
A Passenger-to-Driver Matching Model for Commuter Carpooling: 1 

Case Study and Sensitivity Analysis 2 

Xiaobing LIU1, Helena TITHERIDGE2, Xuedong YAN1*, Rui WANG3, Weimin TAN4, Deqi 3 
CHEN1, Jiechao ZHANG5 4 
1 MOT Key Laboratory of Transport Industry of Big Data Application Technologies for 5 
Comprehensive Transport, School of Traffic and Transportation, Beijing Jiaotong University, 6 
Beijing 100044, China 7 
2 Centre for Transport Studies, University College London, Gower Street, London, WC1E 6BT, UK 8 
3 School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China 9 
4 School of Management, Hefei University of Technology, Hefei 230009, China 10 
5 University of Central Florida, Orlando, FL 32816-2450, USA 11 
* Correspondence: xdyan@bjtu.edu.cn 12 

Abstract 13 

For the transport sector, promoting carpooling to private car users could be an 14 

effective strategy over reducing vehicle kilometers traveled. Theoretical studies have 15 

verified that carpooling is not only beneficial to drivers and passengers but also to the 16 

environment. Nevertheless, despite carpooling having a huge potential market in car 17 

commuters, it is not widely used in practice worldwide. In this paper, we develop a 18 

passenger-to-driver matching model based on the characteristics of a private-car based 19 

carpooling service, and propose an estimation method for time-based costs as well as 20 

the psychological costs of carpooling trips, taking into account the potential motivations 21 

and preferences of potential carpoolers. We test the model using commuting data for 22 

the Greater London from the UK Census 2011 and travel-time data from Uber. We 23 

investigate the service sensitivity to varying carpooling participant rates and fee-sharing 24 

ratios with the aim of improving matching performance at least cost. Finally, to 25 

illustrate how our matching model might be used, we test some practical carpooling 26 

promotion instruments. We found that higher participant role flexibility in the system 27 

can improve matching performance significantly. Encouraging commuters to walk 28 

helps form more carpooling trips and further reduces carbon emissions. Different fee-29 

sharing ratios can influence matching performance, hence determination of optimal 30 

pricing should be based on the specific matching model and its cost parameters. 31 

Disincentives like parking charges and congestion charges seem to have a greater effect 32 

on carpooling choice than incentives like preferential parking and subsidies. The 33 

proposed model and associated findings provide valuable insights for designing an 34 

effective matching system and incentive scheme for carpooling services in practice. 35 

Key words: carpooling, commuter, matching model, generalized trip cost, 36 

sensitivity, promotion instruments 37 

1. Introduction 38 

Urban roads worldwide are frequently associated with high levels of pollution and 39 

congestion. Private car use accounts for the largest portion of kilometers traveled 40 

across all travel modes, making it one of the most important contributors to air pollution 41 
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(Lau et al., 2008). In the United Kingdom 93% of greenhouse gas emissions from the 42 

transport sector are attributed to road transport (DfT, 2017a). Around 25% of total 43 

vehicle miles traveled in the UK are for commuting and 85% of commuters drive alone 44 

to work (DfT, 2017b). It is, therefore, vital that a switch to more sustainable 45 

transportation modes (e.g. public transportation, bicycle, carpooling) is achieved, 46 

especially for single occupancy car commuters. However, there are still numerous road 47 

users who are car-dependent, either through personal choice or from being constrained 48 

by public transit circumstances (Mcintosh et al., 2014; Stiglic et al., 2018). Carpooling 49 

as a travel means is more flexible than transit and less expensive than traditional taxis, 50 

and has been recognized as a potential solution for mitigating the car-dependency 51 

problem (Chan and Shaheen, 2012; Bachmann et al., 2018). In recent years, with the 52 

growth and acceptance of the sharing economy, the popularity of mobile internet 53 

technology, as well as the application of innovative technologies (Dong et al., 2018), 54 

internet-based carpooling has emerged in many cities. Internet-based carpooling 55 

platforms can effectively match unacquainted drivers and passengers in terms of both 56 

time and routes, making scale development of carpooling possible (Furuhata et al., 57 

2013). Nevertheless, even though carpooling services can relieve the most pressing 58 

transport problems and has a huge potential market in car commuters (Hong et al., 59 

2017), this travel mode is still not sufficiently used in practice (Delhomme and 60 

Gheorghiu, 2016). 61 

From the perspective of transport regulators, the lack of effective incentives 62 

designed to make carpooling more attractive to drivers could contribute to the low 63 

carpooling usage rate. In order to boost carpooling, a number of measures have been 64 

proposed in cities worldwide, including financial incentives attributed to carpooling 65 

parking charges (Vanoutrive et al. 2012) or directly allocated to carpooling trips (Liu 66 

et al, 2019). Additionally, High Occupancy Vehicle (HOV) lanes are commonly 67 

adopted in western industrialized countries. However, both theoretical and empirical 68 

studies have shown that the supposed benefits of HOV lanes are often limited (Kwon 69 

and Varaiya, 2008; Wang, 2011). In sum, there is still a lack of consensus as to the most 70 

effective measures to boost carpooling. 71 

From the perspective of urban travelers, car-dependent people are frequently less 72 

concerned about the environment but more sensitive to privacy issues and convenience 73 

in a trip (Correia and Viegas, 2011; Delhomme and Gheorghiu, 2016) than others. The 74 

advantages of carpooling are generally not strong enough to entice car-dependent 75 

travelers to give up the comfort and flexibility of driving alone (Vanoutrive et al. 2012). 76 

The personal negative perceptions and attitudes of car users toward carpooling make it 77 

difficult for them to share their empty seats with strangers. 78 

In this work, we propose a passenger-to-driver based matching model for car 79 

commuters aimed at developing more sustainable and scalable carpooling services, 80 

incorporating the characteristics of a private-car based carpooling service and the 81 



motivations of potential carpoolers. Using actual car commuting trip data for the 82 

Greater London, a system sensitivity analysis is conducted and several different policies 83 

for promoting carpooling are examined. These results can provide valuable insights on 84 

the designs of an effective matching system and incentive scheme for carpooling 85 

services in practice. 86 

The remainder of the paper is structured as follows. In Section 2, we present a 87 

literature review focusing on the carpooling mode, matching models and other practical 88 

issues. In Section 3, we detail the methodology of modeling driver-to-passenger based 89 

carpooling service. Our analysis of the Greater London dataset and the results of a series 90 

of experiments based on our model are discussed in Section 4. Finally, Section 5 ends 91 

this paper with major conclusions, as well as a discussion of future research. 92 

2. Literature review 93 

2.1 Carpooling service modes 94 

Carpooling is a means of transportation where at least two carpooling participants 95 

with similar itineraries, including route and schedule, share a car for at least a part of 96 

their journey. According to a classification by Furuhata et al. (2013), traditional 97 

carpooling includes: a) informal carpooling, mainly involving acquaintances like 98 

family, colleagues, neighbors, and friends. Among strangers, ad hoc ridesharing (e.g., 99 

hitchhiking) has also occurred. However, these types of carpooling activities do not 100 

scale well due to limited and inefficient communication methods; b) organized 101 

carpooling operated by agencies that provide ride-matching opportunities for 102 

participants with no prior connections. Due to this, organized carpooling has great 103 

potential as a scalable service. As a relatively novel kind of carpooling service 104 

frequently organized by transportation network companies (TNCs) such as Uber and 105 

Didi, internet-based carpooling services have become popular in many cities over the 106 

last decade (Dong et al., 2018). Table 1 lists several current online carpooling services 107 

provided by the major platforms and their respective characteristics, based on data from 108 

the official websites of the respective TNCs. 109 

Table 1. The characteristics of internet-based carpooling provided by major platforms  110 

Payment 

level 

Operating 

attribute 

Detour 

agent 

Main trip 

purposes 

Major 

platforms 

Fee-sharing  Commercial Drivers and riders Diverse 
Uberpool, Didi 

Express Pool  

Profitable Private Drivers and riders Diverse Didi Hitch 

Cost-sharing  Private Riders Intercity  Blablacar 

Cost-sharing Private Riders Commuting Waze Carpool 

With regards to operational attributes, we can divide organized carpooling services 111 

into two categories: ride-hailing based carpooling and private-car based carpooling. 112 



Ride-hailing based carpooling (or ride-splitting) enables two or more groups of riders 113 

to share the empty seats in a vehicle and split the fare costs, e.g., Uberpool and Didi 114 

Express Pool. The ride-hailing driver is a professional driver with a permit license and 115 

provides transportation services for various trip purposes in order to make a profit. In 116 

general, the routes of two groups of passengers sharing one trip are not exactly identical; 117 

thus the carpooling driver will need to detour between the first group of passengers’ 118 

origins (destinations) and the second group of passengers’ origins (destinations). 119 

In contrast, private-car based carpooling involves non-professional drivers sharing 120 

their empty seats with one or more groups of passengers in one private car. Payment 121 

from riders is generally just sufficient to lower the costs of travelling but is not enough 122 

to provide drivers with a profit (Polkowski and Dysarz, 2016). For example, with Waze 123 

Carpool for commuters drivers cannot charge riders more than 0.54 US$ per mile, 124 

which is the 2018 reimbursement rate cap set by the US Internal Revenue Service (IRS) 125 

for business travel by car1. Therefore, the drivers using these platforms frequently 126 

dictate the whole carpooling journey, setting the meeting points and meeting times 127 

based on their own itineraries, while passengers need to make additional effort to reach 128 

the meeting points by the agreed times. However, related studies tend to either assume 129 

the drivers would detour to pick up or drop-off passengers (Agatz et al., 2011; Amey, 130 

2011; Stiglic et al, 2016), or simply discuss similar service modes but do not go on to 131 

model them (Furuhata et al., 2013; Stiglic et al., 2015). Note, the private drivers of Didi 132 

Hitch do profit from a carpooling fee and tend to detour to pick up or drop off riders.  133 

For ride-hailing based carpooling, some cities, for example in the United States, 134 

have imposed a limited set of regulations on these services (e.g. requiring registration 135 

as professional drivers and insurance for commercial operation); regulators of several 136 

countries (e.g. France, Spain, and Germany) even have taken action against this type of 137 

carpooling service (Cetin and Deakin, 2017). Generally, there seems to be more 138 

tolerance of private-car based carpooling than ride-hailing based carpooling services 139 

for authorities in practice. If drivers do not meet the criteria of business activity and do 140 

not charge passengers above the costs of a ride, then a carpooling service would not 141 

need a special permit license to operate and would not challenge current ordinances and 142 

laws that would come with the ride-haling services (Chan and Shaheen, 2012; 143 

Polkowski and Dysarz, 2016). An additional benefit of private-car based carpooling 144 

stems from the fact the participants involved are likely to travel by private car whether 145 

there are carpooling services or not, and hence private-car based carpooling has greater 146 

potential to reduce vehicle-kilometers traveled. Private-car based carpooling also has 147 

greater potential in both numbers of candidate vehicle numbers and numbers of 148 
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available empty seats per vehicle than ride-hailing services. Therefore, in this paper we 149 

focus on exploring a matching model for a private-car based carpooling service. 150 

2.2 Matching objectives and generalized trip costs  151 

An internet-based carpooling platform with the function of centralized control can 152 

help match carpooling drivers with riders for the purpose of profit by commissions or 153 

advertisement (Agatz et al, 2012). For example, a carpooling provider may charge a 154 

service fee per successful carpooling trip, either as a percentage of the trip cost or as a 155 

fixed fee. For the overall matching objective in such a carpooling system, most scholars 156 

consider one (or a combination) of the following three objectives for the system 157 

optimum: 1) to minimize system-wide vehicle kilometers (e.g., Agatz et al., 2011; 158 

Wang et al., 2018), 2) to minimize system-wide travel time or cost (e.g., Winter and 159 

Nittel, 2006; Long et al, 2019 ), and 3) to maximize the number of participants (e.g., 160 

Stiglic et al., 2016; Masoud and Jayakrishnan, 2017). According to previous works, 161 

there were two main motivations for car users to shift to carpooling services: monetary 162 

cost savings and psychological benefits from protecting the environment (Canning et 163 

al., 2010; Delhomme and Gheorghiu, 2016). Hence, it is necessary to introduce cost 164 

savings into the system matching objective and to consider the environmental benefits 165 

from co-travelling in any trip cost estimations. 166 

Compared with single occupancy car trips, carpooling trips frequently generate 167 

several additional costs linked to sharing trips with strangers (Vanoutrive et al. 2012; 168 

Hong, et al., 2017). More specifically, some scholars have indicated that one of the key 169 

reasons impeding car-users from becoming carpoolers is the psychological losses due 170 

to ride-sharing including a perceived loss of privacy and a loss of feeling in control of 171 

the journey (Correia and Viegas; 2011; Delhomme and Gheorghiu, 2016). Others have 172 

identified distrust relating to personal security and comfort as some of the most 173 

influential obstacles for carpooling, especially when the carpoolers are strangers 174 

(Chaube et al., 2010; Wang et al., 2017). When facing traffic mode shift, single-175 

occupancy-car commuters are also concerned about travel time duration and reliability 176 

(Long et al, 2018), additional physical effort expenditure (e.g., walking or biking from 177 

their origins to carpooling pick-up points), and personal space limitation (Gardner and 178 

Abraham, 2007); all of which will be influenced by ridesharing. Besides driving cost 179 

and in-vehicle time (IVT) cost, we therefore also need to consider time deviation costs, 180 

physical effort costs and psychological costs in carpooling match modeling. 181 

In generalized trip cost estimation, it is common practice to express valuations of 182 

attributes in equivalent monetary units of IVT (Shires and De Jong, 2009; Abrantes and 183 

Wardman, 2011; Wardman et al., 2016). For example, Abrantes and Wardman (2011) 184 

conducted meta-analysis on 226 related studies and obtained the monetary values of 185 

IVT for travel demand modelling in the UK. They used the derived IVT multipliers to 186 

express valuations of walk, wait and early or late time, etc., based on the characteristics 187 



of travelers and trips. Such multipliers are not only transferable across different contexts, 188 

but also readily lend themselves to interpretation and assessment.  189 

Regarding psychological costs like trust, privacy and control in carpooling, many 190 

scholars argue that they are related to social connectivity levels (Wang et al., 2017; 191 

Amirkiaee and Evangelopoulos, 2018). People are significantly less willing to share a 192 

ride with strangers than with direct or indirect friends. A higher percentage of direct 193 

friends in matches potentially leads to lower psychological costs (Wang et al., 2017). 194 

In practice, Chaube et al. (2010) reported that 98% of the population of Virginia Tech 195 

university community would accept a ride from a friend, 69% accept from an indirect 196 

friend, and only 7% from a stranger; this reflects the impact of social connectivity levels 197 

on carpooling matches. However, there is still the lack of quantitative methods to 198 

formulate the psychological costs that carpoolers need to pay in carpooling modelling.  199 

2.3 Key issues in carpooling service operation 200 

Due to considerable constraints in feasible carpooling trips, successfully matching 201 

candidate riders and drivers frequently requires a sufficiently large number of 202 

participants (Kamar and Horvitz, 2009). Buliung et al. (2010) stressed the importance 203 

of the pool-size effect, finding that a larger pool of employees from the same work 204 

environment increases the number of potential carpool partners. Stiglic et al. (2016) 205 

explored the impact of participant flexibility and participant density on the matching 206 

performance of dynamic ridesharing and found that a small increase in passenger 207 

flexibility can significantly increase the expected matching rate, especially when the 208 

number of trip announcements in the carpooling system is small. Consequently, it will 209 

be interesting to examine the impact of participant flexibilities on the private-car based 210 

carpooling system proposed in this paper with differing numbers of carpooling 211 

candidates. 212 

Considering that monetary cost savings is one of the main motivations for people’s 213 

sharing behavior, it is also important to examine the impact of different carpooling fee 214 

levels on the carpooling system. However, only a few scarce works on carpooling 215 

system design deal with this issue. Like most other studies, Geisberger et al. (2009) 216 

suggested dividing the cost of the shared part of the trip evenly between the carpooling 217 

participants. Agatz et al. (2011) proposed a way to allocate the costs of the joint trip 218 

that is proportional to the distances of the separate trips. Matching agencies frequently 219 

implement rule-based pricing using a cost calculation formula specified by the 220 

matching agency, where the fee is a function of distance travelled (Furuhata et al. 2013). 221 

Nevertheless, all these studies and applications neglect the additional costs of 222 

carpooling trips mentioned in section 2.2 when designing pricing rules and examining 223 

the impact of varying fee structures on matching performance. 224 

To fill these gaps in the development of a matching model for private-car based 225 

carpooling, we propose a passenger-to-driver carpooling model for car commuters, 226 



which is applied to the Greater London using actual car commuting data. The main 227 

contributions of this paper can be summarized as follows: 228 

First, on the basis of a cost-sharing principle, we propose a passenger-to-driver 229 

matching model for car commuters which considers the time-based costs, psychological 230 

costs and the environmental benefits of carpooling. We formulate this matching model 231 

as a mixed-integer linear programming problem and obtain the optimal solutions. 232 

Second, we estimate the time-based costs of commuting trips and formulate the 233 

psychological loss costs by the social connectivity between carpoolers as well as 234 

quantify the environmental benefits by the carbon emission reduction in this carpooling 235 

model. We determine the coefficients of various costs in the form of IVT multipliers. 236 

Third, we apply the matching model to the Greater London using data on actual 237 

commuting trips. The dataset is established by linking small-zone commuting 238 

population data with road network performance data. Additionally, we quantify the 239 

effect of a selection of carpooling incentive policies for the Greater London. 240 

Fourth, we investigate the sensitivity of the matching model to varying carpooling 241 

participant rates and diverse fee-sharing rules to improve matching performance with 242 

least cost.  243 

3. Methodology 244 

3.1 Passenger-to-driver matching mechanism of private-car based carpooling 245 

In this paper, we seek to explore the maximally achievable goals of our proposed 246 

matching model while ensuring these solutions provide useful insights for practice. 247 

Thus, we introduce a potential carpooling system which provides information to our 248 

matching model and conduct our analysis with the perspective of service provider in 249 

mind. Note we do not intent to design a matching system to support a carpooling 250 

services platform but instead to use the outline of the carpooling system as a tool to 251 

estimate the carpooling matching upper-bound. 252 

In general, a complete private-car based carpooling trip is assumed to form and 253 

execute as follows. First, both carpooling drivers and riders launch their itineraries in 254 

the carpooling platform in advance. Second, the carpooling system matches feasible 255 

trips using a set objective and sends the matching information to carpoolers. Third, 256 

according to the meeting time and meeting point recommended by the platform (or 257 

negotiated by the participants), the matched driver and rider pairs arrive at their pick-258 

up point at their agreed time and travel onwards together. Having arrived at their drop-259 

off point, the riders pay a carpooling fee based on the platform’s pricing rule and then 260 

the carpoolers continue their respective journeys on to their final destinations.  261 

In this paper, we assume that a carpooling driver only takes a single rider, since 262 

the computational complexity for computing all possible routes of one-driver-multiple-263 



passengers carpooling trips increases rapidly; this frequently necessitates the 264 

deployment of heuristic algorithms. However, this decision may not significantly 265 

impact the results. The travel-time flexibility of peak time commuters is often limited; 266 

picking up multiple riders may substantially increase travel delays and the 267 

inconvenience of carpooling, particularly where commuter densities are low. 268 

As discussed in Section 2.1, it is frequently the drivers who dictate the 269 

characteristics of the carpooling journey rather than the riders. Hence, we assume that 270 

a driver would travel in accordance with their original route and schedule with no 271 

additional detours or delays due to picking up or dropping off a passenger. The meeting 272 

point and associated meeting time are determined based on the driver’s itinerary. 273 

Similarly, for the drop-off point. In our model, the meeting point, meeting time, and 274 

drop-off point are assumed to be set by the service platform to minimize the additional 275 

effort each passenger undergoes. However, in reality, they could be chosen by the driver 276 

and passenger through negotiation or set by the system using more sophisticated criteria. 277 

We assumed a carpooling passenger would walk to the nearest pick-up point located 278 

along their driver’s route, arriving by the agreed time. Likewise, the passenger would 279 

walk to their workplace from the nearest drop-off point located along their driver’s 280 

route. More precisely, the proposed carpooling variation is driver-controlled and a rider 281 

frequently needs to pay additional walking effort to reach the meeting point and an 282 

additional schedule deviation cost to match the meeting time; this matching mechanism 283 

is referred to as the passenger-to-driver matching pattern from herein. 284 

The following notations are adopted throughout this paper: 285 

,  A SC C  Generalized cost of the driving-alone trip A  and the ride-sharing trip S  

,  P DC C   Generalized trip cost saving of the passengers and drivers in carpooling trip 

DPCS  Generalized cost saving of the carpooling trip ( , )D P  

,H W  Housing places and workplaces based on communities 

N  
The market access threshold: the lowest number of car commuting trips for a certain 

area to be introduced into the local carpooling market. 

, , ,PF Cb PC CF  Parking fee; carbon emission cost; psychological cost; carpooling service fee. 

, ,t w dT T T  Travel time in driving-alone trip; walking time; deviation time from the schedule 

,w sU U  Upper threshold of walking time and upper threshold of time-based search scope 

DPx  A 0-1 decision variable; if carpooling trip ( , )D P  formed, DPx =1; otherwise, DPx =0 

 , ,  , , ,       
Unit cost factor of variable driving cost, in-vehicle travel time, psychological penalty, 

walking time, schedule deviation penalty at the residence and at the workplace 

  
Shared trip stage ratio of shared driving time (with rider) to the total travel time of the 

driver in a carpooling trip 

  The set of feasible carpooling trips 

 ( )   
The angle between the carpooling route vector and the route vector from driver’s 

housing (workplace) to rider’s housing (workplace) 

3.2 Generalized carpooling trip cost 286 



We assume that all participants in the carpooling system have private cars and 287 

would complete their trips by driving alone if without the carpooling service. In general, 288 

the generalized cost of a single occupancy car trip consists of three components: 1) the 289 

driving cost including fixed driving costs and variable driving costs, 2) the in-vehicle 290 

travel time cost, and 3) the external environmental costs (for our purposes defined here 291 

as carbon emissions). These three components of a carpooling driver’s or passenger’s 292 

respective trips in case of driving-alone can be formulated in Eq. 1, where the subscript 293 

'A' stands for a driving-alone trip, PF  is the parking fee as a fixed driving cost, A  is 294 

the variable driving cost of unit time including fuel costs, wear and tear costs, insurance, 295 

depreciation costs and other kilometer-based costs.   is the unit cost of in-vehicle 296 

travel time, 
D

tT  and 
P

tT  are the in-vehicle travel time of the driver and passenger 297 

respectively, 
D

ACb  and 
P

ACb  are carbon emissions costs of a driver’s and passenger’s 298 

respective trips. 299 

( )D D D D

A A t t AC PF T T Cb        ( )P P P P

A A t t AC PF T T Cb           (1) 300 

Besides the above costs involved in a driving-alone trip, we also need to consider 301 

the time-deviation cost, the physical effort cost and the psychologist loss cost in a 302 

carpooling trip. In our proposed carpooling matching mode, the components of 303 

generalized cost of a carpooling trip are different between a driver and a rider. For a 304 

driver, there are four main cost components as shown in Eq. 2: 1) the trip driving cost, 305 

2) the in-vehicle travel time cost, 3) the carbon emissions cost, and 4) the sharing 306 

psychological penalty cost incorporating distrust of strangers and the privacy loss 307 

associated with sharing personal space with passengers. Because the driver does not 308 

deviate from their normal route in this model, the driving cost to the carpooling driver 309 

is the difference between the driving-alone trip driving cost and the carpooling fee 310 

received from their passenger. The subscript 'S' indicates a ride-sharing trip. The 311 

carpooling fee CF  includes half of the driving cost of the carpooled trip including the 312 

parking fee PF  and a variable driving cost 
D

S tT . Note that the unit variable driving 313 

cost of a carpooling trip S  only covers the fuel cost, but does consider the impact of 314 

additional passenger’s weight on fuel consumption (Jacobson and King, 2009), where 315 

  is the unit fuel cost of driving-alone, 1  is the unit fuel-used per additional 316 

passenger and k  is the number of passengers, in this paper 1k  . SCb  is the carbon 317 

emissions cost of a carpooling trip and we assume the driver and rider share this cost 318 

equally. DPC  indicates a driver’s psychological penalty cost and   is the unit cost 319 

factor of psychological penalty.  320 

1

1 1
( ) ;  ( );  

1 1

D D D D D

S A t t S S t SC PF T CF T Cb PC CF PF T k
k k

               
 

  (2) 321 

Passengers in a carpooling trip frequently need to adjust their itineraries to match 322 

the driver’s journey, therefore the total generalized cost consists of six components 323 

formulated in Eq. 3: 1) the trip driving cost, i.e. carpooling fee, 2) the in-vehicle travel 324 

time cost, 3) the carbon emission cost, 4) the sharing psychological penalty cost 325 



covering distrust issues privacy loss from sharing personal space and perceived loss of 326 

control of the journey, 5) the detour effort penalty cost due to the additional walking, 327 

and 6) the schedule deviation penalty including the requirement to leave home and/or 328 

reach the destination early or late and. PPC  is a passenger’s psychological penalty 329 

cost, 
H

wT , 
W

wT  and 
H

dT , 
W

dT  are the walking time and schedule deviation time at 330 

the residence and workplace, respectively. The shared trip stage factor   is the ratio 331 

of shared driving time (with rider) to the total travel time of the driver.  ,   and   332 

are the unit cost factors of walking time, schedule deviation at the residence and 333 

schedule deviation at the workplace, respectively. 334 

1
( ) ( )

1

P D P H W H W

S t S w w d dC CF T Cb PC T T T T
k

             


      (3) 335 

With regards to the sharing psychological penalty cost, when a driver and a rider 336 

carpooling pair are strangers (i.e. with the lowest level of social connectivity) then the 337 

more time spent sharing with each other, the higher the psychological cost to each of 338 

them. Conversely, if the driver is acquainted with the passenger, which is possible 339 

considering the matched pair are likely to live and work in the same or neighboring 340 

communities, the effect of shared time on personal psychological loss will be lower. 341 

Therefore, we assume that the psychological penalty cost takes the value of shared trip 342 

time divided by a social connectivity level, where the social connectivity level between 343 

acquaintances has higher order of magnitude than when between strangers. This is 344 

illustrated by Eq. 4, where SCL  is the social connectivity level. Note that carpooling 345 

passengers have additional control loss compared to drivers, so we introduce an 346 

amplification factor   into the estimation of the passenger’s psychological cost. 347 

= ;  =
D D

D Pt tT T
PC PC

SCL SCL

 
                (4) 348 

According to the Communicate Bond Belong (CBB) theory (Hall & Davis, 2017), 349 

time spent with a person can be conceived as an opportunity cost for developing or 350 

continuing relationships. Many scholars also recognized the positive correlation 351 

between meeting time and friendship closeness (Roberts & Dunbar, 2011; Miritello et 352 

al., 2013; Hall, 2019). For example, Hall (2019) demonstrated that friendship status is 353 

a function of the amount of time spent together and the type of activity, while the 354 

amount of time required to shift friendship status is related to individual acceptance 355 

ability and is influenced by age, social status and gender, etc. Only considering the 356 

shared time during carpooling trips, we use the number of prior times a pair has been 357 

matched to represent the time spent together. Hence, we sum the number of times a pair 358 

of carpoolers has been matched together with their initial acquaintance level and take 359 

an individual friendship acceptance ability factor as the exponent to quantify the social 360 

connectivity level SCL in carpooling activities, as shown in Eq. 5. AL  represents the 361 

initial acquaintance level, which increases by order of magnitude from unacquainted 362 



carpoolers to well acquainted, familiar carpoolers (e.g., from 0 to 10). MT  is the 363 

number of times a pair has been matched through the carpooling service. We set an 364 

upper threshold ALU  for acquaintance level AL, as we assume that once a close 365 

friendship has developed additional time spend together will not increase the level of 366 

acquaintance further, hence the acquaintance level  min , ALAL AL MT U  . The 367 

exponent   is the friendship acceptance ability, set as a positive number less than 1; 368 

this ensures the social connectivity level does not increase sharply with increasing time 369 

spent as a matched pair, especially for carpoolers who initially start as strangers. The 370 

higher the value of the exponent  , the higher the friendship acceptance ability is and 371 

the faster the social connectivity level will grow. In practice, internet-based carpooling 372 

services could use a similar approach to find matched pairs. All of the parameters for 373 

psychological penalty estimation can be calibrated according to users’ initial individual 374 

preferences and data records. For example, a rider could identify their initial 375 

acquaintance level with the potential driver and this acquaintance level will grow as the 376 

rider and driver successfully share carpooled trips. Users might also be able to set their 377 

individual level of friendship acceptance ability to reflect their willingness to make 378 

connection with others they share journeys with. This would have the added benefit of 379 

making it easier for the carpooler to find matched trips. 380 

  ;  min , ; 0 <  <1ALSCL AL AL AL MT U              (5) 381 

Based on equations 1 to 5, we can calculate the trip cost saving of a driver as Eq. 382 

6 and the trip cost saving of a passenger as Eq. 7. ijCbR  is the total carbon emissions 383 

reduction of matched trips i  and j  (Eq. 10), and is divided between the carpooling 384 

driver and passenger, namely through DCb  and PCb  in Eq. 8 and 9 respectively. 385 

As discussed earlier, the total carbon emissions reduction here represents the 386 

environmental benefit obtained from co-travelling by carpooling. Note that 2  is the 387 

unit carbon emissions per additional k  passengers ( 1k  ) and   is the carbon 388 

reduction cost conversion factor to time units. Finally, the total generalized trip cost 389 

saving of both participants is illustrated in Eq. 10, where DPCS  represents the collective 390 

cost saving from two individuals by matching driver’s trip and passenger’s trip, 391 

including the driving cost saving, in-vehicle time saving, total carbon emissions 392 

reduction benefit, sharing psychological penalty, walking effort penalty and schedule 393 

deviation penalty. 394 
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cheduel deviation penalty

 (10) 399 

The trip driving cost and all unit variable cost coefficients can be estimated using 400 

real data or by referring to previous academic literature. For the schedule deviation cost 401 

of a carpooling passenger, it is assumed that the rider would depart earlier or later to 402 

match the meeting time proposed by the driver. Therefore, departing deviation time is 403 

the difference between the time of a driver arriving at the pick-up point and the time a 404 

passenger arrives at it based on the passenger’s original (pre-carpooling) start time 405 

(shown in Eq. 11), where D  and P  are the start time of a driver and a passenger 406 

when driving alone, respectively. Arriving schedule deviation is the difference between 407 

the time a passenger arrives at their workplace by carpooling and the time a passenger 408 

would arrive if they drove alone to the workplace (shown in Eq. 12).   is the ratio 409 

between the drive time from a driver’s residence to the pick-up point and the driver’s 410 

total driving time. Considering the distinction between the unit cost of a late penalty 411 

and an early penalty at the residence and workplace (Abrantes and Wardman, 2011; 412 

Long, et al., 2018), we take    (   ) and    (   ) as the penalty factors for leaving the 413 

residence (arriving at the workplace) later or earlier than planned respectively. Note that 414 

all these factors can be expressed in equivalent units of in-vehicle time (IVT), namely 415 

by IVT multipliers. However, the specific walking time needs to be further explored 416 

based on our dataset. 417 

   max ( ) ( ),0 max ( ) ( ),0H D D P H P H D D

d t w w tT T T T T                     (11) 418 

   max ( ) ( ),0 max ( ) ( ),0W D D W P P P P D D W

d t w t t t wT T T T T T T                    (12) 419 

3.3 Identification of feasible carpooling trips 420 

Before establishing a carpooling matching model, it is necessary to define the set 421 

of shareable carpooling trips. On a carpooling service platform, each user can claim one 422 

of three roles: (1) a driver, (2) a passenger, and (3) either a driver or a passenger. Let 423 

/,  ,  ,  D P D P     respectively be the set of carpooling users (where 424 

/ D P D P     ), the set of participants who select to be a driver, the set of 425 

participants who select to be a passenger, and the set of participants who are willing to 426 

be either a driver or a rider.  427 

A feasible carpooling trip is one where, first, both the driver and rider can save on 428 

the trip cost as a result of the shift to carpooling. Second, additional time the passenger 429 

spends travelling to meet the driver and travelling from the drop-off point to their 430 

workplace should be reasonable. We assume that all car commuters registered on the 431 

platform who meet these two conditions are willing to share their trips.  432 



To ensure the similarity of carpoolers’ routes, we only search and match trips from 433 

and to the same or adjacent communities, shown as Fig. 1, where community is 434 

analogous to a traffic analysis zone, postcode or census tract (this is for convenience as 435 

data on commuting is often available for these geographical units, as for our case study). 436 

Measuring the initial search scope of feasible trips by travel time, carpooling 437 

participants who live and work in neighboring communities that are reachable within a 438 

reasonable walking time are considered candidate carpooling partners. 439 

 440 

Fig.1 The matching search scope measured by travel time
H

sT (
W

sT ) from drivers’ housing 441 

community (working community DW ) to passengers’ housing community PH (working 442 

community PW ) is less than time threshold
H

sU (
W

sU ). 443 

Let traveler D  be a driver and traveler P  be a passenger, hence the set of 444 

feasible carpooling trips can be defined by Eq. 13, where wU  is the upper threshold 445 

of walking time and sU  is the upper threshold of the search scope for feasible trips 446 

within adjacent communities. Search scope sT  is measured by the reasonable walking 447 

time between two communities. 448 

 / /( , ) | 0,  0,  ,   and , ,D P

w w s s D D P P D PD P C C T U T U P D D P               (13) 449 

Based on the set of feasible carpooling trips, we can define the set of candidate 450 

drivers 
D  and the set of candidate passengers 

P  in Eq.14 and Eq.15, respectively. 451 

Combining the shareable carpooling trips set and carpooling candidate set, we can 452 

define the set of all candidate passengers for each carpooling driver 
D  and the set of 453 

all candidate drivers for each carpooling passenger 
P  in Eq.16 and Eq.17, 454 

respectively. 455 

 /|  such that ( , )  D P P DD P D P                 (14) 456 

 /|  such that ( , )  P D P DP D D P                (15) 457 

 | ( , )  ,  D DP D P D                  (16) 458 

 |  ( , )  ,  P PD D P P                  (17) 459 

3.4 Passenger-to-driver matching model 460 

In this carpooling system, we suppose an internet based carpooling platform 461 

charges a service fee per successful carpooling trip as a percentage of the trip cost 462 

savings. The carpooling provider would match feasible trip pairs to pursue the 'upper 463 



bound' of operating profits. Moreover, cost savings are regarded as one of the primary 464 

motivations for single occupancy car users shifting to carpooling services. Therefore, 465 

here we take the maximal total cost savings of carpoolers as the system objective. As a 466 

result, the specific trip cost savings of individual carpoolers are not in an equilibrium 467 

situation; some carpoolers can save more from carpooling, while some may scarcely 468 

save anything. Based on the set of shareable ride-sharing trips, the set of candidate 469 

drivers, and the set of candidate passengers, the carpooling matching model is a weight 470 

optimization problem to explore maximally achievable goals. This can be formulated 471 

as a mixed-integer linear programming (MILP) problem. The objective function and 472 

constraint conditions are listed as follows: 473 

( , )

 DP DP

D P
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                (18) 474 
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D
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P
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x P
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    and             (20) 476 

 0,1 ,  ( , )DPx D P                (21) 477 

The Objective (18) is to maximize a weighted generalized trip cost saving. 478 

Constraint (19) guarantees that each driver is matched with just one passenger and 479 

Constraint (20) guarantees that each passenger is matched with just one driver. 480 

Constraint (21) is the definitional constraint for the carpooling trip matching decision 481 

variables.  482 

To evaluate the matching performance under various scenarios, we define four 483 

ratio indexes relating to carpooling matched number, cost savings, carbon emissions 484 

reduction, and the matching equity of carpoolers. More specifically, index (22) M  is 485 

the carpooling match rate, index (23) CS  is the generalized cost saving rate, and index 486 

(24) CbR  is the carbon emission reduction rate, where the asterisk indicates matched 487 

carpooling trips and their associated attributes such as trip cost and carbon emissions. 488 

i  is a participant in a carpooling platform. Index E  (25) is the cost-based 489 

carpooling equity factor, defined as the ratio of riders’ cost savings to total cost savings 490 

in a successful carpooling trip (where passenger number 1k  ) to show the fairness 491 

between drivers and riders in this matching model from the perspective of individual 492 

cost savings. 493 
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3.5 Application to the Case of London 498 

To demonstrate the properties of the proposed model, we solve the MILP problem 499 

and analyze the matching performances using empirical parameters and actual car 500 

commuting trips data for the Greater London.  501 

London, also referred to as the Greater London, is the largest city in the United 502 

Kingdom, with the largest municipal population in the European Union2. According to 503 

the London Travel Demand Survey (LTDS) (TfL, 2018), the number of trips made in 504 

London in 2017 averaged 26.8 million per day. Although London has highly developed 505 

public transport network, the mode share of private motorized transport remains above 506 

one third of total trips. In Outer London, where public transport coverage is less 507 

comprehensive, about half of trips are made by private transport modes (TfL, 2018). 508 

The London Mayor’s aim for 2041 is for 80 percent of trips in London to be made by 509 

active, efficient and sustainable modes and, more ambitiously, to be a zero-carbon city 510 

by 2050, despite a growing population (GLA, 2018). For the transport sector, 511 

promoting carpooling for private car users to reduce the vehicle kilometers traveled and 512 

fuel used, is likely to be part of an effective package of solutions. 513 

3.5.1 Dataset 514 

Focusing on commuter carpooling, we extract data on the commuting behavior of 515 

full-time workers by location of usual residence and workplaces in London from the 516 

United Kingdom Census, 20113 . In this origin-destination dataset, commuters are 517 

divided by usual method of travel to work including private car, public transport, 518 

walking, and so on; we take the private car users as carpooling candidates. The 519 

population data has an output area (OA) resolution, which is the lowest level of 520 

geography produced across all Census topics. To improve the reporting of small area 521 

statistics, the reported location of usual residence and workplaces correspond to a 522 

middle layer super output area (MSOA). Each MSOA possesses a population of 5000 523 

to 15000, which is about 25 times the OA population. London is composed of 982 524 

MSOAs with an average area of 1.62 km2. A moderately sized set of representative 525 

                                                             

2 http://worldpopulationreview.com/regions/european-union-population/ 
3 https://data.gov.uk/dataset/150b43db-10ce-465d-9961-29e679350a9d/2011-census 
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MSOAs, whose areas are around this average value, are shown in Fig. 2 with MSOA 526 

codes and a length scale. 527 

 528 

Fig. 2 Four representative MSOAs with areas around the average value (1.62 km2). The red points 529 

are the area-based centroids of these zones. 530 

To obtain the carpooling matching costs, we need information about the local road 531 

network service performance for private cars. Uber Movement4, an open data platform 532 

provided by Uber Company, provides zone-to-zone travel time data across the city, and 533 

for London at MSOA level. Specifically, this dataset records trip information between 534 

origin MSOAs and destination MSOAs including average travel times and standard 535 

deviation of travel times from 2016 to the present by start-time. The average travel 536 

times and standard deviation of travel times are estimated based on the total trips from 537 

one MSOA to another MSOA within a one-hour start-time. The standard deviation of 538 

travel times mainly result from different delay times due to (recurring or non-recurring) 539 

congestion combined with the different (longitude and latitude coordinate based) 540 

origin-destination points of each trip from one MSOA to another. GPS data from probe 541 

vehicles (like their ride-hailing vehicles equipped with mobile phones) can provide 542 

good estimates of travel time within an urban road network (Liu and Ma, 2009; Zheng 543 

and Van, 2013), so we can use this data to represent the travel times of car commuters 544 

in London. By linking the commuter distribution information from the Census with the 545 

travel times from Uber, using the same basic zone of MSOAs, we established a daily 546 

trip dataset of car commuters.  547 

As shown in Fig. 3, car commuting trips mainly occurred within Outer London, 548 

with local employment centers forming the main destinations. London Heathrow 549 

Airport and its surrounding built area attract the heaviest car commuting flow, which 550 

implies a higher employment attraction in these zones. People living in Inner London 551 

tend to use public transport more to commute than those in Outer London. Obviously, 552 

central London still is the largest employment center. Maybe due to the relatively high 553 

levels of public transport provision combined with high parking and congestion charge 554 

costs, most commuters, whether from Outer London or Inner London, take public 555 

transport (e.g., underground, bus, railway) to central London, and only a fraction of 556 

commuters (who tend to live in traditional wealthy areas) drive to central London. For 557 

those not commuting to central London, overall, the private car prevails in the outer 558 
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built area. Public transport plays a role connecting the outer employment centers to the 559 

city center, as well as providing for commuters travelling within Inner London. From a 560 

temporal perspective, the average travel time is 13.9 minutes for car commuting trips 561 

in Outer London, while commuters driving to workplaces in central London spend 27.5 562 

minutes on average getting to work, nearly double that of the former despite travelling 563 

similar distances, as shown in Fig. 4. 564 

 565 

Fig. 3 The spatial distribution of commuting flows by public transit (showing flows with more 566 

than 100 trips per day) and private car (showing flows with more than 30 trips per day) in London 567 

 568 

Fig. 4 Average travel time of commuting flows by car (showing flows with more than 30 trips per 569 

day) based on MSOAs. 570 

3.5.2 Estimating trip start-time and travel time distributions 571 

Based on our dataset, we can take the same or neighboring MSOAs as origin-572 

destination communities of carpooling trips. However, the Census 2011 does not 573 

include data on trip start-time of commuters, hence we need to allocate a start time. We 574 

do this using the start-time distribution of commuting trips taken from a local travel 575 

survey – the LTDS. According to the LTDS (see Fig. 5), over half of commuters depart 576 
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within morning peak hours (7:00 am-9:00 am), and these are roughly equally divided 577 

between the first and second hours of the peak period. The numbers of commuters 578 

travelling from each origin outside of the peak hours, are likely to be too low to enable 579 

successful matching; thus, we focus only on home-work trips made during the morning 580 

peak. To guarantee matching feasibility within the carpooling service, we only consider 581 

origin-destination zone pairs with at least 24 trips recorded in the Census. For each 582 

extracted O-D pair, we assumed half of the trips were made within the AM peak; we 583 

then evenly assigned these trips to the 12 10-minute start time windows from 7:00 to 584 

9:00. As a result, there are 66,450 morning commuting trips by car per day in our initial 585 

dataset; most of trips commence in Outer London; only 2192 trips originate within the 586 

Congestion Charge Zone (CCZ) of central London. 587 

 588 

Fig. 5 Start time distribution of commuting trips by car in London 589 

For car commuting trips in London, the average travel time is 14.4 minutes with a 590 

standard deviation of 5.2 minutes. Considering the road travel times are known to 591 

closely follow a Gamma distribution (Polus, 1979; Nie at al., 2012), it is assumed that 592 

car commuting trip travel times for each origin-destination MSOA pair follow the 593 

Gamma distribution ~  ( ,  )X   ; the distribution parameters   and   can be 594 

calculated using the mean and standard deviation of travel times in our dataset. Then 595 

we assigned each trip of each origin-destination MSOA pair with stochastic travel times 596 

based on this distribution function. In this way, the impact of different delay times and 597 

coordinate-based origin-destination locations on travel times of trips from one MSOA 598 

to another MSOA are taken into account, and can be considered to accord with real 599 

travel times. Taking the origin-destination pair with the most commuting trips as an 600 

example, there are 143 car commuting trips per day from Hounslow (MSOA 499) to 601 

Hillingdon (MSOA 479) with a mean travel time 8.97 minutes and standard deviation 602 

of 3.52 minutes. Based on the Gamma distribution ~X  (6.5,1.4), we obtain the travel 603 

time distribution shown in Fig. 6, where 80% of commuting trips have a travel time of 604 

6 to 13 minutes. The difference between the longest commuting time and the shortest 605 

commuting time for this O-D pair is 15 minutes. 606 
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 607 

Fig. 6 Estimated travel time distribution of car commuting trips from MSOA 499 to MSOA 479 608 

3.5.3 Estimation of walking time, shared trip distance and trip deviation 609 

Taking trips from and to neighboring communities as an instance, Fig. 7 illustrates 610 

the passenger-to-driver matching mechanism of this private-car based carpooling mode. 611 

In theory, the shortest walking distance for a rider is the vertical dimension from his or 612 

her origin point (i.e. residence) to the driver’s route vector (the yellow line), hence the 613 

nearest pick-up point for this rider shall be the intersection point (foot of perpendicular) 614 

of the auxiliary vertical line (the black solid line) and driver’s route vector. It is likewise 615 

when this rider walks from drop-off point to their workplace. The shortest walking time 616 

can be estimated by the route deviation degree and the walking time between the 617 

driver’s and the rider’s respective residence (workplace). The route deviation degree is 618 

measured by the angle   (  ) between the carpooling (driving) route vector and the 619 

neighbor route vector (the black dashed line) from the driver’s house (workplace) 620 

community to the rider’s house (workplace) community. In general, if the travelling 621 

distances from passengers to a driver are similar, larger deviation degrees would create 622 

greater detour efforts for passengers. To improve the accuracy of estimation, we used 623 

actual driving time from driver’s home (workplace) MSOA to the rider’s home 624 

(workplace) MSOA from our dataset as an intermediary to estimating the shortest 625 

walking time, converting driving time to walking time using average driving and 626 

walking speeds respectively. 627 
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 628 

Fig. 7 Passenger-to-driver matching mechanism of private-car based carpooling for drivers and 629 

riders in neighboring communities 630 

In Fig. 8, considering various ride-sharing patterns, we propose a route deviation 631 

angle-based method to estimate the walking time of carpooling riders from home to 632 

pick-up point, and from drop-off point to workplace. To be more specific, (a) a same-633 

community shared pattern means candidates are within the same origin and 634 

destination communities, and walking time is estimated as a function of the area of 635 

communities; (b) an inclusive shared pattern means the location of a rider’s residence 636 

is just on (or very close to) a driver’s route. In other words, a driver’s route includes a 637 

rider’s original route, so no (or hardly any) walking detour is necessary; (c) a 638 

passenger-detour partial shared pattern occurs when a rider needs to walk to reach 639 

the pick-up point and then shares part of the driver’s trip. The walking time can be 640 

estimated from the degree of route deviation and from the driver’s home to the rider’s 641 

home, shown in Fig. 8(c); (d) a passenger-detour overall shared pattern occurs when 642 

a rider and driver are from different communities and the driver’s home is the pick-up 643 

point. The route deviation, or walking time, and route path can be estimated as straight-644 

line paths using the longitude and latitude of the origin and destination points. Where 645 

exact location of the home and workplace are unknown the centroid of the origin and 646 

destination zones can be used. 
H

P DT   is the driving time from a driver’s home to a 647 

passenger’s home and   is the conversion factor from driving time to walking time. 648 

The proportion of the driver’s trip that is shared   can be derived as Eq. 26, where 649 
W

P DT   is the travel time from a driver’s workplace to a passenger’s workplace. With 650 

carpoolers from or to the same zones the ratio of shared trip stage   can be estimated 651 

as a function of the area of origin and destination communities. Similarly, the ratio of 652 

pick-up trip stage   is defined in Eq. 27, for carpoolers from different communities 653 

and for carpoolers from identical communities respectively. 654 



 655 

(a)              (b)              (c)              (d) 656 

Fig. 8 The estimation of riders’ walking time at origin points under different shared patterns. (a) 657 

same-community shared pattern from and to same community, average walking time is related to 658 

the community area ( )H

wT f Area , likewise at destination points; (b) inclusive shared pattern, 659 
 

1 0   and 0H

wT  , likewise at destination communities; (c) passenger-detour partial shared 660 

pattern, 
 

2 90   and 2sinH H

w P DT T   , the degree of route deviation at destination 661 

communities can be any condition, vice versa; (d) passenger-detour overall shared pattern from 662 

neighboring communities, 
 

3 90   and 
H H

w P DT T  , likewise at destination communities. Note 663 

that 
  ( 180 ,  180 )   . 664 

   1 (max cos ,0 max cos ,0 )H W D

P D P D tT T T                  (26) 665 

 max cos ,0  or  H D H D

P D t w tT T T T                (27) 666 

 667 

3.5.4 Parameter setting 668 

Referring to the results in previous works (Gardner and Abraham, 2007; Abrantes 669 

and Wardman, 2011), we take the numerical magnitude relation for involved unit cost 670 

factors as                . Focusing on car commuters in London, we take 671 

£0.10/minute as the value of IVT at 2011 prices and incomes and take the other unit 672 

cost factors in the form of time multipliers as 2.8,  1.7,  1.4,  1        , 673 
- -0.7,  0.6,  0.5      (Abrantes and Wardman, 2011). Note that the unit cost factor 674 

of the sharing psychological penalty takes a value between the unit cost of walking time 675 

and the unit cost of IVT. Moreover, lack of empirical operating data and specific 676 

preferences of carpoolers, we assume all participants in this carpooling system are 677 

strangers and share their trips for the first time, hence we take 0AL  , 1MT  , 1.1   678 

in the estimation of psychological penalty cost. 679 

For the monetary trip cost, parking fees in Outer London are an average £5 per 680 

day based on the price of a season-ticket for National Car Parks (NCP)5. In addition, an 681 

£11.50 daily charge is payable when driving within the Congestion Charging Zone 682 

(CCZ) from 07:00 to18:00 on a weekday, however those living within or immediately 683 

                                                             

5 https://www.ncp.co.uk/parking-solutions/season-tickets/ 

https://www.ncp.co.uk/parking-solutions/season-tickets/


adjacent to the CCZ enjoy a 90% residents' discount. According to the LTDS in 2017 684 

(TfL, 2018), the average travel speed within Outer London during morning peak hours 685 

is about 30km/hour. Considering average new car fuel consumption and the proportions 686 

of petrol to diesel cars, as well as the fuel prices from 2011 in UK6, the unit fuel cost is 687 

set as £0.04/min on average. The other variable trip costs including wear and tear costs, 688 

insurance costs and so on are about £0.1/min (Danish Ministry of Transport, 2013). It 689 

is assumed the carpooling platform will charge a service fee accounting for 10% of cost 690 

savings of the rider and the driver from each successful carpooling trip; this level of 691 

service fee will not significantly affect the carpooling matching rate. 692 

For the parameters used in the estimation of carbon emission costs, carbon dioxide 693 

emissions (total CO2 equivalent) are 0.14kg/km on average from cars that were new 694 

between 2007 to 20167. Non-traded emissions are assigned a value of about £64/metric 695 

ton CO2 equivalent in 2016 (Rosenow et al., 2018). After conversion, the unit cost of 696 

carbon emissions is £0.0045/min. The impact factor of the additional passenger’s 697 

weight on fuel consumption is about 4.5×10-3 liter/100km/kg as reported by the US 698 

Environmental Protection Agency (EPA, 2016). Based on the average weight of 699 

London adult residents 8 , the fuel-using cost factor of each additional carpooling 700 

passenger 1  is £0.0023/min/person (see Eq. 2) and the carbon emissions factor of 701 

each additional carpooling passenger 2  is 0.046/person (Eq. 8 and Eq. 9). 702 

Regarding the parameters of walking time estimation, the mean walking speed 703 

used in TFL’s Public Transport Accessibility Levels (PTALs)9 is 80m/min; we take 704 

100m/min as the input factor of walking speed due to commuters frequently quickening 705 

their pace (Galiza et al., 2011). As data on walking times between MSOAs was not 706 

available, we used a conversion factor applied to drive time to get an estimated walking 707 

time based on travel speed, that is 5  . For matched pairs with a same-community 708 

shared pattern, we assume that MSOAs approximate a circle and the origin or 709 

destination points of two matched trips are distributed randomly within the MSOA. The 710 

probability density for the distance l  between two random points in a circle of radius 711 

r  is given by García (2005) as Eq. 28. Hence, the expected value of this distance is 712 

derived in Eq. 29. Therefore, average walking distance wd  is a function of the 713 

community area (unit is km2); thus the average walking time within a MSOA is 714 

5wT Area  minutes based on the walking speed.  715 

2 2
2

4

4 2
( ) arccos

2 4

l l l l
p l r

r r 
               (28) 716 

                                                             

6 https://www.gov.uk/government/statistical-data-sets/energy-and-environment-data-
tables-env 

7 https://www.smmt.co.uk/reports/co2-report/ 
8 https://data.london.gov.uk/dataset/obesity-adults 
9 https://data.london.gov.uk/dataset/public-transport-accessibility-levels 

https://www.gov.uk/government/statistical-data-sets/energy-and-environment-data-tables-env
https://www.gov.uk/government/statistical-data-sets/energy-and-environment-data-tables-env
https://www.smmt.co.uk/reports/co2-report/
https://data.london.gov.uk/dataset/obesity-adults
https://data.london.gov.uk/dataset/public-transport-accessibility-levels
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Unless otherwise stated, 25minsU  , 10minwU  , and the role ratio of driver and 718 

passenger is 1 to 1 with no flexible roles. All experiments were run on a computer with 719 

an Intel (R) Core(TM) i5-3320M 2.60 GHz CPU and a 8GB RAM. The carpooling 720 

matching model in this paper was implemented in C# 2015 and was solved by a 721 

commercial optimization software package, IBM ILOG CPLEX (version 12.8). The 722 

CPU time for computing this matching model involving 66,450 trips is within two 723 

minutes.  724 

4. Results 725 

4.1 Basic results 726 

Based on the initial parameters and dataset, we obtain the optimal solutions of the 727 

matching model involving 66,450 car commuting trips between 3243 OD pairs. First, 728 

12,733 carpooling trips can be formed in total with the matching rate 38.3%, 729 

generalized cost saving rate 8.9% and carbon reduction rate 19.4%. Second, for 730 

matched carpooling trips, both the driver and passenger in a carpool together can save 731 

£3.3 per trip accounting for 21% of total trip cost. Riders can save £1.5 per trip, slightly 732 

less than drivers’ savings. The carpooling platform can earn about £5000 per workday 733 

from service fee. The carbon emission reduction benefit is £0.06 on average with a 734 

reduction rate up to 56%; in total, carpooling trips can save 11.8 metric tons CO2 735 

equivalent emissions per day. Third, for the 2192 trips within Congestion Charge zone 736 

(150 carpoolers are estimated to benefit from the residents’ discount), the matching 737 

performance is better with a matching rate of 76.9% and a cost saving rate of 21.3%. 738 

Fourth, the cost-based carpooling equity factor is 0.4 on average. The 10% of the lowest 739 

and the highest in the equity factor distribution are 0.05 and 0.79 on average, 740 

respectively, showing obvious gaps among cost savings of individual trips. From the 741 

perspective of travel times, about two thirds of riders need to spend more time travelling 742 

in total (including the walking stages) than when they were driving-alone. The 743 

increased travel time is 27.5% greater than the original driving-alone travel time on 744 

average. To guarantee social fairness in this carpooling model, it may be necessary to 745 

adjust the fee-sharing ratios between drivers and riders or to consider cost-based 746 

dynamic pricing for the carpooling fee. 747 

We estimated separate matching result statistics for each of the sharing patterns 748 

illustrated in Fig. 8. Considering there is scarcely any totally inclusive trips (i.e. 
 0   749 

and 
 0  ) in practice, we assume that trips with a very small degree of route 750 

deviation (here we take 
 5   and 

 5  ) are inclusive shared pattern trips to 751 

explore the associated matching performance. As shown in Table. 2, over half of the 752 

carpooling trips require a detour. Inclusive shared pattern trips have the highest cost 753 

savings, £4.55 per trip (30% of the trip cost), and involve the least walking time of 754 

around 1 min per trip. The passenger-detour overall shared pattern trips provided the 755 



greatest reduction in carbon emissions at 70%, but riders in this category have to walk 756 

7 minutes to their pick-up points or workplaces on average. In general, a higher 757 

additional walking time created in the matching process reduces generalized cost 758 

savings but results in greater carbon emission reductions. This suggests that private-car 759 

based carpooling, with the our passenger-to-driver based matching model, could be 760 

more sustainable than ride-hailing based carpooling, because a) in this system there are 761 

no vehicle detour, but any detour is made on foot — any detour by carpooling drivers 762 

would erode the carbon savings (Liu et al., 2019); b) the carbon reduction of ride-763 

hailing based carpooling mainly derives from a second passenger, where one driver 764 

with one passenger in a private-car based carpool has a similar effect. Given the number 765 

of seats in a car is limited, private-car based carpooling has a higher potential in 766 

reducing carbon emissions. While the inclusive shared pattern without detour is the 767 

preferred matching pattern for ride-hailing based carpooling for carbon savings (Liu et 768 

al, 2019), for private-car based carpooling this pattern saves the least carbon. Note that 769 

the cost saving rates and carbon reduction rates are estimated based on the cost and 770 

carbon reduction of matched trips with corresponding shared patterns. 771 

Table 2. Matching performances for carpooling trips with different route shared patterns 772 

Shared pattern 
Number 

percent 

Cost 

saving (£) 

Cost 

saving 

rate 

Carbon reduction 

(10-2 £) 

Carbon 

reduction rate 

Walking time 

(min) 

Same-

community 
36.5% 2.95 18.8% 7.26 66.4% 5.8 

Inclusive 7.9% 4.55 30.6% 3.17 38.2% 1.3 

Passenger-detour 

partial 
53.5% 3.33 21.0% 5.37 50.0% 4.8 

Passenger-detour 

overall 
2.1% 3.31 19.3% 8.52 70.0% 7.2 

In addition, we compared the additional walking time required for carpooling with 773 

those for public transport in London. The carpooling riders need to walk from their 774 

residence (drop-off point) to the pick-up point (workplace) 4.83 minutes on average, 775 

while London commuters taking the bus need to walk 4.9 minutes and those taking the 776 

underground walk 7.4 minutes (DfT, 2017b). Carpooling, in this case, requires shorter 777 

walking times than public transport, which helps demonstrate the acceptability of the 778 

proposed carpooling model. 779 

4.2 The impact of participant flexibility with the various participant rates 780 

We tested three different types of participant flexibilities in the passenger-to-driver 781 

matching model — role flexibility, walking detour tolerance, and schedule deviation 782 



tolerance. Participant role flexibility refers to the willingness of carpoolers to be 1) a 783 

driver, or 2) a rider, or 3) either a driver or a rider. We define the participants who 784 

choose to be 3) either a driver or a rider as flexible carpoolers. Walking flexibility is 785 

the willingness of riders to make a walking detour to the pick-up points or destination 786 

workplaces. Schedule deviation tolerance indicates the willingness of carpoolers accept 787 

changes to their usual departure time or arrival time in order to form a carpooling trip. 788 

The impact of low participant rates was tested by subsampling our dataset, randomly 789 

removing increasing fractions of commuters (10% to 80%) from each MSOA. 790 

4.2.1 Role flexibility 791 

In this section, we explore the impact of the role flexibility on the matching rate 792 

with various participation rates. In the experiments, we considered two scenarios: 1) 793 

various ratios of drivers to passengers with no flexible carpoolers; 2) various ratios of 794 

flexible carpoolers to inflexible carpoolers, with the ratio of inflexible drivers to 795 

inflexible passengers set as 1:1. We computed the average matching rates and 796 

generalized cost saving rates for varying levels of system participant rate (from 20% to 797 

100% of all car commuting trips) and role flexibilities, illustrated in Fig. 9(a) and Fig. 798 

9(b), respectively, where the left-hand side gives results for scenario 1) and the right 799 

scenario 2). The warmer color is associated with a higher matching rate and cost saving 800 

rate. 801 

 802 

(a)803 

 804 

(b) 805 

100% 23.4 32.8 36.8 38.3 46.4 53.9 61.3 68.7 75.9

90% 21.9 29.7 34.3 35.5 43.5 51.1 58.3 65.5 72.7

80% 21.3 28.5 32.9 34.4 42.0 49.6 57.5 64.6 71.9

70% 20.9 27.8 32.4 33.6 41.4 48.8 56.1 63.4 70.6

60% 19.7 26.4 30.1 31.0 38.7 46.4 53.8 60.8 68.3

50% 19.2 25.4 28.9 30.0 37.1 44.5 51.7 58.3 65.9

40% 18.5 24.1 27.4 27.7 35.3 42.2 48.9 56.2 63.2

30% 15.4 20.6 23.5 24.1 30.6 37.2 43.8 50.5 57.4

20% 12.6 17.1 19.5 19.6 25.4 30.9 36.0 43.0 49.4
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Fig. 9 The impact of role flexibility of carpooling users on matching rate (a) and generalized cost 806 

saving rate (b) with varying participant rates. 807 

The results show, as expected, that for a given level of role flexibility, both the 808 

average matching rate and cost saving rate increases with the number of trips in the 809 

system. These two indexes show a sharp decline when the ratio of candidates willing to 810 

carpool dropping from 40% to 20%, therefore, it is beneficial to reach a moderate 811 

participant level before launching the carpooling service. Similarly, for a given 812 

participant ratio, the matching system performs better with the higher level of role 813 

flexibility, but the marginal increases diminish, especially under scenario a).  814 

We also find that additional participant carpoolers are more beneficial at low ratios 815 

of flexible carpoolers, while higher ratios of flexible carpoolers are more beneficial at 816 

low participant rates, which is not significant in the scenario 1). For instance, Fig. 9(a) 817 

shows that increasing the ratio of flexible carpoolers from 20% to 100% causes the 818 

average matching rate to double with a 20% participant rate and a 64% increase when 819 

all trips are available.  820 

The results suggest that low role flexibility can heavily limit the ability of the 821 

system to establish matches. Even with a 100% participant rate, the average matching 822 

rate is only 23.4% when 80% of participants choose the single role of drivers and 20% 823 

of participants choose the single role of riders. With fewer participants, the severe 824 

imbalance between drivers and riders can result in a match rate of less than 15% and a 825 

cost saving rate of less than 5%. The reason for this is that more drivers than riders in 826 

the carpooling system limits the number of ride-sharing opportunities and consequently 827 

also the number of matches that are established, and vice versa. A higher role flexibility, 828 

on the other hand, can make up for a lack of density. For example, if all carpoolers 829 

choose the flexible role, nearly half of carpooling trips can be shared at the lowest 830 

density. Therefore, it is important for carpooling providers to encourage more users to 831 

be flexible carpoolers and to keep the role balance of candidate drivers and riders. 832 

4.2.2 Walk detour flexibility 833 

In this section, we investigate the results of an experiment designed to quantify the 834 

effects of walk detour flexibility on system performance. Similar to the previous section, 835 

we compute the matching rates and cost saving rates for various levels of system density 836 

and vary the walking time thresholds of riders (from 4 minutes to 12 minutes), as 837 

illustrated in Fig. 10. Note that the mix of participant types here is back to the initial 838 

scenarios, that is the same ratio of drivers to passengers with no flexible roles. The 839 

results show, again, that for a given participant rate, the average matching rate and cost 840 

saving rate increases with higher walking time thresholds in the system, but the 841 

marginal increases dramatically diminish. It is also apparent that for a given detour 842 

flexibility, additional density has a greater impact on the matching rate especially when 843 

the ratio of candidates willing to carpool is at a lower level. 844 



 845 
(a) 846 

 847 
(b) 848 

Fig. 10 The impact of walking detour flexibility of riders on match rate (a) and generalized cost 849 

saving rate (b) with varying participant rates. 850 

We observe large gaps between settings with high and low detour flexibility. 851 

Apparently, the willingness of riders to walk a longer time can increase the matching 852 

rate substantially. It also appears that increasing detour flexibility from lower values of 853 

4 minutes to moderate values of 8 minutes, contributes to significant increases in the 854 

matching rate even at high system densities, while the system does not gain much if 855 

walk time threshold is changed from moderate values of 8 minutes to higher values of 856 

12 minutes. Based on these results, we suggest a two-pronged approach to improve the 857 

matching performance: a) the operators can set a moderate walk time threshold based 858 

on a local preliminary survey when designing the system and, b) the policy-makers 859 

could advertise the benefits of active travel and improve walking environments to 860 

encourage riders to walk more in practice. 861 

4.2.3 Schedule deviation tolerance flexibility 862 

In this section, we present the results of an experiment designed to analyze the 863 

impact of schedule deviation tolerance flexibility of riders on the system matching rate. 864 

Taking the tolerance degree on arriving later as an example, we explore the impact of 865 
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the various levels of arriving later penalty factors (from £0.05/min to £0.50/min penalty 866 

cost factor) and vary the system participant rate. The higher penalty factor indicates a 867 

lower arriving later tolerance flexibility. Recall from Section 3.5.4 that we take the 868 

initial arriving later penalty factor as a 2.8 multiplier of IVT, namely £0.28/min. 869 

 870 

Fig. 11 The impact of arriving later tolerance flexibility of riders on matching rate with varying 871 

participant rates. 872 

Fig. 11 shows that for a given penalty level, a similar rapid decline of matching 873 

rate with decreasing participant rate at the lower level from 40% to 20%, which 874 

demonstrates the importance of sufficient initial carpooling participants again. 875 

Matching performance drops remarkably when the penalty factor increases from 0.05 876 

to 0.2, while the lower flexibility for late arrival reduces the matching rate slightly, the 877 

trend of which is opposite to matching performances of previous experiments. The 878 

associated reason may be that the moderate level of the penalty factor has eliminated 879 

most of potential carpooling trips that would result in carpoolers being late to work. 880 

Without eroding the matching rate much, we can set a relatively higher schedule 881 

deviation penalty factor to guarantee the time reliability of carpooling services. In 882 

contrast to the previous participant role flexibilities and detour flexibilities, the results 883 

show that flexibility in tolerance of arriving late has less impact on the functioning of 884 

this carpooling system. Even with the highest penalty factor, the system can maintain a 885 

20% matching rate at the lowest carpooling participant rate. There may be two reasons, 886 

1) the time duration of arriving later for work is relatively small, that is 2.5 minutes on 887 

average in the initial matching system; thus the impact of a higher penalty factor for 888 

arriving later is limited; 2) a lower schedule deviation tolerance flexibility can only 889 

reduce the trip cost savings and then damage the matching rate indirectly; while a lower 890 

role flexibility and lower walk time threshold can exclude considerable numbers of 891 

candidates directly from our matching system, based on the set of feasible carpooling 892 

trips. 893 

4.2.4 Market access flexibility 894 
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In Fig. 12, we compute the matching rates and carbon emission reductions for 895 

various levels of market access limitations (market access threshold N from 6 to 12). 896 

Only if an MSOA generates more than N car commuting trips, would it have a chance 897 

of being included in the local carpooling service market. Results show that if we include 898 

more MSOAs in the carpooling system, the matching rates change slightly, while the 899 

carbon emission reductions rise remarkably. At N=6, carpooling trips can save £1421 900 

of carbon per day, that is a reduction of more than 20 metric tons of CO2 equivalent 901 

emissions. 902 

 903 

Fig. 12 The effects of introducing more MSOAs into the matching system on matching rate and 904 

carbon reduction. The market access threshold N means the lowest number of car trips within AM 905 

peak hours for a MSOA to be included in the carpooling match system.  906 

4.3 The impact of penalty cost of riders with diverse cost-sharing ratios 907 

In this section, we investigate the impact of the additional penalty of riders due to 908 

ridesharing on the matching performance at various fee pricing levels. In our passenger-909 

to-driver matching mode, a driver controls the whole trip and would not detour to pick 910 

up or set off riders, while riders need to not only bear the sharing psychological cost 911 

including the additional perceived control loss, but also pay an additional walking effort 912 

cost. Taking a certain cost-sharing ratio between drivers and passengers as the 913 

carpooling fee pricing rule, we compute the average matching rates and cost saving 914 

rates for various levels of cost-sharing ratios (riders sharing 20%-70% of a carpooling 915 

trip’s driving cost) and vary the related penalty factor of riders in the system. We 916 

explore the impact of two aspects of penalty costs: the sharing psychological loss of 917 

riders (one third of the initial value to four times the initial value), the walking effort 918 

loss of riders (one third of the initial value to three times the initial value), shown in 919 

Fig. 13 and Fig. 14. Note that we introduce an amplification factor for the additional 920 

control loss of riders into the rider’s psychological loss to distinguish it from the 921 

driver’s psychological loss. Recall from Section 3.5.4 that we take the initial 922 

psychological penalty factor, walking penalty factor and the amplification factor of 923 

rider as £0.14/min, £0.17/min and 1.1, respectively. 924 
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4.3.1 Sharing psychological penalty 925 

The results in Fig. 13 show that for any given ratio of fee-sharing (riders sharing 926 

20%-70% of a carpooling trip’s driving cost), both the average matching rate and cost 927 

saving rate increase when the penalty factor reduces. On the contrary, a higher 928 

sensitivity to sharing psychological loss can heavily limit the ability of the system to 929 

form matches. A sharp rise in matching performance occurs at moderate penalty levels, 930 

and the marginal increase diminishes at higher penalty levels. Setting an appropriate 931 

psychological penalty factor can reduce the psychological loss while sacrificing fewer 932 

carpooling trips. For various levels of sharing psychological sensitivity, as expected, 933 

the optimal fee-sharing ratio for trip matching rates is not the initial half to half, but 934 

between 30% and 40% for passengers. The cost savings of riders and drivers are 935 

approximately equal (the carpooling equity factor is 0.51) at 40% fee-sharing ratio. It 936 

is necessary to investigate the optimal fee-sharing ratio based on the specific matching 937 

mode to achieve a better matching performance and greater social fairness for 938 

carpooling. Moreover, when the psychological penalty factor increases to a higher level, 939 

with riders paying 30% of the carpooling fee, this can result in the highest matching 940 

rates, but paying 40% would create the highest cost saving rate. This slight difference 941 

between the two matching indexes may be because the additional control loss of a rider 942 

becomes less significant when all carpoolers show a high sensitivity to the 943 

psychological loss, then the fee-sharing difference between the rider and the driver will 944 

also shrink. 945 

 946 

(a) 947 

 948 
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Fig. 13 The impact of psychological penalty considering the additional control loss of riders on 950 

match rate (a) and generalized cost saving rate (b) with diverse fee-sharing ratios 951 

4.3.2 Walk effort penalty  952 

Fig. 14 shows that for any one given ratio of fee-sharing (riders sharing 20%-70% 953 

of a carpooling trip’s driving cost), the matching performances become better with a 954 

lower level of walking penalty factor, but the marginal increases diminish. In contrast 955 

to the psychological penalty, the results show that the walking effort factor has greater 956 

impact on the functioning of this carpooling system. If the penalty factor increases to a 957 

higher level, the matching rates can go down to 10% with a cost saving rate of less than 958 

3%. Measures to improve the attitude of carpoolers to active trips like walking and to 959 

reduce the walk-effort sensitivity could significantly facilitate the development of 960 

carpooling services. Once again, the best matching rates and carpooling equities are not 961 

derived from pricing the fee-sharing evenly. If the walking effort penalty factor is at a 962 

low level, riders should pay 40% of the fee in order to obtain better matching 963 

performances. If the penalty factor rises, riders should pay less money since they have 964 

already paid more physical effort for their carpooling trip. 965 

 966 
(a) 967 

 968 
(b) 969 

Fig. 14 The impact of walking penalty of riders on match rate (a) and generalized cost saving rate 970 

(b) for different fee sharing ratio of riders 971 

4.4 The effect of carpooling promotion instruments on matching performances 972 

In this section, we explore the effect of some typical instruments that aim to 973 

promote car-pooling on matching performance and carbon emissions reduction. Based 974 

on previous practice and research (Su and Zhou, 2012; Vanoutrive et al. 2012; 975 
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Delhomme and Gheorghiu, 2016), popular promotion instruments include: cost-976 

oriented measures, service-oriented measures and low-carbon-oriented measures. The 977 

first focuses on influencing trip costs including parking fee discounts for carpoolers (or 978 

parking surcharges for single occupancy vehicles), congestion charge exemptions and 979 

travel allowance subsidies on carpooling trips; the second seeks to improve carpooling 980 

associated services including through High Occupancy Vehicle (HOV) lanes and 981 

tailored trip information provided by carpooling and other mobility service platforms; 982 

the last focuses on carbon emissions reduction through measures such as expanding the 983 

scope of services and promoting electric vehicles in carpooling. Here we focus on the 984 

first type of measures and introduce them into our carpooling matching model to assess 985 

their specific effect.  986 

In Fig. 15, we compute the matching performance and carbon emissions reduction 987 

for various levels of parking discounts (from 0 to 30% off for carpoolers) and parking 988 

surcharges (from 0 to an additional 30% for single occupancy vehicles). Results show 989 

that both the parking discounts and the parking surcharges can help match more trips 990 

and reduce carbon emissions. However, parking surcharges are more effective than 991 

parking discounts, because carpoolers can save more in contrast with driving alone 992 

under a parking surcharges policy.  993 

We also examined the impact of a travel cost subsidy for carpoolers. The level of 994 

subsidy is trip-specific and based on the actual carbon emissions reduction achieved for 995 

each carpooling trip. This choice is based on the findings from previous research (Liu 996 

et al., 2019), which showed that optimal emissions reduction can only be achieved with 997 

a trip-specific model for trip subsidies. However, in the case of London, these trip 998 

subsidies scarcely improve matching rates and carbon reductions due to today’s low 999 

carbon value (£0.064/kg). If the recent trend of increasing carbon trading prices 1000 

continues, the effect could be more remarkable in the future.  1001 

Moreover, the effect of congestion charging on matching performance were 1002 

presented in section 4.1 where the matching rate and cost saving rate can reach 76.9% 1003 

and 21.3%, respectively. These results are in line with the general finding that “sticks” 1004 

like parking charges seem to have a generally greater influence on traffic mode choice 1005 

than “carrots” like preferential parking and subsidies (O’Fallon et al., 2004). 1006 



 1007 

Fig. 15 The effect of parking fee discounts (the upper) and surcharges (the lower) on carpooling 1008 

matching performance  1009 

5. Discussion and Conclusions 1010 

With the development of the urban economy and the growth of population, severe 1011 

traffic congestion has been observed in many cities, which results in heavy economic 1012 

losses due to the increase in travel time and energy consumption. By introducing high 1013 

flexibility on trips and travel times, and leveraging the shareability of a journey (Santi 1014 

et al., 2014), carpooling services could provide timely and convenient transportation 1015 

using fewer cars and thus relieve the problems of urban roadways. Although both 1016 

governments and employers promote carpooling as a commuting alternative, city-wide 1017 

carpooling success stories are still in short supply. Private-car based carpooling may 1018 

have greater potential in terms of carrying capacity and be more sustainable, and could 1019 

create less regulatory challenges than ride-hailing based carpooling; hence private-car 1020 

based carpooling may have a higher potential for scalable practical development. 1021 

Focusing on the characteristics of private-car based carpooling and the motivations of 1022 

potential carpoolers, we proposed a passenger-to-driver based carpooling matching 1023 

model and formulated the matching process as a mixed-integer linear programming 1024 

(MILP) problem. Then we investigated the sensitivity of this matching system based 1025 

on actual data. Some major findings in this work are summarized as follows. 1026 

(1) Matching results show that 38.3% of trips within Outer London could 1027 

successfully become carpooled trips, while 76.9% of car trips can be shared within 1028 

central London because of the congestion charge. Moreover, carpooling can result in 1029 

significant fuel savings with a carbon emissions reduction rate of up to 56% and a total 1030 

saving of up to 11.8 metric tons CO2 per day. 1031 

(2) Various sharing patterns in carpooling trips bring about different matching 1032 

results; a longer maximum additional walk time in the matching process can reduce 1033 

generalized cost savings but increase total carbon emissions reductions.  1034 
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(3) Carpooling matching performance shows a sharp decline when the system 1035 

participant rate drops from 40% to 20%, therefore, it is necessary to obtain a moderate 1036 

participant level in the start-up phase of a carpooling system. Participant flexibility, in 1037 

terms of a willingness to be a driver or rider, to change schedule and accept detour, has 1038 

a positive impact on the rate of successful matches, especially when participant 1039 

numbers are low. Therefore, it is beneficial for providers to attract participants with 1040 

higher flexibilities for role, detour and schedule.  1041 

(4) A lower detour time threshold and higher walking penalty factor can 1042 

significantly damage the functioning of the carpooling system. Encouraging commuters 1043 

to walk more can not only help form more carpooling trips but also reduce carbon 1044 

emissions from each carpooling trip.  1045 

(5) With the impact of an additional sharing psychological penalty and detour 1046 

penalty on the trip costs of riders, the optimal fee-sharing ratio for the trip matching 1047 

rate and cost-based carpooling fairness is not the traditional half to half, but between 1048 

30% and 40%. When the penalty factor rises, riders should pay less money since they 1049 

have already paid a greater psychological cost or physical effort to carpool. Without 1050 

eroding the matching performance much, we can set a moderate sharing psychological 1051 

penalty factor to reduce this loss, but set a relatively high schedule deviation penalty 1052 

factor to ensure time reliability of the carpooling service. 1053 

This study can be regarded as a starting point with respect to research on the 1054 

private-car based carpooling matching model. However, there are some limitations of 1055 

this study that should be discussed. First, it is still unclear what car commuters’ attitudes 1056 

are concerning the proposed carpooling mode in the real-world. Hence, we do not 1057 

consider the various trip costs including sharing psychological penalty, detour penalty, 1058 

and time deviation penalty, to be close to reality, but explore the impact of lower system 1059 

participant numbers on matching performance. Considering some participants do not 1060 

save much from carpooling and may quit this service, we exclude carpooling trips with 1061 

cost savings of less than 10% of the total trip cost from the feasible trip set; this 1062 

threshold limit only causes a 2% reduction in matching rate compared with the basic 1063 

results presented in Section 4.1. Hence if these car commuters are not willing to share 1064 

their trips because of low cost savings, the erosion of matching performance of this 1065 

model is acceptable. Second, we neglect individual preferences and participants’ socio-1066 

demographic characteristics like gender, age and employment status when setting the 1067 

parameters and constraints in our matching model. Fortunately, earlier research tends 1068 

to suggest that demographic factors do not strongly influence carpooling uptake 1069 

(Canning et al., 2010; Vanoutrive et al., 2012). Third, we have not mapped the 1070 

commuting trips data onto the local road network, this can create slight deviations when 1071 

using zone-based travel time data and estimating walking time. In this carpooling 1072 

system, it does not matter whether the method can identify the pick-up that is actually 1073 

closest in terms of walking time, as long as the passengers do not need to walk for a 1074 

significantly longer (or shorter) time to reach the allocated meeting point. We may get 1075 

results with an acceptable accuracy level with less computational cost. Moreover, it 1076 



may be difficult for both carpoolers to arrive at the meeting point at the same time, 1077 

which may induce extra waiting time costs. We found that 85% of carpooling trips have 1078 

a driving deviation time of less than 2 minutes during the drive to pick up their rider. 1079 

Considering the high time reliability of walking trip stages, the impact of waiting time 1080 

costs could be less significant. Lastly, the proposed matching model is more applicable 1081 

to urban areas where the cost of car trips is expensive enough to motivate commuters 1082 

to look pro-actively for alternatives to driving alone. 1083 

There is more work ahead in the future development of this study. First, we assume 1084 

that only one passenger can be assigned to a carpooling driver. If drivers have sufficient 1085 

time flexibility, they may be willing to provide rides to several riders on a trip, either 1086 

one after the other or simultaneously for portions of the journey (Agatz et al, 2012). 1087 

Second, we propose a static matching mode focusing on morning commuting trips 1088 

without rolling planning horizons. However, the modeling framework in this paper can 1089 

be easily extended to dynamic carpooling throughout 24 hours for various travel 1090 

purposes; we can also consider the associated return trips in the carpooling system by 1091 

matching trips in two directions or each direction separately. Third, we present the 1092 

estimation method of sharing psychological cost in accordance with some theoretical 1093 

assumptions and regional surveys, the parameters and effect of which need subsequent 1094 

examination. It will also be interesting to investigate the impact of increasing 1095 

acquaintance levels on matching performance by simulating repetitive matches over 1096 

time or analyzing empirical data from real-world carpooling services in further studies. 1097 

Another topic is to introduce cycling or public transport as detouring methods in long-1098 

distance carpooling trips (e.g. inter-city trips) and then compare these matching 1099 

performances. Lastly, sometimes the platforms need to consider multiple objectives 1100 

when matching passengers and drivers other than just for maximal operation profit, e.g. 1101 

service quality (Lyu et al., 2019), and the agency-based platform may need to consider 1102 

social welfare in the carpooling system. Hence it is necessary to integrate these focuses 1103 

into the model objective and adaptively balance the trade-off between multiple 1104 

objectives. In other words, this study builds a solid foundation for future research about 1105 

developing a practicable and sustainable carpooling matching model. 1106 
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