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Abstract

A number of definitions of packing measures have been proposed at one
time or another, differing from each other both in the notion of packing they
employ, and in whether the radii or the diameters of the balls of the packing
are used. In Chapter 1 various definitions of packing measures are considered
and relationships between these definitions established.

Chapter 2 presents work which was done jointly with Professor D. Preiss,
and which has been published as such. It is shown here that, with one of the
possible radius-based definitions of packing measure, every analytic metric
space of infinite packing measure contains a compact subset of positive finite
measure. It is also indicated how this result carries over to other radius-based
packing measures in the case of Hausdorff functions satisfying a doubling
condition.

In Chapter 3 a construction is described which provides, for every Haus-
dorff function A, a compact metric space of infinite diameter-based h-packing
measure, with no subsets of positive finite measure. It is then indicated how
such a construction may be modified to deal with certain Hausdorff functions
which do not satisfy a doubling condition, and a radius-based definition of
packing measure.

In Chapter 4 we consider topological and packing dimensions, and show

that if X is a separable metric space, then
dim7(X) = min {dimg(X") : X’ is homeomorphic to X},

where dimg denotes the packing dimension associated with any one of the
packing measures considered in this work, and dim7 denotes topological di-

mension.



Chapter 5 answers the question, for which Hausdorff functions h may
the Hausdorff and packing measures, H"|4 and P"|4, agree and be positive
and finite for some A C R". We show that the assumption that the two
measures agree and are positive and finite on some subset of R" implies that
the function A is a regular density function (in the sense of Preiss). The
converse result is also provided, that for each regular density function A,
there is a subset A of R® such that H"|4 = P"|4 and this common measure

is positive and finite.
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Basic notation

There follows a list of the notation used in the text without definition, which,
although basic, is not completely standard.

R* the strictly positive real numbers

B(z,7)  the closed ball centred at x with radius r

U(z,r) the open ball centred at x with radius »

B(A,r) A+ B(,r)={a+y:a€c A, ye B(0,r)}

UAr) A+U0O,r)={a+y:a€ A, yeU(0,r)}

Clos(A)  the closure of the set A

0A the boundary of the set A

diam(A) the diameter of the set A, that is, sup{dist(z,y): z,y € A}

h(-—) the left continuous modification of a function h: R - R

h{(-+) the right continuous modification of a function h : R — R

wla the restriction of the measure i to the set A, that is, the
measure defined by u|4(S) = u(ANS)

spt i the support of the measure u, that is, the smallest closed

set C such that the complement of C has y measure 0
dist(A,z) the distance between the set A and the point z, that is,
inf{dist(a,z) : a € A}



d\st{f,g) the distance between functions / and g, that is,

sup {dist(/(x),t*(j;)) }
the convex hull of the set 4, that is,

conv(A)

{EiLi :1<n <00, aie 4, Wi> 0, E w*= 1}
Lip(/) if there is ¢ such that dist(/(x), f{y)) < cdist(x,?/)

for all x, y, we say that / is Lipschitz, and write

Lip(/) = inf{c : dist(/(x),/(?/))) < cd\st(x,y) for all x,y}
pol*rope Os o A AS :
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Introduction

This work largely concerns itself with packing measures, which were intro-
duced to complement the theory of Hausdorff measures in [TaTrl, TaTr2,
TrC]. (For a new treatment see also [MaP, Chapter 5].) While Hausdorff
measures are intimately connected to upper density estimates (see, e.g., [FeH,
2.10.18]), much of the importance of packing measures stems from their con-
nection to lower density estimates.

Given a Hausdorff function, that is, a non-decreasing function h : Rt —
R* with h(0+) = 0, we may define a number of packing measures, which
differ from one another both in the notion of packing they employ, and in
whether we consider the radii or the diameters of the balls of the packing.
To deal with the inevitable notational difficulties this presents, we shall use
the symbol P to indicate a diameter-based definition, and the symbol R to
indicate a radius-based definition. We shall also distinguish between packing
measures which rely on different notions of packing, that is, packings which
consist of balls which satisfy different types of disjointness conditions.

In Chapters 2 and 3 we consider the question, when do sets of infinite
packing measure have subsets of positive finite packing measure. In Chap-
ter 2, which is the joint work of the author and D. Preiss, a positive result

is provided, that is, a result which tells us that for analytic metric spaces,
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such subsets exist in the case of the Besicovitch-type radius-based packing
measure denoted below by RP. It is also shown that this result carries over
to the radius-based packing measure denoted by R” in the case of Hausdorff
functions satisfying a doubling condition, that is, Hausdorff functions A for

which we may find a constant ¢ such that for every r > 0,
h(2r) < ch( r).

A similar property for Hausdorff measures, proved by Besicovitch [BeA5],
(see also [BeAZ2],) for compact sets in Euclidean spaces, is an important tool
in the study of Hausdorff dimension, see, e.g., [FaK]. For Hausdorff measures,
the problem has been studied also in general metric spaces: Davies [DaR]
generalized Besicovitch’s theorem to analytic sets in Euclidean spaces, Davies
and Rogers [DaRo] gave an example of a function h for which there is a
compact metric space without this property, Larman [LaD] found a class
of “finite dimensional” spaces for which Besicovitch’s theorem holds, and
Howroyd [HoJ] generalized Besicovitch’s result to arbitrary analytic metric
spaces provided that the Hausdorff function in question satisfied a doubling
condition. (See [RoC] for more information about the theory of Hausdorff
measures on metric spaces.) For packing measures the only previous result
was that of Haase [HaH2| proving the statement in ultrametric spaces.

The work of this chapter has been used in [IkTa] to prove for packing
measures, an analogue of the Frostman Lemma for Hausdorff measures. It
has also been used by Mattila and Mauldin in [MaMa], where the packing
measure function, which maps a non-empty compact subset K of a com-
plete separable metric space X to its radius-based packing measure R*(K),
is shown to be measurable with respect to the o-algebra generated by the

analytic subsets of X, provided that h satisfies a doubling condition. It
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is then remarked that since their proof depended on the existence of com-
pact subsets of positive finite measure, which cannot be guaranteed for the
diameter-based packing measure P", or for R" unless h satisfies a doubling
condition, the question of measurability of these packing dimension functions
remains open.

In Chapter 3 we provide a negative result for the diameter-based packing
measure P", that is, for each Hausdorff function we provide a construction of
a (compact) metric space of infinite diameter-based packing measure which
has no subsets of positive finite measure. This work appears in [JoH], and
answers a question that was asked by P. Mattila and R. D. Mauldin at the
Conference on Fractal Geometry and Stochastics held at Finsterbergen in
June 1994. We also show that this result carries over to the measure R* in
the case of certain Hausdorff functions which satisfy no doubling condition.
The results of these two chapters are constructive, and show clearly the way
in which the existence or non-existence of such a subset depends crucially on
both the definition of packing measure which is adopted, and the properties
of the function h.

In Chapter 4 we consider the relationship between the topological dimen-
sion of a separable metric space and the packing dimensions of its home-
omorphic images. Given any family of packing measures defined for each
non-negative real number, we may define the related dimension; below we
provide a number of different families of packing measures, each of which
will have its own related packing dimension. Therefore the question of when
these dimensions may differ is important for Chapter 4, and is considered in
Chapter 1. The relationship between Hausdorff dimension and topological
dimension is considered in [SzE] and [HuWa].

In Chapter 5 we consider the situation where there is equality of Hausdorff
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and packing measures on a subset of R”, and show that the functions % for
which there may exist such a set are precisely those named regular functions
by D. Preiss, (see [PrD].) This extends fka

see [50Tpj (a proof of which may be found in [MaP]), that if W\4 = P4
is a positive finite measure, then s is an integer and A4 is S-rectifiable. For
this chapter, we use theorems which adapt and extend the standard density-
type theorems, and we rely heavily on the concepts and results of [PrD] and

[MaPr].



Chapter 1

Some definitions and

preliminary results

1.1 Introduction

In this chapter we define the concepts of packing measure and packing di-
mension which shall be used throughout this work. We derive some simple
consequences of these definitions, and consider the inequalities satisfied by
the measures and dimensions thus defined. Since in the following two chap-
ters we concern ourselves with the question of existence of subsets of positive
finite measure, it is of interest to establish the inequalities which hold for
the various packing measures defined below, and to establish if and when
these measures may differ to the extent of one being zero or infinite, and
another positive and finite. For the work presented in Chapter 4, we shall
also wish to know the inequalities which hold for the dimensions defined by
the different packing measures, and on which spaces these dimensions may

differ. For use in Chapter 5, we consider an inequality relating packing and

13



CHAPTER 1. DEFINITIONS AND PRELIMINARY RESULTS 14

Hausdorff measures.

1.2 Packing measures defined

For the first type of disjointness condition we consider in this work, we will
take a packing of a subset S of a metric space M to be a finite collection of

closed balls {B(x;,r;) : x; € S} such that, for each ¢ # j,
B(zi,r:) N B(z;,r;) = 0.

For § > 0, a (radius-type) 6-packing is a packing such that r; < § for
each 1.
We then define R*(S), the radius-based packing measure of S, thus:

RNS) = sup {3 h(rs): {B(z:,:)} a 6-packing of S},
RA(S) = lim RA(S),
Rh(S) = inf {Z R,')‘(S,) 1S C US,,} .
1 1
If we take a (diameter-type) 6-packing to be a packing such that for each i,

diam B(x;,7:) < 6, and utilize a similar notion of disjointness to that above,

we may define the diameter-based packing measure P thus,

PrMS) = sup{z h(diam B(z;,r;)) : {B(x;,7;)} a é-packing of S} ,
F3(S)

I

lim P3(S),
1 1

The second type of disjointness condition we will consider is a Besicovitch-

type condition, where a Besicovitch packing of a subset S of a metric space
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M is a finite collection of closed balls {B(x;,7:) : z; € S} such that, for each
i # 7,
zj ¢ B(zi, ).
A §-Besicovitch packing is a Besicovitch packing such that r; < § for each .
We will distinguish packing measures defined using such a notion of pack-
ing from those using the stricter notion given above, by using a tilde to indi-
cate a Besicovitch-type definition. Then, in a similar manner to the above,

we may define R*(S), the Besicovitch-type radius-based packing measure of
S, thus:

RMS) = sup {E h(r;) : {B(xi,1:)} a 6-Besicovitch packing of S} ,
R(S) = limRY(S) |
R™MS) = inf {ZR{;(S,-) :ScC Us,-} :
1 1
If s> 0 and h,(?") = 7‘3, we shall write an Q(s)a Qsa fOI’ Q?J Qg) Qh’
where Q stands for any of R, R or P, and Q for any of R, R or P. We may

then define the packing dimension associated with the family of measures

{Q*:s > 0} thus:

dimg(S) = sup{s: Q°(S) = oo} = inf{s: Q*(S) =0}.

1.3 A comparison of packing and Hausdorff
measures

For the sake of comparison, and for use in Chapters 4 and 5, we now provide
a definition of Hausdorff measure;
We say a (finite or countable) collection of open sets {U;} is a covering

of a subset S of a metric space M if S C U, U.
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For § > 0, a §-covering is a covering such that diam(U;) < 6 for each 1.
Given a Hausdorff function h, we define H"*(S), the Hausdorff measure

of S, thus:
H}S) = inf {E h(diam U;) : {U;} a 6-covering of S} ,
HMS) = lim HXS).

As for packing measures, we write H* for H"*, where h(r) = r®, and we define

Hausdorff dimension by
dimy(S) = sup{s : H*(S) = oo} = inf{s : H*(S) = 0}.

The next two lemmas are proved elsewhere, see [FeH, 2.8.4] and [MaP,
5.12], but for convenience and completeness we here provide the proofs of

the precise forms we need.

Lemma 1.3.1 If F is a family of closed subsets of a metric space X, with
sup{diam(F) : F € F} < oo, then F has a disjoint subfamily G such that
for each F € F there exists G € G with

FNG +#0 and diam(F) < 2diam(G).

Proof. Consider the class Q2 of all disjoint subfamilies H of F with the
following property: Whenever F' € F,

either FNH = for all H € H,
or FN H # 0 and diam(F) < 2diam(H) for some H € H.

Since this family is partially ordered by set inclusion and nonempty (if G € F
is such that 2diam(G) > sup{diam(F) : F' € F}, then {G} € Q), we may use

Hausdorfl’s maximal principle to choose a maximal totally ordered subset of
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Q, that is, we may find G € Q such that G is not a proper subset of any
member of €.
Let C={FeF:FNU{G € G} = 0}. If K # 0 we could select K € K
so that
2diam(K) > sup{diam(L) : L € K}.

Then we would have that G U {K} € Q, contrary to the maximal choice of
G.

Lemma 1.3.2 Let X be a separable metric space, and let h be a Hausdor[f
function satisfying a doubling condition. Then H*(A) < P*(A) for all subsets
A of X. It follows immediately that dimy(A) < dimp(A) for each A C X.

Proof. Write ¢ = limsup,\o h(57)/h(r). (The doubling condition ensures
that c is finite.)

It suffices to show that H"(A) < P(A) for each subset A of X, and for
this we need only consider those sets A for which P}(A) < co. Let ¢ > 0,
and choose § > 0 such that P}(A) < P*(A) +¢, and such that if r < § then
h(5r) < 2ch(r). Let {B;}¥ be disjoint closed balls with centres in A such
that diam(B;) < § for each i, and

zkjh(diam B;) < PrA) < ij h(diam B;) + .

=1 i=1

Choose a countable dense subset S of A, and apply Lemma 1.3.1 to the
family of closed balls B(x,r) such that z belongs to S, 10r < §, and

B(z,r) C X\ OBi,

i=1
to find disjoint closed balls Bj, Bj, ..., of diameter at most §/5 with centres
in A such that

k
i=1 J



CHAPTER 1. DEFINITIONS AND PRELIMINARY RESULTS

18

and that the combined collection {B; : 1 < i < k} U{B;- :j=1,2...} is

also disjoint. Then

k !
Y h(diam B;) + Y h(diam B}) < P}(A) foreach > I,
=1

=1

Xk: h(diam B;) + ih(diam B)) < P}A)

i=1 Jj=1

k
< Y h(diam B;) +¢,

=1

and so
0

3" h(diam B}) < .

J=1

Consequently,

k (=)
Hp(A) < Y h(diam B;) + Y h(5diam B})
i=1 j=1

IA

k (e}
> h(diam B;) +2c)_ h(diam Bj)

i=1 j=1

P}(A) + 2ce

IN

< PMA)+(1+2)e.

Letting § \, 0 and € \, 0 we see that H"(A4) < P}(A), as required.

1.4 Some easy properties of packing mea-

sures
Lemma 1.4.1 Writing Q for any of R, R or P, we have

(i) QXS) <QXS) if0<o <.

(i) Q4(S) < QNT) i SCT, so.



CHAPTER 1. DEFINITIONS AND PRELIMINARY RESULTS 19

(it}) QXSUT) < QU(S) +QU(T), 570
(iv) QHSUT) = QX(S) + QIT) i dist(S,T) > 6.
(v) QASUT) = Q4(S) + QA(T) if dist(S,T) > .

Proof. The statements (i) and (ii) are obvious from the definitions, and (iii)
and (iv) follow by decomposing an arbitrary packing of S U T into packings

of S and T, respectively. The statement (v) follows from (iv).

Lemma 1.4.2 For every Hausdorff function h and every subset S of a met-
ric space X

1”2{;(5) = R(')’(Clos S).

As a direct result,
R™MS) = inf {Z RY(Ci): S C|JC, and C; are closed subsets ofX} :
1 1

Proof. Suppose n > 0, and the balls B(z1,71),...,B(Zn,Ts) form an 7-
Besicovitch packing of Clos(.S). Choose # > 0 such that the balls B(z,,r; +
B),...,B(xn,rn + B) form an (n + B)-Besicovitch packing of Clos(S). If we
then choose points yy,...,y, of S with dist(z;, ;) < 8 for each i, the balls
B(y1,71),- - ., B(yn,rn) form an n-Besicovitch packing of S, so

Ry(S) 2 3 h(r).

So, for each n > 0,
Ph Ph
Ry (S) 2 R, (Clos S).

The result follows.



CHAPTER 1. DEFINITIONS AND PRELIMINARY RESULTS 20

Lemma 1.4.3 If h is a left-continuous Hausdorff function, then for every

subset S of a metric space X
R&(S) = RE(Clos S).
As a direct result, for such h
R"(S) = inf {i:: RAMC)): S C QC,-, and C; are closed subsets ofX}.

Proof. Let n > 0 and suppose the balls B(zy,71), ..., B(Zn,rs) form an
n-packing of Clos(S). If 0 < € < min{r; : 1 < i < n} we may choose
points y1,...,yn of S with dist(xz;,y:;) < € for each i. Then B(y,r1 — €),
...y B(Yn,rn — €) is an n-packing of S. So

R}(S) = S h(ri—=) =Y h(ry),
and the result follows.

A proof like those above could not be used for diameter-based packing
measure, or for radius-based packing measure in the case where h is not left-
continuous. The problem is that replacing a ball of a packing of Clos(S) by
a smaller ball centred in S itself may greatly reduce the diameter of this ball,
or the value that h takes at its radius.

Lemma 1.4.4 There is a metric space M which has a subset A such that
P}(A) < oo; P;(Clos A) = oo.

Proof. We choose an increasing sequence of integers (n)x, and decreasing
sequences of real numbers ((x)r and (&)r by taking n; = 2, (; = 1, and
& = 1/8; then, for each k > 1, we choose (k41 < €/8 so small that

1 < Ck/2;
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Nk4+1 SO large that
Tt 1Ck+1 = 2k;

and &e+1 < Cx/8 so small that

k11 < /2.
For each k > 1, we construct a metric space (Mj, disty), thus:
Let {ak,j 11 <L J < nk}, {bk’j 1 < ] < nk}, {ylc,i 1< < OO}, and
{zk,ji:1 < j<mg, 1 <i< oo}, satisfy
disti(ak,, ax,;) = G if i # J,
diStk(bk’i,bk’j) = 2Ck if ¢ # j,
distk(ak,,-, bk,,:) = Ck/2,
distk(ak,i,bk,j) = 3<k/2 if 7 # 7,

j-1
diste(yr,i, ye5) = D276 if 1 < j,
I=i

diste(Ye,i, ak;) = 276 + G /2,
disti(Yk,i, bk ) = 276k + Ck,

p—1
diste(zk,j1, 25,5p) = ; 279, if | < p,
disty(2k,j1, ar,;) = 2q_l+1§k,
distk(2k,j1, bk ;) = Cx/2 + 27H1&k,
disti(zk,j1, akp) = G — 27 if 5 # p,
disti(2k,j1, bep) = 3Ck/2 — 271, if § # p,
diste(zk,50, Yep) = /2 + (2774 — 270G,

For each k, write

St = {zkj1: 1 <5 <m},

Te = M\ Sk.
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Let

o l
M=T1UU<HSkXTk+1).

=1 \k=1
Note that no sequence of M may be a truncation of another. So if two

sequences () and (7) in M differ from each other, then there must be some
[ > 1 such that 4; # 71, and we may define a metric on M thus; if (i), (§) € M,
(7) # (j), and [ is the least such that i; # j;, then

diSt((i)> (.7)) = diStl(ilvjl)' .

Let A be the set of those finite sequences in M which have 2 ;; as their
final term, for some k > 1, 1 < j < ny, ¢ > 1. Then Clos(A) also contains
all those finite sequences in M which have ay ; as their final term, for some

k>1,1<j<ng Now

P_g}k(CIOS A) 2 (fl 'nz) Ck/2,
2 =1

since the balls of radius {x/2 centred at the points of Clos(A) which terminate
in the kth place with the term ax; (1 < 7 < ny) are disjoint, and there are
[1%_, my such balls, each of diameter greoker Then ez

We now introduce some notation.

Let (i) € M. We write |(7)| for the length of (i), and if |(i)| > k, we write

Dl = (1, -, 8k)- .

Fixing k, and regarding two elements (i) and (j) of M as equivalent if

)|k = () |k, we write
Ml = {@)|k: () € M},
Al = {()le: () € A}.
We shall also use the notation

A=Al U{(5) € A:|(3)] < k}.
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The usefulness of this notation lies in the following fact;

Packings of A by balls of radius greater than or equal to 2¢,; are
in one-one correspondence with packings of Ay by balls of radius

greater than or equal to 2¢x4;.

This is not hard to see since if (i) and (j) are elements of A, both of length
greater than k, such that (3)|x = (5)|«, then B((¢),r) = B((j),r) for each
r > 2(k4+1. On the other hand, suppose (i) € Ax \ Alx, and 7 > 2()4;, then
either B((%),r) contains only points in A\ Ak, in which case, B((7), ) is also
a ball in A, or it contains some point (j) € Alk, in which case it necessarily
contains every point () such that (5)|x = ({)x-

Therefore, since packings are finite collections of balls,
P21C1 (A) > sup P2141(Ak)-
k>1
Fix (il, e ik—l) € A|k_1. Let
A(il,---ik—l) = {(il,. . ik—l,j) ] = Zkl,i, Some 1 S l _<_ Nk, ') Z 1} .

Then any two balls centred in Ay, ;,_,) with diameter greater than & must
intersect each other, as each must contain (iy,...4-1,ykg) for all ¢ > p, for
some p > 1. The maximum diameter of such a ball is clearly 2(, that is, the
diameter of A,,..i,_,)- Summing over the diameters of any balls of radius less
than or equal to { in a packing of A, 4, _,), gives a total of at most nk&x, so
the contribution to any packing of A, i, ,) by balls of radius greater than
or equal to 2(i4; is at most 2(i + niék.

Now
A U AGieons

(15e-8k—1)
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so the contribution to any packing of A|x by balls of radius greater than or

equal to 2(x41 is at most

(i) (e

i=1

For each k > 1, we have
A=Al U (Ap=r \ {(1y- - yBk—2,2k-15,1) 1 1 £ 7 <mi_1}).
So

Py (Ae) < P (Alk) + Py, (A1 \{(i1, -+ k2, Z—1,1) : 1 < § S myy})
k—1 k
< 2 (H n;) Cre + (H n,-) & + Py, (Ak-1) -
=1 i=1

It is easy to see that
Py, (A1) < 2¢1 + ni,

SO

k j—1 k J
Py (Ar) <26+2) (H "i) G+ ( ni) &,
J 1

Jj=2 \i=1 =1

Py, (A) < 2Cl2i (JI:[ m) G +§ (f[l ”i) &;-

j=2 \i=1
Now the choices of the sequences (n;);, ({;); and (&;); ensure that

J

(H1 m) G/2>2 (Jr:[l m) Cio1/2,

SO (l'[{;l n,-) ¢j/2 — o0 as j — 00, and

P)(Clos A) = 0.

i-1 -2
2 (H ni) G < (H ni) Ci-1»
=1 i=1
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50 3324 ( =1 n,) 2¢; is bounded. Also

2 (f[ n.—) & < (ﬁ n.-) §i-1)
=1 =1

S0 z;;l( f=1n,-) ¢ is bounded. Therefore P}(A) < P (A) < oo, as

claimed.

However, with a certain (rather restrictive) condition on the metric space
X, we may prove that P2(S) = P?(Clos S), and that R3(S) = R}(Clos S)
even when h is not left-continuous. This less general result will be useful in

Chapter 3.
Lemma 1.4.5 Let h be a Hausdorff function. Let X be a metric space sat-
isfying the following condition:

For each ball B(z,r) in X, there ise > 0 such that, if dist(z,y) < €,
then B(x,r) = B(y,r).

Then
P}S) = P}(Clos S), for each S C X,
R}(S) = R}(Clos S), for each S C X.

It follows immediately that

P"(S) = inf {Z P(Cy): SC|JC:, and C: are closed subsets of X} ,
1

1
R*(S) = inf {Z R§(C:): S C|JC;, and C; are closed subsets ofX} )
1 1

Proof. Suppose the balls B(zy,71),..., B(zn,r,) form a packing of Clos(S),
and pick € small enough that for each 1 < i < n we have B(x;, ;) = B(y:,7:)
for each y; € B(x;,€). For each %, choose y; € SN B(x;,€) . Then B(zx;,r;) =
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B(yi,ri), and so each packing of Clos(S) may be viewed as a packing of S.

The result follows.

We note that, even though Lemma 1.4.1 (iii) implies that R}, R and
P} are (finitely) subadditive, they are not, in general, countably subadditive,
which is why the last step in the definitions of R*, R" and P" is needed.
In Chapter 2 we are mostly concerned with Besicovitch-type radius-based
packing measure, and we will use there the proposition below, which provides

a simple criterion for the equality of R and R%.

Lemma 1.4.6 If M is a compact metric space and if for every € > 0, every
6 > 0 and every subset S of M one can find an open set G O S such that
RE(G) < RE(S) +é, then RA(M) = RA(M).

Proof. Let M C U2, S;: and let ¢ > 0. For each i = 1,2,... we choose
6; > 0 such that
RE(S:) < Ry(Si) +27 e

Let G; D S; be open sets such that
RMNG:) < RL(S:) +27 e

Since M is compact, the cover {G;} of M has a finite subcover. So we may

use Lemma 1.4.1(iii) to infer that

oo

RN <Z:RO(G <> (RE(S) +27%) = iﬁg(sne

i=1 i=1

Hence, given any {S;} with M C U2, S;, we have RE(M) < ¥2, RA(S)),
which shows that R(M) < R™(M). The opposite inequality is obvious.
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1.5 A comparison of different packing mea-
sures and dimensions
Lemma 1.5.1 For every Hausdorff function h, R* < R,

Proof. This follows since a 6-packing of a set S is clearly also a §-Besicovitch

packing of S.

Lemma 1.5.2 If h satisfies a doubling condition, then the two measures R
and R" are zero, positive and finite, and infinite, respectively, on precisely
the same subsets of a metric space X. As a direct consequence, dimjz(S) =

dimg(S) for each subset S of X.

Proof. If {B(x;,r;)} is a Besicovitch packing of S then {B(x;,7;/2)} is a
packing of S. Since h satisfies a doubling condition, there is ¢ > 0 such that,
for each i, h(r;) < ch(ri/2). So RMS) < cRXS) and R*(S) < cR*(S),
which, together with Lemma 1.5.1, proves the result.

Lemma 1.5.3 If h satisfies a doubling condition, then P*(S) < ¢cR™(S) for
each subset S of a metric space X, where c is the doubling constant. This

immediately implies that dimp(S) < dimg(S).

Proof. The proof is obvious since the diameter of a ball is less than or equal

to twice its radius.

We now introduce some terminology due to Federer [FeH, 2.8.9] (in a
simplified form which will be sufficient for our purposes). One of the con-
sequences of the results presented in Chapters 2 and 3 is that, for each
HausdorfT function h, there is a compact metric space of infinite R* and P*

measure, which has subsets of positive finite R* measure but none of positive
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finite P* measure. For certain functions h which do not satisfy a doubling
condition, we may also find a compact metric space of infinite R* and R*
measure, which has subsets of positive finite R" measure but none of positive
finite R® measure. It is natural to ask if such examples could be constructed
inside R"™. The next two lemmas imply that they could not.

A metric space (X, d) is said to be {-directionally limited, for some positive

integer ¢, if the following condition holds:

For each a € X and B C X \ {a} such that d(z,c)/d(a,c) > 1/3
whenever b,c € B, b # ¢, d(a,b) > d(a,c), and the point z is

chosen thus,
d(a,z) = d(a,c), d(z,b) = d(a,b) — d(a,c);

we have

|B| < ¢.

A metric space (X, d) is directionally limited if it is (-directionally limited for
some positive integer . Note that Euclidean spaces are directionally limited.
A collection of closed balls {B(z;,7;)} in X is said to be 7-controlled if

1 < 7 < 00, and for each B(z;,r:) # B(zj,r;), one of the following holds;
d(z;, ;) > i > 13/ or d(zi, x5) > 1; > 13/ T
A proof of Lemma 1.5.4 may be found in [FeH, 2.8.12).

Lemma 1.5.4 If 1 < 7 < I-04,a T-controlled collection of closed balls in
a (-directionally limited metric space is a union of 2( + 1 subcollections of

disjoint sets.
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Lemma 1.5.5 If (X,d) is a directionally limited metric space then there is
a constant ¢ such that R*(S) < cP™(S) for each subset S of X. If, in addi-
tion, h is a Hausdorff function which satisfies a doubling condition, then the
measures R* and P are zero, positive and finite, and infinite, respectively,

on the same subsets of X. This directly implies that for each subset S of X,
dimg (S) = dimp(S).

Proof. We first note that Lemmas 1.5.1 and 1.5.3 together imply that it is
sufficient to prove the first statement. Let ¢ be such that X is {-directionally
limited. Let S C X and € > 0. Choose § > 0 so small that

RIS) < (1 +€)RM(S).
Choose 0 < 8§ < 6 so small that 2h(6;) < h(6). Let {B(x:,7;)} be a 6;-
Besicovitch packing of S such that
S h(r) > (1 - ) R(S).
Write
Sl = {iL‘,' : dist (B(.’B,;,T‘i), S \ B(IE,',’I‘,')) < 6},
Sz = {.’L‘,’ i 74 ¢ Sl}
Then {B(z;,r;) : z; € S1}U{B(x;,6) : z; € S} is a §-Besicovitch packing of
S, so
Y {h(r:) : zi € Si} + 3 _{h(6) : z: € S2} R!(S),
E{h(n) cx; € S1}+ 2Z{h(r,~) tx €S} < (1 +5)Rg(S),
(L—e)RE(S) + Y {h(r:) 1z € S;} < (I'+¢e)RA(S),
Y {h(r:) : zi € S} 2eRM(S).

IA

A

IA
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So
S (h(r) 2 € Si} > (1 ) RA(S) - 26RA(S) = (1 - Be) RA(S).

For each ¢ such that z; € Sy, let s; = min{dist(z:,z;) : =i # x;}; then
it is easy to see that there is 1 < 7 < oo such that {B(z;,s;) : z; € S1} is
T-controlled. So {B(x;, s;) : z; € S} is a union of 2¢ + 1 subcollections of dis-
joint balls. Therefore, there is a disjoint subcollection B of { B(x;, s;) : ; € S1}
such that

Y h(r) < D h(si) £(2¢ +1) Y h(diam(B(z, s:)))-

€851 €51 z:€B
Therefore

(1= 3e)R3(S) < (2¢ + 1) P}(S).

Since this is true for each € > 0, each § > 0, and each subset S of X,

Ry(S) < (¢ +1)PNS),
RMS) < (2¢ +1)PH(S),

which proves the first statement of the lemma.

Lemma 1.5.6 If (X, d) is a directionally limited metric space, then the mea-
sures R* and R" are zero, positive and finite, and infinite, respectively, on

the same subsets of X. This directly implies that for each subset S of X,
dimg(S) = dimz(S).

Proof. Let { be such that X is {-directionally limited. Let S C X, and
B be a collection of points of X such that {B(x;,r;): z; € B} is a Besi-

covitch packing of S. It is easy to see that there is 1 < 7 < oo such that
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{B(zxi,ri) : ; € B} is T-controlled. So {B(z;,r:) : ; € B} is a union of 2¢ +1

subcollections of disjoint balls. Therefore there is a subcollection B’ of B such

that
> h(r) <(2¢+1) > h(diam B(z;,s;)).
z;€B z;€B'
Therefore
RES) < (% +1)RKS),
RA(S) < (2 +1)RI(S).

Since this is true for each subset S of X,
RM(S) < (2¢ + 1)RA(S).

Together with Lemma 1.5.1, this proves the result.

Lemma 1.5.7 For any Hausdor[f function h there is a metric space X with
RMX) = R*(X) = 00, PH(X) =0.

Proof. Given a Hausdorff function h, we choose an increasing sequence of
integers (n;); and a sequence (d;); of real numbers decreasing to 0, such that

the points di are points of left continuity of A, and
klim ny...neh(de) = o0,
Z ny... nk_lh(dk) < 00.
k=2
Take X to be the space
X = {(’il,ig,...) 01 S ’ij S n;j for eachj 2 1},

with a metric on X defined thus:
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If () = (¢1,42,...), and (§) = (j1,J2,...) are distinct points of X, and !
is the least index for which 4; # j;, then dist ((2), (§)) = di.
Write

Xiyoiw = 101, -+ Tk Jig1, Jha2y - - ) 0 1 < it < ngeyy for each 1 > 1}.

Then these sets are the nonempty balls of the metric‘ space X.

We now show that R*(X) = R*(X) = .

Fix p>1andlet k > p+ 1. Then if dxy; < d < di, there are precisely
Np+1 - - - Tk disjoint balls of radius d in Xj,,_;,. These balls constitute both a
dx-packing and a di-Besicovitch packing of X;, ;,, and since dy is a point of

left continuity of h,
ng (Xil,...i,,) = Rc’;k (Xil,‘..ip) 2 Tipt1 - - eh(de—) = npyr . .. nih(dk),

which increases without bound as k increases, by choice of (n;); and (o3);.

By Lemmas 1.4.2 and 1.4.5, for each S C X,

RA(S)

inf {Z R{,‘(Ci) : S C UC,-, and C; are closed subsets of S } ,
1 1

R*S) = inf {Z RMCi): S C |G, and C; are closed subsets of S} .
1 1

We may use the Baire Category Theorem to see that if {C;} are such that
X C US° G, then there is 7 such that C; contains an open set, and hence a
set of the form X;, ;, for some p > 1, 1 < i; < n;. This C; then satisfies
RY(C:) = RE(C) = oo.

It remains to show that P"(X) = 0. For each j > 1, there are pre-
cisely ny...n;_; disjoint balls of diameter d; in X, so clearly, P} (X) <
Y32k n1 ... nj_1h(d;). Therefore, P(X) = P"*(X) = 0 as claimed.



Chapter 2

Subsets of positive finite

measure - a positive result

2.1 Introduction

The work presented in this chapter appears in [JoPr]. We show that analytic
sets of infinite Besicovitch-type radius-based packing measure contain subsets
of finite positive packing measure. We also indicate how this result carries
over to the measure R" in the case of Hausdorff functions h satisfying a
doubling condition. We recall that a metric space is said to be analytic if it
is a continuous image of the set N of infinite sequences of natural numbers

(with its product topology).

2.2 Properties of the measure R"

Lemma 2.2.1 If§ >0, n > 0 and Q is a finite subset of a metric space M,
then there is 0 > 0 such that RM(R) > R}Q) — n whenever R C M meets

33
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each of the balls B(z,0), x € Q.

Proof. Let {B(v,r(v)) : v € V} be a é-Besicovitch packing of @ such that
Yeev h(r(v)) > RHQ) — 7. Since the balls B(v,7(v)) are closed, there is
o > 0 such that, if v,w € V, and z(v) € B(v,0), z(w) € B(w,0o), then
z(w) ¢ B(z(v),r(v)). So if R C M meets each of the balls B(z,0), x € Q,
there is a packing {B(w,r(w)) : w € W} of R such that ¥ ,ew h(r(w)) >
RMQ) — 1. So this o has the desired property.

Lemma 2.2.2 If§ > 0 and if M is a finite metric space containing at least
two points, with diam(M) < § and R}N) < REM(M) for every proper subset
N of M, andk p(x,M) = min fclistCx, i yeM, ydx 3§, then

Ry(M) = Y h(r(z, M)-).

TEM
Proof. For any 0 < r, < r(z,M) the family {B(z,r;) : ¢ € M} is a
é-Besicovitch packing of M. Hence R} (M) > Y,enr h(rz), which shows that
Ry(M) > 3 h(r(z,M)-).

rEM
Let a be the maximum of R*(N), where N is & proper subset of M.
Every é-Besicovitch packing {B(z;,7:)} of M which does not have balls
centred at each x € M is a §-Besicovitch packing of some proper subset of

M and therefore verifies

> h(r:) < o
Since @ < RF(M), the supremum defining R?(M) is realized by 6-Besicovitch
packings {B(z;,r:)} of M having balls centred at each point of M. Since for

such Besicovitch packings we clearly have

Sh(r) € X hlr(z, M)-),

€M
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we conclude that

Ry(M) = % h(r(z, M)-). -

2.3 The inductive construction

Lemma 2.3.1 Suppose that M is a metric space, € > 0, 0 < a < o0, and
that 6 > 0 satisfies h(6) < min{e,a}. Suppose further that o € M is such
that R!(B(z0,6/5)) > a.

Then there exist a finite subset K of B(xo,6/4) containing at least two

points and a positive number ¢ < 3 min{r(z,K) : z € K} such that
(i) a < RMK) =Y ,ex h(r(z, K)-) < a+¢, and

(ii) whenever S C B(K,0) and T C B(K,0) N B(S,20) have the property
that, for each s € S, the set TN B(s,20) is either empty or a singleton,
then RX(S) > RMT) —e.

Proof. Write G = U(xo,6/4). Noting that R}G) > R} B(x0,6/5)) > a,
we use the definition of R?(G) to infer that there are finite subsets C of G
with R(C) > a. So we may choose a finite subset L of G with the least
possible number of elements, say m, such that R}(L) > a. Then m > 2,
since otherwise RE(L) < h(6) < a.

Let C denote the family of all m-element subsets of G. We first show
that, whenever C € C satisfies R*(C) > «, then

a < RYC) =Y h(r(z,C)-) <a+e.

zeC
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Indeed, each proper subset N of C sctisfies R¥(N) < o < R!(C) since it has

fewer than m elements. Hence Lemma 2.2.2 implies that

R}(C) = 3 hr(z,C)-).

z€C

Picking any ¢ € C and observing that R?(C\ {c}) < a, we estimate
R3(C) < R(C\{ch) + Ri({c}) s o+ h(6) < a+¢,
which proves that
o< RMC) <a+e.

Write
y=2"m (R}(L) - a) a™l

and define, for every C € C,

F(C)=R;(C)+v Y HRi(R).

RCC,R£C
Observing that F(C) < mh(6) + (2™ — 1)ya, we see that

T =sup{F(C):C e C}

is finite. Let w = min{avy,ey/4} and let K € C be such that F(K) > 7 — w.
Then
RyK) = F(K)-v Y R}R)>T-w-(2"-1)ya
RCK,R#K

> F(L)+va—w- (RQ(L) - a) > a.

So (i) holds for K.
Let n = 3ey(1 +2™y)~!. Using Lemma 2.2.1, we find

0 <o < imin{r(z,K):z € K}
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such that B(K,s) C G, and
R}(R) 2 R}(@) —n

whenever Q C K and R C M meets each of the balls B(z,0), (z € Q).
Writing, for each R C M, )

K(R)={r € K: RN B(z,0) # 0},
we observe that this implies that
R}(R) > Ry(K(R)) —n
for every R C B(K, o).
To prove (ii), let S C B(K,0) and T C B(K,o0)NB(S,20) have the prop-
erty that, for each s € S, the set T'N B(s, 20) is either empty or a singleton.

Let C = TU (K \ K(T)). Then C belongs to C and the correspondence
R Cc C'— K(R) is a bijection between subsets of C and subsets of K. Thus

T > F(C)2 RNC)+yRMT)+y Y.  RNR)
RCC,R#C,R#T

> RAKO)-n+vRD+7 Y (RAK(R)-n)
RCC,R#C,R#T

> RYNK)+YRNT) +~ 3 RMR) — (1+2™y)n
RCK,R#K,R£K(T)

= F(K)+7 (B}(T) - Ry(K(T))) - ev/4
> 7+ (RNT) - RYK(T)) —ev/4-w
> 7+ (RHT) - RYK(T))) - /2.
Hence R!(T) — RM(K(T)) < €/2, which, since K(S) D K(T'), implies that

Ry(S) > R}(K(8)) ~n > Ry(K(T)) —n > R}(T) — /2 — n > RY(T) —«.
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Lemma 2.3.2 Let M be a metric space such that RMG) = oo for every
non-empty open subset G of M, and let € > 0. Suppose further that L is a
finite subset of M having at least two elements.

Then there is A > 0 such that for every 0 < § < A one can find a finite
subset K of B(L,6/4), and a positive number ¢ < 1min{r(z,K) : z € K}
such that

(i) for each x € L the set K N B(x,6/4) has at least two elements,

(i) 3 h(r(z,L)-) < R3(K) = 3 h(r(z, K)=) < 3 h(r(z,L)-) +e¢,

z€L z€K z€L

(i) whenever S C B(K,0) and T C B(K,0) N B(S,20) have the property
that, for each s € S, the set TN B(s,20) is either empty or a singleton,
then RMS) > RMT) -,

(iv) if S C B(K, o) meets each ball B(z,0) (z € K) in at most one point,
then for every n > max{r(z,L) : x € L} there is T C S meeting

each ball B(x,6), (x € L) in at most one point and such that R;‘(S) <
RMT) +e.

Proof. Let w = ﬁ, where |L| denotes the number of elements of the set L.
Let 0 < A < g min{r(z, L) : z € L} be such that
h(A) < min {w, min{h(r(z,L)-) : x € L}},
and such that, for every x € L,
h(r(z,L) — A) > h(r(z,L)-) — w.

Assuming that 0 < § < A, we use, for each z € L, Lemma 2.3.1
with € replaced by w, @ = h(r(z,L)-), and zo = z, to find a finite sub-
set K, of B(x,6/4) having at least two elements, and a positive number

0z < 2min{r(z,K;) : z € K,} such that
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(a) h(r(z,L)-) < RMK;)= Y h(r(z,K;)-) < h(r(z,L)~) + w, and

2€K;
(b) whenever S C B(K,o0,) and T C B(K,o0,) N B(S,20,) have the prop-
erty that, for each s € S, the set T' N B(s,20;) is either empty or a
singleton, then R}(S) > RMT) — w.

We prove that the statement of the lemma holds with
K = Uzer Ke-

The statements that K C B(L,6/4) and (i) are clear. Moreover, (ii) follows
immediately from (a), since r(z, K) = r(z, K;) whenever z € K, and since
Lemma 1.4.1(iv) implies that R}(K) = ¥,cr RI(K,).

Let 0 < o < 3min{o; : £ € L} be so small that B(K,o) C B(L,5/3)
and o < g min{r(z,K) : z € K}. Then Lemma 1.4.1(iv) gives that, for each
R C B(K,o),

R}(R) =Y R}(RN B(x,5)),
€L

which shows that (iii) follows immediately from (b).

Finally, to prove (iv), let n > max{r(z,L) : x € L} and let S C B(K, o)
meet each ball B(z,0) (z € K) in at most one point. We find an n-Besicovitch
packing {B(;),r(v)) :v € V} of S such that ,ep h(r(v)) > RE(S) — /2.
Since V C S € B(K,0) C B(L,6/3) and since § < 3 min{r(z,L) : z € L},
there is T' C V such that, for every v € V, the set T'N B(v, §) has precisely
one point. Let Ty be the set of those ¢ € T for which V N B(t, ) contains
only one point. We define s(t) = r(t) if t € Ty and s(t) = r(z,L) — 6 if
teTy=T\Ty,z€ L and t € B(z,$§).

Let t € T} and x € L be such that t € B(z, §). Using the fact that

VN B(t,8) c B(L,6/3) N B(z,6/3) = B(z,6/3),
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and that V N B(t,6) has at least two points, we infer that r(v) < 6 for
v € VN B(t,6). So {B(v,r(v)) : v € VN B(t,6)} is a §-Besicovitch packing
of VNB(t,6). Using (b) with S replaced by K, and T replaced by VNB(t,$),
we infer that

RNV N B(t,6)) < R}MK,) +w < h(r(z,L)=) + 2w.
Hence

> h(r(v)) < h(r(z,L)—) + 2w < h(r(z, L) — 6) + 3w = h(s(t)) + 3w.
vEVNB(t,6)

Since this inequality obviously holds also if ¢ € Ty, and since {B(¢,s(t)) : t €
T} is an n-Besicovitch packing of T', we obtain

RMS) < Y h(r@)+e/2=3. >, h(r(w)+e/2

vev t€T veVNB(t,6)

< Y (h(s(t) +3w)+¢€/2 <Y h(s(t) +¢
t€T teT

< RMT)+e.

Lemma 2.3.3 Let X be a non-empty metric space and let ¢ be a continuous
mapping of a closed subset Z of N onto X. Suppose that R (o(G)) = oo for
each non-empty relatively open subset G of Z. Then there exists a compact

subset K of X with 0 < RMK) < 0.

Proof. Let Z,,,.n, be the set of those points (mq,m1,...) € Z such that
mo < Ng,...,mp <Ny, and let Fy, 5, be the image of Zy,, .. », under .

By induction we will construct a sequence Ky, K3,... of finite subsets of
X having at least two elements, sequences &, 01, . . . and 0g, 07, . . . of positive
numbers and a sequence ng,ny, ... of natural numbers such that, for each

j=0,1,..,
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(i) Kj C Fry,...n
(ii) 851 < 0j < tmin{r(z, K;) : z € K;} < 165,
(iii) 1< Rg(K;) = Taex;, Mr(z, K;)-),
(iv) B(Kj+1,0541) C B(K;,05),
(v) Kj+1 N B(zx,0;) # 0 for each z € Kj,

(vi) whenever S C B(Kj,05) N Fy,...n;

..... ]

and T C B(Kj,O’j) n B(S,?O’j) N
Fr,...n; have the property that, for each s € S, the set 7N B(s, 20;) is
either empty or a singleton, then jo (S) > jo (T) — 277, and

(Vll) if SC B(Kj+1, O'j+1) N FnO,-~-,nj+1 meets each ball B(Z, 0']'+1) (Z € KJ'+1)
in at most one point, then for every # > max §; there is T C S meeting
each ball B(z,0;) (z € Kj;) in at most one point and such that R,’;(S ) <

RMT) +279.

The inductive construction starts by picking an arbitrary zo € X, choos-
ing & such that h(&) < 1, using Lemma 2.3.1 to find K, and og such that
all the statements pertinent for 7 = 0 hold, and then choosing ng such that
Ko C F,, Assuming that, for some j, the sets K; and numbers é;, o,
and n; have already been defined, we choose 0 < ;41 < o5 so small that
Lemma 2.3.2 can be used with M = Fy,;, _,, and L = Kj. This Lemma then
provides us with K4 and ;4 for which all the requirements hold; n;4, is
chosen so that Kjy; C Fu,, . )y,

Let K = N2, Clos (Upzk Kp). Using (i), continuity of ¢ and compactness
of the set (2o Zng,....n,, We infer that K is a compact subset of (;2g Fr,....np-

Now 0; < 1min{r(z, K;) : z € K;}, so we may infer from (v) and (iv)

that K; N B(x,0;) # 0 for each ¢ > j, each x € Kj. So, for every k,
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Clos (Uka Kp) N B(z,0;) # 0, which, because of (i), continuity of ¢ and
Since clearly K C B(Kj, o) for each k =0, 1,..., we infer from (vi) that
for every S C K

R} (Kx N B(S,04)) < R (S) +27%. (2.1)

Let k=0,1,... and let {B(z,,7,) : ¢ € Q} be an arbitrary §,-Besicovitch
packing of a subset S of K. Choose | > k such that r, > 20; for each
g €Q. Let T} = {z4 : ¢ € Q}. Then T; meets each ball B(z,0) (z € K))
in at most one point. We use (vii) to define, by backward induction, sets
Ty D Ti—1 D -+ D Ti such that, for each 7 =k, k+1,...,[, the set T; meets
each ball B(z,0;) (z € Kj;) in at most one point and such that R(’,-‘k (Tj+1) <
R: (T;) + 277 for each j = k,...,l — 1. Hence

R}, (L) < Ry, (Te) + 2754,
Defining T = {x € Kj : Ty N B(x,0x) # 0}, we conclude from (vi) that
> h(rg) < Rj, (Ty) < Ry, (Ti) + 27 < RR(T) + 2742,

q€Q

Observing that T = K N B(S, ox), we therefore havé
RA(S) < RA,(Ki N B(S, 0%)) + 27++2 2.2)

for every S C K.

Using (2.1) with S = K and (iii), we get that R2 (K) > Rl (Ki) —27% >
1 —27*. Since §; — 0 as k — oo, this shows that R}(K) > 1.‘ On the other
hand, (2.2) with S = K and k = 0 gives R}(K) < R (K) < R (Ko) +4 <
00. Consequently,

0 < RMK) < .



CHAPTER 2. A POSITIVE RESULT 43

For arbitrary S C K we use (2.2) with S replaced by K N B(S,20%) to
infer that

RY(K N B(S,20k)) < RE (K N B(S,20x)) < RE (Ki 0 B(S,a%)) + 2752
Hence (2.1) gives

R§(K N B(S,20x)) < B, (S) +2744°

containg

for any k =0,1,... and any S C K. Since K N B(S,20) B an open subset
of K containing S, and since 6, — 0, this shows that the assumptions of

Lemma 1.4.6 are verified. Hence we may use it to conclude that

R"(K) = R (K).

2.4 The main results

Theorem 2.4.1 Let X be an analytic metric space such that RM(X) = oo.
Then X has a compact subset K with 0 < RM K) < oo.

Proof. Suppose not. Let ¢ : N — X be continuous and onto. Let
H=U{GCN: G is open, R" (¢(G)) =0}.

Then R*(p(H)) = 0, by the separability and metrizability of V.

Let Z=N\H and Y = ¢(Z). Then, for each non-empty open subset G of
N, either R* (¢ (Z N G)) = 0o or ZNG = 0, because if R (¢ (Z N G)) # oo,
then

R (0 (G) S RH (9 (GN 2) + R (p(G\ 2)) = 0,
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implying that G C H, and so GNZ = 0.
Apply the previous lemma to the sets Z and Y, and the restriction of the
function ¢ to Z, to find a compact subset K of Y with R*(K) positive and

finite, and hence a contradiction.

Theorem 2.4.2 Let X be an analytic metric space such that R*(X) = oo,
and let h be a Hausdorff function satisfying a doubling condition. Then X
has a compact subset K with 0 < R*(K) < oo.

Proof. This follows from Theorem 2.4.1 and Lemma 1.5.2.

Theorem 2.4.3 If X is a directionally limited analytic metric space, the
function h satisfies a doubling condition, and P*(X) = oo, then X has a

compact subset K with 0 < P*(K) < oo.

Proof. This follows from Theorem 2.4.1 and Lemma 1.5.5.



Chapter 3

Subsets of positive finite

measure - a negative result

3.1 Introduction

This chapter deals with the work which appears in [JoH]. In Section 3.2
we fix a Hausdorff function h, and construct a compact metric space K of
infinite diameter-based packing measure which has no subsets of positive
finite measure. In Section 3.3 this construction is modified to deal with
the case of certain Hausdorff functions A which do not satisfy a doubling
condition, and the radius-based packing measure R".

We now consider some of the properties of the measure P* which mean
we cannot guarantee the existence of a subset of positive finite measure of an
analytic (or even a compact) metric space of infinite measure. In taking the
diameters of the closed balls of a metric space rather than the radii one is
restricted to values which are attained by the metric, whereas at every point

there are, of course, balls of any positive radius. So if the metric on a space

45
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is extremely sparse, the possibilities for sums of the form 3 h(diam B) are
more restricted than those for sums of the form }° h(radius B).

If a set S has R%(S) positive and finite, then we may find a Besicovitch
packing {B(z,r)} of S such that 3 h(r) closely approximates R*(S). The
construction below is of a metric space which has different balls of the same
diameter, even centred at the same point, which contain in some sense widely
differing amounts of the space. The hope is that if 0 < P"(S) < oo, this
will make it difficult to approximate P2(S) using some sum of the form

3" h(diam B(z,r)).

3.2 A counter-example for diameter-based
packing measure

Fix o, > 0, and choose an integer n; > 16 sufficiently large that h takes a

value in the range
[5/2 h(o1)(r1 — 1)72,3h(01)n7?]

at more than one point of (0,0,/2). This is possible, since h(0+) = 0 and

since the intervals
{[8/2 o) (m = 1)2,3h(o)n""] : n > 16}

overlap, and together cover the interval (0,d), for some d > 0. So for each
N > 1, there is n > N such that the interval [5/2 h(01)(n — 1)72,3h(01)n"?]
contains the image under h of more than one point.

Set ny = n,, and choose 0 < 03 < €; < 01/2 so that h takes values in this

range at o9 and €1. Let 51 =01 — €.
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In general, if ox41, €k, Ok and nax—1 = N2k are chosen, we choose integers

Nok+1 = Nok42 sufficiently large that
N2ok+1 Z 2k+4:
2
(H n,-) h(ok1)nge < 275,
=1

and h takes a value in the range
[5/2 h(oks1) (ks — 1) 72, Bh(ok1)nzds

at more than one point of (0,0%41/2). Then 0 < k4o < €xp1 < Op41/2

may be chosen so that h takes a value in this range at ox42 and €x41. Let

5lc+1 = Ok+41 — Ek+1-

These choices ensure that
(i) Ok41 = Okt1 + k41,
(ii) €rs1 < k1,
(ili) Ore2 < €kt
(iv) h(ors2)h(oks1) '3y < hers1)h(ok+1) 103y, < 3,
(¥) h(r)h(0e) Haers — 17 2 572,
(vi) (T4 1s) ((Eks1) — b (0k42)) < 275
The sequences thus inductively chosen clearly satisfy
(vii) 12, nyt < 00, (since ngky1 = noxge > 2514),
(viti) g2, 25l < oo, (using (iv) and (vii)),

(ix) limg_eo ( % n,-) h (ok4+1) = 00, (using (v)).
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We take K to be the space
K = {(i1,12,...) : foreach j >1,1<4; < n;},

and provide K with a metric thus; if (3) = (i1, %2, ...), and (5) = (J1,J2,--)
are distinct points of K, and [ is the least index for which 4; # j;, then

dist ((2), (7)) = €1 if [ is even,
dist ((¢), () = 652-_1 if  is odd, and 4141 = Jiy1,
dist ((2), () = o if | is odd, and 4141 # Ji41-

It is not hard to see that this is indeed a metric on K, and that K is a
compact metric space, since it is complete and totally bounded; only the
triangle inequality requires verification.

Suppose (i), (j) and (k) are three distinct points of K. First, suppose
dist ((2), (k)) = €4 for some even I. Then (iy,...4-1) = (k1,...ki—1), and
it # ki. If one of dist ((7), () or dist ((5),(k)) > €L then the triangle in-
equality certainly holds. If not, then (ji,...5) = (41,...4), and (j1,...J51) =
(k1. .. ki), implying that ¢; = k;, which is a contradiction.

The case dist ((7), (k)) = 6525_1 for odd [ is similar."

If dist ((3), (k)) = o for odd [, then (iy,...%-1) = (k1,...ki1), 6 #
ki, and 441 # kiy1- If one of dist ((3), (7)) or dist ((5), (k) > o, then
the triangle inequality holds. Otherwise, dist ((z), (7)) < g1 SO either
dist ((2), () = 652-_1, that is, (j1,...J1-1) = (41,-..%-1),% # 71, and 414, =
Jit1, OF (J1,---J1) = (41, ... 4); and similarly for dist ((5), (k)).

We cannot have #; = ki, so one of dist ((¢), ()) = 61%1 or dist ((), (k)) =
5:_?. Without loss of generality, suppose the former. Then 441 = ji41. Since
t1+1 7 kiy1, we must have 54y # ki1, and so dist ((5), (k) = €i1. But, by

choice, oy = 6%_1_ +eu, and so the triangle inequality holds.
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If we write
K, i = {(G1y- - - tky Jiot1, Jht2y- - ) 0 1 < Jryt < ey for each | > 1},
then, for (i) in K,

B((i),€x) = Kiy,.iper>

B((2), 0%) = Kiy,..ini >

B((1),86) = Ky YU { Koy iy g 1 1 S5 < a1, # 2kt )
diam (B ((¢), &)) = &,

diam (B ((i), ox)) = diam (B ((2), 6)) = o%.

These balls are the only nonempty balls in K.
The construction described above is a variation on a familiar theme. Sup-
pose we have sequences (n;); and (d;);, with d; \, 0. Consider the following

metric space;
M = {(i1,42,...) : 1 <45 <ny for each j > 1},

with a metric on M defined thus:

If (i) = (i1,%2,...), and (j) = (41, J2,...) are distinct points of M, and [
is the least index for which 4; # 7, then dist ((2), (7)) = d;.

We can think of this space as constructed by dividing the space into
islands, that is, into some finite number of disjoint parts which satisfy the
condition that everything on one island is at some fixed distance from ev-
erything on any other island. Then each of these islands is subdivided into
smaller sub-islands, which are at some new and smaller distance from each
other sub-island of the same island, and so on. Clearly the balls of this metric

space are precisely the sets M;, ;,, that is, the islands.
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To get the metric space K described above, we now alter this construction
by taking two steps at a time, that is, we divide K up into n; islands and then
each of these into ny sub-islands. The metric this time is such that each sub-
island has a “partner” sub-island on each other island, which is slightly nearer
to it than are the other sub-islands of that island, and the distance between
sub-islands of the same island is chosen to make the triangle inequality exact.

And so on.
Lemma 3.2.1 P*(K) = oo.

Proof. Fix p > landlet1 < i < my,...,1 < i < n,. Then, for
k> p+1, P;Z (Kil,...ip) > Npyi - - Nok—2h(0k). To see this, note that
B ((¢),0k) = Ki,,. .i_,, and so the number of distinct balls of radius (and
diameter) oy centred in Ki,,..i, is precisely np41 ... ngk_2. So P;‘k (Kil,...ip) >
Np+1 - . . Nok—2h(0k), which increases without bound as k increases, by choice
of (n;); and (03);, so PP (K,-l,,_,,-p) = 00.

The metric on K satisfies the conditions of Lemma 1.4.5, so we see that
(o <] (o <]
PMK) = inf {Z PMNC): K C JC:, and C: are closed subsets of K} .
1 1

If K C U°C; for some collection {C;} of closed sets, then by the Baire
Category Theorem there is ¢ such that C; contains a nonempty open set,
and therefore some set Kj,, ;,, and so satisfies P}C;) infinite. The result

follows.

Lemma 3.2.2 If S C K satisfies 0 < P}(S) < oo, then, for éach{ >0 and
a > 0, there is n > 0 such that, if {B;} is an n-packing of S, then

Py (SnU{B:: h(diam B;) > 1 +&)PHS N B)}) < e
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Proof. Suppose not. Then there exist £ > 0 and a > 0 such that for every
n > 0 we may find an 7-packing {B;} of S such that

P} (SnJ{B:: h(diam B;) > (1 + ) RX(S N By)}) > a.
Fix n > 0, and choose such a packing {B;}. Write
S1=5 n J{B;: h(diam B;) > (1+&)RH(SN B;)},

and
Se =S\ S1.

Note that, due to the structure of K, the sets S; and S, are at a positive

distance from each other and so by Lemma 1.4.1(v)
F3(S) = F(8) + Fp(5a).

Choose ' < 7 sufficiently small that no ball of radius 7' centred in S,
intersects those balls B; of the packing centred in S;. Then, for any g > 0,
we may choose {D;} an 7/-packing of S, satisfying

" h(diam D;) > (1 — B)PA(Sa).

Those B; centred in S; together with {D;} form an n-packing of S, and

may be taken arbitrarily small, so
Pi(S) 2 (1+&OF(S) + Fi(S2)
> F(S)+¢a.
n > 0 was arbitrary, so o = 0, which is a contradiction.

Although Lemma 3.2.3 will not actually be used ;'—.mgain, we provide it for

the sake of completeness.
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Lemma 3.2.3 If S C K satisfies 0 < P}S) < oo, then for each £ > 0,
a >0, and n > 0 there is an n-packing {B;} such that

>~ {h(diam B;) : h(diam B;) < (1 - §)PHSN B)} < o

Proof. Suppose not. Then, for some £ > 0, @ > 0 and n > 0, every

n-packing {B;} of S satisfies
> {h(diam B;) : h(diam B;) < (1 - E)PHSN By} >

Write

v = min {§ a8 } .
2" 4(1 - &)P(S)
Then for each n > 0 we may find an n-packing {B;} of S such that

> h(diam B;) > (1 —v)P}(S).
Fix n > 0, let {B;} be such an n-packing, and write
Si=8 n J{B;: h(diam B;) < (1 - §)PH(SN B},

and
Sp =8 n J{B;: h(diam B;) > (1 - RXSN By)}.
Then Y {h(diam B;) : B;N S; # 0} > a. Due to the structure of K,
Fy(S1+ 52) = Py(S1) + Fo'(S2) = 1 Fy(S N By).
So l
> h(diam By)
> (1—9)PHS1US,)

= (L=7)(P(S1) + P (S2))

> (1—19) ((1 -6 Y h(diam B;) + P(,"(Sz))

B;NS1#0

1 _6/2 . a§
-o1=¢ B,-gaéw ildiam B;) + (1 B 4(1 - §)P(§'(S)) Poh(Sz).
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Z h(dlam B,')

B;NS2#0

§ . ' _ ag h
2 209 B‘.,;Sl#”(d‘amB‘”(l amE) B

RIS
> Pg(sz)+2(1af 5 (1— 210’é£(§‘)))
> Pé‘(Sg)+;1(—1a—ET).

Choose 7 < n sufficiently small that no ball of radius 7’ centred in S\ S
intersects those balls B; of the packing centred in S;. Then, for any 8 > 0,
we may choose {D;} an 7/-packing of S\ S, satisfying

> h(diam D;) > (1 - A)P(S\ S2).

Therefore, for every n > 0,

PMS) = RS\ So) + PP(S2) + 4(3—55)-

Since P3(S) = PMS \ S2) + P2(S:), and since 7 > 0 was arbitrary, we get

ea = 0, which is a contradiction.
Lemma 3.2.4 No subset S of K satisfi>s 0 < P3(S) < oo.

Proof. Suppose some subset S of K satisfies 0 < P*(S) < oo. Writing
§ = 4/68/67 — 1, we may use Lemma 3.2.2 to choose 1 > 0 sufficiently small
that, for every n-packing {B;} of S,

P} (SnUJ{B:: h(diam B;) > (1 +€)PH(S N B)}) < P3(S)/798.

Choose k so large that o, < 7, and that each of the following holds,

(H n) (h(e;) = h(os11)) < BE(S)/T98 for each 5 > k,

=1
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> " ngph(op) th(op4a) < 1/3990.

p=k
Let {B;} be a ox-packing of S satisfying

> 398

h
- 399P (5)-

" h(diam B)

If we then remove from {B;} all of those balls B; such that h(diam B;) >
(14 &)P2(S N B;), and replace all of the at most [[2;' n; balls of diameter
€; by the (smaller) concentric balls of radius and diameter 7,41, the resulting
collection, which we will refer to as {C;}, is again a packing of S, and satisfies
both

h(diam C;) < (1 + €)P}(S N C;) for each j,

P"(S) 397 .

399 — 399 39970 (5)-

Suppose that the largest ball appearing in the packing has diameter o;;.

> h(diam C;) > 3 h(diam B;) —

For each p > [, label the sets K, ;,,_, (that is, the distinct balls of diameter
equal to radius o, within K) which intersect S by Z,1,...Z, np)- For each
1 £ 7 £ N(p), write M(p,j) for the number of balls of the packing of
diameter 0,41 contained in Z, ;. (Note that M (p,j) may be zero for some
9,J.)

Then, for each p and 7, one of the following holds,

(i) M(p,j) > 0and h(s,)/5 < 2 M(p,5)~ P (Z,; N S),

(ii) Either M(p,j) > 0 and h(op)/5 > 2ng,M(p, 5) ' P (Zp; N S),
or M(p,j) = 0.

For every p and j for which case (i) holds,

. N2p h
(p’]) = ]'Oh( p) 0 ( P,J )7
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M(p, j)h(op+1) < 10%:51)%‘(1”-05).

Fixing p, and summing over all such j, we see that the contribution to the
packing by balls of diameter 0,41 contained in those balls Z,, ; for which case
(i) holds is at most

Naph(0p+1) pn
10—F—"—Fy(5),
Moy 0O
and that the contribution by all such balls is at most
noph Up+1) < h 1 — P(;I(S)
10P S),;c—h( ) 10P) (S)3990 2399

For each p and j for which case (i) holds, remove all balls of diameter op41
contained in 7, ; from the packing {C;}. Write D for the packing of S con-
sisting of the balls which remain, and partition D into two subcollections D;
and D, the first consisting of the balls of D of diameters o2;_1, the second,

those of diameters a5;, for > 1. Then, since D C {C;},
h(diam D) < (1 + ¢)P}(S N D) for each D € D.

Also

" {h(diam D) : D € D} > %P"(S)

and at least one of the following holds,
> h(diam D) >1/2 > h(diam D),
DeDy DeD

or
Y h(diam D) > 1/2 Y h(diam D).

DeD, DeD .
Without loss of generality, suppose the former holds. Let p be even, and p

and j satisfy case (ii). If M(p,7) # 0, write Dy,... Dum(p,j) for the balls of

diameter 0p+1 contained in 7, ;, and Dy, ... Djy, 5y for the concentric balls
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of radius 6, and diameter o,. If we write D;1(0pt1),. - - Di(2ny,—1)(0p41) for
the distinct balls in K of radius 0,41 contained in D, then

2ngp—1
B (DinS) = > Py (Dik(opt1)NS),
k=1
M(pr]) M(sz) 2’1'2]7'_1

Z Poh (D: N S) = Zl l; Pé‘ (Di,k(ap+l) N S)

=1

< (2ny - V)PP (TN S),

since no ball of diameter 0,4, is contained in more than (2n,, — 1) distinct
balls of radius 6.
So we may choose 1 < i < M(p,j) with

P(;t (D: NnS) < 2n2pM(paj)_lP0h (Zp,;NS).

(Al chall wrile D’, fr the chosen ball D,{’,

J
In this manner we may choose such a ball D, ; for each even p > [, and
each 1 < 7 < N(p) for which M(p, j) # 0.
Choose i so large that o0; < diam(D) for every ball D of D, and use
Lemma 3.2.2 to find a o;-packing of SNU {D : D € D,}, such that each ball

Q of this new packing satisfies
h(diam Q) < (1 +&)Pp(SNQ),
and, summing over this packing,
> h(diam Q) > (1+¢&)7'Py (SnU{D: D€ D,}).
We replace all the balls of D, by the balls of this new packing. Note that

3" h(diam D) < (1 +&)*_ h(diam Q).

DeD,
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For ease of reference we will write {Q;} for the packing of S consisting of
D, together with this new packing of SN U{D : D € D;}. Then we may

estimate

> h(diam D) < (1+¢)? ) h(diam Q).

DeD i
Note that the balls D,, ; chosen above either contain, or are disjoint from, any

ball {Q;} of this packing. This is because a ball of diameter o, and radius 8,
may only intersect but not contain another ball of the same diameter, and
radius less than diameter, or a ball of diameter é,,, neither of which may
appear in {@;}, for p even.

Now, for every ball D, ; we have

S {h(diam Q;) : Q: C D} < (1 +EPHSNU{Qi: Qi C Dpj})

(1 + §)P(;l (S N Dp,j)

(1 +§)ﬂgl).

IA

IA

Let p be the smallest such that there is at least one ball D, ;. We modify the
packing {Q:} by replacing all those balls contained in D, ; by D, ; itself, for
each such j. Write M, ; for the number of balls of diameter 0,,; contained
in Z, ;\ Dp,;. Then M; ; < (ng, — 1)%. Taking sums over all j such that there
is a ball D,,‘, s

Y hop) + 3 My, ;h(0p41)

Y X {h(diam Q; : Q; C Dy} + 3; My ih(0p41)
> Y; [h(op) + (ngp — 1)°h(0p41)]
X[ +&)h(op)/5 + (n2p — 1)2h(0p41)]

1 4 (ngp — 1)*h(0p41)h(0p) ™

(1 +8)/5 + n3h(0p4+1)h(op) !

1+5/2

1+&/5+3

35

33

2

v

v
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using € < 1/2. Letting p increase, and modifying the packing in this manner
at each stage for which there is a ball D, ; such that those Q; contained in
D, ; have not already been replaced, we obtain a new packing P for the set
SN{D:DeD}u{Q;:Q; C D,; for some p,5}) such that

T hdiam P) 2 gg " {h(diam D) : D € Dy}

+ —g—g >~ {h(diam Q;) : Q; & D1, Q; C D,; for some p,5}.

Write P’ for the packing of S consisting of the balls of P, together with
{Qi: Qi C Dy, QiNDyj =0 for each p,7}. By assumption,

> {h(diam D) : D € D;} > 1/2)_ {h(diam D) : D € D},

and so
Y h(diam P) > —Zh(dlam Q) > ' hdiam D) > 222 pis),
Pep’ 66 5 133

by the choice of the balls {Q;} to satisfy
(1+€)*Y h(diam @;) > > h(diam D),
i D

and the choice of D to satisfy
132
~ 133

So P}(S) > 13 P}S) for every I, and hence PJ(S) could not have been

Z h(diam D) > ——P}(S).

positive and finite.

Theorem 3.2.5 Every subset S of K satisfies one of P*(S) = 0 or P*(S) =

0.

Proof. If S C K satisfies P*(S) < oo, then for each € > 0 we can find sets
{Si}, with S CUS;, PM(S) < (1 +¢€) i PE(S;) and P (S;) < oo, for each i.
So by Lemma 3.2.4, P#(S;) = 0 for each 4, and P*(S) = 0.
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3.3 A counter-example for radius-based
packing measure

We now turn our attention to the radius-based packing measure R*, and
prove that if a Hausdorff function h satisfies the following conditions, (a
stronger assumption than that h does not satisfy a doubling condition), we
may construct a compact metric space K, such that R*(K) = oo, and each
subset S of K satisfies one of R¥(S) = 0, or R}(S) = .

We require of h that we may find sequences (n;);-and (o;); satisfying
(i) nok-1 = nax,
(ll) Ok < ok/2,

such that there are constants ¢; and ¢, with 1 < ¢; < ¢ and ¢ — ¢; < 1,

with
(iii) Tp2, e < 00,
(iv) h(%=)h(or—)""nd <
(v) h(%=) hlox—) "} > c,

R ok
(vi) lerg (;1;11 n,-) h (—é-—) =00 .
Using (iii) and (iv) we see that
vii T B —
(vii) k; h(ors)
To see that such functions exist, choose a sequence of integers (n;); and

a positive sequence (o;); such that (i), (ii), and (iii) are satisfied, and use
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the requirements (iv), (v) and (vi) to prescribe the values h(o;) and h(0i/2).
Then let h be constant on the intervals [0;/2, ;) and [0i41,0i/2).
We then take K to be the space

I~(={(z’1,i2,...): for each j > 1,1 < i; < ny},

and provide K with a metric thus; if (§) = (¢1,4s,...), and () = (j1,72,- - .)

are distinct points of K, and [ is the least index for which 4; # j, then

dist ((2), (7)) = op/2if L= 2p,
dist ((Z), (j)) = 0’,,/2 ifl= 2p - 1, and il+l = j1+1,
dist ((2), (4)) = opifl=2p—1, and 141 # Ji+1.

The proof that K is a compact metric space is identical to the proof in
Section 3.2 that the space K constructed there is.
Note that, if (i) € K, and or/2 < r < oy, then

B((#),r) = B((9),0x/2)
kil,...qu_l U U {ki1,...i2k_2,j,i2k 1 S .7 S n2k—l’j ?é i2k—l} )

I

and
sup {h(r) : O’k/2 <r< O’k} =h (Gk—) .

If o, <71 < 0k_1/2, then
B((3),7) = B((3),06) = Ki,.i0s_s»

sup {h(r) : ox <7 < ox_1/2} = h ("—’;'—1-) .

These are the only nonempty balls in K.
We now define a new function g by taking g constant, with values h(ox—)

and h(ox/2—~) , respectively, on the intervals [ox/2,0k), and [ok41,0%/2) . It
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is not hard to see that R¢ and R" are identical on K. However, the function
g has the useful property that, if B((i),r) = B((3), s), then g(r) = g(s). So
when we pack K, we may assume that every ball has radius o} or o%/2, for
some k > 1.

Note that, by Lemma 1.4.5
RI(S) = inf {f: R(C:): S C DC,-, and C; are closed in M} .
1 1
With proofs similar to those of Lemmas 3.2.1 and 3.2.2, we have
Lemma 3.3.1 R4(K) = oo.

Lemma 3.3.2 If S C K satisfies 0 < R§(S) < oo, then, for each £ > 0 and
a > 0, there is 1 > 0 such that, if {B(x;,r;)} is an n-packing of S, then

B (SNU{B:: 9(r) 2 1+ ORYSN BY}) <o
Lemma 3.3.3 No subset S of K satisfies 0 < R3(S) < .

Proof. The following is very similar to the proof of Lemma 3.2.4, however
the differences are sufficiently significant for this proof to be given in full.
Suppose some subset S of K satisfies 0 < R3(S) < oo. Write & =
[(646¢1+2¢2)/ (5+5c1+3c2)]7—1, and ¢ = 1—(9+9¢1+7¢2)/(10+10c; +6c2).
We choose 1 > 0 sufficiently small that, for every n-packing {B(zi,7:)} of S,

RS (SN ULB@sm) - 9(r) > (1 +ERYS N Blai,r))}) < SRAS)

Choose k so large that ox < 7, and that

> rapg (0p41) 9(0/2)™ < Sl +e1 — ).
p=k

Let {B(z:,7:)} be a ox-packing of S satisfying

>_g(rs) > (1-¢/3) RE(S).
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If we then remove from {B(z;,7;)} all of those balls B(xzj,7;) such that
g(r;) = (1 +&)R3(S N B(zxj,15)), the resulting collection, which we will refer
to as {C;}, is again a packing of S, and satisfies both

g(radius C;) < (1 4+ &)R3(S N C;) for each j,
and

S stradivs G) > Ygtradius 5) - $R(5) > (1- 5 ) #(5).

Suppose that the largest ball appearing in the packing has diameter
o1+1- For each p > [, label the sets I~(.-1,,,_,-2p_2 which intersect S by
Tpas---Ioynp). For each 1 < j < N(p), write M(p,j) for the num-
ber of balls of the packing of diameter 0,41, that is, of the form f(il,,,,,-zp
or R}l,m,rzpﬂ uuy {I?,-l,,,,,-zp,j,,-zﬁg 11 <3 < ngpy1,J # i2p+1}, contained in Zp, ;.
(Note that M (p,j) may be zero for some p, 5.)

Then, for each p and 7, one of the following holds,

(i) M(p,5) >0 and (1+ c1 — c2)g(05/2)/3 < 2n2p M (p, §) 7' RG (Zp; N 5),

(i) M(p,7) > 0 and (1+ ¢, — c2)g(0p/2)/3 > 2y B (T 1 ) /M (D, 5);
or else M(p,j) = 0.

For every p and j for which case (i) holds,
6n2,,
(1+ e —2)g(0p/2)

. 6n g(O’p 1) g
M(p,j)9(op1) < a +Clz”_02);(ap /2)R0(Ip,jn5).

Fixing p, and summing over all such j, we see that the contribution to the

M(p,j) < R3 (LN S),

packing by balls of diameter 0,41 contained in those balls Z,; for which

case (i) holds is at most

6n2pg(0p+1) g
(T a - c)goy) &)
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and that the contribution by all such balls is at most

6RI(S) & nopg(0pen) 6RI(S) C((l+ci—ca)  (pg
A+a-ca) 5 9(0s/2) *lta-a) 18 = 3H0(5)-

For each p and j for which case (i) holds, remove all balls of diameter op41
contained in Z,; from the packing {C;}. Write D for the packing of S con-
sisting of the balls which remain, and partition D into two subcollections D,
and D,, the first consisting of the balls of D of diameters o2;_1, the second,

those of diameters o3, for § > 1. Then, since D C {C;},
g(radius D) < (1+ &)R3(S N D) for each D € D.

Also
3" {g(radius D) : D € D} > (1 —¢) RY(S),

and at least one of the following holds,

> g(radius D) > 1/2 ) g(radius D),
DeDy DeD

or

3 g(radius D) > 1/2 3 g(radius D).
DeD, DeD

Without loss of generality, suppose the former holds. Let p be even, and p
and j satisfy case (ii). If M(p,j) # 0, write D,,... Dypyp,j for the balls of
diameter 041 contained in 7, j, and Dy, . .. Dy, ;) for the concentric balls of
radius 0,/2. If we write D;1(0p+1), - - - Di(2ny,—1)(0p41) for the distinct balls
in K of radius o,,, contained in D}, then

2n2p—1

RI(DiNS) = > R§(Dix(op+1)NS),
k=1

M(p,j) M(p.j) 2n2p—1

Y. RIDiNS) = 3 Y BE(Dix(op+1)NS)
k=1

i=1 i=1 =

< (2nyp — )Ej(Zp;NS),
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since no ball of radius op41 is contained in more than (2ng, — 1) distinct balls
D;.

1]

So we may choose 1 < i < M(p, j) with
Rg(DiN S) < 2nppM(p,5) " R§ (TN S)

Rename this ball D, ;.

In this manner we may choose such a ball D, ; for each even p > [, and
each 1 < j < N(p) for which M(p,7) # 0.

Choose ¢ so large that o; < radius(D) for every ball D of D, and use
Lemma 3.3.2 to find a oi-packing of SNU{D : D € D,}, such that each ball
Q of this new packing satisfies

g(radius Q) < (1 +£)Rg(SNQ),

and, summing over this packing,

> g(radius Q) > (1 + &)™ R} (S NnUJ{D:De DQ}) .

We replace all the balls of D, by the balls of this new packing. Note that
> g(radius D) < (14 €)Y g(radius Q).
Dy
For ease of reference we will write {Q;} for the packing of S consisting of
D, together with this new packing of SNU{D : D € D,}. Then we may
estimate

;g(radius D)< (1+4¢)? Zg(radius Q).

Note that the balls D, ; either contain, or are disjoint from, any ball {Q;}
of this packing. This is because a ball of radius ¢,/2 may only intersect but
not contain another ball of the same diameter o, and radius at least than

0p/2, which may not appear in {Q;}, for p even.
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Now, for every ball D, ; we have

S {g(radius Q) : Q: € Dps} < (1+&RESNU{Qi: Qi C D)
(1 + R (SN Dy)
< 1+ +a - a)glo,/2)/3

IA

Let p be the least such that there is at least one ball D, ;. We modify the
packing {Q:} by replacing all those balls contained in Dy ; by D, ; itself, for
each such j. Write M, ; for the number of balls of diameter o, (and radius
less than ¢,/2) contained in Z,, ;\ D,, ;. Taking sums over all j such that there
is a ball D, ;, recalling that g(radius D, ;) = g(0,/2), and using the fact that
Mj ; < (ngp — 1)?, we see that

pIF 9(0p/2) + 5 Mgl),jg(ap+l)
;i {g(radius Qi : Qi € Dp;} + X M, ;9(0p41)
S ¥ [9(0p/2) + (n2p — 1)%g(0p41))]
— Y1+ )A+ 1 —c2)9(0p/2) /3 + (g — 1)29(0p+1)]
> 1+ (ngp — 1)29(‘7p+1)9(‘7p/2)_1
1+ + 1 - ) /3 + (n2p)?g(0p41)9(0p/2) 7
1+ (ngp — 1)*h(%F -)h(op—)~"
(1 +&)(1 +c1— c2)/3 + (nap)*h(F—)h(op—) !
> 1+ C1
T (1490 +a-c)/3+c
2(1 + Cl)
l+a+c)

using £ < 1/2. Letting p increase, and modifying the packing in this manner

at each stage for which there is a ball D, ; such that those Q; contained in
D, ; have not already been replaced, we obtain a new packing P for the set
SN({D:D eDi}U{Q:: Qi C D,; for some p,j}) such that

. 2(1 +Cl)
adius P) > —————7
%}g(r us ) - (1 +c + Cz)

+ E{g(radius Qi) : Qi € D1,Q; C Dy, ; for some p,j}) .

(Z {g(radius D) : D € D}
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Write P’ for the packing of S consisting of the balls of P, together with
{Qi: Qi C D2y, Q;N Dy =0 for each p,j}. By assumption,

> {g(radius D) : D € D1} > 1/2)_ {g(radius D) : D € D},

and so

. 3 + 361 + C2 .
> e i
E , g(radlus P) - . , Ei g(radlus Q )

5+ 5c; + 3¢ )
-_— radlus D
4+ 4c, + 4y ;g( )

949¢c; + Tc
> T g
= 8+8c1+8c2R0(S)’

2

by the choice of the balls {@;} to satisfy
(14+€)*) g(radius @;) > ) g(radius D),
i D

and the choice of D to satisfy
2 _g(radius D) > (1 - ¢)R§(S).
D

So R, (S) > §3a+72 RY(S) for every [, and hence R§(S) could not have been

positive and finite.

This leads us directly to the analogue of Theorem 3.2.5;

Theorem 3.3.4 Every subset S of K satisfies one of R*(S) = 0 or R*(S) =

Q.

Remark As noted earlier, the conditions imposed above on h are some-
what stronger than the condition that h does not satisfy a doubling condition.

To see this, consider the following inequalities, implied by these conditions;

ah(oe=) 2 g (F-) 2 h(Z2-).
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The inequality c;h(ok—) > h(%<—) imposes a lower bound on o, and
hence an upper bound on the ratio h(ox—)/h(%%; —), and on ngx. We cannot
therefore be certain that Y ny converges, and so, on its own, the fact that
h does not satisfy a doubling condition is not sufficient for the proof above.
If h satisfies neither a doubling condition nor these conditions, it is not clear
whether we can necessarily find a subset of finite measure, given a metric

space of infinite measure.



Chapter 4

A relationship between
packing and topological

dimensions

4.1 Introduction

In Chapter 1 we provided a number of definitions of packing dimension and
considered the inequalities those dimensions satisfied. In this chapter we con-
sider topological and packing dimensions, and show that if X is a separable

metric space, then
dim7(X) = min {dimg(X’) : X’ is homeomorphic to X},

where Q denotes any of R, R, or P, and dims(X) denotes the topological
dimension of X, (defined below).

The result which relates the topological dimension of a separable metric
space to the Hausdorff dimensions of its homeomorphic images has been

known for some time. The Szpilrajn inequality (see [SzE]) tells us that if X

68
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is a separable metric space, then dim7(X) < dimy(X). In fact,
dim7(X) = min {dimy(X"’) : X’ is homeomorphic to X} .

For a proof, see, for example, [HuWa).

This proof uses the idea of approximation of a compact metric space by
the images of polytope mappings, and relies on the fact that a finite open
cover of a set S will also cover B(S,¢), for some € > 0. Since we define
Hausdorff pre-measure by taking an infimum over covers, this means that,
given § > 0, we may be sure there is € > 0 such that the § pre-measure Hj is
not much greater on B(S,¢) than on S. The same is not true for the packing
pre-measure of S. Firstly, a packing of S does not necessarily pack a set §’,
no matter how close all the points of S’ lie to S. Secondly, we cannot be sure
that there are no substantially better packings of a se;t S’ which is close to S
than there are of S itself. This problem arises because we use the supremum
in the definition of packing pre-measure @3, rather than the infimum. So
in choosing successive approximating subsets of polytopes which admit only
packings which are in some sense similar to each other, we must take more

care than would be needed in the case of coverings.

4.2 Definitions and notation

We now provide the definitions we shall need for this chapter. In the main,

we follow the notation of [HuWa).

(i) By a covering of a subset S of a space X we mean a finite collection
Uy, ..., U, of non-empty open subsets of X whose union contains S. In

this chapter we shall reserve the symbols &, V and W for coverings.
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(ii) The order of a covering of S is the largest integer n such that there are

n + 1 members of the covering with nonempty intersection in S.

(iii) If X is bounded the mesh of a covering {Uy,...,U,} of a subset of X
is the largest of {diam(U;), 1 <i<r}.

(iv) A covering V is a refinement of a covering U if each member of V is

contained in some member of Y.

(v) If U and V are coverings of S, then we write U A V for the covering
{UNnV:UelU, VeV, UnV #£0}of S. Clearly, U AV is a refine-
ment of each of U and V.

(vi) If U is a covering of X and g : X — Y, we say g is a U-mapping
if every point of Y has a neighbourhood in Y whose inverse image is
entirely contained in some member of Y. If X is compact, and € > 0,
we say g is an e-mapping if the inverse image of each point of Y is of
diameter less than e. We write g~!(U) for the collection

{g7(U) : U € U} of subsets of X.

(vii) IfU is a covering of X, we write St(U,x) for the open set which is the

union of those members of & which contain x.

(viii) A countable sequence U;, Us,... of coverings of a space X is called
a basic sequence of coverings if, given a point z in X, and a neigh-
bourhood U of z, at least one of St(l,x), St(Us,x), ... is contained in
U. |

We shall take as our definition of topological dimension the following;:
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A separable metric space X is of topological dimension dimT(%)
less than or equal to » if and only if every covering U oi X has a

refinement V of order less than or equal to n.
With these definitions, we have the following results;

Theorem 4.2.1 [f Ui,Uz 'wmis a basic sequence of coverings for a metric
space X, and a continuous mapping g : X Y is a Ui-mapping for each i,

then g is a homeomorphism cnlo ~ r<x™e-

Theorem 4.2.2 Any separable metric space can be embedded in a compact

metric space of the same topological dimension.

We omit proofs; see, for example [HuWa].

Our goal is to construct a homeomorphism from a separable metric space
X of topological dimension less than or equal to n to an image space of
packing dimension less than or equal to n. If X is compact, we shall do this
by constructing successive polytope “t-mappings, where Si | 0, in such a way
that no mapping differs too much from the previous mapping in the packings
its image admits. To do this, we shall utilize certain £t-coverings of X, whose
existence we shall ascertain in the following two lemmas. Theorem 4.4.1
contains most of the work of this chapter. In Theorem 4.4.3 we provide our

main result.

4.3 Two covering lemmas

Lemma 4.3.1 Any covering U of a compact metric space X has a refine-

ment V of the same order as U which satisfies the following condition:

For any Vi,..., VI, GV either Hi Clos(K) = 0 or A0, 4.1)
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Proof. Choose § > 0 sufficiently small that whenever Uy,...,U, € U
satisfy MEU; # @, there is a ball of radius & contained in M§U;. Choose
0 < € < § sufficiently small that V = {U\ B(X \U,e¢): U e U} is still
a covering for X. (To see that this is possible, choose a sequence ¢; \, 0,
then {U\ B(X\U,&):U €U, 1 <i< oo}isanopen cover for X. Choose
a finite subcover, then if j is the greatest such that, for some U € U,
U \ B(X\U,g,) appears in the subcover, we may take ¢ = ¢;.)

Then N{ (U; \ B (X \ U;,€)) # 0 whenever N{U; # 0, since ¢ < 8, and
M;Clos ((U; \ B (X \ Ui,¢))) = 0 whenever N{U; = 0. Also, since ¢ < §, the
covering {U \ B(X \ U,¢) : U € U} has the same order as U.

Lemma 4.3.2 Let a covering U of a compact metric space X satisfy condi-
tion 4.1, and V be a refinement of U. Then there exists a refinement W of
V satisfying order(W) < dimr(X), and

N{UelU:UnStW,z) # 0} #0, for each x € X. (4.2)

Proof. Suppose not. Then we may find a sequence (Wy);® of coverings of
X, such that mesh (W;) \, 0, and such that for each k > 1, order (W;) <
dim7(X) and Wiy, is a refinement of Wy; and a sequence (z)$° of points
in X such that N{U e U : U N St(Wh, zx) # 0} = 0 for each k. If necessary
passing to a subsequence, we may assume that (x;){° tends to some point x
in X.

Consider N{U € U : U N St(Wk,x) # 0}. This intersection is taken over
a decreasing collection of elements of U as k — oo, so for K large enough,
the set N{U € U : UN St(Wk,x) # 0} is constant for k > K. Therefore
z € Clos(U) whenever U N St(Wk, z) # (. This, together with the fact that
U satisfies condition 4.1, implies that N{U e U : U ﬂ‘St(Wk, z) # 0} # 0 for
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each kK > K. But for each k > K, N{U € U : U N St(Wk,zx) # 0} = 0, so
for each k > K there is U, € U such that

Uk N St(Wr, k) # 0, and U, N St(Wk,z) = 0.
U is a finite collection, so for some U € U,
U N St(Wh, zx) # 0 infinitely often, and U N St(Wk, z) = 0.

The former implies that € Clos(U), contradicting the latter, and proving

the lemma.

4.4 The inductive construction and main re-
sult

Recall that a set {p;}] in R" is said to be in general position if for each
1 <m < n-—1, nom+ 2 of these points lie in an m-dimensional affine

subspace of R™.

Theorem 4.4.1 If X is a compact metric space with dimr(X) < n, and
™1 s the set of points in R>™*! each of whose coordinates x1,...,Tons
satisfies |x;| < 1, then there is a homeomorphism f : X — f(X) C I***!
with dimg f(X) < n.

Proof. We will use Lemmas 4.3.1 and 4.3.2 to construct by induction a
sequence of mappings from X to I>**! which have a homeomorphism as
their uniform limit, and such that for each € > 0, Rj** is finite on the image

of X under this homeomorphism.
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Choose a sequence (U;)7° of coverings for X, with ¢; = mesh(U;) ™\, 0 and
Uit a refinement of U;, for each ¢ > 1. (This is not hard to do, since X is
compact.) Let ¢; = 3¢, 277.

To start the induction we choose the simplest possible covering for I2"+1,
namely W, = {I?**!}, and choose a covering V; for X which refines U, is of

order less than or equal to n, satisfies condition 4.1, that is, satisfies
For any V4,...,V, € V; either N} Clos(V;) =0 or N} V; # 0,

and is such that for no V € V; does V, \ {V'} cover X. Choose a collection
Y: = {51 (V) : V € V,} C I*"*! of |V,] points in general position.
Define a function f; : X — I*™*! thus;

_ Zvey, dist (z, X \ V) (V)
file) = EVEVl dist (z, X \ V)

We now show that f; is an €;-mapping.

Let x € X, and suppose V;,,...,V;, are all the membérs of V; containing
x. Consider the affine (s — 1)-space L(x) spanned by the vertices y(¢),. .. ).
It is clear that fi(x) isin L(z). Let 2’ be another point of X. Suppose L(2’)
is spanned by the vertices Yy - - Yl Then, since order(V;) < n, we have
s,t <n+1and L(z') is a (t — 1)-space. If L(z) and L(z') meet, the affine
space spanned by aitl these erkces has dimension < s+t -2 < 2n.
Since Y, is in general position in I?"*!, we see that if L(z) and L(z’) meet
they contain a common vertex.

Therefore if fi(z) = fi(2'), z and z’ must be contained in a common
member of Vi, and by the fact that mesh (V) < ¢;, we see that dist(z,2’) <
€1, as required.

We also see that fi(X) is a subset of the polytope @, in I***!, where @,
has vertex set Y3, and conv ({y1(V1),...,41(Vs)}) is a face of @, if and only
ifvin...nV,#0.
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Since at most n + 1 elements of Vi may intersect in a common point,
the polytope Qi is at most n-dimensional, and so we may choose (5 > 0
sufficiently small that (0i) <G

Write = inf {dist(/i(a:1),/i(a:2)) : Xi,X2€ X, dist(T1,32) > 61}. (X is

a compact space, so this infimum is attained at some points xi and Xzof X,
and is greater than zero, otherwise / would not be an Si-mapping.)

Now suppose we can also find functions /2,¢¢*, A mapping X into
coverings W2,..., Wk of coverings V2,..., Vbof X, and positive num-

bers 62,..., 6* with 6i < siicK theJr Oreo-ck X6

(1) Wi is a refinement of Wt i, with

mesh (Wi) < “min min  dist(?/1,7/2)1 .

(i) Vi is a refinement of Ui A/il\(VVi) Aof order less than or equal to
n, satisfying condition 4.1, such that for no K G W does %\ {1/} cover
X, and such that condition 4.2 is satisfied with Vt i in place of ZV, and
Vi in place of W. That is.

For any V'i..., G Vi either rii Clos(Vi) = Oor n1% 0;

and for each x ¢ X, 11 {Ve Vii:Vna St{Vix) 0} " 0.

(iii) There are sets Y2 = {y2{V) : VE W} ,..., Ft = k{V) : V G Vt} in
/20t with Yi-i C Yi and [Ti| = |Vi|, with the elements of Yi in general

position, and satisfying

(a) Foreach V' ¢ Vi, dist (yi(V),/i_i(V)) < 6i_i/4.
(b) fil X /ot |g function

r/'yx  Evmdist(x,X\V)2i(V)
' 2:ve%dist(% ,;f\ V)
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(We then see that f; is an ¢;-mapping just as we saw that f; was
an €;-mapping.)
(c) If we write @Q; for the polytope in I, with vertex set Y;, and
satisfying
conv ({y:(V1),-..,u:(Vs)}) is a face o.f Q; if and only if
Vin...NnVy#0,

then f;(X) C @, and for each 1 < j < 1, R};."Ls"(Q,-) < Cimjt1.

(iv) If & = inf {dist (fi(z1), fi(x2)) : 1,22 € X, dist(zy,z2) > &;}, then for
each 1 <i <k, & >0 and for each 1 < j <1, dist(fj, i) < &/2.

We now show that we may choose Wit1, Vit1, fet1, Ye+1, Qk+1, and
Ok+1 so that the same conditions are satisfied with ¢ = k + 1.

Let
¢ = min {&/2 — dist(fy, fi) : 1 < j <k}
Since fj is continuous and { > 0, we may choose > 0 such that if z;,z, € X

satisfy dist(x1,x2) <, then dist(fi(z1), fr(x2)) < (/3.

To make the inductive step, choose ¢ such that
<o <min(n 8 min_ dsunu).
7 Smin (7, b, iy, distly: )

Choose a refinement Wiy, of Wi, with meshWi4,) < o/4. Use Lem-
mas 4.3.1 and 4.3.2 to choose a refinement Viy; of Usp1 A fi '(Wes1) A Vi,
of order less than or equal to n, such that Vi, satisfies condition 4.1, such
that for no V' € Vi) is Vi \ {V'} a covering for X, and such that condi-
tion 4.2 is satisfied with Vy in place of V, and Vi in place of W. (Then
conditions (i) and (ii) are satisfied with ¢ = k + 1). By choice of W41 to
satisfy mesh(Wi41) < 0/4 < ming, zy.ey, dist(y1,y2)/4, for any V € Viy,
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no two elements of Y, may both belong to fi(V). So we may choose sets
Z={2(V):V €Vi1} D Ys,and, foreach | > 1, Z; = {z(V) : V € Vit1},
thus:

For each V' € Vg4 choose z2(V) € fi(V)sothat Y, C {2(V):V €
Ve+1}; and points z(V), for each | > 1, such that the elements
of Z; are in general position, dist(z;(V), fi(V)) < 0, and z(V) —
z(V) as | — oo. Note that z(v) = yi for each V' € Vi, such that
fe(V) = ys.

Then, for each [ > 1, we may define the maps g, g1 : X — Ipp41 by
Lveviy, dist (z, X \ V) 2(V)
Yvew,,, dist (z, X \ V)
Yvev,, dist (z, X \ V) z(V)
Yvew,, dist (z, X \ V)
(Then g,g, are €x41-mappings.) The function fr,; will be chosen from

9(z)

gi(z)

amongst these functions (g;){°; note that conditions (iii:a) and (iii:b) will
then be satisfied for ¢ = k + 1. It remains to choose [ large enough that
conditions (iii:c) and (iv) are also satisfied.

Write S; for the polytope in I,,,; with vertex set Z;, and such that
conv ({z1(Vh),...,21(Vs)}) is a face of S; f and only if V4,...,V, € Viy1 and
Vin...nVy#0. (Then gi(X) C S;.)

We claim that if {wy : V € Viya} is such that Syey,,, wva(V) € Sy,
then

lim Y wya(V) € Q.

l—o0 VeV

Clearly, limy_0c Cvey,,, wva(V) = Lyey,,, wvz(V). Also, the definition of
S; implies that N {V € V41 : wy # 0} # 0. Then since Vi and V4, together

satisfy condition 4.2, we have

N{U € Vi : UNV #  for some V € Viyy with wy # 0} # 0.
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So the face
conv ({yx(U) : U € Vi, UNV # 0 for some V' € Viyy with wy # 0}),

which contains Yyey,,, wvz(V), is itself in Q.

For each [;,l; > 1, the mapping between S;, and S;, which associates
the points Yyey,,, wvz, (V) and Yyey,,, wv2,(V) is a Lipschitz map, and
for l;,ls large enough its Lipschitz constant is close to 1. To see this, let
B > 0, and choose m(f) large enough that whenever | > m(3), we have
z2(V) € B(z(V), B). Then if l,,1ly > m(B),

[ Zuyza, (V) = Swva, (V) |Euva,(V) - Ewva,(V] 483 wy

| X uvz,(V) - Zwva,(V)| = [ Zuva,(V) - Zwva, (V)]
= 1446

So we may fix m, large enough that this mapping between S;, and S, has
Lipschitz constant smaller than 2, say, whenever l;,l2 > m;.

Now choose 7 < i sufficiently small that
R_frt+€1 (Spm,) < o~ (k+2+n+er)
Then, for each [ > m,,
R’%”“ (S) < o—(k+2) _ %(Ckﬂ - ék) ,
and so
n+-€; n+e; 1 1
R,;. (&) < R,g (S1) < s (e —c) < 5 (Ck—is2 — Ck—-i.+1)- (4.3)

For § > 7, call a packing of a set S by balls with radii in the range [r,6] a
[7,8]-packing, and write

Rp%(S) = sup {z it {B(zj,r;)} is a [r,6]-packing of S} :
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As | — oo, sup,ex dist(gi(z),9(x)) = n() — 0. Choose me > m; large
enough that 7(l) < 7 for each [ > mo.

- If for some 1 < i < k, {B(zj,r;)} is a [r,6]-packing of S;, then for
some collection {w;}, where w; € B(z;,7(l)) N Q for each j, we see that

{B(wj,r; — n(l))} is a &-packing of Q, and so

> (i — )™ < ceoiga-

Since the number of balls in a [, §;]-packing of any subset of I?**! is bounded,
this means we may choose m3 > my so large that for each 1 < i < k and

each | > mg, if {B(zj,r;)} is a 7, 6;]-packing of S, then
n+&; 1
Z rj+ : :.2' (Ck—z+2 + Ck—z+l) (4'4)

Since any é;-packing of S; may be split into a 7-packing and a [r, §;]-packing,
we may combine (4.3) and (4.4) to see that for each 1 < ¢ < k, each | > m;,

Ry (81) < choia-

Now if x and z’ are both contained in V' € V4, then by the choice of
Vi+1 to have sufficiently small mesh, we have dist(fx(z), fr(2')) < (/3. In
particular, since z2(V) € fx(V) for each V' € Vg4, we have dist(fr(z), 2(V)) <
¢/3 for each x € V. Now g(z) is a convex combination of those points z(V)

such that z € V € V44, so

dist(fx(z), 9(x)) < (/3.

Since g; tends uniformly to g as | tends to infinity, we may therefore choose
my4 > mg sufficiently large that dist(fx(z), gi(x)) < 2(/3 whenever | > m,.
Soforeach1<j<k+1,

dist(f(2), gu(z)) < dist(fi(z), fi()) + dist(fi(2), u(2))
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< Zat(fi(@), fula)) + L+ 2 (672 - dist(£@), ela)
< éj/2‘

Setting fr41 = gm, and Qr41 = Sm,, choosing éx4; < o sufficiently small

that Ry **1(Qr41) < c1, and setting

k+1
Ce+1 = Inf {dist (fer1(21), fer1(22)) : 21,22 € X, dist(z1,22) = €1},

we see that &1 > 0 since fry is an €44 ;-mapping, and that conditions (iii:c)
and (iv) are satisfied with ¢ = k + 1. So the induction is complete.

Let f: X — I?>"*! be the pointwise limit of the sequence (f;){°. Condi-
tion (iv) ensures that, foreach ! > 1 and 1 < i < [, dist(f;, fi) < &/2. So fis
the uniform limit of (f;)$° and so continuous, and dist(f;, f) < &/2. Suppose
now that x1,z2 € X are such that f(x;) = f(x2). Then dist(fi(z1), fi(z2)) <
&, for each 7, and so dist(z;,x2) < &;. So f is an ¢;-mapping for each i > 1,
and hence, by Theorem 4.2.1, is a homeomorphism.

It is also not hard to see that R§(f(X)) < oo. Suppose i > 1 and
{B(z;,7;)} is a §;-packing of f(X). Choose | > iso large that § < min{r;/2}.
Then we may find points w; € B(z;,r;) N @, such that {B(wj,r; — &)} is a
packing of Q.

R3F(Q1) < ci—ipr foreach 1 <i <[, s0

Sri/2)M < S (r; - &)™ < cmi,

Yorite < i1 27 e < ol=(nted)

So for each €; we have that Rpt*(f(X)), (and hence Ry**(f(X)),) are

bounded, and so, since & \, 0, we have dimg f(X) < n, as required.

Lemmas 1.5.2, 1.5.3, 1.3.2, and the Szpilrajn inequality, together show
that
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Lemma 4.4.2 If X is a separable metric space, then for each S C X,
dim7(S) < dimy(S) < dimp(S) £ dimz(S) = dimz(S).
Theorem 4.4.3 For any separable metric space X,
dimg(X) = min {dimg(X’) : X’ is homeomorphic to X},
where Q stands for any of P, R, or R.

Proof. If dims(X) = oo, then by the above lemma there is nothing to
prove. By Lemma 4.4.2 and Theorem 4.2.2, it is sufficient to show that if X

is compact and dim7(X) < oo, then
dim7(X) = min {dimz(X’) : X’ is homeomorphic to X},

and this follows from Theorem 4.4.1.



Chapter 5

Conditions for equality of
Hausdorff and packing

measures on R"

5.1 Introduction

This chapter answers the question, for which Hausdorff functions A may the
measures H"|4 and P"|4 agree for some subset A of R", and be positive
and finite. We show that these conditions imply that h is a regular density
function, in the sense of Preiss, (see [PrD]), using the fact that this common
measure necessarily has h-density equal to 1 almost everywhere.

In [PrD] it was shown that regular density functions are exactly those
functions h : Rt — R™* which satisfy particular limiting conditions near 0.
We also show here that for each function h satisfying these limiting condi-
tions, there is a subset A of R" such that u = H"|4 = P"|4 is a positive

finite measure. The situation for functions h(r) = r* has been dealt with

82
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previously, and the sets A for which it is possible that measures H*|4 and
P*| 4 agree have been fully characterised. The existence of such a set implies
that s is an integer and that A is s-rectifiable.

In this chapter we rely heavily on the concepts and results of [PrD], (which
in part grew out of the seminal work of Besicovitch, [BeAl, BeA3, BeA4]),
and also quote a result from [MaPr]. As a consequence, the preliminaries
below are rather lengthy, in order to provide all the prerequisites for the

work that follows.

5.2 Definitions

In what follows, a ‘measure’ is a Borel regular outer measure on R", (that
is, every subset of R" is contained in a Borel set of the same pu measure,)
such that the Borel sets are measurable. If u is also locally finite, that is, if
for every z in R™ there is r > 0 such that uB(x,r) < 0o, we call i a Radon
measure. We note that p is locally finite if and only if every compact subset

of R™ has finite u-measure.

(i) If h: R* —» R*, 1 measures R”, and z € R”, we define D"(y, z) and
D"(u, ), the upper and lower h-densities of i at x, by the formulae

D"(p,x) = limsup Bz, 1)/ h(2r)
\0
and
D*(u,z) = lim inf uB(z,r)/h(2r).

If the upper and lower h-densities of u at = coincide and are positive
and finite, we denote their common value by D"(u, z), and say that

is an h-density point of p.
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(ii)

(iif)

(iv)

(V)

(vi)

A positive function 4 defined on R*’is said to be a density function in
R” if there is a non-zero measure n over R" such that fi almost every

Xe R” is an /i-density point of /u

If {ijfc} is a sequence of measures over R and /i measures R” then we
say that  —wxif

(a) /Xis locally finite.

) limsup”™k{D ) < oo for every compact set D C R”.

(c) limic ~oo ! f dfik= J f dj, for every continuous function / with com-

pact support.

If gt — X then for each compact set D C R” and each open set
G ¢ RA,

fifD) > limsup/Xfe(D),
k—KY)
fitG) < liminf/Xfe(G).

(For a proof, see [PrD, 1.11(4)].)

Let X6 R”and r ¢ R\ {0}. We define the map Tx,» : R” —>R” by
Ix,r{z) = {z- x)/r.

If T : R” —>R’™is Borel measurable and /x measures R”, we define

T["j, the image of ji under T, by
T[p\{E) = ti{T-\E)) for every Borel set £E ¢ R™
Let Xmeasure R” and x ¢ R”. A nonzero locally finite measure 7 is

said to be a tangent measure of p. at x if there are sequences \ 0

and (@ > o such that y = lim/t"oo OfTxrfc[/x]. J-
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(vil) A density function A will be called regular (in the sense of Preiss) if
limr\o A{tr)/h{r) exists for each Z>0. In [PrD, 6.5] it is shown that A
is a regular density function if and only if there is m G {1,..., n} such
that either

0 < lim <00,
r\0

or n and there is a positive non-decreasing function /4 : R+

such that
fim ) =,

lim =1 eacht> 0 and
r\o h{r)
r\o h(r)r*
(vii)) A measure n on R” is said to be uniformly distributed T fiB{x,r) =

r) < 0o whenever x,y € spt y and 0 <r <oo0.

(ix) Let ~ be a Radon measure on R”. Then x Gspt y is calleda symmetric

point of y \i for every p > 0

( zdl<f7) = xyB{x,p).

JB(x.0\

(x) A Radon measure y on R” is called flat \iy = cH"*\v for some constant

¢ and some m-dimensional linear subspace V of R*, (I < m < n).

5.3 Some prerequisites

We now have all the concepts required to state both fbe of Scont

and Tncc/i-, for functions 4{r) = r*, and the results from
[PrD] and [MaPr] that we will need. A proof of Theorem 5.3.1 may be found
in [MaP].
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Theorem 5.3.1 If A C R" satisfies P*(A) < o0, then H*(A) = P*(A) if
and only if the density D°(H*|a,x) exists and equals 1 for P° almost all

x € A. This in turn implies that s is an integer, and that A is s-rectifiable.

The following results may be found in [PrD, 2.12, 4.7, 4.11, 6.1, 6.5] and
[MaPr].

Theorem 5.3.2 Let y measure R™. Then u almost every x € R™ is a point
of translational invariance of Tan(u,x), that is, p almost every x € R™ has

the following property: Whenever 1 € Tan(u,xz) and u € spt 3 then
T“,l[d}] € Tan(g, .’L‘)

Theorem 5.3.3 If u is a locally finite measure on R", then every tangent

measure to u at x is flat at u almost every point x, if and only if

li_rg %%((%’,%Z exists for some (equivalently for all) t > 0,t # 1.

Corollary 5.3.4 If u measures R", h is a regular density function, and u

almost every point of R"™ is an h-density point of u, then at p almost eve
Ty

point x of R", every tangent measure to p at x is flat.

Theorem 5.3.5 If i is a locally finite measure on R"™ and almost every
point of R™ is an h-density point of u, then at almost every point of R,

every tangent measure ¥ to u at T is uniformly distributed, with 0 € spt .

Theorem 5.3.6 Let u be a Radon measure on R"™. If for u almost every
point x in R"™, every tangent measure to u at x has 0 as a symmetric point,

then at u almost every point x in R", every tangent measure to p at x is flat.
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5.4 Two density lemmas

As a first step towards proving a result for more general functions h, we now
prove two simple density lemmas for the measures H" and P*, which replace
the standard density lemmas for H* and P*. The proofs scarcely differ from
those of the standard lemmas, and use the following covering theorem, which

is due to Morse (see [MoAl).

Theorem 5.4.1 Let i be a Radon measure in R", ACR", 0<a <1, and
let B be a family of closed balls such that for each pointy of A and each r > 0
we may find a ball B(x,s) € B with s < r and y € B(x,as). Then there is
a countable collection of disjoint balls {B;} C B such that u (A\ U; B;) = 0.

Lemma 5.4.2 If A C R" satisfies 0 < P"(A) < oo, then for P*|4 almost
every x € R",
D" (P"az) 2 1.

Proof. Since P" is Borel regular, we may assume that A is a Borel set.
Then P"|4 is a Radon measure. It clearly suffices to show that if 0 < ¢ < 1

and
A= {x € A:liminf P*(A0 Bz, 1)/h(2r) < t} ,

then P"(A,) = 0.
Let E C A;, and let € > 0. Choose § > 0 sufficiently small that P}(E) <
(1 + €)P}(E). Since P"|4 is a Radon measure we may use Theorem 5.4.1

with a = 0 to choose disjoint balls B; = B(x;,7;) such that for each i,
(1) x; € E )

(ll) < 6/2,
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(iii) PP|a(B;) < th(2ry),
(iv) PHE\UB;) =0.
Then
PME) < Y. PMENB;) SZPh(AnB,.)
< ttZ: h(2r;) < tPs"(I;“) < t(1 +€)PH(E).
Therefore PM(E) < tPP(E), for any E C A,. So if A, C UX,E;, then
Pr(Ag) < tPH(Ay), and PH(A,) = 0.

Lemma 5.4.3 Let A C R" satisfy H*(A) < oo. Then, for H* 4 almost
every x, for any 0 < a < 1 and t > 1 there is r > 0 such that, for every

s <r and every y € B(z,as),

H (B (y,s) N A)
h(2s) st

In particular,
D"(H" 4,7) < 1.

Proof. Choose a measurable set C which contains A, such that H*(C) =

HP(A). For0 < a < 1andt > 1 write

Cat = {x € C : for each r > 0, there are s < r and y € U(z, as),

such that H" (C N B (y,s)) > th(2s)}.

It is sufficient to show that, for any 0 < o < 1 and t > 1, H* (Cz) = 0.

Fix 0 < a < landt > 1, choose ¢ > 0, and let K be a compact
subset of C,; satisfying H*(K) > (1 — )H" (C,;). - (This is possible since
C is H" measurable, H"|c is Radon, and C,; is a G5 subset of C). We
may now choose & \, 0, and use Theorem 5.4.1 to choose disjoint balls
{Bi;}2) = {B (i) 7i;s)};=, for each 4, such that
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(i) KN B i orig) # 0,

(ii) ri; < 6:/2,
(iii) H*(C' N B;;) > th(2r:;),
(iv) H* (K \ U;Bi;) = 0.

If y € Uik U; Bij, then dist(K,y) < 6. So if y € Nix1UizkU; Bij, then
dist(K,y) =0, so y € K. Therefore

HMCoyp) > HMK) > HE (ﬂ U UBi,j)

k>1i>k j

= kl-l—or{olo Hh (Cﬂ U UBi’j)

i>k j

k—o0

> limsup H" (C nY Bk,j)
J

= limsup > H" (C'N By;)

k—oo j=1

> limsup t Y h(2rx;)

k—o00 j=1

> tlimsup Hj, (K nyY Bk,j)
k—oo j

= tHM(K) > t(1— &) H" (Cay) -

Letting € \, 0, we see that H"(C,;) = 0. The second statement of the

theorem follows immediately.

5.5 The main result

Theorem 5.5.1 Let A C R™, and p = P4 = H"|a be a positive finite
measure. Then, for u almost every x € A, every tangent measure to u at x

is flat and h is a regular density function.
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Proof. Lemmas 5.4.2 and 5.4.3 together show that the h-density of u exists
and equals 1 x almost everywhere. Therefore, by Theorem 5.3.5, at i almost
every x € R" every tangent measure 7 to p at x has 0 in its support,
and is uniformly distributed, that is, ¥B(z, p) = ¥B(y, p) < co whenever
x,y € spt ¥ and 0 < p < 00.

Write A* for those points of A which are exceptional points of neither
Lemma 5.4.2 nor Lemma 5.4.3, at which all tangent measures are uniformly
distributed, and which are points of translational invariance of Tan(u,z) (see
Theorem 5.3.2). Then u(A*) = pu(A).

Fix x € A*. We now show that for each 2 € R", each p > 0, and each

tangent measure ¥ to u at x,

YB(z,0) < ¢B(0,p).

Fix ¢ € Tan(u,x). Since 7 is uniformly distributed and 0 € spt %, it only
remains to show the required inequality for z & spt ¥. Let p > 0.
We first suppose that z € U(0, p). Since

"»b = leHgO ckT.’t.Tk U“]’

we have that

YU(z,p) < liin inf ¢ pulU (X + T2, TP).

Since z € B(0, ap) for some a < 1, since z is an exceptional point of neither
Lemma 5.4.2 nor Lemma 5.4.3, and since x + ry2 € U(z,7p), we see that

for each t > 1 there is a number & such that if kK > « then
pU(z + rez,mep) < pB(x + T2, Tkp) < tuB(z,rip).
Therefore

PYU(z,p) < lilgn inf cepulU(z + riz, rep) < limsup cppuB(x,rep) < ¥YB(0,p).
—0 k—oo
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The measure 1) is Radon, so for each € > 0 we may find § > 0 such that
YU(0,p +6) < ¢B(0,p) +¢.
Replacing p by p + 6/2 in the above calculations, we see that
YU(z,p+6/2) <¢B(0,p+6/2),
so
YB(z,p) <PU(z,p+6/2) <$B(0,p+6/2) <9pU(0,p+6) < ¢B(0,p) +&.
The choice of € > 0 was arbitrary, so
¥B(z,p) < ¢B(0,p). |

Now suppose that z € 0B(0, p); then for each p, > p we have z € U(0, p;),
and ¥ B(z, p1) < ¥B(0, p;). Therefore

YB(z,p) < ¥B(0,p1) for each p1 > p,

and

wB(;, p) < lim $B(0,p1) =9 ( N B(O,m)) = ¥ B(0, p).

,>p

The third case we must consider is that where B(z,p) N B(0,p) = 0. If
B(z, p) Nspt 9 = 0, the inequality B(z, p) < B(0,p) is obvious. If B(z,p) N
spt ¥ # 0, we may choose w € B(z,p) Nspt ¥ and use the fact that x is a

point of translational invariance of Tan(u,z) to see that

T w,l[’l/)]B(z + w’p) S T w,l['(/)]B(Oap))

and so

¥B(z,p) < ¥B(w,p) < ¥B(0, p).
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i”*)<f ccecU P~

It is now not hard to show that 0 is a symmetric point of each measure
ifie Tan(™x).
Let p> 0. For y ¢ R”, define
Fiv) =] {/-{z- yf) XBy.p){z)dip{z).

Since 0 < —{z—yY"< z ¢ B{y,p) and 'ijjB{y,p) is finite; and since

N - Az yf) = 2{z- )
cu.d. CGN
we see that F' is differentiable.

Then, using Fubini’s Theorem,
Fly) = >{"mp- {z- yY) XBM () > 1) dt
= N 5 Wpr - dt
< ipB "o, - tj dt
= m -
Therefore 0 is a maximum for F, so F'(0) = 0, and

zd'ipiz) = 0,
Jb{0p)

that is, 0 1s a symmetric point of So we may use Theorem 5.3.6 to see

that for almost every x E A every tangent measure to /i at x is flat.

Lemma 5.5.2 Ifp is a Radon measure on R”, A is a compact subset ofIC,

and (p,x) > l1for all x E A, then p{4) > V"{A).
Proof. Since p is Radon, p{4) < o0o. For t < I and 6 > 0 write

At6= {x EA: pB (x,r) > t h{2r) whenever r < 6/2} .
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Then, for every 0 < n <4,

pB(Ais,m) 2> tP,? (Ass),
i (Clos (Ats)) 2 tPY (Ass),

since if { B(x;,7:)} is an 7-packing of A; s, then uB (z;,7:) > t h(2r;), and the
compact set B(A:s,m) contains the disjoint union {J B(z;, 7;).
By assumption, A = [Jss Clos(A;s) for each ¢t < 1. The measures x and

P" are Borel regular and A;, /n C At1/(n+1) for each n, so for each t < 1,

PHA) = P Clos(Ayyyn)) = lim P*(Ay1/m)
n=1
< lim PY(Auyym) <t lim g (Clos (Ariym))

= t7(() Clos(Aum) = £ u(4).

n=1

Since ¢t < 1 was arbitrary, we have u(A) > P*(A), as required.

Lemma 5.5.3 If i is o Radon measure on R™, D" (u,z) < 1 for allz € A,

and all tangent measures to u are flat at each x € A, then for each x € A,

}:i\r‘% (sup {E(dl:;%l)) :x € D, diam(D) <€, D compact, convex}) <l

Proof. Suppose not, then for some x € A, without loss of generality x = 0,
we may find numbers ¢, > 0, t > 1, 7, \, 0, compact convex sets D of

diameter 1 and containing 0, m € {1,...,n} and V € G(n,m), such that

(i) Dr — D (a nonempty compact convex set with diam(D) < 1) in the

Hausdorff metric,
(i) Tz, [u] = H™|v € Tan(p, ),

(iii) p(reDy)/h(re) > t for each k.
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Write Eg = Clos (Unzx Dk ), then Eiy C Bx, and Ex — D in the Hausdorff

metric. So
H™|v(Ex) — H™|v(D).
Also,
u(riEy) > p(rDy) > th(r), for each l.
Since
H" v = Hm Tz, [,
we have

H™|v (Ex) > limsup cu(riEx) for each k.
l—o00

Choose k; so large that whenever k > k;,

(3+1)
4

Then, using the isodiametric inequality, for each k > k; we have
3+1) (3+1)
4 4
Since Ei, C E for each k,

H™ v (Ex) <

H™|v (D).

H™|vB(0,1/2) > H™|v (D) > limsup cyu(r1Ey).
l—00

lim sup qu(riEx) > limsup cu(riEy).
=00 l—o0

So

(3—‘1_ t) H™|vB(0,1/2) > limsup cu(riEy) 2 limsup ¢t h(ry).
=00 l—o00

By assumption Eh(u, z) <1 foreach x € A, so
limsup p (B(x,71/2)) h(r1)™ < 1.
l—00

Therefore

B +1)
4

H™|yB(0,1/2) > tlimsupquB(z,r:/2)
l—o0 :

\%

tlilmcigf apU(z,r/2)
2 tH™v (U (0,1/2)).
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Sot< (1+1t)/2, and t < 1.

Lemma 5.5.4 If u is a Radon measure on R" and A C R" such that for
every point of A

: u(D) . '
—_— D <1
ll\I.% (sup { h(diam D) z € D, diam(D) < e, D compact, convex}) <],

then
* u(A) < HMA).

Proof. Fort > 1 and 6§ > 0, let

Ais ={x € A: u(D) < th(diam D) whenever z € D,

diam(D) < 6, and D is compact and convex}.

Suppose Ais C U2, D;, where the sets D; are compact and convex, with

diam(D) < 6. Then

o0

W(Aes) < S u(D) < ¢S h(diam D),

i=1 i=1
so u(Ass) < t HF(Ais). By assumption, A = U2, At,l/m so, since As1/n C
A 1/(n+1), We have

u4) = p (U Am/n) = lim pu(Ae1/m)

n=1

S t,}l_'r{.lo H{l/n(At,l/n) S t’!l’r{.lo Hf/n(A) = tHh(A)
Letting t \, 1 gives the result.

Theorem 5.5.5 If A C R" and u = H"| 4 = P|4 is a positive finite mea-
sure, then h is a reqular density function and u has h-density 1 almost every-
where. Conversely, for each function h which satisfies the limiting conditions
listed in Section 5.2 (vii), there is a positive finite measure p on R™ with h-

density 1 almost everywhere, such that u = H"| 4 = P*|4 for some A C R™.
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Proof. Lemmas 5.4.2 and 5.4.3 together imply that if p = H"| 4 = P?|4,
and p is positive and finite, then u has density 1 almost everywhere. Theo-
rem 5.5.1 implies that h is regular.

In [PrD, 6.5], for each regular density function h there is given a construc-
tion of a non-zero Radon measure x in R™ which has positive finite constant
h-density p almost everywhere in R™. We normalize p to have h-density 1
almost everywhere and write D for the set where the h-density of u is 1.
Now D is a G5 set with P*(D) > 0, so we may find a compact subset C of
D with u(C) > 0. Then Lemma 5.5.2 tells us that p|c(S) > Pr|c(S) for all
closed subsets S of R™.

Corollary 5.3.4 ensures that, for 4 almost every z, every tangent measure
to p at z is flat, and so we may use Lemmas 5.5.3 and 5.5.4 to show that
plc(S) < Hc(8S) for all measurable subsets S of R*. Lemma 1.3.2 implies
that if h is regular, then H"(A) < P"(A) for all A C R". Therefore Py|c, ulc

and H"|c agree on closed, and therefore on all, subsets of R”.
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