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Abstract

A number of definitions of packing measures have been proposed at one 

time or another, differing from each other both in the notion of packing they 

employ, and in whether the radii or the diameters of the balls of the packing 

are used. In Chapter 1 various definitions of packing measures are considered 

and relationships between these definitions established.

Chapter 2 presents work which was done jointly with Professor D. Preiss, 

and which has been published as such. It is shown here that, with one of the 

possible radius-based definitions of packing measure, every analytic metric 

space of infinite packing measure contains a compact subset of positive finite 

measure. It is also indicated how this result carries over to other radius-based 

packing measures in the case of Hausdorff functions satisfying a doubling 

condition.

In Chapter 3 a construction is described which provides, for every Haus­

dorff function h, a compact metric space of infinite diameter-based /^-packing 

measure, with no subsets of positive finite measure. It is then indicated how 

such a construction may be modified to deal with certain Hausdorff functions 

which do not satisfy a doubling condition, and a radius-based definition of 

packing measure.

In Chapter 4 we consider topological and packing dimensions, and show 

that if A  is a separable metric space, then

dimT-(A') =  min {dimg(X^) : X '  is homeomorphic to X }  ,

where dimg denotes the packing dimension associated with any one of the 

packing measures considered in this work, and dim r denotes topological di­

mension.



Chapter 5 answers the question, for which Hausdorff functions h may 

the Hausdorff and packing measures, H^Ia and V^\a , agree and be positive 

and finite for some A Ç R ”. We show that the assumption that the two 

measures agree and are positive and finite on some subset of R ” implies that 

the function /i is a regular density function (in the sense of Preiss). The 

converse result is also provided, that for each regular density function h, 

there is a subset A of R ” such that H^\a = 'P^\a and this common measure 

is positive and finite.
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B asic notation

There follows a list of the notation used in the text without definition, which, 

although basic, is not completely standard.

the strictly positive real numbers 

B(x, r) the closed ball centred at x  with radius r

U(x, r) the open ball centred at x  with radius r

B{A, r) A-h B{0, r) = {a-hy : a e A, y e  B(0, r)}

U{A,r) A + U{0,r) = {a y : a e A, y e U{0,r)}

Clos(v4) the closure of the set A

dA  the boundary of the set A

diam(v4) the diameter of the set A, that is, sup{dist(x,7/) : x ,y  e A}

h{—) the left continuous modification of a function h : R  —>■ R

/i(-+) the right continuous modification of a function h : R  —► R

fi\A the restriction of the measure fi to the set A, that is, the

measure defined by /xU(S') =  y,{A fl S) 

spt fjL the support of the measure that is, the smallest closed 

set C such that the complement of C has jj, measure 0 

dist(v4, x) the distance between the set A and the point x, that is, 

inf{dist(a,x) : a e A}



d\st{f,g) the distance between functions /  and g, that is,

sup{dist(/(x),t^(j;))} 

conv(A) the convex hull of the set A, that is,

{EiLi : 1 < n < 00, a ie  A, Wi> 0, E  w* =  1}

Lip(/) if there is c such that dist(/(x), f{y)) < cdist(x,?/)

for all X ,  y, we say that /  is Lipschitz, and write 

Lip(/) =  inf{c : d ist(/(x ),/(?/)) < cd\st(x,y) for all x,y}

pol^rope Ojs o- ^  AS ,

w '' C'ceK t'i» (X pa/^t - i  - c è i( w o- -(iJ i g

-c'ts e--̂ cL ^-cell

tr iC ln ^ /é  Uw) 116 c\ 3 - 1 U c/̂  tg

tÀ>it-Uoov/t so 0'>. ft, (2 ^ ~ G, >, I '

dzterryr̂ -.r̂  eel -ft,e ct?s , 5 .c/<? s./^a f̂ i, - • • c / A
p-ceU a'<2 c<x(lett h-^cc's. o/" fkg p-ca{l

c(uv.c< t  fie f>'ce(( PcxctPs,rj
An A cx co '\ ha^'> ec(

and posit'd .'A Û. d<P f̂ .A. tg nocLAnO - G.

/ v 'o c te  Co (f(?C f ‘ J A  c h i j G . w t  p - ' C Q Ü S t  t  C» -  p  S  / ) ,  c«-^

0 06? o P  iWK^cU iS (?y\ r>'Ci i l i   ̂ AAc/ S u cU  fk c c f  

Pc\C^ o f  C-CXcl  ̂ ^ c ( (  0 /  / i v g  C o / ^ C c t i ^ ' A  h < ? / 0 ' T ^ i '  

6j five C o f f e e  boo.



Introduction

This work largely concerns itself with packing measures, which were intro­

duced to complement the theory of Hausdorff measures in [TaTrl, TaTr2, 

IVC]. (For a new treatment see also [MaP, Chapter 5].) While Hausdorff 

measures are intimately connected to upper density estimates (see, e.g., [FeH, 

2.10.18]), much of the importance of packing measures stems from their con­

nection to lower density estimates.

Given a Hausdorff function, that is, a non-decreasing function h : >

R"*" with /i(0+) =  0, we may define a number of packing measures, which 

differ from one another both in the notion of packing they employ, and in 

whether we consider the radii or the diameters of the balls of the packing. 

To deal with the inevitable notational difficulties this presents, we shall use 

the symbol V  to indicate a diameter-based definition, and the symbol to 

indicate a radius-based definition. We shall also distinguish between packing 

measures which rely on different notions of packing, that is, packings which 

consist of balls which satisfy different types of disjointness conditions.

In Chapters 2 and 3 we consider the question, when do sets of infinite 

packing measure have subsets of positive finite packing measure. In Chap­

ter 2, which is the joint work of the author and D. Preiss, a positive result 

is provided, that is, a result which tells us that for analytic metric spaces.
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such subsets exist in the case of the Besicovitch-type radius-based packing 

measure denoted below by It is also shown that this result carries over 

to the radius-based packing measure denoted by in the case of Hausdorff 

functions satisfying a doubling condition^ that is, Hausdorff functions h for 

which we may find a constant c such that for every r  > 0,

h{2r) <ch{ r).

A similar property for Hausdorff measures, proved by Besicovitch [BeA5], 

(see also [BeA2],) for compact sets in Euclidean spaces, is an important tool 

in the study of Hausdorff dimension, see, e.g., [FaK]. For Hausdorff measures, 

the problem has been studied also in general metric spaces: Davies [DaR] 

generalized Besicovitch’s theorem to analytic sets in Euclidean spaces, Davies 

and Rogers [DaRo] gave an example of a function h for which there is a 

compact metric space without this property, Larman [LaD] found a class 

of “finite dimensional” spaces for which Besicovitch’s theorem holds, and 

Howroyd [HoJ] generalized Besicovitch’s result to arbitrary analytic metric 

spaces provided that the Hausdorff function in question satisfied a doubling 

condition. (See [RoC] for more information about the theory of Hausdorff 

measures on metric spaces.) For packing measures the only previous result 

was that of Haase [HaH2] proving the statement in ultrametric spaces.

The work of this chapter has been used in [IkTa] to prove for packing 

measures, an analogue of the Frostman Lemma for Hausdorff measures. It 

has also been used by Mattila and Mauldin in [MaMa], where the packing 

measure function, which maps a non-empty compact subset FT of a com­

plete separable metric space X  to its radius-based packing measure 

is shown to be measurable with respect to the cr-algebra generated by the 

analytic subsets of X ,  provided that h satisfies a doubling condition. It
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is then remarked that since their proof depended on the existence of com­

pact subsets of positive finite measure, which cannot be guaranteed for the 

diameter-based packing measure or for 7^  ̂ unless h satisfies a doubling 

condition, the question of measurability of these packing dimension functions 

remains open.

In Chapter 3 we provide a negative result for the diameter-based packing 

measure that is, for each Hausdorff function we provide a construction of 

a (compact) metric space of infinite diameter-based packing measure which 

has no subsets of positive finite measure. This work appears in [JoH], and 

answers a question that was asked by P. Mattila and R. D. Mauldin at the 

Conference on Fractal Geometry and Stochastics held at Finsterbergen in 

June 1994. We also show that this result carries over to the measure 71  ̂ in 

the case of certain Hausdorff functions which satisfy no doubling condition. 

The results of these two chapters are constructive, and show clearly the way 

in which the existence or non-existence of such a subset depends crucially on 

both the definition of packing measure which is adopted, and the properties 

of the function h.

In Chapter 4 we consider the relationship between the topological dimen­

sion of a separable metric space and the packing dimensions of its home­

omorphic images. Given any family of packing measures defined for each 

non-negative real number, we may define the related dimension; below we 

provide a number of different families of packing measures, each of which 

will have its own related packing dimension. Therefore the question of when 

these dimensions may differ is important for Chapter 4, and is considered in 

Chapter 1. The relationship between Hausdorff dimension and topological 

dimension is considered in [SzE] and [HuWa].

In Chapter 5 we consider the situation where there is equality of Hausdorff
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and packing measures on a subset of R”, and show that the functions h for 

which there may exist such a set are precisely those named regular functions 

by D. Preiss, (see [PrD].) This extends fKa

se e  [5oTp j (a proof of which may be found in [MaP]), that if W \a = 'P \̂a 

is a positive finite measure, then s is an integer and A is 5-rectifiable. For 

this chapter, we use theorems which adapt and extend the standard density- 

type theorems, and we rely heavily on the concepts and results of [PrD] and 

[MaPr].



C hapter 1 

Som e definitions and  

prelim inary results

1.1 Introduction

In this chapter we define the concepts of packing measure and packing di­

mension which shall be used throughout this work. We derive some simple 

consequences of these definitions, and consider the inequalities satisfied by 

the measures and dimensions thus defined. Since in the following two chap­

ters we concern ourselves with the question of existence of subsets of positive 

finite measure, it is of interest to establish the inequalities which hold for 

the various packing measures defined below, and to establish if and when 

these measures may differ to the extent of one being zero or infinite, and 

another positive and finite. For the work presented in Chapter 4, we shall 

also wish to know the inequalities which hold for the dimensions defined by 

the different packing measures, and on which spaces these dimensions may 

differ. For use in Chapter 5, we consider an inequality relating packing and

13
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Hausdorff measures.

1.2 Packing measures defined

For the first type of disjointness condition we consider in this work, we will 

take a packing of a subset S of a metric space M to be a finite collection of 

closed balls {B{xi, n) : Xi G 5} such that, for each i ^  j ,

B{xi, Vi) n B{xj, rj) = 0.

For <5 > 0, a (radius-type) 6-packing is a packing such that Vi < 6 for 

each i.

We then define 7^^(5), the radius-based packing measure of S, thus:

Ri{S) = sup{^/i(r» ) : [B{xi,ri)} a (5-packing of S'} ,

Ag(S) =  limE^(S),

{ oo oo ^

£ f f S ( 5 i ) : 5 c U 5 i | .

If we take a (diameter-type) 6-packing to be a packing such that for each i, 

diam B(xi,ri) < 6, and utilize a similar notion of disjointness to that above, 

we may define the diameter-based packing measure thus,

F^(S) =  s u p |^ /i(d ia m  B{xi,ri)) : a (5-packing of S} ,

P^(S) =  \}^Ps{S),

{ oo oo ^
Ç P ' * ( S i ) : 5 c y 5 i | .

The second type of disjointness condition we will consider is a Besicovitch- 

type condition, where a Besicovitch packing of a subset S of a metric space
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M is a finite collection of closed balls {B^Xi^n) : Xi G S} such that, for each

Xj i  B{xi,ri).

A 6-Besicovitch packing is a Besicovitch packing such that u  < 6 for each i.

We will distinguish packing measures defined using such a notion of pack­

ing from those using the stricter notion given above, by using a tilde to indi­

cate a Besicovitch-type definition. Then, in a similar manner to the above, 

we may define R^iS), the Besicovitch-type radius-based packing measure of 

S, thus:

^ s i^ )  =  sup {^ /i(r» ) : {B{xi,ri)} a 6-Besicovitch packing of «S'} , 

Èè(S) = limfl?(S),

{ OO oo 'I

: 5  C U ^ i j  .

If s > 0 and h(r) = r*, we shall write Q |, QÔ, Q’, for , Qo,

where Q stands for any of R, R or P, and Q for any of 7 ,̂ i t  or V. We may

then define the packing dimension associated with the family of measures 

: s > 0} thus:

dimg(«S') =  sup{s : Q^{S) = oo} =  inf{s : Q^(S) =  0}.

1.3 A comparison o f packing and Hausdorff 

m easures

For the sake of comparison, and for use in Chapters 4 and 5, we now provide 

a definition of Hausdorff measure-,

We say a (finite or countable) collection of open sets {Ui} is a covering

of a subset S of a metric space M if «9 C (J* P*.
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For 6 > 0, a 6-covering is a covering such that diam(t/i) < 6 for each i. 

Given a Hausdorff function h, we define the Hausdorff measure

of S, thus:

H^(S) = inf /i(diam Ui) : {Ui} a 6-covering of iS} ,

As for packing measures, we write for where h{r) =  r^, and we define 

Hausdorff dimension by

dim^(6') =  sup{s : 7i^{S) = oo} =  inf{5  : H^(S) = 0}.

The next two lemmas are proved elsewhere, see [FeH, 2.8.4] and [MaP, 

5.12], but for convenience and completeness we here provide the proofs of 

the precise forms we need.

Lemma 1.3.1 If is a family of closed subsets of a metric space X ,  with 

sup{diam(F) : F  E T }  < 0 0 , then T  has a disjoint subfamily Q such that 

for each F  E T  there exists G E G with

F  n G ^  0 and diam(F) < 2 diam(G).

Proof. Consider the class H of all disjoint subfamilies H oi T  with the 

following property: Whenever F  G F ,

either F  D F  =  0 for all F  G H,

or F  n F  ^  0 and diam(F) < 2 diam(F) for some F  G F .

Since this family is partially ordered by set inclusion and nonempty (if G G F  

is such that 2diam(G) > sup{diam(F) : F  G F}, then {G} G fi), we may use 

Hausdorff’s maximal principle to choose a maximal totally ordered subset of
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Q, that is, we may find Ç E Q such that Ç is not a proper subset of any 

member of Ct.

Let JC = { F e T : F n  |J{G G =  0}. I f / C f  0 we could select K  e K  

so that

2d\am(K) > sup{diam(L) : L e  JC}.

Then we would have that G O {K} e Q, contrary to the maximal choice of

G.

Lemma 1.3.2 Let X  be a separable metric space, and let h be a Hausdorff 

function satisfying a doubling condition. Then 1-C{A) < V^{A) for all subsets 

A of X .  It follows immediately that dim^(v4) < dimp(v4) for each A C  X .

Proof. Write c =  limsupr\o h{5r)/h{r). (The doubling condition ensures 

that c is finite.)

It suffices to show that H^{A) < Pq{A) for each subset A of X ,  and for 

this we need only consider those sets A for which Pq(A) < oo. Let 6 > 0, 

and choose 6 > 0 such that Ps(A) < Po(A) 4- e, and such that if r  < 6 then 

/i(5r) < 2ch{r). Let {Bi}i be disjoint closed balls with centres in A  such 

that diam(B*) < 6 for each i, and
k  k

5^/i(diam Bi) < P^{A) < ^ /i(d ia m  Bi) +  e.
t=i t=i

Choose a countable dense subset S  of A, and apply Lemma 1.3.1 to the 

family of closed balls B{x, r) such that x  belongs to S, lOr < 6, and

B(x,r) C X  \ \ J  Bi,
t= l

to find disjoint closed balls Bg,..., of diameter at most 6/5 with centres 

in A  such that

^ \ U 5 i C U 5 S ;
i= l  j
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and that the combined collection {Bi : I < i < k}[j{Bj ■ j  =  1,2, . . .} is 

also disjoint. Then

k  I

/i(diam Bi) 4- ^  /i(diam Bj) < Ps(A) for each / > 1;
t = i  j = i

k  oo

^  /i(diam Bi) 4- ^ /^(d iam  B ') < Ps{A)
i = l  j = l

k
< h(diam Bi) + e,

1=1

and so
oo

Y2 ^(diam B') < e.
j = i

Consequently,

fc oo

Hg{A) < Y2  ̂ (diam Bi) 4- Y2 diam B')
t = i  j = i

k  oo
< Y2 ^(diam B*) 4- 2c ̂  /i(diam B' )

t = i  j = i

< B ,V ) +  2c£

< B(f (>l) 4- (1 4- 2c)6.

Letting 6 \  0 and £ \  0 we see that H^{A) < Pq{A), as required.

1.4 Some easy properties o f packing mea­

sures

Lemma 1.4.1 Writing Q for any of B, R or P, we have 

(i) Q iiS) < Q ;(5) i f O < a < r .

(ii) Q liS) < Q^{T) if S c T ,  S>yo.
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(iii) UT) <

(iv) U T) =  Q^(^) +  Q^(T) ÿ  dist(:9, T) > 6.

(v) QS(5 U T) =  Qî(5) +  QÎ(T) ifdist(S,T) > 0.

Proof. The statements (i) and (ii) are obvious from the definitions, and (iii)

and (iv) follow by decomposing an arbitrary packing of «9 U T into packings 

of S  and T, respectively. The statement (v) follows from (iv).

Lem m a 1.4.2 For every Hausdorff function h and every subset S  of a met­

ric space X

R^{S) = ^ (C lo s S).

As a direct result,

{ oo oo 'j
Ç  R^{Ci) : <9 Ç IJCi, and Q  are closed subsets of x \ .

Proof. Suppose rj > 0, and the balls B { x i ,r i ) , . .. ,B{xn,rn) form an rj- 

Besicovitch packing of Clos(5). Choose p > 0 such that the balls B{xi,ri  4-  

P ),. . .  ■, B(xn, rn +  P) form an (77 4- /?)-Besicovitch packing of Clos(<9). If we 

then choose points 2/1, . . .  ,2/n of S  with dist(xi,?/i) < P for each i, the balls 

B { y i ,r i ) , . . . ,  B{yn,rn) form an 77-Besicovitch packing of S, so

È I;{S )> '£h (n ) .

So, for each 77 > 0 ,

R^(S) > flJ(Clos 5).

The result follows.
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Lemma 1.4.3 I f  h is a left-continuous Hausdorff function, then for every 

subset S  of a metric space X

r S(S) = flS(Clos S).

As a direct result, for such h

{ oo oo 'j
Ç iîJ (C i)  : -S' Ç [JCt, and Q  are closed subsets of X j  .

Proof. Let rj > 0 and suppose the balls B(xi,ri), B{xn,rn) form an

77-packing of Clos(S'). If 0 < 6 < min{ri : 1 < 2 < n} we may choose

points 7/1, . . .  ,7/n of S  with dist(a;*,^*) < e for each i. Then B{yi,r\ — e),

, B{yn, rn — e) is an 77-packing of S. So

R’ê { S ) > '£ h { n - )  = ^ h { n ) ,

and the result follows.

A proof like those above could not be used for diameter-based packing 

measure, or for radius-based packing measure in the case where h is not left- 

continuous. The problem is that replacing a ball of a packing of Clos(5) by 

a smaller ball centred in S  itself may greatly reduce the diameter of this ball, 

or the value that h takes at its radius.

Lemma 1.4.4 There is a metric space M  which has a subset A such that

Pq{A) < 0 0 ; Pq (Clos A) — 00.

Proof. We choose an increasing sequence of integers {rik)k, and decreasing

sequences of real numbers ((k)k and {^k)k by taking 7%i =  2, (1 =  1, and

(1 =  1/8; then, for each k >  1, we choose (̂ =4-1 < (&/8 so small that

1̂ kCk+l ^
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rik+i so large that

f̂c+iCfc+i —

and ^k+i < Ca:/8 so small that

^A:+l̂ fc+l — f̂c/2*

For each A; > 1, we construct a metric space (Mk,distk), thus:

Let {ttkj : I < j  < Tik}, {bkj : I < j  < n*.}, {yk,i : 1 < i < oo}, and

{zk,j,i < j  <Tik, 1 < 2 < oo}, satisfy

distfc(û/-̂ t, cik,j) — Ck if  ̂^  J) 

distfc(6fĉ i, 6/jj) =  2^k if Î ^  J)

distA;(û/c,i, ~  Ck/‘̂^

distk{ak,i, bkj) = 3(fe/2 if i ^  j,
J—1

distk{yk,i} ykj) — Xy ^ if 2 < j,
l=i

distk{yk,i, ak,j) = 2“*+̂ *̂ + Cfc/2,

distk{yk,i, bkj) = 2-^-^% + (fc,
p—1

distfc(̂ fcj /̂, ZkJ,p) = ^2 ^ ^^k if  ̂ P; 
q=l

distk{zkj^ijakj) =  2 ^ â:, 

distA:(ZA;,j,/, 6fc,j) =  Ck/2 4- 2 ^ 

distfc(ZA:J,/, flfc.p) — Ck ~ 2 ^ if J ^  p, 

dist,(zA,jv, =  % /2  -  2-'+^& if j  P, 

d is tA ,(z tj,f ,p tj,)  =  ( k / 2  4- (2 -P + i -  2 - '+ ! ) ^ .

For each k, write

^k =  {Zkj,i • I < j  <rik},

Tk =  Mfc \  Sk.
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Let

M =  T i U U
/=i \fc=i /

Note that no sequence of M  may be a truncation of another. So if two 

sequences (z) and (j) in M  differ from each other, then there must be some 

I > 1 such that ii ^  ji, and we may define a metric on M  thus; if (z), (j) G M, 

(z) Ü), and I is the least such that z/ ^  ji, then

dist((z),0’)) =  distz(zi,ji). .

Let A  be the set of those finite sequences in M  which have Zk,j,i as their 

final term, for some A; > 1, 1 < j  < z > 1. Then Clos (A) also contains 

all those finite sequences in M  which have as their final term, for some 

A: > 1, I < j  <rik. Now

P|,(Clos A) > f n « < )  a /2 .

since the balls of radius ( t/2  centred at the points of Clos(A) which terminate 

in the A;th place with the term akj (1 < j  < Uk) are disjoint, and there are 

nf=i rii such balls, each of diameter .

We now introduce some notation.

Let (z) G M. We write |(z)| for the length of (z), and if |(z)| > k, we write

(Ok ~  (0) • • • )î/c)*
Fixing k, and regarding two elements (z) and (j) of M as equivalent if 

(Ok =  (J)\ky we write

M\k = {(Ok: ( O E M } ,

^\k = {(Ok : (0 G v 4 } .

We shall also use the notation

Ak =  A\k U {(0 G A : KOI < A:} .
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The usefulness of this notation lies in the following fact;

Packings of A by balls of radius greater than or equal to are 

in one-one correspondence with packings of Ak by bails of radius 

greater than or equal to 2( t4-i'

This is not hard to see since if (i) and (j) are elements of A, both of length 

greater than k, such that (i)|fc =  (j)|fc, then B{{i),r) = B{{j)^r) for each 

r  > 2(k+i- On the other hand, suppose (z) G A k\A \k ,  and r  > 2( k̂+i, then 

either B{{i),r) contains only points in i4fc\y4|jk, in which case, B{{i),r) is also 

a ball in A, or it contains some point (J) G A\k, in which case it necessarily 

contains every point (/) such that ( J ) \ k  =  (/)U-

Therefore, since packings are finite collections of balls,

^  supP2Ci(^fc). fc>i

Fix (zi,. . .  Zfc_i) G A\k-i. Let

=  {(*!>• • • : j  = Zk,i,i, some I < l  <Uk, i > 1} .

Then any two balls centred in with diameter greater than ^k must

intersect each other, as each must contain (zi,. . .  ik-i,yk,q) for all q>  p, for 

some p > 1. The maximum diameter of such a ball is clearly 2(^, that is, the 

diameter of Summing over the diameters of any balls of radius less

than or equal to ^k in a packing of gives a total of at most Uk^k, so

the contribution to any packing of by balls of radius greater than

or equal to 2(k+i is at most 2(k +  rik^k- 

Now

A\k Ç U
i)
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so the contribution to any packing of A\k by balls of radius greater than or 

equal to is at most

For each k >  1, we have

■^k ~  A \ k  U \  {(%!, ' ; ifc—2) ^ k —l , j , l )  ’  ̂ — j  — l}) •

So

^2Cii^k) ^  4- ^20 (^fc-1 \  {(̂ 1) ' • • ih-2,Zk-l,j,l) • I < j  < ^Z-l})

— ^ 4" 4- FjCi •

It is easy to see that

2̂(1 M l) ^  2(i 4- ni^i,

so
fc A -i \  k /  j

(n^i< 2 ( i + 2 E  0 + E  n ^ iK .- .
j= 2  \ i = l  )  j = l  \ i = l  /

and , ,
oo / j - I  \  oo 3 \

pi,^{A) < 2 C i2 ^  n 0 + E  n &-
j= 2  \ i = l  /  j = l  V=1 /

Now the choices of the sequences (nj)j, and ensure that

n n i ) 0 / 2 > 2 ( n n i ) 0 - i / 2 ,  
d = i /  \ : = i  /

so (jli=i n,) Cj/2 —► (X) as J —► 0 0 , and

Pq (Clos A) — 0 0 .

But

2 ( n " ‘j  0  < f n " * )  0-1,
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so (rii=i ^t) 20 is bounded. Also

2 0  — 0 - 1  >

so Z )^i (rii=i Tïi) 0  is bounded. Therefore Pq{A) < (A) < oo, as

claimed.

However, with a certain (rather restrictive) condition on the metric space 

X ,  we may prove that Pq(S) = Pq (Clos S), and that P j(5 ) =  Po(Clos S)

even when h is not left-continuous. This less general result will be useful in

Chapter 3.

Lemma 1.4.5 Let h be a Hausdorff function. Let X  be a metric space sat­

isfying the following condition:

For each ballB{x,r) in X , there ise > ^ such that, if dist(x,y) < e, 

then B(x,r)  =  B(y,r).

Then

Pq{S) = Po^(Clos S), for each S  C X ,

P j(5 ) =  P S (C 1os S), for each S Ç X .

It follows immediately that

r oo CO 'j
V^{S) = inf PoiCi) : 5  Ç IJCi, and Q  are closed subsets of X j  ,

{ oo oo 'I

Ç P j(C i)  : -S' Ç IJ Ci, and Q  are closed subsets of X > .

Proof. Suppose the balls P(xi, r i ) , . . . ,  B(xn^ r») form a packing of Clos(5), 

and pick e small enough that for each 1 < i < n we have B{xi, r») =  B{yi, r») 

for each yi e  B(xi,e). For each i, choose yi e S n B (x i ,£ )  . Then B (xi,n) =
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^{yijU), and so each packing of Clos(5') may be viewed as a packing of S. 

The result follows.

We note that, even though Lemma 1.4.1 (iii) implies that Rq, Rq and 

Pq are (finitely) subadditive, they are not, in general, countably subadditive, 

which is why the last step in the definitions of 'RA,,R^ and is needed. 

In Chapter 2 we are mostly concerned with Besicovitch-type radius-based 

packing measure, and we will use there the proposition below, which provides 

a simple criterion for the equality of and R^.

Lemma 1.4.6 If M  is a compact metric space and if for every e > 0, every 

6 > 0 and every subset S  of M  one can find an open set G D S  such that 

R^{G) < R i(S )+ e ,  then RA{M) =

Proof. Let M  c  (J%i Si and let 6 > 0. For each i = 1,2, . . .  we choose 

> 0 such that

Let Gi D Si be open sets such that

Since M  is compact, the cover {Q} of M  has a finite subcover. So we may 

use Lemma 1.4.1 (iii) to infer that

oo oo oo
À J(M ) <  g  ÀJ(G i) <  E  +  2 - 'e )  =  ^  R ^ {S i)  +  e.

t = l  t= l  t= l

Hence, given any {%} with M  C U£i %, we have A^(M) < E S i  ^oiSi), 

which shows that Rq(M) < 'RA{M). The opposite inequality is obvious.
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1.5 A  comparison of different packing mea­

sures and dimensions

Lem m a 1.5.1 For every Hausdorff function h, TV' < IV'.

Proof. This follows since a 5-packing of a set S  is clearly also a 5-Besicovitch 

packing of S.

Lem m a 1.5.2 I fh  satisfies a doubling condition, then the two measures 

and TZfi are zero, positive and finite, and infinite, respectively, on precisely 

the same subsets of a metric space X . As a direct consequence, dim^(6 ') =  

dim7j (5 ') for each subset S  of X .

Proof. If {B{xi,ri)} is a Besicovitch packing of S  then [B{xi,ri/2)} is a 

packing of S. Since h satisfies a doubling condition, there is c >  0 such that, 

for each i, h{ri) < ch(ri/2). So Rs{S) < cRf{S) and < c7l^(S),

which, together with Lemma 1.5.1, proves the result.

Lem m a 1.5.3 I f h satisfies a doubling condition, then V^(S) < c'Rfi{S) for 

each subset S  of a metric space X , where c is the doubling constant. This 

immediately implies that dim;, (S') < dim#(S).

P roof. The proof is obvious since the diameter of a ball is less than or equal 

to twice its radius.

We now introduce some terminology due to Federer [FeH, 2.8.9] (in a 

simplified form which will be sufficient for our purposes). One of the con­

sequences of the results presented in Chapters 2 and 3 is that, for each 

Hausdorff function h, there is a compact metric space of infinite and 

measure, which has subsets of positive finite Rfi measure but none of positive
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finite measure. For certain functions h which do not satisfy a doubling 

condition, we may edso find a compact metric space of infinite PA and RA 

measure, which has subsets of positive finite measure but none of positive 

finite R ^  measure. It is natural to ask if such examples could be constructed 

inside R ”. The next two lenunas imply that they could not.

A metric space (%, d) is said to be (-directionally limited, for some positive 

integer if the following condition holds:

For each a E X  and B Ç X  \  {a} such that d(x, c)/d{a, c) > 1/3 

whenever b,c e  B, b ^  c, d{a,b) > d{a,c), and the point x  is 

chosen thus,

d(a, x) = d(a, c), d(x, b) =  d{a, b) — d{a, c);

we have

|B| < c-

A metric space {X, d) is directionally limited if it is (-directionally limited for 

some positive integer (. Note that Euclidean spaces are directionally limited.

A collection of closed balls {B(xi,ri}} in X  is said to be r-controlled if 

1 < r  < 0 0 , and for each B{xi,ri) ^  B{xj,rj), one of the following holds;

d{xi,Xj) > n  > Tj/r or d(xi,Xj) > rj > n/T.

A proof of Lemma 1.5.4 may be found in [FeH, 2 .8 .12].

Lemma 1.5.4 If 1 < r  < r-controlled collection of closed balls in

a (^-directionally limited metric space is a union o / 2 (  4- 1 sub collections of 

disjoint sets.
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Lem m a 1.5.5 If (X,d) is a directionally limited metric space then there is 

a constant c such that iZ^(S) < cV^{S) for each subset S  of X .  If, in addi­

tion, h is a Hausdorff function which satisfies a doubling condition, then the 

measures HA and are zero, positive and finite, and infinite, respectively, 

on the same subsets of X .  This directly implies that for each subset S  of X ,

dim^(5) =  dimp(S).

Proof. We first note that Lemmas 1.5.1 and 1.5.3 together imply that it is 

sufficient to prove the first statement. Let ( be such that X  is (-directionally 

limited. Let S  Ç X  and 6 > 0. Choose 6 > 0 so small that

R^{S) < (1 +£)ÂS(5).

Choose 0 < < 6 so small that 2h{6\) < h(6). Let {B{xi,ri)} be a 6 i-

Besicovitch packing of 5  such that

Y,h(ri)  > {i -  e)ft^{S).

Write

51 — {xi : d ist{B(x i,r i),S \B {xi,r i))  < 6},

52 = { x i ' .X i^ S i} .

Then { B { x i , r i )  : X i  G  S i }  U  { B { x i , 6 )  : X i  €  S 2 }  is a  6-Besicovitch packing of 

S, so

' £ { h { n ) : X i e S i }  +  Y , { h { S ) : X i € S 2 }  <  R ^ ( S ) ,

^ { h ( r i )  : Xi ë  Si} + 2 ^ { h ( r i )  : Xi € S2} < (l+e)Â 5(S'),

(1 — e)Rli{S) +  y~!{fe(rj) : Xj € < (l'+e)Â J(5),

Y ,{h (n ) : Xi € 82} < 2£R^(S).
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So

Z {A (n) : % e  5i} > (1 -  e)R^{S) -  2eflJ(5) =  (1 -  3e)flJ(5).

For each i such that Xi G 5i, let Si = min{dist(xt,Xj) : x* ^  Xj}\ then 

it is easy to see that there is 1 <  r  <  oo such that { B { x i , S i )  : X i  e  S\}  is 

r-controlled. So {B{xi, Si) : Xi G 5i} is a union of 2( +1 subcollections of dis­

joint balls. Therefore, there is a disjoint subcollection B of {B{xi^ Si) : a;* G i9i} 

such that

K'^i) ^  S  Ksi) < (2(  + 1) X) /î(diam(5(a;i,5i))).
Xi^Si XiÇ:S\ Xi£B

Therefore

(: -  3s)Âg(g) < (2C +  l)Pt{S).

Since this is true for each 6 > 0 , each 6 > 0, and each subset S' of X,

R^{S) < (2C +  l)P„'‘(5),

^'*(5) < (2C +  1)P'*(5),

which proves the first statement of the lemma.

Lem m a 1.5.6 If(X^d) is a directionally limited metric space, then the mea­

sures HP' and are zero, positive and finite, and infinite, respectively, on 

the same subsets of X .  This directly implies that for each subset S  of X ,

dim^(S') =  dimT (̂S').

P roof. Let (  be such that X  is (-directionally limited. Let S  C X ,  and 

5  be a collection of points of X  such that {B{xi,ri) : Xi G B} is a Besi­

covitch packing of S. It is easy to see that there is 1 < r  < oo such that
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{B{xi, ri) : Xi e B} is r-controlled. So {B{xi, n) : Xi e  6 } is a, union of 2 ( 4-1  

sub collections of disjoint balls. Therefore there is a subcollection B' of B such 

that

X) ^  (2 C + 1) Z ) ^(diam B(xi,Si)).
Xi£B XiÇiB'

Therefore

R l i S )  <  (2C +  l ) f l ? ( S ) ,  '

À5(5) < (2 (  +

Since this is true for each subset S of X ,

n'̂ is) < (2C + i)n\s).

Together with Lemma 1.5.1, this proves the result.

Lem m a 1.5.7 For any Hausdorff function h there is a metric space X  with

n\x) = n\x)  = 00 , v̂ {x) = o.

Proof. Given a Hausdorff function h, we choose an increasing sequence of 

integers {ni)i and a sequence (d*)» of real numbers decreasing to 0 , such that 

the points dk are points of left continuity of h, and

lim n i . . .  Ukh{dk) =  oo,
fc-+oo
oo

^  ̂ . . .  Tik—\h(^dk) oo.
k=2

Take X  to be the space

X  = { { i i , i 2 , . ..) : 1 < < r i j  for each j  > 1},

with a metric on X  defined thus:
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If (i) =  .. ■), and (j) = (J1J 2, • • 0 are distinct points of X,  and I

is the least index for which ii ^  j), then dist ((i), (j)) = di.

Write

{(̂ i> • • • k̂j jk+ij jk+2y • •  ̂ — Jk+i ^  k̂-\-i each I ^  I} .

Then these sets are the nonempty balls of the metric space X.

We now show that H^{X) =  'R,^{X) =  0 0 .

Fix p > 1 and let A: > p + 1. Then if dk+i < d < dk, there are precisely 

Up+i.. .Tik disjoint balls of radius d in These balls constitute both a

dfc-packing and a djt-Besicovitch packing of and since dk is a point of

left continuity of h,

^dk ~  ^dk ^  'fT'p+1 • • • 'IT'kh{dk — ) — Tlp î . . . Ukh^dk),

which increases without bound as k increases, by choice of {rii)i and {(Ti)i. 

By Lemmas 1.4.2 and 1.4.5, for each S Ç X,

{ 00 00 'I
Ç  : «9 Ç y  Q , and Q  are closed subsets of S ' | ,

{ 00 00 'j
Ç  R^{Ci) : S Ç y  Ci, and Ci are closed subsets of S | .

We may use the Baire Category Theorem to see that if {Q} are such that 

X  Ç  CIT° Ci, then there is i such that Q  contains an open set, and hence a 

set of the form Xi^^_i  ̂ for some p > 1 , 1 < ij < r i j .  This Q  then satisfies 

7%(Q) =  Âg(Q) =  0 0 .

It remains to show that V^{X) = 0. For each j  > I, there are pre­

cisely ni . . . r i j - i  disjoint balls of diameter dj in X,  so clearly, P^^(X) <

. .Tij-ih{dj). Therefore, Fo^(%) =  V^{X)  =  0 as claimed.



C hapter 2 

Subsets o f positive finite  

m easure - a positive result

2.1 Introduction

The work presented in this chapter appears in [JoPr]. We show that analytic 

sets of infinite Besicovitch-type radius-based packing measure contain subsets 

of finite positive packing measure. We also indicate how this result carries 

over to the measure 'RP' in the case of Hausdorff functions h satisfying a 

doubling condition. We recall that a metric space is said to be analytic if it 

is a continuous image of the set Af of infinite sequences of natural numbers 

(with its product topology).

2.2 Properties of the measure TẐ

Lem m a 2.2.1 l f ô > 0 , r ] > 0  and Q is a finite subset of a metric space M, 

then there a  > 0 such that Rs(R) > RsiQ) ~  V whenever R C M  meets

33
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each of the balls x  e Q .

Proof. Let {B{v,r{v)) : v € be a 6-Besicovitch packing of Q such that 

^v e v  h{r{v)) > R^iQ) — V- Since the balls B{v,r(v)) are closed, there is 

(7 > 0 such that, if v ,w  G V, and x{v) G B(r,<r), x(w) G B{w,cr), then 

x{w) ^ B{x{v),r(v)). So if i? C  M meets each of the balls B ( x ,(t), æ G Q, 

there is a packing {B{w,r{w)) ; w G W} of R  such that h{r{w)) >

RsiQ) — rj. So this a has the desired property.

Lemma 2.2.2 I f  6 > 0 and if M  is a finite metric space containing at least 

two points, with diam(M) < 6 and Rs{N) < Rg{M) for every proper subset 

NofM,<'-^^U^ f c L s t  ^  ^  4 X j  ,

R^iM) =  Y .  h{r(x,M)~).
XÇ.M

Proof. For any 0 < r* < r{x,M)  the family {B{x,rx) : x  G M} is a 

(5-Besicovitch packing of M. Hence Rs{M) > Y^x^m h{rx)^ which shows that

R'è(M) > E  h{r{x,M )-).
x £ M

Let a  be the maximum of Rs(N), where N  is e. proper subset of M.

Every 5-Besicovitch packing {B(xi,ri)} of M  which does not have balls 

centred at each x G M is a 5-Besicovitch packing of some proper subset of 

M  and therefore verifies

J2 h{ri)< a.
i

Since a < Rs(M), the supremum defining Rs{M) is reahzed by 5-Besicovitch 

packings {B(xi,ri)} of M  having balls centred at each point of M. Since for 

such Besicovitch packings we clearly have

^  E  K r(x ,M )- ) ,
i x € M
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we conclude that

Rs{M) = E  h{r{x ,M )-). ■ 
xeM

2.3 The inductive construction

Lemma 2.3.1 Suppose that M  is a metric space, e > 0, 0 < a < oo, and 

that 6 > 0 satisfies h{6) < mm{6 , a}. Suppose further that xo E M  is such 

that Rg(B(xo,6/5)) > a.

Then there exist a finite subset K  of B(xq,6/ ^  containing at least two 

points and a positive number a < ^imn{r{z,K) : z G K } such that

(i) a < Rs(K) =  E z€K h(r{z, K ) - )  <a-\-e , and

(ii) whenever S  C B{K,a) and T  C B{K,a) fl B{S,"^cr) have the property 

that, for each s £ S, the se tT n B { s ,2a) is either empty or a singleton, 

then Rs(S) > Rs(T) — e.

Proof. Write G =  U{xq,6/^). Noting that R^{G) > Rg{B{xo,6/5)) > a, 

we use the definition of Rs{G) to infer that there are finite subsets C of G 

with Rs{C) > a. So we may choose a finite subset L of G with the least 

possible number of elements, say m, such that R^{L) > a. Then m > 2, 

since otherwise R^{L) < h{6) < a.

Let C denote the family of all m-element subsets of G. We first show 

that, whenever G G C s^'sfies B^(G) > a, then

a  < B^(G) =  Q - )  < a  +  6 .
z € C
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Indeed, each proper subset of C 5«̂t*5fies Rs{N) < a < Rs{C) since it has 

fewer than m  elements. Hence Lemma 2.2.2 implies that

Ri{C) = J 2 h (r{z ,C )-) .
zee

Picking any c G C and observing that Rg(C \  {c}) < a, we estimate 

R^{C) < R^(C \  (c}) + R^({c}) ^ a  + h(6) < a  + e, 

which proves that

a < R si^)  < CK + s.

Write

7  =  2- " *  (R '^{L )-a )a- '  

and define, for every C E C,

F(C) =  Â^(C)+7  Z  (A)'
RcC,Rjf:C

Observing that F{C) < m h (6) + (2 "̂  — 1)7 0 , we see that

T =  sup{F(C) : C eC }

is finite. Let cj =  min{a7 ,5:7 / 4 } and let Æ E C be such that F{K) > r  — u. 

Then

R<l{K) =  F { K ) - ' y  ^  R̂ g(R) > T -  u -  {2”' -  \ h a
R<ZK,R^K

> F{L) +  7 0  -  w -  (^Rs(L) -  > a .

So (i) holds for K.

Let 7] = ^6 7 (1  +  2^ 7 )"L Using Lemma 2.2.1, we find

0 < cr < j  min{r(z, K) : z E K]
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such that B{K,a)  C G, and

-  T)

whenever Q c  K  and R C M  meets each of the balls {x G Q).

Writing, for each R c  M,

K{R) — {x e  K  : R n  B{x, a )  ^  0 } ,

we observe that this implies that

Rl(R) > i&i(K(R)) -  V

for every R  C B{K,cr).

To prove (ii), let S  C B{K^ cr) and T C B{K, cr)r\B{S, 2cr) have the prop­

erty that, for each s e S, the set TDB{s ,  2cr) is either empty or a singleton. 

Let C = T  \J (K \  K(T)). Then C belongs to C and the correspondence 

B C C t—> K{R) is a bijection between subsets of C and subsets of K.  Thus

T > F (C )> f i? (C )+ 7 À J (î’) +  7 E
R C C ,R ^ C ,R i^ T

> R^{K{C))-r ,  +  -yR' {̂T) +  'r E {R^{K{R)) -  v)
RCC,Ri^C,R4 T

> fl*(ir) +  7 ^ J (r )+ 7  E  4 " ( k ) - ( i  +  2™7)7/
R C K ,R jiK ,R ^ K (T )

= F (K )+ 'r { R ^ { T ) -R ^ { K { T ) ) ] - e 'r /4

> r  +  7 -  R^(K(T))) -  6 7 / 4  -  w

> T +  7 (fiî(T) -  Ê*(/f(T))) -  67/2.

Hence Rs(T) — R^(K(T)) < e/2, which, since K(S) D K{T), implies that 

R^iS) > R^{K{S)) - n >  R^s(K{T)) - n >  ÀJ(T) - e / 2 - n >  R^{T) -  e.
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Lem m a 2.3.2 Let M  be a metric space such that R^{G) — oo for every 

non-empty open subset G of Mj and let e > 0. Suppose further that L is a 

finite subset of M  having at least two elements.

Then there is A  > 0 such that for every 0 < 6 < A one can find a finite 

subset K  of B{L,6/4), and a positive number a < ^min{r(z, : z 6  K}  

such that

(i) for each x £ L the set K  fl B(a;,<$/4) has at least two elements,

(ii) Y .h {r (x ,L )~ )  < R^(K) = £  h{r{z ,K )-)  < Y : K r { x , L ) - ) + e ,
x£L z£K x£L

(iii) whenever S  C B{K,a) and T  C B(K,(t) fl B(S,2a) have the property 

that, for each s E S, the setTC\B{s,2a) is either empty or a singleton, 

then R^(S) > ^J(T) -  e,

(iv) if  S  C B{K, a) meets each ball B{z, a) {z G K) in at m ost one point, 

then fo r every vj > max{r{x,L) : x E L} there is T  C S meeting 

each ball B {x,8), {x E L) in at m ost one point and such that R!^{S) < 

R"n{T) +  e.

Proof. Let uj =  where |L| denotes the nmnber of elements of the set L. 

Let 0 <  A <  I  min{r(T, L) \ x E L ) he such that

h{A) < min {uj, mm{h(r{x, L)—) : x  E L}} ,

and such that, for every x E L,

h(r{x, L) -  A) > h(r{x, L ) - )  -  u.

Assuming that 0 < 6 < A, we use, for each x  E L, Lemma 2.3.1 

with £ replaced by cj, a  =  h{r{x,L)—), and Xq =  x, to find a finite sub­

set Kx of B(x,6/4)  having at least two elements, and a positive number 

(Jx < ^min{r{z,Kx)  : z E Kx} such that
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(a) h{r{x,L)~) < Rs(Kx) =  X) < h{r{x,L)~) + u, and

(b) whenever S  C  B{K,(Tx) and T  C  B(K,(Tx) fl B{S,2(jx) have the prop­

erty that, for each s E S^ the set T  fl B{s,2ax) is either empty or a 

singleton, then Rs(S) > Rg(T) — u.

We prove that the statement of the lemma holds with

— UxGL ^X'

The statements that K  C  B(L,6/4) and (i) are clear. Moreover, (ii) follows 

immediately from (a), since r{z,K) = r{z,Kx) whenever z E Kx and since 

Lemma 1.4.1(iv) implies that Rs(K) =

Let 0 < <7 < |min{cTa. : x  E L} be so small that B{K,a)  C  B {L ,6/S) 

and a < ^nnn{r{z,K)  : z E K}. Then Lemma 1.4.1(iv) gives that, for each 

R c B ( K , ( t ) ,

Ri{R) = E R e ( R n B { x ,S ) ) ,
x € L

which shows that (iii) follows immediately from (b).

Finally, to prove (iv), let r] > max{r(x,L) : x  E L} and let S  C B(K ,a)  

meet each ball B(z, a) (z E K) in at most one point. We find an 77-Besicovitch 

packing {B{v,r{y)) : i; € V̂} of 5  such that Svev^(^(^)) > ~  6:/2 .

Since V C S  C B(K,(t) C B (L ,6/S) and since 6 < |m in{r(x , L) : x  E L}, 

there i s T  C V  such that, for every v E V, the set T  C\ B{v, 6) has precisely 

one point. Let To be the set of those t E T  îov which V  fl B{t, 6) contains 

only one point. We define s{t) =  r{t) if t G 7b and s{t) =  r{x^L) — 6  if 

t G T\ — T  \  7b, X E L and t E B{x^ 6 ).

Let t e T i  and x E L h e  such that t E B {x,6). Using the fact that

y  n  B (t,6) C  B{L,6/3) n  B{x,6/3) =  B{x,6/3),
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and that V  H B {t,6) has at least two points, we infer that r{v) < 8 for

V  e V  n  So {B(v,r{v)) :v  e V  O B {t,8)} is a (^-Besicovitch packing

of Vr\B{t, 6). Using (b) with S  replaced by Kx and T  replaced by VnB{t,  (5), 

we infer that

R iiV  n B(t, 6)) < R'l(Kx) + w <  h{r{x, L ) - )  + 2u.

Hence

h{r(v)) < h{r{xj L)—) -\-2u < h{r{x, L) — 6) -\-Su = h(s{t)) 4- 3a;.
vevnB(t,6)

Since this inequality obviously holds also if t G To, and since {B{t, s{t)) : t 6

T} is an 77-Besicovitch packing of T, we obtain

< Z) +  ^/2 =  Z  Z
vev  te r  vevnB{t,6)

<  ^ 2  (^ (^ (^ )) 4" 3a;) 4- s/2 <  ^ 2  ^ (^ (^ )) "h ^
teT te r

<

Lem m a 2.3.3 Let X  be a non-empty metric space and let (f be a continuous 

mapping of a closed subset Z  ofjV  onto X .  Suppose that R^((p(G)) = 00  for 

each non-empty relatively open subset G of Z. Then there exists a compact 

subset K  of X  with 0 < 'RA{K) < 0 0 .

P roof. Let ZnQ,...,np be the set of those points (77io,mi, . ..) e  Z  such that 

mo < n o , . .. ,mp <rip, and let Fno,...,np be the image of  np under (p.

By induction we will construct a sequence Kq,K i ,. .. of finite subsets of 

X  having at least two elements, sequences (5q, (5i,. . .  and ctq, a i , . . .  of positive 

numbers and a sequence no,ni , . . .  of natural numbers such that, for each 

j  =  0 , 1 , . . . ,
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(i) Kj C  Eno,...,nj)

(ii) Sj+1 < (Tj < \  mm{r(x,Kj)  : x e Kj} <

(iii) 1 < Ri.(Kj) =  Exe/c, h(r{x ,K j)-),

(iv) B(Kj+u(Tj+i) C B(Kj,(Tj),

(v) Kj+i n  B{x, cTj) ^  0 for each x e  Kj,

(vi) whenever S  C B{Kj,aj) fl Fno,...,nj and T C B(Kj,aj)  fl B(S^2aj) fl 

Fno,...,rij have the property that, for each s e  S, the set T n B ( s ,  2aj) is 

either empty or a singleton, then Rs.(S) > R^.{T) — 2 “-̂ , and

(vii) if 5  C B{Kj+i,aj+i)nFno,...,nj+y meets each ball B{ z , a j + i )  {z e Kj+i )  

in at most one point, then for every rj >  m a x 6j  there is T C 5  meeting 

each ball B{x,  aj) (x G Kj) in at most one point and such that R!^(S) <  

R^(T) 4- 2-L

The inductive construction starts by picking an arbitrary Xo G X , choos­

ing ($0 such that h(So) < 1, using Lemma 2.3.1 to find Kq and ao such that 

all the statements pertinent for j  =  0 hold, and then choosing no such that 

Xo C  FriQ. Assuming that, for some j ,  the sets Kj and numbers Sj, aj ,  

and Uj have already been defined, we choose 0 < < aj so small that

Lemma 2.3.2 can be used with M  =  Fno,...,nj and L = Kj. This Lemma then 

provides us with Kj+i and <7j+i for which all the requirements hold; Uj+i is 

chosen so that Kj+i C  Fno,...,nj+i’

Let K  = n%lo Clos (Up>fc Xp). Using (i), continuity of ip and compactness 

of the set ^no,...,np, we infer that X  is a compact subset of f |^ o  ^no,...,np- 

Now aj < Iimn{r{x,Kj) : x £ Kj}, so we may infer from (v) and (iv) 

that Ki n  B{x,aj) ^  0 for each i > j ,  each x  G Kj. So, for every k,
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Clos (y}p>kKp) O B(x, (7j) /  0, which, because of (i), continuity of ip and

compactness of fj^o  ^no,...,np, shows that K  fl B{x,aj) ^  0 for each x  G Kj,

Since clearly K  C B{Kk, <7k) for each A; =  0 , 1 , . . we infer from (vi) that 

for every S  C K

R l ( K ,  n B{S, <7,)) < fl* (5) +  2-*. (2.1)

Let A: =  0 ,1 , . . .  and let {B{xg, rg) : q e  Q} be an arbitrary ^^k-Besicovitch 

packing of a subset S  of K. Choose I > k such that > 2 (7/ for each 

q E Q. Let T/ =  {xg : q G Q). Then 7] meets each ball B{x,ai) {x G Ki) 

in at most one point. We use (vii) to define, by backward induction, sets 

Ti D T/_i D ' "  DTk such that, for each j  =  A:, A: +  1, . . . ,  the set 7} meets 

each ball B{x,aj) (x G Kj) in at most one point and such that Rg^{Tj+i) < 

Rg^{Tj) +  2“  ̂ for each j  = k , .. ,  ,l — 1. Hence

fl?»(r,)<fl?,(Tfc} +  2 -*+‘.

Defining T  = {x e  Kk : TkC\ B{x,ak) ^  0}, we conclude from (vi) that 

E  h{r,) < R^{T,) < +  2-*+‘ < fl* (T) +  2-*+^

Observing that T  = KkC\ B{S,crk), we therefore have

fl* (S) < fl* (K , n B{S, <Jk)) + 2-*+' (2.2)

for every S  C K.

Using (2.1) with S = K  and (iii), we get that R!è^{K) > R^^{Kk) — 2“  ̂> 

1 — 2“ .̂ Since —> 0 as A: —► oo, this shows that Rq{K) > 1 . On the other 

hand, (2 .2 ) with S  = K  and A; =  0 gives R^iK) < Rsq{K) < Rg^{Ko) +  4 < 

oo. Consequently,

0 < R^(K) < 0 0 .
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For arbitrary S  C K  we use (2 .2 ) with S  replaced by K  C\ B ( S , 2 a k )  to 

infer that

R^{K  n B(S, 2 <7fc)) < %  (K  n B{S, 2<r*)) < {K„ n B{S, «r*)) +  2 -*+^

Hence (2 .1) gives

B^(K  n B{S, 2a^)) < R^^{S) + 2-‘+̂

for any fc =  0,1, . . .  and any S  C K. Since K  fl H(5,2crjk) S^an open subset 

of K  containing S, and since 0, this shows that the assumptions of 

Lemma 1.4.6 are verified. Hence we may use it to conclude that

n \ K )  =  R^iK).

2.4 The main results

T heorem  2.4.1 Let X  be an analytic metric space such that 'RA{X) = oo. 

Then X  has a compact subset K  with 0 <  1Z^{K) <  d o .

Proof. Suppose not. Let ip : JV ^  X  he continuous and onto. Let

H  = [J^G C JV : G is open, (^(G)) = o} .

Then 'R^{(p{H)) =  0 , by the separability and metrizability of JV.

Let Z  = JV\H  and Y  =  p{Z). Then, for each non-empty open subset G of 

W, either {<p (Z  fl G)) =  oo or ZflG =  0, because if ÊA {ip{Z HG))  ^  oo, 

then

{p {G)) < {if {G n Z)) -H {p> {g \  z)) = o.
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implying that G Ç H, and so G fl Z =  0.

Apply the previous lemma to the sets Z  and y , and the restriction of the 

function v? to Z, to find a compact subset Æ of F  with 'RA{K) positive and 

finite, and hence a contradiction.

T heorem  2.4.2 Let X  he an analytic metric space such that 'TZ^(X) = oo, 

and let h be a Hausdorff function satisfying a doubling condition. Then X  

has a compact subset K  with 0 < < oo.

Proof. This follows from Theorem 2.4.1 and Lemma 1.5.2.

T heorem  2.4.3 I f  X  is a directionally limited analytic metric space, the 

function h satisfies a doubling condition, and V^(X)  = oo, then X  has a 

compact subset K  with 0 < V^(K) < oo.

Proof. This follows from Theorem 2.4.1 and Lemma 1.5.5.



C hapter 3 

Subsets o f positive finite  

m easure - a negative result

3.1 Introduction

This chapter deals with the work which appears in [JoH]. In Section 3.2 

we fix a Hausdorff function h, and construct a compact metric space K  of 

infinite diameter-based packing measure which has no subsets of positive 

finite measure. In Section 3.3 this construction is modified to deal with 

the case of certain Hausdorff functions h which do not satisfy a doubling 

condition, and the radius-based packing measure

We now consider some of the properties of the measure which mean 

we cannot guarantee the existence of a subset of positive finite measure of an 

analytic (or even a compact) metric space of infinite measure. In taking the 

diameters of the closed balls of a metric space rather than the radii one is 

restricted to values which are attained by the metric, whereas at every point 

there are, of course, balls of any positive radius. So if the metric on a space

45



CHAPTER 3. A NEGATIVE RESULT 46

is extremely sparse, the possibilities for sums of the form ^  /i(diam B)  are 

more restricted than those for sums of the form X) /^(radius B).

If a set S  has Rq(S) positive and finite, then we may find a Besicovitch 

paeking {B(a;,r)} of S  such that '^h{r) closely approximates R^{S). The 

construction below is of a metric space which has different balls of the same 

diameter, even centred at the same point, which contain in some sense widely 

differing amounts of the space. The hope is that if 0 < V^{S) < oo, this 

will make it difficult to approximate Pq(S) using some sum of the form 

X)/i(diam B(x,r)).

3.2 A counter-exam ple for diam eter-based  

packing measure

Fix (7i > 0, and choose an integer rii > 16 sufficiently large that h takes a 

value in the range

[5 / 2  h{ai){ni -  l)“^,3/i((7i)n]"^

at more than one point of (0, (Ji/2). This is possible, since /i(0+) =  0 and 

since the intervals

{[5 / 2  h{(7i)(n — 1)“ ,̂ 3/i(cri)n“  ̂ : n  > 16}

overlap, and together cover the interval (0,d), for some d > 0. So for each 

N  > I, there is n > AT such that the interval [5/2 h{cri){n — l )“^,3/i(<7i)n“ ]̂ 

contains the image under h of more than one point.

Set U2 =  ni, and choose 0 < <72 < £1 < ai/2 so that h takes values in this 

range at (72 and €1. Let 61 = ai — €1.
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In general, if dk+i, 6 ,̂ 6k and ri2k-i =  Ti2k are chosen, we choose integers 

n2k+i = ri2k+2 sufficiently large that

U2k+1 >

fn  < 2**',

and h takes a value in the range

[5 / 2  /i((Jfc+i)(n2fc+i -  l)~^,3h{ak+i)ri2k+i]

at more than one point of (0,<7fc+i/2). Then 0 < crk+2 < £k+i < 

may be chosen so that h takes a value in this range at ak+2 and £a:+i- Let

f̂c+l =  CTk+l — £̂Jfc+l-

These choices ensure that

(i) cTk+i =  6k+i 4-

(ii) ^k+i < 6k+i,

(iii) <̂k+2 < £k+ij

(iv) h{ak+2)h((7k+i)~^nlk+i < h(€k+i)h{ak+i)~'^nlk+i < 3,

(v) h{ak+2)h{ak+i)~\n2k+i -  1)  ̂ > 5/2,

(vi) ^i) {h ( f̂c+i) -  h (crjfc+2)) < 2 -^+'

The sequences thus inductively chosen clearly satisfy

(vii) E g = i < 0 0 , (since U2k+i = ri2k+2 > 2 +̂"̂ ),

(viii) E £ i  < 0 0 , (using (iv) and (vii)),

(ix) hmfc^oo (n l i i  ^t) («T'fc+i) =  0 0 , (using (v)).
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We take K  to be the space

^  =  {(21, %2, • • •) • for each j  > 1,1 < ij < Uj} ,

and provide K  with a metric thus; if (i) = (ii,î2, • • •)» a,nd (j) =  Oi> Ja, • • •)

are distinct points of K, and I is the least index for which ii ^  ji, then

dist {{i), (J)) =  6  ̂ if / is even,

dist ((z), (j)) = 6iu. if I is odd, and ii+i = ji+i,

dist ((;), (J)) =  (7i±i if I is odd, and ii+i ^  ji+i.

It is not hard to see that this is indeed a metric on K, and that Ü" is a 

compact metric space, since it is complete and totally bounded; only the 

triangle inequality requires verification.

Suppose and (k) are three distinct points of K. First, suppose

dist ((i), (A:)) =  for some even L Then =  (k i , . . .  ki-i), and

ii 7̂  ki. If one of dist ((z), (j)) or dist ((j), (k)) > e^, then the triangle in­

equality certainly holds. If not, then ( j i , . . .  J»z) =  ( i i , . . .  i/), and (j i , ---j i) = 

( k i , . . .ki), implying that ii — h ,  which is a contradiction.

The case dist ((i), (k)) = ^i+i for odd I is similar. '

If dist ((%), (A;)) =  (Tm for odd /, then (ii,...z/_i) =  (ki , . . .  ki-i),ii ^  

ki, and ii+i ^  ki+i. If one of dist ((i), (j)) or dist {(j), (k)) > ai+i. then 

the triangle inequality holds. Otherwise, dist ((%), (y)) < so either 

dist ((i), (7)) =  ($i±i, that is, =  ( h , . . ^  ji, and ii+i =

ji+i, or ( j i , .. .ji) =  (ii, . . .  ii)', and similarly for dist ((j), (k)).

We cannot have ii = ki, so one of dist ((i), (j)) = 61̂  or dist ((j),(k)) =  

6 (+i. Without loss of generality, suppose the former. Then ii+i = Since 

ii+i ^  ki+i, we must have ji+i ^  ki+i, and so dist {(j), (k)) — ei±i. But, by 

choice, ai±i = 5/±i +  £‘i±i, and so the triangle inequality holds.
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If we write

{(^1) • • • k̂) jk+i) Jk+2) • •  ̂ — Jk+i ^  “̂k+i for e&ch / ^  1 } J

then, for (i) in K,

B({i),Sk) =  Ki ,̂...i2k-iy

B  ((i), 6k) =  hi {^h,...i2k-2,j,hk '  ̂ — j  — '^2k-\ij  9^ ^ 2 fc -l] ' ,

diam {B{{i),ek)) =€k,

diam {B {{i), ak)) = diam {B {{i),6k)) = cr̂ .

These balls are the only nonempty balls in K.

The construction described above is a variation on a familiar theme. Sup­

pose we have sequences {rij)j and {dj)j, with dj \  0, Consider the following 

metric space;

M =  . . .) : 1 <i j  ^ Uj for each j  > 1},

with a metric on M  defined thus:

If (%) =  (ii,Z2, . . .)» (j) =  ( j i , j2, • • •) are distinct points of M,  and I

is the least index for which ii ^  ji, then dist ((z), (J)) = di.

We can think of this space as constructed by dividing the space into 

islands, that is, into some finite number of disjoint parts which satisfy the 

condition that everything on one island is at some fixed distance from ev­

erything on any other island. Then each of these islands is subdivided into 

smaller sub-islands, which are at some new and smaller distance from each 

other sub-island of the same island, and so on. Clearly the balls of this metric 

space are precisely the sets that is, the islands.
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To get the metric space K  described above, we now alter this construction 

by taking two steps at a time, that is, we divide K  up into rii islands and then 

each of these into ri2 sub-islands. The metric this time is such that each sub­

island has a “partner” sub-island on each other island, which is slightly nearer 

to it than are the other sub-islands of that island, and the distance between 

sub-islands of the same island is chosen to make the triangle inequahty exact. 

And so on.

Lemma 3.2.1 V^(K)  =  oo.

P roof. Fix p  >  I and let 1 < i i  <  n i , . . . , l  < ip < Up. Then, for 

k  >  p +  1, > U p+i, .  .n2k-2h{(Tk). To see this, note that

B  ((z),cTfc) =  so the number of distinct balls of radius (and

diameter) cr̂  centred in is precisely rip+i. . .  ri2k-2- So >

72p+i . . .  r i2k-2h(ak), which increases without bound as k  increases, by choice

of (rii)i and (crji, so =  oo.

The metric on K  satisfies the conditions of Lemma 1.4.5, so we see that

{ oo oo 'j
Ç  ^  Ç IJ Q , and Ci are closed subsets of % j  .

If A" Ç Ci for some collection {Q} of closed sets, then by the Baire 

Category Theorem there is i such that Q  contains a nonempty open set, 

and therefore some set and so satisfies infinite. The result

follows.

Lemma 3.2.2 I f  S  C K  satisfies 0 < Pq(S) < oo, then, for each ^ > 0 and 

a > 0, there is rj > 0 such that, if {Bi} is an rj-packing of S, then

Po (5 n U {b< : ft(diam Bi) > (1 + n Bi)}) < a.
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Proof. Suppose not. Then there exist (  > 0 and a  > 0 such that for every 

7/ > 0 we may find an //-packing {Bi} of S  such that

Po (5  n U  : /i(diam B*) > (1 + H B<)}) > a.

Fix // > 0, and choose such a packing Write

5i = S n U : ft(diam Bj) > (1 + Ç)Po{Sn B,)} ,
and

32 = S \  Si.

Note that, due to the structure of K,  the sets Si and S2 are at a positive 

distance from each other and so by Lemma 1.4. l(v)

Po\S) = Po\S,) + P^iS^). ,

Choose T)' < r) sufficiently small that no ball of radius 7]' centred in S2 

intersects those balls Bj of the packing centred in Si. Then, for any /? > 0, 

we may choose {D J an //'-packing of S2 satisfying

/̂t(diamD,)>(l-/))7Ÿ(̂ 2).
Those Bj  centred in Si together with [Di] form an //-packing of 5, and /3 

may be taken arbitrarily small, so

p !;{s ) > (i + 0P^{Si)  + p^(S2) 

> P^(S)+Ça.

7/ > 0  was arbitrary, so =  0 , which is a contradiction.

Although Lemma 3.2.3 will not actually be used again, we provide it for 

the sake of completeness.
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Lemma 3.2.3 If  S  Ç K  satisfies 0 < P^{S) < oo, then for each (  > 0,

a  > 0 , and 77 > 0  there is an rj-packing {Bi} such that

{/i(diam Bi) : /i(diam Bi) < (1 -  < a.

Proof. Suppose not. Then, for some ^ > 0, a  > 0 and 77 > 0, every

77-packing [Bi] of S  satisfies

^  {/i(diam Bi) : /i(diam Bi) < (1 -  H B*) j > a.

Write
. / ?  <  1 7  =  nun< -,

Then for each 77 > 0 we may find an 77-packing [Bi] of S  such that

5 :A (d ia m B i)> ( l-7 )^ Ÿ (5 ) .

Fix 77 > 0, let {Bj} be such an 77-packing, and write

51 =  5  n  U  {Bj ; /t(diam Bj) < (1 -  i)P^{S  n  Bj)} ,

and

52  =  5  n U  {Bj  ; A(diam Bj) > (1 -  n B j ) } .

Then ^{/i(diam B») : B* H Bi 0} > o. Due to the structure of K,

P^(Si +  S2) =  P^(Si) + Po^Sî) = E  ̂ (■s n Bi).
i

So

fe(diam Bj)

> (1-7)Po '‘(S'iU52)

=  (1 -7 ) (P o'“(Si ) +  Po'‘(52))

> (1 - 7 ) I ( ! - ( ) - '  E  K ^ a m  Bi) + 1̂ ( 82)
\  5*051/0

>
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ft(diam B i )

BinS2^0

-  »( )̂ + 2 (1 - 0  (,

2  '« » ■ )  + J i f r ô -

Choose rf < r] sufficiently small that no ball of radius rf centred in S  \  S2 

intersects those balls Bj of the packing centred in 82- Then, for any P > 0, 

we may choose {D*} an ry'-packing of 5  \  5a satisfying

y ^ / i ( d i a m  D i )  >  ( 1  -  0 ) I ^ { S  \  % ) .

Therefore, for every r] > 0,

p!;{s ) > p „ \s \  s, )  + Po^{S2) +

Since Po{S) — Pq{S \  S2) +  Pq («S2), and since 77 > 0 was arbitrary, we get 

era =  0 , which is a contradiction.

Lem m a 3.2.4 No subset S  of K  satisfi, isO < Pq{S) < 0 0 .

P roof. Suppose some subset S oî K  satisfies 0 < Pq{S) < 0 0 . Writing 

(  =  ^68/67 — 1 , we may use Lemma 3.2.2 to choose rj > 0 sufficiently small 

that, for every 77-packing {P*} of S',

fo  (S' n  U  : A(diam Bi) > (1 +  O P^(S n B«)}) < Po'“(5)/798. 

Choose k so large that <7*; < 77, and that each of the following holds,

'2j- l  \
Yl Tii I (h{£j) -  h(aj+i)) < Po'^(5)/798 for each j  > k, 
i=i I
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OO

Y^ri2ph((7p)~^h{(7p+i) < 1/3990.
p=k

Let {B*} be a crib-packing of S  satisfying

QQQ
J 2 h { d i a m B , ) > — P^{S).-

If we then remove from {Bi} all of those balls Bj such that /i(diam Bj) > 

(1 ^)Pq{S n  Bj), and replace all of the at most balls of diameter

£j by the (smaller) concentric balls of radius and diameter (Jj+i, the resulting 

collection, which we will refer to as {Ci}, is again a packing of S, and satisfies 

both

/i(diam Cj) < (1 4- H Cj) for each j,

and

^ h (d ia m  Q ) > ^ ft(d iam  B^) -  > | | / Ÿ ( S ') .

Suppose that the largest ball appearing in the packing has diameter 

For each p > l ,  label the sets i^ti,...î2p-2 (that is, the distinct balls of diameter 

equal to radius Cp within K)  which intersect S  by 2^,i,.. .Zp,jv(p)- For each 

1 < y < N{jp), write M(p,j)  for the number of balls of the packing of 

diameter ap+i contained in Xpj. (Note that M{p,j) may be zero for some 

VC-)

Then, for each p and j ,  one of the following holds,

(i) M{p,j)  > 0 and h{(7p)/b < 2n2pM(p,j)~^P^ (Zpj n S),

(ii) Either M(p,j)  > 0 and h{ap)/5 > 2u2pM{p, j)~^Pq (Xpj fl S), 

or M{jp,j) =  0.

For every p and j  for which case (i) holds,

M{p,j) < lÔ Po'* (2p̂. n 5),
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M(pj)h(<7^+0 < lo^ ^ ^ ^ P oN îpjnS ).

Fixing p, and summing over all such we see that the contribution to the 

packing by balls of diameter <7p+i contained in those balls Ip j  for which case

(i) holds is at most
■I n ^2ph(0'p^l) pfi/q\

  ^  ’

and that the contribution by all such balls is at most

■O'? (S) Ê  S -  #

For each p and j  for which case (i) holds, remove all balls of diameter <7p+i 

contained in Xpj from the packing {Q}. Write V  for the packing of S  con­

sisting of the balls which remain, and partition V  into two subcollections Vi  

and V 2, the first consisting of the balls of V  of diameters #%_i, the second, 

those of diameters a2j, for j  > I. Then, since V  Ç {Q},

/i(diam D) < (1 4 - H D) for each D e V .

Also
1 “V2

E  D ) : D & V } >  j ^ P o ^ S ) ,

and at least one of the following holds,

yZ  /i(diam D) > 1/2 ^  /i(diam D),
D G Pi D e v

or

/i(diam D) > 1/2 ^  /i(diam D).
D e v 2 D e v

Without loss of generality, suppose the former holds. Let p be even, and p 

and j  satisfy case (ii). If M{p,j)  ^  0, write D\,. .  .D m{p,j) for the balls of 

diameter (jp+i contained in Zpj, and D[,.. .  for the concentric balls
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of radius 6p and diameter <7p. If we write Dt,i(crp+i),. . .  A ,(2n2p-i)(<^p+i) for 

the distinct balls in K  of radius cTp+i contained in D'i, then

2n2p—1
^  pÿ (A,*(<rp+i) n 5),
fc=l

M(p,j) M(p,j) 2n2p- 1
E = E E J’o'* (A.fcK+i) n S’)
t = l  t = l  k = l

< {2u2p — 1)Pq {Tpj n S ) ,

since no ball of diameter (jp+i is contained in more than (2n2p — 1) distinct 

balls of radius 6p.

So we may choose 1 < 2 < M{p,j) with

(D( n S') < 2T22pM(p,;)-';  ̂ n .

i\Je w r ,  n : chosen l^U J ) / .

In this manner we may choose such a ball Dpj for each even p > I, and 

each 1 < y < N(p) for which M(p,j)  ^  0.

Choose i so large that <7* < diam(D) for every ball D of V,  and use 

Lemma 3.2.2 to find a (Ji-paeking of S n (J  : D G D2} , such that each ball 

Q of this new packing satisfies

f t ( d i a m Q ) < ( l  +  $ ) i ^ ( S n < 3 ) ,

and, summing over this packing,

E Kàiam Q ) > { 1 +  0~^Po (S n U {S> : S» 6 %}) .
We replace all the balls of V 2 by the balls of this new packing. Note that

/i(diam D) < (1 + 0 ^ 1 2  ̂ (diam Q).
DeVi
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For ease of reference we will write for the packing of S  consisting of 

Vi  together with this new packing of S  C\ \J {D • L) E V 2}. Then we may 

estimate

^  /i(diam D) < (1 4- ^  /t(diam Qi).
D € D  i

Note that the balls Dpj chosen above either contain, or are disjoint from, any

ball {Qt} of this packing. This is because a ball of diameter ap and radius 6p

may only intersect but not contain another ball of the same diameter, and

radius less than diameter, or a ball of diameter €p, neither of which may

appear in {Q»}, for p even.

Now, for every ball Dpj we have

< {1 + O P ^ { S n { j { Q i  : Qi C D^j})

< {i + OPo"{SnD,j)

<

Let p be the smallest such that there is at least one ball Dpj. We modify the

packing {Qi} by replacing all those balls contained in Dpj by Dpj itself, for

each such j .  Write MU  for the number of balls of diameter ap+i contained

in Xpj \  Dpj. Then MU < {n2p — 1) .̂ Taking sums over all j  such that there

is a ball Dpj,

___________ E j h(ap)-{- E j MCh(ap+i )
E j  Ei  {/t(diam Qi i Q iC  Dpj} +  E j M^ jh{(Tp+i)

>

>

>

E j  [h{(Tp) +  (7l2p -  l) /̂t(<Tp+i)]
E j  [(1 4- Oh((^p)/^ + (M2p -  l)^h{(Jp+i)] 
1 4- (yi2p ~

(1 4- 0 /5  4- nlph{(Tp+i)h{ap)-^
1 +  5/2 

( 1 + 0 / 5 +  3 
%
33
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using ^ < 1/2. Letting p increase, and modifying the packing in this manner 

at each stage for which there is a ball Dpj  such that those Q i  contained in 

Dp ĵ have not already been replaced, we obtain a new packing V  for the set 

S  n  {{D : D e V i } U  {Qi : Qi C Dpj for some p j } )  such that

^(diam -P) > ^  X) {^(diam D): D e V i }
Per

35
+ ^  X) {^(diam Qi) : Qi ^  T>i, Qi C Dpj for some p, j}  .

Write V  for the packing of S  consisting of the balls of P , together with 

[Qi : Qi C X>2, Qi n  Dpj = 0 for each p j } .  By assumption,

{/i(diam D) : D e Vi} > 1/2 X  {/^(diam D) : D e V }  ,

and so

/i(diam P) > ^ X )/i(d iam  Qi) > D) >

by the choice of the balls {Qi} to satisfy

(1 +  /i(diam Q*) > X  ̂ (diam D),
i  V

and the choice of V  to satisfy

132
Ç/»(diam D) > ^ P o \S ) .

So P^^{S) > |||Po^('S') for every /, and hence Pq («S') could not have been 

positive and finite.

T heorem  3.2.5 Every subset S  o fK  satisfies one ofV^{S) =  0  orV^(S)  =  

oo.

P roof. If S' Ç jff satisfies V^(S) < oo, then for each s > 0 we can find sets 

{«S'»}, with «S Ç U ‘S'i, V^{S) <c (1 4-(r) E i fo («S'i) and Po^(5i) < oo, for each i. 

So by Lemma 3.2.4, Po(Si) =  0 for each i, and V^{S) — 0.
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3.3 A  counter-exam ple for radius-based  

packing measure

We now turn our attention to the radius-based packing measure R.'', and

prove that if a Hausdorff function h satisfies the following conditions, (a

stronger assumption than that h does not satisfy a doubling condition), we 

may construct a compact metric space K,  such that 1Z^{K) = oo, and each 

subset S  of K  satisfies one of R^(S) = 0 , or B^(S) = oo.

We require of h that we may find sequences (?%*)*.and (cr̂ )* satisfying

(i) n-2fc-i =

(ii) (jfc+i < o-fc/2 ,

such that there are constants Ci and C2 with 1 < ci < C2 and C2 — ci < 1 , 

with

(hi) E£=i < 0 0 ,

(iv) h ( ^ “ ) h{(Tk—)~^n2k ^  C2,

W  h ( ^ —') h{(Tk—)~^n2k > Cl,

Using (iii) and (iv) we see that

To see that such functions exist, choose a sequence of integers (n»)» and 

a positive sequence (cr*)* such that (i), (ii), and (iii) are satisfied, and use
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the requirements (iv), (v) and (vi) to prescribe the values h(ai) and h(cri/2). 

Then let h be constant on the intervals [<7i /2 ,crt) and [cTi+i,(7t / 2 ).

We then take K  to be the space

K  =  {(%i,%2, ...)  : for each j  >1,1 < i j  < Uj} ,

and provide K  with a metric thus; if (z) =  (%i,%2 ,-- ') , and (j) =  

are distinct points of K,  and I is the least index for which ii ^  ji, then

dist ((i), (j)) =  ap/2 if I = 2p,

dist ((%), (J)) = CTp/ 2  if / =  2p -  1 , and ii+i =  ji+u

dist ((i), (j)) = (jp if / =  2p -  1, and ii+i f  ji+i.

The proof that jPT is a compact metric space is identical to the proof in 

Section 3.2 that the space K  constructed there is.

Note that, if {i) e  K,  and crk/2 < r < ak, then

((%),,») == ((,), (Tty'S)

^ LJ • f — J — 2̂fc—1) J ^  2̂t—1 j )

and

sup {h{r) : (Tt/ 2  < r < ak} = h (c r t-) .

If (Tt < r  < (Tt_i/2, then

B  ((i),r) =  B  ( (%) ,  (7k )  =  ^ i i , . . . t 2fc-2 >

sup {h{r) :(Tk<r < (7k-i/2} = h •

These are the only nonempty balls in K.

We now define a new function g by taking g constant, with values h(ak—) 

and /i((Tt/2 —) , respectively, on the intervals [ak/2,ak), and [crt+i,(7t / 2 ) . It
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is not hard to see that RP eind RA are identical on K.  However, the function 

g has the useful property that, if H((i),r) =  H((i),s), then g{r) — g{s). So 

when we pack Æ, we may assume that every ball has radius Uk or <7)̂ /2 , for 

some k >  1.

Note that, by Lemma 1.4.5

{ oo oo 'I
Ç  -Ro(Ci) : 5  C IJCt, and Q  are closed in .

With proofs similar to those of Lemmas 3.2.1 and 3.2.2, we have 

Lem m a 3.3.1 RP{K) — oo.

Lem m a 3.3.2 If  S  Ç K  satisfies 0 < R^(S) < oo, then, for each ^ > 0 and 

a >  0, there is r) > 0 such that, if {B{xi,ri)} is an rj-packing of S, then

ii? (5 n U {Bi : g{n) > (i + €)b?(S n A)}) <

Lem m a 3.3.3 No subset S  of K  satisfies 0 < R^{S) < oo.

Proof. The following is very similar to the proof of Lemma 3.2.4, however 

the differences are sufficiently significant for this proof to be given in full.

Suppose some subset 5  of satisfies 0 < R^(S) < oo. Write (  =  

[(6 + 6 ci -}-2 c2) /(5 4 ‘5 c i+ 3c2)] 2 — 1 , and ^ =  1 — (9 -|-9c i4‘7c2) / ( 1 0 + 10ci-j-6 c2). 

We choose 77 > 0 sufficiently small that, for every 77-packing of S',

Ü? (sn  U{B(xi,n) : gin) > (i + o m sn B ix i ,n ) ) } )  <

Choose k so large that a*; < 77, and that
00 /

nip9 (<Tp+i) s(<Tp/2 ) " *  <  7 ^ ( 1  +  Cl -  C2).
p= k

Let {B(xi,ri)} be a cr/b-packing of S satisfying

E3(n)>(l-C /3)fl?(S).
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If we then remove from all of those balls B(xj,rj)  such that

> (1 +  n  B{xj,rj)),  the resulting collection, which we will refer

to as {Q}, is again a packing of -S', and satisfies both

^(radius Cj) < (1 +  ( ) ^ ( S  fl Cj) for each j,

and

(radius Q ) > (radius Bi) — ^iîo(S') > ^1 — f^(S) .

Suppose that the largest ball appearing in the packing has diameter 

(7/+1. For each p > I, label the sets Kn,...i2p-2 which intersect S  by 

Jp ,i,.. .2p,jV(p)- For each 1 < j  < N{p), write M(p, j)  for the num­

ber of balls of the packing of diameter cTp+i, that is, of the form Kii,...i2p 

or U U {^<i,...t2p,j,t2p+2 : 1 < 7 < ri2p+i,j f  %2p+i}, contained in Ip j.

(Note that M{p,j)  may be zero for some p,j.)

Then, for each p and j ,  one of the following holds,

(i) M{p,j)  > 0 and (1 + Cl -  C2)gi<Tp/2)/3 < 2n2pM{p,j)-^R^ (Zpj H S),

(ii) M(p,j)  > 0 and (1 + Cl -  C2)g{(Jp/2)/3 > 2n2pRl H S) /M (p,j); 

or else M(jp^j) — 0.

For every p and j  for which case (i) holds.

Fixing p, and summing over all such j ,  we see that the contribution to the 

packing by balls of diameter Cp+i contained in those balls Xpj for which 

case (i) holds is at most

67l2pp(Cp-|-l)
{1 +  Cl -  C 2 )g ( (T p /2 )
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and that the contribution by all such balls is at most

6flg(5Q ^  n2pg((Tp+i) 6RS(S) C(l +  c i - c a )  ^  ( n s f m
(l +  c i - % ) ^  g K / 2 ) - ( 1 + C J - C 2) 18 3 ^ ^ ^ -

For each p and j  for which case (1) holds, remove all balls of diameter ap+i 

contained in Jp^ from the packing {Ci}. Write V  for the packing of S  con­

sisting of the balls which remain, and partition V  into two subcollections T>i 

and X>2, the first consisting of the balls of V  of diameters ct2j - i ,  the second, 

those of diameters <72;, for j  > 1. Then, since D Ç {Q},

^(radius D) < {1 E^{S H D) for each D e V .

Also

E  {S(radius D) : D e V }  > {1 -  0  

and at least one of the following holds,

^  ^(radius D) > 1 / 2 ' ^  ^{radius D),
D e V i  D € V

or

^(radius D) > 1/2 ^  ^(radius D).
D £ V 2 D e v

Without loss of generality, suppose the former holds. Let p be even, and p 

and j  satisfy case (ii). If M(p,j)  ^  0, write D i , . for the balls of

diameter <7p+i contained in Xpj, and D'm{p,j) for the concentric balls of

radius <jp/2. If we write Dij(ap+i) , . . .  A,(2n2p-i)(<^p+i) for the distinct balls 

in K  of radius <jp+i contained in Dj, then

2n2p—1
ilg(D'n5) = E  iî? (A,*(<Tp+i) n 5),

A:=l
M(jp,j) M {p ,j)2 r i2p - l

E  Ag(D(ng)  =  E  E  f l ? n 5)
t= l  t = l  k = l

< {2ri2p — I ) (Xpj n S ) ,
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since no ball of radius (Tp+i is contained in more than (2ri2p — 1) distinct balls 

D'i.

So we may choose 1 < * < M(p, j)  with

flg (D| n 5) < {Ip,i n S ) .

Rename this ball Dpj.

In this manner we may choose such a bail Dpj for each even p > /, and 

each 1 < J < N{p) for which M(p,j)  ^  0.

Choose i so large that <7» < radius(D) for every ball D of V, and use 

Lemma 3.3.2 to find a <7t-packing oî SC\\J {D : D e V 2} , such that each ball 

Q of this new packing satisfies

p(radius Q) < (1 + ()Rg(S fl Q),

and, summing over this packing,

E  S(radius Q) > (1+  ( g n |J { ^ : D €  % }) .

We replace all the balls of V 2 by the balls of this new packing. Note that

(radius D) < (1 4 - ^  ̂ (radius Q).
T>2

For ease of reference we will write {Qi} for the packing of S  consisting of 

Vi  together with this new packing of 5" H (J ^  G D2}. Then we may 

estimate

5^p(radius D) < (1 +  0 ^ ^ p (ra d iu s  Qi).
V  i

Note that the balls Dpj either contain, or are disjoint firom, any ball {Q*} 

of this packing. This is because a ball of radius (jp/2 may only intersect but 

not contain another ball of the same diameter <7p and radius at least than 

cTp/2 , which may not appear in {Q*}, for p even.
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Now, for every ball D p j  we have

{^(radius Qi) : Q» C Dpj} < (1 4- H |J  {Qi : Qi C Dpj})

< ( i + ( ) A g ( ^ n D p j )

^  (1 +  f)(l  +  Cl — C2)^(cTp/2)/3.

Let p be the least such that there is at least one ball Dp^. We modify the 

packing { Q i }  by replacing all those balls contained in Dpj by Dpj itself, for 

each such j .  Write M p  j  for the number of balls of diameter a p + i  (and radius 

less than ( Jp / 2)  contained in X p j \ D p j .  Taking sums over all j  such that there 

is a ball D p j ,  recalling that ^(radius D p j )  =  g { a p f 2 ) ,  and using the fact that 

Mp j < {u2p — 1) ,̂ we see that

__________ Z ;  9{(Tp/2) +  E j  Ml,jgiap+i)__________

E j  E i  {^^(radius Q i : Q i E D p j j  +  E j  M'p ĵg{<Tp+i)

>

>

Ej b(<Tp/2) + {U2p -  iyg{<jp+i)]

>

>

Ej [(1 +  0 (1  4- Cl — C2)^((Tp/2)/3 4- {ri2p — l)^p(cp+i)]
 1 4- (7i2p -  l ) ‘̂g{(jp+i)g{(jpl2)-^_______
(1 4- 0 (1  4- Cl — C2)/3 4- {'ri2p)'^g{(Tp+i)g{(Tpl2)-^
_______1 4- (yi2p — ~)^(^p~)~^_______
(1 4- 0 (1  4- Cl — C2)/3 4- {n2p)^h{^—)h{ap—)~^

1 4- Cl
(1 4- 0 (1  4- Cl — C2)/3 4- C2 

2(1 4- Cl)
(1 4- Cl 4- C2)

using f  < 1/2. Letting p increase, and modifying the packing in this manner 

at each stage for which there is a ball Dpj such that those Qi contained in 

Dpj have not already been replaced, we obtain a new packing V  for the set 

S  n  ({D : D Ç: Vi}  U {Qi : Qi C Dpj for some p,j})  such that

Z i p(radius P) > . ( Z  {^(radius D ) : D e V i }
P O P  -|- Cl C2 )

4- Z  {^(radius Q i)  : Q i ^  A , Q i C  Dp,j for some p, j} )  .
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Write V'  for the packing of S  consisting of the balls of V, together with 

{Qi ' QiCT>2, Qi n  Dpj =  0 for each p,j}.  By assumption,

{^(radius D) : D e Vi}  > 1 / 2 ^  {^(radius D) : D e  D} ,

and so

i:< ,(rad iu 3 P ) > l ± g l ^ Ç s ( r a d i u s Q . )

by the choice of the balls {Qi}  to satisfy

Qi) > ^ (/(rad ius D),
i V

and the choice of V  to satisfy

^  (^(radius D) > (1 -
V

So R^^{S) > for every I, and hence R^{S) could not have been

positive and finite.

This leads us directly to the analogue of Theorem 3.2.5;

T heorem  3.3.4 Every subsets of K  satisfies one of'RA{S) = 0 or'RA{S) = 

00.

R em ark As noted earlier, the conditions imposed above on h are some­

what stronger than the condition that h does not satisfy a doubling condition. 

To see this, consider the following inequalities, implied by these conditions;

C2h{(Tk-) > n \ j i  ^ > h ^ .
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The inequality Oih{ak—) > imposes a lower bound on Ck-, and

hence an upper bound on the ratio h(ak—) / h { ^  —), and on n2k- We cannot 

therefore be certain that converges, and so, on its own, the fact that

h does not satisfy a doubling condition is not sufficient for the proof above. 

If h satisfies neither a doubling condition nor these conditions, it is not clear 

whether we can necessarily find a subset of finite measure, given a metric 

space of infinite measure.



C hapter 4 

A relationship betw een  

packing and topological 

dim ensions

4.1 Introduction

In Chapter 1 we provided a number of definitions of packing dimension and 

considered the inequalities those dimensions satisfied. In this chapter we con­

sider topological and packing dimensions, and show that if A  is a separable 

metric space, then

dimrCA") =  min {dimQ(A') : X '  is homeomorphic to X }  ,

where Q denotes any of 7 ,̂ Ü, oi V, and dimr(A) denotes the topological 

dimension of X ,  (defined below).

The result which relates the topological dimension of a separable metric 

space to the Hausdorff dimensions of its homeomorphic images has been 

known for some time. The Szpilrajn inequality (see [SzE]) tells us that if X

68
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is a separable metric space, then dimT(%) < dimT^(X). In fact,

dimT(X) =  min{dim^(%^) : X '  is homeomorphic to X } .

For a proof, see, for example, [HuWa].

This proof uses the idea of approximation of a compact metric space by 

the images of poly tope mappings, and relies on the fact that a finite open 

cover of a set S  will also cover B(S,e), for some 6 > 0 . Since we define 

Hausdorff pre-measure by taking an infimum over covers, this means that, 

given 6  > 0 , we may be sure there is e > 0 such that the 6 pre-measure Hg is 

not much greater on B{S, e) than on S. The same is not true for the packing 

pre-measure of S. Firstly, a packing of S  does not necessarily pack a set 5', 

no matter how close all the points of S' lie to S. Secondly, we cannot be sure 

that there are no substantially better packings of a set S' which is close to S  

than there are of S  itself. This problem arises because we use the supremum 

in the definition of packing pre-measure Q |, rather than the infimum. So 

in choosing successive approximating subsets of polytopes which admit only 

packings which are in some sense similar to each other, we must take more

care than would be needed in the case of coverings.

4.2 Definitions and notation

We now provide the definitions we shall need for this chapter. In the main,

we follow the notation of [HuWa].

(i) By a covering of a subset 5  of a space X  we mean a finite collection 

Ui,.. .  ,Ur OÎ non-empty open subsets of X  whose union contains S. In 

this chapter we shall reserve the symbols ZY, V and W for coverings.



CHAPTER 4. PACKING AND TOPOLOGICAL DIMENSIONS 70

(ii) The order of a covering of S  is the largest integer n such that there are 

n 4 -1 members of the covering with nonempty intersection in S.

(iii) If X  is bounded the mesh of a covering { U i , , Ur} of a subset of X  

is the largest of {diam(C/i), 1 < i < r}.

(iv) A covering V is a refinement of a covering U if each member of V is 

contained in some member of U.

(v) If U and V are coverings of S, then we write ZY A V for the covering 

{U n V  : U e U ,  V G V, U n V  of S. Clearly, ZY A V is a refine­

ment of each of U and V.

(vi) If ZY is a covering of X  and g : X  Y ,  we say ^ is a U-mapping 

if every point of Y  has a neighbourhood in Y  whose inverse image is 

entirely contained in some member of U. If X  is compact, and 6 > 0, 

we say g is an e-mapping if the inverse image of each point of Y  is of 

diameter less than e. We write g~^(U) for the collection 

{g~^{U) : U e U ]  of subsets of X.

(vii) If ZY is a covering of X ,  we write St{U^x) for the open set which is the 

union of those members of ZY which contain x.

(viii) A countable sequence ZYi, ZY2,... of coverings of a space X  is called 

a basic sequence of coverings if, given a point a; in A, and a neigh­

bourhood U of X, at least one of St{Ui,x),St(U2, x ) , . . .  is contained in 

U.

We shall take as our definition of topological dimension the following:
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A separable metric space X  is of topological dimension dimT(%) 

less than or equal to n if and only if every covering U oi X  has a 

refinement V of order less than or equal to n.

With these definitions, we have the following results;

Theorem 4.2.1 If Ui,U2, ’ ■ ■ is a basic sequence of coverings for a metric 

space X ,  and a continuous mapping g : X  Y  is a Ui-mapping for each i, 

then g is a homeomorphism cn\o ^  r<x^^e -

Theorem 4.2.2 Any separable metric space can be embedded in a compact 

metric space of the same topological dimension.

We omit proofs; see, for example [HuWa].

Our goal is to construct a homeomorphism from a separable metric space 

X  of topological dimension less than or equal to n to an image space of 

packing dimension less than or equal to n. If X  is compact, we shall do this 

by constructing successive polytope ^t-mappings, where Si \  0 , in such a way 

that no mapping differs too much from the previous mapping in the packings 

its image admits. To do this, we shall utilize certain £t-coverings of X, whose 

existence we shall ascertain in the following two lemmas. Theorem 4.4.1 

contains most of the work of this chapter. In Theorem 4.4.3 we provide our 

main result.

4.3 Two covering lemmas

Lemma 4.3.1 Any covering U of a compact metric space X  has a refine­

ment V of the same order as U which satisfies the following condition:

For any Vi,. . . ,  VJ, G V either Hi Clos(K) =  0 or ^  0. (4.1)
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Proof. Choose 6 > 0 sufficiently small that whenever Ui,.. . ,Up  6  U 

satisfy P^Ui ^  0, there is a ball of radius 6 contained in flïC/i. Choose 

0 < 6  < 6 sufficiently small that V =  {U \  B  {X \  U^€) : U E U} is still 

a covering for X.  (To see that this is possible, choose a sequence 6* \  0, 

then {U \  B  {X \  U,6i) : U e U ,  I < i  < oo} is an open cover for X .  Choose 

a finite subcover, then if j  is the greatest such that, for some U E U, 

U \  B  {X \U,£j)  appears in the subcover, we may take e = Sj.)

Then P ^ ( U i \B  (X  \  Ui,e)) ^ 0 whenever flîC/i ^ 0, since € <  6, and 

Hi Clos {(Ui \ B  ( X \  Ui^e))) =  0 whenever Hi C/i =  0. Also, since 6 < 6 , the 

covering {U \  B  (X \  U^e) \ U e U }  has the same order as U.

Lemma 4.3.2 Let a covering U of a compact metric space X  satisfy condi­

tion 4‘I, and V be a refinement ofU. Then there exists a refinement W of 

V satisfying order(W) < dim^CA"), and

n { U  e U  : U n  5C(W, x) ^  ^  0, for each x E X.  (4.2)

Proof. Suppose not. Then we may find a sequence (Wfcjf’ of coverings of 

A, such that mesh (Wt) \  0, and such that for each /c > 1, order (Wfc) < 

dim^(A) and Wk+i is a refinement of W*; and a sequence (o:fc)f of points 

in A  such that fl {C/ e U : U C\ St{Wk,Xk) ^  0} =  0 for each k. If necessary 

passing to a subsequence, we may assume that (xfc)J° tends to some point x  

in A.

Consider C\{U e U  : U C\ St{Wk,x) ^  0}. This intersection is taken over 

a decreasing collection of elements of CY as A; —>• oo, so for A  large enough, 

the set n{C/ e U  : U n St{yVk,x) ^  0} is constant for k > K.  Therefore 

X E Clos(C/) whenever U fl S t { W K , x )  ^  0. This, together with the fact that 

U satisfies condition 4.1, implies that n { U  e U  : U C\ St{Wk, x) ^  0} ^  0 for
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each k  >  K .  But for each k  >  K ,  C \ { U  e U  : U  C\ S t { y V k , X k )  ^  0 }  =  0 ,  so 

for each k >  K  there is U k  e U  such that

Uk n  St(\Vk,Xk) f  0, and Uk fl St{W K,x)  =  0.

^  is a finite collection, so for some U  e U ,

U  n  S t { W k , X k )  ^  0  infinitely often, and U  D  S t ( W K , x )  =  0 .

The former implies that x  G Clos(C/), contradicting the latter, and proving 

the lemma.

4.4 The inductive construction and main re­

sult

Recall that a set {pi}ï in R ” is said to be in general position if for each 

1 < m < n —1 , no m +  2 of these points lie in an m-dimensional affine 

subspace of R ”.

Theorem 4.4.1 I f  X  is a compact metric space with dimrC^) < n, and 

is the set of points in each of whose coordinates x i , . . . ,X2n+i

satisfies |xi| < 1, then there is a homeomorphism f  : X  ^  /(% ) Ç 

with dimnf{X) < n.

Proof. We will use Lemmas 4.3.1 and 4.3.2 to construct by induction a 

sequence of mappings from X  to which have a homeomorphism as 

their uniform limit, and such that for each 6 > 0 , RJ"*"® is finite on the image 

of X  under this homeomorphism.
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Choose a sequence {Ui)f of coverings for X, with 6* =  mesh(ZYt) \  0  and 

Ui+i a refinement of Ui, for each i > 1. (This is not hard to do, since X  is 

compact.) Let Q =

To start the induction we choose the simplest possible covering for 

namely Wi =  and choose a covering Vi for X  which refines Ui, is of

order less than or equal to n, satisfies condition 4.1, that is, satisfies

For any Ki,. . . ,  VÇ, G Vi either n ï Clos(%) =  0 or fiï K ^  0,

and is such that for no K G Vi does Vi \  {K} cover X.  Choose a collection

Ti =  {yi{V) ' V  G Vi} Ç of |Vi| points in general position.

Define a function f i ’. X —̂ j 2n+i

, X ^  Evevi dist { x , X \ V )  yi(V)

We now show that f i  is an 6 1-mapping.

Let X  E X ,  and suppose Vi^,. . . ,  K, are all the members of Vi containing 

X. Consider the affine (s — l)-space L{x) spanned by the vertices 

It is clear that fi{x) is in L{x). Let x' be another point of X.  Suppose L{x') 

is spanned by the vertices y^^ÿj. Then, since order(Vi) < n, we have 

s , t  < n P 1 and L{x') is a. {t — l)-space. If L(x) and L{x') meet, the affine

space spanned by «*11 {yerHce^ has dimension < s4-t  — 2 < 2n.

Since Yi is in general position in we see that if L{x) and L{x') meet

they contain a common vertex.

Therefore if /i(x) =  fi{x'), x  and x' must be contained in a common 

member of Vi, and by the fact that mesh (Vi) < 6 i, we see that dist(a;,a;') < 

€i, as required.

We also see that f i{X)  is a subset of the polytope Qi in where Qi

has vertex set Y\, and conv {{yi{Vi), • •. , 2/i(Vs)}) is a face of Qi if and only

if 14 n . . .  n  v; f  0 .
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Since at most n + 1 elements of Vi may intersect in a common point, 

the polytope Qi is at most n-dimensional, and so we may choose (5i > 0 

sufficiently small that (Qi) < Ci.

Write =  inf {dist(/i(a:i),/i(a:2)) : Xi,X2 € X, dist(T 1,3:2) > 61}. (X  is 

a compact space, so this infimum is attained at some points xi and X2 of X, 

and is greater than zero, otherwise /  would not be an Si-mapping.)

Now suppose we can also find functions / 2, • • •, A mapping X  into 

coverings W2 , . . . ,  Wk of coverings V2, . . . ,  V/b of X, and positive num­

bers 62, . . . ,  6* with 6i < siicK tkcJr Q>r eo-ck X 6 ^

(i) Wi is a refinement of Wt_i, with

mesh (Wi) < ^m in min dist(?/i,?/2)l .

(ii) Vi is a refinement of Ui A /il\(VVi) A of order less than or equal to

n, satisfying condition 4.1, such that for no K G Vf does % \  {1/} cover 

X, and such that condition 4.2 is satisfied with Vt_i in place of ZV, and 

Vi in place of W. That is.

For any V"i,. . . ,  G  Vi either f l î  Clos(Vi) =  0 or n 1 % 0;

and for each x G  X, f l  {V G  Vi_i : V f l  St{Vi,x) 0} ^  0.

(iii) There are sets Y2 = {y2{V) : V E V2} , . . . ,  Ft =  {yk{V) : V G Vt} in

/ 2n+i with Yi-i Ç Yi and |Ti| =  |Vi|, with the elements of Yi in general 

position, and satisfying

(a) For each V  G  Vi, dist (yi(V),/i_i(V)) < 6i_i/4.

(b) f i \  X  / 2n+i |g function

r /yx  E v m d i s t ( x , X \ V ) 2/i(V)
' 2:ve% dist(% ,;f\ V) '
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(We then see that is an St-mapping just as we saw that f i  was 

an 6i-mapping.)

(c) If we write Qi for the poly tope in h n + i  with vertex set Yi, and 

satisfying

c o n v  { { y i { V i ) , , . .  , y i{Va)})  is a face of Q i  if and only if

Vi n  . . .  n  Va 0,

then fi{X)  C Q*, and for each 1 < j  < i, <  Q-j+i-

(iv) If ft =  inf {dist (/t(a;i),/t(2:2)) : Xi,X2 6 X, dist(a;i,X2) > 5»}, then for 

each 1 < i < fc, ft > 0 and for each 1 < j  < i, dist(fy, fi) < f;/2.

We now show that we may choose Wfc+i, fk+i ,  Yk+i,  Qk+i ,  and

6k+i so that the same conditions are satisfied with i =  /c +  1.

Let

f  =  min {fj/2  -  dist(/j, A) : 1 < j  < A:} .

Since fk is continuous and f  > 0, we may choose 77 > 0 such that if x», X2 G X  

satisfy dist(xi,X2) < rj, then dist(/*:(xi),/fc(x2)) < f / 3.

To make the inductive step, choose a  such that

0 <  (7 <  min (77, 6k, min dist(%/i,7/2) ).\  !/i#y2erfc /

Choose a refinement W k + i  of V\4 , with mesh(WA;+i) < cr/4. Use Lem­

mas 4.3.1 and 4.3.2 to choose a refinement I4+1 of Uk+i A fk^(Wk+i) A V ,̂ 

of order less than or equal to ?%, such that satisfies condition 4.1, such 

that for no U E V^+i is V*;+i \  {V̂ } a covering for X ,  and such that condi­

tion 4.2 is satisfied with Vfc in place of V, and Vfc+i in place of W. (Then 

conditions (i) and (ii) are satisfied with i = k 1). By choice of Wk+i to 

satisfy mesh(Wfc+i) <  <r/4  < miny^^yjey^ dist(7/i,2/2)/4, for any V̂ € Vfe+i,
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no two elements of Yk may both belong to fk{V)- So we may choose sets 

Z = {z{V) : V  G Vifc+i} D Vfc, and, for each / > 1, Z/ =  {ziiV) : V  G Vt+i}, 

thus:

For each V  G Vfc+i choose z { y )  G f k { V )  so that Yk Ç  { z { V )  : V  G 

Vjb-f-i}; and points Z i ( V ) ,  for each /  >  1, such that the elements 

of Zi  are in general position, dist(2:/(K), f k { V ) )  < cr, and z i ( V )  

z { V )  as / —>■ 0 0 . Note that z { v )  =  yk for each V  G V ^+ i such that 

fk iy )  — Vk'

Then, for each / > 1, we may define the maps g,gi : X  hn+i by
'^veVk+i dist {x, X \ V )  z(V)

9(x) =
EveVk+i dist { x , X \ V )

/ X _  Ev6V fc+idist(a:,X\l/)^i(K)
dist(:c, \ I/) '

(Then g,gi are 6:̂ +1-mappings.) The function fk+i will be chosen from 

amongst these functions note that conditions (iii:a) and (iii:b) will

then be satisfied for i =  A: 4- 1. It remains to choose I large enough that

conditions (iii:c) and (iv) are also satisfie d.

Write Si for the polytope in l 2n+i with vertex set Zi, and such that

conv {{zi{Vi),. . . ,  zi{Vs)}) is a face of Si f and only if V I , . . . ,  G Vfc+i and 

Ki n ... n K  7̂  0. (Then gi(X) C Si.)

We claim that if [ w y  : V  G is such that Evev^+i ^

then

lim Y I  'WvZiiV) G Qk-
' - “ V€Vk+i

Clearly, hm/_^oo J2v€Vk+i ' ^ v Z i { V )  =  EveVfc+i w v z ( V ) .  Also, the definition of 

Si implies that f l  {K G Vfc+i : w y  7̂  0} 7̂  0. Then since Vjb and V^+i together 

satisfy condition 4.2, we have

n { U  G Vit : C/ n  V 7̂  0 for some V  G V^+i with w y  7̂  0} 7̂  0.
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So the face

conv {{yk{U) :U eVk,  C/ 0  K ^  0 for some V  e Vk+i with w y  ^  0}),

which contains EveVfc+i wvz{V), is itself in Qk.

For each I1J2  >  1, the mapping between 5;̂  and Si  ̂ which associates 

the points T>veVk+i '^vZi^[V) and EveVfc+i '^vZi2 (V) is a Lipschitz map, and 

for I1J2  large enough its Lipschitz constant is close to 1. To see this, let 

P  > 0 , and choose m { P )  large enough that whenever / > m { P ) ,  we have 

zi{V) e  B{z(V),p). Then if I1J2 >  rn{p),

l E U y Z i . i V )  -  T>WyZi ,{V) \  \ j : U y Z i ^ ( V ) - j : W y Z i ^ { V ) \

=  1 +  4/?.

So we may fix r r i i  large enough that this mapping between 5/̂  and Si  ̂ has 

Lipschitz constant smaller than 2, say, whenever I1P2 ^  mi.

Now choose r  <  6k sufficiently small that

{SmP < 2 ~(''+2+n+ei)

Then, for each / > m i,

(5,) < 1 (%+, -  c ) ,

and so

R ^ ^ '  (Si) < (Si) < -  (cjfe+i ~ ^k) < 2  (cfc-t+2 — Cfc-t+i) • (4.3)

For 6 >  T , call a packing of a set S  by balls with radii in the range [r, 6] a 

[T,6]-packing, and write

=  su p {^r"+ ^*  : { B ( x j , r j ) }  is a [r,6]-packing of S }  .
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As i —)■ oo, dist(^/(x),^(a;)) =  7]{l) —► 0. Choose m2 > mi large

enough that r]{l) < r  for each / > m2.

If for some I  <  i <  k ,  { B ( x j , r j ) }  is a [ r , - p a c k i n g  of Si ,  then for 

some collection { w j } ,  where Wj G B ( x j , r } ( l ) )  O Q k  for each j ,  we see that 

{ B { w j , r j  — T}{1) ) }  is a ^.-packing of and so

Since the number of balls in a [r, 6i]-packing of any subset of is bounded, 

this means we may choose m3 > m2 so large that for each I  <  i <  k  and 

each / > m3, if { B { x j , r j ) }  is a [r, (5*]-packing of Si , then

Z  — 2 (̂ *=-*+2 +  Ck-i+i) . (4.4)

Since any ($i-packing of Si  may be split into a r-packing and a [r, 6*]-packing, 

we may combine (4.3) and (4.4) to see that for each I < i <  k ,  each 7 > m3,

(^f) < Ct_(+2.

Now if X  and x '  are both contained in K G V^+i, then by the choice of 

Vk+i to have sufficiently small mesh, we have dist(/fc(a;),/a;(x')) < ( / 3. In 

particular, since z { V )  G f k { V )  for each V  G V)fc+i, we have dist(/fc(x), z (y))  < 

( /3  for each x  e V .  Now g { x )  is a convex combination of those points z { V )  

such that X  e V  E Vk+i ,  so

d i s t ( f k { x ) , g { x ) )  <  C/3.

Since gi tends uniformly to ^ as / tends to infinity, we may therefore choose 

m^ >  m3 sufficiently large that d i s t { f k { x ) , g i ( x ) )  <  2C/3 whenever I >  m ^ .  

So for each 1 <  j  <  k  - \ -1 ,

d \ s t { f j { x ) , g i { x ) )  < d \ s t { f j(x), f k ( x ) )  d i s t { f k { x ) ,  g i{x))
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< |dist(/,(a:), fk(x)) +  ^  + 1  t e / 2  -  dist(/,(x), fk(x)))

< & /2 .

Setting fk+i =  grriA and Qk+i =  Sm^, choosing < a sufficiently small 

that < Cl, and setting

& +1 =  inf {dist (fk+iixi), fk+i(x2)) : xi,X2 G X ,  dist(a;i,rz:2) > ,

we see that (t+i > 0  since is an 6 t+i-mapping, and that conditions (iii:c) 

and (iv) are satisfied with i = k + 1. So the induction is complete.

Let f  : X  —*■ be the pointwise limit of the sequence Condi­

tion (iv) ensures that, for each I > 1 and 1 < i < I, dist(/i, //) < Çi/2 . So /  is 

the uniform fimit of ( /t)f’ and so continuous, and dist(/i, / )  < (*/2 . Suppose 

now that a:i,X2 G X  are such that f{xi) = f{x 2). Then dist(/»(a:i), fi{x2)) < 

^i, for each i, and so dist(xi,X2) < Si. So /  is an 6»-mapping for each i > 1 , 

and hence, by Theorem 4.2.1, is a homeomorphism.

It is also not hard to see that f% (/(X)) < oo. Suppose i > 1 and 

{B{xj, rj)} is a 6%-packing of /(X ). Choose / > z so large that < m in{rj/2 }. 

Then we may find points Wj G B{xj,rj)  fl Qi such that {B{wj,rj — J/)} is a 

packing of Qi.

Rs^^'iQi) ^  Q-t+i for each 1 < z < Z, so

So for each Si we have that Rs^^‘(f(X )) ,  (and hence R«^^‘{f(.X)),) are 

bounded, and so, since 6k \  0, we have dim-^/(X) < n, as required.

Lemmas 1.5.2, 1.5.3, 1.3.2, and the Szpilrajn inequality, together show 

that
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Lem m a 4.4.2 I f  X  is a separable metric space, then for each S  Ç. X ,  

dimr(iS') < dim^(5') < dimp(5) < dim%(6 ') =  dim^(5). 

T heorem  4.4.3 For any separable metric space X ,

d im r(^ ) =  min {dimg(X^) : X ' is homeomorphic to X }  , 

where Q stands for any o fV , orU.

Proof. If dim7-(X) =  oo, then by the above lemma there is nothing to 

prove. By Lemma 4.4.2 and Theorem 4.2.2, it is sufficient to show that if X  

is compact and dimT(%) < oo, then

dimT(%) =  min{dim%(%^) : X '  is homeomorphic to X }  ,

and this follows from Theorem 4.4.1.



C hapter 5 

C onditions for equality of  

H ausdorff and packing 

m easures on

5.1 Introduction

This chapter answers the question, for which Hausdorff functions h may the 

measures H^\a and V^\a agree for some subset A  of R ” , and be positive 

and finite. We show that these conditions imply that h is  a. regular density 

function, in the sense of Preiss, (see [PrD]), using the fact that this common 

measure necessarily has /i-density equal to 1 almost everywhere.

In [PrD] it was shown that regular density functions are exactly those 

functions h : R ^ —► R^ which satisfy particular hmiting conditions near 0 . 

We also show here that for each function h satisfying these limiting condi­

tions, there is a subset A  of R ” such that /x =  H^Ia =  V^\a is a positive 

finite measure. The situation for functions h(r) — has been dealt with

82
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previously, and the sets A for which it is possible that measures TĈ \a and 

V^\a agree have been fully characterised. The existence of such a set implies 

that s is an integer and that A  is s-rectifiable.

In this chapter we rely heavily on the concepts and results of [PrD], (which 

in part grew out of the seminal work of Besicovitch, [BeAl, Be A3, Be A4]), 

and also quote a result from [MaPr]. As a consequence, the prehminaries 

below are rather lengthy, in order to provide all the prerequisites for the 

work that follows.

5.2 D efinitions

In what follows, a ‘measure’ is a Borel regular outer measure on R ” , (that 

is, every subset of R” is contained in a Borel set of the same fx measure,) 

such that the Borel sets are measurable. If /x is also locally finite, that is, if 

for every x  in R ” there is r  > 0 such that r) < oo, we call /x a Radon 

measure. We note that /x is locally finite if and only if every compact subset 

of R” has finite /x-measure.

(i) If h : R^ —► R^, /x measures R”, and x  € R”, we define D^(n,x) and 

D!^{fji,x), the upper and lower h-densities of p. at x, by the formulae

D^{pi,x) =  limsup/xR(x,r)//i(2 r)
r \ 0

and

D^{fi,x) = lin^nf fiB(x,r)/h{2r).

If the upper and lower /i-densities of /x at a; coincide and are positive 

and finite, we denote their common value by D^{fx,x), and say that x  

is an h-density point of /x.
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(ii) A positive function h defined on R"*” is said to be a density function in 

R ” if there is a non-zero measure n over R" such that fi almost every 

X e R ” is an /i-density point of /u.

(iii) If {/ijfc} is a sequence of measures over R ” and /i measures R ” then we 

say that —>■ /x if

(a) /X is locally finite.

(b) \ i m s u p ^ k { D )  < oo for every compact set D C R ”.

(c) limfc_̂ oo I  f  dfik = J f  d/j, for every continuous function /  with com­

pact support.

If yxjfc —> /X then for each compact set D C R^ and each open set 

G c  R^,

fi{D) > limsup/Xfc(D),
k—KX)

fi{G) < liminf/Xfc(G).
k—*oo

(For a proof, see [PrD, 1.11(4)].)

(iv) Let X G  R ” and r G  R  \  {0}. We define the map Tx,r : R ” —>• R ” by

Tx,r{z) = { z -  x)/r.

(v) If T : R ” —>• R ”̂  is Borel measurable and /x measures R ”, we define 

T[^j, the image of ji under T, by

T[p\{E) = t i{T - \E ))  for every Borel set E C  R ” .̂

(vi) Let /X measure R ” and x  G  R ”. A nonzero locally finite measure 'ip is 

said to be a tangent measure of p. at x  if there are sequences \  0 

and Cfc > 0 such that xp = lim/t^oo C)tTx,rfc[/x]. j.
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(vii) A density function h will be called regular (in the sense of Preiss) if 

limr\o h{tr)/h{r) exists for each Z>0.  In [PrD, 6.5] it is shown that h 

is a regular density function if and only if there is m G {1 , . . . ,  n} such 

that either

0 < lim < 0 0 ,
r \ 0

or n and there is a positive non-decreasing function h : R+

such that

lim h{r) = 0 ,
r \ 0

lim = 1 each t > 0, and 
r\o h{r)

r\o h(r)r^

(viii) A measure n on R” is said to be uniformly distributed if f i B{x, r )  =

r) < oo whenever x, y € spt y  and 0 < r  < oo.

(ix) Let ^  be a Radon measure on R ”. Then x G spt y  is called a symmetric

point of y  \î for every p > 0

/ zd}.<f ẑ) = xyB{x,p).
J B (x .o \

(x) A Radon measure y  on R” is called flat \î y  = cH'^\v for some constant 

c and some m-dimensional linear subspace V  of R*̂ , (1 < m < n).

5.3 Som e prerequisites

We now have all the concepts required to state both fbe of Scont

a n d  Tncc/i-, for functions h{r) =  r^, and the results from

[PrD] and [MaPr] that we will need. A proof of Theorem 5.3.1 may be found 

in [MaP].



CHAPTER 5. HAUSDORFF AND PACKING MEASURES 86

T heorem  5.3.1 If  A Ç R ” satisfies V^{A) < oo, then W {A)  =  V^{A) if 

and only if the density D^(H^\a ,x ) exists and equals 1 for almost all 

X E A. This in turn implies that s is an integer, and that A is s-rectifiable.

The following results may be found in [PrD, 2.12, 4.7, 4.11, 6.1, 6.5] and 

[MaPrj.

T heorem  5.3.2 Let ji measure R ”. Then p almost every x  G R ” is a point 

of translational invariance of Tan(/i,a;), that is, pL almost every x  G R ” has 

the following property: Whenever ip G Tan(//, x) and u G spt ip then

Tu,i[ip] G Tan{fi,x).

T heorem  5.3.3 I f  p, is a locally finite measure on R ”, then every tangent 

measure to p at x is fiat at p almost every point x, if and only if

pB(x tr')
lini —  - eocists for some (equivalently for all) t > 0,t ^  1.

C orollary 5.3.4 I f  p measures R ”, h is a regular density function, and p 

almost every point of R ” is an h-density point of p, then at p almost every 

point X o /R ”, every tangent measure to p at x is flat.

T heorem  5.3.5 I f  p is a locally finite measure on R” and almost every 

point of R ” is an h-density point of p, then at almost every point of R ”, 

every tangent measure ip to p at x is uniformly distributed, with 0 G spt ip.

T heorem  5.3.6 Let p be a Radon measure on R ” . I f  for p almost every 

point X  in R ”, every tangent measure to p at x has 0 as a symmetric point, 

then at p almost every point x  in R ”, every tangent measure to p a tx  is flat.
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5.4 Two density lemmas

As a first step towards proving a result for more general functions h, we now 

prove two simple density lemmas for the measures and which replace 

the standard density lemmas for 7ï^ and The proofs scarcely differ from 

those of the standard lemmas, and use the following covering theorem, which 

is due to Morse (see [MoA]).

Theorem 5.4.1 Let ^  be a Radon measure in R”, A C R”, 0 < o; < 1, and 

let B he a family of closed balls such that for each point y of A and each r > 0 

we may find a ball B{x,s) G B with s < r and y G B{x,as). Then there is 

a countable collection of disjoint balls {B i }  Ç  B such that /x (A  \  U i ^t) — 0-

Lemma 5.4.2 I f  A Ç R” satisfies 0 < V^{A) < oo, then for V^\a almost 

every rr G R",

Proof. Since is Borel regular, we may assume that A is a Borel set. 

Then P^\a is a Radon measure. It clearly suffices to show that if 0 < t < 1 

and

At =  jx  G A : lin^nf P^(A (1 B{x,r))/h{2r) < ,

then V^{At) =  0 .

Let E  Ç At, and let 6 > 0. Choose 6 > 0 sufficiently small that Ps(E) < 

(1 4- £)Pq {E). Since V^\a is a Radon measure we may use Theorem 5.4.1 

with a  =  0 to choose disjoint balls Bi = B(xi,ri) such that for each i,

(i) Xi € Ey

(ii) n  < 6/2,
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(iii) V % { B i)< th (2 n ) ,

(iv) V ' ( E \ \ J B i ) ^ 0 .

Then

P \ E )  < Y ^ P ' ' { E n B i ) < Y i P ' ‘{A n B i)
i i

< tY ,h (2 n )  < tP^{E) < i(l +  e)I^{E).
i

Therefore V^{E) < tP^ÇE), for any E  C At. So if At C UgiE*, then 

r^(A t) < tV^(At), and V ^A t)  = 0 .

Lem m a 5.4.3 Let A Ç R ” satisfy H^{A) < oo. Then, for 'Hf'\A almost

every x, for any 0  < a  < 1 and t > 1 there is r > 0 such that, for every

s < r  and every y € B{x, as),

n ^ { B { y ,s )n A )  _ 
h{2s)

In particular,

d \ h ''\a , x ) < 1 .

Proof. Choose a measurable set C which contains A, such that 7i^{C) = 

7i^(A). For 0 < a  < 1 and  ̂ > 1 write

Ca,t =  {x G C : for each r  > 0, there are s < r and y e  U{x,as),

such that { C n B  (y, s)) > t h(2s)}.

It is sufficient to show that, for any 0 < a  < 1 and t > 1, {Ca,t) — 0.

Fix 0 < a  < 1 and t > 1, choose s > 0, and let be a compact

subset of Ca,t satisfying 'H^(K) > (1 — e)7i^ (C'a.t)- • (This is possible since 

C is measurable, H^\c is Radon, and Ca,t is a Gs subset of C). We 

may now choose 6$ \  0, and use Theorem 5.4.1 to choose disjoint balls

each i, such that
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(i) K n B ( y i j , a n j )  ^ 0 ,

(ii) n j  < 5i/2,

(iii) n ' ' ( C n B t j ) > t k ( 2 r i j ) ,

(iv) (K  \  UjB,j) = 0.

If ÿ 6  Ut>fcUi^ij. then dist(/i',2/) < 6*. So if ÿ € nt>iU<>kU;^w, then 

dist(i(", y) = 0, so y e  K. Therefore

\k>ii>k j j

\  i> k  j

> lim sup Bk,jj

oo
=  lim sup ' ^ 'H ^ { C n  Bk,j )

k-KX j - l
oo

> lim sup tY]h{2rk,j)
k—*oo 3=1

> t lim sup ^  n  U  Bk,j
k—*oo V j

=  tH'‘ ( /f )> f( l-e )W '* (C ( ,, ,) .

Letting e \  0, we see that H'' (Ca,t) =  0. The second statement of the 

theorem follows immediately.

5.5 The main result

T heorem  5.5.1 Let A Ç  R ”, and y, =  V^\a =  BA\a be a positive finite 

measure. Then, for y  almost every x G A, every tangent measure to y  at x  

is flat and h is a regular density function.
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Proof. Lemmas 5.4.2 and 5.4.3 together show that the /i-density of // exists 

and equals 1 /x almost everywhere. Therefore, by Theorem 5.3.5, at almost

every x  € R ” every tangent measure ^  to /z at x has 0 in its support,

and is uniformly distributed, that is, tpB(x,p) =  ipB{y,p) < oo whenever 

a;, 2/ G spt and 0  < p < oo.

Write A* for those points of A which are exceptional points of neither 

Lemma 5.4.2 nor Lemma 5.4.3, at which all tangent measures are uniformly 

distributed, and which are points of translational invariance of Tan(/z,x) (see 

Theorem 5.3.2). Then p{A*) = p(A).

Fix X E A*. We now show that for each z G R", each p > 0, and each 

tangent measure ^  to p at x,

ijB{z,p) < 'ipB{0,p).

Fix ip G Tan(p,a;). Since 'tp is uniformly distributed and 0 G spt ip, it only 

remains to show the required inequality for z ^  spt ip. Let p > 0.

We first suppose that z e  17(0, p). Since

^  =  Jim

we have that

ipU{z, p) < lim inf CkpU{x + rjtz, rjtp).K—»00

Since z G R(0, ap) for some a  < 1, since x  is an exceptional point of neither 

Lemma 5.4.2 nor Lemma 5.4.3, and since x + G U{x,rkp), we see that 

for each t > I there is a number k such that ii k > k then

pU{x + TkZ, rkp) < pB{x + rjfcZ, r*.p) < tpB{x, r&p).
Therefore

ipU{z,p) < i im i n î  CkpU(xPrkZ,rkp) < lim  su p  CkpB{x,rkp) < ipB{0,p). 
k-*oo



CHAPTER 5. HAUSDORFF AND PACKING MEASURES 91

The measure |̂; is Radon, so for each 6 > 0 we may find 6 > 0 such that

(0 , /) + 6 ) < p) +  6 .

Replacing p by p +  6/2 in the above calculations, we see that

+ < 7pB{0,p-\-6/2),

so

ipB{z, p) < ipU(z, p 4 - 6/2) < p +  6/2) < tpU(0, p +  6 ) < tpB{0, p) +  e.

The choice of 6 > 0 was arbitrary, so

'ipB(z,p) < 'ipB{0,p).

Now suppose that z e dB{0^p); then for each pi > p we have z G C/(0,pi), 

and tpB{z^pi) < 'ipB{0^pi). Therefore

ij)B{z,p) < ^B(0,pi) for each p\ > p,

and

V '^ k p )  < lini ^B (0 ,pi) =  f f l  B(0 ,pi) I = ÿ B ( 0 ,p).
\pi>p J

The third case we must consider is that where B{z,p) fl B(0, p) =  0. If 

B{z,p) n  spt ÿ; =  0, the inequality B{z,p) < B(0,p) is obvious. If B{z,p) fl 

spt i/; 0 , we may choose w e  B{z, p) C\ spt ip and use the fact that x is a

point of translational invariance of Tan(/x, x) to see that

T  < T  y,,i[ip]B{0,p),

and so

ipB{z,p) < ipB{w,p) < ipB{0,p).
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Î”* )<f ccccU 3» ^

It is now not hard to show that 0 is a symmetric point of each measure 

ifi e  Tan(^,x).

Let p > 0. For y G R ”, define

Fiv) = j  { /  - { z -  y f )  XB(y.p){z)drp{z).

Since 0 < — {z — y)"̂  < z G B{y,p) and 'ijjB{y,p) is finite; and since

7^ ( /  -  { z -  y f )  =  2{z -  y)
cu.d. C-N
we see that F  is differentiable.

Then, using Fubini’s Theorem,

F{y) =  i> {^ ■ {p'̂  -  {z -  yŸ) x b m ( )̂ > t )  dt

= ^ »/’5  \Jp  ̂-  dt

< ipB ^0 , -  t j  dt

= m -

Therefore 0 is a maximum for F, so F '(0 ) = 0 , and

[  zd'ipiz) = 0,
J b { 0,p)

that is, 0 is a symmetric point of So we may use Theorem 5.3.6 to see 

that for almost every x E A every tangent measure to /i at x is flat.

Lem m a 5.5.2 If p is a Radon measure on R”, A is a compact subset o fIC ,  

and (p,x) > 1 for all x E A, then p{A) > V^{A).

Proof. Since p is Radon, p{A) < oo. For t < I and 6 > 0 write

At,6 = {x E A: pB (x,r) > t h{2r) whenever r < 6/2} .
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Then, for every 0 < < 5,

/X (C10S(^,^)) >  tPo(At,6),

since if r»)} is an 77-packing of At,s, then fiB (x*, n)  > t h(2ri), and the

compact set B{At^s,r}) contains the disjoint union

By assumption, A  =  (J6>o Clos(v4(, )̂ for each  ̂< 1. The measures [x and 

are Borel regular and At,\/n Q ^t,i/(n+i) for each h, so for each t < I,

V \ A )  =  7>'‘(UClos(^M /«)) =  i i m î ’'*(>lu/n)
n = l

^  Ü Î S .  <  r '  J i m  f l  ( c i o s  ( > l , , l / n ) )

00

— i LJ dos(yl(,i/M)) =  ^
n = l

Since t < I was arbitrary, we have fjL{A) > V^{A), as required.

Lem m a 5.5.3 I f  fi is a Radon measure on R ”, (/i,x) < 1 for all x  E A,

and all tangent measures to fi are flat af each x E A, then for each x E A,

Im  ^sup : X E D, diam(D) <e, D compact, coni;ex|^ < 1.

Proof. Suppose not, then for some x E A, without loss of generality x =  0, 

we may find numbers Ck > 0, t > 1 , \  0 , compact convex sets Dk of

diameter 1 and containing 0, m E {1,...  ,n} and V E G{n,m), such that

(i) Dk D (sl nonempty compact convex set with diam(D) < 1) in the 

Hausdorff metric,

(ii) CkTx,rk M e  Tan(/x,x),

(iii) pi{rkDk)/h{rk) > t for each k.
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Write Ek =  Clos (Un>ifc then Ek+i Ç Ek, and E k D  in the Hausdorff 

metric. So

n^\v{Ek)  ^  n ^ \v (D ) .

Also,

Since

we have

fJ-iriEi) > fi(riDi) > th(ri), for each I.

PT’\v=  limI—*00

H'^\v{Ek) > lim sup Clfi{riEk) for each k.
l—*oo

Choose k\ so large that whenever k > ki,

H’"\v{Ei,) <

Then, using the isodiametric inequality, for each k >  ki we have

1/2) > > limsupq/,(n% ).
4 4 I—*00

Since Ek+\ Ç Ek for each k,

limsup Qfi{riEk) > lim sup cifi(nEi).
I—*00 l —*oo

So
(3 + 1) 'hC^\vB{0^ 1/ 2 ) > limsup ciijL{riEi) > lim sup Cit h{ri). 

4 I—*00 / —+00

By assumption D^(fi,x) < 1 for each a; G A, so

limsup fi{B{x,ri/2)) h(ri) < 1.
I—*00

Therefore

(3 + 1)
1/ 2 ) > t lim sup Cl fjiB{x,r 1/ 2) 

4 l-*oo

> t liminîClfjiU(x,r 1/ 2)I—*00

> m ”*|v(c/(0 , 1/ 2 )).
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So i < (1 4-1)/2, and t <1.

Lem m a 5.5.4 I f  fi is a Radon measure on R ” and A  Ç R ” such that for 

every point of A

lim (sup I  y -- : X e D, diam(D) <e, D compact, convexl | < 1, 
e\o y /i(diam D) } J

then

fi{A) < H \A ) .

Proof. For t > 1 and 6 > 0, let

At,6 = {x £ A : fi{D) < t /i(diam D) whenever x e D,

diam(D) < 6, and D is compact and convex}.

Suppose At,6 Ç U gj Di, where the sets A  are compact and convex, with 

diam(D) < 6. Then
oo oo

f { \ s) < Y^fi{Di) < i ^ / i ( d i a m  A),
t = l  i= l

SO fi{At,6) <  tH^{At,s).  B y  assumption, A  =  A i / » ,  so, since At,i/n Ç

At,i/{n-\-i), we have

t^{A) — M At,i/nj —

< t\imH^^^(At,^/n) <  t Jim =  t n \ A ) .

Letting t \ l  gives the result.

T heorem  5.5.5 / /A  Ç R ” and fi = H^Ia = is a positive finite mea­

sure, then h is a regular density function and fi has h-density 1 almost every­

where. Conversely, for each function h which satisfies the limiting conditions 

listed in Section 5.2 (vii), there is a positive finite measure fi on R ” with h- 

density 1 almost everywhere, such that fi =  H^\a =  V^\a for some A  Ç R ” .
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Proof. Lemmas 5.4.2 and 5.4.3 together imply that if /i =  H^\a — 'P^\a , 

and fl is positive and finite, then fi has density 1 almost everywhere. Theo­

rem 5.5.1 implies that h is regular.

In [PrD, 6.5], for each regular density function h there is given a construc­

tion of a non-zero Radon measure fi in R ” which has positive finite constant 

/i-density fi almost everywhere in R ”. We normalize fi to have /i-density 1 

almost everywhere and write D for the set where the /i-density of ^  is 1. 

Now D is Q, Gs set with V^{D) > 0 , so we may find a compact subset C of 

D with fi{C) > 0. Then Lemma 5.5.2 tells us that fi\c{S) > Vh\c{S) for all 

closed subsets S  of R ”.

Corollary 5.3.4 ensures that, for fi almost every z, every tangent measure 

t o  f l  a t  X  is flat, and so we may use Lemmas 5.5.3 and 5.5.4 to show that 

f^\c{S) < H^\c(S) for all measurable subsets S  of R ”. Lemma 1.3.2 implies 

that if h is regular, then H^iA) < V^{A)  for all A Ç R ”. Therefore Vh\c^ fAc 

and H^\c agree on closed, and therefore on all, subsets of R^.
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