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Abstract

The androgen receptor (AR), oestrogen receptoraalffSR1) and oestrogen receptor beta
(ESR2) play essential roles in mediating the effi#fcsex hormones on sex differences in the
brain. Using Voxel-based morphometry (VBM) and gamgng in two independent samples
(discovery n = 173, replication = 61), we determtime common and unique influences on brain
sex differences in grey (GM) and white matter (Wikblume between repeat lengths (n) of
microsatellite polymorphisms AR(CAG)n, ESR1(TA)ndaBSR2(CA)n. In the hypothalamus,
temporal lobes, anterior cingulate cortex, posteritsula and prefrontal cortex, we find
increased GM volume with increasing AR(CAG)n acrseges, decreasing ESR1(TA)n across
sexes and decreasing ESR2(CA)n in females. Unigdd®(CAG)n was positively associated
with dorsolateral prefrontal and orbitofrontal GMlvme and the anterior corona radiata, left
superior fronto-occipital fasciculus, thalamus ameérnal capsule WM volume. ESR1(TA)n was
negatively associated with the left superior coreadiata, left cingulum and left inferior
longitudinal fasciculus WM volume uniquely. ESR2(JDAvas negatively associated with right
fusiform and posterior cingulate cortex uniquely.e Whus describe the neuroanatomical
correlates of three microsatellite polymorphisms stéroid hormone receptors and their

relationship to sex differences.



Introduction
1.1 Sex differences

Sex differences in brain structure are well-esthlgd across a range of studies. Males are
also known to have a larger brain; particularhjthe amygdala, hypothalamus, cerebellum and
temporal lobe (Cosgrove, Mazure & Staley, 2007; d@ebal., 2001; Ruigrok et al., 2014; Witte,
Savli, Holik, Kasper & Lanzenberger, 2010). Femalppear to have proportionally more grey
matter (GM) overall and across the cortex, suchnathe parietal cortex, planum temporale,
Heschl’'s gyrus and anterior cingulate gyrus (Cosgret al., 2007; Gur et al., 1999; Luders et
al., 2006; Ruigrok et al., 2014). Recently, a UKolgnk study of 5,216 participants found
multiple brain sex differences — including highecarrected volumes and surface areas in males
and higher cortical thickness and white matter (Wikéict complexity in females. Specific
regions, such as the right insula, were larger ales after correction, while areas like the
superior parietal were larger in females (Ritchiale 2018). It has been argued that some of
these differences are accounted for by differemedsain size and the allometric relationship
between brain size and GM proportion (Zhang et 2000). However burgeoning evidence

suggests that many of these differences are atbbrito specific biological factors.

1.2 Sex hormones

In vivo characterisation of the influences of theldgical determinants of brain sex
differences can be a challenge due to the multipfdounds of sex. Two major influences that
may account for brain sex differences are differiegpression of genes from the sex
chromosomes and the action of sex steroid hormaue$, as androgens and oestrogen (Hines,

2010; Hines, 2011).



Androgens have been identified as important fornbdevelopment. Foetal testosterone levels
positively predict right temporoparietal junctioMGand negatively predict planum temporale
volume congruent with their brain sex differencéonibardo et al., 2012). Endogenous
testosterone affects brain development acrosshaoldl and adolescence in regions such as the
amygdala, hippocampus and parietal cortex difféydmtween the sexes (Nguyen et al., 2013;
Neufang et al., 2009; Nguyen, 2018; Wierenga ¢24ll8).

Oestrogen has been associated with sex differendde development of brain regions
such as the cerebellum (Hedges, Ebner, Meisel &distein, 2012) and hypothalamus (Lenz
& McCarthy, 2010). In pubertal girls, serum estohds associated with increased GM in frontal,
interior temporal and occipital gyri and decreagedl in prefrontal, parietal and temporal
regions (Peper et al., 2009). Administration of gammous oestrogen has been found to increase
brain ventricular volume in menopausal women (Kemtet al., 2016) as well as in transgender
females, associated with a corresponding decreassgional brain matter (Seiger et al., 2016;
Zubiaurre-Elorza, Junque, Gome@il & Guillamon, 2014).

Sex hormones act through nuclear and membranetogsap the brain to induce wide-
ranging changes in transcription, development, tigias and neural signaling. However, the
overlap in activity of sex hormones and sex hormmueptors makes inferring the respective
influence of each hormone difficult. Any given searmone acts on several receptors, both in
the nucleus and outside of it. Furthermore, a degfecross-receptor activity exists between
receptors. For example, androgen receptors inbgtibgen receptor activity when coexpressed
on the same cell, and low levels of androgen recspre prognostic of breast cancer (Peters et
al., 2009). Furthermore, androgens are able to bimdl cross-activate the oestrogen receptor

(Garcia & Rochefort, 1979) and are converted tdrogen by aromatization (Lephart, 1996).



Thus it is of value to distinguish between effetkated to sex hormone receptors and those

related to sex hormone levels although they li@ @ommon pathway.

1.3 Sex hormone receptor genetics

An alternative approach to investigating the effeicsex hormones in the brain makes
use of individual variation in genotypes influergithe expression of the androgen receptor and
oestrogen receptor. This approach of utilising w@m genetic variation to determine molecular
influences in the brain has been validated in abmmof previous studies involving this cohort
and subgroups selected from it (Wittman et al.,300an et al., 2010; Sebastian et al., 2010;

Roiser et al., 2008).

1.3.1 Androgen Receptor (AR) Gene

The primary effects of androgens occur throughaittevation of the androgen receptor, a
nuclear transcription factor encoded by the AR geme the X-chromosome (Choong,
Kemppainen, Zhou & Wilson, 1996). The AR gene cmista CAG repeat polymorphism within
its first exon coding for a polyglutamine tractuariable length (Chamberlain, Driver, Miesfeld,
1994). Longer repeats of this polymorphic polyghitae tract in the N-terminal exon of AR
inhibit its interaction with co-activators and ttranscription of its gene to mRNA (Beilin, Ball,
Favaloro & Zajac, 2000; Chamberlain, Driver, Middfel994; Choong, Kemppainen, Zhou &
Wilson, 1996). Men with a mutation in AR(CAG)n (wken refers to the number of CAG
repeats, n>38) manifest Kennedy’s disease or splhab muscular atrophy (La Spada et al.,
1991; 1992), while low n alleles have been assediatith risk for prostate cancer and benign

prostatic hyperplasia (Giovannucci et al., 1999m&an et al., 2011; Qin et al., 2016). In women,



AR(CAG)n has been associated with testosterondsléVéestberg et al., 2001), bone mineral
density (Yamada, Ando, Niino & Shimokata, 2005) ahesity (Gustafson, Wen & Koppanati,
2003) as well as cancers of the breast and ov@diesg, Wang, Wang & Du, 2017; Hao et al.,
2010).

AR(CAG)n has also been associated with brain deweémt, with lower n found to
interact with testosterone level to predict greaterease in relative white-matter volume (Perrin
et al., 2008) and greater decrease in relative-gratyer volume (Paus et al., 2010) in male
adolescents. In female adolescents, AR(CAG)n ha lpositively associated with rate of
cortical thinning in the inferior frontal gyrus tesad (Raznahan et al., 2010). Furthermore,
AR(CAG)n has been negatively associated with iet#lial giftedness (Celec et al., 2013) as
well as general cognitive functioning as assessedebformance on tests of general cognition
and processing speed (Yaffe et al.,, 2003) in mades} has been found to interact with
testosterone to predict performance on the Moratewmaze differentially across the sexes as
well (Nowak, Diamond, Land & Moffat, 2014). It hadso been associated with aspects of
personality, including extraversion (Westberg et 2009) and aggression (Butovskaya et al.,
2015). AR(CAG) also associates with cognitive dexland increased brain atrophy in elderly

adults, demonstrating the influence of AR(CAG) be brain (Gardiner et al., 2019).

1.3.2 Oestrogen Receptor a (ESR1) Gene

The two main nuclear receptors of oestrogen argagen receptos andp - encoded by
the ESR1 and ESR2 genes respectively. d babtype is well-known to influence the brain and
is expressed in most regions, with particularly hhigxpression within the amygdala and

hypothalamus (Laflamme, Nappi, Drolet, Labrie & &Y, 1998). The TA microsatellite repeat



polymorphism, located in the promoter region umstreof ESR1, is in linkage disequilibrium
with a number of other putative transcription biglisites and influences transcription
functionally (Becherini et al., 2000; Langdahl, kek Carstens, Stenkjeer & Eriksen, 2000;
Prichard et al., 2002). Evidence for the functidgabf the TA polymorphism is further
supported through its association with a numbeyestrogen-related clinical phenotypes such as
female adult stature (Schuit et al., 2004), boneenal density (Langdahl et al., 2000) and
endometriosis (Zhao et al., 2016).

ESR1(TA)n (where n refers to repeat number) has lbssociated with higher and more
feminine left hand 2D:4D digit ratios in men (Vaiticourt, Dinsdale & Hurd, 2012). The 2D:4D
ratio is frequently used as a proxy of prenatahiamre levels (Valla & Ceci, 2011) and has been
positively associated with volume of cerebral cortetal cerebellar cortex and total cerebellar
WM in males (Darnai et al.,, 2016) as well as negdyi associated with volume of dorsal

anterior cingulate cortex GM in females (Gorka, idan, Radtke, Carré and Hariri, 2015).

1.3.3 Oestrogen Receptor # (ESR2) Gene

ESR2, like ESR1, contains multiple polymorphisnet thave been implicated in diseases
related to old age and reproduction, as relateootee mineral density (Ichikawa et al., 2005),
cancers of the breast and ovary (Tang et al.,, 2018gt al., 2011) and hypertension and
cardiovascular risk (Ogawa et al., 2000; Rexrodd.e2007). Additionally, however, it has been
associated with Alzheimer’'s disease (Pirskanen.eR@05), Parkinson’s disease (Westberg et
al., 2004), chronic fatigue syndrome (Grans, NitssDahlman-Wright & Evengard, 2007),

anorexia nervosa (Eastwood, Brown, Markovic & Ri2602) and bulimia (Nilsson et al., 2004).



In particular, ESR2 has a 5’ flanking region contag a number of regulatory elements,
including a CA repeat microsatellite polymorphidmattinfluences expression of tReeceptor
(Tsukamoto, Inoue, Hosoi, Orimo & Emi, 1998). Tregion is also relatively GC-rich and could
be expected to be susceptible to methylation. 8Sh&8R2(CA)n (where n refers to the number
of CA repeats) has been found to associate witheased androgen levels (Westberg et al.,
2001), with there being some support of a similesatje effect with oestrogen levels as well

(Scariano, Simplicio, Montoya, Garry & Baumgartrdp4).

1.4 Aims

Whilst these polymorphisms in genes of the sex lboerpathways have been associated
with individual differences in cognition and perstity, it is still unclear how they influence
cortical brain structure and whether they explaglated sex-associated inter-individual
differences.

Whereas previous structural imaging studies suggeshfluence of polymorphisms of
AR(CAG)n on the changes in GM and WM volume in adoknce (Paus et al., 2010; Perrin et
al., 2008; Raznahan et al., 2010), this study stektarify the effect on the brain of these three
polymorphisms across different brain regions. i phesent study, we investigated the influence
of polymorphic AR(CAG)n, ESR1(TA)n and ESR2(CA)n dmuman brain structure by
examining T1l-weighted images from a large samplaeafithy volunteers using computational
neuroanatomical techniques. Our hypothesis istti@brain regions covarying in volume with

sex hormone polymorphisms would be a subset ohlegjions that differ between the sexes.

Methodology



2.1 Recruitment
Healthy previous volunteers at the Wellcome Trugint@® for Neuroimaging at

University College London were screened for anyvipes neurological or psychiatric
conditions via administration of the Mini-Internatial Neuropsychiatric Interview (MINI). The
interview was administered by one of the paper @sthwho has been trained in the
administration of the interview. All available ssaof subjects meeting these criteria were used.
Subjects gave written informed consent and theystuals approved by Great Ormond Street
Hospital for Children NHS Trust and Institute of idhHealth, Research Ethics Committee

(07/Q0508/3}

2.2 Genotyping

2.21 AR(CAG)n

For each individual, DNA was extracted from perigttdymphocytes using standard
techniques. A 370-450 bp fragment was amplifiedP@R with a FAM-labelled forward primer

AR1 FAM-5-GCCTGTTGAACTCTTCTGAGC-3/,

AR2 5 GCTGTGAAGGTTGCTGTTCCTC-3’

Amplification was performed in 33 cycles with a daration temperature of 95°C for
30s, an annealing temperature of 55°C for 30s andx#éension temperature of 72°C for 30s,
with a final extension of 72°C for 10min. 1pL of R@roduct was added to 9uL of formamide

with 0.3pL of LIZ-500 standard, denatured at 956€5min and placed on ice.

2.2.2 ESRL(TA)N

A 160-194 bp fragment was generated with a FAM{kdb&rward primer



ESR1F FAM-5-GACGCATGATATACTTCACC-3,

ESRI1R 5-GCAGAATCAAATATCCAGATG-3
Amplification was performed in 28 cycles with a daration temperature of 95°C for 30s, an
annealing temperature of 58°C for 30s and an eixteriesmperature of 72°C for 30s, with a final
extension at 72°C for 10min. 1pL of PCR product added to 9uL of formamide with 0.3uL of

LIZ-500 standard, denatured at 95°C for 5min areetgdl on ice.

2.2.3 ESR2(CA)n

A 147-187 bp fragment was generated with a HEX#ab#&rward primer

ESR2F HEX-5- GGTAAACCATGGTCTGTACC -3

ESR2R 5’- AACAAAATGTTGAATGAGTGGG -3
Amplification was performed in 35 cycles with a damration temperature of 95°C for 30s, an
annealing temperature of 62°C for 45s and extensorperature of 72°C for 60s, with a final
extension at 72°C for 10min. 1uL of PCR product wdded to 9uL of formamide with 0.3uL of
LIZ-500 standard, denatured at 95°C for 5min arated on ice. All DNA was analysed on the

ABI 3730 DNA sequencer equipped with Genescan (A®dsrington, UK) software.

2.3 Imaging.

2.3.1 Discovery cohort image acquisition

Scanning was performed on a Sonata 1.5T whole tswdyner (Siemens Medical
Systems) using a whole body coil for transmissiad 8-channel phased array head coil for
reception, using a 3D-Modified Driven Equilibriunodrier Transform (3D-MDEFT) sequence

(Deichmann et al., 2004), with FLASH-EPI hybrid deat (Deichmann et al., 2006) TR



20.66ms, TE 8.46ms, FA 25 degrees, 1 mm isotrapiage dimensions 240x256x176, total

duration 8 minutes.

2.3.2 Replication cohort image acquisition

Scanning was performed on an Allegra 3.0T scausang a 3D-Modified Driven
Equilibrium Fourier Transform (3D-MDEFT) sequencihiaa standard transmit-receive
coil(Deichmann et al., 2004), TR 7.92ms, TE 2.4R# 15 degrees, 1 mm isotropic, image

dimensions 240x256x176, total duration 8 minutes.

2.3.3 Image preprocessing

Images were screened by both radiographers androbses for image quality and
artifacts and were screened for abnormalities hyraradiologists. Images were analysed using
Voxel-Based Morphometry (VBM) in SPM12 (Wellcomeu$t Centre for Neuroimaging).
Segmentation into GM, WM and cerebrospinal fluidsvperformed using unified segmentation
(Ashburner et al., 2005). A high dimensional waging a fast-diffeomorphic algorithm was

used (Ashburner et al., 2007) to spatially norneaie tissue maps with modulation.

2.4 Analysis

2.4.1 Cohort information

The discovery sample comprises of 200 participdig,females and 93 males. The
participants ranged from 16-75 years old with mage=32.4 years, SD=12.6. Mean grey
volume for the discovery sample is 708.6, SD=168L& replication sample comprises of 72

participants, 39 females and 33 males. The paaintgpranged from 18-74 years old with mean



age=29.9, SD=11.0. Mean grey volume for the reptinssample is 705.5, SD=123.6. Not every
participant was retained for analysis — we filteoel non-Caucasians from the both samples for
VBM as a confounder as it has been demonstratédéimeetic polymorphisms exert different
influences on phenotype in different races. Thepdamescriptives are presented in Table S1 in
the Supplementary Information after non-Caucasidividuals were filtered from the sample.

To test for any significant differences between ginoups, a one-way ANOVA was
conducted with age, grey volume, white volume, ARGn, ESR1(TA)n, ESR2(TA)n across
the filtered discovery and replication samples. iteans were not significantly different
between the groups across all of the measuresestigg that the two groups are not
significantly different across those measures.

Demographic information such as age and sex, kremmfounds of brain volume, and
medical history, were collected. Information ongamgption medications were also collected
from participants. 11 women were on oral contrageptor hormone replacement therapy.
Participant medical history was screened for meédieaditions that would affect cell response
to androgens, such as Complete Androgen Insengi8yindrome, and there were no
participants excluded from medical histories. lipgrant was excluded because chromosomal
sex did not match reported gender. 13 individuasaweft-handed.

As genotypes were microsatellites, it was not fbsto make group comparisons
however genotype histograms of repeat length &aelad as a supplement for reference.

Results of one-way ANOVA are presented in TabléenSBe Supplementary Information.

2.4.2 Discovery sample



To identify regions of the brain that were differdretween males and females, sample
images were contrasted via sex. Modulated, noretliGM maps, derived from structural
magnetic resonance scans, were smoothed and campsrd/BM. The discovery sample
comprises of 200 participants. Of the 200 participa27 participants were non-Caucasian and
were excluded from the analysis. 3 participants &adrs in ESR1(TA)n genotyping and were
also excluded from VBM. Thus, the final sample siter VBM for AR(CAG)n, ESR1(TA)n,
and ESR2(CA)n are 173, 170, 173 respectively.

Regions from the comparison were subsequently coedpavith regions shown in
subsequent analysis by genotype. VBM analysis wagopned with each polymorphism
independently for AR(CAG)n, ESR1(TA)n and ESR2(CA median split was used for
microsatellite polymorphisms to divide alleles iftmgh and low repeats. Thus, genotype was
defined as a three-level condition, grouping byrshmmozygotes, heterozygotes and long
homozygotes. As the AR(CAG)n polymorphism is on ¥zehromosome, there were no male
heterozygotes. An additive effect of repeat lengts found and a continuous variable was
calculated by averaging the two allele repeat lesigbex was used as an independent condition,
while age, GM and WM volume were used as covariatees Gram-Schmidt orthogonalisation.
Individual t-tests were conducted to determinesdffect of sex and genotype applying family-
wise error thresholds for peak and cluster-leveluits. Due to the large number of statistical
tests conducted across 3 gene polymorphisms, aeBonf correction for multiple testing was
performed at p = 0.05 / 3 = 0.0166. All resultsnffigant post-multiple correction are
highlighted in their respective tables.

In order to determine regions overlapping withioag of sex difference, a mask was

created from the thresholded statistical parametap (p<0.05) for regions larger in males and



for regions larger in females. Analyses were regobaing a threshold of p < 0.001 using these
masks and coordinates are reported to have a adigarwhere they were found to lie in regions
of brain sex differences.

All regions reported in the results were statislycaignificant at p< 0.05 after a family-
wise error correction across the whole-brain lev@ignificance at the voxel-level was
thresholded at p < 0.001.

2.4.3 Replication sample

The replication sample comprised 72 subjects winages were acquired independently
on a different scanner. This sample was analysddpendently as it has been shown that
scanner effects has both main and interaction tsffac associations in VBM (Stonnington et al.,
2008). Of the sample, 11 participants were non-@siac and were filtered out, and 1
participant had errors in ESR1(TA)n genotyping aas excluded from VBM. The sample sizes
for AR(CAG)n, ESR1(TA)n, and ESR2(CA)n for VBM aé&, 60, 61 respectively.

In the replication cohort, the thresholded maskO(pS uncorrected) of the voxels
significantly associated with GM volume with the &FRA\G)n, ESR1(TA)n and ESR2(CA)n
polymorphisms in the discovery cohort was usedetemhine whether these regions were also
significantly associated with the respective polypindsms in an independent cohort scanned on
another scanner. After preprocessing, identicakrasts were used to determine whether the
same regions were associated with genetic variatdinregions reported in the results were
statistically significant at p<0.05 after familyse error correction on the whole brain level,
unless stated otherwise. No Bonferroni correcti@s \werformed for replication as we tested
priori hypotheses. Due to limitations on publication lénghe results of the replication cohort

are presented in Supplementary Information.



Results

A regional map of sex differences in GM, Figure ddarable S3 in Supplementary
Information, and WM differences, Figure 2 and TaBk in Supplementary Information, was
generated in order to determine overlap with gendifferences. Associations with genotype
were then analysed, showing overlap between geiotifferences in GM (Figure 3) and WM
(Figure 4). Associations with each microsatellidymorphism were analysed in the discovery
cohort for AR(CAG)n (Tables 1 and 2), ESR1(TA)nlfles 3 and 4) and ESR2(CA)n (Table 5)

as well as in the replication cohort (Tables SB-Bupplementary Information).

3.1 Sex differences

-

s

]

Figure 1. Regions showing sex differences in GM volume. Real\s regions with greater GM volume in females.

Blue shows regions with greater GM volume in malestatistic maps thresholded at p<0.05 uncorreatee

overlaid on the average of individual T1-weightethges warped together into MNI space.



Female > Male

Figure 2. Regions showing sex differences in WM volume. Raugslows regions with greater WM volume in
females. Turquoise shows regions with greater WMime in males. T-statistic maps thresholded at @0.

uncorrected were overlaid on the average of indadd 1-weighted images warped together into MNkspa

We first delineated sex differences in brain stietwithin our cohort. Males had
increased GM volume compared to females in regengmted in the temporal lobes, insula,
hypothalamus and cerebellum. Females showed relativeater GM volume than males around
the superior parietal lobe and superior tempordhamntrolateral prefrontal cortices. GM regions
with significant differences between males and fleshare presented in Table 1. WM regions

are presented in Table 2.



3.2 Regions associated with AR(CAG)n

-

AR CAG positive
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ESR1 TA negative
= —_ ra (=] F-S o
ESRZ negative
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Figure 3. Regions associated with AR(CAG)n, ESR1(TA)n an®REEA)N in GM volume. T-statistic maps

thresholded at p<0.001 uncorrected were overlaitheraverage of individual T1-weighted images wenogether

into MNI space.

ESR2 CA

AR CAG positive
ESR1 TA negative

P

Figure 4. Regions associated with AR(CAG)n, ESR1(TA)n an®REEA)n in WM volume. T-statistic maps

thresholded at p<0.001 were overlaid on the ICBMtE#plate.



We next sought to determine regions in which GMuwa is correlated with AR(CAG)n.
Modulated GM maps were smoothed and compared by VBMal analysis using a median
split (>17 repeats) showed that males with longeatp (L) had greater GM density in the
temporal lobes bilaterally; females who were loageat homozygotes (LL) and heterozygotes
(SL) had greater posterior insula GM density britg than short repeat homozygotes (SS); and
LL females had greater posterior insula GM densitigterally than SL and SS females. The only
sex by genotype interaction was in the right pasteinsula, where LL females showed
significantly greater GM density, while males shdvgenotypic differences.

GM density in the temporal lobes, orbitofrontal @utb-genual anterior cingulate cortices
bilaterally and the right insula (p<0.01, FWE-catezl) was significantly correlated with
AR(CAG)n. Within the temporal lobe there were a i@m of distinct clusters that were
positively correlated with number of repeats. Alpositively correlated were the right supra-
genual cingulate, right inferior cerebellum, letirsomedial prefrontal cortex and right inferior
parietal (p<0.05, FWE-corrected) as well as theilderior cerebellum (p<0.001, cluster-level
corrected). The GM regions with positive correlatiwwith AR(CAG)n are presented in Table 1.
The right superior parietal lobule was negativetyrelated in GM volume with number of
repeats (p<0.01, FWE-corrected).

The bilateral anterior corona radiata, left supefiasciculus and thalamus were positively
correlated with AR(CAG)n (p<0.05, FWE-correctedneTWM regions with positive correlation

with AR(CAG)n are presented in Table 2.



GM Regions with positive correlation with AR(CAG)n

Regior XV, z] Z-score p-value, | p-value,| Conjunction
MNI cluster, peak, with sex
FWE- FWE- differences
corrected, corrected
L Anterior cingulat -17, 39,2 | 5.4¢ 6.4x1C>" | 0.003: | F>M
L Rostral prefront: -32,54,. |5.2¢ 3.7x1C* [ 0.0077 | M>F
L Orbitofrontal -14, 35,15 | 5.0¢ 0.003¢ | 0.02: M>F
R Cerebellur 18,-44, 4« | 5.0C 0.01 0.02¢ M>F
L Dorsolateral prefronte -27,27,4. | 4.9¢ 0.031 0.03: M>F
R Dorsolateral prefront: 32,39,3 | 4.9¢ 0.01€ 0.03: M>F
L Ventrolateralprefronta -29, 41,-15 | 4.8¢ 0.00€ 0.04¢ M>F
L Middle temporal BA2 -56,-14,-2C | 4.8¢ 0.04( M>F
L Medial prefronte -17,48,¢ | 4.8 0.02¢ F>M
R Hypothalamu 9,-5,-14 | 4.8: 4.4x1("Y M>F
L Hypothalamu -8,-6,-11 | 4.8¢ M>F
R Posterioinsula/planur 42,-2,-26 | 4.7¢ 0.004¢ M>F
temporale
R Rostral prefront 39, 57,. 4.6¢ 0.027 M>F

L: Left R: Right M: Male F: Female BA: Brodmann'sca

*Significant after Bonferroni correction at p = 6/8

Table 1.GM regions showing statistically significant poaiticorrelations with AR(CAG)n in the discovery sdenp

family-wise error corrected<0.05.




WM Regions with positive correlation with AR(CAG)n

Region x,y, z] | Z- p-value, | p-value,| Conjunction
MNI score cluster peak with sex
differences
L Anterior corona radiata -24,35,8 6.04 3.6x10 1.1x10" | F>M
L Superior Longitudinal -23,6,21 | 5.83 4.4x10 | F>M
Fasciculus -21,17,18| 5.42 0.0038 | F>M
L Thalamus -21,-21,5 5.60| 1.0x10| 0.0015
L Fornix/Stria terminalis, insula| -24, -26, -3| 5.26 0.0082 | M>F
posterior long
L Retrolenticular part of internal -35, -26, 0| 5.10 0.017
capsule, fusiform
R Anterior corona radiata 29,36,12 5.36 4.6%X100.0051 |F>M
L Anterior corona radiata -15, 24, -8 5.05 0.004Q 0.022 F>M

L: Left R: Right M: Male F: Female

*Significant after Bonferroni correction

Table 2. WM regions showing statistically significant pogéicorrelations with AR(CAG)n in the discovery

sample, family-wise error corrected<0.05.




3.3 Regions associated with ESR1(TA)n

Initial analysis using a median split grouping EERY)n individuals with short repeat
count (S) and long repeat count (L) alleles shothatlin males, SS individuals had greater GM
density than SL and LL, and SS and SL had greakrd@nsity than LL in ventral prefrontal
cortex, anterior cingulate cortex and temporal $olféM density correlated negatively with the
number of TA repeats in these regions. GM regioith megative correlation with ESR1(TA)n
are presented in Table 3 (p < 0.05, FWE-correcfBa. Left superior longitudinal fasciculus (p
< 0.001) and Left inferior longitudinal fasciculyp < 0.05) were significantly negatively

correlated with ESR1(TA)n (Table 4, p < 0.05, FWtrected).

GM Regions with negative correlation with ESR1(TA)n
Region X,y Z] Z-score p-value| p-value| Conjunction
MNI cluster peak with sex
differences
L Ventrolateral prefronta] -38, 44, -9 | 5.38 2.1x19 [ 0.0012 | F>M
-38, 53, -11| 5.08 0.0052
L Hypothalamus -2,-3,-15 | 5.14 5.4x10 | 0.0040 | M>F
R Hypothalamus 8,-3,-20 | 5.02 0.0070 M>F
L Middle and inferior -62,21,-8 | 5.08 0.0051 | 0.0051 | M>F
temporal gyri
L Posterior insula/ -45, -5, -24| 4.87 0.014 | M>F
planum temporale
L Cerebellum -41, -65, -35| 5.04 3.1x10" | 0.0062 | M>F
R Cerebellum 39, -68, -33| 3.80 0.023 M>F
L Subgenual anterior -12, 35, -14| 4.89 0.037 0.012
cingulate




R Anterior temporal 41, 3,-30, 4.72 0.02¢ M>F
R Middle and inferior 63, -21,-17| 4.71 0.0055 | 0.027 M>F
temporal gyri

L Anterior cingulate -2,24,30 | 4.62 4.3x10 | 0.039 F>M

L Posterior temporal -39, -62,-9| 4.60 0.0065 | 0.042 M>F

L Superior temporal -41, -18, -8| 4.59 0.044 M>F
L Superior frontal -18, 33,45| 4.57 0.040 0.049

L Rostral prefrontal -6, 62,11 | 4.33 0.026

L: Left R: Right M: Male F: Female
*Significant after Bonferroni correction

Table 3.GM regions showing statistically significant negatcorrelations with ESR1 (TA) repeat length in the

discovery sample, family-wise error corrected<0.05.

WM Regions with negative correlation with ESR1(TA)n
Regior XY, Z] Z-score p-value | p-value Conjunction
MNI cluster peak with sex

differences
Left SLF -33-8,2C | 4.8¢ 9.1x1(*" | 0.008¢ | F>M
-33-17, 3¢ | 4.7¢ 0.017 F>M
-30,-12, 2¢ | 4.7¢ 0.01Z | F>M
Left ILF, occipita -15,-35, C | 4.6 0.01¢ 0.02( F>M

L ILF, Temporal/Cingulur 32,-75,€ | 4.5¢ 0.031

L: Left F: Female M: Male ILF: Inferior Longtitudal Fasciculus SLF: Superior Longitudinal Fasciculus

Table 4.WM regions showing statistically significant negaticorrelations with ESR1 (TA) repeat length in the

discovery sample, family-wise error corrected<0.05.



3.4 Regions associated with ESR2(CA)n

Initial analysis using a median split (31=< S a&lleb31 repeats L allele) showed no
differences between in GM density in males, andemales greater GM density in posterior
insula, temporal lobes and rostral prefrontal @61) in SS compared to SL/LL and in posterior
insula, temporal lobes, rostral prefrontal, postercingulate and hypothalamus in SS/SL
compared to LL.

Similar regions were associated with ESR2(CA)n @8 WR(CAG)n in particular in the
temporal lobes involving the parahippocampal angesor temporal gyri, hypothalamus,
orbitofrontal cortex, insula, anterior cingulateddateral prefrontal cortex. This was found to be
primarily driven by an association in women, but momen, showing a gender interaction with
ESR2(CA)n. GM volume was negatively associated W8R2(CA)n. The GM regions with
negative correlation with ESR2(CA)n are presentedable 5 (p < 0.05, FWE-corrected). No

WM regions significantly associated with ESR2(CAyere found.



GM Regions with negative correlation with ESR2(CA)n

Region [xyZz] Z-score p-value| p-value,| Conjunction
MNI cluster peak with sex
differences
R Posterior insula/planum 44, 2,-18 | 5.92 7.5x10 | 2.8x10" | M>F
temporale
45,-9,-12 | 4.90 0.043
L Rostral prefrontal -32,59,0 | 5.65 5.7x10 | 0.00f | M>F
-33,59, 14| 4.99 0.030
L & R Hypothalamus -11,0,-18 | 5.17 1.4x10 | 0.013 M>F
-2,2,-12 | 491 0.042
L Posterior insula/planum| -45, -11,-9| 5.15 2.3x10[0.014 | M>F
temporale
-32,-23, 14| 4.95 0.035
-44,-14,8 | 4.93 0.038
L & R Precuneus/Posterigr -5,-38,5 | 5.13 4.8x19 [ 0.015 | F>M
cingulate
-2,-41,30| 5.04 0.023
2,-48,27 | 5.00 0.028
L & R frontal poles -8,62,8| 5.08 7.0x10| 0.020
R Fusiform 36, -24,-26| 4.79 0.0030 M>F
R Middle frontal 39,57,3 | 4.67 2.0x10 M>F

L: Left R: Right M: Male F: Female

*Significant after Bonferroni correction

Table 5.GM regions showing statistically significant negatcorrelations with ESR2(CA)n in the discovery

sample, family-wise error corrected<0.05.




3.6.1 Replication cohort

We sought to determine whether the same regiorsgicadions were present for each
polymorphism in an independent replication coh@fe replicated many of our findings in the
discovery sample despite the small sample sizehefréplication sample. In the replication
sample, AR(CAG)n length was positively correlatedthwGM volume in the temporal lobes
bilaterally including the medial temporal lobe aftorrection for family-wise error (FWE) on
the cluster level. The orbitofrontal cortex and dtyyalamus were also positively correlated with
GM volume, although the correlation did not survfaenily-wise error correction for multiple
testing. Bilateral corticopontine tract volume wagnificantly positively associated with
AR(CAG)n length in the replication cohort.

We replicated the negative association of ESR1(Tié&pgth with bilateral cerebellar and
hypothalamic GM volume and bilateral superior landinal fasciculus (SLF) and inferior
longitudinal fasciculus (ILF) WM volume and replied the nThe full tables of significant

findings in the replication cohort can be foundsupplementary Information.

Discussion

We found significant, replicable brain volume diffaces associated with three
microsatellite polymorphisms of the sex hormoneeptars that appeared mostly in regions of
brain sex differences identified in prior researdihis is of note because these hormone
pathways are central to the development of brai diferences and point to a possible

mechanism for these differences through their opgasfluences.



AR(CAG)n positively correlated with GM and WM ingiens of brain sex differences. In
adolescent males, it has been shown that in thakelawer AR(CAG)n, individuals with high
testosterone have greater WM volume than those Mithtestosterone (Perrin et al., 2008).
However, in our sample, the effect of AR(CAG)n waesent in both males and females.
Another study showed that lower AR(CAG)n in menhalibw testosterone is associated with
Alzheimer’s disease, (Lehmann et al., 2003) sugugesthat high expression of androgen
receptors in the absence of androgen has detrimeifitats. In Kennedy’s disease, where the
mutation in AR(CAG)n has excessively long repeatsreased androgens are detrimental
(Kinirons et al., 2008). Taken together, the evideruggests that androgen receptor occupancy
may relate to GM volume. This relationship is likéd be mediated by a number of mechanisms,
from a specific detrimental effect of unoccupiedi@gen receptors to the relative influence of
the androgen and estrogen receptors in those egion

Most of the areas of greatest association with ARgfh were also different between the
sexes. WM regions associated with AR(CAG)n wereoregwe found to be larger in females.
The anterior cingulate cortex and the medial prafibcortex was also larger in females. On the
other hand, the temporal and lateral prefrontalesowas larger in males. However, while these
GM regions consistently demonstrated a positiveetation with longer AR(CAG)n, the regions
were not always larger in one sex than anothers Ehnply suggests that there are multiple
possibly opposing influences mediating brain sdfednces that may have different regional
effects.

ESR1(TA)n negatively correlated with GM in the teorgd cortex, anterior cingulate,
hypothalamus and prefrontal regions and WM in tbmiga radiata, cingulum and ILF in the

occipital cortex. Longer TA repeats have been astmt with increased anxiety in men



(Comings et al., 1999) and postpartum depressiamomen (Pinsonneault et al., 2013); as well
as increased psychoticism and irritability in wonf@vestberg et al., 2003) and decreased harm
avoidance in both sexes (Gade-Andavolu et al., R0D8®is would be in keeping with smaller
regional volume in these regions with longer TAaas. ESR1 genotype has been associated
with WM lesions in elderly women (Ma et al., 2008)d GM volume in the cerebellum,
temporal cortex, middle frontal gyrus and occipltdle (Boccardi et al., 2008) and the planum
temporale (Guadalupe et al., 2015) similar to whkas$ found here with ESR1(TA)n. However
we also found an association with the hypothalarand anterior cingulate, regions also
associated with AR(CAG)n.

ESR2(CA)n was negatively associated with GM volumethe posterior insula,
hypothalamus, prefrontal regions, posterior cinguknd fusiform only in females and not in
males. In women, shorter ESR2(CA)n repeats areceded with increased bone mineral density
suggesting higher expression of estrogen beta t@sefichikawa et al., 2005). This would be
consistent with the negative association and tleeiBpity of the association with women. There
is also some evidence implicating presence of IlovEBR2(CA)n in depression in
postmenopausal women (Takeo et al., 2005) and saiegirls (Geng et al., 2007).

Overall, of all the regions of the brain containisgx differences, there appear to be a
subset of common regions sensitive to the influesiceex hormone receptor polymorphism
including the hypothalamus, temporal cortex, prefab cortex, anterior cingulate cortex and
posterior insula.

The hypothalamus has long been thought to be tlh¢ @k brain sex differences.
Conspicuous differences in size have been founthenpreoptic hypothalamic area between

sexes and in homosexual vs heterosexual individigasab et al., 1995). Androgen receptor



staining has been shown to be more intense in hamwomen in the medial mammillary and
lateral mammillary nuclei of the hypothalamus (Femez-Guasti et al, 2000). Kisspeptin, a
peptide shown to be crucial for puberty, is conatl within the anteroventral periventricular
nucleus and the preoptic periventricular nucleughef hypothalamus (Clarkson et al., 2006).
Functionally, it has been shown sexual dimorphisimhypothalamic circuits where tyrosine-
hydroxylase expressing neurons in the anterovepealventricular nucleus control maternal
care and oxytocin secretion in females and suppnéssmale aggression in males (Scott et al.,
2015). There are also significant differences ipdigialamic activation between homosexual
men and heterosexual men (Savic, Berglund, & Lnddst 2005).

The temporal lobes appear to be a key area assdamath brain sex differences and a
number of studies provide strong support for pr@ntrsex hormone influences on this part of
the brain (Janowsky, 2006). Some reports suggsstrfage-related temporal lobe atrophy in
men (Cowell et al., 1994), with higher local coatiglucose metabolism in men than women
(Gur et al., 1995). Given the importance of theferal lobes in the development of Alzheimer’s
and the importance of sex hormones and sex hormeceptor polymorphisms in risk for
Alzheimer’s (Carter et al., 2012, Lehmann et ab0Q3), the association would be relevant for
future studies elucidating this link. The tempolabe has been previously implicated in sex
differences in spatial abilities (Maguire et al999) and visuo-spatial working memory during
mental rotation (Schoning et al., 2007) and prdn@aistosterone has been shown to improve
spatial learning and memory in the temporal andtildobes in rats (Gurzu et al., 2008).

Medial prefrontal lesions have been shown to mosiéyual and maternal behaviours in
rats (Afonso et al., 2007), while estrogen has s&ewn to mediate sex differences in stress

responses within the prefrontal cortex (Shanskyl.e2004). Stress and emotion related activity



in the prefrontal cortex and anterior cingulateteothave been shown to be modulated by the
menstrual cycle (Goldstein et al., 2010) and tonfggaired in premenstrual dysphoria (Comasco
et al., 2014) suggesting that sex hormone influemecehese regions may have implications for
brain sex differences in mood disorders.

Of particular note, the posterior insula was aaerdiound to be associated with sex
hormone treatment in transgender individuals (Spizz al., 2018). The insula together with the
anterior cingulate cortex are core components & shlience network and it modulates
autonomic reactivity in response to salient stinfMenon et al., 2010). Testosterone has been
shown to interact with MAOA genotype in reducingrhaavoidance during financial decision-
making by blunting insula activation (Wagels et 2017)

There are some limitations of our findings that present below. We could not have
controlled for every confounding variable, and algsthe major ones we controlled for in our
general linear model, sex, age, gender, and scayperwe did not account for serum oestrogen
and androgen levels, menstrual cycles, years ofcatiuwn, handedness, and sexual
orientation.We expect investigation into these alalgs to reveal additional interactions with
genotype and phenotype in future studies. Additignave only studied microsatellite
polymorphisms in this study without performing ggmping for relevant single nucleotide
polymorphisms in the candidate genes, which coaldehfurther validated the findings in the
study. Given that the study was performed in athgglopulation, any implications for disease
would require further validation with a relevanttipat population. Another limitation to the
study was that the neuroimages in the replicattonpgde were acquired in a different scanner and
had a relatively small sample size compared todikeovery dataset, which may have had an

impact on the study. Nonetheless, the findinghefstudy represent a significant contribution to



the understanding of sex differences in the braith the contribution of sex hormone receptor
expression. Furthermore, we demonstrate a doset effenicrosatellite length which is a novel
representation of an understudied area of genofamspared to discrete single nucleotide

polymorphisms).
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