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We study flexible information acquisition in a coordination game.

"Flexible" acquisition means that players choose not only how much

but also what kind of information to acquire. Information acquisition

has a cost proportional to reduction of entropy. Hence, players will col-

lect the information most relevant to their welfare but can be rationally

inattentive to other aspects of the fundamental. When information is

cheap, this flexibility enables players to acquire information that makes

efficient coordination possible, which also leads to multiple equilibria.

This result contrasts with the global game literature, where information

structure is less flexible and cheap information leads to a unique equi-

librium with inefficient coordination. We then go beyond the entropic

information cost to set out the key aspects of flexibility and examine the

way in which they drive our results.
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I. Introduction

This paper studies a coordination game in which players can acquire information flex-

ibly. Coordination requires that all the players know the payoffs. In practice, payoffs

may not be perfectly observable, so such common knowledge is lacking. The global

game literature models this by endowing players with additive private signals on pay-

offs. Accordingly, researchers obtain a well-known limit unique equilibrium with ineffi-

cient coordination (e.g., (Hans Carlsson and Eric van Damme 1993), (David M. Frankel,

Stephen Morris and Ady Pauzner 2003)). We re-examine this result in an environment

where players can flexibly acquire information about the payoffs. Rather than fixing

an additive information structure and letting players choose the precision of signals, we

allow them to choose any information structures. An information structure exclusively

specifies both the amount (measured by reduction of Shannon’s entropy) and the sub-

stance of the information. Hence, information acquisition is flexible in the sense that the

players choose not only how much but also what kind of information to acquire. This

paper thus addresses the following questions: What information will be acquired under
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2 COORDINATION WITH FLEXIBLE INFORMATION ACQUISITION

this flexibility? And how does this flexibility affect the efficiency of coordination? These

questions are interesting because a player’s incentive to acquire information is shaped by

his payoff structure, which further depends on his opponent’s information acquisition.

This strategic concern together with the flexibility of information acquisition leads to

nontrivial implications.

We examine our concept of flexible information acquisition in the following game.

Two players coordinate investment in a risky project whose future cash flow is driven by

a randomly fluctuating fundamental. Each player decides whether to invest, but the pay-

off depends not only on the realized fundamental but also on the other player’s action.

Given the other player’s choice, a player’s payoff from investing increases as the funda-

mental improves. And for any given realization of the fundamental, a player’s gain from

"invest" over "not invest" is strictly greater when the other player also invests. That is,

players’ actions are strategic complements. Before making a decision, each player can

independently purchase private information about the fundamental in the form of an in-

formation structure, i.e., the conditional distribution of the signal given the fundamental.

The player then takes action according to the realized signal.

The players’ information acquisition strategy is determined by two factors. The first is

the effect of the fundamental: intuitively, given the other player’s action, a player wants

to collect information that induces investment with high (low) probability in the high

(low) states of the fundamental. The second, and more interesting, factor is the player’s

incentive to match the other’s informational choice, so as to minimize the probability of

miscoordination. As a result, the strategic complementarity between actions creates a

motive for the coordination of information as well. Indeed, coordination in information

acquisition arises thanks to the fact that information acquisition is flexible. Especially,

when the cost is low, players can coordinate to achieve approximate common knowledge

of any "cutoff event" with the cutoff taking intermediate values.1 Consequently, lowering

the information cost makes possible efficient coordination in investing through efficient

coordination in acquiring information; it also gives rise to multiple equilibria, insofar as

there is a multiplicity of ways of coordinating information acquisition.

This paper contributes to our understanding of the impacts of information acquisition

on coordination. Especially, a key feature, flexibility is highlighted. To see the point,

consider an extended global game model where the players can purchase more accurate

signals but cannot change the additive information structure. Intuitively, cheaper in-

formation induces the players to acquire more precise private signals, which lead to the

inefficient, unique equilibrium commonly seen in standard global game models. The

reason why efficient coordination is no longer sustainable and multiplicity disappears is

precisely the rigidity of information acquisition, embodied in the constraint that players

must pay equal attention to all possible realizations of the fundamental, as the additive in-

formation structure forces the observational error to be invariant in the fundamental. As

a result, players coordinate only in choosing overall precision but cannot coordinate to

achieve approximate common knowledge for any "cutoff event". This rigidity contrasts

1By approximate common knowledge, we mean the common-p belief (see (Dov Monderer and Dov Samet 1989))

with p close to 1.
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sharply with the mechanism of flexible information acquisition described above.

We proceed as follows. Section II describes the model and sets out some simple facts

about information acquisition behavior in equilibrium. In Section III, we characterize the

equilibria and gain some initial insight through comparative statics. Section IV reports

our main results, first comparing our approach with the extended global game model

and exploring the origins of the difference and then comparing the welfare implications

of flexible information acquisition in strategic and non-strategic settings. Finally, the

section extends the concept of flexibility and discusses its essence. Section V examines

the effects of public information through comparative statics with respect to the common

prior. Section VI concludes with a discussion of several extensions of the benchmark

model. Most of the proofs are given in the appendix.

Relation to the literature. The flexible information acquisition is modeled in the

rational inattention framework of (Christopher A. Sims 2003). In applied work, ra-

tional inattention is studied chiefly in two cases: linear-quadratic (e.g., (Bartosz Mack-

owiak and Mirko Wiederholt 2009)) and binary-action. A prime instance of the latter is

(Michael Woodford 2009). Our model too adopts the binary-action setup. Our work dif-

fers from most other rational inattention models in that we study information acquisition

in a strategic environment rather than in decision problems.

Our model is closely related to the global games literature in that both study coordina-

tion under incomplete information. The global game models are characterized by addi-

tive information structures (e.g., (Stephen Morris and Hyun Song Shin 1998), (Stephen

Morris and Hyun Song Shin 2004) and (Itay Goldstein and Ady Pauzner 2005)), which

are less flexible than that in our setup. This difference in flexibility differentiates our

model from the global games literature.

The equilibria of games with incomplete information are known to be highly sensitive

to the belief environment ((Ariel Rubinstein 1989), (Atsushi Kajii and Stephen Morris

1997), and (Jonathan Weinstein and Muhamet Yildiz 2007), etc.). Here, the focus shifts

from the belief environment to information acquisition, which determines the beliefs in

equilibrium. So rather than analyze the effects of exogenously assumed beliefs, our

model studies how the equilibria depend on the properties of information acquisition.

Another related strand of work makes information acquisition endogenous but rigid,

where players can purchase Gaussian additive signals before selecting actions (e.g.,

(Christian Hellwig and Laura Veldkamp 2009), (David P. Myatt and Chris Wallace 2012),

(Michal Szkup and Isabel Trevino 2012), and others). Both (Hellwig and Veldkamp

2009) and our model show that if players’ actions are strategic complements, then so are

their information choices. However, our research provides a different insight into the

creation of approximate common knowledge and multiplicity. Whereas in (Hellwig and

Veldkamp 2009), public noise is assumed in the signals and players have the option to ac-

cess it to create approximate common knowledge, in our approach approximate common

knowledge stems from the flexibility of information acquisition.
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TABLE 1—PAYOFF MATRIX CONDITIONAL ON FUNDAMENTAL

invest not invest

invest θ, θ θ − r, 0

not invest 0, θ − r 0, 0

.

II. The Model

A. The Basic Environment

We define our game as follows. Two players2 play a coordination game with payoffs

shown by Table 1.

Here θ is a random state with support 2 ⊂ R; hereafter, we call θ "the fundamental

state". The action set of player i ∈ {1, 2} is Ai = {0, 1}, where 1 stands for "invest" and

0 stands for "not invest". Hence player i’s payoff from ai ∈ Ai when the state is θ and

the other player takes a j ∈ A j is given by

ui

(
ai , a j , θ

)
= ai ·

[
θ − r ·

(
1− a j

)]
.

Note that r > 0 is the cost of miscoordination. It measures the degree of strategic

complementarity. Fundamental θ is drawn from 2 according to a common prior P ,

which is a probability measure over 2. We assume that P is absolutely continuous with

respect to the Lebesgue measure over R.3

This game can be interpreted as a problem of coordination. The two players coordinate

in investing in a project with uncertain future cash flow θ ∈ 2. Player i ∈ {1, 2} must

decide whether to invest (ai = 1) or not to invest (ai = 0). If both players invest, each

gets a payoff θ . If only one player invests, he gets θ − r . The payoff for not investing

is normalized to zero, regardless of the other player’s action.

To see how this game works, first note that when information is complete and θ ∈
[0, r ], there exist two strict Nash equilibria: (invest, invest) and (not invest, not invest).

This multiplicity stems from the common knowledge of the fundamental.

Our model assumes incomplete information. Suppose player i is endowed with an

information structure (Si , qi ) that conveys information about θ . Here Si ⊂ R is the

set of realizations of player i’s signal, and qi (si |θ) is the conditional probability density

function of that signal. We assume conditional independence between si and s j given

θ , in order to capture the private nature of the players’ information. Given information

structure (Si , qi ), player i’s strategy can be represented by a mapping σ i from Si to [0, 1],

2The "two-player" setup is not as restrictive as it seems. All our results remain valid when there is a continuum of

players if we redefine the payoff for "invest" as θ − r · (1− m), where m is the fraction of players that invest. We discuss

the "n-player" case in Subsection VI.C.
3Note that public information affects the common prior, and hence its effects on the equilibria can be studied through

comparative statics with respect to the common prior, as shown in Section V.
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where σ i (si ) denotes the probability of choosing 1 upon observing si ∈ Si . Player i’s

expected payoff given
(
si , s j , θ

)
becomes

σ i (si ) ·
[
θ − r ·

(
1− σ j

(
s j

))]
.

We can then define

Ui

(
((Si , qi ) , σ i ) ,

((
S j , q j

)
, σ j

))
=

∫
θ

∫
si

∫
s j

σ i (si )
[
θ − r ·

(
1− σ j

(
s j

))]
qi (si |θ) q j

(
s j |θ

)
dsi ds j d P (θ) ,(1)

as player i’s expected payoff with strategy profile
(
σ i , σ j

)
under information structure(

(Si , qi ) ,
(
S j , q j

))
, i, j ∈ {1, 2}, i 6= j .

Now let us consider a larger game with flexible information choices: player i chooses

strategy ((Si , qi ) , σ i ) according to the preference given by (1), i ∈ {1, 2}. More pre-

cisely, player i acquires information by choosing information structure (Si , qi ), and then

takes (mixed) action σ i according to the signal si generated by (Si , qi ). The solution

concept is Nash equilibrium. Note that the players’ beliefs about the fundamental and

others’ actions can be heterogeneous, owing to the private nature of their signals.

The conditional density qi (si |θ) describes player i’s information acquisition strategy.

By choosing different functional forms for qi (si |θ), player i can make the signal received

co-vary with the fundamental in any way desired. Intuitively, if player i’s welfare is

sensitive to the fluctuation of the fundamental within some range A ⊂ 2, he would pay

close attention to this event by choosing an information structure to ensure that the signal

si is closely correlated with θ ∈ A. In this sense, choosing an information structure can

be seen as equivalent to hiring an analyst to write a report from the standpoint of one’s

own interests.

If information acquisition is cost-free, player i would like to establish a one-to-one

mapping between si and θ , and thus obtain all the information about the fundamental.

This makes our problem trivial, since it reduces to a coordination game with complete

information. In practice, however, information acquisition is unlikely to be cost-free, so

we examine the more interesting case of costly information acquisition. We associate

each conditional density qi (si |θ) with a cost µ · I (qi ), where

I (qi ) =

∫
θ

∫
si

qi (si |θ) ln qi (si |θ) · dsi · d P (θ)

−

∫
si

∫
θ

qi (si |θ) · d P (θ) · ln

(∫
θ

qi (si |θ) · d P (θ)

)
· dsi(2)

is the mutual information between the two random variables si and θ . This variable
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measures the amount4 of information about θ conveyed by si .
56 The marginal cost of

information acquisition is µ > 0. Since information acquisition is costly, it is not

advisable to seek a signal that is highly informative on all values of θ . Players should

make their signals sensitive to the events most relevant to their welfare.

Taking account of information cost, player i’s payoff from strategy ((Si , qi ) , σ i ) is

expected future cash flow less the cost of information acquisition, i.e.,

Vi

(
((Si , qi ) , σ i ) ,

((
S j , q j

)
, σ j

))
= Ui

(
((Si , qi ) , σ i ) ,

((
S j , q j

)
, σ j

))
− µ · I (qi ) , i 6= j.(3)

The game is summarized in the following definition:

DEFINITION 1: (Game with Flexible Information Acquisition G (r, µ)): Two play-

ers with preference (3) play the game by choosing ((Si , qi ) , σ i ), where Si ⊂ R is the

set of realizations of player i’s signal, qi (si |θ) is the conditional probability density of

player i’s signal, and σ i is a mapping from Si to [0, 1] that defines player i’s action upon

receiving signal si ∈ Si , i ∈ {1, 2} . The equilibrium concept is Nash equilibrium.

In principle, this problem would appear to be hard to deal with, since players’ possible

strategies belong to a functional space, and even S1 and S2, the sets of realizations of the

signals, are endogenous. Fortunately, some patterns emerge from the players’ optimal

information acquisition behavior, which helps considerably to simplify the problem.

B. Some Simple Facts About The Equilibria

Suppose ((Si , qi ) , σ i ) is player i’s equilibrium strategy. Let

Si,I = {si ∈ Si : σ i (si ) = 1} ,

Si,N = {si ∈ Si : σ i (si ) = 0} ,

and

Si,ind = {si ∈ Si : σ i (si ) ∈ (0, 1)} .

Note that Si,I (Si,N ) is the set of signal realizations such that player i certainly invests

(does not invest). Player i is indifferent when the signal belongs to Si,ind . Note that

4Here the unit of I (qi ) is "nat". If "ln" is replaced by "log2", the unit becomes a "bit". Knowing the result of a single

toss of a coin obtains 1 bit of information. Since 1 bit equals ln 2 nats, choosing bit or nat as the unit is indifferent for

our analysis.
5Shannon’s mutual information is a natural measure of information about one random variable conveyed by another

random variable. Shannon defines information as the reduction of uncertainty, reflected in the difference between the two

terms in formula (2). And this is the only "right" way to measure information under some intuitive axioms. (Thomas M.

Cover and Joy A. Thomas 1991) discuss mutual information in detail. But this specific entropic functional form is not

necessary for our qualitative results. What is essential is flexibility in choosing information structures. Subsection IV.C

extends our results under more general functional forms.
6By definition, the functional form of qi (si |θ) uniquely determines I (qi ), the amount of information. Moreover, it

also defines the qualitative nature of the information to acquire. Different forms of qi (si |θ)may generate the same value

for I (qi ); in other words, one can acquire a given amount of information from different aspects of θ .
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Si,I , Si,N , Si,ind

}
partitions Si . Since the only use of the signal is to make a binary

decision, a signal that differentiates more finely among the states only provides redun-

dant information, wasting the players’ attention. Hence player i will not discern signal

realizations within any Si,I , Si,N and Si,ind . Moreover, being indifferent between the

two actions upon event Si,ind , the player would rationally devote no resources (pay no

attention) to distinguishing this event from others. Hence, upon receiving their signals

the players always play pure strategies and accordingly always prefer binary-signal in-

formation structures. (Michael Woodford 2008) makes a similar argument that the agent

only needs to acquire a "yes/no" signal. For completeness, we prove the results in our

context.

LEMMA 1: In any equilibrium of game G (r, µ), #Si = 1 or 2, and Pr
(
Si,ind

)
= 0,

∀i ∈ {1, 2}.

PROOF: See Appendix A.

This lemma follows from the fact that the information cost given by rational inatten-

tion conforms to Blackwell’s ordering7 of information structures: namely, more highly

informative information structures are more expensive. Hence, to save information costs

players only choose binary information structures.

Suppose ((Si , qi ) , σ i ) is player i’s equilibrium strategy. This induces a conditional

probability function mi from2 to [0, 1], such that player i invests with probability mi (θ)
when the fundamental is equal to θ . But Lemma 1 implies that mi also suffices to charac-

terize strategy ((Si , qi ) , σ i ). That is, we can recover ((Si , qi ) , σ i ) from mi . Specifically,

in the trivial case

mi (θ) = 1 a.s. (or mi (θ) = 0 a.s.),

let

Si =
{
si,I

}
, qi

(
si,I |θ

)
= 1 a.s., σ i

(
si,I

)
= 1

(or Si =
{
si,N

}
, qi

(
si,N |θ

)
= 0 a.s., σ i

(
si,N

)
= 0);

otherwise, let

Si =
{
si,I , si,N

}
,

∀θ ∈ 2, qi

(
si,I |θ

)
= mi (θ) , qi

(
si,N |θ

)
= 1− mi (θ) ,

σ i

(
si,I

)
= 1, σ i

(
si,N

)
= 0.

Hence, conditional probability function mi characterizes player i’s strategy ((Si , qi ) , σ i ).
For our equilibrium analysis, we can focus on the strategy profile (m1,m2).

With a slight abuse of notation but without confusion, we can rewrite player i’s ex-

pected payoff as

(4) Ui

(
mi ,m j

)
=

∫
mi (θ) ·

[
θ − r ·

(
1− m j (θ)

)]
· d P (θ) , i, j ∈ {1, 2} and i 6= j.

7See (David Blackwell 1953).
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This expression is derived from (1).

Lemma 1 also implies that I (qi ), the amount of information acquired, is a function of

mi , so hereafter we use I (mi ) instead of I (qi ). By (2) and Lemma 1, I (mi ) is expressed

as

I (mi ) =

∫
[mi (θ) ln mi (θ)+ (1− mi (θ)) ln (1− mi (θ))] d P (θ)

−pI i ln pI i − (1− pI i ) ln (1− pI i ) ,(5)

where

pI i = Pr (ai = 1) =

∫
mi (θ) d P (θ)

is player i’s unconditional probability of investing. Mutual information I (m) measures

function m’s variability, which reflects the informativeness of actions about the funda-

mental. For example, when m (θ) is constant, the actions convey no information about

θ and the corresponding mutual information is nil. This is because the integrand in the

first term of (5) is strictly convex, so I (m) is zero if and only if m (θ) is constant. A

nice property of our technology of information acquisition, therefore, is that information

acquisition exists if and only if m (θ) varies over θ , if and only if information cost is

strictly positive. Also note that the functional form ("shape") of m determines not only

the quantity but also the qualitative nature of the information. For instance, a player

can concentrate his attention on some event by making m (θ) highly sensitive to θ if the

event occurs. In this sense, our technology of information acquisition is flexible, inas-

much players can decide both the quantity and the qualitative nature of their information

by unrestricted choice of m.8

Taking information cost into account, player i’s overall expected payoff (in terms of

mi , m j ) is

(6) Vi

(
mi ,m j

)
= Ui

(
mi ,m j

)
− µ · I (mi ) , i, j ∈ {1, 2} and i 6= j.

For simplicity, in the rest of the paper we abstract from the story of information acqui-

sition and treat the problem as a two-player game with preference (6) and strategy profile

(m1,m2). We assume that each player’s strategy space is L1 (2, P), i.e., the space of

all P-integrable functions on 2 equipped with the norm

‖m1 − m2‖L1(2,P) =

∫
2

|m1 (θ)− m2 (θ)| d P (θ) .

8This idea is discussed more amply in the remarks of Proposition 1 in Appendix A, with an example illustrating the

key feature of flexible information acquisition.
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III. The Equilibria

A Nash equilibrium of game G (r, µ) is a strategy profile (m1,m2) that solves the

following problem:

mi ∈ arg max
m̃i∈L1(2,P)

Vi

(
m̃i ,m j

)
= Ui

(
m̃i ,m j

)
− µ · I (m̃i )

s.t. m̃i (θ) ∈ [0, 1] ,∀θ ∈ 2,

where i, j ∈ {1, 2} and i 6= j .

In order to solve this game, we look first at the general binary-action decision problem

with flexible information acquisition.

A. The Decision Problem

Consider a decision maker who has to choose an action a ∈ {0, 1} and will receive a

payoff u (a, θ), where θ ∈ 2 and P are defined as above. Before deciding, the decision

maker can acquire information in a manner specified in Section II. According to Lemma

1, we can represent this player’s strategy as a function

m (θ) = Pr (taking action 1 | fundamental equals θ) .

Let

1u (θ) = u (1, θ)− u (0, θ)

be the payoff gain from action 1 over action 0. This payoff gain determines the incentive

to acquire information by shaping strategy m, as the following proposition demonstrates.

PROPOSITION 1: Let Pr (1u (θ) 6= 0) > 0 to exclude the trivial case of the decision

maker always being indifferent between the two actions. Let

m ∈ � ,
{
m ∈ L1 (2, P) : ∀θ ∈ 2, m (θ) ∈ [0, 1]

}
be an optimal strategy and

p1 =

∫
2

m (θ) d P (θ)

be the corresponding unconditional probability of taking action 1. Then,

i) the optimal strategy is unique;

ii) there are three possibilities for the optimal strategy:

a) p1 = 1 (i.e., m (θ) = 1 for all θ ∈ 2) if and only if

(7)

∫
2

exp
(
−µ−11u (θ)

)
d P (θ) ≤ 1 ;
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b) p1 = 0 (i.e., m (θ) = 0 for all θ ∈ 2) if and only if

(8)

∫
2

exp
(
µ−11u (θ)

)
d P (θ) ≤ 1 ;

c) p1 ∈ (0, 1) if and only if

(9)

∫
2

exp
(
µ−11u (θ)

)
d P (θ) > 1 and

∫
2

exp
(
−µ−11u (θ)

)
d P (θ) > 1 ;

in this case, the optimal strategy m is characterized by

(10) 1u (θ) = µ ·

[
ln

(
m (θ)

1− m (θ)

)
− ln

(
p1

1− p1

)]
for all θ ∈ 2.

PROOF: See Appendix A.

This proposition, restated here for completeness, is the same as Proposition 1 of (Ming

Yang 2012) and Lemma 2 of (Woodford 2008). To maintain focus on the game itself,

the proof and detailed discussion are relegated to Appendix A. The equilibrium analysis

in the rest of the paper is based on this proposition.

B. Characterizing the Equilibria

Given player j’s strategy m j , player i’s payoff gain from investing rather than not

investing is

1ui (θ) = θ − r ·
[
1− m j (θ)

]
.

As is shown in Proposition 1, this payoff gain function determines player i’s incentive

to acquire information. There are two motives for acquiring information: to reduce

uncertainty about the fundamental and to coordinate the investment decision with the

other player’s by coordinating information acquisition. Given this second motive, player

i should pay attention to the events to which player j pays attention. But if player

j never acquires information (e.g., always invests), this second motive for player i is

lacking. Moreover, if the fundamental is very likely to be positive ex ante, the first

motive does not hold either. Then player i may find it optimal always to invest and

never acquire information. This confirms player j’s no information-acquisition strategy

and so constitutes an equilibrium. Because such equilibria are trivial, we exclude them

by the following assumption.

Assumption:
∫
2

exp
(
−µ−1θ

)
d P (θ) > 1 and

∫
2

exp
(
µ−1θ

)
d P (θ) > eµ

−1r .9

9In Proposition 9 and 10 of Appendix B, we prove that there exists a pooling equilibrium "mi (θ) = m j (θ) = 1

almost everywhere" ("mi (θ) = m j (θ) = 0 almost everywhere") if and only if
∫
2 exp

(
−µ−1θ

)
d P (θ) > 1

(
∫
2 exp

(
µ−1θ

)
d P (θ) > eµ

−1r ). Hence, this assumption excludes all equilibria with no information acquisition.
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This assumption is analogous to the "limit dominance" assumption of the global games

approach.10 The basic intuition here is that common prior P should not be concentrated

within the interval [0, r ], insofar as if it is, the players are both confident of event θ ∈
[0, r ]. Once a player always invests (or does not invest), the other’s payoff gain is very

likely to be positive (negative) ex ante, eliminating the incentive to acquire information.

Note that if the common prior is N
(
t, σ 2

)
, this assumption is equivalent to

σ 2 > r · µ and t ∈
(
r − µ−1σ 2/2, µ−1σ 2/2

)
;

or if the common prior is a uniform distribution over interval [−A, r + A], then the

assumption holds when A is large enough. All the following results are derived under

this assumption, unless otherwise noted.

PROPOSITION 2: In equilibrium, player i’s strategy is characterized by

(11) θ − r ·
[
1− m j (θ)

]
= µ ·

[
ln

(
mi (θ)

1− mi (θ)

)
− ln

(
pI i

1− pI i

)]
for all θ ∈ 2,

where

(12) pI i =

∫
mi (θ) d P (θ) ∈ (0, 1)

is player i’s unconditional probability of investing and i, j ∈ {1, 2} , i 6= j .

PROOF: Note that

1ui (θ) = θ − r ·
[
1− m j (θ)

]
and ∫

exp
(
µ−11ui (θ)

)
d P (θ)

=

∫
exp

(
µ−1

(
θ − r ·

[
1− m j (θ)

]))
d P (θ)

≥

∫
exp

(
µ−1 (θ − r)

)
d P (θ)

> 1 ,

where the last inequality follows from the assumption
∫

exp
(
µ−1θ

)
d P (θ) > eµ

−1r .

10See the survey of global game models by (Stephen Morris and Hyun Song Shin 2001).



12 COORDINATION WITH FLEXIBLE INFORMATION ACQUISITION

Note further that ∫
exp

(
−µ−11ui (θ)

)
d P (θ)

=

∫
exp

(
−µ−1

(
θ − r ·

[
1− m j (θ)

]))
d P (θ)

≥

∫
exp

(
−µ−1θ

)
d P (θ)

> 1 ,

where the last inequality is simply the assumption. Therefore, (11) and (12) are direct

implications of Proposition 1 (ii) (c).

This result is a direct implication of Proposition 1. It states that a pair (m1,m2) ∈
�×� constitutes an equilibrium if and only if it satisfies (11) and (12). Given player j’s

strategy m j (θ), the left-hand side of (11) is player i’s marginal benefit from increasing

the conditional probability of "invest". Since µ > 0 is the marginal cost of acquiring an

extra bit of information and[
ln

(
mi (θ)

1− mi (θ)

)
− ln

(
pI i

1− pI i

)]
is the "derivative" of the amount of information with respect to mi (θ), the right-hand

side of (11) is player i’s marginal cost of increasing mi (θ). Hence (11) states that the

marginal cost must equal the marginal benefit. Also note that

ln

(
pI i

1− pI i

)
is player i’s average odds of investing (ratio of "invest" to "not invest"), while

ln

(
mi (θ)

1− mi (θ)

)
is the odds conditional on θ . Therefore (11) indicates that player j’s strategy m j shapes

player i’s marginal benefit

θ − r ·
[
1− m j (θ)

]
,

which in turn determines the deviation from player i’s average odds of investing.

Since the payoff matrix (Table 1) is symmetric and the players’ actions are strategic

complements, it is natural to expect symmetric equilibria.

PROPOSITION 3: All the equilibria in game G (r, µ) are symmetric, i.e., m1 (θ) =
m2 (θ) almost everywhere.

PROOF: See Appendix B.
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The strategic complementarity between the players’ actions creates the motive for co-

ordination in the acquisition of information. Given the private nature of their information

acquisition, coordination is possible only if they choose the same information structure

(i.e., the same m (·)). By this proposition, from now on we can use a single function m

to represent the equilibrium.

COROLLARY 1: (m1,m2) is an equilibrium of game G (r, µ) if and only if there exists

an m ∈ �, such that m1 (θ) = m2 (θ) = m (θ) and

(13) θ − r · [1− m (θ)] = µ ·

[
ln

(
m (θ)

1− m (θ)

)
− ln

(
pI

1− pI

)]
for all θ ∈ 2, where

pI =

∫
m (θ) · d P (θ) .

PROOF: This corollary follows directly from Proposition 3.

This corollary is an immediate implication of Propositions 2 and 3. In fact, equation

(13) summarizes all the previous derivations and is sufficient, as well as necessary, for all

the equilibria. The equilibrium analysis of the next two sections is conducted through

this equation.

It is easy to verify that the graph{
(θ,m) |θ − r · (1− m) = µ ·

[
ln

(
m

1− m

)
− ln

(
pI

1− pI

)]}
is central-symmetric in the θ ∼ m plane about the point (θ0, 1/2), where

(14) θ0 = r/2− µ · ln

(
pI

1− pI

)
.

Combining (13) and (14) gives

θ − θ0 = µ · ln

(
m (θ)

1− m (θ)

)
+ r ·

(
1

2
− m (θ)

)
.

Hence any solution to (13) has an expression m (θ − θ0) and can be indexed by θ0, i.e.,

(15) θ − θ0 = µ · ln

(
m (θ − θ0)

1− m (θ − θ0)

)
+ r ·

(
1

2
− m (θ − θ0)

)
.

In other words, any solution is a translation of function m (θ), which is implicitly defined

by

θ = µ · ln

(
m (θ)

1− m (θ)

)
+ r ·

(
1

2
− m (θ)

)
.

As a result, a solution to (13) is jointly determined by its position θ0 and its "shape"
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r̃ < 1 r̃ = 1

r̃ > 1 r̃ →∞

FIGURE 1. EVOLUTION OF THE SHAPE OF EQUILIBRIUM

m (θ). Note, however, that not every θ0 ∈ R is sufficient to make m (θ − θ0) a solution.

The position θ0 is endogenously determined in equilibrium.

We first analyze the "shape" of the equilibrium. The "shape" m (θ) is determined by

r̃ , r

4·µ , the ratio of strategic complementarity r to the marginal cost of information

acquisition µ. Figure 1 shows how m (θ) varies as r̃ increases.

What information is acquired in equilibrium? According to Lemma 1, we can recover

the equilibrium information structure from m (θ). Let Si = {0, 1} be the set of realiza-

tions for player i’s signal si . Player i invests if si = 1 and does not invest otherwise. This

information structure is characterized by conditional probability Pr (si = 1|θ) = m (θ).

Since the probability of investing is highly sensitive to θ where the slope

∣∣∣ dm(θ)
dθ

∣∣∣ is steep,
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dθ

∣∣∣ reflects player i’s attentiveness around θ11. Under this interpretation, Figure 1

reveals that players actively acquire information for intermediate values of the funda-

mental but are rationally inattentive to tail values. This coincides with our intuition.

When θ is too high (low), the players should invest (not invest) anyway. Hence the

information about θ at tail values is largely irrelevant to their payoffs. When θ takes

intermediate values, each player’s gain from investing depends crucially on the value of

θ and its implication concerning the other player’s action. Therefore, the information

about θ in the intermediate region is payoff-relevant and attracts most of their attention.

How does information acquisition affect coordination? First, the equilibrium strategy

curve becomes flatter as µ increases. Higher cost of information directly weakens the

players’ ability to acquire it. Hence players’ responses will display more idiosyncratic

errors. Moreover, expecting their counterparts to react in a noisier fashion, the players

now have less incentive to coordinate. Thus the equilibrium strategy becomes even less

decisive.

Second, multiple equilibria might emerge12 as r̃ = r

4·µ exceeds unity. As the lower-left

subgraph of Figure 1 shows, there exist θ1 < θ2 such that multiple values of m (θ) sat-

isfy (15) for all θ within [θ1, θ2]. Note that while strategic complementarity r measures

players’ motive for coordination, the cost of coordination is given byµ, the marginal cost

of information acquisition, as this is a prerequisite to coordinating investment decisions.

Hence, the condition r̃ = r

4·µ > 1 means that when coordination motive dominates co-

ordination cost, the players have multiple ways of coordinating information acquisition,

which leads to approximate common knowledge and thus multiplicity.

Third, the Monotonic Likelihood Ratio Property (MLRP), a frequent assumption in

applied models with incomplete information, could be violated by our players when

r̃ = r

4·µ > 1.13 When coordination motive exceeds coordination cost, a player has both

the incentive and the ability to coordinate with the other player’s non-MLRP strategy.

Consequently, our approach offers a condition for evaluating the fit of MLRP.

Finally, as the lower-right subgraph of Figure 1 shows, when the information cost goes

to zero this equilibrium approximates the switching strategy. This result coincides with

the equilibria of coordination games with complete information.

When r̃ = r

4·µ ≤ 1, there is a unique shape of m (θ) that can satisfy (15). But when r̃

exceeds unity there are infinitely many shapes that satisfy (15) when. Figure 2 illustrates

four benchmark shapes.

Define the set of possible equilibrium shapes as

M (r, µ) ,
{

m ∈ � : θ = µ · ln

(
m (θ)

1− m (θ)

)
+ r ·

(
1

2
− m (θ)

)}
.

11
∣∣∣ dm(θ)

dθ

∣∣∣ ,∞ when m (θ) is discontinuous at θ .

12We prove this multiplicity later.
13We say a player’s strategy satisfies MLRP if the conditional probability of investing increases in the fundamental;

that is, if the information structure is more likely to suggest investing when the fundamental is higher.
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FIGURE 2. BENCHMARK SHAPES OF EQUILIBRIA
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Note that

#M (r, µ) =

{
1 if r̃ = r

4·µ ≤ 1

∞ if r̃ = r

4·µ > 1
.

Given r and µ, an equilibrium m (θ − θ0) is determined by its shape m ∈ M (r, µ) and

by its position θ0. According to (14), the equilibrium condition for θ0 is

θ0 = r/2− µ · ln

( ∫
m (θ − θ0) · d P (θ)

1−
∫

m (θ − θ0) · d P (θ)

)
.

Hence, searching for an equilibrium with any given shape m ∈ M (r, µ) is equivalent to

seeking a fixed point θ0 in the following mapping:

(16) g (θ0,m) , r/2− µ · ln

( ∫
m (θ − θ0) · d P (θ)

1−
∫

m (θ − θ0) · d P (θ)

)
.

Since public information is summarized in common prior P , equation (16) also shows

that public information affects the equilibrium only by changing its position θ0, while

leaving its shape unaffected.

As r̃ = r

4·µ > 1 allows multiple shapes, a natural question, explored in Section IV, is

whether this leads to multiple equilibria.

IV. Private Information Acquisition: Rigidity versus Flexibility

This section sets out our main results. Multiple equilibria emerge when strategic

complementarity dominates information cost. We contrast this result to the result of an

extended global game model, showing why the roles of rigid and flexible information

acquisition differ so greatly. We go on to show how flexible information acquisition

allows more efficient coordination. Finally, we go beyond the entropic information cost

to examine the essence of flexibility and the key aspect that drives our results.

LEMMA 2: For any possible shape m ∈ M (r, µ), there exists θ0 ∈ R such that

m (θ − θ0) is an equilibrium.

PROOF: See Appendix C.

This lemma demonstrates the existence of the equilibrium and also provides a suffi-

cient condition for multiple equilibria.

PROPOSITION 4: If r̃ = r

4·µ > 1, then game G (r, µ) has infinitely many equilibria.

PROOF: As shown in Section III, #M (r, µ) = ∞ when r̃ = r

4·µ > 1. Hence, this

proposition is a direct implication of Lemma 2.

This result is consistent with our previous intuition. Since strategic complementarity

exceeds information cost, multiple modes of information acquisition are sustainable in

equilibrium. Flexibility plus relatively low information cost enables players to achieve

approximate common knowledge of payoffs, which leads to multiplicity.
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In addition to the condition for multiplicity, we also enrich our results in Subsection

VI.A from the standpoint of supermodularity. This property enables us to calculate the

extreme equilibria and show the emergence of multiplicity as the cost of information

varies.

We can now compare flexible and rigid information acquisition.

A. An Extended Global Game Model

To illustrate the indispensable mechanism of flexibility, it is instructive to contrast the

role of information acquisition in our benchmark model from that in an extended global

game model, where the players can purchase more accurate signals but cannot change

any other aspect of the information structure. Specifically, let two players play the game

with payoff matrix (Table 1). The common prior about fundamental θ is P . Player

i ∈ {1, 2} takes action ai ∈ {0, 1} after observing the private signal xi = θ + β
−1/2
i · εi ,

where εi is distributed according to a density function f with full support, Eεi = 0 and

V ar (εi ) <∞. Here β i represents the precision of player i’s private information. The

cost of acquiring information of precision β is c · h (β), where c > 0 is an exogenous

parameter controlling the difficulty of information acquisition and h is continuous and

increasing with h (0) = 0 and limβ→∞ h (β) = ∞. The information structure is rigid in

that the additive nature of the signal generating process is not adjustable.

Each player’s strategy involves simultaneously choosing a precision β i ∈ [0,+∞)
and an action rule si : R→ [0, 1], which means that player i chooses 1 with probability

si (xi ) upon observing xi . We write G (c) for the game with cost parameter c.

PROPOSITION 5: Let
(
β1 (c) , β2 (c)

)
be the precision pair chosen in an equilibrium

of G (c). Then for any β > 0, there exists c > 0, such that for all c < c, β i (c) > β,

i ∈ {1, 2}.

PROOF: See Appendix C.

This proposition indicates that players would like to acquire information of arbitrarily

great precision if the cost is arbitrarily low. A well known result in the global game

literature is that uniqueness is guaranteed if private information is sufficiently accurate

relative to public information (e.g., Morris and Shin (2004)). Proposition 5 allows us to

retrieve the standard global game result in this extended model with information acqui-

sition.

COROLLARY 2: For any δ > 0, there exists c > 0, such that for all c < c, if strategy

s : R→{0, 1} survives the iterated deletion of strictly dominated strategies in game

G (c), then s (x) = 0 for all x ≤ r/2− δ and s (x) = 1 for all x ≥ r/2+ δ.

PROOF: The proof is a direct application of Proposition 2.2 in (Morris and Shin 2001)

together with Proposition 5. By Proposition 2.2 in (Morris and Shin 2001), ∀δ > 0,

∃β > 0, such that the above statement holds for all β > β. Then Proposition 5 shows

the existence of c > 0 such that the players acquire information of precision at least β.
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According to Corollary 2, when to cost goes to zero all equilibria become approxi-

mately the unique switching strategy

s (x) =

{
0 if x ≤ r/2
1 if x > r/2

This is consistent with the standard global game arguments. That is, lowering informa-

tional cost induces more accurate private signals, which undermines common knowledge

and so facilitates the uniqueness. But by Proposition 4, our model with flexible infor-

mation acquisition generates the opposite prediction: lowering the cost of information

enhances approximate common knowledge and facilitates multiplicity.

How should we understand this radical discrepancy? Strategic complementarity of

actions produces the motive for coordination in acquiring information. This motive

evolves into actual coordination in our benchmark model with flexibility, especially when

the cost of information is lower. Hence, we recreate approximate common knowledge

of the payoffs, resulting in multiplicity.

In the global games approach, where private noise is additive to the fundamental, the

players are constrained to pay equal attention to all possible values of θ , in the sense that

the distribution of the observational error β−1/2 · ε is invariant with respect to θ . As a

result, they coordinate only in choosing overall precision, while the potential motive for

coordinating attention allocation for different levels of θ cannot materialize. This mech-

anism of rigidity contrasts diametrically with the mechanism at work when information

acquisition is flexible.

B. Welfare Implications: Rigidity versus Flexibility

Rigid and flexible information acquisition also entail different welfare implications.

In the extended global game model, the limit unique equilibrium (when c → 0 and

thus β → ∞) is inefficient. Both players would have had higher payoffs if they had

committed to the most efficient strategy

s̃ (x) =

{
0 if x ≤ 0

1 if x > 0
.

However, this strategy is not sustainable in equilibrium. A player with a signal just

above zero will rationally assign a large probability to the other player’s signal being

negative, and thus be reluctant to invest for fear of miscoordination. This problem

could be overcome if the players could commit to ignoring the exact values of their

signals and considering only the signs. For example, if there were a third party who

observed the signals and told the players (privately) only the signs of their own signals,

each player would find it optimal to invest if and only if the signal were positive. That is,

players achieve efficient coordination by discarding information through a commitment

device. In a trivial sense, insofar as they map continuous signals to binary actions players

always discard some information. But the point is that while, some information is not

reflected in players’ actions, it is still used in making inferences about others’ beliefs
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and consequent actions. This is the way in which information matters, which sets it

apart from all other economic resources. Therefore, "discarding information" means

committing to forget it, i.e., refraining from making inferences based on it.

By contrast, in our benchmark model with flexible information acquisition, ∀̂θ ∈
[0, r ],

m (θ) =

{
0 if θ ≤ θ̂
1 if θ > θ̂

is an equilibrium when informational cost µ vanishes. Hence the most efficient strategy

with cutoff θ̂ = 0 can be supported in equilibrium. Here, flexible and costly information

acquisition helps players to acquire only information that is valuable for efficient coordi-

nation and to ignore information that is detrimental to it even if its cost goes to zero; they

could have a certain welfare gain over the case of rigid information acquisition. Unlike

the extended global game model, where players can only discard harmful information by

an explicit commitment device, our model with flexibility helps them choose the quantity

and the qualitative nature of their information, whereby they act as if they had committed

to discarding the information harmful to coordination. In other words, we can interpret

this as an implicit commitment device inhabiting the flexibility of information acquisi-

tion. It is worth underscoring that this contrast was not discernible in one-person decision

problems with information acquisition, and not only because by definition they do not

entail coordination but also because where cost is not a consideration more information

is always more desirable, no matter whether acquisition is flexible or rigid.

C. Flexibility: General Information Cost

This subsection goes beyond entropic information cost to explore the essence of flex-

ibility and the essential aspect driving our results. Here it needs to be underscored

that different forms of information acquisition could be exclusively captured by different

schemes of information cost. For example, if the information structure is exogenously

endowed, it could be posited that only this endowed structure can be acquired at no cost

while all others incur an infinite cost. If information acquisition is endogenous but rigid,

as in the extended global game model, only information structures following the form

of x = θ + β−1/2 · ε are associated with finite cost. In our benchmark model with ra-

tional inattention, any information structure is associated with a cost proportional to the

consequent reduction of entropy. All in all, analysis of information cost schemes covers

all possible considerations concerning forms of information acquisition. On this basis,

we go beyond rational inattention to establish a condition concerning information cost

schemes that is sufficient to deliver the same qualitative results as our benchmark model.

DEFINITION 2: Information acquisition is flexible if information cost strictly respects

Blackwell’s ordering and satisfies Lipschitz continuity over �.

(Blackwell 1953) introduces a partial ordering to reflect the informativeness of infor-

mation structures. Structure A is less informative than structure B if A can be obtained
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from B by the addition of garbling noise14. Here an information cost respects Black-

well’s ordering if it assigns lower cost to less informative structures. Under such an

information cost scheme, both players find it optimal to consider only binary informa-

tion structures, precluding all structures with more than two signal realizations, which

therefore contain redundant and even harmful information. As a result, we only need to

specify an information cost over �, the set of binary information structures.

An information cost c : � → R+ satisfies Lipschitz continuity if there exists K > 0

such that

∀m, m̃ ∈ �, |c (m)− c (m̃)| ≤ K ·

∫
|m (θ)− m̃ (θ)| d P (θ) ,

where P is the common prior. The Lipschitz continuity prevents the information cost

from varying wildly and hence guarantees the availability of all potentially valuable in-

formation structures.

Consider a coordination game with payoffs given by Table 1 and information cost µ ·c,

where µ > 0 and c : �→ R+.

PROPOSITION 6: If information acquisition is flexible, then for any strict Nash equi-

librium of the game with complete information (except the two extreme equilibria m (θ) =
1{θ>0} and m (θ) = 1{θ>r}), there exists µ > 0 such that for all µ ∈ [0, µ] , this strict

Nash equilibrium is still a Nash equilibrium of the game with information cost µ · c.

PROOF: See Appendix D.

This proposition is analogous to Proposition 4 and bears the same interpretation. It

supports our thesis that what drives our result is flexibility, not the entropic functional

form. Our benchmark model incorporates entropic information cost not only for its

meaningful interpretation in information theory but also because it allows us to obtain a

clear condition r > 4µ, which intuitively inspires our thinking on the current problem.

The standard global game model and the extended global game model discussed above

are two typical setups where information acquisition is not flexible: they violate both of

the conditions in our definition of flexibility.

Moreover, it should be observed that it is the second rather than the first condition

in our definition of flexibility that is essential. Consider information costs respecting

Blackwell’s ordering, so that we can focus on�, the set of binary information structures.

In this case, almost any strategy m∗ ∈ � can be supported in equilibrium by a suitable

choice of an information cost that violates the second condition. Specifically, choose

a subset S ⊂ � such that m∗ ∈ S is the unique equilibrium of our coordination game

when players can choose freely from S at no cost but have no choice outside S. Define

an information cost such that c (m) = ∞ for all m ∈ �\S and c (m∗) ≤ c (m) <∞ for

all m ⊂ S. Then for all µ ∈ R+, m∗ is the unique equilibrium of the coordination game

with information cost µ · c (m).15 The point is that restricting the players to subset S

14See (Blackwell 1953) for detailed discussion.
15A trivial construction is to let S =

{
m∗
}
, then we have a trivial game with m∗ as the unique equilibrium.
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physically precludes some information that is potentially valuable. Therefore, the failure

of the second condition leads to uniqueness.

V. The Impact of Public Information

In our benchmark model, players acquire private information at a cost. We assume

that public information is directly observable and cost-free. That is, public information

is common knowledge. It affects players’ decisions by changing the common prior about

the fundamental. Here we conduct a comparative static analysis with respect to common

prior P to study the differing impact of public information. Broadly, if the common prior

is concentrated in the intermediate region [0, r ], both players are confident that the event

{θ ∈ [0, r ]} will happen with high probability. As a result, their coordination motive

dominates concern over fluctuations in the fundamental, and multiple equilibria emerge

regardless of the information cost.

PROPOSITION 7: For any r > 0 and µ > 0, game G (r, µ) has multiple equilibria if

Ee−µ
−1θ ≤ 1 and Eeµ

−1(θ−r) ≤ 1, where expectations are formed according to common

prior P.

PROOF: See Appendix D.

Under the condition of this proposition, at least "always invest" (i.e., m (θ) = 1 for

all θ ∈ 2) and "never invest" (i.e., m (θ) = 0 for all θ ∈ 2) are both equilibria16.

The players find it optimal not to acquire information and to perfectly coordinate their

investment decisions. We can gain some insight into this situation from a Gaussian

common prior N
(
t, σ 2

)
. In this case, it is easy to verify that condition

Ee−µ
−1θ ≤ 1 and Eeµ

−1(θ−r) ≤ 1

is equivalent to

σ 2 ≤ r · µ and t ∈
[
µ−1σ 2/2, r − µ−1σ 2/2

]
.

That is, the common prior should have low dispersion and its probability peak should be

close to r/2. Proposition 7 is strong in the sense that the criterion

Ee−µ
−1θ ≤ 1 and Eeµ

−1(θ−r) ≤ 1

is uniform for all common priors. For comparability with the standard global game

results, let us establish the following corollary:

COROLLARY 3: Let p (θ) be a probability density function. Then, for any r > 0,

µ > 0 and y ∈ (0, r), there exists β > 0 such that for all β > β, game G (r, µ) with

common prior β1/2 p
(
β1/2 (θ − y)

)
(density function) has multiple equilibria.

16We prove this result in Proposition 9 and 10 in Appendix B.



COORDINATION WITH FLEXIBLE INFORMATION ACQUISITION 23

PROOF: First note that

lim
β→∞

β1/2 p
(
β1/2 (θ − y)

)
= δ (θ − y) ,

where δ (·) is the Dirac delta function. Hence

lim
β→∞

∫
2

e−µ
−1θ · β1/2 p

(
β1/2 (θ − y)

)
dθ

=

∫
2

e−µ
−1θ · δ (θ − y) dθ

= e−µ
−1 y

< 1 ,

where the inequality follows from the condition y ∈ (0, r). Since∫
2

e−µ
−1θ · β1/2 p

(
β1/2 (θ − y)

)
dθ

is continuous in β, there exists β1 > 0 such that for all β > β1,∫
2

e−µ
−1θ · β1/2 p

(
β1/2 (θ − y)

)
dθ < 1 .

By a symmetric argument, we can find a β2 > 0 such that for all β > β2,∫
2

eµ
−1(θ−r) · β1/2 p

(
β1/2 (θ − y)

)
dθ < 1 .

Let β = max
(
β1, β2

)
; then according to Proposition 7, the game has multiple equilibria

for all β > β.

Here β represents the precision of public information. Suppose players have a uniform

common prior before any public information. They then observe a public signal

y = θ + β−1/2 · ε ,

where ε is distributed according to a density function p. This public signal results

in an updated common prior17 with density function β1/2 p
(
β1/2 (θ − y)

)
. Therefore,

Corollary 3 means that providing highly precise public information leads to multiple

equilibria. This is consistent with the well known result in the global game literature.

Another well known result is that uniqueness is guaranteed if private signals are suf-

ficiently accurate relative to public signals (e.g., (Morris and Shin 2004)). This means

that as regards uniqueness, the effects of greater precision of public signals can be offset

17We call it a prior since it is formed before players’ private information acquisition.



24 COORDINATION WITH FLEXIBLE INFORMATION ACQUISITION

by increasing the precision of private signals. In the framework of our extended global

game model, Corollary 2 implies that the effect of more precise public signals can be

offset by lowering the cost of acquiring private information. In our benchmark model

with flexible information acquisition, however, Proposition 4 states that there are always

infinitely many equilibria when r̃ = r

4·µ > 1, regardless of the precision of public infor-

mation. That is, the effects of public information and private information acquisition are

disentangled, because when information cost is low, players have sufficient freedom to

coordinate their private information acquisition. This freedom is totally divorced from

public information, implying that the entanglements of global game models also depend

on the rigidity they implicitly impose on the information structure.

VI. Discussion

First we enrich our results by utilizing the supermodularity of the game. Then we

discuss a related game in which players have the capacity to acquire a fixed amount of

information at no cost. Finally, we address two extensions of the benchmark model:

i) more than two players, n ≥ 2; and ii) discontinuous payoff gain with respect to the

fundamental and to the proportion of players taking a specific action.

A. Supermodularity and Extreme Equilibria

The strategy space � endowed with the natural pointwise order "≥" becomes a com-

plete lattice. Specifically, for any m1,m2 ∈ �, the order is defined as

m2 ≥ m1 if and only if m2 (θ) ≥ m1 (θ) for all θ .

Note that the mutual information I (·) is submodular over strategy space �, thus our

game is supermodular. The set of equilibria of a supermodular game forms a complete

lattice, the supremum and infimum of which correspond to game’s greatest and smallest

Nash equilibria. See (Donald M. Topkis 1979), (Paul Milgrom and John Roberts 1990)

and (Xavier Vives 1990) for more details about supermodular games. Here, we utilize

this property to calculate the extreme equilibria of our game. Figure 3 shows how

multiple equilibria emerge as the marginal cost of information µ acquisition shrinks.

These graphs show numerical solutions to the game with strategic complementarity

r = 1 and uniform common prior over the interval [−0.6, 1.6]. We examine how the

equilibria evolve as the value of the marginal cost of information acquisition µ varies.

In the two graphs of the first row, r is greater than 4µ, so we have multiple shapes for the

equilibria. It is clear that there are multiple equilibria, because the greatest and smallest

equilibria differ. Whenµ increases from 0.1 to 0.2, the two extreme equilibria get closer,

suggesting a tendency to uniqueness. In the southwest graph, r equals 4µ, so we have

a unique shape. We still have multiple equilibria (same shape, different positions that

satisfy (16)), although it is hard to distinguish them in the graph. In the southeast graph,

r is smaller than 4µ and we have a unique equilibrium.
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µ = 0.1 µ = 0.2

µ = 0.25 µ = 0.3

FIGURE 3. EXTREME EQUILIBRIA
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B. Constrained Information Acquisition Game

In the conventional rational inattention models, decision makers are capacity con-

strained. That is, they can acquire information at no cost but only up to a given amount.

This case is discussed here. Let κ > 0 denote the maximum amount of information

players can acquire. By an argument similar to that of Lemma 1, player i’s equilibrium

strategy is characterized by a function mi ∈ L1 (2, P), and an equilibrium is a pair

(m1,m2) that solves the the following problem:

mi ∈ arg max
m̃i∈L1(2,P)

Ui

(
m̃i ,m j

)
s.t. I (m̃i ) ≤ κ,

where i, j ∈ {1, 2}, i 6= j .

Since payoffs are symmetric and players have the same information acquisition ca-

pacity, all equilibria are symmetric.18 When solving for the equilibrium, the capacity

constraint multiplier plays a role analogous to that of µ, the marginal cost of information

acquisition in our benchmark model, but with two differences. First, the multiplier is

endogenous, its value varying in different equilibria. This complicates comparative sta-

tic analysis in this setup. Second, switching strategies could be supported in equilibrium

when κ is large enough (e.g., κ > ln 2 nats). Since a binary decision problem requires

at most ln 2 nats of information, for large κ the capacity constraint does not bind. This

case corresponds to our benchmark model with zero marginal information cost and thus

has multiple equilibria.

C. Multiple Players

So far we have considered a 2-player game, but the arguments also hold for games

with more players. Suppose there are n ≥ 2 players. Let N , {1, 2, · · ·, n} denote

the set of players. All the other assumptions remain the same, except that player i ∈ N

enjoys a payoff

θ − r ·

(
1−

n′

n − 1

)
from choosing "invest" if the fundamental is θ and n′ other players also choose "invest".

Obviously, Lemma 1 is still applicable, so player i’s strategy is again characterized by

mi (θ) , Pr (player i invest | fundamental = θ) .

Given fundamental θ , player i’s expected payoff from investing is

(17) θ − r ·

(
1−

∑
j 6=i mi (θ)

n − 1

)
.

18The argument is analogous to that of Proposition 3 and is omitted here.
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An equilibrium of this n-player flexible information acquisition game is an n-tuple

(m1, · · ·mn) that solves the the following problem:

mi ∈ arg max
m̃i∈L1(2,P)

Vi (m̃i ,m−i ) = Ui (m̃i ,m−i )− µ · I (m̃i )

s.t. m̃i (θ) ∈ [0, 1] for all θ ∈ 2 .

As in Proposition 3, we can show that all equilibria are symmetric. Hence any equi-

librium can be represented by a single function m, and all the remaining arguments in

the benchmark model still work.

D. Discontinuous Payoff Gain Function

In our model, the payoff gain from investing over not investing is continuous with

respect both to the fundamental and to the opponent’s probability of investing. In many

important applications of global game theory, however, the payoff gain is discontinuous

(e.g., (Morris and Shin 1998)). This subsection presents an example to illustrate this

case.

Following the notation in (Morris and Shin 2001), let π (m, θ) denote the payoff gain

for choosing "invest" when the fundamental is θ and the opponent chooses "invest" with

probability m.19 When π (m, θ) is discontinuous with respect to m and θ , ∂π
∂m
= ∞ for

some (m, θ), which implies infinite strategic complementarity. The insight developed in

our benchmark model suggests multiple equilibria no matter how large µ is, as is shown

in the following example. Our basic scenario is the currency attack model of (Morris

and Shin 1998).

There is a continuum of players in a flexible information acquisition game. Their

payoff gain from choosing "attack" is defined as

π (m, θ) =

{
−1 if m < θ
1 if m ≥ θ

.

This payoff gain can be interpreted as follows. When the currency (the fundamental)

is weak and too many speculators are attacking, the government has to abandon the

currency peg and each attacker gains one dollar. If the currency is strong, the speculative

attack fails and each attacker loses a dollar. In the case of non-attack, the speculator

receives zero.

For simplicity, we assume a uniform prior over [−A, 1+ A], where A ≥ 0. As before,

µ > 0 is the marginal cost of information acquisition. We focus on the symmetric

equilibria, which can be characterized by a mapping m : [−A, 1+ A]→ [0, 1]. Since

we are interested in equilibria with information acquisition, we assume

(18)
A

1+ 2A
eµ
−1

+
1+ A

1+ 2A
e−µ

−1

> 1 .

19For example, in our benchmark model π (m, θ) = θ − r · (1− m), and ∂π
∂m
= r represents the strategic complemen-

tarity.
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Then by Proposition 1, an equilibrium is characterized by

(19) ∀θ ∈ [−A, 1+ A] , π (m, θ) = µ ·

[
ln

(
m (θ)

1− m (θ)

)
− ln

(
pI

1− pI

)]
,

where pI =
1

2·A+1
·
∫ 1+A

−A
m (θ) · dθ .

Since π (m, θ) can take only two values, then according to (19) the same applies to

m (θ). Hence the equilibrium strategy can be represented by two numbers m,m ∈ [0, 1].

Let SI , {θ ∈ [−A, 1+ A] : m (θ) = m} and SN ,
{
θ ∈ [−A, 1+ A] : m (θ) = m

}
denote the region of "attack" with "high" and "low" probability, respectively. By defini-

tion, we have SI ⊂ [−A,m] and SN ⊂ (m, 1+ A]. A symmetric equilibrium is therefore

characterized by m, m, SI ⊂ [−A,m] and SN ⊂ (m, 1+ A] such that

(20) 1 = µ ·

[
ln

(
m

1− m

)
− ln

(
pI

1− pI

)]
,

(21) −1 = µ ·

[
ln

(
m

1− m

)
− ln

(
pI

1− pI

)]
,

and

(22) pI =
1

2 · A + 1
·
[
Pr (SI ) · m + Pr (SN ) · m

]
.

PROPOSITION 8: This game with discontinuous payoff gain has infinitely many equi-

libria for all µ > 0.

PROOF: See Appendix D.

This proposition confirms the basic insight of our benchmark model. Discontinuous

payoff gain generates infinite strategic complementarity, and as a consequence the coor-

dination motive always dominates information cost, so that an infinite number of ways

of coordinating information acquisition can be supported in equilibrium.
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APPENDIX A

Proof of Lemma 1.

PROOF: Suppose ((Si , qi ) , σ i ) is player i’s equilibrium strategy. Construct a new strat-

egy
((

S̃i , q̃i

)
, σ̃ i

)
with S̃i =

{
si,I , si,N

}
such that

∀θ ∈ 2,

q̃i

(
si,I |θ

)
=

∫
Si,I∪Si,ind

qi (si |θ) dsi ,

q̃i

(
si,N |θ

)
=

∫
Si,N

qi (si |θ) dsi ,

and

σ̃ i

(
si,I

)
= 1,

σ̃ i

(
si,N

)
= 0.

It is straightforward that

Ui

(
((Si , qi ) , σ i ) ,

((
S j , q j

)
, σ j

))
= Ui

(((
S̃i , q̃i

)
, σ̃ i

)
,
((

S j , q j

)
, σ j

))
.

However, if #(Si ) > 2,
(
S̃i , q̃i

)
is a strict garbling of (Si , qi ) in the sense of Blackwell’s

ordering and thus incurs strictly less information cost since mutual information strictly

respects Blackwell’s ordering. Then

vi

(
((Si , qi ) , σ i ) ,

((
S j , q j

)
, σ j

))
− vi

(((
S̃i , q̃i

)
, σ̃ i

)
,
((

S j , q j

)
, σ j

))
= Ui

(
((Si , qi ) , σ i ) ,

((
S j , q j

)
, σ j

))
− µ · I (qi )

−Ui

(((
S̃i , q̃i

)
, σ̃ i

)
,
((

S j , q j

)
, σ j

))
+ µ · I (̃qi )

= µ ·
[
I (̃qi )− I (qi )

]
< 0,

i.e., ((Si , qi ) , σ i ) is suboptimal and cannot be an equilibrium strategy.

Proof of Proposition 1.

PROOF: Suppose m is an optimal strategy. Let ε be any feasible perturbation function.

The payoff from the perturbed strategy m + α · ε is

V ∗ (m + α · ε)

= E [(m (θ)+ α · ε (θ)) ·1u (θ)]

−µ ·
[
Eg (m (θ)+ α · ε (θ))− g (E [m (θ)+ α · ε (θ)])

]
,
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where the expectation operator E(·) is with respect to θ under common prior P . α ∈ R,

and ε is feasible with respect to m if ∃α > 0, s.t. ∀θ ∈ 2, m (θ) + α · ε (θ) ∈ [0, 1] .

Then the first order variation is

dV ∗ (m + α · ε)

dα

∣∣∣∣
α=0

= E
(
ε (θ) ·

[
1u (θ)− µ ·

(
g′ (m (θ))− g′ (p1)

)])
.

Note that

1u (θ)− µ ·
(
g′ (m (θ))− g′ (p1)

)
is the Fréchet derivative of V ∗ (·) at m. Hence the tangent hyperplane at m can be

expressed as{
(m̃, v) ∈ M × R : v − V ∗ (m) = E

([
1u (θ)− µg′ (m (θ))+ µg′

(∫
2

m (θ) d P (θ)

)]
(m̃ (θ)− m (θ))

)}
.

An important observation: since V ∗ (·) is a concave functional on M , V ∗ is upper

bounded by any hyperplane tangent at any m ∈ M , i.e., ∀m, m̃ ∈ M ,

V ∗ (m̃)− V ∗ (m)

≤ E
([
1u (θ)− µ · g′ (m (θ))+ µ · g′

(∫
2

m (θ) d P (θ)

)]
(m̃ (θ)− m (θ))

)
.

This inequality is strict when

m ∈ Mo , M\ {m ∈ M : m (θ) is a constant a.s.}

and Pr (m̃ (θ) 6= m (θ)) > 0, since V ∗ (·) is strictly concave on Mo. This observation is

helpful later in our proof.

The optimality of m requires dV ∗(m+α·ε)
dα

∣∣∣
α=0
≤ 0 for all feasible perturbation ε. Hence

we must have

(A1) 1u (θ)− µ ·
(
g′ (m (θ))− g′ (p1)

) ≥ 0 if m (θ) = 1

= 0 if m (θ) ∈ (0, 1)
≤ 0 if m (θ) = 0

.

Note that Pr (m (θ) = 1) > 0 implies Pr (m (θ) = 1) = 1. Otherwise,

p1 = Em (θ) < 1

implies

1u (θ)− µ ·
(
g′ (m (θ))− g′ (p1)

)
= −∞

for all θ in set

B = {θ ∈ 2 : m (θ) = 1} .
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Thus ε (θ) = −1B is a feasible perturbation and

dV ∗ (m + α · ε)

dα

∣∣∣∣
α=0

=

∫
B

(−∞) · (−1) d P (θ)

= +∞ ,

which contradicts the optimality of m. Hence we know that Pr (m (θ) = 1) > 0 if and

only if Pr (m (θ) = 1) = 1. The same argument suggests that Pr (m (θ) = 0) > 0 if and

only if Pr (m (θ) = 0) = 1. Therefore, the optimal strategy m must be one of the three

scenarios: a) p1 = 1, i.e., m (θ) = 1 a.s.; b) p1 = 0, i.e., m (θ) = 0 a.s.; c) p1 ∈ (0, 1)
and m (θ) ∈ (0, 1) a.s..

We first search for the sufficient condition for scenario c). According to (A1), m (θ) ∈
(0, 1) a.s. implies

(A2) 1u (θ)− µ ·
(
g′ (m (θ))− g′ (p1)

)
= 0 a.s..

By definition,

g′ (x) = ln
x

1− x
,

thus (A2) implies

m (θ) =
p1

p1 + (1− p1) · exp
(
−µ−11u (θ)

) .

Let

(A3) M1 =

{
m (θ, p) =

p

p + (1− p) · exp
(
−µ−11u (θ)

) : p ∈ [0, 1]

}

and

J (p) = Em (θ, p) ,

then there exists p1 ∈ [0, 1] such that m (·, p1) ∈ M1 is an optimal strategy. Note that

J (p1) = p1 is a necessary condition for the optimality of m (·, p1).

Since m (·, p1) ∈ M1 ⊂ M , the original problem is reduced to

max
p∈[0,1]

V ∗ (m (·, p)) = E
[
1u (θ) · m (θ, p)

]
− c (m (·, p)) .
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The first order derivative with respect to p is

dV ∗ (m (·, p))

dp

= E
([
1u (θ)− µ · g′ (m (θ, p))+ µ · g′ (J (p))

]
·
∂m (θ, p)

∂p

)
.

By definition,

1u (θ)− µ · g′ (m (θ, p)) = −µ · g′ (p) ,

thus
dV ∗ (m (·, p))

dp
= µ ·

[
g′ (J (p))− g′ (p)

]
· E
∂m (θ, p)

∂p
.

Since
∂m (θ, p)

∂p
> 0

for all θ ∈ 2,
dV ∗ (m (·, p))

dp
≥ 0

if and only if

g′ (J (p))− g′ (p) ≥ 0 .

Since g′ is strictly increasing, we have

dV ∗ (m (·, p))

dp
≥ 0

if and only if

J (p) ≥ p .

In order to be a global maximum, m (·, p1) must first be a local maximum within M1.

This requires

(A4) J (p1) = p1 .

But (A4) is not sufficient. The sufficient condition for m (·, p1) to be a local maximum

within M1 is

∃ neighborhood (p1 − β, p1 + β) ,

s.t. J (p) ≥ p for all p ∈ (p1 − β, p1]

and J (p) ≤ p for all p ∈ [p1, p1 + β) .

Note that

J (0) = 0, J (1) = 1 ,
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d J

dp

∣∣∣∣
p=0

= E exp
(
µ−11u (θ)

)
and

d J

dp

∣∣∣∣
p=1

= E exp
(
−µ−11u (θ)

)
.

We proceed by discussing four possible cases.

Case i):

E exp
(
µ−11u (θ)

)
> 1

and

E exp
(
−µ−11u (θ)

)
> 1 .

In this case, J (p) > p for p close enough to 0 and J (p) < p for p close enough to

1. Since J (p) is continuous, the set {p ∈ (0, 1) : J (p) = p} is non-empty. For any

p1 ∈ {p ∈ (0, 1) : J (p) = p}, the Fréchet derivative at m (·, p1) is

1u (θ)− µ · g′ (m (θ, p1))+ µ · g
′ (J (p1)) = 0

and thus m (·, p1) is a critical point of functional V ∗ (·). Since m (·, p1) ∈ Mo, the

observation mentioned above implies

V ∗ (m̃)− V ∗ (m (·, p1)) < 0

for all m̃ ∈ M such that Pr (m̃ (θ) 6= m (θ, p1)) > 0. Hence, V ∗ (m (·, p1)) is strictly

higher than the values achieved at any other m̃ ∈ M , i.e.,

{p ∈ (0, 1) : J (p) = p} = {p1}

and m (·, p1) is the unique global maximum. This actually proves (9).

Case ii):

(A5) E exp
(
µ−11u (θ)

)
> 1

and

(A6) E exp
(
−µ−11u (θ)

)
≤ 1 .

Note that this case can be summarized by (A6) alone, since (A5) is a direct implication

of (A6) according to Jensen’s inequality.

First, Inequality (A5) implies J (p) > p for p close enough to 0.

Second, we show that J (p) > p for p close enough to 1. This is obvious if Inequality

(A6) holds strictly. Otherwise,

(A7) E exp
(
−µ−11u (θ)

)
= 1 ,
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which implies

E exp
(
−2µ−11u (θ)

)
>
[
E exp

(
−µ−11u (θ)

)]2
= 1

due to Jensen’s inequality and the assumption that1u (θ) is not constant. Thus we have

(A8)
d2 J

dp2

∣∣∣∣
p=1

= −2 ·
[
E exp

(
−µ−11u (θ)

)
− E exp

(
−2µ−11u (θ)

)]
> 0 .

Together with (A7), (A8) implies J (p) > p for p close enough to 1.

Third, we claim that J (p) > p for all p ∈ (0, 1). Suppose this is not true and let

p1 = sup {p ∈ (0, 1) : J (p) ≤ p} .

Since J (p) > p for p close enough to 0 and 1, p1 ∈ (0, 1) and thus m (·, p1) ∈ Mo.

On the one hand, the continuity of J (p) implies J (p1) = p1. Hence m (·, p1) is a

critical point of functional V ∗ (·). By the same argument as in Case i), we know that

m (·, p1) is the unique global maximum. On the other hand, by the construction of p1,

J (p) > p for all p ∈ (p1, 1). Then V ∗ (m (·, p)) > V ∗ (m (·, p1)) for all p ∈ (p1, 1)
since V ∗ (m (·, p)) is strictly increasing in p when J (p)− p > 0. This contradicts the

unique optimality of m (·, p1). Therefore, J (p) > p for all p ∈ (0, 1) and the optimal

strategy cannot be an interior point of M (i.e., it cannot be the case p1 ∈ (0, 1).) Then

according to our previous discussion, only scenarios a) that p1 = 1 and scenario b) that

p1 = 0 are possible. Since J (p) > p for all p ∈ (0, 1), we know that

V ∗ (m (·, 1)) > V ∗ (m (·, 0)) .

Hence, p1 = 1, i.e., m (θ) = 1 a.s. is the unique optimal strategy. This actually proves

(7).

case iii):

(A9) E exp
(
µ−11u (θ)

)
≤ 1

and

(A10) E exp
(
−µ−11u (θ)

)
> 1 .

Note that this case can be summarized by (A9) alone, since (A10) is a direct implication

of (A9) according to Jensen’s inequality. In this case, by the same argument as in case

ii), m (θ) = 0 a.s. is the unique optimal strategy. This actually proves (8).

case iv):

(A11) E exp
(
µ−11u (θ)

)
≤ 1
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and

(A12) E exp
(
−µ−11u (θ)

)
≤ 1 .

Case iv) cannot exists since Jensen’s inequality implies

E exp
(
−µ−11u (θ)

)
≥
[
E exp

(
µ−11u (θ)

)
d P (θ)

]−1
,

which suggests (A11) and (A12) hold with equality. This is true only if 1u (θ) = 0

almost surely, a trivial case excluded by our assumption.

Since cases i), ii) and iii) exhaust all possibilities, for each case, the corresponding

conditions are not only sufficient but also necessary.

The uniqueness of the optimal strategy is proved in each case.

Remarks to Proposition 1.

These results are intuitive. Since the information cost is convex, the decision maker’s

objective is concave, which gives rise to the uniqueness of the optimal strategy.

In case a), condition (7) holds if action 1 is very likely the ex ante best action and the

cost of acquiring information is sufficiently high. Hence the decision maker just takes

action 1 without acquiring any information. Similarly, case b) implies that if action 0 is

ex ante very likely to dominate action 1 and the information cost is sufficiently high, the

decision maker always takes action 0. In this two cases, marginal benefit of acquiring

information is less than the marginal cost. Hence the decision maker chooses not to

acquire any information.

In case c), as captured by the two inequalities, neither action 1 nor action 0 is ex ante

dominant, thus there is information acquisition and m (·) is no longer a constant.

In order to get some intuition, consider an extreme case where action 1 is dominant,

i.e., the payoff gain 1u (θ) > 0 for all θ ∈ 2. It is obvious that the decision maker will

always take action 1 regardless of µ, the marginal cost of information acquisition.

When neither action is dominant, i.e.,

Pr (1u (θ) > 0) > 0 and Pr (1u (θ) < 0) > 0 ,

the marginal cost of information acquisition µ plays a role.

On the one hand,

lim
µ→∞

∫
exp

(
±µ−11u (θ)

)
d P (θ) = 1 .

Hence Proposition 1 predicts that no information is acquired if µ is high enough.
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On the other hand, since

lim
µ→0

d

dµ−1

∫
exp

(
µ−11u (θ)

)
d P (θ)

= lim
µ→0

∫
exp

(
µ−11u (θ)

)
1u (θ) d P (θ)

= lim
µ→0

∫
1u(θ)>0

exp
(
µ−11u (θ)

)
1u (θ) d P (θ)

+Pr (1u (θ) = 0)+ lim
µ→0

∫
1u(θ)<0

exp
(
µ−11u (θ)

)
1u (θ) d P (θ)

= +∞+ Pr (1u (θ) = 0)+ 0

= +∞ ,

we have

lim
µ→0

∫
exp

(
µ−11u (θ)

)
d P (θ) > 1 .

A similar argument leads to

lim
µ→0

∫
exp

(
−µ−11u (θ)

)
d P (θ) > 1 .

Therefore, Proposition 1 reads that there must exist information acquisition if the mar-

ginal cost of information is sufficiently low. This interpretation coincides with our intu-

ition that the decision maker rationally decides whether to acquire information through

comparing the cost to the benefit of information acquisition.

When neither action is dominant and the marginal cost of information acquisition takes

intermediate values, the decision maker finds it optimal to acquire some information

to make her action (partially, in a random manner) contingent on θ . This is the case

specified by condition (9). Since g′ is strictly increasing, (10) implies that m (θ), the

conditional probability of choosing action 1, is increasing with respect to payoff gain

1u (θ). This is intuitive. The left hand side of (10) represents the marginal benefit

of increasing m (θ), while the right hand side of (10) is the marginal cost of information

when increasing m (θ). Therefore, if deciding to acquire information, the decision maker

will equate her marginal benefit with her marginal cost of doing so.

AN EXAMPLE

The following example provides some intuition behind the decision maker’s informa-

tion acquisition strategy.

Let θ distribute according to N (t, 1) and

1u (θ) = θ .

It is easy to verify that the decision maker always chooses action 1 (action 0) if and only
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if t ≥ µ−1/2 (t ≤ −µ−1/2). In this case, action 1 (action 0) is superior to action 0

(action 1) ex ante (i.e., |t | is large) and the cost in acquiring information is relatively high

(i.e., µ is large). Hence it is not worth acquiring any information at all.

Let t = 0, then the decision maker finds it optimal to acquire some information.

According to (10), the optimal information acquisition strategy m (θ) satisfies

(A13) θ/µ = g′ (m (θ))− g′
(∫

2

m (θ) d P (θ)

)
,

where

g′ (m) = ln
m

1− m
.

Since prior N (0, 1) is symmetric about the origin and payoff gain 1u (θ) is an odd

function, the decision maker is indifferent on average, i.e.,∫
2

m (θ) d P (θ) = 1/2 .

Hence

g′
(∫

2

m (θ) d P (θ)

)
= 0

and (A13) becomes

θ/µ = ln
m (θ)

1− m (θ)
.

Therefore,

(A14) m (θ) =
1

1+ exp (−θ/µ)
.

First note that

lim
µ→0

m (θ) = a (θ) ,
{

1 if θ ≥ 0

0 if θ < 0
.

Step function a (θ) captures the decision maker’s choice under complete information. In

this case, the decision maker can observe the exact value of θ . When µ > 0, the best

response is characterized by (A14). Since information is no longer free, the decision

maker has to allow some mistake in her response. The conditional probability of mistake

is given by

|m (θ)− a (θ)| ,

which is decreasing in |θ |, the "price" of mistake. Therefore, the decision maker delib-

erately acquires information to balance the price of mistake and the cost of information.

Second, parameter µ measures the difficulty in acquiring information. Figure A1

shows how m (θ) varies with this parameter.

When µ = 0, information acquisition incurs no cost and the decision maker’s response

is a step function. He never makes mistake. When µ becomes larger, he starts to com-
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FIGURE A1. INFORMATION ACQUISITION UNDER VARIOUS INFORMATION COSTS

promise the accuracy of her decision to save information cost. Larger µ leads to flatter

m (θ). Finally, when µ is extremely large, m (θ) is almost constant and the decision

maker almost stops acquiring information.

Third, since the decision maker’s action is highly sensitive to θ where slope

∣∣∣ dm(θ)
dθ

∣∣∣ is

large,

∣∣∣ dm(θ)
dθ

∣∣∣ reflects her attentiveness around θ . Under this interpretation, Figure A1

reveals that the decision maker actively collects information for intermediate values of

the fundamental but is rationally inattentive to values at the tails. This result coincides

with our intuition. When θ is too high (low), the decision maker should take action 1

(action 0) anyway. Hence the information about θ on the tails are not so relevant to her

payoff. When θ takes intermediate values, the decision maker’s payoff gain from taking

action 1 over action 0 depends crucially on the sign of θ . Therefore, the information

about θ around zero is payoff-relevant and attracts most of her attention.

APPENDIX B

Proof of Proposition 3.

PROOF: According to (11),

∀θ ∈ 2,

θ − r · (1− m1 (θ)) = µ ·

[
ln

(
m2 (θ)

1− m2 (θ)

)
− ln

(
pI 2

1− pI 2

)]
,(B1)

θ − r · (1− m2 (θ)) = µ ·

[
ln

(
m1 (θ)

1− m1 (θ)

)
− ln

(
pI 1

1− pI 1

)]
.(B2)
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(B1) and (B2) imply

∀θ ∈ 2,[
ln

(
pI 2

1− pI 2

)
− ln

(
pI 1

1− pI 1

) ]
=

[
ln

(
m2 (θ)

1− m2 (θ)

)
− ln

(
m1 (θ)

1− m1 (θ)

)]
+

r

µ
(m2 (θ)− m1 (θ)) .(B3)

If pI 2 = pI 1, (B3) becomes

∀θ ∈ 2,

0 =

[
ln

(
m2 (θ)

1− m2 (θ)

)
− ln

(
m1 (θ)

1− m1 (θ)

)]
+

r

µ
(m2 (θ)− m1 (θ)) ,

and we must have m2 (θ) = m1 (θ) a.s. since r

µ
> 0. Now suppose pI 2 6= pI 1. Without

loss of generality, let pI 2 > pI 1. Denote z = ln
(

pI 2

1−pI 2

)
− ln

(
pI 1

1−pI 1

)
> 0. Then (B3)

becomes

∀θ ∈ 2,

0 < z =

[
ln

(
m2 (θ)

1− m2 (θ)

)
− ln

(
m1 (θ)

1− m1 (θ)

)]
+

r

µ
(m2 (θ)− m1 (θ)) ,(B4)

which suggests that Pr (m2 (θ) > m1 (θ)) = 1. Let ln
(

m2(θ)
1−m2(θ)

)
= x (θ) and ln

(
m1(θ)

1−m1(θ)

)
=

y (θ). (B4) implies

∀θ ∈ 2, x (θ) < y (θ)+ z.

Note that pI i =
∫

mi (θ) · d P (θ) = Emi (θ), i ∈ {1, 2}, m2 (θ) =
exp(x(θ))

1+exp(x(θ))
and

m1 (θ) =
exp(y(θ))

1+exp(y(θ))
, thus

z = ln

(
Em2 (θ)

1− Em2 (θ)

)
− ln

(
Em1 (θ)

1− Em1 (θ)

)

= ln

E

[
exp(x(θ))

1+exp(x(θ))

]
E

[
1

1+exp(x(θ))

]
− ln

E

[
exp(y(θ))

1+exp(y(θ))

]
E

[
1

1+exp(y(θ))

]


< ln

E

[
exp(y(θ)+z)

1+exp(y(θ)+z)

]
E

[
1

1+exp(y(θ)+z)

]
− ln

E

[
exp(y(θ))

1+exp(y(θ))

]
E

[
1

1+exp(y(θ))

]
 .
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Take the exponential of both sides of the above inequality, we have

exp (z) <
E

[
exp(y(θ)+z)

1+exp(y(θ)+z)

]
· E

[
1

1+exp(y(θ))

]
E

[
1

1+exp(y(θ)+z)

]
· E

[
exp(y(θ))

1+exp(y(θ))

] ,
i.e.,

E

[
exp (y (θ))

1+ exp (y (θ)+ z)

]
·E

[
1

1+ exp (y (θ))

]
> E

[
1

1+ exp (y (θ)+ z)

]
·E

[
exp (y (θ))

1+ exp (y (θ))

]
,

i.e., ∫
exp (y (θ1)) d P (θ1)

1+ exp (y (θ1)+ z)
·

∫
d P (θ2)

1+ exp (y (θ2))
+

∫
exp (y (θ2)) d P (θ2)

1+ exp (y (θ2)+ z)
·

∫
d P (θ1)

1+ exp (y (θ1))

>

∫
d P (θ1)

1+ exp (y (θ1)+ z)
·

∫
exp (y (θ2)) d P (θ2)

1+ exp (y (θ2))
+

∫
d P (θ2)

1+ exp (y (θ2)+ z)
·

∫
exp (y (θ1)) d P (θ1)

1+ exp (y (θ1))
,

i.e.,

(B5)∫
A + B − C − D[

1+ exp (y (θ1)+ z)
] [

1+ exp (y (θ2))
] [

1+ exp (y (θ2)+ z)
] [

1+ exp (y (θ1))
]d P (θ1) d P (θ2) > 0,

where

A = exp (y (θ1))
[
1+ exp (y (θ2)+ z)

] [
1+ exp (y (θ1))

]
,

B = exp (y (θ2))
[
1+ exp (y (θ1)+ z)

] [
1+ exp (y (θ2))

]
,

C = exp (y (θ2))
[
1+ exp (y (θ2)+ z)

] [
1+ exp (y (θ1))

]
and

D = exp (y (θ1))
[
1+ exp (y (θ1)+ z)

] [
1+ exp (y (θ2))

]
.

Let y (θ1) = u and y (θ2) = v, then the numerator in the integral becomes

A + B − C − D =
[
eu − ev

]2 [
1− ez

]
< 0,

where the last inequality follows the fact that z > 0. Therefore, the left hand side of

(B5) is strictly negative, which is a contradiction. Therefore, Pr (m1 (θ) = m2 (θ)) = 1.

LEMMA 3: Game G (r, µ) has an equilibrium with at least one player always investing

if and only if E exp
(
−µ−1θ

)
≤ 1, where expectations are formed according to common

prior P.

PROOF: (Sufficiency.) If m j (θ) = 1 for all θ ∈ 2, player i’s payoff gain from investing

over not investing becomes

1ui (θ) = θ .
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Then according to case a) in ii) of Proposition 1,

E exp
(
−µ−1θ

)
≤ 1

implies mi (θ) = 1 for all θ ∈ 2, which confirms that m j (θ) = 1 for all θ ∈ 2 is

player j’s optimal strategy. Therefore, we have an equilibrium with both players always

investing.

(Necessity.) Suppose m j (θ) = 1 for all θ ∈ 2, but E exp
(
−µ−1θ

)
> 1. Player i’s

payoff gain from investing over not investing is

1ui (θ) = θ .

According to case b) and c) in ii) of Proposition 1, E exp
(
−µ−1θ

)
> 1 implies mi (θ) <

1 for all θ ∈ 2. Then player j’s payoff gain from investing over not investing becomes

1u j (θ) = θ − r · [1− mi (θ)]

< θ for all θ ∈ 2,

which implies

E exp
(
−µ−11u j (θ)

)
> E exp

(
−µ−1θ

)
> 1 .

Hence according to case b) and c) in ii) of Proposition 1, we find m j (θ) < 1 for all

θ ∈ 2, which is a contradiction.

LEMMA 4: In an equilibrium of game G (r, µ) with one player always investing, the

other player must also always invest.

PROOF: By the necessity part of Lemma 3, we know that E exp
(
−µ−1θ

)
≤ 1. Then the

sufficiency part of Lemma 3 has already proved that the other player must also always

invest.

PROPOSITION 9: Game G (r, µ) has an equilibrium with both players always invest-

ing if and only if E exp
(
−µ−1θ

)
≤ 1.

PROOF: This proposition is a direct implication of Lemma 3 and 4.

LEMMA 5: Game G (r, µ) has an equilibrium with at least one player always not in-

vesting if and only if E exp
(
µ−1θ

)
≤ eµ

−1r , where expectations are formed according to

common prior P.

PROOF: (Sufficiency.) If m j (θ) = 0 for all θ ∈ 2, player i’s payoff gain from investing

over not investing becomes

1ui (θ) = θ − r .
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Then according to case b) in ii) of Proposition 1,

E exp
(
µ−1 (θ − r)

)
≤ 1

implies mi (θ) = 0 for all θ ∈ 2, which confirms that m j (θ) = 0 for all θ ∈ 2 is player

j’s optimal strategy. Therefore, we have an equilibrium with both players always not

investing.

(Necessity.) Suppose m j (θ) = 0 for all θ ∈ 2, but E exp
(
µ−1θ

)
> eµ

−1r , i.e.,

E exp
(
µ−1 (θ − r)

)
> 1. Player i’s payoff gain from investing over not investing is

1ui (θ) = θ − r .

According to case a) and c) in ii) of Proposition 1, E exp
(
µ−1 (θ − r)

)
> 1 implies

mi (θ) > 0 for all θ ∈ 2. Then player j’s payoff gain from investing over not investing

becomes

1u j (θ) = θ − r · [1− mi (θ)]

> θ − r for all θ ∈ 2,

which implies

E exp
(
µ−11u j (θ)

)
> E exp

(
µ−1 (θ − r)

)
> 1 .

Hence according to case a) and c) in ii) of Proposition 1, we find m j (θ) > 0 for all

θ ∈ 2, which is a contradiction.

LEMMA 6: In an equilibrium of game G (r, µ) with one player always not investing,

the other player must always not invest either.

PROOF: By the necessity part of Lemma 5, we know that E exp
(
µ−1θ

)
≤ eµ

−1r . Then

the sufficiency part of Lemma 5 has already proved that the other player must always not

invest either.

PROPOSITION 10: Game G (r, µ) has an equilibrium with both players always not

investing if and only if E exp
(
µ−1θ

)
≤ eµ

−1r .

PROOF: This proposition is a direct implication of Lemma 5 and 6.

APPENDIX C

Proof of Lemma 2.

PROOF: Let m ∈M (r, µ) be an arbitrary shape. Let θ0 (pI ) be defined by (14) and

m (θ, pI ) = m (θ − θ0 (pI )) .
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By definition, m (θ, pI ) satisfies

(C1) θ−r ·(1− m (θ, pI )) = µ·

[
ln

(
m (θ, pI )

1− m (θ, pI )

)
− ln

(
pI

1− pI

)]
for all θ ∈ 2.

Here pI ∈ (0, 1) is treated as an index and m (θ, pI ) is an equilibrium if and only if

(C2) pI =

∫
2

m (θ, pI ) d P (θ) .

Therefore, our objective is to show the existence of pI ∈ (0, 1) satisfying (C2).

Step 1. We show ∫
2

m (θ, pI ) d P (θ) < pI

for pI sufficiently close to 1.

By (C1),

ln

(
m (θ, pI )

1− m (θ, pI )

)
− ln

(
pI

1− pI

)
< µ−1θ for all θ ∈ 2,

i.e.,

m (θ, pI ) <

pI

1−pI

e−µ
−1θ + pI

1−pI

for all θ ∈ 2.

Hence it suffices to show ∫
2

pI

1−pI

e−µ
−1θ + pI

1−pI

d P (θ) ≤ pI .

Let

w =
1

1− pI

and

v (θ) = e−µ
−1θ − 1,

then it suffices to show

(C3)

∫
2

w − 1

v (θ)+ w
d P (θ) ≤

w − 1

w
.

Since w > 1 by definition, (C3) becomes

(C4)

∫
2

1

1+ v (θ) /w
d P (θ) ≤ 1 .



COORDINATION WITH FLEXIBLE INFORMATION ACQUISITION 45

By assumption, ∫
2

e−µ
−1θd P (θ) > 1,

i.e.,

(C5)

∫
2

v (θ) d P (θ) > 0 .

Hence there exists N > 0 s.t.∫
2∩[−N ,+∞)

v (θ) d P (θ) > 0 .

Let

B = max
(

eµ
−1 N − 1, 1

)
,

then

|v (θ)| ≤ B

for all θ ∈ [−N ,+∞). Since

1

1+ x
= 1− x + x2 + o

(
x2
)

for x close enough to zero, there exists w > 0 s.t.

1

1+ v (θ) /w
< 1−

v (θ)

w
+

2B2

w2

for all θ ∈ [−N ,+∞) and w > w. Choose

(C6) w > max

(
w,

2B2∫
2∩[−N ,+∞) v (θ) d P (θ)

)
,

then ∫
2∩[−N ,+∞)

1

1+ v (θ) /w
d P (θ)

<

∫
2∩[−N ,+∞)

[
1−

v (θ)

w
+

2B2

w2

]
d P (θ)

= Pr (θ ≥ −N )+
2B2

w2
· Pr (θ ≥ −N )− w−1

∫
2∩[−N ,+∞)

v (θ) d P (θ)

≤ Pr (θ ≥ −N )+
2B2

w2
− w−1

∫
2∩[−N ,+∞)

v (θ) d P (θ)

< Pr (θ ≥ −N ) ,(C7)
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where the last inequality follows (C6). Hence,∫
2

1

1+ v (θ) /w
d P (θ)

=

∫
2∩[−N ,+∞)

1

1+ v (θ) /w
d P (θ)+

∫
2∩(−∞,−N )

1

1+ v (θ) /w
d P (θ)

≤

∫
2∩[−N ,+∞)

1

1+ v (θ) /w
d P (θ)+

∫
2∩(−∞,−N )

1 · d P (θ)

< Pr (θ ≥ −N )+ Pr (θ < −N )

= 1,

where the first inequality holds since v (θ) for all θ ∈ (−∞,−N ) and the last inequality

comes from (C7). Therefore, (C4) holds and if we let

p I =
w − 1

w
,

we have ∫
2

m
(
θ, p I

)
d P (θ) < p I .

Step 2. We show ∫
2

m (θ, pI ) d P (θ) > pI

for pI sufficiently close to 0.

By (C1),

ln

(
m (θ, pI )

1− m (θ, pI )

)
− ln

(
pI

1− pI

)
> µ−1 (θ − r) for all θ ∈ 2,

i.e.,

1− m (θ, pI ) <
1

1+ eµ
−1(θ−r) pI

1−pI

for all θ ∈ 2.

Hence it suffices to show∫
2

1

1+ eµ
−1(θ−r) pI

1−pI

d P (θ) ≤ 1− pI .

Let

w =
1

pI

and

v (θ) = eµ
−1(θ−r) − 1,
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then it suffices to show

(C8)

∫
2

w − 1

v (θ)+ w
d P (θ) ≤

w − 1

w
.

By assumption, ∫
2

eµ
−1(θ−r)d P (θ) > 1,

i.e.,

(C9)

∫
2

v (θ) d P (θ) > 0 .

Note that (C8) and (C9) are the same as (C4) and (C5), thus (C8) can be proved by the

same argument in Step 1. Therefore, we can find a p
I
∈ (0, 1) s.t.∫

2

m

(
θ, p

I

)
d P (θ) > p

I
.

Step 3. Since common prior P is absolutely continuous with respect to Lebesgue

measure over R, ∫
2

m (θ, pI ) d P (θ)− pI

is a continuous function of pI ∈ (0, 1). Hence Step 1 and Step 2 imply the existence of

p∗I ∈ (0, 1) s.t. ∫
2

m
(
θ, p∗I

)
d P (θ) = p∗I .

According to (14), let

θ∗0 = r/2− µ · ln

(
p∗I

1− p∗I

)
,

then m
(
θ − θ∗0

)
is an equilibrium with shape m. This concludes the proof.

LEMMA 7: Let P be any probability measure overR. A set of functions M ⊂ L1 (R, P)
is relatively compact if M is uniformly bounded and equicontinuous.

PROOF: Let B > 0 be the uniform bound and {mn}
∞
n=1 ⊂ M be a sequence of functions.

Let

AT =

{
−T,−T +

1

T
,−T +

2

T
, · · ·, T −

2

T
, T −

1

T
,

}
,

then ∪∞T=1 AT is dense in R. Since ∪∞T=1 AT is countable, we can list its elements as

{θ1, θ2, θ3, · · ·}. Note that the numerical sequence {mn (θ1)}
∞
n=1 is bounded, so by

Bolzano-Weierstrass theorem it has a convergent subsequence, which we will write using

double subscripts:
{
m1,n (θ1)

}∞
n=1

. Now the numerical sequence
{
m1,n (θ2)

}∞
n=1

is also

bounded, so it has a convergent subsequence
{
m2,n (θ2)

}∞
n=1

. Note that the sequence of
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functions
{
m2,n

}∞
n=1

converges at both θ1 and θ2 since it is a subsequence of
{
m1,n

}∞
n=1

.

Proceeding in this fashion we obtain a countable collection of subsequences of our orig-

inal sequence:

m1,1 m1,2 m1,3 · · ·
m2,1 m2,2 m2,3 · · ·
m3,1 m3,2 m3,3 · · ·
· · · · · ·
· · · · · ·
· · · · · ·

,

where the sequence in the n-th row converges at the points θ1, θ2, · · ·, θn and each row

is a subsequence of the one above it. Hence the diagonal sequence
{
mn,n

}∞
n=1

is a

subsequence of the original sequence {mn}
∞
n=1 that converges at each point of ∪∞T=1 AT .

Now we show that
{
mn,n

}∞
n=1

is a Cauchy sequence in L1 (R, P).

For any ε > 0, there exists T0 such that

(C10) Pr ([−T0, T0]) ≥ 1−
ε

5 · B
,

where B is the uniform bound such that |m (θ)| < B for all θ ∈ 2 and m ∈ M . Since

M is equicontinuous, there exists T1 > T0 such that ∀m ∈ M , ∀θ1, θ2 ∈ 2,

|θ1 − θ2| <
1

T1

implies

|m (θ1)− m (θ2)| <
ε

5
.

As AT1
is finite and

{
mn,n

}∞
n=1

converges at every point of AT1
, there exists n0 ∈ N such

that ∣∣mn,n (θ)− mn′,n′ (θ)
∣∣ < ε

5

for all n, n′ > n0 and all θ ∈ AT1
. For any y ∈ [−T1, T1], there exists θ ∈ AT1

such that

|y − θ | <
1

T1

,

thus we have ∣∣mn,n (y)− mn,n (θ)
∣∣ < ε

5

and ∣∣mn′,n′ (y)− mn′,n′ (θ)
∣∣ < ε

5
.
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Hence for any y ∈ [−T1, T1] and n, n′ > n0,∣∣mn′,n′ (y)− mn,n (y)
∣∣

≤
∣∣mn′,n′ (y)− mn′,n′ (θ)

∣∣+ ∣∣mn′,n′ (θ)− mn,n (θ)
∣∣+ ∣∣mn,n (θ)− mn,n (y)

∣∣
<

3 · ε

5
.

(C11)

Then ∥∥mn′,n′ − mn,n

∥∥
L1(R,P)

=

∫
2

∣∣mn′,n′ (y)− mn,n (y)
∣∣ d P (y)

=

∫
[−T1,T1]

∣∣mn′,n′ (y)− mn,n (y)
∣∣ d P (y)+

∫
2\[−T1,T1]

∣∣mn′,n′ (y)− mn,n (y)
∣∣ d P (y)

<
3 · ε

5
· Pr ([−T1, T1])+

∫
2\[−T1,T1]

2 · B · d P (y)

≤
3 · ε

5
· 1+

ε

5 · B
· 2 · B

= ε ,

where the first inequality follows (C11) and the second inequality comes from (C10).

Therefore,
{
mn,n

}∞
n=1

is a Cauchy subsequence of {mn}
∞
n=1 in L1 (R, P) and M is rel-

atively compact in L1 (R, P). This concludes the proof.

Proof of Proposition 5.

PROOF: We prove by contradiction. Suppose the proposition does not hold, then ∃i ∈
{1, 2}, β i > 0 and a sequence {cn}

∞
n=1 s.t. limn→∞ cn = 0 and ∀n, β i (cn) ≤ β i .

We write gβ for the density function over signals induced by precision β, i.e.,

gβ (x) =

∫
θ

β1/2 · f
(
β1/2 (x − θ)

)
· p (θ) · dθ,

and write lβ (·|x) for the induced posterior density over θ :

lβ (θ |x) =
β1/2 · f

(
β1/2 (x − θ)

)
· p (θ)

gβ (x)
.

A sufficient statistic for a player j’s conjecture over i’s play is the probability he at-

taches to player i investing as a function of θ , which is a function mi : 2→ [0, 1]. Let

S , {s Lebesgue measurable : ∀x ∈ R, s (x) ∈ [0, 1]}
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and

Mβi
,
{

m ∈ � : ∃β ∈
[
0, β i

]
and s ∈ S, s.t. m (θ) =

∫
x

β1/2 · f
(
β1/2 (x − θ)

)
· s (x) · dx for all θ ∈ 2

}
,

where � =
{
m ∈ L1 (2, P) : ∀θ ∈ 2, m (θ) ∈ [0, 1]

}
. Mβi

contains all player j’s

possible conjectures of player i’s play when β i ∈
[
0, β i

]
.

Step 1: We prove that Mβi
is relatively compact in �, i.e., its closure Mβi

is compact.

Let f ′ denote the derivative of f . f ′ could be a generalized function. Since f ′ is

Lebesgue integrable over R, ∫
y

max
(

f ′ (y) , 0
)

dy <∞

and ∫
y

max
(
− f ′ (y) , 0

)
dy <∞

hold by definition. ∀m ∈ Mβi
, ∀θ ∈ 2,∣∣∣∣dm (θ)

dθ

∣∣∣∣ = ∣∣∣∣∫
x

β · f ′
(
β1/2 (x − θ)

)
· s (x) · dx

∣∣∣∣
=

∣∣∣∣∫
y

β1/2 · f ′ (y) · s
(
β−1/2 · y + θ

)
· dy

∣∣∣∣
≤ β1/2 ·max

[∫
y

max
(

f ′ (y) , 0
)

dy,

∫
y

max
(
− f ′ (y) , 0

)
dy

]
.

Hence for any ε > 0,

|θ1 − θ2| <
ε

β1/2 ·max
[∫

y
max ( f ′ (y) , 0) dy,

∫
y

max (− f ′ (y) , 0) dy

]
implies

|m (θ1)− m (θ2)| < ε

for all m ∈ Mβi
, i.e., Mβi

is equicontinuous. By definition, ∀m ∈ Mβi
, ∀θ ∈ 2,

|m (θ)| ≤ 1, i.e., Mβi
is uniformly bounded. Therefore, according to Lemma 7, Mβi

is

relatively compact in �.

If player j chooses
(
β j , s j

)
against conjecture mi , her expected utility is

V j

(
β j , s j ,mi

)
=

∫
x j

s j

(
x j

)
·

[∫
θ

(θ − r · (1− mi (θ))) · lβ j

(
θ |x j

)
· dθ

]
·gβ j

(
x j

)
·dx j .
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With an optimal choice of s j this gives

V ∗j
(
β j ,mi

)
=

∫
x j

max

{
0,

∫
θ

(θ − r · (1− mi (θ))) · lβ j

(
θ |x j

)
· dθ

}
· gβ j

(
x j

)
· dx j

=

∫
x j

max

{
0,

∫
θ

(θ − r · (1− mi (θ))) · β
1/2
j f

(
β

1/2
j

(
x j − θ

))
p (θ) dθ

}
· dx j .

(C12)

Note that limβ→∞ β
1/2 · f

(
β1/2 (x − θ)

)
= δ (x − θ), where δ (·) is the Dirac delta

function. Then (C12) implies

V ∗∗j (mi ) , lim
β j→∞

V ∗j
(
β j ,mi

)
=

∫
x j

max
{
0,
[
x j − r ·

(
1− mi

(
x j

))]
· p
(
x j

)}
· dx j

=

∫
θ

max {0, [θ − r · (1− mi (θ))] · p (θ)} · dθ .(C13)

V ∗∗j (mi ) is player j’s ex ante expected utility against conjecture mi if he can always

observe the exact realization of the fundamental.

Step 2: We show that ∀mi ∈ �, ∀β j > 0, V ∗∗j (mi ) > V ∗j

(
β j ,mi

)
.

Note that our assumptions

E exp
(
−µ−1θ

)
> 1

and

E exp
(
µ−1θ

)
> eµ

−1r

imply that

Pr (θ < 0) > 0

and

Pr (θ > r) > 0 ,

respectively. Hence we have

Pr (θ − r · (1− mi (θ)) > 0)

≥ Pr (θ − r > 0)

> 0
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and

Pr (θ − r · (1− mi (θ)) < 0)

≥ Pr (θ < 0)

> 0 .

Since function max {0, ·} is convex, Jensen’s inequality implies that

max

{
0,

∫
θ

[θ − r · (1− mi (θ))] · β
1/2
j · f

(
β

1/2
j

(
x j − θ

))
· p (θ) dθ

}
≤

∫
θ

max
{

0, [θ − r · (1− mi (θ))] · β
1/2
j · f

(
β

1/2
j

(
x j − θ

))}
· p (θ) dθ

=

∫
θ

max {0, [θ − r · (1− mi (θ))]} · β
1/2
j · f

(
β

1/2
j

(
x j − θ

))
· p (θ) dθ .(C14)

Since

Pr
(

[θ − r · (1− mi (θ))] · f

(
β

1/2
j

(
x j − θ

))
> 0

)
= Pr (θ − r · (1− mi (θ)) > 0)

> 0

and

Pr
(

[θ − r · (1− mi (θ))] · f

(
β

1/2
j

(
x j − θ

))
< 0

)
= Pr (θ − r · (1− mi (θ)) < 0)

> 0

for all x j ∈ R, (C14) holds strictly. Then, (C12) implies

V ∗j
(
β j ,mi

)
=

∫
x j

max

{
0,

∫
θ

[θ − r · (1− mi (θ))] · β
1/2
j · f

(
β

1/2
j

(
x j − θ

))
· p (θ) · dθ

}
· dx j

<

∫
x j

∫
θ

max {0, [θ − r · (1− mi (θ))]} · β
1/2
j · f

(
β

1/2
j

(
x j − θ

))
· p (θ) · dθ · dx j

=

∫
θ

max {0, (θ − r · (1− mi (θ))) · p (θ)} ·

∫
x j

β
1/2
j · f

(
β

1/2
j

(
x j − θ

))
· dx j · dθ

=

∫
θ

max {0, (θ − r · (1− mi (θ))) · p (θ)} · 1 · dθ

= V ∗∗j (mi ) ,

where the last equality follows (C13). Therefore,

(C15) ∀mi ∈ �, ∀β j > 0, V ∗∗j (mi ) > V ∗j
(
β j ,mi

)
.
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Step 3: We prove limn→∞ β j (cn) = ∞.

If this is not true, there exists a β j > 0 and a subsequence
{
cnk

}∞
k=1
⊂ {cn}

∞
n=1 s.t.

limk→∞ β j

(
cnk

)
= β j .

We first show ∀β j > 0, ∃β ′j > 0 and δ
(
β j , β

′
j

)
> 0, s.t. ∀mi ∈ Mβi

,

V ∗j
(
β ′j ,mi

)
− V ∗j

(
β j ,mi

)
> δ

(
β j , β

′
j

)
.

Otherwise, ∃β j > 0,∀β ′j > 0, ∀l ∈ N, ∃ml
β j ,β

′
j

∈ Mβi
, s.t.

V ∗j

(
β ′j ,ml

β j ,β
′
j

)
− V ∗j

(
β j ,ml

β j ,β
′
j

)
≤ 1/ l .

Hence ∀β ′j > 0, there exists a mβ j ,β
′
j
∈ � and a subsequence

{
lk,β j ,β

′
j

}∞
k=1

s.t.

lim
k→∞

m
l
k,β j ,β

′
j

β ′
j

= mβ j ,β
′
j

and

V ∗j

(
β ′j ,mβ j ,β

′
j

)
− V ∗j

(
β j ,mβ j ,β

′
j

)
≤ 0,

since Mβi
is relatively compact and V ∗j (β,m) is a continuous functional of m for all

β > 0. However, (C15) implies that

V ∗j

(
β ′j ,mβ j ,β

′
j

)
− V ∗j

(
β j ,mβ j ,β

′
j

)
> 0

for β ′j large enough, which is a contradiction.

Note that V ∗j (β,m) is continuous in β, hence ∃β ′j > β j and K ∈ N s.t. ∀k >
K ,∀mi ∈ Mβi

,

V ∗j
(
β ′j ,mi

)
− V ∗j

(
β j

(
cnk

)
,mi

)
> δ

(
β j , β

′
j

)
/2 .

Since limn→∞ cnk
= 0, we can choose k large enough such that

cnk
<

δ
(
β j , β

′
j

)
2 ·
[
h
(
β ′j
)
− h

(
β j

(
cnk

))] .

Hence we have ∀mi ∈ Mβi
,

V ∗j
(
β ′j ,mi

)
− cnk

· h
(
β ′j
)
> V ∗j

(
β j

(
cnk

)
,mi

)
− cnk

· h
(
β j

(
cnk

))
,

which contradicts the assumption that β j

(
cnk

)
is player j’s equilibrium response in

G
(
cnk

)
. Therefore we prove limn→∞ β j (cn) = ∞.
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Step 4: Finally we derive a contradiction to complete the proof. Since ∀n, β i (cn) ∈[
0, β i

]
, there exists a β∗i ∈

[
0, β i

]
and a subsequence

{
cnk

}∞
k=1
⊂ {cn}

∞
n=1 s.t.

lim
k→∞

β i

(
cnk

)
= β∗i .

Let mi

(
·, β i (c)

)
characterize player i’s equilibrium strategy in G (c). ∀k ∈ N, ∀θ ∈ 2,

we have

mi

(
θ, β i

(
cnk

))
=

∫
xi

 [
β i

(
cnk

)]1/2
· f

([
β i

(
cnk

)]1/2
(xi − θ)

)
·1{∫

θ ′(θ ′−r ·(1−m j(θ ′,β j(cnk ))))·
[
βi(cnk )

]1/2
f

([
βi(cnk )

]1/2(xi−θ ′)
)

p(θ ′)dθ ′>0
}
 · dxi

and

m j

(
θ, β j

(
cnk

))
=

∫
x j

 [
β j

(
cnk

)]1/2
· f

([
β j

(
cnk

)]1/2 (
x j − θ

))
·1{∫

θ ′(θ ′−r ·(1−mi(θ ′,βi(cnk ))))·
[
β j(cnk )

]1/2
f

([
β j(cnk )

]1/2(x j−θ ′)
)

p(θ ′)dθ ′>0
}
 · dx j .

Since� is a complete functional space and mi

(
·, β i

)
is continuous in β i , i ∈ {1, 2}, there

exists
(

m∗i (·) ,m∗j (·)
)
∈ �×� such that limk→∞

(
mi

(
·, β i

(
cnk

))
,m j

(
·, β j

(
cnk

)))
=(

m∗i (·) ,m∗j (·)
)

. Especially, as a result of Step 3, ∀θ ∈ 2,

m∗j (θ) = 1{θ−r ·(1−m∗
i (θ))>0}

and

m∗i (θ) =

∫
xi

β
∗1/2
i · f

(
β
∗1/2
i (xi − θ)

)
·1{∫

θ ′

(
θ ′−r ·

(
1−m∗

j (θ)
))
·β∗1/2

i
f

(
β
∗1/2
i (xi−θ ′)

)
p(θ ′)dθ ′>0

}·dxi .

Choose a sequence
{
β ′i,nk

}∞
k=1

such that

lim
k→∞

β ′i,nk
= ∞

and

lim
k→∞

cnk
· h
(
β ′i,nk

)
= 0 .

Then

lim
k→∞

{ [
V ∗i

(
β i

(
cnk

)
,m j

(
·, β j

(
cnk

)))
− cnk

· h
(
β i

(
cnk

))]
−
[
V ∗i

(
β ′i,nk

,m j

(
·, β j

(
cnk

)))
− cnk

· h
(
β ′i,nk

)] }
=

[
V ∗i
(
β∗i ,m∗j

)
− 0

]
−
[
V ∗∗i

(
m∗j
)
− 0

]
< 0,
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where the last inequality follows (C15). Therefore, for k ∈ N large enough,

V ∗i
(
β i

(
cnk

)
,m j

(
·, β j

(
cnk

)))
−cnk
·h
(
β i

(
cnk

))
< V ∗i

(
β ′i,nk

,m j

(
·, β j

(
cnk

)))
−cnk
·h
(
β ′i,nk

)
,

which contradicts to the assumption that β i

(
cnk

)
is player i’s equilibrium response in

G
(
cnk

)
.

This concludes the proof.

APPENDIX D

Proof of Proposition 7.

PROOF: According to Proposition 9 and 10 in Appendix B, both "always invest" (i.e.,

m (θ) = 1 for all θ ∈ 2) and "never invest" (i.e., m (θ) = 0 for all θ ∈ 2) are equilibria.

By the way, there may also exist "intermediate" equilibria with information acquisition.

This concludes the proof.

Proof of Proposition 8.

PROOF: We consider a special class of equilibria with the following form

m (θ) =

{
m1 if θ ≤ mλ

m0 if θ > mλ
,

where m0,m1 ∈ (0, 1), m0 < m1, mλ = λ · m0 + (1− λ) · m1 and λ ∈ [0, 1].

Given pI ∈ (0, 1), (20) and (21) imply that

m1 (pI ) =

pI

1−pI

pI

1−pI
+ e−µ

−1

and

m0 (pI ) =

pI

1−pI

pI

1−pI
+ eµ

−1
.

Let

g (pI ) =
1

1+ 2A
[m1 · (mλ + A)+ m0 · (1+ A − mλ)] .

If

g (pI ) = pI ,

according to (20), (21) and (22), m1 (pI ), m0 (pI ),

SI =
[
−A, λ · m0 (pI )+ (1− λ) · m1 (pI )

]
and

SN = (λ · m0 (pI )+ (1− λ) · m1 (pI ) , 1+ A]

constitute an equilibrium. Now we prove g (pI ) has an fixed point in (0, 1) for any

λ ∈ [0, 1].
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Step 1. We show

g (pI ) < pI

for pI close to 1.

Since mλ ≤ 1,

g (pI ) =
1

1+ 2A

[
m1 (pI ) · (mλ + A)+ m0 (pI ) · (1+ A − mλ)

]
≤

1+ A

1+ 2A
· m1 (pI )+

A

1+ 2A
· m0 (pI ) .

Hence it suffices to show

(D1)
1+ A

1+ 2A
· m1 (pI )+

A

1+ 2A
· m0 (pI ) < pI

for pI close to 1. Let

w =
1

1− pI

,

v0 = e−µ
−1

− 1

and

v1 = eµ
−1

− 1 ,

then (D1) can be rewritten as

(D2)
1+ A

1+ 2A
·
w − 1

w + v0

+
A

1+ 2A
·
w − 1

w + v1

<
w − 1

w
.

Since pI ∈ (0, 1), w − 1 > 0 and (D2) is equivalent to

(D3)
1+ A

1+ 2A
·

1

1+ v0/w
+

A

1+ 2A
·

1

1+ v1/w
< 1 .

It suffices to show (D3) for w large enough.

Choosing w large enough such that

1+ v0/w > 0

and multiplying both sides of (D3) with (1+ v0/w) (1+ v1/w) lead to

1+
1+ A

1+ 2A
· v1/w +

A

1+ 2A
· v0/w < 1+ v1/w + v0/w +

v0v1

w2
,

i.e.,

(D4) −
v0v1

w
<

A

1+ 2A
· v1 +

1+ A

1+ 2A
· v0 .
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Note that (18) implies
A

1+ 2A
· v1 +

1+ A

1+ 2A
· v0 > 0 .

Hence, we can choose w large enough such that (D4) holds. Therefore, let

p I =
w − 1

w
,

we have

g
(

p I

)
< p I .

Step 2. We show

g (pI ) > pI

for pI close to 0.

Since mλ ≥ 0,

g (pI ) =
1

1+ 2A

[
m1 (pI ) · (mλ + A)+ m0 (pI ) · (1+ A − mλ)

]
≥

A

1+ 2A
· m1 (pI )+

1+ A

1+ 2A
· m0 (pI ) .

Hence it suffices to show

A

1+ 2A
· m1 (pI )+

1+ A

1+ 2A
· m0 (pI ) > pI ,

i.e.,

(D5)
A

1+ 2A
·
[
1− m1 (pI )

]
+

1+ A

1+ 2A
·
[
1− m0 (pI )

]
< 1− pI ,

for pI close to 0. Let

w =
1

pI

,

v0 = e−µ
−1

− 1

and

v1 = eµ
−1

− 1 ,

then (D5) can be rewritten as

(D6)
A

1+ 2A
·
w − 1

w + v1

+
1+ A

1+ 2A
·
w − 1

w + v0

<
w − 1

w
.

It suffices to show (D6) for w large enough. Note that (D6) is the same as (D2), thus by
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the same argument in Step 1, we can find a p
I

close to 0 such that

g

(
p

I

)
> p

I
.

Step 3. Since g (pI ) is continuous in pI , there must exist a p∗I ∈ (0, 1) such that

g
(

p∗I
)
= p∗I .

Hence we find an equilibrium for the given λ. Since we can find an equilibrium for any

λ ∈ [0, 1], there exist infinitely many equilibria. This concludes the proof.

Proof of Proposition 6.

PROOF: Since information acquisition is flexible, there exists K > 0 such that

∀m, m̃ ∈ �, |c (m)− c (m̃)| ≤ K ·

∫
|m (θ)− m̃ (θ)| d P (θ) ,

where P is the common prior that is mutually continuous with respect to Lebesgue mea-

sure on R.

Let Vi

(
mi ,m j

)
denote player i’s expected payoff from playing strategy mi when

player j plays m j , i.e.,

Vi

(
mi ,m j

)
=

∫ [
θ − r ·

(
1− m j (θ)

)]
· mi (θ) d P (θ)− µ · c (mi ) .

Note that any strict Nash equilibrium of the game with complete information (except

the two extreme ones) involves both players playing a strategy parameterized by x ∈
(0, r) , i.e., 1{θ>x}. (Symmetrically, we should also consider 1{θ≥x}, which is omitted

here.)
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Let mi ∈ � and
∫ ∣∣1{θ>x} − mi (θ)

∣∣ d P (θ) > 0 . Then

Vi

(
1{θ>x}, 1{θ>x}

)
− Vi

(
mi , 1{θ>x}

)
=

∫ [
θ − r ·

(
1− 1{θ>x}

)]
·
[
1{θ>x} − mi (θ)

]
d P (θ)− µ ·

[
c
(
1{θ>x}

)
− c (mi )

]
=

∫
θ≤x

[r − θ ] · mi (θ) d P (θ)+

∫
θ>x

θ · [1− mi (θ)] d P (θ)

−µ ·
[
c
(
1{θ>x}

)
− c (mi )

]
≥

∫
θ≤x

[r − θ ] · mi (θ) d P (θ)+

∫
θ>x

θ · [1− mi (θ)] d P (θ)− µ · K ·

∫ ∣∣1{θ>x} − mi (θ)
∣∣ d P (θ)

=

∫
θ≤x

[r − θ ] ·
∣∣1{θ>x} − mi (θ)

∣∣ d P (θ)+

∫
θ>x

θ ·
∣∣1{θ>x} − mi (θ)

∣∣ d P (θ)

−µ · K ·

∫ ∣∣1{θ>x} − mi (θ)
∣∣ d P (θ)

=

∫
[t (θ)− µ · K ] ·

∣∣1{θ>x} − mi (θ)
∣∣ d P (θ) ,

Where

t (θ) ,
{

r − θ if θ ≤ x

θ if θ > x
.

Note that

t (θ) ≥ min (x, r − x) > 0

for all θ ∈ 2. Let µ < [min (x, r − x)] /K , we have

Vi

(
1{θ>x}, 1{θ>x}

)
− Vi

(
mi , 1{θ>x}

)
> 0

for all mi ∈ � s.t.
∫ ∣∣1{θ>x} − mi (θ)

∣∣ d P (θ) > 0 and all µ ∈ [0, µ]. Therefore, 1{θ>x}is

a strict Nash equilibrium of the game with information acquisition.


