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Summary

This thesis is concerned with the design and assessment of novel architectures for 
the implementation of forward error correction (FEC) coding systems for very high 
bit rate operation. This is motivated by both the development of multi giga-bit 
(especially optical) transmission systems and the increasingly demanding error per­
formance targets for digital telecommunications. It is shown that present serial FEC 
architectures are often inadequate for demanding high bit rate applications and can 
only achieve high data rates by separately encoding and then multiplexing several 
tributary data streams. Alternatively parallel encoders, whilst offering the prospect 
of increased operational speed, are often far too complex for all but the most trivial 
of codes.

To overcome these limitations series-parallel FEC techniques - derived from earlier 
work on m-sequence generation - are introduced and examined. By describing the 
functional specification of the encoding and error detection circuits in the form of a 
transition matrix it is possible, by matrix manipulation, to define alternative circuits 
which allow a trade off between circuit speed and complexity.

Having demonstrated how series-parallel techniques may be applied to high speed 
encoding and error detection attention is then focused on error correction. By taking 
advantage of transmission channel statistics and using high speed error detection, a 
buffered decoding arrangement is explored which is shown to operate at an average, 
rather than the worst case, speed. This decoder, used in conjunction with series- 
parallel encoding and error detection circuits, can provide the basis for the realisation 
of a complete high speed FEC system.

The thesis then concludes with an illustrative case study concerning the benefits 
of employing FEC to a new generation of long haul optically amplified submarine 
systems. Currently proposed error control strategies are reviewed; a comparison is 
effected with low complexity binary BCH codes which may be realised at the system 
line rate using the architectures and arrangements developed in this thesis.
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Chapter 1

Introduction

1.1 M otivation and Background

Digital information transmission is now universally employed for long distance 

telecommunications [1]. Over the past two decades technical advances in this field 

have resulted in many new techniques and standards for digital transmission being 

developed [2-4]. As consumer demand for greater capacity and improved reliabil­

ity of digital networks increases, this trend looks set to continue well into the next 

century.

An area which has benefited significantly from this continual research is fibre op­

tic transmission systems. As device technology matured transmission band widths 

increased considerably from early systems operating at up to 140 Mbit/s to cur­

rent systems operating at 2.5 Gbit/s and beyond [5]. As the boundaries of system 

performance are extended, with current experimental systems demonstrating capac­

ities of 100 Gbit/s [6], the various transmission impairments encountered become 

increasingly significant.

11
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At the same time, there have been significant advances in digital signal processing 

technology and in particular in forward error correction (FEC). Also there have 

been preliminary efforts to apply FEC as a means to ameliorating impairments in 

very long haul, high capacity optical fibre transmission systems, such as those used 

for trans-oceanic communications [7-12]. This makes it appropriate to study more 

generally the extent to which FEC may be adapted to meet the requirements of high 

data rate telecommunication transmission.

Accordingly, this research is concerned with the application and implementation of 

various coding schemes, placing emphasis on generic architectures appropriate to 

very high speed operation and on their attendant performance. As a particular 

application area, consideration is given to the requirements for a new generation of 

lightwave submarine transmission systems which exploit optical amplifiers.

1.2 Thesis organisation

Following this brief introduction chapter 2 provides a review of aspects of error 

control coding theory. Here the fundamental structure and algebraic nature of both 

binary and non-binary cyclic codes is examined. In particular attention is drawn 

to a class of powerful yet relatively simple random error correcting codes known 

as BCH codes. The chapter concludes with a brief overview of decoding methods 

using syndromes and acknowledges various error correction schemes based on time 

domain methods.

Building upon this, chapter 3 then illustrates common encoding arrangements based 

on both the generator and parity polynomial of a BCH code. In each case generalised 

examples of fully serial and fully parallel encoders are given which again relate
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to both binary and non-binary codes. The limitations of each arrangement are 

then discussed before concluding the chapter with serial and parallel error detection 

circuits based on minimal polynomials.

Having discussed the major limitations of conventional encoding/error detection cir­

cuitry, chapter 4 introduces series-parallel architectures which provide a trade off 

between the high speed of a parallel arrangement and the low complexity of a serial 

arrangement. Viewing the network of feedback shift registers as an autonomous 

circuit, a transition matrix may be defined which describes the functional specifica­

tion of the circuit. Subsequent processing of this matrix allows intermediate circuit 

solutions to be generated which incorporate varying degrees of parallelism into the 

design of the encoder or error detector.

Although high speed encoding and error detection has been demonstrated in chapter 

4 it is found that decoding, or more specifically error correction, proves to be more 

problematic. Chapter 5 examines how high speed decoding may be realised using 

buffered decoding techniques. By taking advantage of channel error statistics and 

high speed error detection circuits a decoding system may be realised which operates 

at speeds comparable to those of the encoding architectures presented in chapter 4. 

This is done with a view to providing a complete high speed error control system 

capable of operating in the multi giga-bit region.

In chapter 6 forward error control coding is considered in the context of long haul 

optically amplified submarine systems where transmission rates in excess of 2.5 Gb/s 

are found. Comparing currently proposed error control strategies with

well established low complexity binary BCH codes offers the prospect of realising 

forward error control at the line rate by using the structures presented in the previous 

chapters. Furthermore, by encoding and decoding at the line rate the code may be 

potentially matched to anticipated channel error patterns associated with known
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error inducing mechanisms and signal conditions.

Finally, chapter 7 concludes the thesis by summarising the main findings of this 

research and provides suggestions for further work.

1.3 Summary of Main Contributions

The research presented in this thesis investigates the possibility of implementing 

novel architectures to realise forward error control coding arrangements for applica­

tion in long haul optically amplified submarine systems. The major contributions 

resulting from this work may be summarised as follows:

• Standard architectures used for encoding and error detection were evaluated 

and shown to be either too complex or too slow for modern high speed digital 

communication systems.

• The use of series-parallel architectures applied to error control circuitry indi­

cated a trade off between circuit speed and complexity. Speeds in the giga-bit 

per second region may be achieved by these methods even when conventional 

logic families such as ECL and CMOS are used.

• Buffered decoding techniques have demonstrated the ability to provide an 

overall I enhancement in decoding speed at the expense of decoding delay.

• Implementation of a buffered decoder using a standard RS decoding IC as 

the main error correction element has been investigated and shown to offer an 

increase in speed over stand alone devices. Further speed increases may be 

achieved if the decoder is optimised for certain error patterns.
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• The use of low complexity BCH codes has been shown to offer comparable 

performance to that of multi-level Reed-Solomon codes in the presence of ran­

dom errors. This offers the prospect of encoding and decoding at the line rate 

thereby allowing a certain degree of control over the transmitted signal.

The contributions made during the course of this research have led to the following 

publications to date:

1. J.J. O’Reilly, A. Popplewell and R. Blake. ‘Forward error control for inter­

national telecommunications transmission’. lEE Colloquium on International 

Transmission Systems, pp. 8/1-8/4, February 1994.

2. Y. Bian, R. Blake, A. Popplewell, J. O’Reilly and S. Fragiacomo. ‘FEC for 

Future Trans-Oceanic Optical Systems’, Fifth lEE Conference on Telecommu­

nications, Brighton, pp 78-82, March 1995.

3. J J O’Reilly and R S Blake. ‘Novel coding techniques for long-haul high 

capacity optical transmission systems’. Invited Presentation at 1st National 

Telecommunications Conference, Aveiro, Portugal, April 1997.

1.4 Summary

This chapter has presented the motivation and background for investigating novel 

architectures for the implementation of forward error control codes in the context 

of high speed digital communications systems. Having outlined the structure of 

the thesis and provided a summary of the main contributions we now move on, in 

chapter 2, to a general introduction to error control codes.



Chapter 2

Error Control Coding

2.1 Introduction

The theory of error control coding has long been established, in fact its origins may 

be traced back to the pioneering work of Shannon in 1948 [13] [14]. The 1950s and 

60s saw many advances in this field with much time and effort being devoted to the 

formulation of new codes and coding techniques.

The rapid growth of digital technology over recent decades has seen the emphasis 

shift from a theoretical nature to a more applications-focussed approach. As a result 

Error Control Codes (ECCs) have now found many applications in field of digital 

communications and storage. Such applications range from satellite communications 

and computer disk drives to compact discs and more recently optical transmission 

systems.

In order to provide a foundation for following work this chapter will introduce and 

review some simple but none the less very important concepts of error control coding.

16
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Starting with the basic ideas of error control coding we move on to review some of the 

properties associated with ECCs. The nature of cyclic codes is then considered along 

with the mathematical structure of a class of random ECCs known as BCH codes. 

The chapter concludes by discussing the various aspects and strategies associated 

with decoding. In particular, methods for error detection/ correction are highlighted.

2.2 Error Control Coding

Simply stated, error control coding may be defined as the mapping of one data 

sequence onto another, thereby improving the overall reliability of the channel over 

which the data is transmitted. The process of error control coding involves the 

introduction of redundant information into the transmitted signal, thereby enabling 

error detection and/or error correction to be performed at the decoder. The manner 

in which this mapping occurs often defines the properties and nature of the code.

In general there are two main types of error control coding system, (i) Automatic 

repeat Request (ARQ) and (ii) Forward Error Correction (FEC). ARQ systems rely 

on the receiver or decoder to detect the presence of errors in the received codewords 

and then, via a feedback path, request re-transmission of any erroneous data. FEC 

systems however, are not only able to detect the presence of errors, but are structured 

in such a manner that error correction may be performed by the decoder thereby 

circumventing the need for a feedback path. It is often convenient, under certain 

circumstances, to combine these two schemes to produce a third option known as 

hybrid-ARQ. Although ARQ and hybrid-ARQ systems have their respective bene­

fits, the following work will only concern itself with FEC. The prevalence of ARQ 

systems and their relation to high speed transmission systems will be discussed in 

a later chapter.
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2.3 Classification of error control codes

The phrase “error control coding” is often used to describe a broad spectrum of 

coding topics. In order to differentiate between the various types of code it is 

appropriate to define the following coding hierarchy.

CYCLIC
e.g. BCH, Hamming

ERROR CONTROL 

CODES

MULTI - LEVELBINARY

TREEBLOCK

LINEARNON - LINEARLINEAR

CONVOLUTIONAL

Figure 2.1: Hierarchy of error control codes.

It can clearly be seen that there exist two fundamental types of code, binary and 

non-binary or multi-level codes. A code is termed binary if the symbols used to 

generate its codewords are defined over a binary alphabet i.e. Os and Is, however if 

an alternative alphabet is used then the code is described as multi-level.
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Both binary and multi-level codes can be further subdivided into block and tree 

codes. Tree codes may be distinguished from block codes as their codewords are 

generated from not only the current information word presented to the encoder but 

also the previous m transmitted words, where m  is the memory of the encoder. In 

addition both block and tree codes may be partitioned into linear and non-linear 

codes. An important class of linear tree code which is commonly used in the field of 

telecommunications is the convolutional code. This type of code is often employed 

in mobile telephony and satellite systems [15].

For the purposes of this work attention will be directed towards a subset of binary 

and non-binary block codes called linear cyclic codes. In particular a class of cyclic 

codes known as (BCH) codes will be examined in both binary and non-binary form.

2.4 Block Codes

Block coding is a mathematical method of mapping a block of k information or source 

symbols onto a block of n codeword symbols using a pre-defined algorithm. The 

encoding process divides the message sequence into blocks of k symbols represented 

by the /c-tuple vector u=[uq, u i , ..., Each message block is then transformed

into a corresponding codeword of n discrete symbols denoted by the n-tuple vector 

v=[uo, u i , ..., Vn-i]. The result is an (n, k) block code with the inserted n —k elements 

commonly known as parity check symbols or digits. For an (n, k) code with symbols 

from the Galois Field GF(2^) there exist (2^)^ possible messages (for binary codes 

where m —1 there are just 2̂  possible messages). Figure 2.2 illustrates the encoding 

procedure.
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symbols / bits symbols / bits

Encoder

Information Codeword

Figure 2.2; Encoding procedure.

As previously stated there are two main types of code to be considered, binary and 

non-binary. For simplicity the following theory and definitions will be restricted to 

binary codes, although it may easily be generalised and adapted to non-binary cases.

Definition 2.1

A block code of length n and 2̂  codewords is called a linear (n, k) code, C, if and 

only if its 2̂  codewords form a /c-dimensional subspace of the vector space of all the 

n-tuples over the Galois Field GF(2).

The implied algebraic structure of these linear codes together with definition 2.1 

suggests that codewords may be generated from a set of k basis codewords. This 

property is of great practical significance as it enables long and complex codes to be 

generated with only modest resources.

Definition 2.2

The rate of a block code is defined as the ratio of the number of information symbols 

to that of the number of codeword symbols i.e.

Rate — — 
n

(2 .1)

This is an important metric as it defines the amount of redundancy introduced into 

the transmitted data by the encoding operation. High rate codes are favourable for 

two reasons: In the first instance if the transmission rate is limited then the amount
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of redundant data transmitted is kept to a minimum; secondly, for a constant data 

rate i.e. increased transmission rate, the noise penalty due to increased bandwidth 

is minimised.

Definition 2.3

The Hamming weight, rc(v), or weight of a codeword v is defined as the number of 

non-zero elements of that codeword e.g. the codeword v = 1 0 0 1 1 0 0  has w{v)=3.

Definition 2.4

The distance or Hamming distance d(v,w) between two codewords, v and w, is the 

number of positions in which they differ. This result may be directly obtained by 

the modulo 2  addition of the two codewords.

Definition 2.5

The minimum distance dmin, of a code C, is defined as the smallest modulo 2 sum 

of any two codewords and it can be shown that this is equal to the minimum weight 

of the codeword set:

i.e. dmin = min{ d(v, w) : v, w e C, v ^  w }

Figure 2.3 symbolically illustrates the properties of a  ̂ error correcting block code. 

Each codeword is surrounded by a sphere of radius t. Contained within each sphere 

is not only a valid codeword but numerous n-tuple vectors which differ from the 

codeword in up to t places. Assuming that the error correcting capabilities of the 

code are not exceeded any received vector lying within a sphere will be correctly 

decoded as the codeword associated with that sphere. This is known as minimum 

distance decoding and it is this property that forms the basis of many error correction 

schemes. To ensure correct decoding no spheres may overlap, therefore for a t error
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correcting code the distance between any two spheres must be greater than 2 t i.e. 

^min ^  "b 1 •

mm

• Codeword

Figure 2.3: Symbolic representation of a codeword set.

2.4.1 Cyclic Codes

Cyclic codes represent an important subclass of linear codes. Their cyclic nature 

allows encoding and error detection to be easily implemented by a network of Linear 

Feedback Shift Registers (LFSRs). The inherent algebraic structure of these codes 

results in various practical methods being used to decode them.

If the components of a codeword are v = (uq, Ui,..., u^-i) then cyclically shifting 

each component one place to the right results in the n-tuple,

= {Vn-l,Vo,Vi, ...,Vn-2)

which is called a cyclic shift of v.
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In general if the components of v are shifted i places to the right then the resulting 

n-tuple is

 ̂ ( ^ n —Z5 ^ n —i + l j  ••• j 1? ^ 1 ?  •••? i —l ) -

It can be clearly seen that cyclically shifting a codeword i places to the right is 

equivalent to cyclically shifting the same codeword n — i places to the left.

Definition 2.6

An (n, k) linear code is called a cyclic code if every cyclic shift of a code vector in 

C is also a code vector in C.

2.4.2 System atic Codes

It is often convenient from a design point of view to produce codes in a systematic 

format as shown in figure 2.4. The codeword is divided into two parts, a message 

part and a redundant parity check part. The message part consists of the k unaltered 

information symbols while the redundant parity check part consists of the (n — k) 

parity check symbols, which are linear sums of the information symbols.

Codeword

Uq > .......................%-i > Po ’ P i......... Pn.k.l UO'Ul...............

Message Parity Check Message

h(X)

Figure 2.4: Systematic format of a codeword.
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2.5 Polynomial Representation of Codes

For encoding and decoding purposes it is often useful to represent a code in poly­

nomial form. The codeword vector ' v = [ v q , V i ,  . . . , V n - i ]  is expressed as a polynomial 

of degree n — 1  or less with the coefficients of obtained from the component 

of V

I.e.

v(^X) — Uq +  V iX ^  +  V2X“̂ T ... +  Vfi—i X ^   ̂ (2.2)

Similarly the information vector u=[uq, Ui, ..., Uk-i] can be represented as a polyno­

mial of degree k — 1 or less thus

=  uq +  u i X ^  -f- U2X^ -f-... T Uk—i X ^   ̂ (2.3)

2.6 BCH Codes

One of the most important and powerful classes of linear block codes are BCH codes. 

Binary BCH codes were discovered by Hocquenghem in 1959 [16] and independently 

by Bose and Chaudhuri in 1960 [17]. In 1961 Gorenstein and Zierler [18] generalised 

these results to include codes with symbols from GF(p^) where p is  a prime. An 

important class of non-binary BCH codes are the Reed-Solomon (RS) codes [19].

BCH codes represent some of the most extensively studied random error correcting 

codes. Many good encoding and decoding arrangements have been devised over the 

years which take advantage of the highly algebraic structure and cyclic nature of 

these codes. It is appropriate here to review some of the more important properties 

of both binary and Reed-Solomon BCH codes.
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2.6.1 Binary Codes

The most common BCH codes, known as primitive BCH codes, may be characterised 

as follows. For any given positive integer m > 3 and t < 2™'  ̂ there exists a binary 

BCH code with the following parameters:

Block Length: n = 2'^ — 1

Number of parity-check digits: n — k < mt

Minimum distance: dmin > + 1

A BCH code is uniquely defined in terms of its generator polynomial or parity poly­

nomial. The generator polynomial for a t-error-correcting code of length n = 2'^ — 1 

is specified in terms of its roots from the Galois field GF(2^). If a  is a primitive 

element in GF(2”̂ ) then g{X)  is the lowest degree polynomial which has

.., (2.4)

as its roots. Let be the minimal polynomial which has as a root. Then g{X)  

is the lowest common multiple of $%, $ 2 , , ^ 2t i e.

p(%) =  LGM{$i(%)$2(%)$3(;C),... (2.5)

It has been shown [20] that every even power of a  in the sequence 2.4 has the same 

minimal polynomial as some preceding odd power of a. The generator polynomial 

uniquely describing a code can therefore be modified to:

^(X) =  LCM {$i(A)$3(^)...$2(-i(% )} (2.6)

With the resulting generator taking the form

g{X) = g o Q i X Q 2X ^ Q n - k - i X ' ^   ̂ ^ X ' ^  (2.7)

Alternatively a code may be uniquely specified by its parity polynomial h{X).  For 

an {n, k) linear code this is related to the generator polynomial by the following
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equation

+ 1

where h(X)  is a polynomial of degree k with the following form:

h(^X) =  /iq +  h \X  +  h2X^  +  ... + hk—iX^   ̂+  X ^ . (2.9)

In both cases we may note that the coefficients of g(X)  and h{X)  are defined 

over GF(2) for a binary code. As an example consider the (15,7) double error 

correcting code. Constructing the Galois Field GF(2^) from the primitive polynomial 

1  +  X +  X^ = 0  and using a  as a primitive element, we find the minimal polynomials 

which have a  and as roots as

$ i(X ) = 1 + X + X^

# 3  (A) = l + X + X^ +  X^ + X^

Sine the generator polynomial is defined as

p(X) =  LCM{0i(X)$3(A)}. 

and ^ i(A ) and ^ 3  (A) are in this case distinct irreducible polynomials,

p(X) =  $ i(A )$s(A )

= (1 + X +  X^)(1 + X + X2 +  X^ +X^ )

= 1 + X^ +  X^ + X^ + X^

and the parity polynomial for the (15,7) code may be calculated thus

X^^ + 1
h(A) =

To illustrate the encoding process we shall consider a simple (7,4) Hamming code 

based on the generator polynomial ^(A) =  1  + A +  X^. Suppose the information
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sequence to be encoded is 0 1 1 1, represented as a polynomial u{X)  = X  

X^.  Encoding in a non-systematic form simply involves multiplying the information 

polynomial u{X)  by the generator polynomial g(X)  using binary modulo- 2  addition 

and multiplication.

Message u{X)  Encoding Codeword v{X)

0 1 1 1  u{X).g[X)  0 1 0 0 0 1 1

X  + (X +  X2-KX^).(l -kX-kX^) X-hX^ +  X^

Where . denotes multiplication.

Table 2.1 shows an example of a (7,4) code in both systematic and non-systematic 

form. It can be clearly seen that for both cases the same codeword set is used, 

the only difference occurring in the mapping between the information vector and 

the codeword. For any given information vector a systematic codeword may easily 

be generated by simply selecting the non-systematic codeword which contains the 

corresponding k information bits in the highest order positions of the codeword.
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Information

Codeword

Non-Systematic Systematic

0  0  0  0 0  0  0  0  0  0  0 0  0  0  0  0  0  0

0  0  0  1 0  0  0  1 1 0  1 1 0  1 0  0  0  1

0  0  1 0 0  0  1 1 0  1 0 1 1 1 0  0  1 0

0  0  1 1 0  0  1 0  1 1 1 0  1 0 0 0 1 1

0  1 0  0 0  1 1 0  1 0  0 0  1 1 0  1 0  0

0  1 0  1 0  1 1 1 0  0  1 1 1 0  0  1 0  1

0  1 1 0 0  1 1 0  1 0  0 1 0  0  0  1 1 0

0  1 1 1 0  1 0  0  0  1 1 0  0  1 0  1 1 1

1 0  0  0 1 1 0  1 0  0  0 1 1 0  1 0  0  0

1 0  0  1 1 1 0  0  1 0  1 0  1 1 1 0  0  1

1 0  1 0 1 1 1 0  0  1 0 0  0  1 1 0  1 0

1 0  1 1 1 1 1 1 1 1 1 1 0  0  1 0  1 1

1 1 0  0 1 0  1 1 1 0  0 1 0  1 1 1 0  0

1 1 0  1 1 0  1 0  0  0  1 0  0  0  1 1 0  1

1 1 1 0 1 0  0  0  1 1 0 0  1 0  1 1 1 0

1 1 1 1 1 0  0  1 0  1 1 1 1 1 1 1 1 1

Table 2.1: Systematic and Non-systematic form of codewords
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2.6.2 Non-Binary Codes

The most important sub-class of non-binary BCH codes are the Reed-Solomon or 

RS codes. Named in honour of their discoverers, RS codes represent a class of 

highly efficient random error correcting codes with excellent burst error correcting 

capabilities when transmitted over binary channels.

The encoding and decoding of RS codes differs from binary codes in that all math­

ematical operations are performed on symbols rather than individual bits. Specif­

ically, an (n, k) RS code maps a block of k information symbols into a block of n 

codeword symbols, with each symbol being represented by m  bits, where m > 1 .

For a ^-error correcting code with symbols from GF(2”̂ ) there exists an RS code 

with the following parameters:

Block Length: n =  2”̂  — 1

Number of parity-check digits: n — k = 2t 

Minimum distance: dmin = 2t 1

We may note that the length of the code is one less than the radix of a code 

symbol and the minimum distance is one greater than the number of parity check 

symbols. The highly efficient use of redundancy compared with binary codes and 

their flexibility, in terms of block length and symbol size, makes RS codes very 

attractive for commercial use.

Like the binary code the RS code is specified in terms of its roots defined over 

GF(2^). However the generator polynomial of a t error correcting RS code is defined
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as:

2t

g{X)  =  +  (2.10)
Z=1

— Po +  9 i ^  + 92^^ +  ... +  g2t - \ X ‘̂  ̂  ̂ .

Where a  is a primitive element in GF(2 ”̂ ). The parity polynomial of an RS code is 

derived in the same way to that of the binary BCH codes.

D efinition 2.7

A cyclic code C is constructed by multiplying a generator polynomial g{X)  by all 

polynomials of degree A: — 1  or less.

2.7 Decoding of Linear Block Codes

The decoding of linear block codes may be regarded as three discrete operations; 

error detection, error correction and the recovery of the message or information 

sequence. For codewords in systematic form the recovery of the information becomes 

a trivial process as the message is present and unaltered in the transmitted codeword. 

It is therefore only necessary to discard the (n — k) parity check digits once any error 

correction has taken place. Of the two remaining operations error detection is by 

far the simplest. This involves calculating a syndrome vector in order to determine 

if the received vector, r(X ), is a valid codeword. For an (n. A:) cyclic code where 

n = — 1 the syndrome is represented by a vector containing 2 t m-tuples thus

S={Si, S2 , S2t}- The components of S are defined as

Si = r(o;*) (2.11)

for 1  < z < 2t where r(o;*) is the received vector evaluated at a \  The received vector 

may be represented as a linear combination of a valid codeword and error vector
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e{X)  thus

r(X) =  c(X) +  e(%). (2.12)

By definition 2.7 each codeword is a multiple of g{X)  and therefore must also be a 

multiple of $%(%) for 1 < i < 2t (see equation (2.5)). Equation (2.12) can now be 

written as

r(%) = o(X)$^(X) + e(T) (2.13)

for 1  < 2  < 2t. Substituting values of a* gives

r(a^) =  e{a^) (2.14)

since $%(a^)=0 . As the syndrome component Si is defined as r(a^) we obtain the 

following

Si =  e(a^). (2.15)

That is to say, the syndrome components are dependent only on the error pattern 

and not the transmitted codeword. Clearly S=0 if and only if r(%) is a codeword, 

and 0 if and only if r{X)  is not a codeword. Therefore, when 0 we know that 

r{X)  is not a codeword and the presence of errors has been detected. However, if the 

error pattern is such that it transforms the transmitted codeword into another valid 

codeword i.e. the error pattern is itself a valid codeword then S=0. Error patterns 

of this kind are called undetectable error patterns and cause decoding errors.

In contrast to error detection, error correction proves to be somewhat more involved. 

Many good algorithms exists for error correction [20-23], nearly all of which employ

information gained from the syndromes. One possible strategy involves storing the

syndromes associated with every correctable error pattern. By matching the syn­

drome of a received codeword to one that is already stored it is possible to find the 

error pattern. Unfortunately for large codes or codes which are capable of correcting
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a large number of errors this option is not feasible. Alternatively, the error pattern 

may be calculated by another method. One such method is the Berlekamp-Massey 

algorithm [24] which involves using finite field arithmetic in order to solve a set of 

simultaneous equations and calculate the roots of an error locator polynomial. Al­

though relatively simple in theory the practical requirements of such a method often 

demand considerable complexity. This has lead to many coding theorists developing 

alternative sub-routines in an attempt to reduce complexity. Many other solutions 

exist which take advantage of the cyclic nature of BCH codes [25] [26]. For example 

an error trapping decoder [27] does not directly calculate the error locations but 

assumes that errors occur in specific patterns. As a result a decoder of reduced 

complexity, and often increased speed, can be implemented. Therefore it is often 

the application and implementation factors which dictate what type of decoding 

arrangement is required.

2.8 Summary

In summary the process of error control coding introduces redundancy into the 

message sequence to enable error detection and/or error correction. The mapping 

between the information sequences and codewords is unique and is performed over 

a finite field. The algebraic structure of the codes often makes the encoding and 

error detection process a simple matter. However, error correction is usually more 

complex but can, with careful planning, be achieved with relative ease.

We now continue, in the next chapter, by examining some standard architectures 

for the encoding and error detection of BCH codes. We then proceed by introducing 

some new concepts which will effect a considerable increase in speed.



Chapter 3

Standard Encoding and Error

D etection  M ethods

3.1 Introduction

Following the general review of ECC in the last chapter a brief appraisal of well 

established techniques devised for the realisation of encoding and error detection 

systems is now given. Current serial architectures based on both the generator 

and parity polynomial of a code will be reviewed and the attributes of each method 

discussed. In addition, parallel encoding arrangements will be introduced and shown 

to provide a substantial gain in operational speed at the cost of greatly increased 

circuit complexity.

Having examined various encoding arrangements, error detection circuits based on 

minimal polynomials are then presented. After noting the similarities to encoding 

architectures it is shown that both serial and parallel configurations are subject to 

similar speed/ complexity constraints.

33
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3.2 Standard Encoding Architectures

The implementation of cyclic block codes has traditionally involved the use of Linear 

Feedback Shift Register (LFSR) networks to achieve polynomial division or multi­

plication. This section introduces and briefly reviews standard architectures used 

for the generation of BCH codes.

Initially, common serial encoding arrangements derived from the generator and par­

ity polynomials of an arbitrary code will be considered. For each arrangement an 

illustrative example, based on a binary Hamming code, will be given. After high­

lighting the key differences which exist between each method, the respective merits 

and disadvantages of the two arrangements are discussed. An alternative solution 

to the problem of codeword generation is then introduced. The direct extraction of 

the parity check bits via the parity check equations offers the prospect of high speed 

encoding at the expense of greatly increased circuit complexity.

3.2.1 Serial Encoding

A method often employed for the generation of BCH codewords is one based on 

algebraic polynomial division or multiplication. By exploiting the strong algebraic 

structure of cyclic codes it is possible to implement an encoder based on a appropri­

ately configured network of feedback shift registers. Circuits of this nature can be 

based on either the generator polynomial, g{X),  or parity polynomial, h{X),  of a 

code [27]. Attention is initially focused on architectures derived from the generator 

polynomial.

Encoding of cyclic codes based on the generator polynomial is normally achieved in 

one of two ways. The underlying principle common to both methods arises from
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the fact that a valid codeword must be a multiple of g{X)  [28]. Consequently code­

words may be generated in either non-systematic form, by directly multiplying the 

information polynomial by ^(X), or in systematic form, by placing the information 

symbols in either the highest or lowest order positions of the codeword vector and 

generating the corresponding parity check symbols by suitable polynomial division. 

The most straightforward of these two methods is the generation of codewords in 

non-systematic form which, as stated, involves the simple multiplication or convo­

lution of the information polynomial by the generator polynomial g{X).

Figure 3.1 illustrates a circuit for multiplying an arbitrary information polynomial, 

u{X),  by the generator polynomial g{X)  =  14- g\X  + ... + gn-k-iX^~^~^ H- X^~^,  

where for simplicity the coefficients of u(X)  and g{X)  are defined over GF(2) i.e. 

a binary code. The information bits enter the circuit from the left hand side with 

the most significant bit entering first, it is assumed that the shift registers initially 

contain zeros. After n successive clock cycles a codeword corresponding to the 

information vector will have been generated on a bit-by-bit basis.

The linear nature and operation of this autonomous circuit results in a one to one 

mapping between an information vector and a codeword. This approach to codeword 

generation allows all 2  ̂ binary codewords to be produced in an efficient manner 

without the need for large look up tables.
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To clarify the operation of such a circuit a simple example based on the (7,4) Ham­

ming code with generator polynomial g{X) = 1 X  is considered. Suppose

the information vector to be encoded is u = 0 1 1 1 , or represented in polynomial form, 

u{X)  = X  H- The corresponding codeword is then given by the modulo-2

multiplication of u{X)  and g{X)  i.e.

Message u{X)  

0 1 1 1  

X -h -k

Encoding

ii(X).^(X)

(X-kX:^ +  X3).(H-X-HX3)

Codeword v(X) 

0 10 0 0 11 

X -h X^ -h x^

Where . denotes multiplication.

The circuit of figure 3.1 now translates into that of figure 3.2, where the modulo-2 

multipliers are realized by a short circuit for multiply by 1  and an open circuit for 

multiply by 0 .

u=0111

v=0100011

Figure 3.2: Multiply by X^ -|- X - | - 1  circuit.

Although a valid method for producing codewords, circuits of this nature are seldom 

used. As may be observed from this example the codeword does not contain the 

information vector in its original form. Instead the information has been embedded 

in the codeword by the encoding process. In order to recover the original message 

the decoder must now divide the received message by ^(X) once any error detec­

tion/correction has been performed. To overcome the need for additional circuitry
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it is common practice to generate codewords in systematic form using polynomial 

division circuits. In chapter 2 a systematic codeword was shown to contain the un­

altered information vector in the high order positions and the parity check symbols 

in the low order positions. Consequently, a decoder may now be constructed which 

recovers the original message by simply discarding the parity check symbols follow­

ing any error detection/ correction. For an {n,k) cyclic code, systematic encoding 

may be achieved as follows.

1 . Premultiply the message, u{X),  by

2 . Obtain the remainder, or parity check symbols, by dividing u{X).X^~^  by the 

generator polynomial g{X).

3. Combine the parity check symbols with the information symbols to form a 

codeword.

Figure 3.3 illustrates a commercially available encoder, based on polynomial division 

techniques, for generating an {n,k) cyclic code with symbols from GF(2 ^) [29]. In 

order to generate a codeword the circuit performs the three previously described 

steps as follows; Step 1 , pre-multiplication by is implicit by the configuration

of the circuit. Note that with the gate closed the message enters the circuit from 

the right hand side as opposed to the left hand side of figures 3.1 and 3.2. Step 2 , 

calculation of parity check symbols, starts with the information vector simultane­

ously entering the transmission channel and circuit through the closed gate. After 

all k symbols have entered the parity check symbols are contained within the (n — k) 

storage elements. Finally, step 3 is achieved by clocking the contents of the stor­

age elements into the transmission channel with the feedback gate open to realise a 

contiguous n symbol codeword. The storage elements are then reset to zero and the 

process repeated for subsequent information vectors.
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n-k-1

Codeword
Message X>

Device for storing an element in GF(2 )
Parity-check

Device for adding two elements in GF(2 )

Device for multiplying two elements in GF(2^ )

Figure 3.3: Polynomial division encoder based on generator polynomial.
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Returning to the previous example of the (7,4) Hamming code, the following circuit 

may be constructed.

U=0111 v=0010111

Gate

001

Figure 3.4; Systematic (7,4) Hamming encoder based on the generator polynomial 

g(X)  = 1 + X  + X^.

Again, using the information vector u=0111 as an example the following table il­

lustrates the shift register contents for each successive clock cycle. With the initial

Input Register Contents

0  0  0 Initial state

1 1  1  0 1 ®̂ shift

1 1  0  1 2 "  ̂ shift

1 0  1  0 3*’̂  shift

0 0  0  1 4*̂  shift

Table 3.1: Shift register contents.

contents of the registers set to zero it may be observed that during the first 4 clock 

cycles the information enters both the circuit and transmission channel. On comple-
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tion of the fourth shift the parity check digits have been calculated and are stored 

within the three registers. For the final 3 clock cycles the switch is placed in the 

down position and the parity check digits 001 are clocked out of the circuit and 

combined with the information vector to form the complete codeword v=0010011.

Encoding of a cyclic code can also be accomplished by using its parity polynomial. 

Figure 3.5 shows the general form of a systematic encoder based on the parity 

polynomial h (^ )  = Hq -{■ h\X. +  h2X ‘̂ + ... +   ̂ .

The function of this circuit is to realise the recursive or difference equation (3.1);

k-l
' n̂—k—j — ^   ̂ — j  — ^  ^ (d l)

z=0

I.e.

V n - k - l  =  h o V n - 1  +  h \ V n - 2  +  . . . +  h k - \ V n - k

= Uk-i + hiUk- 2  +  . . .  +  hk-lUo (3.2)

' ^ n - k - 2  =  h o V n - 2  +  ^l'f^n-3 +  • • • +

= Uk- 2  +  hiUk-Z +  . . • +  hk-2Uo + hk-lVn-k-l (3.3)

'^0 =  +  hiVk-i +  . . .  + hk-iVi (3.4)

The functionality of this circuit is described as follows. With Gate 1 closed and Gate

2 open, the information vector is simultaneously clocked into the circuit and trans­

mission channel. When all k information symbols have entered, Gate 1 is opened 

and Gate 2 closed. Each subsequent clock cycle then represents a single summation 

of equation (3.1) i.e. the circuit systematically computes Vn-k-j for 1 < j  < n — k. 

The (n — k) parity symbols are then clocked out of the circuit to form the codeword. 

As with generator polynomial based encoders, the storage elements are then reset 

to zero ready for the following information vectors.
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Figure 3.5: Systematic encoder based on parity polynomial.
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In the case of the (7,4) Hamming code defined by the parity polynomial h(X)  = 1+ 

X  +  X"  ̂+  X^  the encoder shown in figure 3.6 can be constructed.

U=0111

Gate 2

Gate 1

Figure 3.6: (7,4) Hamming encoder based on parity polynomial.

Input Register Contents

0  0  0  0 Initial state

1 1 0  0  0 1 ®* shift

Information 1 1 1 0  0 2 ^̂  shift

Vector 1 1 1 1 0 3'"̂  shift

0 0  1 1 1 4*̂  shift

Output

Parity Check 1 1 0  1 1 5*̂  shift

Bits 0 0  1 0  1 6 *̂  shift

0 0  0  1 0 7̂  ̂ shift

Table 3.2: Contents of shift registers.

By examining the contents of each register, as shown in table 3.2, it may be observed 

that the initial parity check digit is formed after the fourth cyclic shift of the LFSR 

network. The circuit then yields a further parity check digit on each successive shift
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of the registers until all (n — k) digits have been generated.

Although the previous examples relate only to binary codes the operation and con­

struction of such circuits can be easily extended to multi-level codes. Having demon­

strated the operation of several encoding circuits it is now appropriate to consider 

the various performance and complexity issues relating to each arrangement.

Code generation by polynomial multiplication, while offering a more direct approach, 

often requires a more complex decoding arrangement. Producing codewords in sys­

tematic form, by either polynomial division or encoders based on a code’s parity 

polynomial, effectively eliminates this need for additional decoding circuitry. Al­

though the two systematic encoders produce identical codes there exist a number of 

subtle differences between them.

In hardware terms, generating codes by polynomial division requires a circuit con­

taining (n — k) storage elements with the check symbols being formed after the k*̂  

cyclic shift. In contrast, generating codes via the parity polynomial involves a circuit 

containing k storage elements which is clocked (n — k) times, with each successive 

shift producing one additional parity symbol.

In order to minimise circuit complexity most commercially available encoders are 

based on architectures derived from the generator polynomial. Consider, for exam­

ple, the RS (255,239) code. Generating this code would require a circuit consisting 

of either 239 storage elements for a parity polynomial based encoder or 16 storage 

elements for a generator polynomial based encoder.

Having identified which circuit architecture is more efficient in terms of hardware, the 

factors determining the maximum operational speed of each encoding arrangement 

are now considered. Each encoder must be clocked a total of n times in order to 

generate a complete codeword. With every clock cycle resulting in the transmission



Chapter 3 - Standard Encoding and Error Detection Methods 45

of a single codeword symbol, the data throughput of each arrangement is determined 

by the maximum clock frequency that can be applied to each circuit.

It is clear from figures 3.3 and 3.5 that the minimum clock period, and hence the 

maximum clock frequency, is dependent on several timing parameters. These pa­

rameters include: the propagation delays due to the addition and multiplication 

devices plus the propagation delay, minimum set-up time and minimum hold time 

associated with the storage elements. Assuming all these factors are constant for 

both the parity and generator polynomial based circuits, the minimum clock period 

is determined by the longest delay encountered by a codeword symbol.

By observation of figure 3.3 a codeword/ information symbol will, in any one clock 

cycle, traverse through one multiplication device, a storage element and at most 

two addition devices. In contrast, an encoder based on the parity polynomial (see 

figure 3.5) will have an equal delay due to a single multiplication device and storage 

element, but will have an increased delay due to the {rih — 2 ) addition elements, 

where rih is the number of non-zero coefficients in the parity polynomial. Generally 

this value is much greater than the delay due to the two addition devices found in 

generator polynomial based circuits. As a result of the increased delays imposed by 

such an arrangement, encoders based on the parity polynomial are rarely used in 

high speed applications.

In summary, it has been demonstrated that architectures based on the generator 

polynomial of a cyclic code can generally provide a solution which is both faster and 

less complex than that of parity polynomial based circuits.
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3.2.2 Parallel Encoding Architectures

In the previous section encoders based on serial architectures were introduced. Al­

though convenient to implement, the necessary cyclic shifting of the LFSR network 

required to generate codewords made such arrangements somewhat slow. In order 

to overcome these speed limitations it is possible to generate the codewords, or the 

parity check symbols, directly from the parity check equations. We may recall from 

the previous section that the expansion of equation (3.1) produced (n — k) linearly 

independent equations. While a serial encoder based on the parity polynomial cal­

culates each of the parity check digits sequentially it is possible to construct an 

encoder which will calculate all the parity check digits simultaneously.

For an (n,k) cyclic code in systematic form, the information digits uq, ui , 

form the components ?;„_*+1 , ..., of the code vector. Given the k in­

formation symbols, equations [3.2 - 3.4] define the {n — k) parity check symbols 

Vo,vi, ...,Vn-k-i- For the (7,4) hamming code defined by the parity polynomial 

h{X)  = 1 X  the resulting parity check equations are :

'^2 — '(̂6 + % 4- V4

= U2 Ui (3.5)

Vl = V5 EV4 -\- U3

= U2 U\ uq (3.6)

Vq = U4 -|- U3 H- V2

= U3 U2 uq (3.7)

Figure 3.7 illustrates an encoder based on the three parity check equations of the

previous example. As may be observed, the information vector is now presented to 

the encoder in a parallel form. It is this inherent parallelism which provides the
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basis for increased operational speed. Since all parity check digits are calculated 

from the already present information bits no feedback path is required. As a result 

the operational speed of such a circuit is determined by the asynchronous delay of 

the EXOR-gate network.

Figure 3.7: Parallel (7,4) Hamming Encoder.

However, while offering the prospect of a potentially fast solution, circuits of this 

nature are generally too complex for all but the most trivial of codes. To demonstrate 

this, figure 3.8 illustrates a parallel encoder capable of generating a (15,11) single 

error correcting code, based on the parity polynomial h{X) = 1 + X  + +
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Using the parity polynomial and equation (3.1) it is once again possible to define 

the following parity check digits.

Us =  UiQ + Ug +  Us +  U7 +  U5 +  Us + U2 (3.8)

V2 =■ Ug + Ug +  U7 +  Ug H“ U4  +  U2 +  Ui (3.9)

Vi = Ug + U7 +  li6 +  U5 +  Us “t" Ui +  Uq (3.10)

Vq = UiQ + Ug +  Ug +  Ue +  U4 +  Us +  Uo (3.11)

By comparing the encoder of figure 3.8 with that of figure 3.7 it is clear that the 

overall circuit complexity has increased substantially. In this example a four fold 

increase in the number of EXOR-gates is the result of approximately doubling the 

codeword length. This problem is further compounded at larger block lengths and 

therefore limits the effectiveness of this approach to encoding.
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Figure 3.8: Parallel (15,11) Hamming Encoder.



Chapter 3 - Standard Encoding and Error Detection Methods 50

Having presented various encoding strategies in the previous sections attention is 

now directed towards error detection or syndrome calculation circuits based on sim­

ilar architectures.

3.3 Error D etection Architectures

In a manner resembling the encoding process syndrome calculation may be achieved 

by a network of LFSRs configured to perform polynomial division. Here only binary 

structures are considered since multi-level error detection circuits prove to be trivial 

extensions. Figure 3.9 illustrates a binary polynomial division circuit which calcu­

lates the remainder resulting from the division of r(X ) = ro~{-riX -F ... 4 - 

by the minimal polynomial ^i(X ) =  +  ... +

where ^ i{X )  has ct* as a root. This, however, only represents part of the error 

detection process. To enable Si to be calculated additional logic must be incorpo­

rated in order to evaluate the remainder at a \  Since this logic consists merely of 

addition elements and operates only on the output of the circuit it does not impede 

the operational speed and can therefore be ignored in any further timing analysis. 

For a t error correcting code of length n = 2'  ̂— 1, t such circuits each containing m  

storage elements are required in order to calculate the syndromes ^i, ..., S2t-i-

As figure 3.9 demonstrates, the syndrome calculation circuit is similar to that of 

the encoding circuit based on the generator polynomial. The only difference being 

the received vector enters the circuit from the left hand side. Consequently the 

operational speed of this circuit is also governed by the longest path encountered by 

a received symbol, which in this example is an addition element, a multiplier and 

a storage device. However, in this instance the delay due to the multiplier may be 

ignored as it would be replace by either an open or short circuit in any practical 

implementation.
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After each of the t syndrome circuits has been clocked a total of n times the syn­

drome components Si — are held within the m  storage elements.

Although convenient to implement^this solution is again restricted by the cyclic shift­

ing required to generate syndrome elements. With this in mind parallel syndrome 

circuits are now considered.

To implement error detection in a parallel form the syndrome components based 

on the parity check equations are re-defined. This simply involves re-calculating 

the parity check digits from the received vector and comparing them to the ac­

tual values. To illustrate this the syndrome vector, Si = {gi,o, 6 1 ,2 }, for the 

(7,4) Hamming code is defined as follows:

Si,o =  7*0 +  ^ 3  +  ^ 5  + (3.12)

=  r*!-f r 3 + T4 + rs (3.13)

■51,2 =  ^ 2  +  7*4-f rs-f-re (3.14)

If no errors have occurred then r* =  Uj for 0 < z < n — 1 and the syndrome vector is

found to be zero. These equations can now be used to define the following parallel 

error detection circuit.

As figure 3.10 illustrates the parallel syndrome calculation circuits have a similar 

form to that of the parallel encoding circuits. Although accommodating high speed 

operation it is again evident that circuits of this nature are restricted, by constraints 

placed on the circuit complexity, to simple codes with short block lengths.
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1,2

Figure 3.10: Parallel syndrome calculation circuit.

3.4 Summary

1,0

* ^ 1 1  r  Syndrome

In this chapter standard architectures for the realisation and error detection of BCH 

codes have been described. In the case of serial arrangements it was demonstrated 

that the necessary cyclic shifting of the LFSR networks rendered such arrangements 

unsuitable for high speed applications. An alternative approach, which overcomes 

these limitations, was presented in the form of parallel circuits. Although offering 

the prospect of increased operational speed it was found that circuit complexity 

increases rapidly with codeword length. In the following chapter new architectures 

will be developed and investigated which will allow high speed encoding and error 

detection to be performed in an efficient manner.



Chapter 4

Series-Parallel Encoding and Error 

D etection

4.1 Introduction

Chapter 3 introduced standard architectures employed for the realisation of encoding 

and error detection systems. It was demonstrated that such architectures were often 

too slow or too complex to be of any value in high speed applications. Consequently, 

new techniques devised for encoding and error detection at very high bit rates are 

now investigated.

Specifically these make use of what are termed series-parallel arrangements which 

offer the prospect of a trade off between operational speed and circuit complexity, 

the degree of parallelism adopted influencing the achievable coded line rate relating 

to the overall system clock rate.

54
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Using m-sequence generation architectures to introduce series-parallel concepts, 

these techniques are then adapted to encoding arrangements where previous results 

are extended to encompass non-binary as well as binary coding arrangements. We 

then examine how the series-parallel circuit techniques may be applied to syndrome 

calculation or error detection circuits. The speed/ complexity trade off afforded by 

these arrangements are then quantified and summarised graphically.

4.2 Series-Parallel Architectures

In previous sections two distinct approaches to encoding and error detection have 

been clearly defined. The serial approach where the speed of operation is compro­

mised in favour of reduced circuit complexity and the parallel approach where an 

increase in speed is obtained at the expense of a prohibitively large increase in cir­

cuit complexity. In an attempt to find a solution which offers a compromise between 

these two extremes we turn our attention to series-parallel architectures.

4.2.1 m-sequence Generation

In order to provide a background for series-parallel architectures we make recourse to 

previous work concerning m-sequence generation. Pseudo-random bit sequences are 

traditionally generated in a serial manner by a network of linearly interconnected 

feedback shift registers. The configuration of such a network is chosen so as to 

produce an m-sequence of maximal length 2 "̂  — 1 , where m  is the number of shift 

registers. However, generating m-sequences in such a manner is often restrictive 

when operating at high speeds. Previously reported solutions to this problem have 

relied on several pairs of shift registers operating in parallel with their outputs
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phase shifted [30]. Here the number of replicated shift register networks employed 

determines the overall bit rate. Although convenient to implement at relatively 

modest speeds, this approach becomes unduly complex when operating at high bit 

rates (e.g. > 500 Mb/s), especially when long sequences are required.

This led O’Reilly [31] to develop architectures based on series-parallel concepts. Here 

the m-sequences are generated as sets of non-overlapping k-hit words and unlike the 

previous approach this method achieves high speed operation using only a single 

LFSR network.

To effect a speed increase the serial LFSR network is mapped into an equivalent 

series-parallel form by way of a matrix description of the circuit. The transition 

matrix defines the functional specification of circuit and allows the subsequent state 

of the registers to be derived from their present state.

For a LFSR of length m we define U(j) as a (m x 1 ) column vector which describes 

the contents of the m registers after the clock cycle and T, the transition matrix, 

as an (m x m) matrix with elements defined over the binary field GF(2). If each stage 

of the LFSR is numbered sequentially, as shown in figure 4.1, then each row of the 

transition matrix defines the excitation of that stage in the network. For example 

the circuit in figure 4.1, as described by the following transition matrix, generates 

an m-sequence of maximal length 31 with the output sequence being derived from 

register five.
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0 0 1 0  1 

1 0 0 0 0 

0 1 0  0 0 

0 0 1 0  0 

0 0 0 1 0

(4.1)

From this matrix we see that row 1 implies that stage 1 is derived from the modulo-2 

addition of stages 3 and 5, row 2 implies that stage 2 is derived from stage 1 and so 

on.

Output

Figure 4.1: Serial m-sequence generator.

The state of the LFSR resulting from each successive clock cycle is defined as the 

modulo- 2  multiplication of U(j), the present register contents, and T thus

U(j +  1) =  T.U(j)

U(j +  2) =  T.U(j +  l) 

=  T^U(j)

(4.2)

(4.3)

U(j +  k) =  T \U (j) (4.4)
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For example, if the current contents of the registers is (1 0 0 1 1) then the following 

state may be calculated as follows.

U(j + 1) =

similarly

U(j +  2) =

0 0 1 0  1 1 1

1 0 0 0 0 0 1

0 1 0  0 0 0 0

0 0 1 0  0 1 0

0 0 0 1 0 1 1

0 0 1 0  1 1 1

1 0 0 0 0 1 1

0 1 0  0 0 0 — 1

0 0 1 0  0 0 0

0 0 0 1 0 1 0

(4.5)

(4.6)

Alternatively U(j+2) may be calculated from the initial contents using thus.

U(j +  2) =

0 1 0  1 0  

0 0 1 0  1 

1 0 0 0 0 

0 1 0  0 0 

0 0 1 0  0

1 1

0 1

0 — 1

1 0

1 0

(4.7)

Equation (4.4) and the previous examples demonstrate that the contents or state 

of the LFSR after k clock cycles can be obtained in a single clock cycle using an 

equivalent circuit defined by T*. To demonstrate this, the following illustrative 

examples based on and are given.
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By raising T to the power of 2, as shown in figure 4.2a, a circuit which generates 

two output bits per clock cycle has now been produced. This two fold increase in 

speed is obtained at the expense of a small increase in circuitry. As expected the 

number of storage elements remains constant but the number of EXOR-gates has 

increased. Extending this process further to the case of T^, as shown in figure 4.2b, 

the introduction of an additional EXOR-gate allows a three fold increase in speed 

over the serial implementation.

To conclude this illustration, a fully parallel implementation of the circuit may be 

defined by calculating T^ as shown in matrix (4.8).

1 1 0  1 0  

0 1 1 0  1

T  ̂ = 1 0  1 0  0 (4.8)

0 1 0  1 0  

0 0 1 0  1

The resulting circuit shown in figure 4.3, although the most complex of those con­

sidered, produces the same output sequence as that of figure 4.1 but now generates 

five consecutive bits per clock cycle. By serialising the contents of the shift registers 

a bit rate of 5 times that of the serial implementation may be realised. Since several 

consecutive bits of the m-sequence are produced simultaneously the structure of the 

sequence is preserved.

By using this approach the high speed emphasis has been removed from the LFSR 

network and placed on the multiplexing operation. With current multiplexers or 

parallel to serial converters operating in the Gbit/s region [32] [33] the generation 

of m-sequences at high bit rates may be achieved with conventional logic families.
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0/P # l

0/P #2

0/P #3

0/P #4

0/P #5

Figure 4.3: Parallel m-sequence generator.

We can therefore conclude that by raising T to various powers we are able to generate 

equivalent circuits with varying degrees of parallelism, thus enabling the rate at 

which the sequences are generated to be increased with only a modest increase in 

circuit complexity. Moreover, intermediate circuits have been identified which enable 

a trade off between the degree of parallelism incorporated and circuit complexity.

4.2.2 Series-Parallel Code Generation

Having introduced the general theory and concepts of series-parallel m-sequence 

generation we now adapt and apply these ideas to the process of encoding cyclic 

codes. We may recall that encoding may be achieved by generating the check bits 

using a LFSR network. Since the use of LFSR networks for code generation essen­

tially involves a similar procedure to that of m-sequences, it is appropriate to extend
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series-parallel theory to the calculation of the parity check digits.

Two different methods for consideration are: (1) Polynomial division circuits based 

on the generator polynomial and (2) Parity polynomial based circuits. By applying 

series-parallel techniques to both encoding architectures it is again possible to iden­

tify alternative circuit arrangements which provide a trade off between the speed 

and complexity factors relating to each method. We begin by investigating method 

( ! ) •

4.2.3 Generator polynomial based circuits.

For (n, k) cyclic code with generator polynomial g{X) = go d- giX  H-... -f gn-kX^~’̂ 

the encoder may be viewed as an autonomous circuit with the input data being 

presented to the circuit by the first k storage elements, as shown in figure 4.4.

The functionality of this circuit may be described by the following n x n transition 

matrix:

T =

0 ^k—l 6(/c—l)x (n —fc)

0 . . .  . . .  0

gn —i 0 (n—fc)x(A:—1) Pn—i ^n—k—1

gn—i gn—i b

(4.9)

Where i denotes the row number and Ik denotes a k x k identity matrix.
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Figure 4.4: Autonomous circuit view of a serial encoder based on the generator polynomial.
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For simplicity a binary encoder based on the (7,4) Hamming code is considered. 

Using the generator polynomial g{X) =  1 +  X + as an example, the transition 

matrix becomes:

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

T = 0 0 0 0 0 0 0  (4.10)

0 0 0 0 0 1 0

1 0 0 0 1 0 1

1 0 0 0 1 0 0

Which defines the serial circuit of figure 4.5.

Figure 4.5: Serial Hamming (7,4) encoder.

By raising T to the power of 2 and performing all addition and multiplication over 

GF(2) it is possible to define a circuit which processes two information bits per clock 

cycle.
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The resulting matrix is:

0 0 1 0 0 0 0 

0 0 0 1 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

1 0 0 0 1 0 1 

1 1 0  0 1 1 0  

0 1 0 0 0 1 0

(4.11)

Which defines the following circuit.

Figure 4.6: Series-parallel (7,4) Hamming encoder.

An intermediate solution has now been identified which, although slightly more 

complex, calculates the parity check digits after only two clock cycles. It is possible 

to extend this idea further to obtain a circuit which calculates the required check 

bits after only one clock cycle. To achieve this T is raised to the power 4, resulting 

in the following matrix:
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0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

1 1 1 0  1 1 1  

0 1 1 1 0  1 1  

1 1 0  1 1 1 0

(4.12)

By calculating we appear to have produced a circuit which requires six inputs to 

register 5, 5 inputs to register 6 and five inputs to register 7. Since the circuit is only 

clocked once and registers 5, 6 and 7 contain zeros at the start of the encoding process 

these feedback connections may be neglected. As a result the circuit degenerates to 

that of figure 4.7.

Figure 4.7: Parallel Hamming (7,4) encoder.
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By raising T to the power k we arrive at a circuit which calculates the check bits in 

exactly the same manner as if the parity check equations had been used. In general 

the degree of parallelism incorporated into the circuit, p, may or may not be a factor 

of /c. In the case where p is a factor of k the the number of clock cycles, s, required 

to generate the parity check digits is

k
s = —

V

However if p is not a factor of k then the circuit must be clocked

s =
k

LPJ

times, where [x\ denotes the largest integer less than x. In this case a shortened 

code is generated.

Having demonstrated the flexibility of this method to produce solutions with varying 

degrees of parallelism we now evaluate the practical performance aspects of these 

circuits in terms of speed and complexity. This is achieved by formulating equations 

which determine the check-bit computational time and circuit complexity (in terms 

of equivalent number of gates, where one equivalent gate =  one three-input NAND- 

gate) for various circuit architectures.

Serial polynom ial d ivision  based circuits:

The general form of these circuits as shown in figure 4.4 consists of (n — k) storage 

elements (each consisting of m RDT2 resettable D-type flip flops), { r i g  — 1) addition 

elements and {rig — 1) multipliers, ,wjiere Ug is the number of non-zero terms in the 

generator polynomial.
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For a BCH code with elements from the Galois Field GF(2"^) the circuit complexity 

in terms of logic elements, Nts, is given by

-  fc) X RDT2s +  (ng  -  1) X Multipliers

+ { r i g  — 1) X Adders (4.13)

Throughout this chapter we shall consider an RS (255,k) code where we find that 

the number of EXOR-gates required to achieve a multiplication function is at most 

56 and the number of EXOR-gates required for addition is 8 (see Appendix A). Since 

each RDT2 occupies six equivalent gates and each EXOR-gate occupies 4 equivalent 

gates [34]

-̂ Ts(;von-i,inari/) ^  ^8(n ~ k) 224(ug “  l) +  32(% ~ l) (4-14)

For binary codes equation (4.14) can be reduced to

T̂sf^Binary) = {'1̂  ~ k) X RDT2s -f {ug “  l) X EXOR — gates (4.15)

i.e.

T̂S(̂ Binary) = ^(^ ~ k) P 4(% ~ l) (4-16)

Having defined expressions for the complexity of various serial coding arrangements 

we now turn our attention to the problem of calculating the check-symbol compu­

tational time. In order to proceed we must derive an expression for the minimum 

clock period which can be applied to the circuit. To do this we define the following 

parameters.

tcLKMiN = minimum clock period that can be applied

tpdRDT2 = propagation delay of an RDT2 circuit element

t s u R D T 2  =  setup time of an RDT2 circuit element

t p d E X O R  =  propagation delay of an EXOR-gate

t p d G F A D D  =  propagation delay of a GF(2^) addition element

tpdGFMULT = propagation delay of a OF(2"̂ ) multiplier element
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As stated in chapter 3 the longest path through a serial LFSR generator polynomial 

encoder is two addition elements, a multiplier and a storage device. Hence the 

minimum clock period for a serial circuit is given by

tcLKM INs^Non-binary) ~  ^suRDT2  +  tpdRDT2  +  ‘̂ tpdG F A D D  +  tpdG F M U L T  ( 4 . 1 7 )

From Appendix A we find that tpdGFMULT is 3 x tpdExoR ^nd tpdGFADD = tpdExoR 

for a codeword using 8-bits/symbol. Hence we have

tcLKMINsf^t^on-binavy) ~  tsuR D T 2  +  tpdRDT2  +  ^ tp d E X O R  (4.18)

Likewise for the binary code we find that

tcLKM IN s^Binary) ~  tsuRD T2  +  tpdRD T2  +  ‘̂ t p d E X O R  (4.19)

Since each circuit must be clocked a total of k times in order to generate the (n — k) 

check bits/symbols, the total computational time T c s  is given by

'^CS(^pfon_binary) ^  ^  ^ C L K M I N o n - b i n a r y )  (4.20)

'^Cs^Binary) =  t c L K  M I  N  S^Binary) ( 4 ’2 l )

In term edia te  circuit solutions:

Figure 4.8 illustrates the general form of an intermediate circuit solution for check- 

symbol / syndrome generation. The serial input data is demultiplexed into p-symbol 

wide data words. They are then presented to a combinational logic circuit which 

is configured to perform all necessary addition and multiplication according to the 

relationships derived from the appropriate transition matrix. With each successive 

clock cycle the output from this circuit is stored in a {n — k) bit/symbol wide parallel 

latch which provides feedback for the following cycle. After s clock cycles the final 

check-symbol/ syndrome values are latched onto the output of the circuit. Having 

outlined the operational nature of the system it is now possible to derive expressions 

for both the computational time and complexity.
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Serial
Input

Check-bit / Syndrome 
Output

Check-bit / 
Syndrome 
calculation

(combinational 
logic circuit)

(n-k)

Check-bit
latch

Latch

Feedback Bus

Figure 4.8: General form of intermediate circuit.

By inspection of the relevant transition matrix we find that the combinational logic 

circuit consists of N m u l  multipliers and N a d d  adders. The total system complexity 

(ignoring the demultiplexing) is given by

^Ti ^Non- bi nary )  =  ^ M U L  X Multipllers -f m{n -  k) X RDT2s + N a d d  x Adders

^Tiçj,^r.-binary) ~  +  4S(n ~  /c) +  S 2 N a D D (4.22)

And for the binary case:

^T^Binary) ~  X EXOR ~ gates P {u ~ k) X RDT2s 

^Ti^Binary) = + 6 {tI ~ k) (4.23)

where Nx  is the number of EXOR-gates used in the check bit calculation circuit.

We proceed to calculate the minimum latching time of the intermediate circuits by 

noting that in general, for non-binary codes, the output from each of the (n — k) 

latches is often multiplied by a constant in GF(2^). These products are subse­

quently added to further products to form the outputs of the combinational logic 

circuit. Since all multiplications may be performed in parallel and assuming that
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the demultiplexing time is negligible, the minimum latching time is found to be

tCLKMINi^Non-binary) ~  ^suRDT2  +  tpdRD T2  +  tpdG F M U L T

ENADD(^stages) ^pdEXOR  (4 .24 )

where l^AoOf^stages) the number of addition stages. For binary codes the minimum 

clock period is given by

tcLKMINi^Binary) ^  ^suRDT2  +  tpdRDT2  +  ^Xf^stages) ^pdEXOR  (4 .25 )

where  ̂ is the number of EXOR-stages. In the case of the intermediate

circuits the total computational time, Ta,  is given by

on-binary) ^ ^  ^CLKMIN’i ĵg^n-binary) (4 .26 )

^ « ( B in a r y )  =  S X  t c L K M I ^ B i n a r y )  ( ^  ^ T )

From the previous equations it is now possible to calculate the complexity and

check-symbol computation time for any intermediate circuit solution.

Parallel circuits:

The parallel implementation of the circuit is similar to that of the intermediate case, 

except that no output latching registers are required to store the check symbols for 

each clock cycle. In this case the serial data is demultiplexed into a k symbol 

wide parallel word which is fed into the combinational logic circuit. This circuit 

comprises of a number of Galois field adders and multipliers configured, according to 

the transition matrix, to produce the (n — k) check symbols for each k symbol word. 

Proceeding as for the generalised intermediate case we find that the complexity of 

the circuit, ATp is given by

=  N m u l  x Multipliers +  N a d d  x Adders 

=  224  X N m u l  +  32 x  N a d d  (4 .28 )
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and

=  -/Va- X EXOR -  gates

=

with the minimum computation times given by

^non-binary) =  tpdG F M U LT  +  A D D  ( ŝtages) tp d E X O R  

"^Cp(Binary) ^^{Stages) tp d E X O R

(4.29)

(4.30) 

04 31)

4.2.4 Parity polynomial based circuits.

Section 3.2 outlined how the generation of codewords may be achieved by employing 

circuits based on a code’s parity polynomial. These circuits operate in a similar 

manner to generator polynomial based encoders and as such are subject to series- 

parallel techniques.

In the case of a code with parity polynomial h{X) = ho h iX  +  ... +  hk_iX^~^ 

-{-hkX^ the following {k x k) transition matrix may be defined which describes the 

circuit of figure 4.9

T =

0 Ik- 1

0

Hq

(4.32)

• • • hj^—1



Figure 4.9: Autonomous view of a serial encoder based on the parity polynomial h{X).
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Returning to the (7,4) Hamming code based on the parity polynomial h(X)  = 

1 +  X  +  + X^ the following matrix may be constructed which describes the

circuit of figure 4.10

T =

0 1 0  0 

0 0 1 0  

0 0 0 1 

1 1 1 0

(4.33)

Ouput

Figure 4.10: Serial Hamming (7,4) encoder based on h{X)  = 1 + X +  X^ +  X^.

Once loaded with the information vector, each successive clock cycle produces a 

single parity check digit. By raising T to the power 2 it is possible to produce a 

matrix which defines the circuit shown in figure 4.11. In this instance two parity 

check digits are produced per clock cycle.

0 0 1 0  

0 0 0 1 

1 1 1 0  

0 1 1 1

(4.34)
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0 /P # l

0 /P #2

Figure 4.11: Series-parallel parity polynomial encoder based on T^.

This circuit, although slightly more complex than that of figure 4.10, generates the 

parity check digits after only two clock cycles. We may note however that after two 

clock cycles we obtain four parity check digits, whereas we only require three; in 

this case the second digit produced by output #2  is ignored.

As with the generator polynomial example it is possible to further reduce the circuit 

to a single parallel stage by raising T to the power (n — k) i.e. three. The result 

is the following matrix where the last three rows now represent the parity check 

equations.

0 0 0 1 

1 1 1 0  

0 1 1 1  

1 1 0  1

(4.35)

Therefore by raising T to the power (n — k) we arrive at a circuit identical to that of
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figure 4.7 which produces the parity check digits by direct extraction. Furthermore, 

as with the generator polynomial case, we have identified an intermediate circuit 

solution, T^, which provides an alternative encoding structure. We continue once 

more by deriving expressions for the complexity and computational time for various 

circuit architectures based on the parity polynomial.

Seria l pa r ity  polynom ial circuits:

From figure 4.9 we observe that an encoder of this type requires k storage devices,

(n/i — 2) addition elements and (n/j — 1) multipliers where rih is the number of non­

zero terms in the parity polynomial. The circuit complexity in terms of logic gates, 

N t s , is found to be

on-binary) =  +  224(?2/, ~  l)  +  32(n,, ~  2) (4.36)

^Ts^Binary) =  ~  k) P  4(n/i ~  l)  (4-37)

with the minimum clock period given by

tcLKMINs^Non-binary)  =  tsuR D T 2  +  tpdRDT2  +  tp d C F A D D ir ih  ~  2 )

+  tpdG F M U LT

tcLKMINsf^Non-binavy) ~  tsu R D T 2  +  tpdRDT2 +  tp d E X O R i'^ h  +  1) (4.38)

tcLKM IN s^Binavy) ~  tsuR D T 2  +  tpdRDT2 +  ‘̂ t p d E X O R  (4.39)

Since circuits of this nature must be clocked (n — k) times the total computational 

time, T c s  is

'^Cs^r^on-binary) =  ~  k) X  t c L K M INS^r ,on-binary)  (4  40)

'^CS(^Binary) ~  [ ï l  ~  k )  X  t c L K M I N S f^ B in a r y )  (4 -41 )
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In term edia te  circuit solutions:

In the case of the intermediate circuit solutions we find that by inspection of the 

relevant transition matrix the circuit complexity is

^Ti^Non-binary) = ^MUL X Multipfiers + m/c X RDT2s

+  N a d d  x Adders 

Nr^j^^r^-binary) ^  22ANm u l  +  48/c +  S2Na d d  (4.42)

N r ^ B i n a v y )  =  +  6 A: (4.43)

We also note that the expressions for the minimum latching times are identical to

those of the generator polynomial circuits

t cLKMIN^Non-b inary)  ~  ^suRDT2  +  t pdRDT2  +  t p dGFMULT

+  NADD^stages) ^pdEXOR  (4.44)

tcLKMINi^Binary )  ~  ^suRDT2  +  tpdRDT2  +  Nxf^stages) ^pdEXOR  (4.45)

However, unlike the intermediate circuit solutions based on the generator polyno­

mial, in this instance each circuit must be clocked

U n - k ) l
8 = ---------

P

times in order to generate the parity check digits, where [a;] denotes the smallest 

integer greater than x. The resulting computational time, Tci, is given by

o n - b i n a r y )   ̂ ^ tcLKMINl ( ^ N o n - b i n a r y )  (4.46)

^ C i ( B i n a r y )   ̂ ^ LKMIN( ( N o n - b i n a r y )  (4.47)

Parallel circuits:

As with the parallel generator polynomial based circuits , the parallel parity polyno­

mial circuit does not require any storage elements to provide feedback for subsequent
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clock cycles. Since the circuit consists only of a combinational logic circuit the com­

plexity may be expressed as follows

o n -u n a r , )  = ^MUL X MultipUeis +  NADD X Addeis

=  224Nmul + 32Nadd (4.48)

'X EXOR -  gates

^Tpfsi,..ry) = 4 %  (4.49)

Likewise the computational time is

tcLKMINp̂ Non-binary) = tpdGFMULT + ^ADDçstages) tpdEXOR (4-50)

tcLKMINp^Binary) = ^^(Stages) tpdEXOR (4.5l)

4.2.5 Series-parallel error detection

Having presented numerous encoding architectures based on both generator and 

parity polynomials this section now concludes by briefly introducing series-parallel 

syndrome calculation or error detection circuits. In this instance we shall only 

investigate solutions relating to binary codes as error detection circuits for non­

binary codes, as previously stated, prove to be trivial cases.

As series-parallel techniques have already been demonstrated in some depth it is 

considered only necessary to illustrate the standard syndrome architecture and deflne 

the relevant transition matrix. Figure 4.12 shows the general form of a syndrome 

calculation circuit based on the minimal polynomial =  1 +  H- (/>2 A^ -I-

... -t- It is clear that this circuit is almost identical to that of the polynomial

division circuits based on the generator polynomial as shown in flgure 4.4. The most 

noticeable difference being the received vector is fed into the circuit from the left 

hand side and that the syndrome components are now stored in only m  registers.
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The functional specification of the previous circuit may be defined by the following 

(n +  m) X (n +  m) transition matrix.

T =

0m—1 ^m+n—1

0 m —2

00

0 ( n ) x ( m + n )

01.52)

0

Having already developed general expressions for similar encoding circuits based on 

polynomial division the a summary of circuit complexities and computational times 

for various circuit types is given.

Seria l polynom ial d ivision  circuits:

Circuit complexity

^Ts(Binary) = X RDT2s + "  l) X EXOR -  gates

=  6m +  4(n$ — 1)

where is the number of non-zero terms in the minimal polynomial.

(4.53)

Computational time

tcLKMINst^Binavy) ~  ~^suRDT2 +  tpdRDT2  +  tp d E X O R  (4.54)

Since each circuit must be clocked a total of n times in order to generate the m 

check bits, the total computational time Tcs is given by

-  « X tcLKMINs (4.55)
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In term edia te  circuit solutions:

Circuit complexity

^Ti(Binary) = X EXOR ~ gutcs +  771 X RDT2s

= 4Nx  +  6m (4.56)

Minimum clock period

t cL K MI N ^B ina ry )  = t suRDT2  +  tpdRDT2  +  ^X(^stages) ^pdEXOR  (4.57)

At this point it is important to note that syndrome calculation circuits must be

clocked exactly

n
8  —  —

V

times in order to generate the correct syndrome vector. The resulting computational 

time is given by

^̂ Cî Binary) = SX tcLKMINi (4.58)

Parallel circuits:

Circuit complexity

^ T p ^ s i n . r , ' ,  =  iV x X EXOR -  g a te s

= ANx (4.59)

Computational time

"̂ Cp̂ Binary) = ^X̂ stages) ^pdEXOR (4-60)
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4.3 Results

Using the equations derived in previous sections we now evaluate and summarise 

graphically each of the design solutions relating to the various codes considered. In 

this instance the codes investigated represent low complexity, high rate binary BCH 

codes which are of particular relevance to high bit rate optical transmission systems. 

Figures 4.13 to 4.18 relate to binary encoding architectures based on the generator 

and parity polynomials of the codes selected. Figures 4.14 and 4.16 are given to 

illustrate the performance and requirements for circuit architectures with practical 

applications i.e. degree of parallelism < 64. In order to provide a comparison, 

figures 4.19 and 4.20 illustrate the results obtained from a similar study performed 

on the multi-level RS(255,239) code which is currently the focus of much interest 

in the field of fibre optic transmission systems. To conclude, the factors relating to 

syndrome calculation circuits for the corresponding binary codes are investigated and 

presented in figures 4.21 and 4.22. The generator, parity and minimal polynomials 

used in this exercise can be either found in, or derived from [20].

In each case the computational time and equivalent circuit complexity is plotted for 

varying degrees of parallelism thereby highlighting the effective trade-off between 

circuit speed and complexity. It may be noted that in each case the two extremities 

of each plot represent the values obtained for the classical serial and parallel im­

plementation of the encoding/syndrome calculation circuits . Intermediate points 

represent the extent to which a compromise may be effected by appropriate selection 

of an intermediate-type circuit.

To allow comparisons to be drawn between the various logic families the computa­

tional time for each of the figures shown has been normalised to the propagation 

delay, tpdNAND, of a single three input NAND-gate.
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Figure 4.13: Computational time vs. degree of parallelism - generator polynomial 

based encoders.
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Figure 4.14: Com putational time vs. degree of parallelism < 64 - generator polyno­

mial based encoders.
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Figure 4.15; Complexity vs. degree of parallelism - generator polynomial based 

encoders.
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Figure 4.16: Complexity vs. degree of parallelism < 64 - generator polynomial based

encoders.
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Figure 4.17: Computational time vs. degree of parallelism - parity polynomial based 

encoders.
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Figure 4.18: Complexity vs. degree of parallelism - parity polynomial based en­

coders.
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Figure 4.19: Comparative analysis of computational time between generator and 

parity polynomial based encoders for the RS(255,239) code.
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Figure 4.20: Comparative analysis of circuit complexity between generator and par­

ity polynomial based encoders for the RS(255,239) code.
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Figure 4.21; Com putational time vs. degree of parallelism - syndrome calculation 

circuits.
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Figure 4.22: Complexity vs. degree of parallelism - syndrome calculation circuits.
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It may be observed that in all cases the computational times range from 10  ̂ for 

a serial implementation to approximately 30 for fully parallel arrangement. For a 

typical value of tpdNAND = 10ns, which assumes a TTL type fabrication process, 

the resulting figures correspond to average bit rates ranging from 1 Mbit/s to ap­

proximately 3.5 Gbit/s for binary codes and 20 MBit/s to 6.8 GBit/s for the RS 

code. Although appearing to offer superior performance in terms of speed over the 

binary encoders, the RS encoder requires almost a ten fold increase in the number 

of equivalent gates required for implementation. In the case of error detection figure 

4.21 indicates that computational times for syndrome calculation may be matched 

to anticipated encoding speeds.

Further increases in bit speed may be obtained by the selection of a different process 

in which to fabricate the encoder/ syndrome calculation circuits. At this point it is 

important to stress that the construction of certain circuit elements such as D- 

type flip-flops vary between individual logic families such as ECL and TTL [35] 

[36]. These differences must therefore be considered when calculating subsequent 

computational time and complexity curves although the functional specification of 

the circuit remains constant.

Turning to the binary encoding arrangements the results indicate comparable per­

formance between parity and generator polynomial based circuits. Although as 

expected the parity polynomial approach requires a greater number of storage ele­

ments. This fact is reflected in figures 4.16 and 4.18 where, assuming the required 

degree of parallelism is 8, the parity polynomial circuit is approximately 10 times 

more complex than that of the generator polynomial circuits.

This would initially suggest that polynomial division or generator polynomial based 

circuits are best suited to series-parallel implementation. However this method could 

present problems when multiplexing to the required line rate. In this instance all
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{n—k) parity check digits become simultaneously available after the final clock cycle, 

which for the longer codes represents a large number of bits. In contrast, if a modest 

increase in complexity can be tolerated then parity polynomial based circuits can be 

employed with intermediate circuit configurations producing p check bits per clock 

cycle. With this approach the resulting circuit is found to be much more amenable 

to the multiplexing process since only p bits per clock cycle require multiplexing. 

Alternatively this circuit configuration could directly drive optical time division 

multiplexing circuitry thereby expunging the need for electrical multiplexers [37] 

[38].

4.4 Summary

In this chapter we have examined new series-parallel arrangements for encoding 

and error detection. Following standard architectures which rely on established 

serial of fully parallel circuits new binary and non-binary series-parallel encoding 

architectures were presented and their performance quantified. This was followed 

by an exercise of the appliance of series-parallel techniques to error detection where 

again beneficial trade offs relating to speed and circuit complexity were noted and 

quantified. In addition to this a design process has been presented which enables 

various circuit arrangements to be generated with varying degrees of parallelism. 

Since the different circuit configurations are generated from the initial functional 

specification of a serial circuit this process is directly adaptable to all logic families.

This chapter provides the initial basis for the prospective delivery of very high speed 

FEC systems with practical applications to high bit rate optical communications. 

These applications aspects will be addressed separately in chapter 6. However, it 

should be noted that whilst we have presented circuits for encoding and error detec­
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tion a full FEC system calls for high speed error correction, which has not proved 

directly adaptable to series-parallel realisation. To address this we will examine, in 

the next chapter, how the series-parallel error detection schemes devised and dis­

cussed here may be employed in a buffered decoding arrangement to achieve very 

high bit rate operation.



Chapter 5

Buffered Decoding

5.1 Introduction

The concept of series-parallel circuit architectures has been identified in the previ­

ous chapter as a technique for obtaining high speed encoding and error detection 

in a digital communications system. However for systems which require error cor­

rection in addition to error detection this technique does not readily extend to the 

error correction circuitry since the series-parallel structures involved pertain only 

to circuits consisting of feedback shift register operations. This chapter illustrates 

how the series-parallel encoding and error detection strategy can be utilised with 

the concept of buffered decoding [39] to realise high speed forward error correction 

(FEC).

In this chapter we examine two variations of the buffered decoding arrangement. In 

the first instance we consider a decoder which decodes high rate binary codes that 

are of particular relevance to high speed digital systems. By performing a numerical 

analysis it is possible to calculate the increase in speed afforded by such a system and

91
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the buffer lengths required in order to prevent buffer overflow. We then investigate 

a buffered decoder which incorporates a standard commercial RS decoding IC as 

the main error correction module. By performing a similar analysis to that of the 

binary decoder we demonstrate the potential, in terms of an overall increase in 

decoding speed, offered by this approach. Initially we begin by introducing the 

general concepts of buffered decoding.

5.2 Buffered Decoding

When systematic codewords are used in an FEC system the decoding process can 

be divided into two separate stages; error detection (syndrome calculation) followed 

by error correction. The error detection stage is by far the simplest of these two 

operations since it only requires the use of LFSR circuits and, as demonstrated 

in chapter 3, can be configured to operate in a series-parallel form. In contrast, 

the error correction stage is far more complex and utilises the output from the error 

detection circuitry (the syndromes) to determine the error pattern and subsequently 

correct the received word. However in most systems the majority of received words 

are error free and therefore do not need error correction; the second stage of decoding 

can thus be by-passed for these cases. It is this property which the buffered decoding 

concept uses to speed-up the decoding process by enabling the decoder to work at 

an average speed rather than a worst case speed. This can be accomplished by 

buffering the received words following error detection; provided the buffers are long 

enough then this does not contribute a significant amount to an increase in output 

bit error rate when buffer overflow occurs.



Figure 5.1: Buffered decoding system incorporating series-parallel error detection.
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Figure 5.1 shows a block diagram of the proposed system where syndrome calcu­

lation/error detection is carried out in series-parallel form with only corrupt words 

being processed by the serial error pattern evaluator.

The key parameters in determining the performance of a buffered decoding system 

are: B - the buffer length, T - the inter-arrival time between codewords (the num­

ber of machine cycles required for a complete codeword to enter the buffer, which is 

assumed to be equal to the number of machine cycles required to calculate the syn­

drome =  M, the codeword length in a serial decoding system), A - the average number 

of channel errors per codeword and Mi the number of machine cycles required to 

decode a codeword containing i errors.

Following [39] we model the number of errors in a codeword as a Poisson random 

variable with mean A, thus the average decoding time (in machine cycles) is:

M(A) =  y ] M i e - ^ ^  (5.1)
i=o *•

If we denote Dn as the decoding time required by the n-th codeword and d{j) as the 

probability that the n-th codeword takes j  cycles to decode then we may assume:

Dn =  Y , j d { j )  <  T  (5.2)
3

i.e. the average decoding time is less than the time required for one codeword to 

enter the buffer. This simply ensures that on average the decoder can keep ahead 

of the traffic.

Using the standard notation of queueing theory, a system such as the one shown

in figure 5.1 is referred to as a D/G/1 queue. Where “D” means that the arrival

time of codewords is deterministic, i.e. constant; “G” means that the codeword 

service times are general, i.e arbitrary; and “1” means that there is only one server
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or decoder. By analysing this queue in a similar manner to a G/G / 1  queue [40] it 

has been demonstrated [39] that:

Prob{BO(n)} < (5.3)

where Prob{BO(n)} denotes the probability that the n-th codeword causes buffer 

overflow and ro is the smallest positive real root greater than unity of the following 

equation:

D" (Z) - Z ^  = J 2  - Z ' ^  = 0 (5.4)
J=0

where D*{Z) is the probability generating function of d{j).

From equation (5.3) we can deduce that Prob{J30(n)} < 10“'̂  if

B > T  + :— ^ ------- 1 (5.5)
logio ro

5.3 Approximations of Buffer Length

The analysis in the previous section provides a means for estimating the required 

buffer length for a buffered decoding system such that the buffering process does not 

significantly contribute to an increase in output bit error rate. Given a particular 

coding scheme the main factors affecting the buffer lengths are; A, Mi and 7  - the 

additional errors caused by buffer overflow. We shall consider two cases; (1) a worst 

case condition where it is assumed that all words in error require the same number 

of machine cycles to decode and (2 ) an optimised decoder which treats single error 

patterns as special cases and allows them to be decoded much faster than when 2  

or more errors occur.
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5.3.1 W orst case decoder

Here we assume that when errors occur M i = M  for all 2 > 1. Since the decoder 

may be bypassed entirely if a zero syndrome is detected we may also assume Mq = 0. 

This enables considerable simplification to be made to the equations in the previous 

sections and may be usefully employed to establish an upper bound on buffer length

given a maximum number of machine cycles to decode. With this assumption the

equations presented in the previous section simplify as follows:

M(A) =  M ( l- e " ^ )

% M X  for small A (5.6)

This implies that the increase in speed provided by the buffered decoding system is 

oc 1 /X  = 1/nPcet where n is the codeword length and Pee is the channel bit error 

rate.

From equation(5.2) we find:

M(1 -  e“^) < T  (5.7)

i.e. M  is upper bound by

M < (5.8)

Similarly equation (5.4) simplifies to:

D*{Z) - Z ' ^  = e~^ +  (1 -  e~^)Z^  -  =  0 (5.9)

By employing these simplified equations an indication of the length of buffers re­

quired for particular coding schemes may be obtained using M as a variable param­

eter.
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5.3.2 Optimised decoder

As previously mentioned, certain algorithms exist which allow single errors to be 

decoded much faster than when multiple errors occur. By exploiting this feature a 

buffered decoder can be designed which operates at an increased average decoding 

speed.

Optimised decoders use these algorithms as a means by which the detection of 

certain error patterns allows the decoder to enter an alternative error correction 

procedure to that which is normally used. In doing so we can effectively decrease 

the average decoding time and therefore reduce the lengths of the required buffers. 

To illustrate this we have assumed that single errors may be corrected faster than 

when 2 or more errors occur. We shall now introduce a new variable called the 

optimisation parameter, /?, where is the ratio of the number of machine cycles 

required to correct 1 error to the number of machine cycles required to correct 2 or 

more errors. Figure 5.2 illustrates an optimised buffered decoder where both single 

and multiple error correction is performed in parallel.
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If Mi denotes the number of machine cycles required to decode i errors then we 

obtain the following.

M q =  0

M l =  /5M

M > i =  M

where 0 < /? < 1 for an optimised decoder. Substituting the above values into 

equation (5.2) and (5.4) yields the following:

/3Me“ Â + M(1 -  -  e'^A) < T  (5.10)

and

D'(Z) -  Z'^ = e~^ +  (Ae-^)Z'’"  +  (1 -  e”'' -  \e - ^ )Z ’̂  -  =  0 (5.11)

Re-arranging equation (5.10) we again place and upper bound on M  thus

^  l - e - ^ 4 -e-^A (/l- 1 )

It can now be seen that for any given value of optimisation i.e. /3, we have an upper 

bound placed on the value of M /T  such that

T ^  1 -  e~^ +  e~^A(/? — 1) (5.13)

This suggests that for any given value of /3 error correction must be achieved within 

a certain number of machine cycles in order for the decoder to keep up on average.

We are now in a position to calculate values for Tq and hence from equation (5.5) 

the buffer lengths required for various values of P, M  and T. One of the most 

efficient and accurate methods for calculating the roots of equation (5.11) is the 

Newton-Raphson method [41] (See Appendix B). As an example we shall consider 

a (1023,943) t = S code and assume a decoded bit error probability of 10“ ^̂  (i.e.
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A = 0.536 and 7  =  11 in order to make the contribution from buffer overflow 

negligible). Using the ratio M /T  as a variable figure 5.3 illustrates the buffer lengths 

required for several values of (3.
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Figure 5.3; Buffer lengths as functions of M /T  and /7.

We may note from figure 5.3 that an upper limit for the ratio of M /T  exists which 

is defined by the /3 = 0 curve. It is also important to note that for each curve a 

limiting value of M /T  is given by

1
1 -  e~^ +  e - ^ X { / 3  — 1)

(5.14)

which is a result of equation (5.13).
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5.3.3 Single Error Optimisation

Optimisation for single error correction may be achieved in a number of ways. When 

used to correct single errors two of the most efficient, in terms of the number of 

machine cycles required to decode, are the Meggitt decoder [42] and Error Trapping 

decoder [43] [44]. Although very similar to implement there are subtle differences 

between the two techniques. The principles of both however rely on the cyclic 

nature of BCH codes and the relationship between the syndromes and correctable 

error patterns.

It has been shown [20] that there exists a relationship between the the syndrome 

5 (X) corresponding to the error pattern e{X) and the %-th cyclic shift of the syn­

drome s(A)* corresponding to the ith cyclic shift of the error pattern e(Xy.  There­

fore by storing the syndromes which correspond to all error patterns that contain an 

error the highest order bit position it is possible to cyclically shift the received syn­

drome until a match is found. Although theoretically simple the decoder is required 

to store

i J \ 1 J \ 2 J \ t - l (5.15)

syndromes for a binary (n, k) cyclic code capable of correcting t errors. Although 

this value may be reduced by various algebraic techniques it is still prohibitively 

large for multiple error correcting codes with large block lengths. By restricting the 

decoder to search only for a syndrome which corresponds to a single error contained 

in the highest order bit position, i.e. single error correction, we need only store one 

syndrome value. This may be hard wired into the decoder thereby dramatically 

reducing the storage requirements. The time taken for the error to be located and 

corrected depends on the position of the error but at most will only require n shifts 

of the syndrome register.
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Again by limiting the types of error patterns we intend to correct a Meggitt decoder 

may be practically implemented in the form of an Error Trapping decoder. If the 

errors are confined to (n — k) consecutive bit positions (including the end-around 

case) then the errors may be trapped in the syndrome register if the weight of the 

syndrome is found to be t or less [27]. This guarantees the correction of all single 

errors and a good percentage of multiple errors. In this form the decoder need 

only determine the weight of the syndrome and as such is not required to store any 

syndrome values. The decoding time is once again dependent on the error location 

but like the Meggitt decoder requires at most n machine cycles.

5.4 Im plementation of Decoder

In the initial analysis of the buffered decoding system it was assumed that both 

error detection and correction circuitry could be driven by a common system clock 

extracted from the incoming data e.g. 2.5 GHz for high speed systems. However, 

without resorting to the more esoteric logic families such as GaAs, the demand for 

such high speeds is beyond the current limits of digital logic.

One solution is to construct error detection and correction circuitry operating at 

slower speeds. Chapter 3 has already demonstrated that error detection may be 

realised in the multi gigabit region by use of series-parallel circuit techniques. By 

de-multiplexing down by a factor of eight for example, it has been shown that a 

S/P error detector operating at 320 Mb/s may achieve an overall data rate of 2.5 

Gb/s. Since error detection may be performed in real time the inter-arrival time 

between codewords remains unaltered and therefore does not effect the operation of 

the buffered decoder.
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Unfortunately error correction must be performed in a serial manner and is conse­

quently limited in operational speed. Current logic families such as ECL can easily 

support speeds of 320 Mb/s, furthermore it has been demonstrated that decoders 

capable of operating at speeds comparable to this figure are realisable [45] [46].

Figure 5.4 illustrates a buffered decoder with error detection and correction being 

performed at a lower rate to that of the incoming data, timing buffers are used 

to synchronise the syndromes and error patterns with the decoder and delay line 

respectively.

In the previous example we have assumed that the buffered decoder operates on 

a 2.5 Gb/s data stream. De-multiplexing by a factor of eight results in each of 

the eight tributaries entering the delay line at 320 Mb/s (this does not appear 

to be a problem [47]). Assuming that current technology will allow conventional 

serial decoding at the tributary rate then for a decoder which previously required 

M  cycles to decode this figure is now adjusted to 8  x M cycles. Providing the 

limitation imposed by equation (5.2) is not violated then a buffered decoder may be 

successfully implemented. In general if we de-multiplex into p parallel tributaries 

then the error correction figure must be corrected to pM  machine cycles. The 

resulting equations defining the behaviour of the decoding system are now given by

M(A) =  /3pMe-^ +  pM{l -  e~^ -  Ae“ '') (5,16)

and

D’{Z) -  +  (Ae“^)Z'’î'“  +  (1 -  -  Ae“^)Z ''^  -  Z’’ =  0 (5.17)
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5.5 Performance Impact

We shall consider several different high rate coding schemes with codeword lengths 

ranging from 127 to 1023 and error correcting capability from 4 to 6. A target 

output bit error rates of 10“ ®̂ will be assumed and a buffer lengths determined 

which result in Prob{BO(n)} < 10“^^ This is sufficient for the increase in residual 

error rate due to buffer overflow to be negligible.

Table 5.1 gives the parameters of the codes considered. It is clear that when t > 5 

then an optimised decoding architecture is required if more than about an xlO in­

crease in speed is desired. For the optimised decoder the figure quoted is a theoretical 

upper limit and is calculated for ^  0.

A T Potential Speed x l / M

worst case optimised

(127,99,4) 0.044 127 22 1063

(127,92,5) 0.099 127 10 217

(127,85,6) 0.181 127 6 68

(255,223,4) 0.052 255 19 765

(255,215,5) 0.111 255 9 174

(255,207,6) 0.199 255 5 57

(511,475,4) 0.058 511 17 617

(511,466,5) 0.126 511 8 137

(511,457,6) 0.221 511 5 47

(1023,983,4) 0.068 1023 15 452

(1023,973,5) 0.139 1023 7 113

(1023,963,6) 0.243 1023 4 39

Table 5.1: Parameters of codes considered.
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Figures 5.5-5.8 show, for an optimised decoder with a target output bit error rate 

of 10“ °̂, how the buffer lengths vary as M /T  increases assuming a serial decoding 

process i.e. T  =  n for each code considered above. In each case it is also assumed 

that the incoming data is de-multiplexed down by a factor of eight i.e p =  8 so that 

single error correction may be achieved in at most pT  machine cycles.

In each of the figures the value quoted for the ratio M /T  assumes that error cor­

rection is performed at an identical clock rate to that of the data. Therefore if 

M /T  =  80 then for a decoder running at 2.5 Gb/s this figure indicates that multiple 

error correction must be performed in 80 x T machine cycles at a clock rate of 2.5 

GHz or 10 X T machine cycles at 320 MHz when de-multiplexed down by a factor 

of eight.

To interpret the figures relating to buffer length for decoding in a series-parallel 

format, in this case p bits per clock cycle, then the total buffer length is exactly 

the same as in the figures, but split into p buffers of length B/p. For example if 

we consider the (255,223) t=4 code and assume M/T=100 then a buffer length of 

4 X 10̂  bits is required for serial decoding but p buffers of length 4 x 10^/p bits are 

required if carried out in series-parallel form.
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Figure 5.5: Buffer length vs M /T  for (127, fc) codes.
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Figure 5.6: Buffer length vs M /T  for (225, k) codes.
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5.6 Buffered Decoding using a standard RS de­

coder

The concept of buffered decoding has been introduced in previous sections, in rela­

tion to binary BCH codes, as a means by which decoding speed may be significantly 

increased. Series-parallel syndrome calculation circuits, equivalent to those used for 

binary codes, are now employed to achieve high speed error detection for RS codes. 

Buffered decoding concepts are now applied to a decoding architecture which utilises 

a standard RS decoder IC as the main error correcting element. Analysis of such a 

decoder is undertaken to evaluate its performance in relation to high bit rate trans­

mission systems. In particular, attention is focussed on a commercially available RS 

decoding IC, namely the L64710 RS codec produced by LSI Logic.

The L64710 codec is capable of encoding and decoding a (255,239) t=8 RS code 

with codeword symbols defined over GF(256). It is therefore capable of correcting 

8 symbol errors per codeword and has good burst error correcting capability when 

used for binary transmission. Using a similar architecture to figure 5.1 a buffered 

decoder employing a standard RS decoding IC may be constructed as shown in figure 

5.9. Unlike the binary decoder the series-parallel error detection circuit is used only 

to detect a non-zero syndrome, thus indicating the presence of errors. Once the 

syndrome has been evaluated only corrupt words are sent through the RS decoder.

By employing various algebraic techniques, we shall again assume that single errors 

may be treated as special cases. This leads to the realisation of an optimised decoder 

capable of operating at a further increased average speed. Using the analytical 

tools developed in earlier sections it is possible to establish an upper bound on the 

operational speed and buffer lengths required for various decoding scenarios.
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Figure 5.9; Block diagram of series-parallel buffered decoding system.
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5.7 Approximations of Buffer Length and D ecod­

ing Speed

As with the binary decoder we shall consider two cases; (1) a worst case condition 

where it is assumed that all words in error take the same number of machine cycles to 

decode and (2) an optimised decoder. From the appropriate data sheet the following 

information relating to the codec was obtained.

n = 255 (i.e. T =  255) Machine cycles

A =  0.495

Mi = 346 Machine cycles for alH > 1

Clock speed = 40 MHz

Where A is the maximum allowable symbol error rate for the code to achieve an 

output BER < 10“ ®̂. It is now possible to perform a numerical analysis on the 

buffered decoder based on the equations presented in sections 5.2 and 5.3.

5.7.1 Worst Case Decoder

Substituting the above values into equation (5.1) and assuming that Mq =  0, an 

average decoding time of 135 machine cycles at 40 MHz is obtained for the worst case 

decoder. This value equates to a data rate of approximately 600 Mb/s. To achieve 

this, data must enter the delay line with a clock speed of 75 MHz. This dictates 

that one machine cycle must have a clock period of (1/75) x 10“® seconds. With 

the decoding IC operating at the lower rate of 40 MHz, the delay line perceives the 

decoder as requiring 75/40x346 machine cycles (i.e. 648 machine cycles) to decode.
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Substituting the above value into equation (5.13) gives

D*(Z) - Z ' ^  = e~^ + (1 -  =  0 (5.18)

Solving for ro and substituting into equation (5.5) results in tq =  1.0000399 with 

a corresponding buffer length of 633 KBytes. The overall decoding delay resulting 

from the buffering process is approximately 8.4 ms.

5.7.2 Optimised Decoding

In order to increase the average decoding speed further, single error optimisation 

is investigated. Figure 5.10 illustrates the layout of an optimised decoder. On 

detection of a non-zero syndrome the corrupt codeword is sent through the RS 

decoder while the syndromes are simultaneously passed to the single error correction 

unit. Although both error correcting units operate in parallel optimised decoding 

will occur if the number of machine cycles required to correct single errors is less 

than that of multiple errors. Assuming that the error correcting capability of the 

code is not exceeded error correction will be achieved by the first unit to obtain a 

valid error vector.

Single error optimisation may be realised by employing similar methods to those used 

for binary BCH codes. However, when applied to RS codes the Meggitt decoder is 

required to store not one, but 2̂  — 1 syndromes in order to represent all possible non­

zero error patterns which may occupy the highest order symbol position. A better 

solution, and one which avoids the need to store syndrome values, is to employ the 

Error Trapping technique. As in the binary case the Error Trapping decoder is only 

required to determine if the weight of the syndrome is t or less. For an (n, /c) RS 

codeword single error correction can be achieved in n cycles at most.
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Using equation (5.1) with /3 as a variable parameter it is possible to calculate the 

average decoding speed and hence the data rate of the buffered decoding system. 

Figure 5.11 illustrates the relationship between the achievable data rate and opti­

misation parameter (3.

2.5

0.5
0.90.3 0.4 0.5 0.6 0.7 0.80.2

Mi /M ( (3 )

Figure 5.11: Data rate vs Optimisation Parameter (/?).

Two significant values of note are (3 = 1 and /? =  0. For /? =  1, the worst case

decoder, a data rate of 600 Mb/s is achievable, which is in agreement with the 

previous section. For /? =  0, i.e. a best case decoder, the decoder may achieve a 

data rate of 2.6 Gb/s. This value indicates a theoretical upper bound placed on the

data rate of the decoding system for single error optimisation.

For an optimised decoder using Error Trapping the value of (3 is found to be 0.73, 

this equates to an operational speed of 760 Mb/s. This figure represents more than 

a doubling in speed over the stand alone non-buffered decoding IC. To achieve this
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operating speed a buffer length of a least 1.27 MBytes is required which results in 

an overall decoding delay of 13 ms.

To increase the data rate to IGb/s, for example, would require a /? value of around 

0.48. To achieve this the optimisation parameter must be reduced by a factor of 0.65. 

Since he decoding time for the IC is constant at 346 machine cycles, the number 

of cycles required to correct single errors must be reduced. In the case of the error 

trapping decoder the number of cycles required for single error optimisation is n. 

However we may effectively reduce this figure by operating the single error correction 

unit at an increased clock rate. If we consider applying a clock of 60 MHz to the 

single error corrector the number of cycles required to decode is now 40/60 x n i.e 

2/3 n relative to the delay line. Based on our previous example we have effectively 

reduced (3 from 0.73 to 0.48. Higher data rates may be obtained in this way providing 

the clock rate does not exceed that supported by the circuitry responsible for single 

error correction.

5.8 Summary

In this chapter the concept and operation of a buffered decoder has been introduced 

and outlined. The use of series-parallel syndrome architectures for high speed error 

detection allows the decoding system to work at an average speed rather than its 

slowest speed. This work has been centred on the need for high speed decoders 

with operating speeds close to or at the line rate of high speed communications 

channels. This is of particular value as we have previously demonstrated encoding 

architectures operating at these rates.

With a prior knowledge of the channel statistics and by utilising the algebraic prop­
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erties of BCH codes we then investigated the characteristics and functionality of 

an optimised decoder. Based on single error optimisation it was demonstrated that 

further increases in operational speed could be obtained with only modest amounts 

of memory.

The commercial availability of a standard RS decoding IC allowed a similar analysis 

to be performed on a non-binary decoder. Here it was shown that buffered decod­

ing may be used to obtain an overall increase in decoding speed at the expense 

of increased decoding delay. Furthermore it was shown that a decoder operating 

at 1 Gb/s could be achieved if the time required for single error correction was 

compromised.

One important point of note is that during every analysis the value of A was calcu­

lated to be the limiting value before the error correcting properties of each code were 

exceeded. Realistically, however, A must be measured experimentally and it is this 

value which dictates the choice of coding scheme and residual bit error rate. Conse­

quently the buffer lengths and decoding speeds presented here are viewed as being 

upper and lower limits respectively. When applied to high speed optical systems 

where relatively high signal to noise ratios are encountered it is non uncommon to 

find that A can be orders of magnitude lower thus resulting in a substantial reduction 

in buffer length.



Chapter 6

FEC applications study: High  

speed optical system s

6.1 Introduction

Previous digital submarine cable systems have to date relied upon regenerative re­

peaters to boost signal levels where appropriate. Impairments such as intersymbol 

interference (1ST) and noise are isolated within each section and do not accumulate 

over the entire several thousands of kilometres of the system length involved in trans­

oceanic links [48]. With the advent of the Erbium Doped Fibre Amplifier, (EDFA), 

system designers turned their attention to the applications of non-regenerative re­

peaters [49]. This was motivated by considering the prospect of reducing the com­

plexity of the submerged units, enhancing the reliability, and maintaining optical 

transparency thereby allowing for possible future capacity upgrades by the enhance­

ment of terminal equipment.

This approach though, whilst seductively simple in principle, brings with it many

117
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potential pit-falls. In particular, transmission impairments which were previously 

of limited significance over the modest distances of a single repeater span can now 

accumulate to very significant levels over the long distances involved. To overcome 

these impairments without seriously impacting the system power budget, forward 

error control coding has been identified as one possible strategy for achieving error 

performance targets.

We begin this chapter by briefiy highlighting the source of possible transmission 

impairments common to lightwave systems and discuss how their effects result in 

performance limitations. We then review the latest long haul optical networks which 

employ fibre amplifiers and asses how current and future systems will be effected 

by these impairments. Having introduced currently proposed coding methods for 

achieving target error rates we then suggest possible alternatives such as ARQ sys­

tems and low complexity binary codes.

6.2 Transmission Impairments

Transmission impairments in optical systems arise form many sources. Here we 

give a brief overview of some of the more frequently encountered causes of system 

degradation in unoptimised long span optical transmission systems. For a more 

rigorous analysis of the factors limiting the performance of lightwave systems the 

reader is referred to [50]. In the case of intensity modulated/ direct detection systems, 

as found in the trans-atlantic and trans-pacific cable networks, the effects of phase 

fluctuations in the transmitted signal will not be discussed.

Generally we may group transmission impairments into the following classes: fibre 

and laser non-linearities, signal distortion due to single and multiple signals, and
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and noise. For systems employing single mode lasers with external modulation i.e. 

operating in cw mode, the effects of laser chirp and relaxation can be ignored. How­

ever, the effects of fibre non-linearities manifest themselves in a number of ways. 

Stimulated Raman Scattering (SRS), Stimulated Brillouin Scattering (SBS) and 

Four Photon Mixing (FPM) are three examples of the effects caused by fibre non- 

linearities. The presence of SRS and SBS effectively limits the maximum power that 

can be launched into the fibre from either the transmitter or fibre amplifier. For 

single signal transmission SBS is often the dominating factor while for multi channel 

systems SRS becomes increasingly important as its effect is dependent on the num­

ber of channels propagating through the fibre. Four photon mixing occurs when the 

fibre non-linearities cause two co-propagating waves at different frequencies to mix 

and generate sidebands (this effect is similar to third order intermodulation prod­

ucts generated in RF mixers). These sidebands propagate with the initial waves and 

grow at their expense. The appearance of the additional waves as well as the de­

pletion of the initial waves will degrade multichannel systems by crosstalk or excess 

attenuation [51].

Signal distortion (with a single signal) refers to impairments that distort the signal 

by broadening the width of the transmitted pulse [52]. Chromatic dispersion causes 

light of varying wavelengths to propagate through the fibre with different group 

velocities. This leads to a spreading of the received pulse thereby limiting the maxi­

mum bit rate due to ISI. Another type of dispersion is caused by the two fundamental 

polarisation modes propagating through the fibre with different velocities. Termed 

Polarisation Mode Dispersion (PMD) this effect causes the transmitted pulse to be 

received as two individual pulses separated by a delay equal to the difference in 

transit times of the two polarisation states. Again this leads to ISI limitations as 

pulses start to overlap in extreme cases. Although chromatic dispersion and PMD 

represent the main causes of signal distortion it is also known that further polar­
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isation effects such as Polarisation Dependant Loss (PDL) and Polarisation Hole 

Burning (PHB) also impact on system performance [53].

The third class of transmission impairment for consideration is noise. Varying ran­

domly from bit to bit noise in the received signal consists of shot noise, thermal noise, 

and, with the introduction of optical amplifiers. Amplified Spontaneous Emission 

( ASE). Shot noise is a result of quantum noise in the photodetector due to the fact 

that the received signal is a series of photons. The number of photons received dur­

ing each symbol interval has a Poisson distribution [52]. Consequently the received 

signal level varies randomly from symbol to symbol. In particular it has been found 

that APDs as used in the TAT-12 system by STC exhibit significant shot noise 

which is dependent on both signal level and multiplication factor [54].

Thermal noise is a result of the random motion of electrons in a conductor. Intro­

duced by the receiver pre-amplifier, thermal noise is assumed to additive Gaussian 

noise. ASE is additive white Gaussian noise in the optical domain that is dependent 

on the gain of the amplifiers. Although assumed to be random, with direct detec­

tion the electrical signal contains a noise times signal component. The noise in the 

received signal is therefore signal-level-dependent.

Although it is acknowledged that many other sources of transmission impairment 

exist, we have only highlighted the major ones which are commonly encountered in 

modern systems. The extent to which each impairment effects an individual system 

varies depending on the system parameters and configuration. For example fibre 

type, transmitter and receiver design, modulation format and the number and type 

of amplifiers used all give rise to, and interact with, the various impairments to a 

greater or lesser degree.
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6.3 Optically amplified submarine networks

Along with the transpacific cable TPC-5 the transatlantic cables TAT-12/13 repre­

sent the first in a new generation of long haul optically amplified submarine systems 

operating SDH standards. The TAT-12/13 network consists of a fully protected 

fibre ring network linking North America and Europe. The two transatlantic cables 

span distances of 5913 km (TAT-12) and 6321 km (TAT-13) with optical amplifiers 

spaced every 45 km. Contained within each cable are two fibre pairs, one fibre pair 

designated service and the other restoration. Each service fibre pair transports two 

optically multiplexed STM-16 (2.5 Gb/s) signals each of which is generated by elec­

trically multiplexing sixteen STM-ls (155 Mb/s). The result is a 5 Gb/s bit rate 

per service fibre giving a system capacity of 10 Gb/s. A further 10 Gb/s of capacity 

is offered by the restoration fibre pair in the event of a cable fault [55]. Figure 6.1 

shows a block diagram of the TAT-12 cable system which connects Lands End in 

the UK with Green Hill in the USA.
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#133
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Figure 6.1: Block diagram of UK-US segment of the TAT-12 submarine cable.

Previous submarine systems such as TAT-(S-ll) relied on complex electronic re­

peaters to amplify and re-time the signal electrically prior to optical re-transmission. 

Each repeater section was designed to operate error free under certain conditions 

such as wavelength, amplifier gain and data rate. As a consequence impairments 

and noise were confined to sections between repeaters and their effects need only
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be considered over the modest distances involved. By integrating optical amplifiers 

into a system the signal remains in the optical domain throughout the entire trans­

mission path. As a result the network is optically transparent and can accommodate 

future capacity upgrades. This may be achieved by an increase in bit rate or the 

addition of extra wavelength channels via wavelength division multiplexing (WDM) 

techniques as shown in figure 6.2.

Here several optical beams simultaneously propagate over a single fibre each with a 

different carrier wavelength Ai, A2 , A „  [56] [18]. An optical multiplexer couples the 

light from the various sources, in this case laser diodes (LDs), to the transmitting 

fibre. At the receiver an optical de-multiplexer separates the various carriers prior to 

photodetection. The capacity of such systems is often restricted by the limitations 

discussed in the previous section.

The use of Erbium doped fibre amplifiers (EDFAs) in lightwave systems has resulted 

in transmission impairments accumulating over the entire distance of the transmis­

sion path. It has been found that performance limitations, in the form of error 

floors, and system limitations such as transmitted/ received power and fibre length 

are encountered due to the cumulative effects of these impairments [57]. Numerous 

experiments [58] [59] [60] have demonstrated that forward error control coding tech­

niques can compensate for these effects or alternatively provide increased operating 

margins thereby allowing for less stringent operating parameters.



Figure 6.2: Block diagram of an optically amplified multichannel WDM system.
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6.4 Current Proposal

Currently proposed methods, as shown in figure 6.3, involve the multiplexing of 

several tributary signals to produce the line rate signal. For submarine telecommu­

nications line rates of 2.5 Gbit/s and 5 Gbit/s are of particular interest. At present 

error control coding units are not available at these rates and accordingly attention 

has been directed to the possibility of encoding each tributary data stream followed 

by multiplexing up to the line rate. Prompted significantly by ready availability of 

encoder and decoding integrated circuits operating at up to 320Mbit/s, times eight 

multiplexing has been proposed based upon each of the eight tributaries being en­

coded using a Reed-Solomon (255,239) code and then multiplexed to achieve a 2.5 

Gbit/s transmission. At the receiver the incoming line signal is de-multiplexed and 

each of the individual tributaries decoded to enable error detection and correction.

It may be assumed that that errors occur independently and at random, this is due 

to the multiplexing operation which will, in the same way as interleaving, separate 

adjacent channel errors. The code performance can therefore be determined by the 

well-known error bound of equation 6.1 [20] with the results shown in figure 6.4.

29-1 ^  i - \ - t f n
(6 1)29

i = f + l

Where:

n = Codeword length.

q = No. of bits per codeword symbol (Binary codes q=l).

t = No. of correctable errors.

Poe = Bit error rate at decoder output.

Pee = Channel bit error rate.

P s y m  =  1-(1 “  P c e Y -



Figure 6.3: Proposed tributary encoding/decoding architecture.
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Figure 6.4: Error performance of Reed-Solomon (255,239) code.

6.5 System  Requirement

For a typical telecommunications channel the decoded or residual bit error rate is 

of the order of 1  in 10̂  or better. In the case of the TAT-12/13 network the ITU 

Recommendation G.826 for error performance specifies a bit error rate better than 

4 X 10“ °̂ at the STM-1 level. The RS (255,239) code achieves this at a channel bit 

error rate in the region of 1 in 10 .̂ For lower channel error rates the performance 

improvement afforded by this code is much greater, with the residual error rate 

being approximately 1 in 10̂ ® for a channel rate of 1  in 10  ̂ for example. It should 

be noted though that this is not a formal system requirement.
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The tributary coding scheme requires multiple encoding and decoding circuits 

thereby making the implementation somewhat complex. This problem is com­

pounded at higher transmission rates, for example a transmission rate of 5 Gbit/s 

would require sixteen encoders and decoders. Even then we have not taken into ac­

count future systems where WDM techniques are used to provide multiple channels. 

Current investigations have demonstrated system capacities of 20 x 5Gb/s channels 

which can only achieve error targets using FEC [61]. In this example the result is 

an extremely complex system requiring 320 encoders/ decoders.

6.6 ARQ Systems

An alternative approach to achieving error performance targets is to use a form of 

coding known as Automatic Repeat Request or ARQ and it has been suggested [62] 

that this may be worthy of consideration in the present context. As stated in Chap­

ter 2  the decoder is only required to detect the presence of errors and request only 

the re-transmission of any erroneous data blocks. As a result a feedback path must 

be available which is often inconvenient and increases system cost. The necessary 

request for re-transmission and the re-transmission itself obviously incurs a delay. 

Consider, for example, the TAT-12/13 transatlantic cable network which has a sys­

tem length of approximately 6000 Km. Assuming the decoding time is negligible in 

comparison to the transmission time and the group velocity of light in the fibre is 

around 2 x lO^ms"^. Then a 60 ms round-trip delay is experienced when a corrupt 

codeword is encountered. To accommodate for this delay buffers of sufficient length 

must be provided at the receiver in order to deliver the codewords in the correct 

order.

Furthermore, to achieve good error performance a block code with good error de-
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tecting capabilities is required. For the redundancy in the transmitted data to be 

kept to a minimum codes with large block lengths are needed. Unfortunately the 

use of long block lengths does not provide a solution since the probability that a 

block contains errors increases rapidly with block length [2 0 ].

In addition, as the channel error rate increases information must be re-transmitted 

more frequently. The effective data rate is reduced accordingly up to the point where 

the average number of errors per codeword is one. At this point every received word 

is, on average, in error and the decoder must continuously request re-transmission. 

In such circumstances the performance of ARQ becomes unsatisfactory.

In summary ARQ systems are considered inappropriate for use in high speed optical 

systems due, primarily, to their inferior performance compared to FEC and delays 

associated with re-transmission and buffering at the receiver. Since encoding and er­

ror detection is already required for ARQ systems it may be argued that the increase 

in performance justifies the additional complexity required for error correction.

6.7 Low Complexity BCH Codes

Having considered the option of ARQ systems we are now motivated to consider 

low complexity binary codes, in particular BCH codes, since a simpler code may be 

realised at the line rate, obviating the need for replication of encoder and decoder 

circuits [63]. Figure 6.5 shows the performance curves of residual error rate versus 

channel error rate for representative cases: codeword length varying from 255 to 

1023 bits and error correcting power ranging from 3 to 6  bit errors per codeword. 

We note that if a (1023,963) code is employed then a residual error rate of 1 in 

1 0 ® or better is achieved provided the channel error rate does not degrade much
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below about 1 in 10'̂ . This code thus satisfies the operational requirements of the 

system, achieving comparable performance to the more complex Reed-Solomon code 

in the critical region of system operation. Interestingly when the channel bit error 

rate exceeds 7 x 10“  ̂ the binary BCH codes offer improved performance over the 

Reed-Solomon code.
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Figure 6.5: Performance comparison of BCH codes.

6.8 Summary

In summary we may conclude that FEC potentially provides the system designer 

with a method for achieving error performance targets in the presence of trans­

mission impairments. The use of FEC allows for possible system upgrades or an 

increased operating margin for in-place systems. We have also demonstrated that
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currently proposed methods, even on single channel systems, requires numerous 

encoding and decoding circuits. With the move to higher capacity systems this 

problem is further compounded. Motivated by the prospect of producing encoders 

and decoder operating at the line rate alternative methods such as low complexity 

binary BCH codes were investigated and shown to have comparable performance.



Chapter 7

Conclusions

This research has been primarily concerned with identifying and investigating novel 

generic architectures and approaches for the implementation of forward error control 

at very high bit rates. Previously reported methods for the generation and error 

detection of cyclic BCH codes were shown to have limitations in this context with 

respect to either circuit speed or complexity. Here series-parallel architectures have 

been identified as one possible strategy by providing an alternative approach which 

bridges the gap between the serial and parallel solutions.

Although applicable to encoding and error detection, series-parallel concepts are 

not readily adaptable to error correction. In this instance a technique referred to 

as buffered decoding has been demonstrated which utilises the error statistics as­

sociated with the communications channel to construct a decoder operating at an 

average rather than worst case speed. To conclude this research a case study detail­

ing the implications of forward error control in current long haul optical channels 

was presented in order to provide a framework for this thesis.
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7.1 Research Outcomes

The key outcomes of this research programme fall into three main areas.

1 . Series-parallel architectures.

2. Buffered decoding.

3 . The implications of forward error control coding in long haul optically ampli­

fied submarine systems.

Each of these will now be briefly considered.

7.1.1 Series-parallel architectures

Current methods for achieving error control coding at very high bit rates have, to 

date, relied on encoding several tributary data streams followed by multiplexing 

to the desired line rate, where the degree of multiplexing adopted determines the 

overall bit rate. At the receiver the data is de-multiplexed prior to decoding each 

individual tributary. In this instance replication of both encoding and decoding 

circuits is required and becomes prohibitively complex as the line rate increases.

An alternative approach is to produce a complete encoding/error detection structure 

which will encode or perform error detection on all tributary streams simultaneously. 

To achieve this a serial polynomial division circuit can be viewed as an autonomous 

system and mapped into a relevant transition matrix by way of its functional spec­

ification. Subsequent processing of this matrix yields intermediate circuit solutions 

with varying degrees of parallelism, thereby offering greater flexibility for the design 

of encoding and error detection systems.
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The main achievements in this area may be summarised as follows:

• Investigation and analyses of current architectures employed for encoding and 

error detection.

• Proposed technique for generating series-parallel architectures based on the 

functional specification of polynomial division circuits for both binary and 

non-binary codes.

• Evaluation of speed and complexity improvements offered by series-parallel 

architectures.

7.1.2 Buffered decoding

By employing prior knowledge of channel error statistics a buffered decoding ar­

rangement was presented. By performing error correction on only erroneous code­

words a buffered decoder, which utilises high speed error detection, is shown to offer 

comparable performance to that of the encoding architectures previously presented. 

Using optimisation techniques to decode particular error patterns a further increase 

in operational speed may be achieved as well as reducing buffer lengths.

The main achievements in this area may be summarised as follows:

• Investigation of buffered decoding technique to achieve high speed error cor­

rection.

• Assessment of optimised decoder and in particular the effects of single error 

optimisation on buffer lengths and decoding speed.
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• Assessment of buffered decoding technique when a standard Reed-Solomon 

decoding IC is employed as the error correcting unit.

7.1.3 FEC in long haul optically amplified system s

The use of erbium doped fibre amplifiers in a new generation of optical submarine 

systems has resulted in transmission impairments accumulating over the entire fibre 

span. The use of FEC in such systems has been identified as a possible solution for 

reducing these effects and achieving error performance targets. Some prospective 

coding systems are noted and their performance is assessed analytically. A coding 

scheme of much reduced complexity compared with currently proposed methods is 

identified and shown to offer comparable performance at the relevant channel error 

rates.

The main achievements in this area are:

• Assessment of impairments common to optically amplified lightwave transmis­

sion systems.

• Assessment of alternative techniques for reducing the effects of transmission 

impairments.

• Identification and performance comparison of low complexity binary codes 

with currently proposed multi-level RS codes for use in optical transmission 

systems.
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7.2 Summary of Thesis

Chapter 2 introduced and reviewed several important concepts of forward error 

control coding. This was done with a view to providing an introduction to the 

notation used in subsequent chapters.

To supplement chapter 2 standard architectures for the generation and error detec­

tion of cyclic codes were introduced in chapter 3. In the case of serial encoding 

two different approaches based on the generator and parity polynomial of a code 

were considered for both binary and non-binary codes. To overcome the speed 

limitations of serial circuits, parallel architectures based on parity check equations 

were presented and shown to offer a substantial increase in operational speed at 

the expense of greatly increased circuit complexity. The chapter then concluded 

by discussing error detection methods. Again both serial and parallel forms were 

illustrated and shown to be subject to the similar speed/ complexity constraints.

In order to provide a trade off between the high speed of parallel structures and the 

low complexity of serial circuits chapter 4 introduced series-parallel architectures. 

Using the concept of m-sequence generation as a foundation, series-parallel meth­

ods were shown to offer the prospect of increased operational speed without the 

demand for complex circuitry. Furthermore, by developing a process for generating 

such circuits, various structures could be defined thereby offering varying degrees of 

parallelism.

After presenting a solution to the problem of high speed error detection chapter 5 

addressed the problem of high speed error correction. Unlike error detection error 

correction must be carried out in a serial manner, so an alternative technique to 

series-parallel methods was established. By buffering incoming data and using high
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speed error detection a complete decoding system may be realised operating at an 

increased average speed. By performing a statistical analysis of the buffering ar­

rangement it was possible to determine the length of the required buffers for various 

decoding scenarios. In addition, an investigation into the use of a commercially 

available decoding IC as the error correcting module was performed and shown to 

offer significant gains in terms of operational speed over stand alone devices.

Having demonstrated the basis for a complete FEC system, chapter 6  considered an 

applications case study involving the latest generation of long haul optically ampli­

fied networks. After discussing a number of known error inducing effects common to 

optical systems, currently proposed coding methods for such systems were reviewed. 

By considering the multiplexing operation required to achieve the desired line rate, 

reduced complexity binary codes were shown to offer comparable performance in 

the critical region of operation. In addition to this, binary codes have been shown 

to be well suited to the various encoding and decoding strategies presented in the 

previous chapters.

In summary this thesis has investigated novel generic architectures and techniques 

suitable for achieving forward error control at very high bit rates. These have in­

cluded series-parallel structures applicable to both encoding and error detection 

circuits. In the case of error correction a buffered decoding arrangement has been 

proposed and shown to offer a significant gain in operational speed over standard 

error correction methods. The implications for systems applications have been dis­

cussed with particular emphasis on a new generation of long haul optically amplified 

lightwave systems.
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7.3 Suggestions for Further Work

There are a number of areas of research resulting from this work that are worthy of 

further investigation. These are summarised as follows.

• A rigorous and thorough investigation of error statistics found in optically 

amplified systems to be validated by both experimental and simulation results.

• The implementation in hardware of series-parallel architectures based on the 

design procedure defined in this research.

• The design and assessment on new and efficient decoding algorithms for use 

in buffered decoding arrangements.

• Investigation of frequency domain encoding and decoding techniques which 

may offer the prospect of increased encoding and decoding speed and which 

may be directly realisable in the optical domain.

• The exploitation of coset codes to increase system performance by effectively 

limiting run-lengths.

In conclusion, this thesis has established and analysed novel architectures for imple­

menting FEC at high bit rates. These provide a viable alternative to conventional 

encoding and decoding methods while offering superior performance in terms of 

speed. Moreover, it is envisaged that as future systems are deployed and present 

systems upgraded the use of FEC, particularly in high bit rate systems, will pro­

vide systems designers with a powerful tool for reducing the effects of transmission 

impairments.



A ppendix A

Galois Field A rithm etic

This appendix introduces Galois Field arithmetic and examines several examples of 

circuit configurations for implementing arithmetic operations. Parameters relating 

to their complexity and computation time are provided.

A ddition

Assume two field elements, j3 and 7 , are to be added together. If (3 and 7  are 

described in polynomial form as

m—1(3 — bo biOi b20p‘ -F ... T bm—icx

7  — Cq + CiO; +  C2 Û!̂  "F ... T ^

then addition is achieved by the modulo- 2  addition of the corresponding coefficients 

such that

m—1/̂  +  7 — ( ^ 0  +  Co) +  [ b i  -F Ci)û; +  ( 6 2  +  C2)0 î  +  ... -F { b m - l  +

For two m  bit field elements this function may be realised by m  EXOR-gates con­

figured in the following parallel manner.
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^ 0
m l

bo

m-1bm-1

(6 0 +Cg)

(6| + Cj) a

(^m-l +<^m.l)  «
m-1

^  tpdGFADD -  tpdXOR ^

Complexity = mX EXOR’s 

Figure A.l: Galois Field addition with symbols from GF(2^). 

M ultiplication

To illustrate multiplication an example is given based on the Galois Field shown 

in Table A.I. For this example it shall be assumed that an arbitrary element j3 in 

GF(2^) is to be multiplied by the element a^. Again, if /5 is expressed in polynomial 

form,

l3 = ^ 0  T 4" 6 2 + 3̂ 0 ;̂ .

Multiplying both sides by of the equation by gives the following 

a^(5 — boa  ̂+  bia"̂  +  b2a^ +  b^a^

— 6 0  +  6 1 ( 1  + O') +  6 2 (0 : +  o;̂ ) +  &3(o;̂ 0'̂ )

=  +  { b \  +  62)0! +  (62 +  b ^ ^ o ?  +  (60 +  b s ) (y ^  ■

Based on the previous expression a circuit such as the one shown in figure A.2 can 

be formed.
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2a

3a

Figure A.2 : Galois Field multiplier with symbols from GF(2”'‘).

The propagation delay of such a circuit is given by the longest path through the 

EXOR-gate network. In this example this is equal to the delay of a single EXOR- 

gate. However, in general one or more of the outputs may comprise of the modulo-2 

addition of all the inputs. In this instance the delay is equal to the number of 

EXOR-gate stages. In the case of an 8 -bit multiplier there is at most log2 (8 ) =  3 

stages. Hence the overall delay is equal to that of three EXOR-gates.

In terms of complexity, if each output contains all possible combinations of each 

input, then for an m  bit multiplier m — 1 EXOR-gates are required for each output. 

Hence for the worst case where m = 8 the circuit contains m x (m — 1) =  56 gates.
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Power

representation

Polynomial

representation

4-Tuple

representation

0 0 ( 0  0  0  0 )

1 1 ( 1  0  0  0 )

a ( 0  1 0  0 )

« 2 a^ ( 0  0  1 0 )

a^ ( 0  0  0  1 )

1 + a ( 1 1 0  0 )

a + a 2 ( 0  1 1 0 )

a^ + a^ ( 0  0  1 1 )

a'̂ 1 + a + a^ ( 1 1 0  1 )

1 + a 2 ( 1 0  1 0 )

a + ( 0  1 0  1 )

1 + a + (1 1 1 0 )

a ll a + a^ + ( 0  1 1 1 )

a i 2 1 + a + a 2 + (1 1 1 1 )

ai3 1 a 2 + ( 1 0  1 1 )

ai^ 1 + ( 1 0  0  1 )

Table A.l: Three representations for the elements of GF(2' 

l +  X  + A l

generated by p(X) =



A ppendix B

Introduction

In this appendix the Newton-Raphson method for locating the roots of a polynomial 

is presented. This method is found to be particularly efficient when dealing with 

polynomials of high degree such as those found in chapter 5.

B .l  Newton-Raphson Algorithm

To find the solution to the problem f{x)  = 0  we perform the following.

1. Make an initial guess of the root defined by Xq

2. For n=0,l,2...., compute the following

_ f M

where f'{xn) denotes the derivative of f{x)  with respect to x.
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3. Compute Xi from xq, X2 from xi  and so on until the difference between and 

Xn is less than some specified limit. The value of Xn is then the approximate 

solution to the equation f{x) = 0 .

When programming this method for use on a computer it is often convenient to 

replace f '{xn) with

f{Xn -\-h)~ f{Xn)
h

and use a sufficiently small value of h to achieve good accuracy [64]. In practice 

h =  0.001 proves to be a suitable value. To demonstrate this method consider 

equation 5.18 as given in chapter 5 with A =  0.495.

D*{Z) - Z '^  = e“  ̂+ (1 -  = 0 (B.l)

Applying the Newton-Raphson method with Zq =  1.1 yields the following results.

Zo =  1.1

Zi = 1.098307456510710 

Zo = 1.096617524963684

Z2568 =  1.000039991174907 

Z2569 =  1.000039991174906 

Z2 5 7 0  =  1.000039991174906

With a specified accuracy of 10“ ^̂  it can be seen that Z2 5 6 9  =  Z2 5 7 0 . Therefore the 

root of equation B.l is found to be 1.000039991174906.
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