use vertex values and integrals of normal components on faces.

A face bubble can be defined explicitly for a face F , as follows. We let νF be the normalized vector parallel to
the line joining the inpoints of the two neighbouring tetrahedra of F . The vector field on T has value 0 at vertices
of T , νF at the inpoint of the face F , and 0 at inpoints of the other faces. At the inpoint of T we determine the
vector by the condition that the divergence of the vector field is the same on all the small tetrahedra of the WF
split and satisfies Stokes’ theorem on the three that are based on F .

3.3. The Fortin interpolant

For every u ∈ V 0 there exists πhu ∈ V 0
h such that πhu(xi ) = ihu(xi ) in the vertices xi of type I simplices, where

ih denotes the Scott-Zhang interpolant, and for all F ∈ F∫
F

πhu · nF ds =

∫
F

u · nF ds.

Note that the interpolant πhu satisfies the approximation error estimate

∥πhu − u∥Ω ≤ C1h|u|H1(Ω), h∥∇(πhu − u)∥Ω + ∥πhu − u∥Ω ≤ C2h2
|u|H2(Ω). (3.2)

The proof of the existence of πh is identical to that of the interpolant for the Bernardi–Raugel element [13]. Note
that for functions v ∈ V such that v · n = 0 there holds that π̃0(πhv) · n|∂Ω = 0.

It follows from this construction that for all qh ∈ Qh and for all T ∈ Th , using the divergence theorem we have∫
T

∇ · πhuqh dx =

∫
∂T

(πhu · n∂T )qh ds =

∫
∂T

(u · n∂T )qh ds =

∫
T

∇ · uqh dx =

∫
T

π0∇ · uqh dx .

A consequence of the existence of the Fortin interpolant is the existence of a non-trivial subspace Vdiv(v) ⊂ Vh
such that

Vdiv(v) := {vh ∈ Vh : ∇ · vh = π0∇ · v}.
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As a consequence, for every qh ∈ Qh there exists

ζ q ∈ V 0
h such that ∇ · ζ q = qh and ∥ζ q∥H1(Ω) ≤ C0∥qh∥Ω . (3.3)

To see this, note that by the surjectivity of the divergence operator from V to Q for every qh ∈ Qh there exists
ζ q ∈ V such that ∇ · ζ q = qh and ∥ζ q∥H1(Ω) ≤ C∥qh∥Ω and if we now consider πhζ q ∈ V 0

h we see that
∇·πhζ q = π0∇·ζ q = qh and we conclude that ζ q may be chosen in V 0

h directly. Note that using minor modifications
of the above arguments we can construct a version of πh , where only the normal component of the velocity field
is set to zero, but with identical properties.

4. Finite element discretization of the model problems

We consider the finite element spaces Vh, Qh that were defined in the previous section. The finite element
discretization of the problem (2.1) then takes the form: find uh ∈ V 0

h such that

aE (uh, vh) = l(vh), for all vh ∈ V 0
h , (4.1)

where aE (·, ·) and l(·) are defined by (2.2) and (2.3). The finite element method for the problem (2.5) on the other
hand takes the form find (uh, ph) ∈ V 0

h × Qh such that

AB[(uh, ph), (vh, qh)] = lB(vh, qh), for all (vh, qh) ∈ V 0
h × Qh . (4.2)

Both the problems (4.1) and (4.2) admit a unique solution by the same arguments as for the continuous problem.

5. Stability and error analysis

We introduce two triple norms. First for the elasticity system,

|||vh |||
2
E := 2∥µ

1
2 ∇

svh∥
2
Ω + ∥λ

1
2 ∇ · vh∥

2
Ω . (5.1)

Observe that by Korn’s inequality and Poincaré’s inequality the E-seminorm is a norm on H 1
0 (Ω ). Then for the

incompressible model we have the triple norm,

|||vh, yh |||
2
B := ∥µ

1
2 ∇vh∥

2
Ω + ∥σ

1
2 vh∥

2
Ω + ∥∇ · vh∥

2
Ω + ∥(µ + σ )−

1
2 yh∥

2
Ω . (5.2)

For the formulation (4.1) Korn’s and Poincaé’s inequalities lead to the coercivity, there exists αE > 0 such that for
all vh ∈ V 0

h

αE |||vh |||
2
E ≤ aE (vh, vh). (5.3)

For the problem (4.2) we need to prove an inf–sup condition for stability.

Proposition 5.1 (inf–sup Stability for the Brinkman Problem). There exists αB such that for all (vh, yh) ∈ V 0
h × Qh

there holds

αB |||vh, yh |||B ≤ sup
wh ,qh∈(V 0

h \0)×(Qh\0)

AB[(vh, yh), (wh, qh)]
|||wh, qh |||B

.

Proof. First we take wh = vh and qh = yh to obtain

∥µ
1
2 ∇vh∥

2
Ω + ∥σ

1
2 vh∥

2
Ω = AB[(vh, yh), (wh, qh)].

Then we chose wh = (µ + σ )−1ζ y , where ζ y is defined by (3.3) so that

(µ + σ )−1
∥yh∥

2
Ω = AB[(vh, yh), (wh, 0)] − (µ∇vh, wh)Ω − (σvh, wh)Ω .

Observing now that

(µ∇vh, ∇wh)Ω ≤ ∥µ
1
2 ∇vh∥Ωµ

1
2 (µ + σ )−1C0∥yh∥Ω

and

(σvh, wh)Ω ≤ ∥σ
1
2 vh∥Ωσ

1
2 (µ + σ )−1C0∥yh∥Ω
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it follows that
1
2

(µ + σ )−1
∥yh∥

2
Ω ≤ AB[(vh, yh), (wh, 0)] − C2

0 (∥µ
1
2 ∇vh∥

2
Ω + ∥σ

1
2 vh∥

2
Ω ).

Taking wh = vh + (2C0)−1(µ + σ )−1ζ y and qh = yh + ∇ · vh we conclude that

min
(

1
2
,

1
2C0

)
|||vh, yh |||

2
B ≤

1
2
∥µ

1
2 ∇vh∥

2
Ω +

1
2
∥σ−

1
2 vh∥

2
Ω +

1
2C0

(µ + σ )−1
∥yh∥

2
Ω

≤ AB[(vh, yh), (wh, qh)]

To finish the proof note that

|||wh, qh |||B ≤ |||vh, yh |||B + |||(2C0)−1(µ + σ )−1ζ y, 0|||B

≤ |||vh, yh |||B + (2C0)−1µ
1
2 (µ + σ )−1C0∥yh∥Ω + ∥∇ · vh∥Ω ≤ C |||vh, yh |||B . □

Using the stability estimates we may now prove error estimates for the approximations of (4.1) and (4.2).

Proposition 5.2. Let u be the solution of (2.1) and uh the solution of (4.1) then

∥µ
1
2 ∇(u − uh)∥Ω + ∥λ

1
2 (π0∇ · u − ∇ · uh) ∥Ω ≤ C inf

vh∈Vdiv (u)
∥µ

1
2 ∇(u − vh)∥Ω

and

∥µ
1
2 ∇(u − uh)∥Ω + ∥λ

1
2 (∇ · u − ∇ · uh) ∥Ω ≤ Ch(µ

1
2 ∥u∥H2(Ω) + λ

1
2 ∥∇ · u∥H1(Ω)) ≤ CE h∥f∥Ω .

where CE is independent of λ.

Proof. Let eh := uh −vh , with vh ∈ Vdiv(u). Note that by adding and subtracting wh and using the triangle inequality
and Korn’s inequality we have

∥µ
1
2 ∇(u − uh)∥Ω + ∥λ

1
2 (π0∇ · u − ∇ · uh) ∥Ω ≤ ∥µ

1
2 ∇(u − vh)∥Ω + |||eh |||E .

For the second term we apply the coercivity (5.3), followed by Galerkin orthogonality

aE (u − uh, wh) = 0 for all wh ∈ V 0
h

to obtain

αE |||eh |||
2
E ≤ aE (eh, eh) = aE (u − vh, eh).

Noting that

(λ∇ · (u − vh), ∇ · eh)Ω = (λ(∇ · u − π0∇ · u), ∇ · eh)Ω = 0 (5.4)

we may write

αE |||eh |||
2
E ≤ (2µ∇

s(u − vh), ∇seh)Ω ≤ 2∥µ
1
2 ∇(u − vh)∥Ω |||eh |||E , (5.5)

which proves the first claim.
The second claim is immediate, taking vh = πhu and using the approximation properties of πh , (3.2) and

the regularity bound (2.4). To show that the constant CE is independent of λ observe that λ
1
2 ∥∇ · u∥H1(Ω) ≤

max(cµ
1
2 |u|H2(Ω), λ∥∇ · u∥H1(Ω)). □

Proposition 5.3. Let (u, p) ∈ V × Q be the solution to (2.5), with µ > 0, σ ≥ 0 and (uh, ph) the solution to
(4.2). Then there holds

|||u − uh, π0 p − ph |||B ≤ C inf
vh∈V g

div

|||u − vh, 0|||B

where V g
div := {v ∈ V 0

h : ∇ · v = π0g} and

|||u − uh, π0 p − ph |||B ≤ Chµ
1
2 |u|H2(Ω) + min(C1hσ

1
2 |u|H1(Ω), C2h2σ

1
2 |u|H2(Ω)).
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Proof. We introduce, as before, discrete errors eh := uh −vh , with vh ∈ V g
div and ηh = π0 p− ph . Using the triangle

inequality we see that

|||u − uh, 0|||B ≤ |||u − vh, 0|||B + |||eh, ηh |||B .

For the second term on the right hand side we apply the stability of Proposition 5.1 to obtain

|||eh, ηh |||B ≤ sup
wh ,qh∈(V 0

h \0)×(Qh\0)

AB[(eh, ηh), (wh, qh)]
|||wh, qh |||B

.

using Galerkin orthogonality we have

AB[(eh, ηh), (wh, qh)] = AB[(u − vh, p − π0 p), (wh, qh)]. (5.6)

Observe that by construction we have

b(qh, u − vh) = 0 and b(p − π0 p, wh) = 0.

The only remaining term on the right hand side of (5.6) is bounded using the Cauchy–Schwarz inequality,

aB(u − vh, wh) ≤ |||u − vh, 0|||B |||wh, qh |||B .

This proves the first claim and the second follows as before taking vh = πhu ∈ V g
div and using the approximation

properties of the Fortin interpolant πh (3.2). □

Since we have imposed the boundary conditions strongly above we cannot take µ = 0 in the Brinkman model
corresponding to the case of the Darcy equations. In order to make this limit feasible we will now discuss weak
imposition of boundary conditions using Nitsche’s method.

6. Weakly imposed boundary conditions, Nitsche’s method

Here we will discuss how to impose non-penetration conditions on the space Vh as one wishes to do in the
case of zero-traction boundary conditions in elasticity and how to relax the no-slip condition when µ → 0 for
the Brinkman model. Therefore we here propose Nitsche methods for the imposition of boundary conditions that
preserve the locking free character for elasticity and are robust in the limit of pure porous media flow for the
Brinkman model.

6.1. Zero traction conditions for linear elasticity

Consider first the elasticity problem (2.1), with the boundary decomposed in ∂Ω := ∂ΩD ∪∂ΩN where ∂ΩD and
∂ΩN each consists of a set of entire polyhedral faces. We assume that

t u = gD on ∂ΩD and u · n = gN on ∂Ω and t (σ (u) · n) = 0 on ∂ΩN . (6.1)

Here the tangential projection is defined by t := I − n ⊗ n. The Nitsche formulation then takes the form: Find
uh ∈ Vh such that

AE,h(uh, vh) = L(vh) (6.2)

with

AE,h(uh, vh) := aE (uh, vh) − c(uh, vh) − c(vh, uh) + s(uh, vh)

and

L(vh) = l(vh) + lc(vh)

where

c(uh, vh) := (n · (σ (uh)n), vh · n)∂Ω + (t (σ (uh) · n), t vh)∂ΩD

s(uh, vh) := (γ /h(µ + λπ̃0) uh · n, vh · n)∂Ω + (γµ/h t uh, t vh)∂ΩD



E. Burman, S.H. Christiansen and P. Hansbo / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113224 9

and

lc(vh) = (gN , γ /h(µ + λπ̃0) vh · n − n · (σ (vh)n))∂Ω + (gT , γµ/h t vh − t (σ (vh) · n))∂ΩD .

Observe that the projection π̃0 in the boundary penalty of the normal component is necessary to avoid locking.
We define the stabilization semi-norm by

|vh |s := s(vh, vh)
1
2

and the following augmented energy norm defined on H 1(Ω )

|||vh |||
2
E,h := |||vh |||

2
E + |vh |

2
s .

We recall that ||| · |||E,h is a norm by Korn’s inequality and Poincaré’s inequality. We recall the trace inequalities

∥v∥∂T ≤ CT (h−
1
2 ∥v∥T + h

1
2 ∥∇v∥T ) ∀T and v ∈ H 1(T ) (6.3)

and

∥vh∥∂T ≤ CT h−
1
2 ∥vh∥T ∀T and vh ∈ Vh . (6.4)

Using these inequalities it is straightforward to prove the following approximation estimate in the norm ||| · |||E,h and
a bound on the form c.

Lemma 6.1. The following approximation inequality holds

|||u − πhu|||E,h ≤ Ch(µ
1
2 |u|H2(Ω) + λ

1
2 |∇ · u|H1(Ω)). (6.5)

Proof. The inequality

|||u − πhu|||E ≤ Ch(µ
1
2 |u|H2(Ω) + λ

1
2 |∇ · u|H1(Ω)).

is immediate by the commuting property and approximation properties of the Fortin interpolant. Considering the
stabilization part we see that using (6.3) on each boundary face followed by the approximation (3.2),

(µ/h)
1
2 ∥(u − πhu) · n∥∂Ω ≤ Chµ

1
2 |u|H2(Ω).

Using the definition of πh we see that π̃0πhu · n = π̃0u · n and therefore

(λ/h)
1
2 ∥π̃0(u − πhu) · n∥∂Ω = 0.

This last property is necessary to prove that the method is locking free. □

Lemma 6.2. For ϵ > 0 there holds

c(uh, uh) ≤ ϵ|||uh |||
2
E + ϵ−1C2

T γ −1
|uh |

2
s . (6.6)

Proof. This proof follows the ideas of [20], we include it here for completeness. First we note that

c(uh, uh) = (2µn · ∇
suhn + λ∇ · uh, uh · n)∂Ω + (2µt (∇suh · n), t uh)∂ΩD .

Since for F ∈ Fb, ∇ · uh |F ∈ P0(F) there holds

(λ∇ · uh, uh · n)∂Ω = (λ∇ · uh, π̃0uh · n)∂Ω .

Applying the Cauchy–Schwarz inequality followed by the trace inequality (6.4) we see that for all ϵ > 0,

(2µn · (∇suh) · n, uh · n)∂Ω ≤ 2CT ∥µ
1
2 ∇

suh∥Ω∥µ
1
2 h−

1
2 uh · n∥∂Ω

≤ ϵ∥µ
1
2 ∇

suh∥
2
Ω + C2

T ϵ−1
∥µ

1
2 h−

1
2 uh · n∥

2
∂Ω

(2µt (∇suh · n), t uh)∂ΩD ≤ 2CT ∥µ
1
2 ∇

suh∥Ω∥µ
1
2 h−

1
2 t uh∥∂ΩD

≤ ϵ∥µ
1
2 ∇

suh∥
2
Ω + C2

T ϵ−1
∥µ

1
2 h−

1
2 t uh∥

2
∂ΩD
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(λ∇ · uh, π̃0uh · n)∂Ω ≤ CT ∥λ
1
2 ∇ · uh∥Ωγ −

1
2 ∥λ

1
2 h−

1
2 π̃0uh · n∥∂Ω

≤ ϵ∥λ
1
2 ∇ · uh∥

2
Ω + C2

T 4−1ϵ−1
∥λ

1
2 h−

1
2 π̃0uh · n∥

2
∂Ω .

Summing up the different contributions and observing that

∥µ
1
2 h−

1
2 uh · n∥

2
∂Ω + ∥λ

1
2 h−

1
2 π̃0uh · n∥

2
∂Ω + ∥µ

1
2 h−

1
2 t uh∥

2
∂ΩD

≤ γ −1
|uh |

2
s

we see that

c(uh, uh) ≤ ϵ(2∥µ
1
2 ∇

suh∥
2
Ω + ∥λ

1
2 ∇ · uh∥

2
Ω ) + C2

T ϵ−1γ −1
|uh |

2
s .

This proves the claim. □

Lemma 6.3. Assume that γ > 4CT , then there exists α > 0 such that for all vh ∈ Vh there holds,

α|||vh |||
2
E,h ≤ AE,h(vh, vh).

For the choice γ = 16C2
T , α =

1
2 .

Proof. By definition

AE,h(vh, vh) ≥ 2∥µ
1
2 ∇

svh∥
2
Ω + ∥λ

1
2 ∇ · vh∥

2
Ω + |vh |

2
s − 2c(vh, vh)

= |||vh |||
2
E + |vh |

2
s − 2c(vh, vh).

Using the result of Lemma 6.2 we see that

AE,h(vh, vh) ≥ |||vh |||
2
E + |vh |

2
s − 2|||vh |||

2
E − 2C2

T γ −1
|vh |

2
s

= (1 − 2)|||vh |||
2
E + (1 − 2C2

T γ −1)|vh |
2
s .

Taking 0 < ϵ < 1/2 and γ ≥ 2C2
T ϵ−1 proves the claim. For the particular choice ϵ = 1/4 and γ = 16C2

T we see
that

AE,h(vh, vh) ≥
1
2
|||vh |||

2
E,h . □

Proposition 6.1. Let u be the solution of (2.1) with the boundary conditions (6.1) and uh the solution of (6.2),
then there holds

|||u − uh |||E,h ≤ Ch∥f∥Ω

where the constant C is independent of λ.

Proof. First note that by the triangle inequality there holds

|||u − uh |||E,h ≤ |||u − πhu|||E,h + |||πhu − uh |||E,h .

Using the coercivity of Lemma 6.3 we have, with eh := πhu − uh

1
2
|||eh |||

2
E,h ≤ AE,h(eh, eh).

Using now the consistency of AE,h we see that

1
2
|||eh |||

2
E,h ≤ AE,h(πhu − u, eh).

We also have the following continuity of the form AE,h ,

AE,h(πhu − u, eh) ≤ C |||eh |||E,h(|||πhu − u|||E,h + h
1
2 ∥µ

1
2 ∇

s(πhu − u)∥∂Ω + h
1
2 ∥λ/µ

1
2 ∇ · (πhu − u)∥∂Ω ).

Here we used the Cauchy–Schwarz inequality termwise and, for the terms with a factor λ, the relations

λ(∇ · eh + h−1π̃0eh, (πhu − u) · n)∂Ω = 0
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and

λ(∇ · (πhu − u), eh · n)∂Ω ≤ λµ−
1
2 h

1
2 ∥∇ · (πhu − u)∥∂Ωµ

1
2 h−

1
2 ∥eh · n∥∂Ω .

It follows that
1
2
|||eh |||E,h ≤ (|||πhu − u|||E,h + h

1
2 ∥µ

1
2 ∇

s(πhu − u)∥∂Ω + h
1
2 ∥λ/µ

1
2 ∇ · (πhu − u)∥∂Ω ).

and as a consequence

|||u − uh |||E,h ≤ C(|||πhu − u|||E,h + h
1
2 ∥µ

1
2 ∇

s(πhu − u)∥∂Ω + h
1
2 µ−

1
2 ∥λ∇ · (πhu − u)∥∂Ω ).

The error estimate is concluded by the approximation result of Lemma 6.1 and the inequality (6.3) by which

h
1
2 ∥µ

1
2 ∇

s(πhu − u)∥∂Ω + h
1
2 µ−

1
2 ∥λ

1
2 ∇ · (πhu − u)∥∂Ω ≤ C(∥µ

1
2 ∇

s(πhu − u)∥Ω + µ−
1
2 ∥λ∇ · (πhu − u)∥Ω )

+Ch(µ
1
2 |u|H2(Ω) + µ−

1
2 λ|∇ · u|H1(Ω)), (6.7)

followed by approximation. This leads to

|||u − uh |||E,h ≤ Cµ−
1
2 h(µ|u|H2(Ω) + λ|∇ · u|H1(Ω)) ≤ Ch∥f∥Ω ,

where C depends on µ but not on λ. The second inequality is a consequence of the elliptic regularity (2.4). □

6.2. Zero viscosity limit for the Brinkman problem

We now consider the problem (2.5), but instead of imposing Dirichlet boundary conditions strongly we here
consider using Nitsche’s method on the tangential component. The Dirichlet condition on the normal component is
still imposed strongly. This way the method can handle all values of the viscosity, also µ = 0. To fix the ideas we
assume that σ > 0 and µ ≥ 0 in (2.5). If µ = 0 we only impose the boundary condition on the normal component
for the boundary condition in (2.5)

u · n|∂Ω = 0. (6.8)

We see that the finite element solution will then be found in a subspace of

V 0
n := {v ∈ V : (v · n)|∂Ω = 0}

instead of V 0. To impose this condition strongly on the discrete solution we introduce the space

V 0
n,h := {v ∈ Vh : v · n = 0}.

This space can easily be constructed on polyhedral domains, by setting both the boundary bubble degrees of freedom
and the normal component of the nodal degrees of freedom to zero. The Dirichlet condition on the tangential
component will then be imposed using Nitsche’s method [21].

This time the Nitsche formulation takes the form: Find (uh, ph) ∈ V 0
n,h × Qh such that

AB,h(uh, vh) = lB(vh, qh), ∀(vh, qh) ∈ V 0
n,h × Qh (6.9)

with

AB,h(uh, vh) := AB(uh, vh) − m(uh, vh) − m(vh, uh) + s(uh, vh)

where

m(uh, vh) := (t (σ (uh, ph) · n), t vh)∂Ω = (µt (∇uh · n), t vh)∂Ω

since σ (u, p) := µ∇u − pI and

s(uh, vh) := (γ /hµ t uh, t vh)∂Ω .

For the analysis of the Nitsche conditions we define the triple norm

|||vh, yh |||
2
B,h := |||vh, yh |||

2
B + |vh |

2
s . (6.10)
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As noted in Section 3 there exists an interpolant πh,n : V 0
n ↦→ V 0

n,h with the same commutation and approximation
properties as πh in (3.2), with some abuse of notation we drop the subscript n below. In particular it is straightforward
to show, using the same arguments as in Eq. (6.5), that the following lemma holds.

Lemma 6.4. Let u ∈ V 0
n then there holds

|||u − πhu, 0|||B,h ≤ Ch(µ
1
2 |u|H2(Ω) + σ

1
2 |u|H1(Ω))

Proof. The proof is identical to that of Lemma 6.1. □

Proposition 6.2. There exists αB , such that, assuming γ large enough, then for all (vh, yh) ∈ V 0
n,h × Qh there

holds

αB |||vh, yh |||B,h ≤ sup
wh ,qh∈(V 0

n,h\0)×Qh

AB,h[(vh, yh), (wh, qh)]
|||wh, qh |||B

.

Proof. First we take wh = vh and qh = yh to obtain

∥µ
1
2 ∇vh∥

2
Ω + ∥σ−

1
2 vh∥

2
Ω + |vh |

2
s − 2m(vh, vh) = AB,h[(vh, yh), (wh, qh)].

Following the same arguments as in Lemma 6.2 we see that

m(vh, vh) ≤ ϵ|||vh, 0|||
2
B + C2

T ϵ−1γ −1
|vh |

2
s .

It follows that taking 0 < ϵ < 1/2 and γ ≥ 4C2
T /ϵ we have

1
2

(1 − 2ϵ)|||vh, 0|||
2
B,h ≤ AB,h[(vh, yh), (wh, qh)].

Then we chose wh = (µ + σ )−1ζ y , with ζ y as in (3.3).

(µ + σ )−1
∥yh∥

2
Ω =AB[(vh, yh), (wh, 0)] − (µ∇vh, ∇wh)Ω − (σvh, wh)Ω

+ m(wh, vh) + m(vh, wh) − γ (µ/h t vh, t wh)∂Ω .

The second and third terms on the right hand side are handled as in Proposition 5.1.

(µ∇vh, ∇wh)Ω + (σvh, wh)Ω ≤ C2
0∥µ

1
2 ∇vh∥

2
Ω + C2

0∥σ
1
2 vh∥

2
Ω +

1
4

C−2
0 (µ + σ )∥wh∥

2
H1(Ω)

≤ C2
0∥µ

1
2 ∇vh∥

2
Ω + C2

0∥σ
1
2 vh∥

2
Ω +

1
4

(µ + σ )−1
∥yh∥

2
H1(Ω). (6.11)

Using the Cauchy–Schwarz inequality, the trace inequality (6.4) and the fact that ζ y ∈ V 0
h we see that

m(wh, vh) + m(vh, wh) − γ (µ/h t vh, t wh)∂Ω ≤ CT ∥µ
1
2 ∇wh∥Ωγ −

1
2 |vh |s

≤
1
4

(σ + µ)−1
∥yh∥

2
Ω + (CT C0)2γ −1

|vh |
2
s .

Summing the above bounds it follows that,

1
2

(µ + σ )−1
∥yh∥

2
Ω ≤ AB[(vh, yh), (wh, 0)] + C2

0 |||vh, 0|||
2
B,h,

where we used that (CT C0)2γ −1
≤ C2

0ϵ/4 ≤ C2
0 . Taking wh = vh + (2C0)−2(µ + σ )−1ζ y and qh = yh + ∇ · vh we

deduce that(
1
4

− 2ϵ

)
|||vh, 0|||

2
B,h +

1
8C2

0
|||0, yh |||

2
B,h ≤ AB[(vh, yh), (wh, qh)].

Let now ϵ =
1
16 then for α = 1/8 min(1, C−2

0 ) > 0 there holds,

α|||vh, yh |||
2
B,h ≤ AB[(vh, yh), (wh, qh)].
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To finish the proof note that, as before,

|||wh, qh |||B,h ≤ |||vh, yh |||B,h + |||(2C0)−2(µ + σ )−1ζ y, 0|||B,h

≤ |||vh, yh |||B,h + (2C0)−2µ
1
2 (µ + σ )−1C0∥yh∥Ω ≤ CB |||vh, yh |||B,h,

where CB is independent of µ and σ , but not of C0. The inequality then holds with αB = α/CB . □

Optimal a priori estimates follow using the stability of Proposition 6.2, consistency and continuity.

Proposition 6.3. Under the hypothesis of Proposition 6.2, let (u, p) ∈ V 0
n × Q be the solution to (2.5), with either

µ > 0 and σ ≥ 0 or µ ≥ 0 and σ > 0 and (uh, ph) ∈ V 0
n,h × Qh the solution to (4.2). Then there holds

|||u − uh, p − ph |||B,h ≤ Ch(µ
1
2 |u|H2(Ω) + σ

1
2 |u|H1(Ω)).

Proof. We introduce, as before, the discrete errors eh := uh −πhu and ηh = π0 p− ph . Using the triangle inequality
we see that

|||u − uh, 0|||B,h ≤ |||u − πhu, 0|||B,h + |||eh, ηh |||B,h .

For the second term on the right hand side we apply the stability of Proposition 6.2 to obtain

αB |||eh, ηh |||B,h ≤ sup
wh ,qh∈(Vh\0)×(Qh\0)

AB,h[(eh, ηh), (wh, qh)]
|||wh, qh |||B,h

.

using Galerkin orthogonality we have

AB,h[(eh, ηh), (wh, qh)] = AB,h[(u − πhu, p − π0 p), (wh, qh)].

The form AB is handled as in Proposition 5.3. Using the orthogonality properties of the πh and π0 in the form b
we see that

AB,h[(u − πhu, p − π0 p), (wh, qh)] ≤ |||u − πhu, ηh |||B,h |||wh, 0|||B,h + |m(wh, u − πhu)| + |m(u − πhu, wh)|

For the Nitsche terms we see that using the Cauchy–Schwarz inequality followed by the trace inequality (6.3) and
the approximation of Lemma 6.4

m(wh, u − πhu) + m(u − πhu, wh) ≤ C |||wh, 0|||B,hµ
1
2 h|u|H2(Ω)

where we also used an argument similar to (6.7) to obtain the bound ∥µ
1
2 ∇(u − πhu)∥∂Ω ≤ Cµ

1
2 h|u|H2(Ω). The

stabilization term is bounded by applying the Cauchy–Schwarz inequality

s(u − πhu, wh) ≤ |u − πhu|s |wh |s ≤ |||u − πhu, 0|||B,h |||wh, 0|||B,h .

We conclude that

αB |||eh, ηh |||B,h ≤ C(|||u − πhu, 0|||B,h + µ
1
2 h|u|H2(Ω)).

Applying the approximation properties of the projection πh from Lemma 6.4 now proves the claim. □

6.3. Superconvergence of the primal variable in the Darcy limit

Here we will prove that in the Darcy limit, the pressure variable converges to π0 p with the rate O(h2) on convex
domains. To fix the ideas we consider (2.5) with f = 0, σ = 1, µ = 0, and the boundary condition (6.8). We let
(uh, ph) denote the solution of (6.9). Note that in this case we solve the problem −∆p = g with ∇ p ·n|∂Ω = 0. The
following superconvergence result shows that we can use postprocessing to obtain a piecewise affine approximation
of p that has optimal convergence in H 1 and L2 norms.

Proposition 6.4. Let Ω be convex. The following bound holds

∥π0 p − ph∥Ω ≤ C(h2
∥g∥Ω + h∥g − π0g∥Ω ).
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Proof. Let ϕ be the solution of the problem

−∆ϕ = π0 p − ph

∇ϕ · n = 0.
(6.12)

By the convexity assumption on Ω there holds by elliptic regularity

∥p∥H2(Ω) ≤ C∥g∥Ω and ∥ϕ∥H2(Ω) ≤ C∥π0 p − ph∥Ω . (6.13)

By the definition of (6.12) we have

∥π0 p − ph∥
2
Ω = (π0 p − ph,∆ϕ)Ω = (p − ph, ∇ · πh∇ϕ)Ω .

By the definition of (6.9) there holds

(p − ph, ∇ · πh∇ϕ)Ω = (u − uh, πh∇ϕ)Ω .

Now we add and subtract ∇ϕ on the right hand side to obtain

(u − uh, πh∇ϕ − ∇ϕ)Ω + (u − uh, ∇ϕ)Ω = I + I I.

Using the Cauchy–Schwarz inequality and the interpolation properties of πh we see that

I ≤ ∥u − uh∥ΩCh|ϕ|H2(Ω).

For term I I we integrate by parts and use once again the definition of (6.9).

I I ≤ |(∇ · (u − uh), ϕ − π0ϕ)Ω | = |(g − π0g, ϕ − π0ϕ)Ω | ≤ ∥g − π0g∥ΩCh|ϕ|H1(Ω).

Collecting the above inequalities we see that using the error estimate of Proposition 6.3 and the elliptic regularity
(6.13) there holds

∥π0 p − ph∥
2
Ω ≤ Ch(|||u − uh, 0|||B + ∥g − π0g∥Ω )∥ϕ∥H2(Ω)

≤ C(h2
∥g∥Ω + h∥g − π0g∥Ω )∥π0 p − ph∥Ω .

This concludes the proof. □

6.4. Further remarks on using Nitsche’s method for the imposition of slip conditions

We will here discuss the imposition of the normal component of the velocity using Nitsche’s method in the
context of Brinkman’s problems with slip boundary conditions. This is useful in cases where the domain is not
polyhedral. Note however that we do not here account for effect due to the geometry approximation. We consider
pure slip boundary conditions

u · n = 0 and t (σ (u, p) · n) = 0 on ∂Ω , (6.14)

where σ (u, p) := µ∇u − pI. This problem is well-posed in the space V 0
n .

This time the Nitsche formulation takes the form: Find (uh, ph) ∈ Vh × Qh such that

AB,h(uh, vh) = lB(vh, qh), ∀(vh, qh) ∈ Vh × Qh, (6.15)

with

AB,h(uh, vh) := AB(uh, vh) − c((uh, ph), vh) − c((vh, 0), uh) + s(uh, vh) (6.16)

where

c((uh, ph), vh) := (n · σ (uh, ph) · n, vh · n)∂Ω

and

s(uh, vh) := (γ /h(µ + σ ) uh · n, vh · n)∂Ω .

Observe that to avoid perturbing the mass conservation the pressure test function is absent in the second c-form of
the definition (6.16). This destroys the anti-symmetry of the pressure velocity coupling in the boundary terms. One
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may however prove that inf–sup stability of a slightly modified version of the norm defined in (6.10) still holds.
Indeed, since the normal component of the vector fields is no longer imposed to be zero in the space, ∇ · uh is no
longer in Qh . Therefore we can only hope to control ∇ ·uh −

∫
Ω ∇ ·uh dx . The constant is still controlled thanks to

the penalty term. To recover control of the full divergence it is sufficient to add one Lagrange multiplier imposing
that

∫
∂Ω uh ·n ds = 0. Proceeding as in the proof of Proposition 6.3, using, inf–sup stability, Galerkin orthogonality

and continuity, one may then prove the following a priori error estimate.

Proposition 6.5. Let (u, p) ∈ V × Q be the solution to (2.5), with the boundary conditions (6.14) and either
µ > 0 and σ ≥ 0 or µ ≥ 0 and σ > 0, and (uh, ph) ∈ Vh × Qh the solution to (4.2) (assuming γ sufficiently
large). Then there holds

|||u − uh, p − ph |||B,h ≤ Ch(µ
1
2 |u|H2(Ω) + σ

1
2 |u|H1(Ω) + γ −

1
2 (σ + µ)−

1
2 |p|H1(Ω)).

Remark 6.1. We observe that the error estimate of Proposition 6.5 is less robust than that of Proposition 5.3, since in
the former the pressure appears on the right hand side. This is due to the appearance of a term (p − π0 p, wh · n)∂Ω
after application of Galerkin orthogonality. This term cannot be eliminated through the choice of π0, since this
approximation already has been fixed by imposing orthogonality on the bulk of each element. Note however that
the constant in front of the pressure term can be made as small as desired by choosing the penalty parameter γ large.
Moreover, in the Darcy limit σ

1
2 u ∼ σ−

1
2 ∇ p and therefore the term σ

1
2 |u|H1(Ω) ∼ σ−

1
2 |∇ p|H1(Ω) ≫ σ−

1
2 |p|H1(Ω)

and it follows that the pressure contribution is the lower order term. The limit where both µ and σ go to zero
simultaneously is not physically relevant.

7. Numerical examples

In this section we provide some details on the practical implementation of the approximation and give numerical
examples of near incompressible elasticity, Stokes flow, Darcy flow, and coupled Darcy–Stokes flow. For simplicity,
we consistently use strong imposition of boundary conditions in the examples.

7.1. Elasticity

We consider the well known Cook’s membrane, which is a quadrilateral with corners at (0,0), (48,44), (48,60),
and (0,44), in a condition of plane strain. The quadrilateral is fixed, u = (0, 0), at x = 0, has zero traction,
σ (u)·n = (0, 0), on the upper and the lower boundary, and σ (u)·n = (0, 1) (a vertical shearing load) at x = 48. This
particular choice of boundary traction and a Young’s modulus of E = 200, is taken from [22]. Cook’s membrane is
highly susceptible to locking in the incompressible limit for low order elements as we illustrate in Fig. 3, where we
compare the present method to a standard piecewise linear approximation on the type I triangles in the same mesh.
The standard method locks as ν → 0.5, whereas the present method is unaffected. The results compare well with
those of [22]. In Fig. 4 we show the mesh of macro triangles and the computed deformation obtained the present
method.

7.2. Stokes flow

We consider a problem on the unit square (0, 1) × (0, 1) with exact solution

u = (20xy3, 5x4
− 5y4), p = 60yx2

− 20y3
− 5

with f = (0, 0) and Dirichlet boundary conditions given by the exact solution. Zero mean pressure is enforced by
a Lagrange multiplier.

In Fig. 5 we show the convergence obtained with our method. The meshsize is defined as 1/
√

NNO, where NNO
is the number of nodes on the grid of macro triangles. The dashed lines have inclination 1:1 and 1:2. The discrete
solution on one of the meshes in the sequence is shown in Fig. 6.
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Fig. 3. Locking with standard linear elements and locking free solution with the present approximation.

Fig. 4. Mesh and corresponding solution for ν = 0.49999.

7.3. Darcy flow

We consider a problem from [2] on the unit square (0, 1) × (0, 1) with exact solution

u = (−π sin2 (πx) sin (2πy), π sin (2πx) sin2 (πy)), p = sin (πx) − 2/π

given by

f =
(
π (cos (πx) − sin2 (πx) sin (2πy))), π sin (2πx sin2 (πy)

)
,

and Dirichlet boundary conditions u · n = 0 on the boundary. Zero mean pressure is again enforced by a Lagrange
multiplier.
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Fig. 5. Convergence for a Stokes problem on a sequence of meshes.

Fig. 6. Velocity and pressure solutions on a mesh in the sequence.

In Fig. 7 we show the convergence obtained with our method. The meshsize is defined as in the previous example,
as are the dashed lines. The discrete solution on one of the meshes in the sequence is shown in Fig. 8.

7.4. Coupled Stokes–Brinkman flow

In this section we show two examples of coupled Stokes–Brinkman flow. The domain is (0, 2) × (0, 2) in both
cases. In the first example we show normal coupling. The boundary conditions are u = 0 at x = 0 and x = 2. We
let µ = 1 and σ = 0 for y ≤ 1. At y > 1 we choose σ = 1 and decrease µ. We use a right-hand side f = (0, 100).
In Figs. 9 and 10 we show the streamlines for successively decreasing µ ∈ {1, 10−2, 10−3, 10−6

} on an 80 × 80
nodes uniform mesh. The flow tends to be uniform in the upper part and has to make a turn from a parabolic profile
in the lower part at y = 1.
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Fig. 7. Convergence for a Darcy problem on a sequence of meshes.

Fig. 8. Velocity and pressure solutions on a mesh in the sequence.

Fig. 9. Streamlines for µ = 1 and µ = 10−2.
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Fig. 10. Streamlines for µ = 10−3 and µ = 10−6.

Fig. 11. Velocity profiles for µ = 10 and µ = 1.

Fig. 12. Velocity profiles for µ = 10−1 and µ = 10−2.

The second example concerns tangential coupling. The domain and right-hand side are the same, but the boundary
conditions are u · n at x = 0 and u = 0 at x = 2. Here we take µ = 100, σ = 0 for x > 1 and σ = 103 with
decreasing µ for x ≤ 1. In Figs. 11–12 we show the velocity profiles at y = 1 for µ ∈ {10, 1, 10−1, 10−2

} computed
on an 80 × 80 nodes uniform mesh. Note the oscillations occurring for decreasing µ, related to the forced tangential
continuity which cannot be upheld as µ/σ → 0. The remedy for this effect (which will occur in the limit also for the
normal coupling example) is to release tangential continuity or invoke an interface law relaxing tangential continuity
using a physically motivated model [23], or using a variant of Nitsche’s method as described above, cf. also [3].
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