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ABSTRACT

The work in the thesis is concerned with the unsteady laminar two-dimensional flow
of an incompressible fluid, at high Reynolds numbers, in the presence of a moving
solid surface which is usually taken to be flat. There are two main aspects, one a
numerical and analytical study, and the other on modeling. The unsteady flow past a
flat plate is examined first, for the case of an impulsively started aligned plate in a
free stream. Numerical solutions are obtained by an apparently novel and simple
semi-implicit method, both for the plate boundary layer flow solution, which is found
to agree with that based on the Blasius and Rayleigh forms, and for the wake solution
beyond the trailing edge including the Goldstein near-wake form. Analysis is also
performed to check the method in some detail, the numerical accuracy of the method
is investigated, and the method is applied to other types of starting motion of the flat
plate.

The method is subsequently extended to configurations modeling (in an apparently
novel way) water flow induced by a flat vertical ship-side which is undergoing
upward and/or downward motions partly submerged in a body of water under air. The
model of the water flow in the downward case is based on the thin, inner, unsteady
boundary layer produced on the ship-side, which is moving in its own plane, and a
thick outer region of potential flow that responds to the small efflux or influx due to
the ship-side boundary layer. The air-water interface is treated as a free surface,
nearly horizontal at the top of the bulk of the water but nearly vertical beside the ship.
The latter part of the free surface adjoins the wake of the ship-side boundary layer,
this wake being found to be identical with that for which flow solutions are given
earlier in the thesis. The junction between the boundary layer and wake, that is the
contact point, typically exhibits no relative slip, while at the junction between the two
parts of the free surface a tiny passive region forms. Similar modeling applies to
upward motions in principle. The Froude number is taken to be large. The numerical
work yields the efflux or displacement function for all finite scaled times and analysis
is performed for both small and large times. The potential-flow analysis is with the

aim of predicting the behaviour with time of the air-water interfaces both at the top

2



and at the side. The effect of reducing the Froude number is also examined. Further
applications are considered, including those of a more general case of an inclined
ship-side surface undergoing motion and a rotating, partly submerged, circular

cylinder.
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Chapter 1

CHAPTER 1
Introduction

1.1  Prologue

The concern in this thesis is with certain viscous fluid flow problems which involve
the high Reynolds number solution of the Navier-Stokes equations for aSsumed
laminar flow. The Reynolds number is defined in the usual way, as a characteristic
velocity scale multiplied by a characteristic length scale and divided by the kinematic
viscosity of the fluid, and it provides a measure of the inertial forces relative to the

viscous forces in the majority of the fluid motion.

One central part of this effort is to investigate the unsteady flow past a flat plate
numerically employing a semi-implicit method. This approach is then extended to a
class of problems associated with the unsteady motion of fluid adjacent to a moving
partially immersed body such as a ship-side in which there exists a two phase air-
water system. These include the consideration of inclined geometries and the
incorporation of gravity effects into the flow problem. For the ship-side analyses,
major consideration will also be given to the development of th¢ upper free and side

free surfaces as well as the associated moving contact point.

Thus the present investigation is based on combining three areas of research, in effect,
namely the theory of high Reynolds number flows (especially unsteady boundary
layers and wakes), predictions for free surface flows, and modeling of a moving

contact point.

The flow problems studied here are inherently nonlinear. The constitutive equations
of the laminar boundary layer in particular are nonlinear coupled partial differential
equations, for which there exist only numerical or approximate solutions in general.
There are families of relatively simple flows which can reduce the boundary layer
equations to forms which are amenable to analysis which does not involve the
solution of partial differential equations. These are the similarity flows of which the

most famous is the Blasius solution (1908). The conditions on the validity of these
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Chapter 1

solutions are still debated, but it can be said that they have been very useful in a wide
number of boundary layer studies. In the cases of present interest, however,

computation is almost unavoidable.

The flow problems here are also unsteady. A classical problem of fluid mechanics is
the determination of the unsteady viscous flow over a flat plate of finite length, which
is aligned with the uniform stream of fluid far from the plate and is impulsively
started from rest (Prandtl 1963, Landau & Lifshitz 1987, Dimitriou 1993). The
unsteadiness in the problem may exist through the varying nature of the constituent
boundary conditions with time or through the unsteadiness of the flow itself
(Schlichting 1970, Telionis 1981, White 1991). The resultant formation of the
boundary layer and the wake region are inherently unsteady in their nature and thus
difficult to model. Consequently, there have been to date relatively few quantitative

investigations of the problem.

The three areas of research referred to above are considered in turn in the following

sections.

1.2  Literature survey
A review of relevant theoretical and numerical investigations that have been
performed is given in the following sections for both the finite flat plate problem and

free surface problems involving motion adjacent to a partially immersed body.

1.2.1 The flat plate problem

The unsteady problem of a flat plate of finite length that is aligned to the mainstream
flow, in which the mainstream velocity is impulsively raised from zero to a constant
velocity U_, has been considered by Blasius (1908), Rayleigh (1911), in order to
ascertain the nature of the growth of the boundary layer. The classical Rayleigh
solution (which ignores the leading and trailing edges of the plate and treats the flow
as if on a plate of semi-infinite length) is independent of the streamwise direction and

gives a square-root temporal growth in the boundary layer thickness.

In his ground-breaking analysis, Stewartson (1951) used the fact that disturbances
travel downstream in the boundary layer at a finite speed of propagation, and then

16



Chapter 1

diffuse instantaneously across the layer, to suggest that the presence of the leading
edge is known to only a finite portion of the flow; that is, the solution at a distance x

from the leading edge is independent of the streamwise coordinate until a time x/U .

For suitable early times or further downstream, the flow behaves as though the plate is
fully infinite, this giving the Rayleigh solution on the plate. (The trailing edge effect is
discussed in sub-section 1.2.2 below). Lam & Crocco (1959), Hall (1969) and Dennis
(1972) confirmed this theory numerically and Watson (in Hall’s (1969) appendix)
showed that for large values of time the solution approaches the steady-state Blasius
form. Stewartson (1973) in a continuation paper developed the structure of the
eigenfunctions which describe the manner in which the dependence on x enters the
flow solution. For finite bodies, the dual effect of leading and trailing edges has also
been considered; for example in Williams (1982) and Williams & Stewartson (1983)
it was shown that under some conditions the effect of the trailing edge can dominate
the initial stages of the motion. This is distinct from the situation discussed in the next
sub-section. Also, an investigation for the small time analytical solution by Elliott and
Smith (1998) addressed the effect of a smooth deceleration of the external stream on
an aligned flat plate boundary layer.

Reviews of other basic unsteady boundary layer flows are given by Elliott and Smith
(1998) and Degani et al. (1998), including flow past an impulsively started circular

cylinder for example and issues of unsteady separation.

1.2.2 Wake solution

The steady basic flow immediately downstream of the sharp trailing edge of a flat
plate can be divided into the flow in a thin viscous wake, within which is contained a
near wake region, and outside the wake region the uniform incompressible main
stream, which continues only slightly disturbed. The flow in the thin wake is
governed by the boundary-layer equations again and in the near wake is described by
means of the asymptotic expansion of Goldstein (1930). (The same structure applies

to the unsteady setting below.)

The typical laminar wake is very unstable in reality. Yet owing to the complex nature

of the unperturbed steady flow, there have been very few theoretical investigations of
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Chapter 1 -

wake instability that employ correct wake features. Most investigators have only
modeled basic flow properties in a rather ad hoc fashion and, for example, have
computed growth rates at a position where the resultant basic profile roughly
corresponds to the physical flow (see in Sato & Kuriki 1961, Mattingly & Criminale
1972, Papageorgiou & Smith 1989). Stability calculations have been performed
however for basic flow profiles which are solutions of the boundary-layer equations
with the appropriate boundary conditions that hold in the thin viscous wake, by
Papageorgiou & Smith (1989). Another aspect, the linear stability of parallel shear
flow to long-wavelength perturbations, has been the subject of a paper by Drazin and
Howard (1966). The paper focused on jet and shear-layer-type profiles, and the results
can be extended to wakes. It was found that the detailed properties of the velocity near
the wake centreline are insignificant then, and that the dependence on the undisturbed
velocity far away from the centreline is more important for such perturbations. Again,
the issue of absolute instability in the wake is a significant one, as reviewed recently
by Smith et al. (2000). Their paper, which contains many references on the subject,
also points to the importance of using realistic velocity profiles rather than ad hoc

ones in the wake.

The study by Elliott & Smith (1998) was one of the first investigations to solve both
the unsteady boundary layer and the unsteady wake flows, in their case in response to
unsteady disturbances in the mainstream flow. This setting, with fully nonlinear

unsteadiness being present in the thin wake, is the one of most current concern.

1.2.3 Free surface analyses, and moving contact points

In order to analyse basic features of the free-surface effects that influence the
frictional resistance on a ship-side, Chang et al. (1994) have investigated the unsteady
boundary layer using finite element analysis. The laminar boundary layer equations
are expanded with the assumption of small amplitude waves, and the second order
equations, which describe the effect of the free-surface, are solved by a simplified
integral method. The ship frictional resistance is found to decrease due to the free
surface wave. The results explicitly indicate that the ship viscous resistance is
dependent on the Froude number, which is defined here as the ratio of the square of
the characteristic velocity scale to the product of the gravitational acceleration (g) and

the characteristic length scale, although some authors adopt instead the square root of
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this quantity to define the Froude number. The present Froude number yields a

measure of the typical inertial forces relative to the gravity effects.

In this thesis we will be applying a simple no-slip condition at the moving contact
point or line, which is the common interface between the air-water and the solid
boundary. As the solid boundary moves downwards into the water, say, it is expected
that in reality the contact point will move relative to the solid boundary, but here we
keep to the no-slip case as a prime one to be explored. 1t is worth mentioning some of
the many other aspects of moving contact points nevertheless. Some general problems
relevant to the ship side analysis and the behaviour of the air-water interface near the
contact line may be found in Foda & Cox (1980), King (1991), Vanden-Broeck &
Tuck (1994), Billingham & King (1995), King et al. (1998), and more recently in
Somalinga & Bose (2000). The study of Foda & Cox examines the spreading on a
water-air interface of a thin liquid film for the situation in which surface tension
gradients drive the motion. (Such capillary effects are excluded from consideration in
the work of the present thesis but are still of much interest, for example see the recent
paper of Kang & Vanden-Broeck 2000). King investigates the moving contact lines in
slender fluid wedges. He finds the asymptotic and numerical solutions for a novel
two-point boundary-value problem and the displacement of the contact point.
Vanden-Broeck & Tuck investigate the flow near the intersection of the free surface
with a vertical wall. The free surface here typically makes an angle of 120° with the
wall and it is assumed that the velocity close to separation is small. A nontrivial local
solution with 90° and 180° contact angles is also computed here by a series truncation.
Billingham and King (1995) analyse computationally and analytically the problem of
a flat plate penetrating an air-water interface for both small and large times using the
boundary integral method. It is found that far-field capillary waves are generated
when the contact angle is close to 90° and, as time increases, the interface becomes
more non-linearly deformed. King et al. (1998) perform an extension of the same
method to the case of an inclined plate/interface system. Similar profiles are again
found. Somalinga and Bose (2000) investigate, using finite elements, the development
of the free surface located between a static wall and a rod entering the fluid in a
dynamic wetting process. General profiles are predicted for displacement and velocity

fields for a numerical mesh which appears to be relatively coarse.
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A similar problem is that of the development of the free surface flow past the bow of
a ship in water of finite depth (Vanden-Broeck 1989). The problem is solved
numerically using series truncation for various values of the Froude number. The
development of the free surface for this geometry is briefly investigated. Concerning
the above and subsequent works, we remark that in the current study the influence of
gravity will be taken to be relatively small (corresponding to the Froude number being
large), but it is interesting also to note some of the properties found in the literature
for non-small gravity effects (for example Vanden-Broeck & Dias 1996, Daboussy et
al. 1998).

For the moving ship-side analysis in which the effect of gravity is included, there
exist comparatively few studies, one of which is Fraenkel and McLeod (1997). Their
analytical study is concerned with the entry of a blunt wedge into a horizontal free
surface. The behaviour of the contact angle and point is investigated. Another
analysis is that by Daboussy et al. (1997). Here the series truncation method is applied
to standard geometry flows under the influence of gravity and predicts the shape of

the free surfaces.

For completeness, we may also mention Howison et al.’s (1991) work in which the
impact response of a wedge entering a free surface is considered in the absence of
gravity. The free surfaces are predicted analytically for various geometries of the

penetrating body.

Finally here, it is interesting to consider numerical values of the Reynolds number and
Froude number that might be encountered in practice. For a ship oscillating in water
where approximately v=0.01 c.g.s. and gravity is 981 cm/s’, the vertical length scale
could be in the range 10 cm to 500 cm and the vertical velocities concerned could be
in the range 50 cm/s to 200 cm/s, say. Thus values of Re are calculated in the range
5x10* to 10”. The range of values of Froude number is 0.005 to 4 for these types of

flow. These numbers are also quoted in chapter 7 later in the thesis.
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1.3 Numerical investigations

A quite common feature of unsteady boundary layer motions is that they often involve
rather problem-specific singular behaviour, either at early times or at specific
locations, for example near a leading edge or a trailing edge, in addition to being
inherently nonlinear. The specific computational approach used in this thesis has been
applied previously to study steady two- and three-dimensional boundary layer flows
involving singular behavior, such as Smith and Timoshin (1996 a,b), and is advocated
also for unsteady flows of the type concerned in this thesis. The other published
numerical methods of most accuracy, applied to unsteady boundary layer flows
different from the ones of current interest, appear to be the Lagrangian approach of
Van Dommelen (1981), Peridier et al. (1991 a,b), Degami et al. (1998) and the
adaptive gridding approach of Adams et al. (1995), although Li (2000) has recently

developed an equally accurate compact differencing approach.

All numerical investigations described in the present study are performed using the
programming languages Fortran 77 and 90. Flow charts for the various programs
included in the thesis are given in the text and the complete program listings at the
end of the relevant chapters. Specific numerical procedures for integration and
differentiation, such as Simpson’s rule and the solution of systems of equations, have
been adapted from Roache (1976), James et al. (1985) and Gerald & Wheatley (1989).

The rates of convergence of the numerical solutions with grid resolution were
investigated by varying the interval sizes of the computational runs for both spatial
coordinates and time. Thus convergence of the various solutions that were found was

established in a manner similar to that in Markatos & Assimacopoulos (1995).

1.4  Structure of the thesis

The thesis is partitioned into two major sections, which reflect the present combining
of the three areas of research mentioned earlier in the introduction, a combination
which appears to be novel. Part A considers the unsteady flat plate problem including
the leading and trailing edge phenomena. Part B then considers the application of the
work of Part A to the case of a downward moving ship-side. The problem is further

generalised to that of an inclined ship-side and also to include the effects of gravity.
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In Part A, a semi-implicit method is applied to allow for the leading and trailing edges
of the flat plate. Chapter 2 considers the unsteady flat plate problem, for which the
velocity profiles in the boundary layer are ascertained with respect to both spatial
coordinates and with respect to time. A numerical grid is defined for finite
differencing. The well-known Blasius and Rayleigh forms of solution hold on the
plate sufficiently near the leading edge and sufficiently far downstream of it,
respectively. In between them a similarity form (Stewartson, Hall) applies in which
the streamwise and normal distances x, y scale with positive powers of the time ¢. As
grid refinement is increased, the solution is found to converge. We choose to tackle
the whole solution by means of a parabolic time-marching technique for a number of
reasons including the desire for a flexible treatment applicable to many different
unsteady flows. Chapter 3 investigates the nature of the unsteady wake. Additionally,
the scaled displacement and skin friction responses along the plate are predicted, and
an investigation incorporating modified boundary conditions for the far-field flow is
made. In the wake there is again a similarity solution for sufficiently small times and
distances, whereas we seek the solution computationally for all times and distances.
As far as we are aware this is the first calculation to include the unsteady wake as part
of the total computation for such an impulsively started motion. In fact the word “is”
should perhaps be replaced by “was at the time of its being done, in about 1997,
because Li (2000) has since performed a numerical study of the flow problem

involved.

Part B considers the problem of the ship-side motion, mainly downwards in an
initially stationary fluid. In the investigation Chapter 4 takes the depth of the partially
submerged ship-side within the stationary fluid (water) to set a definite length scale
for the ensuing motion, which rules out the possibility of a global similarity solution.
The problem is developed from the full governing equations employing suitable
boundary conditions, and the Froude number is taken to be large. Various
transformations are employed in order to develop the analysis and build into the
problem realistic phenomena, with a view to obtaining the influence of the viscous
displacement on the inviscid majority of the water flow. The area of investigation is
divided into three regions which are analysed separately. For each of the regions, the
initial and boundary conditions are developed and incorporated. In Chapter 5, the

various regions are further considered in the complex plane. To aid the investigation,
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a displacement derivative function is developed from the Cauchy-Hilbert relationship.
Modeling of the problem is then undertaken for both small and large times, in which
the displacement derivative function is evaluated. Chapter 6 subsequently uses the
viscous displacement derivative function and mixed boundary conditions for the
development of the solution for the shapes of the upper and side free surfaces. Direct
relationships are found between the upper free and side free surface shapes and the

displacement derivative function.

Chapter 7 contains more advanced considerations of the ship-side flow including the
effect of gravity on the side free surface behaviour. The gravity effect is built into the
problem by re-considering the original boundary conditions and incorporating the
gravity contribution together with the viscous displacement derivative function of the
earlier chapters. The development of the problem is in a similar manner as with
chapter 5. An alternative method is also investigated to find the side free surface
equation including the gravity effect. In Chapter 8, the analysis is then extended to the
general case of an inclined ship-side moving downwards. For this case, the conformal
transformation used is for a general angle of inclination to the horizontal, with the
earlier studied vertical motion being a special case. A general transformation in the
complex plane is developed valid for a range of inclinations to the horizontal, and
consequently a general displacement derivative function is developed. The solution is
then evaluated numerically for a range of angles, and comparison is made with the

vertical case (90°) of chapter 5.

The thesis concludes with a short discussion on other types of configuration and on

upward ship-side motion, along with a summary.
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CHAPTER 2

The flow past an impulsively started
finite flat plate, and its computation

21 Introduction

The subject of this chapter is the incompressible boundary layer over a flat plate that
is started impulsively from rest with uniform velocity. The fundamental problem of
the flat plate of finite length is of most interest to us, including its wake properties, but
we start here with the semi-infinite case in effect. The two cases are identical between
the leading and trailing edge of the finite-length plate anyway, because of the
parabolic nature of the governing equations below. The development of the flow in
time has two simple features, for a given position x along the plate. In the beginning
of the analysis, the flow is identical almost everywhere to that given by Rayleigh for
an infinite plate; but the flow transforms, for large times (i.e. £>>1), to that given by
Blasius for a semi-infinite plate in a steady uniform stream. Stewartson (1951), Hall
(1969), Dennis (1972) and others have studied the problem in terms of similarity
variables. For the current, mainly numerical, study the plate considered was divided
into multiple x-stations and time marching was used in order to obtain a more widely
applicable analysis of the flat plate and related problems. An indication of the
difficulties associated with the problem may be gained from an examination of the

governing differential equations and boundary conditions.

We consider the problem in the rectangular coordinate system x, y, ¢ with lines x=0
and y=0 fixed at the leading edge of the plate, and with the x-axis and y-axis parallel
and normal to the plate, respectively. At high Reynolds numbers Re the unsteady
boundary layer equations apply, at least for some finite time interval. These equations
hold in a number of contexts, including the case of ship-side water motions as will be
investigated in Part B of the thesis. Thus we concentrate (in Part A of the thesis) on a
numerical method of solution of the unsteady boundary layer equations suitable for a
variety of imposed free stream conditions (or imposed pressure gradients) and wall

conditions.
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We attempt to develop a fairly flexible computational solution approach. A quite
common feature of unsteady boundary layer motions is that they often involve rather
problem-specific singular behaviour, either at early times or at certain locations, for
example near a leading edge or a trailing edge, in addition to being inherently
nonlinear. The specific approach used in the thesis has been applied previously to
study steady two- and three-dimensional boundary layer flows involving singular
behavior, by Smith and Timoshin (1996 a,b), and is advocated also for unsteady flows

of the type concerned in this thesis.

The governing equations are the unsteady two-dimensional boundary-layer equations,
for a uniform free stream in the first instance. In non-dimensional variables these may

be written

2114_@:0’ 2.1
ox 0oy
2
GBI 2)
ot ox oy oy
where the variables are defined as:
x:i)u:i,tz_lit_’ \
L U L
Ly } (2.3)
v
Rl/2: R1/21
R T

Here x" and y', ¢', ¥’ and v' are the usual dimensional measures of distance, time,

and velocity, v is the kinematic viscosity, and L and U are a reference length and a
reference velocity, respectively. It is convenient to take L to be a representative
distance from the leading edge, in the case of a semi-infinite plate, and U to be the

velocity of the free stream relative to the plate.

The boundary conditions at the surface and at the outer edge of the boundary layer are
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at y=0, u=v=0 (at the wall), 2.4)
as y - o, u — 1 (outside the boundary layer), 2.5)

in turn. Away from the leading edge, for large v'alues of x and/or for small times 7, we
observe that the flow is equivalent to an impulsively started infinite plate with no
leading edge. Thus setting the derivatives with respect to x in equations (2.1-2.2)
equal to zero, we have there the Rayleigh solution, for

¢
5/ 21, u=uR(§)=72;—‘£e_¢: .d¢ 2.6)
Yy __ Y
where C—ZJ; 5 (vt’)'

The explanation of why this is for / 1, rather than / — o0, is given by

Stewartson (1951) and revolves around the subtle matching (which takes place in a
zone close to x=¢) with the solution holding nearer the leading edge. In general this is
x 2 Ut where U is the velocity of the external flow, and thus the Rayleigh solution
holds for x>¢. Now, for sufficiently large times at fixed x and/or for sufficiently
small x values, setting the derivative with respect to 7 in equation (2.2) equal to zero,

we have the Blasius solution, for
5 50, u=u,(y[Jx), @7)

o )

There is no known analytical method for the direct solution of equations (2.1)-(2.2)
subject to the boundary and limiting conditions (2.4)-(2.7). However, the number of
independent variables may be reduced from three to two as in Stewartson (1951) and
Hall (1969). We may consider the new independent variables

§=2L . (28)

"t

T=

8~
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v
with V=—, 29
7 29
which yield a similarity solution.
Equations (2.1) and (2.2) then become
s, 7o 9V . (2.10)
oS or &S
ou (Su ou o*u
1-Tu)—- -V |—==—, 2.11
-TWor (2 )as as? @10

respectively. Here S is the Blasius variable, while the Rayleigh variable is given by

, and the boundary conditions can be expressed as functions of only 7" and

S
AT
S. The equations (2.10) and (2.11) therefore may be solved numerically for # and V in
terms of 7 and S alone, as has previously been addressed by Hall (1969). A difficulty
with the numerical task in the above S-7 formulation should be noted, however. It is
that the property of parabolic dependence (in the original system (2.1)-(2.2)) is
observed in a sense, because of the expanding coordinates associated with the S-7
formulation; the problem (2.10)-(2.11) is parabolic in the positive T direction if
u < T but parabolic in the negative T direction if u > 7", due to the coefficient (1-
Tu) in (2.11). Hence the overall problem in (2.10)-(2.11) is elliptic in effect, and this

requires multiple sweeping in T for instance.

2.2 Entire flat-plate problem

In contrast with Hall’s (1969) approach for the semi-infinite plate, an outline is given
in this section of the numerical method used for directly solving equations (2.1) and
(2.2) subject to the boundary conditions (2.4) to (2.5) and the initial state u=1,v=0
everywhere, rather than the similarity form of (2.8)-(2.11).

The flow problem (2.1)-(2.2) is parabolic in the positive x direction provided that u is

positive or zero, as well as being parabolic in time . We assume the general linear

approximation ¥ — = wu—u) as the basis of the semi-implicit numerical method, as

ox
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suggested by Smith and Timoshin, along with a similar approximation for v; and
y

du ) . . .
_, to determine the unknowns u, v at the current station x and time 7 The velocity
i

components are denoted by w, v at the previous %-station, x-4x, for the current time ¢,

and by u at the current jc-station, x, for the previous time, #-4¢. These values are
assumed known, as represented in figure 2.1. Additionally, Ax and At are the small
streamwise and time steps, respectively. The approximation is first order in %
requiring tiny %-steps Ax for accuracy, but second-order accuracy in y will be

imposed subsequently. For now the differential form in terms of'y is retained.

velocity components velocity components
at previous x-station at current x-station
velocity components
Incoming flow for current time
velocity component
M{XJ - for previous time

current x—s/gation ofanalysis

Figure 2.1 Velocity components for flat-plate analysis

Thus equation (2.2) becomes

_ A
L u\  du d'u 2.12)

essentially an equation for u alone at a given x station and given time ¢

Next, the central differencing representations iny are given by
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Ou _uGo)ok)= 20t LR+ UG =2B) (53
oy (Ay)

» ou_ uli, . b) = u(ij =26 (2.14)
dy 2Ay

where ij,k are the step counters for the x and y coordinate directions and time,

respectively.

Equations (2.13-2.14) are applied to equation (2.12), giving

(u(.i,j—l,k)—u(i,j—l,k —1))”(,._ ]’j_l’k)(.u(.i,j—l,k)—u(.i—l,j—l,k))

A Ax (2.15)
i—1, .k u(i, j,k)—u(i,j—2,k) _ u(i, j,k)—2-u(i, j —21,k)+u(1,j—2,k)‘
2Ay Ay

This is regarded as an equation for the u values at the x-station i. The velocity
component v may be obtained afterwards from equation (2.1) which ts written as
ov —(u-u)

or, using the values of # and # averaged over J,

oy Ax

[v(i,j,k)—v(i,f“l’k)J _

Ay
1 (u(i,j,k)—u(i —1,j,k))+(u(i,j —LE)-u(i-1,j ‘L")) (2.16)
2 Ax Ax | |
This implies that

v(i, J, k) = ——;—(—i—)’:)(u(i,j,k) —~u(i-1L j,k)+u(i,j-LEk)-u(i—-1,j- l,k))

+v(i, j—1k). 2.17)

The initial and boundary conditions for the system are as follows. At the first z-step,
1e. t=Ar, we have u(i,j,k—1) equal to unity everywhere, corresponding to the
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undisturbed uniform stream. Likewise at the first x-step, i.e. x = Ax, we have # equal
to unity and ¥ equal to zero. The conditions at the wall, j=1, are defined at each x-
step as u =v =0 at y = 0 (the no-slip wall condition), and » is defined as unity, the
velocity of the far-field flow, for y at j = jmax, corresponding to the furthest value of y
in the far-field, in view of (2.4), (2.5).

The unknown variables in the tridiagonal system of equations (2.15) for

2< j<(ymax-1) are u(ijk), u(ij-1,k), u(ij-2,k). The solution may be found as

follows, with equation (2.15) expressed in the form

a-u(ij,k) +bu(ij-1,k) + cufij-2,k) =d. (2.18)

Thus, collecting the coefficients of the three unknowns, equation (2.15) becomes

o (vi-1, k) 1 . 2 1 u(i-1,j.k)
k - + -1k TR
u(i, j, )[ o u(i, j—1,k) ~

2Ay Ay Ax
- . C o . . 2
+ll(i,j—2,k) _V(l laj’k)_ 12 = u(la.]ak 1)+[u(l 1>Jak)] ] (219)
2Ay Ay At Ax

2.2.1 Solution by Gaussian elimination for the flow velocities

To solve equation (2.18) or (2.19), for a given value of the x-station counter / and time
counter k£, we use Gaussian elimination. The general form of the system of n-
equations, which incorporate the boundary conditions for the far-field flow and the

wall, is given as

(1 0 0 0 o 0) [ w ) (6 )
C2 b, a, 0 coorecenrenes Uy 4,
0 Cs b, 8y e 0 s _ & | @
0 G Do e | | du
. 0 0 1] | w L1
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with passive subscripts having been dropped.

Thus we have the augmented matrix formulation

1 0 0 O rereeennnn 0 i 0
]
C, b, a, 0 -coevieeeeee § d,
|
9 C3 b3 as -0 E d3 (221)
0 O Cp b n-1 a‘n-l E d n-1l
]
g 0 0 0 0 1 1
g ~
Ha 4 0 0 «vveeveeennnn 0V my
]
i
0 U2 a, 0 --evvveveeee 0 E T,
]
0 0 W & 0 |l m (2.22)
i : : : i
0 0 0 0 Har 8w | T
o o o o o 1 | 1
where w=b-(a, ¢/ 1.,

7= di— (s 6/ W)
Also we note that m;=a,=0and u,= 1.

Hence the velocity for a typical value of j is given by u,=(m,— &, u..,) / w,

2.3  Numerical solution
The flow chart for the structure of the computer program to evaluate the u velocities

at i,j,k is given below.

The local system of equations for u,v at the height counter ; above the flat plate is
thereby solved at a given x-station for the time counter k. After the velocity
components %,v at j have been evaluated the routine moves on to the next x-station.
Once all the x-stations have been traversed, the procedure time-marches to the next
value of the time counter k+1. This describes the overall semi-implicit marching

numerical method. An investigation of how well the method performs (especially
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concerning its accuracy) will be described below by comparing its results with the
Hall similarity solution and observing the grid refinement effect on the rate of

development of the solution, in order to estimate adequate grid sizes.

Define storage matrices for u(i j,2)
& v(ij,2), and variables i j,k.
Define 2D coefficient array and a(j), b(j), c(j) and d(j) vectors

v

Define increment sizes dx, dy & df and set all
values of storage and coefficient matrices to zero

v

Implementation of initial and boundary conditions

I

— i Nested loops for values of time k and x-station i

I

Calculate values of non-zero a(j), b(j), c(j) & d(j)
coefficients for local equation system for each row j

v

Solve local equation system by Gaussian elimination
and obtain u(j) by back-substitution and v(j)

!

March to next x-station and then to next time step on
completion of all x-stations

@put results for each time step and x-st@

PROGRAM 2.1

Overall the advantages of the semi-implicit approach appear to be the following: it is
relatively easy to program and to modify; it is fast in computer time for reasonable
grid sizes; it can be made second order accurate in both x, ¢, through the double-
stepping procedure of Smith and Timoshin (1996), through three-point backward

differencing for the x-derivatives, or through iteration on the current u, v values to
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incorporate non-linearity; unusually for a numerical scheme for a partial differential
equation, the approach can be checked in quite some detail by analytical means (see
below in sections 2.4-2.7); and finally it is flexible in terms of alterations in the
boundary conditions, for example in the free stream or at the wall or wake centre-line
(see Chapter 3).

2.3.1 Results and discussion

Comparing the results with the predictions of Hall (1969), convergence to the
similarity solution of Hall occurs after fewer time steps for a finer grid, i.e. for smaller
values of the time and streamwise intervals, A7 and Ax, respectively. The variation of
the surface shear (?‘—)S ) in particular with normalised time 7" (equation 2.8) is shown
in figures 2.2-5, together with Hall’s predictions, for computational runs employing
various levels of grading with respect to time. The numbers of time-steps thus chosen
for examination of convergence of the solution were between one and thirty. The
profiles are presented for runs performed for three values of Ax, to assess the level of
grid refinement in the x-coordinate direction, in figures 2.3-5. Hall found that by 7=4,

the transition from Rayleigh to a steady-state Blasius flow regime was completed.

(%)
LAY

/r—-— Rayleigh
/ o Blasius

T=tlx
Figure 2.6 General form of the Hall solution

As more time steps are employed in the runs, the solution converges more closely to
the Hall solution, which is of the approximate form shown below in figure 2.6. As a
general observation, the major part of the convergence to the Hall solution occurs

over the first five time steps. By employing a larger number of time steps in the run,
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the rate of convergence increases. By employing smaller values of Ax, the rate of
convergence to the Hall solution, with respect to number of time steps, was faster and
surprisingly attained with fewer-time steps. For example, when Ax is 0.001, 30 time
steps are required for fairly adequate convergence towards Hall’s solution, whereas
for Ax equal to 0.0002 only 4 time steps are required for a similar level of
convergence. It will also be observed that even for a single time step, the general two-
part form of the solution curve is obtained. Thus the rate of convergence in terms of
the number of time steps appears to be a function of the streamwise step. As 7 tends

to infinity, we notice that the profile is more or less constant.

The results altogether seem to capture the correct form of the solution qualitatively,
and quantitative agreement also emerges if the grid taken is sufficiently refined. Grid
refinement was performed in, for instance, the x-coordinate direction, while keeping
the same level of grid refinement in the y-coordinate direction and with respect to
time. Additionally, unequal steps were taken for the grid size refinement in order to
check for convergence of solution more efficiently. The velocity computed was
monitored at three given locations whose positions were fixed. Refinement with
respect to x and ¢ yielded negligible changes in the values of », as shown in figures 2.7
and 2.8. Figure 2.9 shows grid refinement with respect to y, where the results show
steady convergence for reducing Ay. This suggests that the solution is well converged

with respect to the current sizes of Ax, 4y and Ar.

2.4 Analytical properties at first x-station
2.4.1 The near-Blasius solution (initial time interval)
It is interesting to reconsider the general finite-difference equation (2.12) at the point

x=Ax and t=At. There, # =u =1 and v = 0 as stated earlier. So we have

Uy~ 2w +u,
h2

- Qzuj = —Q2 , (223)

for j = 1 to 100 to match with the computational program, where 0° = (i+£;)

and ~ = Ay . This set of difference equations can be solved exactly.
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The general solution is
u, = A2 + BA, +1, (2.24)

where A; and A; are the roots of the characteristic equation
A -Q2+Q*h)A+1=0. (2.25)

One root, A; say, is greater than 1 and the other, A, is less than 1. In order to compare
with the numerical results, we employ the boundary conditions at the wall and at
infinity. In doing this, we obtain 4 = 0 and B = -1. The value of QZ is found to be 150

from Q% = —1-+L with Ar=0.02 and 4x = 0.01, and the value of Ay taken is 0.1.
At Ax

So the two roots are 4; = 3.186 > 1 and A, = 0.314 < 1. Then equation (2.24) yields u;
= 0.686 which agrees exactly with the computed result at the first x-station /=1 and at

J=1 in the numerical results. In addition, the implied dependence on % ;2 and Vx‘ /2

in (2.23)-(2.25) agrees with the known similarity form: see (2.8)-(2.11).

2.4.2 The Rayleigh solution for x>t

For x>t, we have from equation (2.12) the approximation

u-1_ou (2.26)

and the far-field and wall conditions apply, namely: » tends to unity as y tends to
infinity, and u is equal to zero when y is equal to zero.

Equation (2.26) implies the second order differential equation
&u

> uQ? = -0?, (2.27)

where Q% = i now.

The general solution is given as before by u = A4/ + BA} +1, and as before we find
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A =0, B=-1, Substituting in the numerical values we have 0® =50 with 4r = 0.02,

and Ay = 0.1 again, which gives the values A; =2(>1)and A,=0.5(<1). So the solution
yields # = 0.5 atj = 1, which agrees with the numerical results for the Rayleigh range

obtained by the above computations. The implied dependence on % /2 is also in

agreement with the known exact form of solution noted just after (2.11).

2.5 Analysis at the second x-station (x = 24x)

Following the analytical solution obtained in section 2.4 for the first x-station of the
plate at x = Ax, we see that the two computational programs above yield identical
values. We now consider the possibility of an analytical based solution for the second
x-station at the point x = 24x. This is done for two reasons: first, for the sake of
comparing with and checking the numerical approach of sections 2.3, 2.4; second (in
principle), for examining from an alternative viewpoint the double-stepping procedure
of Smith and Timoshin (1996), which is advocated as a means of obtaining second-
order accuracy in x. As before, we initialise the values of # and v, for the previous x-
station. For # we use the solution for « derived already at the first x-station (section

2.4) and for v we then use the continuity equation. Hence u=1-¢?, # =1 and

Oy

u, = over the first step. Thus continuity gives

x

y= :(ﬁézx—‘!l (2.28a)

using v = 0 at y = 0, at the first x-station.

In addition, after some operations in equation (2.12), we obtain a differential equation

of the apparently unusual form

V%+(a-be'@ Yu = % (2.28b)

2 >
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for u at the second x-station, where a = Qz and b = 1/4x, while v is the right-hand
side of (2.28a). We next transform equation (2.28b) into a form that is susceptible to

solution.

Setting s = ¢"? we find again after various operations the form

sSu +s(1+K-Kshu,—(1-Ks)u=0, (2.29)

where the constant X =5/Q?, which is a parameter dependent on the Ar and 4t

intervals, and the homogeneous version of (2.28b) is addressed first seeking to obtain
a form of the equation that is susceptible to solution, we perform the following series

of manipulations. By further setting # = 4B, we obtain the equation in the form

s?(AB"+24'B'+ A'B)+ s(1+ K —Ks)Y(AB'+ A'B)-(1-Ks)A4B=0. (2.30)

To solve equation (2.30), we choose B to eliminate the terms containing A, and we
thus define B as

B= S—(1+K)/26K7/2- (2.31)

Inserting B into equation (2.30), we therefore obtain the standard form for A.

K?3s?

s2A"+A(— +(3+K)—I§£—%(3+K2)J=0 (2.32)

Of more practical use subsequently (see sections 2.5.1, 2.6 below), however, is the

non-homogeneous counterpart of (2.29), namely

stu, +su,(1+K - Ks)—(1-Ks)u=-1+2Ks— Ks?, (

N
o
L¥S)
A —
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which is subject to the conditions %(1) =0 and #(0) =1, for u(s). The value of X lies

between 0 and 1. The homogeneous version then is the same as equation 22.6.17 of

Abramowitz and Stegun (1972). Using their standard solution, we obtain

e 2 @2 @ (1) (2.34)

where Ln'”(x) is the generalized Laguerre polynomial and a is a known constant.
On the other hand, we need a particular integral for the right hand side terms. For the

—1+2Ks terms, a particular integral is z=1+s, but there seems to be no straightforward

particular integral for the — Ks* term. We return to (2.33) shortly.
So instead, for general values of K, we next solved equation (2.33) numerically using
a tri-diagonal system as in section 2.2.1. The results are given in section 2.6 for

various values of XK.

2.5.1 Analytical solution for small X

An investigation of an analytical solution of (2.33) valid for small X is useful here.

Equation (2.33) becomes, for small X,

SPu, +su,—u=-1, (2.35)

subject to the conditions #(1) =0 and u#(0)=1.

The solution is w=As+Bs™ +1. Then #(0)=1 implies that B = 0 and «(1)=0
implies that 4 = -1. Therefore we have the simple result # =1-s. This agrees with

the trends of our numerical results in the figures below for decreasing X.

2.6  Computational results and discussion for x = 2Ax
The program used for the evaluation of u at 2Ax is identical to Program 2.1. The only

differences arise in the use of the height variable s (=(j-1)4s) for the evaluation of the
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coefficients of the velocities in (2.33), rather than as in equation (2.19). The results for

the second x-station are then presented in figures 2.10-2.12.

For various values of jmax = 100, 21, 41, 81, and interval parameter K, the results
show that as X is increased from 0.05 to 0.9, the non-linear nature of the velocity
profile becomes gradually more emphasised. This is shown by the results for a given

value of jmax, and varying X.

To add to this, we observe that the steady Blasius solution can be tackled similarly.
Here Az — o in effect. So OF becomes 1/Ax. By solving equation (2.24) and also
‘employing (2.25) to evaluate A, which was found to be 0.382, for Ax = 0.01 and Ay =
0.1. The calculated values of velocity »; are found to be »; = 0.618, u, = 0.854 and w3 =

0.944 which agree exactly with those found computationally.

The computed value of the scaled wall shear with x, for the current grid spacing, is
given in figure 2.13, together with the true Blasius values. Fair agreement is observed

for values of x > 0.03.

2.7 The modified Blasius solution
For another analytical based comparison with the numerical work, we employ a
Blasius ‘modified’ solution for the steady-state solution as x — 0. This is defined as

follows.

If # = f'({), where ¢ = y/x"?, then

fm+ Jg =0, (2.36)

together with the conditions

f(0)=f(0)=0 (2.37a)
and
f@)=1. (2.37b)
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Here «a is taken to be a finite positive constant, representing a modification of the
classical Blasius case which has a being large in effect. Here, the parameter a is the
wavenumber of the disturbance when the wake thickness is scaled out (Papageorgiou
& Smith 1989), |

Numerical integration shows that A = f"(0)=0.332... when a>>1 [see the Blasius
case in Jones & Watson (1963)]. On the other hand, when we select a <<1, we
expect /" =0 from (2.36) to leading order since the range of ¢ is then small. So we

may anticipate that then
f=a¢2+b¢ +¢, (2.38)

with unknown constants &,5,é. From equation (2.37a) we see that ¢ =0 and h=0.

Also equation (2.37b) requires 2aa =1 and thus & is determined as

A~ 1
Y =—. 239
“ 2a (239
So finally we obtain, using (2.39) in (2.36), in prediction that
. |
ff0)~— asa—>0. (2.40)
a

Equation (2.40) gives the Blasius modified behaviour for small ¢ and has been
included in program 2.3 for comparison. Figure 2.14 shows the variation of f"(0)
with a for values of & up to five, from our numerical solution of (2.36)-(2.37b); the
numerical solutions at these & values are joined together simply by straight lines. The
Blasius value 0.332... for f"(0) is closely approached for a near 5. For small a the
asymptote (2.40) is remarkably close to the numerical results, due to the nature of the
resultant series, thus providing an encouraging check on the latter. In fact (2.40)
apparently works well for a as large as 2 or more. Figures 2.15-18 present the

variation with £, for a range of values of a, of f"(the shear function), f(the
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velocity function) and f (the stream function). The emergence of the simple forms

implied in (2.38)-(2.40) for these profiles is evident for & values below about 3.

2.8 Fortran 77 and 90 programs and figures
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C khkhkhkhkhkkhkhkhkhkhkhkhkhbhkhkhkhkhkhkhkhkhkhbhhhkhkdthkkhdhhhkdktk
C PROGRAM TO SOLVE 2-D PROBLEM FOR FLAT PLATE

c by Dimitrios P. Papadopoulos

c JULY 1998
C
C

khkdkkdhkhkhkhkhkhhkkkkhhkhhkhhkkkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhkhhkkkkhk

Define variables
program plate
INTEGER 1i,j,k,imax, jmax, kmax,ntmax,nt
REAL dy,dt,dx, f,x
C Define 3D storage arrays for computed values of u(i,j,k) & v(i,j, k)

REAL u(102,102,2),v(102,102,2),s8s(102)

C Define 2D coefficient array and u(j) & d(j) vectors which form the"local”
C system of equations for solution at each x-station -

REAL coefficient(1051,1051),dvector(1051)
REAL a(1051),b(1051),c(1051),d4(1051),mi (1051),pi(1051)
INTEGER col

C Define increment sizes and storage-matrix dimensions

dx = 0.01
dy = 0.1
dt = 0.02
imax = 20
jmax = 20
kmax = 2

ntmax= 1950

***************************************************

IMPLEMENTATION OF BOUNDARY CONDITIONS *

dkhkkhkkhkhkhkhkhkkhkkhhkhkhkhkhkhkhkhhkhkhhkhhkhhhhhhhkhkhkhkhrhhhkhdkhkkkhkk

nan

DO 42 k
DO 41 j
DO 40 i

1,kmax,1
1,jmax,1
1,imax,1

nounu

c Un-influenced flow field (before introduction of plate)
IF (k.EQ.1) u(i,j,k) = 1.0
Cc Flow field at first x-station (at leading edge of plate)
IF (i.EQ.1) THEN
u(i,j, k) 0
v(i,j, k) 0
ENDIF

1.
0.

C Flow field at the wall (non-slip condition)
IF (j.EQ.1) THEN
u(i,j,k) = 0.0
v(i,j,k) = 0.0
ENDIF
u(l,1,k) = 1.0
Cc Flow field outside boundary layer region

IF (j.EQ.jmax) u(i,j, k) = 1.0

2.1 [ Program to solve 2-D problem for flat plate.
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40 CONTINUE

41 CONTINUE

42 CONTINUE

C *****************************f****************

c ASSEMBLE LOCAL SYSTEM OF EQUATIONS *

C khkhkhkhkhkkkhkhkhkhkkkhkhhkhkhhkhkhkhkhkhkhhkkhkhhkhhhkhkhhkhkkhkkhkhkkkik

C nested loops for each value of time and x-station

k=2
DO 200 nt=1,ntmax,1
DO 90 i = 2,imax,1

C Set all terms of coefficient matrix equal to zero

DO 69 j=1,jmax,1
DO 68 col=1,jmax,1

coefficient(j,col) = 0
68 ‘CONTINUE
69 CONTINUE
cC calculate values of non-zero coefficients - row by row (j)

DO 70 j = 1,jmax,1

IF. (j.EQ.1) THEN
dvector(j) = 0

coefficient(j,j) = 1.0
ENDIF
IF (j.EQ.jmax) THEN
dvector(j) = 1.0
coefficient(j,j) = 1.0

ENDIF

IF ((j.NE.1l).AND. (j.NE.jmax)) THEN

a(j) = (v(i-1,j,k)/(2*dy)) - (1/(dy**2))

b(j) = 1/dt)+(u(1 1,3,k)/dx) + (2/(dyr*2))

c(jy= (- (1/(dy**2))) - (v(i-1,3,k)/(2*dy))
d(j)=((1/dt) * u(i,j,k-1)) + ((u(i-l,j,k)**Z) *(1/dx))

coefficient(j,j-1) = c(j)
coefficient(j,j) = b(j)
coefficient (j,j+1) = a(3j)
dvector(j) = d(3j)

ENDIF

70 CONTINUE

C khkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhhkhhkkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkkhkhkhhhkhkkkkkkkkkkkd
c SOLVE SYSTEM OF EQUATIONS WITH GAUSSIAN ELIMINATION *
C ********************************************************************
c we define values of transformed coefficients row by row (j)
C first, evaluate mi and pi for each row (j)

mi (1) =1

pi(1)=0
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DO 75 j=2, (jmax-1),1
mi(j)=b(3j)-((c(j)*a(j-1))/mi(j-1)}
pi(3)=d(j)-((c(3)*pi(3-1))/mi(j-1))

o second, insert mi and pi for each row(j) and also c(j)=0

coefficient (j,j-1)=0
coefficient (j,j)=mi(j)
; dvector (j)=pi(j)

: 75 CONTINUE

c solve for u(j) by back substitution
u(i,1,k) =0

DO 80 j=(jmax-1),2,-1
u(i,j.k)=(pi(j)-(a(id*u(i,j+1,k)))/mi(j)

80 CONTINUE

C calculate v(j)
v{i,1,k) =0

DO 85 j=2,jmax,1
f =-((d)r/ (2*dx)) * (u(i,j,k)-u(i-1,3j,k)+u(i,j-1,k)-u(i-1,j-1,k)))

v(iljlk) = (v(ilj_llk)) + £

85 CONTINUE
90 CONTINUE
FE I o Copy values from k=2 to k=1 and print for current time step nt.

do 102 i=1l,imax,1
do 101 j=1,jmax,1
u(i,j,1)=u(i,j,2)
V(iljll)=v(ilj12)
101 continue
102 continue

if ((nt.eq.3).or.(nt.eq.20).or. (nt.eq.120) .o0r.
(nt.eq.320) .or. (nt.eq.520)) then ,

do i=2,imax,1

x=(i-1)*dx

ss(i)=( ((4*u(i,2,2))-u(i,3,2)) ) / (2*dy)
C * (X**0.5)

WRITE (6,*)' x=',x,' ; ss=',8s8(i) ,' time', nt
WRITE (6,*) x , ss(i)

nn

enddo
C WRITE (6,*) '
endif
200 CONTINUE
C Print out values for u(i,j,k) and v(i,j,k) at each time step & x-station

DO 225 i=2,imax,1
k=2

DO 210 j=jmax,1,-1
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210

220

225

240

WRITE (6,%*)' u

CONTINUE

WRITE (6,*)'

DO 220 j=jmax,1,-1

1

WRITE (6,*)' v ',

CONTINUE
WRITE (6,*)"

CONTINUE

end

Jo

i
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khkhkkhkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhhhkhhhkhhkhhhhhkhkhhkhhhkrhhbhrhhkhkhk bbb xx

C

C PROGRAM TO FIND RESULT AT THE SECOND X-STATION
C by Dimitrios P. Papadopoulos
C
C

khkhhkkkhkhkhkhhhkhkhkhhkhkhhkhkkhkhkhkhkdhhbhkhkhhkhhkrhhhhhkhhdhkhhhhhkhkkhkhrhkhhhk

Define variables

INTEGER i,j,.k,imax, jmax, kmax
REAL dy,dt,dx,s,Q,kay

C Define 3D storage arrays for computed values of u(i,j,k) & v(i,j, k)
REAL u(701,701,2)

C Define 2D coefficient array and u(j) & d(j) vectors which form the"local"
c system of equations for solution at each x-station :

REAL coefficient (701,701),dvector(701)
REAL a(701),b(701),c(701),d(701),mi(701),pi(701)
INTEGER col

C Define increment sizes and storage-matrix dimensions

dx = 0.001
dt = 0.002
imax = 2
jmax = 51
kmax = 31
dy = 1.0 / (jmax-1.0)
kay = 0.9
Q = 12.47
C Set all values of storage-matrix equal to zero
10 DO 32 k = 1,kmax,1
DO 31 j = 1,jmax,1
DO 30 i = 1,imax,1

u(i,j, k) = 0.0

30 CONTINUE
31 CONTINUE
32 CONTINUE
C khkkkhkhkhkhkkhkhkkkkhkhkkhhkhhkhkkhkkhkkhkhkkhkkhkkhkkhkkkhkhkkhkhkhkkhkhkhkkkhkkiik
c IMPLEMENTATION OF BOUNDARY CONDITIONS *
C khkhkhkkhkhkhkkhkkhkkhkhkhhkkhkhkhkhkhkhkhkhkkkhkhkhkkhkhkkhkhkkhkhkkhkkkhkhkdhkkhkitdk
DO 42 k = 1,kmax,1
DO 41 j = 1,jmax,1
DO 40 i = 1,imax,1

C Un-influenced flow field (before introduction of plate)
IF (k.EQ.1) u(i,j, k) = 1.0

C Flow field at first x-stations (at front of plate)
IF (i.EQ.1) THEN ’
u(i,j, k) = 1.0
ENDIF

C Flow field at the wall (non-slip condition)
IF (j.EQ.1) THEN

u(i,j,k) = 1.0
ENDIF

2.2 Program to find results at the second x-station.
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C Flow field outside boundary layer region
IF (j.EQ.jmax) u(i,j, k) = 0.0

40 CONTINUE

41 CONTINUE

42 CONTINUE

c Ak hkkkhkhhkhhhhhkkhkkkkkkhhkhhhkkhhdkkkkkhkkkhhh*
c ASSEMBLE LOCAL SYSTEM OF EQUATIONS *

C Ahkkkhkkhhkkhhhhhhhkhkhhhhkkhhhkhhkkk kb kkkkkkkk*

C nested loops for each value of time and x-station

DO 100 k'= 2,kmax,1
DO 90 i = 2,imax,1

C Set all terms of coefficient matrix equal to zero
DO 69 j=1,jmax,1l
DO 68 col=1,jmax,1
coefficient(j,col) = 0

68 CONTINUE
69 CONTINUE

C calculate values of non-zero coefficients - row by row (j)
DO 70 j = 2,jmax,1

IF (j.EQ.1) THEN
dvector(j) = 1.0

coefficient(j,j) = 1.0
ENDIF
IF (j.EQ.jmax) THEN
dvector(j) = 0
coefficient(j,j) = 1.0

ENDIF
IF ((j.NE.1).AND. (j.NE.jmax)) THEN

s = (j-1)*dy

a(j) = ((s**2)/(dy**2)) - (s*(1 + kay -(kay*s))/(2*dy))
b(j) = ((kay*s)-1-((2*(s**2))/(dy**2)))

c(j) = ((s**2)/(dy**2)) + (s*(1 + kay -(kay*s))/(2*dy))
d(j) = ((2*kay*s)-1-(kay*(s**2)))

coefficient(j,j-1) = al
coefficient(j,j) = b(j)
coefficient (j,j+1) = c(
dvector(j) = d(j)

ENDIF

70 CONTINUE

hkhkkhkkhkkhkhkhhkhhkkhkhhkkhdhkkdkkhkhkhkhkhhkhkhkhkkhkhkkhkhhkkkhkhkhkhkhkhkhkkhkkkkkhkhkhkhkhkhkhkhkdhkkkkkk

SOLVE SYSTEM OF EQUATIONS WITH GAUSSIAN ELIMINATION *

hkkkhkhkkhkhkhkhkhkhkdhkkhkhkhkhkhkdkhkdkhkhkhkhkhkhkhkkkdkhkkdkkkhkkhkkhkhkhkdkhkkkkkhkhkkkkkkkhkhkhkhkkkhkhkkk

nnan
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C we define values of transformed coefficients row by row (3j)
C first, evaluate mi and pi for each row (j)

mi(1) =1

pi(l) =1

mi(2) = b(2)

pi(2) = d(2) - a(2)

DO 75 j=3, (jmax-1),1

mi (j)=b(j)-((a(j)*c(3j-1))/mi(j-1))
pi(j)=d(3)-((a(j)*pi(j-1))/mi(j-1))

C second, insert mi and pi for each row(j) and also.a(j)=0
coefficient(j,j-1)=0
coefficient (j,3)=mi(j)
dvector(j)=pi (j)

75 CONTINUE

C solve for u(j) by back substitution

DO 80 j=(jmax-1),2,-1

u(i,j, k)=(pi(j)-(c(j)*u(i,j+1,k)))/mi(j)

80 CONTINUE
90 CONTINUE
100 CONTINUE

C Print out values for u(i,j,k) and v(i,j,k) at each time step & x-station

DO 130 k=2,kmax,1
DO 125 i=2,imax,1l

WRITE (6,%*) ' !

WRITE (6,*)' x-station ', i ,° time ', k
DO 110 j=jmax,1,-1
WRITE (6,*)' u ', j ' u(i,j.k)

110 CONTINUE

WRITE (6,*)"*'

125 CONTINUE
130 CONTINUE
140 end
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C**;l'*****************EI,_ASIUS _‘Drogram****************************i***

MODULE kind

IMPLICIT NONE :
INTEGER, PARAMETER :: dp = SELECTED_REAL KIND(8,30)

END MODULE kind

MODULE similarity_solution

USE kind

IMPLICIT NONE

INTEGER, PARAMETER - :: kbot = 0, ktop = 2048

REAL (KIND=dp) , PARAMETER:: etabot = 0.0_dp, etatop = 5.0_dp

REAL (KIND=dp) , PARAMETER:: ubot = 0.0_dp, utop = 3.0_dp, psibot = 0.0 dp
REAL (KIND=dp) :: deta -
REAL (KIND=dp) , DIMENSION(:), ALLOCATABLE _:: eta

REAL (KIND=dp) , DIMENSION(:), ALLOCATABLE :: delta eta

REAL (KIND=dp), DIMENSION(:,:), ALLOCATABLE :: £, fv

END MODULE similarity solution
PROGRAM main
IMPLICIT NONE

CALL allocate_similarity solution
CALL set_similarity solution
CALL write data files

END PROGRAM main

- SUBROUTINE allocate_similarity_solution

USE kind

USE similarity_ solution
IMPLICIT NONE

INTEGER :: k

ALLOCATE ( eta(kbot:ktop) )
ALLOCATE( delta_eta(kbot+1l:ktop) )
ALLOCATE( f (kbot:ktop,1:3) )
ALLOCATE( fv(kbot:ktop,1:3) )

deta = (etatop - etabot)/(REAL((ktop-kbot),dp))

DO k = kbot, ktop

eta(k) etabot + REAL ( (k-kbot),dp) *deta

END DO

DO k = kbot+l, ktop

delta_eta(k) deta

END DO
END SUBROUTINE allocate_similarity solution
SUBROUTINE set_similarity solution

USE kind
IMPLICIT NONE

2.3 Program to evaluate the Blasius modified behaviour for small « .
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CALL newton(0.0_dp)
END SUBROUTINE set_similarity solution
SUBROUTINE newton(wall_shear)
- USE kind

USE similarity solution
IMPLICIT NONE

REAL (KIND=dp) :: wall shear, phi, phi_dashed
' £(0,1) = psibot
£(0,2) = ubot
£(0,3) = wall_shear
fv(0,1) = 0.0 _dp
£v(0,2) = 0.0 dp
fv(0,3) = 1.0_dp
phi = 1.0 dp

DO WHILE( ABS(phi) > 1.0E-12_dp)
CALL runge_kutta(kbot, ktop, eta, delta_eta, f, fv)

phi = f(ktop,2) - utop

phi_dashed = fv(ktop,2)

wall_shear = wall_shear - (phi/phi_dashed)
£(0,3) = wall_shear ’

WRITE (6, *)phi, wall_shear
END DO -

END SUBROUTINE newton

SUBROUTINE runge_ kutta(kbot, ktop, t, h, x, V)

USE kind B
- IMPLICIT NONE

INTEGER, INTENT (IN) :: kbot, ktop

REAL (KIND=dp) , DIMENSION(0:ktop), INTENT (IN) s t

REAL (KIND=dp) , DIMENSION(1l:ktop), INTENT (IN) :: h

REAL (KIND=dp) , DIMENSION(O:ktop,1:3), INTENT (INOUT) 1 X, V

INTEGER i k

DO k = kbot+l, ktop .
CALL runge kutta_step(t(k-1),h(k),x(k-1,1:3),v(k-1,1:3),x(k,1:3),v(k,1:3))
END DO

END SUBROUTINE runge_kutta

SUBROUTINE runge_kutta_step(t, h, x, v, xout, vout)

USE kind

IMPLICIT NONE .

REAL(KIND=dp), INTENT(IN) :: t, h

REAL (KIND=dp) , DIMENSION(1:3), INTENT(IN) t: X, V
REAL(KIND:dp), DIMENSION(1:3), INTENT (OUT) 1 xoukt, vout

REAL (KIND=dp) , DIMENSION(1:3) :: f1, £2, £3, f4, fvi, fv2, fv3, fv4
CALL evaluate_ functions(t, x, v, f1, fvl)

f1 = h*f1

fvl = h*fvl

CALL evaluate functions(t+(0.5_dp*h), x+(0.5_dp*fl), v+(0.5_dp*fvl), f2, £fv2)
£2 = h*f2 - : N
£72 = h*fv2

CALL evaluate_functions(t+(0.5_dp*h), x+(0.5_dp*f2), v+(0.5_dp*fVi), £3, fv3)
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CALL evaluate_ functions(t+h, x+£3, v+fv3, f4, £fv¢)

f3 = h*f3
fv3i = h*fv3
£4 = h*f4
fvd = h*fvd
xout
vout

30

x + ((f1 + (2.0_dp*f2) + (2.0_dp*f3) + £f4)/6.0_dp)
v + ((fvl + (2.0_dp*fv2) + (2.0_dp*fv3) + £fv4)/6.0_dp)

END SUBROUTINE runge_kutta_step

SUBROUTINE evaluate_functions(t, x, v, £, fv)

USE kind
IMPLICIT NONE
REAL (KIND=dp) , INTENT (IN) A
REAL (KIND=dp) , DIMENSION(1:3), INTENT (IN) i X,
REAL (KIND=dp) , DIMENSION(1:3), INTENT (OUT) :: f,
£(1) = x(2)
£(2) = x(3)
£(3) = -0.5_dp*x (1) *x(3)
fv(l) = v(2)
fv(2) = v(3)
fv(3) = -0.5_dp*((x(3)*v(1l)) + x(1)*v(3))

END SUBROUTINE evaluate_ functions

SUBROUTINE write_data_files

USE similarity_ solution
IMPLICIT NONE

INTEGER

OPEN (10, FILE='profiles.dat')
DO k = kbot, ktop
WRITE(10,FMT=30)eta(k), f£(k,1), f(k,2), £(k,3)
END DO
CLOSE (10)

FORMAT (4F12.6)

END SUBROUTINE write data_files
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Chapter 3

CHAPTER 3

The trailing edge and the wake
for the unsteady flat plate problem

3.1 Introduction

In this section, we study the flow field in the wake region at high Reynolds numbers
Re. Wakes are common occurrences in flow around and adjacent to various geometric
boundaries and are significant in many physical situations. Generally, these flows are
unstable in reality and thus it is important to obtain a clear understanding of the
mathematical nature of the flow field that constitutes the wake involved. The main
problem considered is that of an infinitely thin aligned flat plate travelling with
uniform speed in a viscous incompressible fluid, after an impulsive start at time 7 = 0.
We then proceed to calculate the flow velocities at successive wake stations, which
are obtained as solutions of the unsteady wake boundary-layer equations. The
numerical results generated in earlier work on steady wakes indicate fairly good

agreement with the asymptotic theory and some experimental work (see Papageorgiou
and Smith 1989).

Due to the inherent scales, the wake region is ideally suited to numerical analysis
based on the boundary-layer equations as in chapter 2, which is the approach that will

be undertaken in the current chapter.

Throughout this chapter, the origin of the Cartesian coordinate system is again fixed
at the leading edge and the Reynolds number is assumed to be asymptotically large.
Also u, v, p are the scaled component velocities in the x- and y- directions, and the
scaled pressure, respectively, and ¥ is taken to be the scaled stream function for the

two-dimensional flow.

3.2  Trailing edge and wake solution
When the fluid leaves the trailing edge, the laminar boundary layers from either side

of the plate merge and are accelerated to form a thin wake. The thickness of the wake
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is of order Re

and the motion is governed by the unsteady two-dimensional
boundary-layer equations. The velocity # in the x-direction is symmetric in profile

about the wake centerline (y = 0) and thus has zero y-derivative at y = 0.

In chapter 2 we investigated the governing equations of the unsteady two-dimensional
boundary layer for a uniform free stream. In non-dimensional variables these may be
written as equations (2.1) and (2.2). The solution provided there was for every x-

station in the domain of the flat plate.

In this section, we investigate the trailing edge and wake problem using equations
(2.1) and (2.2). For times ¢ < 1 (where the ‘endplate’ value of x is unity), the u-profile
entering the wake from the boundary layer is the Rayleigh solution, with zero v, both

above and below the centreline y = 0. Hence in the wake, in numerical terms, we have

u-1 u—u
( v )+ﬁ( e ]+O-uy=uyy, 3.1

where 7 =(1-e™?) is the numerical Rayleigh solution, in which Q* = (Ait+i)

Here the partial differential equation (3.1) holds only in the immediate wake and is
hyperbolic, since u is a function of x, y and #. The near-wake scaling for the original

differential equations as well as the difference equations, at small times ¢, is # ~1,
Y~ 2 y~t"2 (x=1)~t, (where the ‘endplate’ value of x is 1), and strictly a

similarity form applies similar to that in the unsteady upstream boundary layer
(Stewartson, Hall) and to the Goldstein form for the near wake. The similarity form
for this region of unsteady flow suffers from the same difficulty as that mentioned in
chapter 2 for the unsteady flow on the plate, however, namely its effectively elliptic
character due to the expanding coordinates locally. So we discard the (direct)
similarity approach. Another reason for doing this is the question of flexibility, again
as in chapter 2. Later in this section we describe the results obtained from marching
forward in x at all times 7 > 0 from the near wake to the x-station where the uniform

stream u = 1 is attained. This is at x = 1+¢.
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If we introduce a new function s, which is equal to the exponential function e~",

equation (3.1) implies the differential equation
Q2 66" 2 gs—{QA-bs)u =0, 3.2)

where O=—1 and b =— .
M x

Given the complexity of equation (3.2), the problem is considered from a numerical

point of view using Gaussian elimination for the flow velocities as described below.

3.2.1 Solution by Gaussian Elimination.

For every Jc-station in the wake, the flow below the plate influences the flow from
above and vice versa, due to the absence ofthe solid boundary. Thus the two flows
converge in a symmetric manner into a single flow as shown in figure 3.1, and (2.1),

(2.2) have to be solved numerically again.

Line of symmetn

x=0,
Ui=C .v=endplate W AKE
Q
U,=1
UH
Figure 3.1 Flow field for finite length flat-plate analysis
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The flow problem remains symmetric and in the wake the centreline velocity, #,,
assumes a finite numerical value. The equation along the wake centreline is now
different to that for the plate region in that it relates the ; velocities u,, ¥, and u, to

each other, where #, is the same as u, due to symmetry. Thus for the wake centreline

where j=1, we have

(a1 + cy)u(ijk) + brufij-1,k) =d; . (3.3)

That is in terms of (2.18) and (2.19), for a given value of the x-station counter i/ which
is greater than the endplate value, and time counter k£, we again apply Gaussian
elimination. The general form of the system of » equations, which incorporates the

boundary condition for the far-field flow, is given as

N N
rbl (ate;)) O 0 covviveeennnn 0 N W r d,
cz b2 a‘2 0 tee a0 cus a2 0 u2 d2
(.) C3 b3 5.13 B (| U B d3 (34)
Cn1 bn-l a;l—l Ups dn_l
0 0 0 1 N 1
- ~ - v, . J

- ~N
My a; ? 0 0 0 m
0 L a; 0 0 T

bi%) (35)

0 0 0 0 pu 8w | T

where W=b—(a., ¢/ n)

T =d— (. &/ W)
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We note that m,=d,, p;=b, and also a,’= (a, + ¢,).
Hence the velocity for a given value of j is again given by u; = (,— a, u..;) / W,

3.3  Numerical solution and discussion

Program 3.1 to evaluate the # component of velocity at stations x downstream of the
trailing edge as well as on the plate itself is almost identical to program 2.1. The only
difference is that the step consisting of the evaluation of the coefficients for the local
equation systems (for each row /) has two alternative sets of equations; one for the flat
plate region and the other for the wake region. The program is given at the end of this
chapter.

Figures 3.2-3.5 show the wake values of u along the central axis of symmetry,

Ucenmeng » Plotted against x-station. Here the flat plate is of unit length (i.c. the value
of the variable endplate in the program is 1). The profiles for # gype e are presented

for selected values of time #, showing how they develop over time. In the figures, the
profiles are labelled with the associated time step number. The initial profile is a step
function, as required, since the wake has not started to develop then and the velocity
virtually everywhere is unity. As time increases, the values of the wake velocity
reduce in a nonlinear fashion with respect to time, converging towards a finite steady
state variation for very large times. The grids employed in the analysis had values of
Ax = 0.016-0.008-0.004, Ay = 0.08-0.04-0.02 and Az = 0.008-0.004-0.002.

Close agreement is observed between our wake results at large ¢ and those predicted
by the steady state solution of Papageorgiou and Smith (1989)’s figure 4. The
streamwise variation of the centreline velocity in the wake is represented from their

steady-flow calculation for comparison.

Figure 3.6 show the variation of u gypenz With time ¢, at a given value of x=1.04 in

the wake, a location immediately downstream of the trailing edge. The general trend
is asymptotic to a steady-state value of approximately »=0.25. In figure 3.7, the u
values with time are given for various heights y above the centreline, and convergence

to the external far-field flow is observed for heights above the y=3 level which agrees
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favourably with the conclusion of Papageorgiou & Smith (1989). The variation of u
with y for the first x-station (at a distance of x=0.016) is given in figure 3.8, for

various values of time. It was found that the results agreed with the Blasius solution.

Grid refinement was performed, as before, for each of the coordinate directions and
time. The refinement was again performed using unequal interval sizes for efficiency.
The velocity computed was monitored at three given locations in the region of the
wake whose positions were fixed. Refinement with respect to x, y and ¢ yielded
negligible changes in the values of », as shown in figures 3.9-3.11. This again tends to

demonstrate numerically converged solutions.

3.4  The scaled displacement and skin friction

As far as we know, the present study provides the first computational solution for the
unsteady flat plate problem including its wake. A subsequent study is made by Li
(2000), however, and there is a perhaps mildly relevant paper by Phillips (1996) but in
the unusual context of motion past a plate whose length varies in a specific way with

time.

This similarity problem is itself quite difficult to solve numerically because of a
reversal in direction of the parabolicity involved and its is quite problem-specific. We
choose instead to use a flexible computational method based on time-marching using

the form,
. . Ax, . . . .
8(i)=6(3i-1) +(—2—-(v(1, Jl)+v(i-1, j,k)) . (3.6)

Thus program 3.1 was modified accordingly for the above case, investigates the
numerical response for two grid sizes. The first one is for Ax=0.016, A4=0.008 and
A4y=0.08, and the second computation is for half these increment sizes. Profiles of &
against x are given in figures 3.12-13 for times ranging between r=0.024 and r=4.16,
and for a given value of y=6.4. For the displacement, agreement is found to be closer
with the analytical solution for the computation performed using the finer grid. There

is also observed to be a small kink in the Blasius solution for very small times, which
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seems to be an anomaly of the approach. The boundary layer and wake displacement
functions are given in figures 3.14-16 for values of time in the range 0.2-1 for use in
part B of the thesis. These results are in good agreement with the numerical
predictions according to the approach of Li (2000) (a quite different approach based
on second order differencing as in the Crank-Nicholson method), which have been
computed for the same values of time and are shown for comparison in figures 3.17
and 3.18. This provides an encouraging verification of our results which have been

produced using the existing time-marching method.

The structure of the program to evaluate now, the skin friction quantity, ss, along the
plate is the same as for program 3.1, but now with the evaluation of ss at the end. The

relation for the skin friction is given by

ou
=] — . 37
* (ayL G

From the profiles for skin friction against x, (figure 3.19), for various values of time,
(figure 3.20), we observe that there is apparent convergence towards the steady-state

Blasius solution, section 2.7, for larger values of time.

3.5  Numerical solution for modified boundary condition v — f(¢)

In order to make the current numerical analysis more widely applicable, program 3.1

was modified to accommodate a more general free stream condition, ¥ — f(¢) as
y —> o0, as given in program 3.2. This means employing new boundary conditions for

the far-field and first x-station (the leading edge) which now incorporate the time
variable implicitly. As a result, substitution of these modified boundary conditions
into the local system of equations (2.20) yields modified coefficients d(;) only. This
demonstrates that the numerical approach is extremely flexible in its application to
more general problems, since it may be used for any f{¢) in principle. For the current

case, the function f{¥) is given by

t
f(t)—m~ (3-8)
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The u profiles against x for a height y=0.16 close to the centreline, are given in figures
3.21-23, for the same three grid sizes as before. Following the classic Blasius-
Rayleigh-like behaviour in the plate region, the wake profile function exhibits an
initial increase with time followed by a movement downstream, resulting in a
reduction of the function of (3.8) with increasing time. The apparent singularity at the
leading edge of the plate is due to the nature of the boundary conditions defined in the
program. Given the fact that virtually no noticeable difference in the solutions is
observed between the three grids, it is concluded that there is probably sufficient

convergence of the solutions here.

Figures 3.24-26 show the variation of u versus height y for the three grid sizes, with

the corresponding Blasius solution also shown. For large values of time convergence

with the Blasius solution (where 7= y/x"?

) is observed, e.g. for the =8 profile.
Figure 3.27 shows various u profiles with time for the three grids. Closest agreement

with the Blasius solution of 0.107 is observed for the finest grid.
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3.6  Fortran 77 programs and figures
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PROGRAM TO SOLVE 2-D PROBLEM FOR WAKE AREA
by Dimitrios P. Papadopoulos

OCTOBER1997 - NOVEMBER 1998

aaQanonNnQan

Ahkhkhkhkkdkhkhkhhdhhhhhdhhhhhhdhkhkkhkrhbhhk bk rhhkhhkkkkkk kK

C Define variables
program endplate
INTEGER 1i,j,k,imax, jmax, kmax,ntmax,nt
REAL ¢y dt,dx,x, £
C Define 3D storage arrays for computed values of u(i,j,k) & v(i,j, k)

REAL u(402,402,2),v(402,402,2)

C Define 2D coefficient array and u(j) & d(j) vectors which form the
C "local"system of equations for solution at each x-station

REAL. coefficient (402,402),dvector(402)
REAL a(402),b(402),c(402),d(402),mi(402),pi(402)
INTEGER col

C Define end of plate variable and length of plate

INTEGER endplate
REAL length

C Define increment sizes and storage-matrix dimensions

length=1

dx = 0.004

dy = 0.02

dt = 0.002

imax = 400

jmax = 400

kmax = 2

endplate =length/dx

ntmax=1950

nt=1
C Set all values of storage-matrix equal to zero
10 DO 32 k = 1,kmax,1

DO 31 j = 1,jmax,1

DO 30 i = 1,imax,1

u(iljlk) = 0.0
v(i,j.k) = 0.0

30 CONTINUE
31 CONTINUE
32 CONTINUE
C khkhhkhkhkhkhkhkkhkhkhkhkhkhkhhhkhkhkhkhkhhhhkhkhkhkhkhkhkhkhkhhkhkhhkkhkhkhkhkrbdhhkdi
c IMPLEMENTATION OF BOUNDARY CONDITIONS *
C dhkhkhkhkhkhkkkkhkhkhkkhkhkhkhhkhhkdthhkhkhkhkkhkhkhkhkhkhhhkhhkhhkhkhkhkhkhrhkhkhkhhkk
35 DO 42 k = 1,kmax,1

3.1  Program to solve 2-D problem for wake area.
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DO 41 j = 1,jmax,1
DO 40 i = 1,imax,1
C Un-influenced flow field (before introduction of plate)
IF (k.EQ.1) u(i,j, k) = 1.0
C Flow field at first x-station (at leading edge of plate)
IF (i.EQ.1) THEN
u(i,j, k) = 1.0
v(i,j,k) = 0.0
ENDIF

C Flow field at the wall (non-slip condition)
' IF ((j.EQ.1).AND. (i.LE.endplate)) THEN
u(i,j,k) = 0.0
v{i,j,k) = 0.0
ENDIF
u(l,1,k) =1.0

C Flow field in the wake
IF ((j.EQ.1l) .AND. (i.GT.endplate)) v({i,j,k) = 0.0

C Flow field outside boundary layer region
IF (j.EQ.jmax) u(i,j,k) =1.0

40 CONTINUE
41 CONTINUE
42 CONTINUE

kkkkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkhkhkhkhkhkdhhhkhkhhkhkhkhkhkhkhkhkhkhhkhkhkhhkhkkkkhkhkhhhkhkhkhhkdhkhkhkkkdk

C
Cc EVALUATE U(I,J,K) + V(I,J,K) FOR EACH X-STATION (I),
C FOR THE CURRENT TIME STEP (K).

C

kkhkhkhkhkhkhkkhkhkhkhkkhhkhhkhhkhkhhhkhkhkhkhhkhkhkhhkhhhhkdbhhkhkhkdhkhhhkhkhkhkhhkdhhkhkdhhkhkhhhkhkhkhhkhkhkhkkxk

50 k=2
DO 90 i = 2,imax,1
C Set all terms of coefficient matrix equal to zero

DO 69 j=1,jmax,1
DO 68 col=1,jmax,1

coefficient (j,col) = 0
68 CONTINUE
69 CONTINUE

C calculate values of non-zero coefficients - row by row (j)
DO 70 j = 1,jmax,1
IF ((j.EQ.1).AND. (i.LE.endplate)) THEN
dvector(j) = 0
coefficient(j,j) = 1.0
ENDIF
IF (j.EQ.jmax) THEN

dvector(j) = 1.0
coefficient (j,3j)

[}
=
o

ENDIF
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IF ((j.NE.1l) .AND. (j.NE.jmax)) THEN

a(j) = (v(i-1,j,k)/(2*dy)) - (1/(dy**2))
b(j) = (1/dt) + (u(i-1,3j,k)/dx) + (2/(dy**2))

c(3) = (- (1/(dy**2))) - (v(i-1,3,k)/(2*dy))

d(j) = ((1/dt) * u(i,j,k-1)) + ((u(i-1,j,k)**2) *(1/dx))

coefficient(j,j-1) = c(j),
coefficient(j,j) = b(j)
coefficient(j,j+1) = a(j)
dvector (j) = d(j)
ENDIF
C Calculation of U(i,j, k) on the zero-line of symmetry in the wake

IF ({(j.EQ.1).AND. (i.GT.endplate)) THEN

a(1) = - (2/(dy**2))
b(1) = (1/dt)+(u(i-1,1,k)/dx)+(2/(dy**2))
d(1) = ((1/dt) * u(i,1,k-1))+((u(i-1,1,k)**2) *(1/dx))
coefficient(1,1) = b(1)
coefficient(1,2) = a(1l)
ENDIF
70 CONTINUE
C khkkhkhkhkdhhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhbhhhkhhhhkhkhkhkhdhkhkhbrhkhhhkthkrthkhdhbkhkhkhkhkhhhkhthkhdhk
c * SOLVE SYSTEM OF EQUATIONS WITH GAUSSIAN ELIMINATION ° *
C khkkhkkhkhkhkkhkhkithkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhbkhhhhkrdhkhhkhhbhkhdhhhkhdddthhkhbhkhhrhkhbkhbhbhdhdrhrthhdhhkkhk

C we define values of transformed coefficients row by row (j)
C first, evaluate mi and pi for each row (3j)

IF (i.LT.endplate) THEN

mi(l) =1

pi(1) =0

ENDIF

IF (i.GT.endplate) THEN
mi(1l) = b(1)

pi(1) = d(1)

ENDIF

DO 75 j = 2, (jmax-1),1

b(3)-((c(3)*a(j-1))/mi(3-1))

mi (J)
d(3) - ((c(3)*pi(3-1))/mi(j-1))

pi(j)

C second, insert mi and pi for each row(j) and also c(j)=0
coefficient(j,j-1) =0
coefficient(j,j) = mi(3)
dvector(j) = pi(j)

75 CONTINUE
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C solve for u(j) by back substitution

80

85

90

QO a0

1050
1060

DO 80 j = (jmax-1),2,-1

u(i,j, k)= (pi(3)-(a(j)*u(i,j+1,k)))/mi(3j)

CONTINUE

u(i,1,k) =0

IF (i.GT.endplate) THEN

u(i,1,k) = (pi(1) - (a(1)*u(i,2,k)))/mi(1)
ENDIF

calculate v(j) not on centre line where it is zero

v(i,1,k) =0
DO 85 j=2,jmax,1

f =-((dy / (2*ax))*(u(i,j,k)-u(i-1,3,k)+u(i,j-1,k)-u(i-1,3-1,k)))
v(i,j,k) = (v(i,j-1,k)) + £
CONTINUE

CONTINUE

hkbhkkkkhkkhkkhkhkhkhkhkhkhkkhkhkhkhkkkhkhhkhkhhkhbhhhkhbhhkkhkhhkhdhhkhhhkhbhbhrhkhhbhkhkhkhkrhkkdhhkhd

COPY RESULTS IN ARRAY FOR CURRENT TIME STEP AND OUTPUT RESULTS *

kkhkdhkkhkhkhkhkkhkhkhkkkhkkhkhhkhkhhhkhkhkhhdhhkhbhkhhhbhkhhhkhkhkhhrhhkhkhhhdhhhhkhkhkhkrhkhkhkhhhrhkhhhk

Copy results from current k value to previous k value

do 1060 i=1,imax,1l
do 1050 j=1,jmax,1
u(i,j,1)=u(i,j,2)
V(iljll)=v(i/j12)
continue

continue

Output u(i,j,k) results for all time (k) values for a given j height
above plate, at a fixed x-distance in the wake region.

i=260
j=31

WRITE (6,*) nt, u(i,j,2)

Output u(i,j,k) & v(i,j,k) results for symmetric yv=0 line in wake
region, for a given value of k.

if ((nt.eq.3).or.(nt.eq.20).or.(n;.eq.220).or.(nt.eq.520)) then

WRITE>(6,*) 'Wake profile results'

WRITE (6,*) '!

do i=200,imax,1

x=dx* (i-1)

WRITE (6,*) x, u(i,j,2)
enddo
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WRITE (6,%*) '
endif

C Return to beginning for solution of next time step k

nt=nt+1l
if (nt.le.ntmax) go to 50

2000 end
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PROGRAM TO SOLVE 2-D PROBLEM FOR PLATE & WAKE AREA
IN OTHER BOUNDARY CONDITIONS.

by Dimitrios P. Papadopoulos

NOVEMBER 1998

NnOONOONNN

kkhkhkhkkhkhkhkhkhkhkhkhkhhrhhkhkhkhhkhkhhthkhddhhhkhbhkhhkbhkhkkkdbkhhbkhk

Define variables

Q

program alteration
INTEGER 1i,j.,k,imax, jmax, kmax,ntmax,nt
REAL dy,dt,dx,x,f

(@]

Define 3D storage arrays for computed values .of u(i,j, k) & v(i,j, k)
REAL u(202,202,2),v(202,202,2)

Define 2D coefficient array and u(j) & d(j) vectors which form the"local"
system of equations for solution at each x-station

on

REAL coefficient (202,202),dvector(202)
REAL a(202),b(202),c(202),d(202) ,mi(202),pi(202)
INTEGER col -

C Define end of plate variable and length of plate

INTEGER endplate
REAL length

C - Define increment sizes and storage-matrix dimensions

length=1

dx = 0.016

.08

.008

101

101

kmax = 2

endplate =length/dx
ntmax=2101

nt=1

Q
~
(U
I I OO0 o

c Set all values of storage-matrix equal to zero
10 k=1

DO 31 j
DO 30 i

1,jmax,1
1,imax, 1

[}

u(i,j, k)
v({i,j k)

0.0
0.0

30 CONTINUE
31 CONTINUE

hhkhkdkhkhhdkdkhkhkhkkhkhkhkhkhkhkhkhkhkkhhkhhkdkdhhkkhkhhhkhkkkhkkhkdkdkdidkk

IMPLEMENTATION OF BOUNDARY CONDITIONS *

dhhkkhhkhkkhhkhhkkkhhkhdhhhhhhkkhkhkhhkkhhkhkhkkkkhdkhkhdhkdkdhkdhdhkhhk

0N

3.2 Program to solve 2-D problem for flat plate and wake area with modified boundary conditions.
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35 k = 2
DO 41 j
DO 40 i

1,jmax,1
1,imax,1

C Flow field at first x-station (at leading edge of plate)

IF (i.EQ.1) THEN
u(i,j,k) = (nt*dt)/((nt*dt)+1)
v(i,j, k) = 0.0

ENDIF :

C Flow field at the wall (non-slip condition)

IF ((j.ﬁQ.l).AND.(i.LE.endplate)) THEN

u(i,j,k) = 0.0
v(i,j, k) = 0.0
ENDIF

C Flow field in the wake
IF ((j.EQ.1).AND. (i.GT.endplate)) v(i,j,k) = 0.0
c ?low field outside boundary layer region

IF (j.EQ.jmax) u(i,j,k) =(nt*dt)/((nt*dt)+1)

40 CONTINUE
41 CONTINUE
C dhkkdhkhkhkhkhhkhhkhkkhkhkhkkhkhkhhkrhhdkhkdhkhbdbhkhkhbhhkhbhkhkkhbhdthbhhhrdhhhbdbhkhhhbhdkhbhkhkhkhhhkhdhhkhi
C EVALUATE U(I,J,K) + V(I,J,K) FOR EACH X-STATION (I),
c
C FOR THE CURRENT TIME STEP (K).
C - kkkhkhkhkhkhkhkhkhhhkkkhkhkkhkhkhkhkhkhkkrthkkrkhkthkhbhkhkkhkhkhkdhkdhrtdhkhhhdrhdhkhkhkhkdkhrkhkhrkhrhkhthkdhkkkhi
50 k=2

DO 90 i = 2,imax,1

C Set all terms of coefficient matrix equal to zero

DO 69 j=1,jmax,1
DO 68 col=1,jmax,1l
coefficient(j,col) = 0

68 CONTINUE
69 CONTINUE

C calculate values of non-zero coefficients - row by row (j)
DO 70 j = 2,jmax,1l

IF ((j.EQ.1) .AND.(i.LE.endplate)) THEN
dvector(j) = 0

coefficient(j,j) = 1.0
ENDIF
IF (j.EQ.jmax) THEN
dvector(j) = 1.0
coefficient (j,j) = 1.0
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ENDIF
IF ((j.NE.1) .AND. (j.NE.jmax)) THEN
a(j) = (v(i-1,3,k)/(2*dy)) - (1/(d **2))

b(j) = (1/de) + (u(i-1,3,k)/dx) + (2/(dy**2))
c(j) = (- (1/(dy¥*2))) - (v(i-1,3,k)/(2*dy))
d(j) = ((1/dt) * u(i,j,k-1)) + ((u(i-1,3,k)**2) *(1/dx))

+
+ ( 1.0/((1.0+(nt*dt) ) **2) )

coefficient (j,j-1) = c(3)
coefficient (j,j) = b(j)
coefficient (j,j+1) = a(j)
dvector(j) = d(j)

ENDIF

c Calculation of U(i,j,k) on the zero-line of symmetry‘in the wake

IF ((j.EQ.1).AND. (i.GT.endplate)) THEN

a(l) = - (2/(dy**2))
b(1) = (1/dt)+(u(i-1,1,k)/dx)+(2/ (dy**2))
d(1) = ((1/dt) * u(i,1,k-1))+((u(i-1,1,k)**2) *(1/dx))
+ (1.0/((1.0+(nt*dt))**2) )
coefficient (1,1} = b(1)
coefficient (1,2) = a(l)
. ENDIF
70 CONTINUE

khkkhhkkkhkhkhkhkhkhhhkhkhkhkhkhkhhkhhkhkhhkhkhkhkhhkhhhkkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkdhkhkkrkdhkhkhkdhhhkhkk

* SOLVE SYSTEM OF EQUATIONS WITH GAUSSIAN ELIMINATION *

hkhkkdkhkhkhkhkdkhhkhkhkhkhkhkkhkhkhkkhkkkkkhkkhhhkhkhkhhkhkkkhkkhkkhkhkhkhkkhkhkhkkkhkhkhkhhkkhkhhkhkhkhkhhkhkk

nnn

C we define values of transformed coefficients row by row (3j)
C first, evaluate mi and pi for each row (j)

IF (i.LT.endplate) THEN
mi(1) =1

pi(1) =0

ENDIF

IF (i.GT.endplate) THEN
mi (1) = b(1)

pi(1) = d(1)

ENDIF

DO 75 j = 2, (jmax-1),1

b(j)-((c(j)*a(j-1))/mi(j-1))

mi (3) (3-
d(3) - ((c(3)*pi(3-1)) /mil3-1))

pi(j)

C second, insert mi and pi for each row(j) and also c(j)=0

W

coefficient(j,j-1) = 0
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75 CONTINUE
C solve for u(j) by back substitution
if (i.le.endplate) . u(i,1,k) = 0.0
DO 80 j = (jmax-1),2,-1
u(i,j, k)= (pi(j)-(a(j)*u(i,j+1,k)))/mi(j)
80 CONTINUE
IF (i.GT.endplate) THEN
u(i,1,k) = (pi(1) - (a(1)*u(i,2,k)))/mi(1)
ENDIF
C calculate v(j) not on centre line where it is zero
v(i,1,k) =0
DO 85 j=2,jmax,1
f =-((dy / (2*dx)) * (u(i,j,k)-u(i-1,j,k)+u(i,j-1,k)-u(i-1,j-1,k)))
v(i,j,k) = (v(i,j-1,k)) + £
85 CONTINUE
90 CONTINUE -
C dhkdkhkhhhkdkhkhkhkkhkhhhkhhkhkhkhhkhkhkhkhkhkdhbhkhhkbhkhhkhkhkhkhkkhkhkhkhhhkhhrhhbhkdbhhhbdhhkhkhkhkhkddkhkhkk
C COPY RESULTS IN ARRAY FOR CURRENT TIME STEP AND OUTPUT RESULTS *
C kkdkhkhkkhkhkhkhkkkdhkhkkhkhkkhkkhkhkkkhrhkkhkhkhkhkhhkhkhkhkhkkhkhkhhhkkhbhkhkkhkhkbhkhkhkhkhkkhkrhkhrhhkk
C - Copy results from current k value to previous k value
do 1060 i=1,imax,1
do 1050 j=1,jmax,1
u(i,j,1)=u(i,j,2)
v(i,j,1)=v(i,j,2)
1050 continue
1060 continue
c Output u(i,j,k) results for all time (k) values for a given j height
c above plate, at a fixed x-distance in the wake region.
i=21
j=4
WRITE (6,*) nt, u(i,j,2)
C Output u(i,j,k) & v(i,j, k) & ss(i) results for symmetric y=0 line
c in wake region, for a given value of k.
if ((nt.eq.3) .or. (nt.eq.20) .or. (nt.eq.100) .or. (nt.eq.220) .
or. (nt.eq.350) .or. (nt.eqg.520) .or. (nt.eq.820).
or.{(nt.eq.1000)) then
WRITE (6,*) 'Wake profile results'
WRITE (6,%*) '!'
C do i=2,imax,1

coefficient (j,j) = mi(j)
dvector(j} = pi(j)
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do j=1,qjmax,1
X=dx* (i-1)
y=dy*(j-1)
WRITE (6,*) y, u(i,j, k)
enddo
Cc enddo
. WRITE (6,*) ''
endif

c Return to beginning for solution of next time step k
nt=nt+1
if (nt.le.ntmax) go to 35

2000 end
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Chapter 4

CHAPTER 4
The downward vertical ship-side motion problem

4.1 Introduction

We now address a fairly fundamental application or applied problem, involving
modelling. Our concern in the next few chapters is with the fluid (water) flow induced
by the downward motion of a vertical flat solid surface, referred to herein as the ship-
side. Initially, the ship-side and the water are at rest, at time r=0. The water then

occupies the quarter plane x>0, y<0, as shown in figure 4.1.

Above the water, the fluid (air) motion is assumed to be dynamically negligible
throughout, with the dominant stress forces there being only those due to uniform
atmospheric pressure. The water surface acts as a free surface, with standard free
surface conditions holding there (Batchelor 1967, Brotherton-Ratcliffe and Smith
1989, and see shortly below), and the evolution of this free surface for positive times ¢

is to be found.

The governing equations, in general, are the continuity and unsteady Navier-Stokes

equations

ULy, (4.1a)
ox Oy
O PO PRIV, (4.1b)

o ox oy Ox

WL P Ry, (4.1c)

ot Oox

for the assumed two-dimensional flow of the water, which is taken to be
2 2

incompressible. Here V?denotes the Laplacian operator 6_2+5y—2 and g ==
X

represents the normalized gravity force, related to the Froude number: see in chapter 1

115



Chapter 4

AR

and in (4.30) below. The Reynolds number is given by Re EQL—, in terms of a
v

characteristic dimensional velocity U and length L of the ship-side and the
kinematic viscosity v of the water [Lamb (1932)].

The appropriate boundary conditions are that, first, the velocity («,v) of the water at
the (given) ship side is equal to that of the side itself (condition 1), i.e. there is no slip;
second, at the unknown water surface (conditions 2a-c) there is zero tangential stress,
the pressure p is atmospheric wherever the radius of curvature of the free surface is
relatively large (this is seen below to be almost everywhere, at high Reynolds
numbers) and the kinematic condition on the velocity field is satisfied, i.e. no fluid
particle can leave the free surface; and, third, the water is at rest (u,v tend to zero) far
from the ship side (condition 3). The precise free-surface conditions 2a-c read,

respectively,

(u, +v,)1-1,7) = 2u, —v,)n,,

) .
p=——7-=WU —(u_+v_- +v 1,
p Re(1+nx2)( xﬂx ( y x)ﬂ.x y)

v=7" +u7’x’

for a free surface at y = 7(x,¢) say, with negligible surface tension. The contact point,

where the water intersects the ship-side, is assumed here to have no movement
relative to the ship side. In addition, there is a boundary condition to apply underneath
the ship-side, if the side is to be treated as one of finite length, as considered

subsequently (condition 4).

At high Reynolds numbers the controlling equations (4.1a-c) reduce to the boundary
layer equations in a water layer near the ship side and to the potential flow equations
in the water outside that layer, as examined below. An outer sub-region also occurs.
The various layers or regions are considered in turn in this chapter, together with the
matching conditions between them and the other appropriate boundary conditions.

The upper free surface (the shape of the majority of the water surface, away from the
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ship-side) and the side free surface (the shape of the water surface close to the ship
side) ofthe water are thereby determined.

The unsteady viscous boundary layer equations are found to hold near the ship-side
(for some finite time interval at least), then, whereas in the rest of the flow the
inviscid Euler equations apply, leading to potential-flow properties. The application of
the unsteady boundary layer equations in the present context of ship-side motions
forms the anticipated connection with the work of chapters 2-3 on numerical

solutions.

The aim of this part of the research is to predict, amongst other things, the resulting
shape of'the upper free surface of the water produced by the moving ship-side as the
upper free surface evolves with the passage of time /. The initial state is shown below
in Figure 4.1 before any motion of the ship-side occurs. The atmospheric pressure is
taken to be zero without loss of generality, and in the water the pressure pis g times
X initially since the density of the water has been normalized to unity in essence. The
velocities w,v are initially zero. The initial state is thus consistent with (4.1 a-c) and

the boundary conditions described above.

AIR
WATER
v
a3
0
m
Figure 4.1 Ship-side analysis

The motion ofthe vertical ship-side may be analysed first in the two central cases that

are of interest here, which are the downward and upward motions, respectively. The
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first case is considered in chapters 5 and 6, and the second case is briefly addressed in

chapter 9.

42  The ship-side falls vertically

This case holds when the ship-side is moving vertically downwards, i.e. the relative
velocity ofthe water corresponds to the adjacent fluid moving upwards. We will study
this problem using the main regions, which are defined by figure 4.2, for high

Reynolds numbers.

ATR
WATER
®
p=0
nearly still x = k(t)
to
Boundary Layer _
Figure 4.2 Downward motion of ship-side Leading Edge

The body of water flow next to the ship-side is divided into three regions labeled 1 to
3, respectively. Regions 1 and 2 constitute the boundary layer region, and region 3 the
remainder of the body of water which is expected to be nearly still. The fixed spatial
coordinate system x, y has its origin at the geometric intersection of the water surface
level and the ship-side wall at the initial time. Additionally, the coordinate
direction is defined with its origin (at the ship side) corresponding to the region 1-
region 2 interface, which is also known as the “contact point” by virtue ofthe fact that

the water and air meet the ship-side wall at this point and which, as we have noted
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already, is taken to move with the ship side velocity, so that there is no slip of the
contact point relative to the ship side. This point is defined by a given function k(%)
say (x=k(t)) since the vertical position of the point is a prescribed function of time.

An important boundary condition (condition 2b) is that the pressure is equal to zero in
the water at the side free surface in region 1, in view of the thin layer of air assumed
to be immediately adjacent to the ship side in which the pressure is zero, by
definition. The downward velocity of the ship-side u,(t) (= £'(¢)), given as a function

of time, is also indicated. The lower edge of the ship-side corresponds, by analogy, to
the leading edge of the flat plate. In essence we take here a symmetric-flow
configuration, for convenience, corresponding to a thin vertical flat plate moving
downwards in the water, so that on the x-axis underneath the leading edge where y is

zero v must be zero for symmetry.

4.3  Investigation of the various regions

Regions 1 and 2 of the analysis are considered successively below, taking into
account the various associated boundary conditions, while outer region 3 is
considered in Chapter 5. Each region will be analysed separately using the unsteady
two-dimensional boundary layer or potential flow equations suitably. Extensions of
earlier analyses for external flow past a flat plate will be made in order to perform the

overall analysis of the current ship-side problem.

For all the ship-side problems, the Reynolds number Re is taken to be large. Further,
in the analysis given below, the gravity force is included in part of the working for
completeness, but in fact is later taken to be either negligible or small. Also, partly to
clarify, the time is assumed to be positive, £>0, gravity g is constant, and »,v are the x-

, y- velocity components.

4.3.1 Regionl

In this region, defined by 0<x < k(f) and y =0O(Re™"?), we start with the flow
equations and the boundary conditions, as well as the initial conditions. Thus
y=Re™?Y say, with Y of O(l), and we are seeking to determine the motion of the

water near the ship-side.
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The governing flow equations become

u, +un, +Vu, = g +uy,, (4.2a)

u,+V, =0, (4.2b)

from a classical boundary-layer argument applied to (4.1a-c), with v expressed as
Re™?V and with ¥ of order unity for the balance of continuity. In addition, the side
free surface is assumed to be close to the ship side within a normal distance of order
Re™"? at characteristic O(1) values of x. The y-momentum equation (4.1c) yields
dp/dY being zero, in effect, leaving p independent of Y; but then the side-free-surface

requirement of zero (atmospheric) pressure mentioned earlier (condition 2b) dictates

that p must be identically zero, hence only the g term remains on the right side of

(4.2a), next to the dominant viscous term which is 8°u/6Y*. The boundary

conditions are
u —> [u-edge] as Y — —oo, 4.3)

where u-edge is zero if g is negligible, for matching to the far-field flow.
In order to obtain the free surface condition, we require the function g(x,y,t) to be

constant. The condition then is dg/dt = 0, which implies

6_q+u6_q+v6_q=0. 4.4)

ot oOx oy
So, we may write g = [ -Y at Y = f(x,¢), to obtain

u, =0, V=f +uf,. (4.4a)
In place of the latter condition, we may write, also, g = F — x to obtain

u=F,+VF, at x=F(Y.1). (4.4b)
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Here f{x,t) is an unknown scaled (shape) function of the vertical fixed spatial axis and
time, and F(Y,¢) is an unknown scaled (shape) function of the horizontal fixed spatial
axis and time. The first of the boundary conditions (equation 4.3) is, in the case of
negligible gravity, the far-field condition (condition 3) that holds at a sufficiently
large horizontal distance from the ship-side. The latter boundary conditions (equations
4.4a,b) describe conditions 2a,c, including the unknown shape f of the side free
surface, which is separated from the ship-side wall. We shall discuss (4.3) more later
in the thesis but we note for now that u = [u-edge] satisfies the nonlinear equation

%Iti + u%‘- = ¢ for general ¢ values, in view of (4.2a).
x

The initial conditions are
u=V=0fort=0, 4.5)
which correspond to the flow starting from a state of rest.

4.3.2 Region2
In the adjacent region 2, defined by x > k(¢) above the leading edge, in accordance

with the moving ship side, similarly we have dp/dY being negligible and so

p=2&(x-k@) (4.6)

to match with the bulk of the water. As in the previous subsection the governing flow

equations for this region become

u +uu, +Vu, =g—p, +uy, 4.7

u, +V, =0, (4.8)

from the orders of magnitude in (4.1a-c) again. Clearly however ¢ and — p, cancel

out in (4.7) due to the relation (4.6).

The associated boundary conditions are
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u=u,t),V=0 | 4.9
at Y =0 (no-slip wall conditions) and
u—>0asY —»—o0 (4.10)
for matching to the far-field flow.
Boundary condition (4.9) stipulates that there is no slip at the ship-side wall
(condition 1). This means that there the downward velocity of the water is equal to

that of the ship-side, u,(¢f)=k'(t), and there is no transverse water velocity

component. Boundary condition (4.10) stipulates that the water velocity tends to zero
in the far-field, where there is virtually no motion (condition 3). In addition, the initial
condition is

u=V=0fort=0, 4.11)
corresponding to starting from rest.
Now we substitute into the flow equations (4.7) and (4.8) the coordinate shift

x=k(t)+x". 4.12)

Then (4.7) and (4.8), with (4.6), become

u +uu . +Vu, —k'u . =0+uy, (4.13)

u.+V, =0. (4.14)
Also, we put

u=u-k'(t), (4.15a)

Y =Y-i@)Y, (4.15b)
and
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F=F-kQ),

which yield the final equations

a,+ud . +Va, =—k"(t)+uy,,

u.+V, =0,

together with the boundary conditions

u=0,V=0atY =0,

u—>-k'(t), as Y - —oo,

and the initial condition

i =—k'(0) at ¢ =0.

(4.15¢)

(4.16)
4.17)

(4.18)
(4.19)

(4.20)

Here we observe that the final set of equations given above, i.e. (4.16)-(4.20), apply

for the interval 0 < x" < x"z where x"1z denotes the constant leading edge value of

»

X .

Next, we return to region 1 and make the same transformation as was made for region

2. The following equations are thus obtained for region 1:

U, + U +Vity =—k"() + & + iy,

7. +V, =0,

from (4.2a,b), along with the boundary conditions, from (4.3), (4.4a,b),

and
ie.

where F =F -k,

ie.

w—-k'(t)+[u—edge] as Y — —o0,
i, =0,i+k'=F,+VF, -k'Fx at x"=F -k,

ity =0,i+k'=F,+k'+VF, -kF. at x"=F,

i, =0u=F,+VF, at x’=F.

4.21)
(4.22)

(4.23)
4.24)
(4.24a),

(4.24b)
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The above equations (4.21-4.24) for region 1 apply for —k(f)<x" <0 (or

0<x<k(f),but —o < y< f(x°,1) say, where f is negative.

The final equation set (4.16-4.20) of region 2 wixich is to be solved is exactly the same
as the equation set of chapter 2 that describes the external boundary layer flow past an
aligned flat plate (i.e. the Blasius-Rayleigh form), for any g value. Moreover, the
equations (4.21)-(4.24b) will be shown in the next section to correspond to those of an
external aligned (i.e. Goldstein type) wake, if g is zero. The assumption of
effectively zero gravity in the analysis will be discussed more later. Thus, region 1
corresponds to a wake region, with the contact point (at the region 1l-region 2
interface) corresponding to the trailing edge. Region 2 corresponds to the main flat
plate area. Further, the lower edge of the ship-side wall in region 2 represents the
leading edge of the plate.

The direct correspondence between the present ship-side problem for zero ¢ and the
earlier flat plate problem means that the computational work required here is a natural
extrapolation of the research performed in part A of the thesis. However, the differing

boundary conditions involving u () can yield a different flow pattern in general.

4.4  Initial application to the ship side [Regions 1-2]
This application to the ship-side motion is the well-known impulsive start problem.
The problem is defined by the following conditions: £(¢r)=I't and u, =T", where T’

is a positive constant.

In this problem 1, is independent of x*, which makes the whole flow problem of
region 2 the same as for the flat-plate boundary layer problem of chapter 2. The

equations (4.16)-(4.20) must now be solved, but for a different coordinate system and

velocities, which are for this example —x*,— Y and —# ,~V , respectively.

The solution for region 2 then gives the starting profile (&) for region 1. Therefore in
the wake region 1, we have to solve equations (4.21)-(4.24b) for the interval
0 < (=x") <I't, with the profile # defined as that at the trailing edge of the ship-side

124



Chapter 4

at JI*=0 (figures 4.3-4). For sufficiently small times, this value (w) is given by the
Rayleigh profile as noted in chapter 3.

Blasius Rayleigh Wake
SHIP SIDE TE
u
\/ '
y V

Figure 4.3 Forms of viscous boundary layer and wake regions

The issue here is how we may now solve equations (4.21)-(4.24b) applied to this
example, which are:

region 2 region 1

Figure 4.4 Velocity profiles for regions 1 and 2

W+ U +VUy =g+Uyy,

(4.25)
U. +vy =0, (4.26)

with the associated boundary conditions
U -F +[u- edge] as f -> -o00, 4.27)
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i, =0, (4.28)

and,

u=F +VF, at x' =F(Y,0). (4.29)

The gravity term g here acts as a pressure gradient which is favourable in the x’
(downward) direction, as expected both from physical consideration and from our
comment just prior to (4.5), for the wake only (region 1), whereas it is effectively
absent in the boundary layer of region 2. However, as indicated earlier, we will
neglect the gravity contributions for now (we return to them in chapter 7). We

introduce the Froude number,

Fr=—r N (430)

in line with the definition described in chapter 1.

Thus, in equations (4.25)-(4.29), neglecting the gravity effect is associated with Fr

A

2
(which is equal to g™, according to (4.30) if Fr is ~U—£, and using page 115) being
g

large. The neglect of gravity here also makes the boundary condition (4.27) become
# — -I at large negative ¥, since [u-edge] is then zero, consistent with the governing

equations.

We now transform the coordinates and velocity components by inverting the

coordinate direction of x* with %, which is negative downwards, so that

. N

V==V,

Y =-7,

Y=, > (4.31)
fi=-1,
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We know that at the edge of the boundary layer, the displacement in regions 1 and 2

may be written as W =~ ¥ — & . In chapter 3 we have calculated the wake displacement
8. Thus using the coordinate transformation of (4.31) the displacement becomes

Y ~-Y - 4. So in equation (4.15b), we find that

Y (-Y-8)+k'()Y. (4.32)
Thus, due to the fact that k' = I" =1 here, we obtain from (4.32) the result

¥ -5 (4.33)
at the outer edge of the viscous layers.

The equations now become

@, + 8ty +Vity =0+ 8, (4.34)

iy +V, =0, (4.35)
with the boundary conditions

fi = T —[u—edge] as ¥ — +x, (4.36)

i, =0at ¥ = f(&,1), (4.37)
and V=f+if, at ¥=7@E0). (4.38)

We note that almost all the negative signs cancel out here due to the x"-axis inversion

of equations (4.31).

Finally, we apply the Prandtl transposition (see Rosenhead 1963), and we introduce

Y, V as moving coordinates,

F-f=7, (4.39a)
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V=(f+if,)+V. (4.39b)

Under the transformation (x*,Y,¢) — (X, Y ,t) we observe that

o) ;
0; > —(=f,)0; +0;,
x (65:)( fx) ¥ x

0; — 0y, (4.40)
Y\ -
6,  d 6, +[—a7-J(—f; )ai;
So now the equations (4.34), (4.35) become
, + il + Vily =iy, (4.41a)
i, +V, =0, (4.41b)
with the boundary conditions (neglecting g again)
i#—>T as ¥ — +m, (4.42)
i, =0at ¥ =0, (4.43)
V=0atY =0, (4.44)

since (4.38) yields f, +4f, +V = f, +if, at ¥ =0 and so the terms in f cancel out.

The positive constant I' can be normalized to unity without loss of generality. Hence
we obtain precisely the earlier wake problem for an aligned flat plate, as applied to
this example of an impulsively started ship-side.

Therefore the entire flow solution in regions 1 and 2 for negligible gravity is exactly

that determined earlier in Part A for uniform flow past an aligned finite flat plate. It is

interesting that the free-surface shape, f (x,¢), of the water-air interface is not
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determined through this means, as it is removed from the problem through the Prandtl

transposition described above. The boundary layer and wake displacement

)+0¢xj) will be analysed in the next chapter.

WATER
AIR
/>0
WATER
IPrandtl
(transposition)
v Y
Figure 4.5 Transposition for time t=0 and t>0
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CHAPTER 5

Modeling and analysis of downward vertical

ship-side motion (continued)

5.1  Introduction

The flow problem of the ship-side described in section 4.4 was concluded to be
equivalent to that for the wake behind a flat plate (or the Rayleigh solution for
sufficiently early times), if the gravity effect is small. This is exactly as studied in
chapters 2-3 (Part A of the thesis) and it means that, at least in the beginning, we
effectively have the unsteady flow due to an impulsively started flat plate of finite
length. The leading edge of the plate has a small Navier-Stokes region and the trailing
edge has a small triple-deck region. The flow, as before, is near-Blasius in the
neighbourhood of the leading edge and, further downstream, the flow on the plate
essentially becomes of a Rayleigh form, followed by the unsteady wake. The viscous
flow solution in the wake region 1 is unaffected by the shape of the side surface of the
water, except in so far as the Prandtl transposition holds. The determination of the
side free surface is really part of the outer inviscid problem of region 3, which is
controlled by the small efflux conditions or small displacements that emerge from the

solution in the viscous regions 1 and 2.

Our main aim in this chapter is to determine the flow field adjacent to the ship-side,
consisting of the combined regions 1, 2 and the further outward region 3. This
depends on a function of both the vertical spatial coordinate and of time, say A(x,t),

representing the small viscous displacement mentioned above.

5.2  Development of outer region problem
For conciseness, we denote the spatial fixed axes as (%,y) and the velocity
components as Re™(4,V) as shown in figure 5.1. This is distinct from the notation in

chapter 4 but the overlap between the inner and outer regions is relatively simple, as

we will see.
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In the region 3 (the “outer region”) we obtain from (4. la-c) the equations:

=0, (5.1)
. P> (5.2)
K =-Pv- (5.3)
p=0
« (scaled)
Region 1 o
p' (scaled)
Region 2
N =Kx,i)
[»>
p=0
Figure 5.1 Domain of analysis showing regions

The nonlinear advection terms are negligible here because the velocity components
are small, and the viscous terms are negligible because ofthe order-one spatial scales,

while g is omitted for now, based on the assumption of a sufficiently large Froude

number. We note that %, V,p are all typically of order unity.

Equations (5. 1)-(5.3) in the water yield

“« Pyy ~Pxx» "yl + ™l ~ 54
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So the unknown pressure satisfies Laplace’s equation in X, y,

Vip=0, (5.5)
as expected in potential flow.
Also, from the continuity and x -momentum balances we have

iy = ~pu =V = Pa, (5:6)
while from the y -momentum balance

Vy=-Ds. (5.7

Hence we have stmilarly 1‘7, satisfying Laplace’s equationvzf?, =0, as does V in

view of the start from rest, and in addition

0:(p;) =0,V (5.8)
and 0,(py)=-0,.7,). 59

Thus the Cauchy-Riemann equations hold between p; and I}, So a complex
potential function to control the problem may be defined as p—/¥,, which is analytic
in 2(=%+1), say 3(2), with the stream function ¥ now satisfying # =¥, and

A

V=_Ti.

The boundary conditions, as shown by figure 5.1, are that the pressure p is prescribed
to be zero on side COA and p;= —V,(: W¥,,) is prescribed as A(x,t) on side AB,

while the water is at rest in the far-field (condition 3). Thus 4 =¥, along AB.
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To solve the flow problem we may now introduce a conformal transformation, which
allows consideration of the problem in an upper Y2-plane instead of the original Y-
plane. It should be noted that an alternative approach to the conformal mapping would

be to perform a reflection about the j -axis in an image system.

The mapping is
7=-2 (5.10)

The mapped coordinate system is now defined by the polar coordinates 7,8 , so that
7'l = pretbein (5.11)
, z=re¢" , and hence we have

F=F2, (5.12)
8=20-x (5.13)

(see also Milne-Thompson 1968).

So on the BAQ portion we obtain from (5.13)

f=n=08=n, (5.14)
and on the OC portion we have

é=§:>§=0, (5.15)
as shown in figure 5.2.

The new interval is 0 <@ < 7, with @ <7 < oo, for the outer region water flow. The

mapping into the Z -plane gives us again Laplace’s equation, V2p = 0, in the Y-plane,
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where denotes the operator + Also, we require that the pressure p is

equal to zero on the CO and OA4 portions and at infinity (condition 3), while on the AB

portion of the axis the derivative — =#h{x,t) is analysed below; thus we have that

the boundary conditions on the pressure are of mixed type.

0<6 <7T
Transforms
z - plane z - plane
to
Figure 5.2 Transformation from %-plane to f4-plane

We may now proceed using the function p-CV,, as mentioned before. So we have

the complex function

p-/T,=3(z) (5.16)

In view of the mixed boundary conditions, with their crossover at the point 4, we

define
f+ = (5.17)

where

(5180
_ =12g(.g)2 (5.18b)
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in terms of polar coordinates ?,5 with the origin shifted to (¥,,0). We have along

the real axis

72 on the right: & =0, (5.192)
(Z""' XA)-I/Z =

FY2m2 ontheleft @ =7. (5.19b)

We note that an alternative to (5.17) is to work with a %2 power instead of -2 and
make allowance for possible non-decay in the far-field, but we choose to use the

above method, which yields the same end results. Further, concerning (5.17), 3,
denotes the value of 3(Z) at z = X,. This is expected to be finite and in fact equal to
- P, there, since p is zero for x just above X, and is assumed to be continuous at
X, . In addition, - ¥ along the ship side and wake can be anticipated to be J (to match
with regions 1,2 as in (4.33)), which is continuous at the. trailing edge X =X, from
the flow solutions in chapters 2,3 and has a non-zero value, say &8 =9,(¢), at the

trailing edge. So we allow for the §, factor by subtracting it off in (5.17), where

3, = 1'(50'(!), leaving (3 - 3,) zero at X = X, , which then keeps (£ +iQ) finite there
despite the inverse square root term involved. The solution for ¥, appears to be
unique. Eigenfunctions associated with far-field circulation for instance, which can
arise in aerodynamics, are ruled out here by the mixed boundary conditions on p, P,
along the edge of the % plane. Again, p and ¥ are to decay in the far-field, and 5{,' is

finite in general. Hence with the inverse square root in (5.17) the complex function

(P+iQ) also decays in the far-field. Continuing from the above we see that

E-x ) (p-i¥, +iy,) : X> X, (5.20a)
z-%)""[32)- 3, }=

(%, - %) 2 (~ip-W, +7,) : X<X,. (5.20b)

where ¥, = -, . From these equations, we have along the X -axis for X < X,
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P=—x,-%) VY, -7, 5.2
and

0=~(%,-%)"p. (5.22)
Similarly along the X -axis for X > X, we obtain

P=(x-%,)"p, (5.23)
and

0=-(F-%)""(¥,~70)- - (529)

The right-hand side of (5.23) is zero here, because of the zero pressure condition on
COA in figure 5.1. In view of (5.21) and (5.23) we see that the quasi-pressure

function P(x,0) is known for all x. Also it is assumed that the quasi-pressure

variation P tends suitably to zero in the far-field of the outer region 3.

5.3  The displacement derivative function ¥;
We derive as follows an expression for the displacement-like function ¥; along the

axes based on the aforementioned considerations. We may now employ directly the
Cauchy-Hilbert relationship [Christ (1989) and Zayed(1996)],

Y TP(&)aE

=— ks 5.25
0 =[5 (525)
which gives us O along the X -axis. The integral here and in succeeding formulae is

the Cauchy principal value.

At this point, we make the problem more definite by introducing a constant L, which
is the initial length of the submerged ship-side as shown in figure 5.3. The depth of

the leading edge of the ship-side measured from the original water surface in the

original coordinate system £ J is given by the depth function L(f), where
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L ={L-x"). The location of the leading edge of the plate, that simulates the ship-

side, is thus given on the x -axis by the expression j(g=-L{t) =x"{t)-L.

In the 14-plane analysis domain, for the region x>x” and substituting from equations

(5.21) and (5.24), we obtain from equation (5.25) a form applied to the current

problem,

(5.26)

Figure 5.3 Domain of analysis for displacement derivative function

The above expression for Y ,, the displacement-like function or the derivative of the

negative displacement in effect, is thus valid along the ship side AB and the region

-CO <X <Xg. We next employ equation (5.3), which is valid for the outer region 3,

along with matching to the viscous region solutions (see (4.33)), in order to obtain the

associated function Y, on the right-hand side of (5.26), i.e. along entire region

- 00 <JC< . Thus we have
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A

VY, =-V,=p;=-064, (5.27)

where dis the scaled boundary layer and wake displacement function which was

determined in chapters 2,3. Equation (5.27) corresponds to an ‘injection’ of fluid

effect due to the positive relationship I}, =3,

Thus ¥, = -8, with zero function of integration and

(#-2)" %, +6,0)|- —-}r—j(f - r“z[a,(z',t)—ao'(r)]—d%, (528)

X -
in view of (5.26).

54  Model solutions

An approximate model for the displacement-like function is studied in Appendix A.
However, a major shortcoming of that model lies in its treatment of the leading edge
for the ship-side. In order to perform a more realistic analysis, as compared with that
for the approximate model, it is necessary not only to define the leading edge as a
moving coordinate with the length of the ship-side as constant, but also to treat the
Rayleigh contribution satisfactorily. The accurate region 2 Blasius-Rayleigh solution
influences the region 1 wake solution, thus simulating the problem of a downward
moving ship-side more effectively. The present model and its analysis are pursued in
order to obtain a smoother and more acceptable solution for the displacement

derivative function ¥.

We commence the analysis with the expression for ¥ given in equation (5.28) which
must be computed for X > X, (i.e. for both the edges of region 1 and region 2), but
now taking into consideration a new model of the boundary layer displacement
function J, in terms of ¥(=—-%>) for X <0, using the map transformation equation
(5.10). The problem has the leading edge of the plate being defined by x, (see Figure
5.3) which is a function of time and is less than x,, as opposed to the approximate

model which employs an alternative treatment of the leading edge (Appendix A).
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Here as elsewhere the boundary condition has to be recognized as being applied to ¥
or ¥, (since the boundary layer gives ¥ ~—&(x,¢) as y — o at the boundary layer

edge as in equation (4.33)) in terms of the fixed X, y coordinates.

So equation (5.28) becomes now

SO Gt 7 N et

’ r 1 (x-&

[6.€0-0/0]iE-5 0. 29

but in the integral here it must be recognised that §and hence o, are zero for £ less
than X,(=-%,°), whereas &, of course is not, since it is independent of £ . With
reference to Figure 5.3, we have the value X, =— and X, =—~ L, and so using
transformation (5.10) we may conclude that X, =—¢* and X, = —(¢+ L)*, at time ¢,

for the impulsively-started downward moving ship-side.

For typical times ¢ of order O(l), we could evaluate (5.29) numerically using the

numerical values of &(X,#) from our previous boundary layer computations in

chapters 2,3. However, a model for § is more fruitful analytically in the form

1/2

a,t for x; +t<x<X,, (5.31)

for times satisfying 0 <r <(x, —X;). Later times are incorporated subsequently, in

section 5.7.

The coefficients a; and o, are real positive constants such that Jis continuous at the
point x =X, +¢. Hence a, =«,. Equation (5.30) in effect accounts for the Blasius

component and equation (5.31) accounts for the Rayleigh component of the

displacement function. The above model for & now represents the numerical solution
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fairly well, as shown in section 3.4, and in terms of the transformed coordinates

X = —%2 the model reads
(+L+(%)"*)"a, forx,<¥<-I*, (532)

a,t'’? for -1’ <x<Xx,, (533)

!
in the new range 0 <7< L. Also here, §, = from the values at the trailing

%
2t1/2)’

edge.

This leads to a new analytical expression for ¥ (from equation (5.29)) using the

“improved” model for &, namely

| f s iz;m o, (,+L+(_ ") iz

_(J_C“f,q )2 f (xA f) e (t”zao)}h,?

T

—é‘o'(t)[l—(x—;") j (7‘2;_% d;"'}, (5.34)

where the four constituent terms refer to the respective portions in the region
—0<X<X,. So we obtain, after differentiation, the final expression for the

displacement derivative function in the concise form

— = \l/2
v, =%[55¢—3‘2*-9)—55, (5.35)

since the last two integrals shown in (5.34) cancel out due to &, = 50’ for the range

~I? <¥ <X, . Here the two remaining integrals are denoted as
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J‘ (— ‘5)_”2 dE (5.36a)
=_J @G_ig))ﬁ(ﬁ L+(E)*) " aE, (5.36b)

which we will proceed to determine in the next section.

5.4.1 Evaluation of ® and Q integrals
To evaluate first the Q integral, we make the substitution m? =X, — &, with new

limits for the integral [Evans (1989)]. Thus the integral becomes

@+ =) 2 (t+L+(m2 +tz)l/2)‘”2

Q=2
(X+t* +m?)

dm. (5.37a)

(I2-2) 12
We note that here 0 <7< L and ¥ > -1*, because ¥, = -2, so that the result is well
defined. The form (5.37a) of the integral is suitable for computation using Simpson’s

rule.

In a similar manner, using the same substitution m> =%, — & and a table of integrals
[Swokowski (1979)], we obtain

2 _ 28172
@:%—Etan-‘(u), (5.37b)
p p

where p=(F-%,)"?. The form (5.37b) is well defined, and substituting back into

equation (5.35) we have
2 ,23\l/2
¥ =—l{%-mn“[-@—i)——J+-(x—1pQ}, (5.38)
|t Yol 2

which is the final form for the displacement derivative function.
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5.4.1 Computational solution for the modeled ¥,
The computational solution for the present modeled ¥, (equation 5.38) is described

in this section, based on the evaluation of the Q integral in section 5.4.1. The flow
chart for the program is given below and the results are presented in the figures that
follow the program (Program 5.1) at the end of the chapter.

The results for the variation of ¥, with the X -coordinate are presented in figures 5.4
for selected non-dimensional times not exceeding the non-dimensional length of the
ship-side, which is unity. The times considered were for four equal intervals in the
range 0.2-0.8. Larger times greater or equal to unity will be considered in section 5.8,
since there is a restriction for the relatively small time analysis of <L, from the limits

implicit in (5.37a).

We recall that there exists a Blasius-like region in the initial portion of the plate near
the leading edge followed by a Rayleigh region. For relatively small times, the
contribution from the Rayleigh component is clearly the more significant. However,
as time increases, the effect of Rayleigh profile is almost entirely eclipsed by that of
the dominating Blasius type-flow that occupies an increasing proportion of the plate

length. Thus the characteristic plateau in the P, profile associated with the Rayleigh

type tends to disappear as time increases, as observed in figure 5.4. Additionally, in
region 1, there exists the Goldstein wake behaviour which is clearly distinguishable
and exhibits a non-linear profile in which the gradient is largest at the trailing edge
but flattens off with increasing distance from the trailing edge. This is further
emphasised by the displacement derivative profiles of the wake region only, in figure
5.5. As time increases, the wake region profile flattens off, becoming almost perfectly

flat for =1, as shown by figure 5.6.

The model employed a higher degree of mesh refinement near the point of contact
between regions 1 and 2, in order to ensure an accurate account of the discontinuity at

this point.
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Define variables xa, xabar,
xb, xbbar, L, t, q&r

Evaluate m and h

'

Evaluate psi(t) for region 2 (Blasius-
Rayleigh solution)

v

Evaluate psi(t) for region 1 (wake solution) by evaluating
omega integral using Simpson’s rule

( Output results )

PROGRAM 5.1

5.5 Analytical properties of the solution

We investigate the solution analytically below for two cases of interest.

551 Atx=0.

For the Qintegral, we substitute in equation (5.37a) 6°> =%, >0, and X =0 to find

3 _.231/2 /2 Y1/2
Bz 2(t+L+(m2+02)l }

Q=
(6% +m?)

dm, (5.39)

(LI_OZ)III
which is of O(1).

552 Asx—>Xx,".

We write x=X,+¢& and X=X, + u near the leading edge, where ¢, g are small
increments. Using the fact that ¥ = -2, we have X, + u = —(%,” +2%,6 + &) which
gives X, + =X, -2%,6—-&. Thus u=-2%,¢, neglecting the higher order term.

Again for the £2integral in equation (5.37a), we have
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Gazp)™ 2 12YV2 dm
Q=2 | (t+L+(m -%,) ) £, (5.40)
= L 72y/2 m
(X,+L7)
which is O(1) generally.

5.6 Investigation for small times, 7 << 1
In this section, we consider evaluating equation (5.29) for small ¢, given the
displacement function & from the model of (5.32) and (5.33). There is now more than

one length scale of interest for the small time analysis, given that X,, X, are small.
First, we have the general |¥|~1 scale which allows the assumption of the trailing-

edge depth |%,| being negligible, We again consider a constant side speed of unity,

imposed for £ > 0.

In order to examine the problem on the main |¥|~1 scale of concem, we simplify

equation (5.29) to the form

v =—J—CI/2 0 (_E)-ilz
' T L (¥=9)

[5, .0)-5, (t):ldf _8, 1),  (5.4la)

since X, is small now.

After the examination of the integrals we have

=2 % F\-1/2 ' _ '
¥, =T [ 8 0ME-6)0). (5.41b)

Using integration and the substitution m*> = -Z , (5.41b) yields for small times

p =% 2 tan"‘(-L) (5.41c)

2tl/2 T xl/Z
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for the model of (5.30), (5.31) but where the Blasius term is negligible compared with
the Rayleigh term. If the distance from the origin X,"” is taken to be small, we have

Q

¥, —- 2172

=-J, as we have assumed in the beginning of the analysis. In any case

(5.41¢) 1s valid for small times where |i| is of order unity. We have also assumed here

that, from the mapping, X, =-%,° = -L ? to leading order at small times.

5.7  Investigation for larger times

We now investigate the problem for non-dimensional times greater than the depth
scale L (the non-dimensional length of the ship’s side). We re-introduce directly the
displacement derivative function W, for the problem from equation (5.29). We

observe that for large times the second component of (5.31) now disappears. This is
due to the fact that this term represents the Rayleigh component, which in a sense has
been swept ‘downstream’ into the wake. Hence the flow adjacent to the ship-side has

now developed into a purely Blasius type, for such larger times.

The ship-side parameters are clearly identified as x, = —¢ and %, = —f— L, with the

previous model of & given by equation (5.30). Employing the transformation of

(5.32), the displacement derivative function reduces to give

P, = _(_’_‘;’Ztﬁ(“_l) A, (5.42)

4 2

where we now define the integral that is contained within the new ¥, expression,

valid for large times, as
j ("4 5)-”2 [( +L+( 2)”2)'”2]d2 . (5.43)

This clearly extends in time from the expression (5.36a) holding at earlier times. To

evaluate A, we use the previous transformation m*> = X, — & to obtain
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«HL)zJ‘_tz)uz Q+L+(m2 +t2)|/2)rl/2

dm, 5.44
d (X+t2+m?) " (>.44)

which may now be resolved computationally, for example by use of Simpson’s rule.

5.8 Computational solution for larger times

The program for the solution of ¥, which includes the A integral is similar to that of
section 5.4.2 and is given as Program 5.2 in this chapter. The length parameter is
again taken to be unity and thus the times under consideration are now greater than or

equal to 1.

The entire (figure 5.7) and wake region profiles (figure 5.8) of ¥, with X are

presented for equal time intervals in the range =1 to r=24. We observe that the
profiles follow a similar description to those of Program 5.1 in section 5.4.2, but with
the fundamental differences that the Rayleigh effect is absent and the wake profile

joins in a continuous manner with the Blasius-type portion.

5.9 A check for larger times
For an analytical check on the larger time case, we consider approaching the trailing

edge X, in both the negative and positive directions along the X -coordinate axis.

591 Asx—>x,'
We define ¢ to be an infinitesimal positive constant such that ¥ = X, + £, near the

trailing edge. We then substitute m = £'%v in (5.44) to derive the expression

L—l 12 T
A~ i (5.45)
Thus the displacement derivative function becomes, locally,
¥, = —-;-L-”Zal : (5.46)

146



Chapter 5

For the value of ship-side length L=1 we obtain the value —0.125 for ¥, from (5.46)
valid for larger times. It is concluded that near the trailing edge, X = X, , the analytical

and computational values are in exact agreement.

592 AsxX—>X%,

In order to see whether the above result is true for the other case, as ¥ - X, , we

perform the following investigation. We have that

¥ =-0,6=-0,t+L+(-X)"*)"?q = —%(-t +t+L)"a, (5.47)

¥ - —%L‘”za,. (5.48)

This agrees exactly with equation (5.46), confirming that ¥, is continuous across the
trailing edge. Thus the same result for ¥, is observed when approaching the trailing
edge x, from both the wake side and the plate (ship) side.

5.10 General form of the displacement derivative function ‘¥,

The general forms of the displacement derivative function valid for both small and
large times are sketched in figure 5.9. The large time forms are predominantly
Blasius-like forms and contain no Rayleigh effect, as compared with the smaller time

forms. Figure 5.10 shows the computational ¥, profiles for small and larger values of

time in the range 0 <¢ <3. A smooth trend in the general form of the profiles may be
observed as time increases. For small values of time the wake region profile is
pronounced, but this flattens off with increasing time. For #£~1 there is no
distinguishable Goldstein near-wake region profile, in the sense that it is continuous
with the Blasius-like displacement, whereas there exists a discontinuity for smaller

times. Thus we observe a continuous trend of the W, profiles with time and this

appears to be physically sensible.
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t<|

ship side wake

Figure 5.9 Profiles for % for smaller and larger times

The previous investigations were for a given value of L, which was taken as unity in
order to coincide with the wake displacement solution of chapter 3. It will now be
shown that the solution for large times is independent of the ship-side length
parameter L. We will examine the displacement for ship-side lengths L~7, at large

times ¢ In considering equation (5.44), we see that the square ofthe upper limit ofthe

A integral is {t +L f - ItL + U , and so typically m = 0{t"'").

Employing the transformation m = expanding in a power series in (5.44),

substituting x =#"x and then putting m = {2U")s\né say, yields

(5.49)

We then use this expression for the A integral in the % equation (5.42) to obtain

(5.50)
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for large . Thus we observe that 'T, is independent of the ship-side length parameter

L then.
We now present the following tables to compare the large-time asymptotic prediction
(5.50) with the computational results for two values of time, =9 and r=48. Graphs of

these results are presented in figures 5.11.

For =9 we have

(asyniptoticj ""(annpututional)

-81 Indeterminate -0.124

-64 -0.1288 -0.092
-49 -0.0939 -0.077
-36 -0.0791 -0.066
-24 -0.0703 -0.062
-16 -0.0659 -0.059
-9 -0.0626 -0.057
-4 -0.0605 -0.055
-1 -0.0594 -0.054
-0.24  -0.0591 -0.054
Table 5.1

For r=48

(asymptotic) "~"(computational)

-81 -0.0260 -0.0252
-64 -0.0259 -0.0250
-49 -0.0258 -0.0249
-36 -0.0257 -0.0248
-24 -0.0256 -0.0247
-16 -0.0256 -0.0247
-9 -0.0256 -0.0247
-4 -0.0255 -0.0247
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-1 -0.0255 -0.0247
-0.24 -0.0255 -0.0247
Table 5.2

From the results, there is a small relative error between the asymptotic and
computational results for both values of time. Referring to figure 5.11, the
computational and analytical results are in very close agreement for the larger value
of time, 48, which is expected given that the asymptotic solution is valid for large
times. There is observed, however, a marginal error for the smaller value of time, as

demonstrated by the computational and the analytical results.
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5.11 Fortran 77 programs and figures
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hhkhkhkhkhkkhkhkhkhhkhhkhhhhhhkhdkhdhdkhhhkhdkhkdhdhhkdhkhbhkdtdbhhbhbhkhkhrhhkddhihd

Cc
C January 1998 D.Papadopoulos
C khkhkkhhhkhkkhkrthhkhkdhdbhkhkhkhdhkhhkdkhhdhbhhhrhhhhkhhdhhddrhkddhkhkrkkhdk
c Program to evaluate the Psi(t) variation with x-coordinate
c and produce entire displacement function [y] valid for small times
C IZZE XXX RSS2 2222 R R X222 XX R R R i s a2 i s s st X2 R R R sl a X
C khkhkhkhkhkhkhkhkhkhdkhkhkhhhkhkhhhkhkdkdhkhkhhkhkthkhhkhkdbkhkhhkrhhddhdrhdhkthrhhdrtx
c Problem: Downward motion of ship in stationary £fluid
C XS EXEZE SRR SRS S SRR RS R R RRRRRRR RS R R R 2 i Xt N 2222 283
C **x* Definition of all variables, except y ***
program psi
REAL 0(1000),res,h,L, t,sum
REAL u,xbar, xabar xbbar xa,xb,x,pi,q,r,y, y1 Y2, term rho
INTEGER i,j,mm,m
mm = 360
L =1
pi = 3.1415927 ,
c General loop to evaluate psi(t) for various times,
c with constraint t<L
do 3000 t=0.2,0.9,0.2
xa = -t
xb = xa-L
xbbar = - ((xb)**2)
xabar = - ((xa)**2)
c g means al. and r means a0
q = 0.25
r = 0.25
C **%* Determination of m and h
m= (2 * mm) + 3
h = ((( - (£**2) + ((t+L)**2) )**0.5) - ( ( (L**2) -
(t**2) ) **0.5))/((2*mm) + 2)
C *** BEvaluate Psi(t) for xb<x<xb+t, i.e, Blasius part
do 5 x = xb,xb+t,0.01
xbar = - ((x)**2)
yl=-g*0.5* ((x-xb) **(-0.5))
WRITE (6,*) xbar,yl
5 continue
C *%x* Evaluate Psi(t) for xb+t<x<xa, i.e. Rayleigh part
do 10 x = xb+t,xa,0.01
xbar = -((x)**2)
y2=-r*0.5* (£**(-0.5))
WRITE (6,*) = xbar, y2
10 continue
C ***General loop to evaluate psi(t) (including constituent omega
C integral) for values of the x-coordinate within initial range near
C xa, having higher level of numerical refinement ***
do 1000 x = (xa+0.001), (xa+0.101),0.005
5.1  Program to evaluate the W, variation with X, valid for small times.
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xbar = - ((x)**2)

C *** Evaluate o(j), also evaluating u(j) at each j **=*

do 24 j = 1,m-1

u= ({j - 1) *h)+( ( (L**2) - (t**2) )**0.,5) .
24 o(j) = 2*((t+L+((u**2+t**2)**x0 5))** (-0.5)) / (xbar+t**2+u**2)
c *** Evaluate first and final terms of omega integral ***

sum = o(1)+ o(m) + (4*o(m-1))

C *** Evaluate complete integral (i.e. including the intermediate terms)

do 27 i = 1,mm

j=2*i
27 sum = sum + (4.0 * o(j)) + (2.0 * o(j+1))
res = (sum * (h/3.0))

C *%* Evaluate and output results for psi(t) [y] ***

term=( (( L **2) - (t**2)) / (xbar-xabar) )**0.5
rho=r* (t**(-0.5))
y = -((0.5/pi}*{ (xbar-xabar)**0.5) * (g*res) ) -
( rho*0.31831*atan(term) )
WRITE (6,*) xbar,y

1000 continue

C khkkkkkhkhkhkhkdkhkhkkdhkdhkkkhkhkhkhkhhbhdhkhhkhbkdkhhkhhbhkdkhkhhkhkhkkhkhbhkhhhkhbhkhkhkhkhkhkhkkhbhkhhhkdthi

C *** General loop to evaluate psi(t) (including omega integral)

C for values of the x-coordinate within secondary range having a lower
c level of numerical refinement (i.e. larger x-coordinate interval) **»

do 2000 x = (xa+0.2),-0.05,0.1
xbar = - ((x)**2)
C *x* BEvaluate o(j), also evaluating u(j) at each j ***

do 1024 j = 1,m-1
u= ((j - 1) * h)+( ( (L**2) - (t**2) )**0.5)

1024 o(3j) = 2* ((t+L+ ((u**2+t**2)**0_.5)) ** (-0.5) ) / (xbar+t**2+u**2)

c *** Evaluate first and final terms of omega integral ***

sum = o(1)+ o(m) + (4*o(m-1))

c - *%* Evaluate the complete integral (i.e. including the intermediate
c terms) ***

do 1027 i = 1,mm

j=2*1i
1027 sum = sum + (4.0 * o(j)) + (2.0 * o(j+1))

(sum * (h/3.0))

res

c **+* Evaluate and output results psi(t) [y],
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term=( (( . L **2) - (t**2)) / (xbar-xabar) )**0.5
rho=r* (t** (-0.5))
y = -((0.5/pi)* ((xbar-xabar)**0.5)* (g*res)) -

( rho*0.31831*atan(term) )

WRITE (6,*) xbar,y

2000 continue
WRITE (6,%*)

3000 continue
end
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JUNE 1998 D.Papadopoulos

dhdkkhkhkhkhkdbhhkhhhkkhhhhhkdkhhkhhdkhkhhhhdkhkhkkhhhkdhhkdrdhdhbdrhkddhorkrhhx

Program to evaluate the Psi variation with x-coordinate
for LARGE TIMES -

kdkhkhkhkdkhkhkkdkkhhkhkhkhkhhkhhkhhkhkhkhkhkhkhhhhkhhkkrhhhhkhhkhhkhhhrhhhhkhkhkhrhhkdd

Problem: Downward motion of ship in stationary fluid
khkhkkhkhkhkhkdkhkhkhkhkhkhkhkhkhkhhkdthkhkdkhhkhhkkhkhhkhkkhhkhkhhkhkhkhdthkhrhkhbdrhkhdhhkdhkdrkhd

**% Definition of all variables, except y ***

program simps

REAL lam(10000),y,y1,res,h,L,t,sum
REAL u,xbar,xabar, xbbar,xa,xb,x,pi,q,dt
INTEGER i,j,mm,m

mm =360

L=1

pi = 3.1415927

dt=1

g means al '
qg=0.25

General loop to evaluate Psi(t) for various times

do 3000 t=1,2,dt

xa = -t

xb = xa-L

xbbar = - ((xb)**2)
xabar = -((xa)**2)

*** Determination of m and h ***
m (2 * mm) + 3
h ( (- t**2 4+ (t+L)**2 )**0.5) / ((2*mm) + 2)

*** Bvaluate Psi(t) for xbex<xb+t, i.e. Blasius part

do 500 x = xb,xa,0.01
xbar = -((x)**2)
yl=-g*0.5* ((x-xb) **(-0.5))
WRITE (6,*) xbar,yl
continue

**% General loop to evaluate psi (including lamda integral) **=*
*** for values of the x-coordinate *** 4
do 2000 x = (xa+0.01),0.01,0.01

xbar = - ((x)**2)

*** Byvaluate lam(j), also evaluating u(j) at each j ***

do 1024 j = 1,m-1
u= ((j - 1) *h) :
lam(j) = 2*%( (t+L+( (u**2+t**2)**0.5) )**(-0.5) )/ (xbar+t**2+u*+*2)

**x% Eyvaluate first and final terms of lamda integral ***
sum = lam(l)+ lam(m) + (4*lam(m-1))

*** Evaluate the complete integrals (i.e. including the

Program to evaluate the P, variation with ¥, valid for larger times.
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C intermediate terms) ***

do 1027 i = 1,mm
j =2 *1i
1027 sum = sum + (4.0 * lam(j)) + (2.0 * lam(j+1))

res (sum * (h / 3.0))

C *** BEvaluate and output results for psi(t) [y],
y = -((0.5)/pi) * ((xbar-xabar)**0.5) * g * res
WRITE (6,*) xbar,y

2000 continue
WRITE (6,%*)

3000 continue

end
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Chapter 6

CHAPTER 6

The shape of the upper and side free surfaces for

vertical downward ship-side motion

6.1  Development of the upper free surface equations

In this chapter we determine the shapes of the water-air interfaces at the top free
surface and the side free surface. In chapter 4, the solution for the viscous boundary
layer and wake flow adjacent to the ship-side was ascertained. This is used next to
determine the behaviour of the top air-water interface, which is present in the nearly-
still outer region 3. This behaviour may be described by an “upper free surface”

function f|. In the governing equations of (5.1)-(5.3) which describe the flow, the

unknown upper free surface position X=Re™2. £ (J,f) is controlled by

D . - n :
O=E(x—Re V2. £(3,0) ie. by

o (6.1)

evaluated at x = 0, from a Taylor expansion and using the property that the velocities
Re™2(#,V) are small. Here (6. 1) is equivalent to condition 2c, as given at the

beginning of chapter 4.

At high Reynolds numbers, which are of concern to us, the initial motion of the fluid
is most pronounced in the inner regions (regions 1,2) where the unsteady boundary
layer equations apply for some finite time interval. We now turn our attention to
determine the scaled velocity #, and hence the upper free surface function f;, in the
outer region. In order to evaluate #, we begin the analysis in this chapter by
reconsidering the outer region (region 3) of the system. There is also an extra zone,
possibly of dimensions O(Re™?) by O(Re’?) and governed by the full Navier-Stokes
or Euler equations, with radius of curvature of order unity, that joins the viscous wake

area and the outer inviscid solution together.
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The outer region 3 is described by

(6.2)
:_Py>

as given by equations (5.1-5.3) in chapter 5, with zero pressure p required along the

upper free surface x =0 (for j)>0) as well as along j)=0 (for 0> k> ), and

with given efflux conditions along y =0 (for x* <x <x").

A schematic diagram ofthe flow-field illustrates the domain of our investigation and
is given in figure 6.1, where, in addition to the boundary-layer regions adjacent to the

ship side, there exists the upper free surface whose shape is now to be determined.

AIR
p=0
Upper free surface
o
WATER
4> at the side
Figure 6.1 Domain of analysis for upper free surface

We investigate the effect on the upper free surface, using the relation

(63)

d 5T
from (6.1).To now determine —f— we must first examine —— evaluated at x=0
a cy
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In chapter 5, we obtained the formula (5.35), which is the solution for ¥, along
¥ =0 for the transformed range X > X, . Similarly, for the upper free surface solution

at all points, we may use

¥, = ¥, 7, + ¥,%, (6.4)

x=3*-%%, (6.5)

and y=-2iy. (6.6)
Thus

X, =2y, 6.7)

and y; = —2X%. (6.8)

Thus (6.4) becomes, using equations (6.7) and (6.8),

W, = W, (-2%) + ¥, (29). (6.9)

The area of investigation is along the positive X -axis in the transformed Z -plane, in

order to examine the upper free surface along which x is zero, as shown in figure 6.2.

Figure 6.2 The Z -plane analysis

Equations (6.5) and (6.6) are thus expressed then as

92 (6.10)

=|
I
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and 7=0 (6.11)
So equation (6.9) becomes
Wl = 20F P m0 - (6.12)

Hence we may now obtain f; by substitution of equation (6.12) into (6.3) giving

A _ gz 0¥
% (af] 6.13)

y=0

or, more conveniently,

O fi g2 i(i )
P =2|x| P a_x_‘P o (6.14)

The next step in the analysis is to insert into equation (6.14) the formula for

‘I’,LM which we have already developed in the previous chapter (equation 5.35 or

5.38) and which includes the displacement function 6 for downward motion, giving

¥, = _l{%m-l(wj.,.ﬂpg}, (6.15)
|t P 2
E @D R
whereQ—i g (+r+(E)?)"az.

Thus, substituting equation (6.15) into (6.14), we obtain

a*f, 20| 1| e - a
Lo E(;{t“ozm 1( eS| (6.16)
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At this stage it is worth noting that X is positive, since here on the upper free surface
¥ =3 from (6.10). As we have already computed the numerical solution for ¥,

along the X axis for all times in chapter 5, we may now proceed to determine directly

the upper free surface function /; from equation (6.16).

In the subsequent sections, we shall consider the computational and analytical
properties of the upper free surface for both small and large values of time, and

subsequently for a general value of the time variable, respectively.

6.2  The upper free surface equation for small times

Based on the analytical solution for ¥ from Chapter 5, section 5.6, we develop the

solution for the upper free surface at small times for the Ifl ~1 scale.

The upper free surface is found below to rise for all scaled times, which is sensible
physically since the ship-side boundary layer is contributing a positive mass flux,
namely + SRe™"? in scaled terms, into the outer-flow region 3. This is because fluid is

being drawn or injected from the boundary layer as the ship-side moves downwards.

6.2.1 For thescale |x|~1
Near the origin, in preparation for matching there, we have the behaviour of ¥, from

consideration of equation (5.41c). Thus we expect that

a .—x~l/2
¥, z(———ztl‘;zj[l+0( . D (6.172)

which implies

i, =W, ~ (- ﬁ’—J-O(l). (6.17b)

2tl/2

So equation (6.1) for the upper free surface function gives upon substitution the

estimate
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(/)a ~0C™?). (6.18)
Hence the upper free surface requires, upon integration,

fi=00"), (6.19)
On the other hand, when X >> 1, equation (5.41c) implies that

¥, =0 2x?) (6.20)
Thus equation (6.1) now gives the upper free surface satisfying

() ~t72%7, (6.21)
and thus fi~t"x " (6.22)

The order estimates (6.19) and (6.22) together suggest an upper free surface effect as
shown 1n Figure 6.3. This should be compared with the numerical profiles generated

later.

V€ T \L

- upper free surface

O

0(t3/2)

Figure 6.3 Order estimate for upper free surface

=i

We now turn our attention to examining the upper free surface function f; in a more

precise manner. We assume that equation (6.10) may be transformed as
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S=f" > =t (6.23)

2|El”2 *

Substituting equation (5.41c) for ‘P, with unit length L, into (6.14), yields

5, ana of 1
== -2/ — E(tan *[MTD (6.24)

where a, is a constant as defined in chapter 5. Equation (6.24) is a precise form for

the leading order upper free surface function, valid for small times. This may
differentiated to yield the expression

0”2f1= alolz( 1 )’ (6.25)

o a2\ +1

which gives upon successive integration the final form for the upper free surface
function
4 a’”?

T3GRA+D)7 (6:26)

A

This may be used directly for calculations of the analytical results for various values

of y. The upper free surface asymptotic solution (6.26) is plotted against y for time

values 0.2 and 0.8 and is presented in figure 6.4 at the end of the chapter. Without the
inclusion of gravity, the response of the free surface given by (6.26) is somewhat
theoretical, since it is unlikely that this shape would carry on infinitely with respect to

time.

6.3  Computational Solution

Program 6.1 is for the evaluation of the upper free surface function f; from equation
(6.16). This consists of evaluating the derivative of f, with respect to ¥ and

subsequently two successive numerical integrations with respect to ¢, for a fixed value

170



——
Chapter 6

of y, performed using the trapezoidal approximation. Figure 6.5 shows profiles of the
upper free surface function, £, against the distance from the ship-side, y, for a range

of values of time from 0.2 to 1. As time marches on f; increases nonlinearly with time.
The maximum value of f; occurs near the ship-side y, which is in line with the

expectation as seen in figure 6.3.

Define variables xa, xabar,
xb, xbbar, L, t, q&r

Evaluate limits m and h

il

Evaluate psi for regions 2 & 3 (Blasius-

Rayleigh & wake solutions) by evaluating
omega & phi integrals using Simpson’s rule

'

Evaluate 1st derivative of psi with respect to xbar

accounting for varying xbar intervals

'

Evaluate upper free surface function f by integrating

twice with respect to time accounting for varying time

PROGRAM 6.1 COutput resultsj

The profiles for f, versus time are presented in figure 6.6, for selected values of y.

As time marches on, f; exhibits a smooth downward trend as previously described.

The computational solution for the upper free surface together with the asymptotic
solution of (6.26) for +=0.8 are presented in figure 6.7. Very good agreement is

observed between the two profiles.
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6.4  The upper free surface equation for large times

From previous analysis in chapter 5, we see that for large times ¢, the displacement
derivative function given by equation (5.50) may be substituted into equation (6.14) to
give the upper free surface function

aZfi _ "f"l/lal 627
o ar(E+1)? 627

This gives upon successive integration the asymptotic form for the upper free surface

function for large times £>>1, with X¥ remaining of order unity,

- _[ @ )zu2 llzlgl_lz_(l_—__Q_)d_Q 6.28
S (ﬁ)x t £(§+Q2)3/2 : (6.28)

To calculate (6.28) we compute the integral in (6.28) using Simpson’s rule as given

by program B1 of Appendix B.

When ¥ ~ O(t?),i.e. ¥ of O(1) the function thus has the order of magnitude
£~ (6.29)

Figure 6.8 shows the asymptotic form of f; for five values of large time in the range
10<¢<50 according to (6.28). (This gives, for small X, f£ ~¢"*x7"*, ie.
f, ~x7"*, implying that £, is of order ¢ at O(1) distances X ; the linear growth in ¢
here agrees with the subsequent estimates for f, at large times). So we will now seek

to obtain f; for all 7, from a numerical treatment, to compare with the analytical form
of (6.28).

6.5  Computational solution for larger times
In the same manner as with program 6.1, program 6.2 is concerned with the
evaluation of the upper free surface function, but now for the larger times defined by

£>L. As a result, program 6.2 is identical in structure as with program 6.1 except for
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the only modification that the evaluation of Y, is via the integral A in (5.44) as

opposed to the integral Q in (5.36b), which are identical in form but with different

limits.

The profiles for /, versus time are presented in figure 6.9, for odd integer values of
vy in the range 1-20. As time marches on, /, exhibits a smooth almost linear trend

downwards. The profiles against y for various time values in the range 1-40 are
presented in figure 6.10, and show that as time increases, the upper free surface

descends with a peak at y =2.

6.6  The side free surface function
The evaluation of the scaled side free surface function fs may be made via the
following equation, which employs the displacement function (5.38) and the wake

displacement function (3.6). The shape function ofthe side free surface is given by

(6 30)

for the region <J <0. This is effectively the function/used in the wake study, in
(4.4a). Here o6"{x,t) is given by the boundary layer wake equation as derived

computationally in chapter 3, while Y, is the displacement derivative function of

chapter 5.
Blasius-Rayleigh
ship side wake %=0
v
A
Figure 6.11 General form of upper and side free surface functions T AN
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The general shape of the side free surface profile may thus be ascertained from

examination of figure 6.11, where the displacement and wake profiles are sketched.

The numerical evaluation of f; is generated by Program 6.3, which takes as inputs the

numerical results for J,(x,#) and ¥, generated by programs 3.1 and 5.1,

respectively. The values of time considered first were from 0.2 to unity. The profiles
for f; with X are given in figure 6.12. It is observed that as time increases, which
corresponds to the ship-side submerging, there is a gradual rise in the side free surface
function. The profiles produced compare well with the subsequent computational
predictions of Li (2000) as shown in figure 6.13. Figure 6.14 shows that for large

values of time in the range 3-7, the f; profiles converge to a limiting profile.
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6.7  Fortran 77 programs and figures
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6.1

hkhkhkhkhkhkdhkhkhkhkhkhkhkhkhkhdhkhhkkkdkhhhkdkhkdhbhkhhhkkhkhkkdrhkhkhkhkhkkhrhkhkdhk

February 1998 D.Papadopoulos

khkhkhkhkhdkdkhkhkhkdhkhkhkhkhkkhkhkhbhhkdhkhkkhdkdbhkhrhkdhhbkdrhkhrhdbhkkdkhkddhdtd

Program to evaluate the UPPER-FREE-SURFACE variation with

y-coordinate and time for SMALL TIMES
****************************’k********************..**

khkdkdkhkhkhkkhkhkkhkkhkhkhkhkhkhkdhhhkhkhkhhkhkdbhhkddhkhhkhkhkdhrkhhhkhkhhkhkkdkk

Problem: Downward motion of ship in stationary fluid
hkhkhkhkhkhkhkkhkhkhkkkhkhhkhkkhkhhkhkhkhkhkhkhkhkhkhhkhhkhkhkhkhkdkhkhkhkihhhkhkdhhkdd

N QN ononNnnNnaon

*x* Definition of all variables, except y,t ***

program smtop

REAL 0(1000),Psi(1000),gradPsi(1000)

REAL res{1000),h, sum, term, rho

REAL ystart,yprev,xbarprev,astart

REAL dy,y.,dt,t

REAL u,xbar,xabar,xbbar,xa,xb,pi,qg,r

REAL ztt (1000,1000),2zt{(1000,1000),2(1000,1000)
INTEGER i,j,mm,m,n,nn,L,a,aa

mm =360
L=1
pi = 3.1415927

means a0 and r means al
0.25
0.25

H.Q.Q
non

cC Valid for values of small times: t<l,thus (aa*dt)<l

astart=0.05
aa=19
dt =0.05

C Valid for integer values of ystart (unity) and fractional values of dy

ystart=0.1
nn=200
dy=0.1

do 7000 a=1,aa
t=((a-1) *dt) +astart

C **% Determination of m and h ***
Xa = -t
Xb = xa-L
xbbar = - ((xb)**2)
xabar = -((xa)**2)

(2 * mm) + 3
((( - (£**2) + ((t+L)**2) )**0.5) - ( ( (L**2) - (t**2) )**0.5))

C kkkhkhkkhkhkkkkhkdhhkhkhkhdkhkhhrbhkhkhhhkhdhdhkhkhkhhhkhhkhdkkhhkkhhhkdhkhhkhkhrhkhrkhkhhkhhx

do 2010 n=1,nn

Psi(n) =0.

gradPsi (n)=0.
2010 continue

c General loop to evaluate Top shape (including omega
C integral) for values of the xbar-coordinate

Program to evaluate the upper free surface variation with y, valid for small times.
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do 3000 n=1,nn
y=((n-1) *dy) +ystart
xbar = y**2

C *** BEvaluate o(j), also evaluating u(j) at each.j ***

do 2024 j = 1,m-1
u= ({j - 1) * h)+( ( (L**2) - (t**2) )**0.5)
2024 0(F) = 2% ((t+L+ ((U**2+t**2) *%0.5)) ** (-0.5) )/ (xbar+t**24+u**2)

C *** Evaluate first and final terms of the omega integral #***
sum = o(l) + o(m) + (4*o(m-1))
c Evaluate complete inﬁegral inciuding the intermediate terms

do 2027 i = 1,mm
j=2 * i
2027 sum = sum + (4.0 * o(j)) + (2.0 * o(j+1))

res(n) = (sum * (h/3.0))

C *** Evaluate Psi(n) ***
term=( (( LY**2) - (t**2)) / (xbar-xabar) )**0.5
rho=r*(t**(-0.5))

Psi(n) = -((0.5/pi) * ((xbar-xabar)**0.5) * (g*res(n))) - -
( rho*0.31831*atan(term) )

3000 continue
C % g Jd ek kg Kk d ok de ok dk de ok k v vk ke de gk de vk ke sk gk kb %k vk bk vk sk e ok gk ok ek ke %k ek ok g gk ko ke ok ok ko ke
c ** Evaluate gradient-Psi function accounting for varying intervals **

do 4000 n=2,nn

y=((n-1) *dy) +ystart
xbar = y**2
yprev=((n-2) *dy) +ystart
xbarprev=yprev**2

gradPsi(n) = (Psi(n)-Psi(n-1)) / (xbar-xbarprev)
ztt(n,a) = 2 * (xbar**0.5) * gradPsi(n)

4000 continue
7000 continue
C ** BEvaluate integral across time using trapezoidal approximation **

do 9000 n=2,nn
do 8000 a=1, (aa-1),1

zt(n,1) = 0.0 :

zt(n,a+1l) =(dt*ztt (n, (a+1)))+zt(n,a)
8000 continue
9000 continue
c **Evaluate and output results for f**

do 9800 a=1, (aa-1),1
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do 9500 n=2,nn,1

z(n,1)=0.0
z(n,a+l)=(dt*zt (n, (a+l)))+z(n,a)
C t=((a-1)*dt) +astart '
c WRITE (6,*) t, z(n, a)

y=((n-1) *dy) +ystart
IF (y.GE.0.5) THEN
WRITE (6,*) vy, z(n,a)
ENDIF

9500 continue
WRITE (6,*) '!

continue

end
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dhkhkdhkhkhkdhkhkhkhkhkrhhhkhhkdhhdhhdhhhhkkhkhkhhkhkhrdhkdkhkhbhkhhkhrkhhkhhhkk
dkhkhkhkhkkhkhkhkhkhkhkhkdhkdhdrhhhdhhhhdhdhhkhkhkhkhkhkdrhhkrkdkhkhkhkhhdhrhhik

March - October 1998 D.Papadopoulos

khkkhkhkhkdhhkhkhkdkhkhkhkhkhhkhkhhkhkhkhhhhhkhkhkhkhhkhkhhkhhhkhkdhhkhkdhkhhkhrhhkhkrhhhhid
Program to evaluate the UPPER-FREE-SURFACE variation with
y-coordinate and time for LARGE TIMES

dhkhkhkdkkhkhkdhhhkdhkdbhhdhhhhhdhkhkhhhhkdhhhhhkkhkhkhkhhdbhhkhbrhkhhkddrhhrhhx
khkhkdhkhhhhkhhkkhhkhkdhkhkhhkhkhbhrhhkhkhkhhhkhkdhkhkhkkhdhhhkhhhhkdhdrhrhddkthrddsx

Problem: Downward motion of ship in stationary fluid
khkhkhkhkhkkhkhhkkkhhkhhkhkhhkdhkhkhkhhhkhkhhkhkhkhkhkbhhhkhkhkdhhhdhddhht

O o0 NN

**x Definition of all variables, except y,t ***

program grtop

REAL lam(1000),Psi(1000),gradPsi(1000)

REAL res(1000) ,h,sum

REAL yprev,xbarprev,ystart,astart

REAL u,xbar,xabar,xbbar,xa,xb,pi,q,r

REAL y,dy,t,dt

REAL ftt(1000,1000),£ft(1000,1000),£(1000,1000) :
INTEGER i,j,mm,m,n,nn,a,aa,L

mm =360
L =1 .
pi = 3.1415927

means a0 and r means al
0.25
0.25

R QQ

C astart must be 100 times smaller than the magnitude of dt.

astart=0.01
aa=41
dt=1

ystart=0.1
nn=200
dy = 0.1

c **% General loop to evaluate ftt,ft and £ functions over time domain *

do 7000 a=1l,aa
t=((a-1) *dt) +astart

C Determination of m and h
xa = -t
xb = xa-L
xbbar = - ({xb)**2)
xabar = -((xa)**2)
m (2 *mm) + 3
h ( (- t**2 4+ (t+L)**2 }**0.5) / ((2*mm) + 2)

uon

C Set all terms of arrays equal to zero
do 2010 n=1,nn
Psi(n)=0.
gradPsi (n)=0.

2010 continue

do 3000 n=1,nn

6.2  Program to evaluate the upper free surface variation with y, valid for larger times.
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y=((n-1) *dy) +ystart
xbar = y**2

*** Evaluate lam(j), also evaluating u(j) at each j **=*

do 2024 j = 1,m-1 , .
u= ({(j - 1) * h)
lam(j) = 2* ((t4L+ ((u**2+t**2) **0 . 5) ) **(-0.5))/ (xbar+t**24u*+*2)

C Evaluate first and final terms of the phi and omega integrals
sum = lam(1l) + lam(m) + (4*lam(m-1))

c Evaluate the complete integrals (i.e. including the intermediate
C terms) .

do 2027 i = 1,mm
j=2%*4i
2027 sum = sum + (4.0 * lam(j)) + (2.0 * lam(j+1))

res(n) = (sum * (h/3.0))

c *** Evaluate Psi(n) ***
Psi(n) = -(0.5/pi)*((xbar-xabar)**0.5)*q*res (n)
3000 continue
C Akkhkkkkkhkhhkhkhhkkhkdhkkhkhhkdkdhhkhhkhhkhhkhhkhhkhkhhkhkhhkhhhkkdhhkk -
c ** BEvaluate gradient-Psi function accounting for varying intervals *x*

do 5000 n=2,nn

y=((n-1) *dy) +ystart
xbar = y**2
yprev=((n-2) *dy) +ystart
xbarprev=yprev**2

gradPsi(n) = (Psi(n)-Psi(n-1)) / (xbar-xbarprev)
ftt(n,a) = 2 * (xbar**0.5) * gradPsi(n)
5000 continue
7000 continue
C ** BEvaluate integral across time using numerical approximation **

do 9000 n=2,nn
do 8000 a=1, (aa-1),1

ft(n,1) = 0.0
ft(n,a+l)=(dt*ftt (n, (a+l1)))+ft(n,a)
8000 continue
9C00 continue
c **Evaluate and output results for f£*=*

do 9800 a=1, (aa-1),1
do 8500 n=2,nn

f(n,1)=0.0
f(n,a+l)=(dt*ft(n, (a+1)))+£f(n,a)
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t=((a-1) *dt) +astart

C WRITE (6,*) t, f(n,a)
y=((n-1)*dy) +ystart
IF (y.GE.0.5) THEN
WRITE (6,*) v, f(n,a)
ENDIF

9500 continue

WRITE (6,*) !
9800 continue

end
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C Programs to evaluate side-free-surface function with x-coordinate,
cC for a given value of time

PROGRAM SFS
integer i,imax
real x(1000),xx(1000),d(1000),w(1000),£(1000) .

open (1,file="ww.dat")
open (2,file="dd.dat")
open (9,file="f.dat")
do 10 i=1,1000

read (unit=1, fmt=%*) x(i),w(i)
read (unit=2, fmt=*) xx(i),d (i)

if ((x(i).gt.100).or. (xx(i).gt.100)) then

imax=1i

go to 11

endif
10 continue ‘ )
11 do 20 i=1,imax-1

£(1)=d (i) -w(i)

write (unit=9,fmt=*) xx(i),£(1)

20 continue
close (1)
close (2)
close (9)
30 end

6.3  Program to evaluate the side free surface function with X, for a given value of time.
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CHAPTER 7

Investigation of the gravity effect

7.1  Introduction
The subject of this chapter is an examination into the influence of gravity on the
downward motion of a vertical flat solid surface. Again, the solid surface or ship-side
and the water are initially at rest, at time =0. Gravity, which is again labeled g here,
alters the flow significantly when g is still small, specifically when g =¢-g with g
-1/2

, where the Reynolds number is large. This corresponds

to the Froude number Fr being assumed to be comparable with Re'? for

of order unity and & =Re

mathematical convenience; chapter 1 suggests that in practice Fr is about 0.005 to 4

whereas Re'’? is about 224 to 3162. The alteration then to the work of the previous

chapters is felt only in the outer inviscid region where ¥ ~1 and y ~1, due to there

being no effect at leading order in the inner region comprising the boundary layer and

the wake.

The problem and its treatment are based on those of chapter 4 and 5, and in
consequence the main aim here is to solve the Laplace equation subject to the

influence of small values of gravity on the boundary conditions, in a fixed X and p

coordinate system. So the unknown pressure is controlled by
Vip=0 (7.1)

in the quarter-plane x <0, y > 0, as shown again in figure 7.1 below

| 5
x

Region 2 Region 1 l
- —— R

l Figure 7.1 The domain for the analysis
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7.2 Derivation of the problem
To derive the current problem we may consider the equations as follows. We start
with the unsteady Navier-Stokes equations but are able to neglect the viscous terms

since X and y are of order unity in the outer inviscid region. So we put

(u,v, p,¥) = (0,0,-g%,0) + £(@,¥, B, ¥) +...., (7.2)

where € is small, g = &g and in similar manner to that in chapter 5, we obtain

U, =-p;, (7.3)
‘7! =_ﬁﬁ!

which yields equation (7.1) as expected.

To derive the altered boundary condition in the problem we use the atmospheric

balance

p=-¢, (7.4)

at the unknown top surface x = fl (3.,t) . Applying now equation (7.2), which suggests
that fAl is of order €, we obtain in equation (7.4) the dominant balance & = 0, which

is in essence a “modified pressure” effect; that leaves

~

F=0at£=0. (7.5)

For the condition in the wake region, i.e. region 1, we start with p=0, ie.

atmospheric pressure, at the unknown surface

P= 1@, (7.6)
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The expectation here is that f"z = .sfz is also small, with f; to tend to unity, and again
we have g=¢&2. So (7.6) gives gp—ggx=0 at y=0 from a Taylor expansion.

Hence we obtain for the wake region
p =gx at y=0 (wake part). (7.7)

Additionally, for the boundary layer condition we can continue to use

&, =&V, = &, = -0, to obtain

Xt

ap %5 R
— = at y =0 (boundary layer part). 7.8
%~ y=0( ary layer part) (7.8)

Here ¢ is the given boundary layer (scaled) displacement along region 2, and in effect
6 =0 for x <—t— L, where the ship-side length L is unity, equation (7.8) means that

~

Y =-4 along the edge of region 2 as in chapter 5. Finally, we assume again the

condition in the far-field of ¥ — 0. Hence the only change due to allowing for the

scaled gravity force g occurs in the boundary condition (7.7).

7.3  Solution for the gravity effect
The solution of the gravity effect problem is based on forming ﬁ-—i‘f’,, which is
analytic in Z =X+ iy, say 3J(Z), and is similar to the complex function examined in

chapter 5. Again we introduce the same conformal transformation Z = -2, which

allows consideration of the problem in an upper %:-plane instead of the original Y-

plane. The mapped coordinate system is again defined by the polar coordinates 7,6 ,

in view of the mixed boundary condition similar to equation (5.17),
P+iQ=G-%)"[p-1% -3,). (7.9)

with now the additional gravity effect term included such that
3, = [ﬁ—i‘f’,]= (~gt+i8}). Also we have as before (z-%,)""? = F2708)2

shifted polar coordinates.
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Continuing from the above we see that for X < %, i.e. for 6 =7,

P+iQ=7"2 "'”’z(p-t‘P +8t-idy), (7.10)
so that
P=F"2 (-, -6}, (7.11a)
and
Q=rF"2(-p-21. (7.11b)

In a similar way for X > %, i.e. for & =0, we have

P+iQ=7F"2(p—-iP, +§t-is,), (7.12)
so that

P=F"*(p+3gn), (7.13a)
and

Q=rF"(-¥,-&), (7.13b)

where 7 = (¥ -X,).

7.3.1 The displacement function ‘f’,
In a similar manner with chapter 5, we can derive an expression for the displacement-
like function P, along the axes based on the aforementioned considerations. We may

again employ directly the Cauchy-Hilbert relationship, as in (5.25),

Q(x) = I i()%% which gives us Q along the X -axis. The integral here and in

succeeding formulae is again the Cauchy principal value.

Thus for region X > x, we find
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(f—J_cA)‘UZ[ - ]=__I(— )—1/2[5 _5, :I dfg

—E )1 E)2e.  (7.14)
T-E

+— j E-z)" g+

for the range 0> X > —¢. Substituting (6.31) into (7.14) and using X, = —¢°, and
X =—%%, we have
(x xA)—l/2I:f’2'+6 5 ]=_J‘(— )—1/2[5 6 ] d§
i-&
~ 0 -
g fF_= 12 vz, dg
+2 | (&~ t- —_
”i(é x)" (-] i
N o P (1.15)
7y x-¢

where the first term of (7.15) on the right-hand side is calculated in a similar way as in

chapter 5 in view of (5.28). The remaining two terms correspond to the gravity effect,

and after integration and manipulation they simply leave — g .

Thus (7.15) reduces to

-G 8.0 =- I [, -7l - L - 61 -5, 116

Following a procedure similar to that of section 5.4 we obtain again equation (5.38)

but now with the additional gravity effect term, so that

fo =P, -6, -8(Fx-%,)". (7.17)

Thus substituting the solution for'¥, from equation (5.38), we have
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~ 2 _2\l/2
—(f2,+6,,)=—;[1—{ff,°2 tan"((L ; ) J+%p§)}+§(§—fA)l’2, (7.18)

where p, a,, a, and Q are defined in chapter 5.

To help to evaluate (7.18) we initially omit the & terms. Then using the notations

¥ =-%%, X, =%, we obtain the gravity effect as
f"'-z’ =_=—(t2 _£2)1/2§’ (7']9)
This gives

I3
fo=-E[@-3)"ar, (7.20)

where the limits of the integral in (7.20) are defined for ¢>|%|. Hence upon

integration, this yields

fi= (— -g—){t(tz NF: % cosh ™ (II?J} . @2

This effectively is for large g values. The right-hand side of (7.21) may now be

2)1/2 _

plotted to obtain the general trend of the side free surface function when it consists of
only the gravity effect term. Fig. 7.4 shows this variation with % for g=0.2 for
various values of time 7. Also fig.7.5 shows the same variation but for various values

of g for a value of time ~=1. The trends show that the function has a maximum at
X =0 and a value of zero at the trailing edge of the ship-side, as expected physically.
Also the function apparently increases without bound in magnitude for larger time

and/or larger gravity values; this is explained at the end of the next subsection.
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However, in order to fully evaluate (7.18) at finite g, it is necessary add (7.21) into

(7.18) and evaluate the resulting expression computationally.
7.3.2 Alternative derivation of the modified side free surface equation
In this sub-section we consider how the following alternative approach captures the

g gravity effect in a satisfactory manner. A proof of the boundary conditions of

section 7.2 is also included in the analysis.
We first spot that (7.19) corresponds to the simple function
[p-% =25 +i(* -3)"*%a. (7.22)

Let us check that it satisfies all the required conditions. Using now the top surface

condition along Z = iy, we have

p—i¥ |=22+a(Z-0"2(E+1n)"? (7.23a)
p-i¥|=%

=g2+a(r,r,)"? exp L(Q +6,) 1|, (7.23b)
1272 2 1 2

where a is an unknown real constant and the branch cut for the square root is such

that 0 <6, <7 and 0 <6, <7 as shown in figure 7.2.

Figure 7.2 Analysis of side free surface function

199



Chapter 7 T

However, along the y -axis we have 8, = -6, +x and r, =r,; so (7.23b) becomes

[5- @, |= giy + ame™™"2. (7.243)

Hence

™
]
=)

(7.24b)

as required. The condition along the x-axis for the wake region —¢<x <0 gives

6,=7,0,=0,r,=t—X and r, = X +¢, and so we obtain

[5-1%,|= 85+ a(e? - 32)"2e™"2. (7.25a)
Thence

p=g% and ¥, = -a(r* - *)"2, (7.25b)
which again agrees with equation (7.7). For the boundary layer region x <—¢, y=0,
on the other hand, we have 6, =7, 6, =7z, r, =(¢-%) and r, =|£+7], and so we

have
[5- 1%, |= g +ie™2 (3 - ¢2)"2e". (7.268)

Hence here

1/2

P, =0and p=gi-at’ -1 . (7.26b)

This agrees with equation (7.8). Also, equation (7.26b) as x tends to —o become

P~ gx+ax since X is negative. So we require for the far-field decay that o =-g.
Thus equation (7.25b) for the wake part becomes now

(®, =)g(* -3%)"2 =1, (7.27)

This is exactly (7.19), thus confirming the result there. Moreover at the top corner, at

x=0, we see that 72, = —gt, which leaves fz negative as time f increases and also
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shows that |72| increases linearly with time, in keeping with the numerical results

described in the previous subsection.

7.4  Computational analysis

The computational evaluation of the entire expression for the modified side free
surface function including the gravity effect term is given by program 7.1, and
consists of adding the solution from (7.21) to the results for f, from section 6.3.
Figures 7.6-7.10 show the variation of the modified side free surface with x for
gravity values in the range 0.4 < g <10. The values of times considered were five
equal steps in the range 0.2<7<3.0. The results seem to make good physical sense.
They also agree fairly well numerically with separate computations performed by Li
(2000). As the value of gravity increases, the influence on the side free surface
profiles becomes more pronounced. For the larger values of gravity, the effect on the

side free surface is to draw it into the negative y region sooner. On the other hand it
can be shown that the displacement contribution from & always dominates just above
but sufficiently near the trailing edge position x=—/ as f2 tends to zero, and that

keeps fz always positive there. Indeed the Sterm in 72 gives rise to positive

1/3

coefficient times (£+1)""® in f, locally, whereas the g term gives rise to negative

32 essentially, and since the former (1/3) behaviour is the

coefficient times (X +1)
greater it makes fz locally positive. A trend towards ‘splashing’ of the water onto the

ship-side is clearly indicated for sufficiently large times with any positive gravity

factor g .

7.5  Analysis near the top corner
This local analysis is of some interest, if rather an aside, on the local inviscid solution

very near the top corner with the gravity effect g present, although it also applies if

g is zero. In section 7.2 it is seen that equation (7.7) yields along region 2 the
solution for f,, at small or finite 3| for every time ¢. The aim here is to study locally

both the side free surface at small |%| and the upper free surface shape, £ at small |j|

for all time.
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Thus locally we have to solve again equation (7.1) in the quarter-plane as shown in

figure 7.3,
e IR
~ ~A ﬁ
p=gx =
. A T p=0
-~ N
>N A
Y Z X
J?,‘B=—t'—L 52,4:—1‘ x=0
Figure 7.3 For the problem near the top corner

with

p=0along x=0,forall y>0, (7.28a)

and

p=gx along y=0,forall x<0. (7.28b)

The reason for (7.28b) is that the change in boundary conditions at x, can be

regarded as relatively far from the top corner.

We again construct the complex function p — i‘f’, of Z=x+iy,locally. The boundary

conditions suggest that near the top Z = iy we must have
[p-® |=gip+iB, -iB,5? +iB,3* + ..., (7.29)

with real constants B, B,, B, ,.... Then we obtain

¥ =B, -8 +B,3 B, +... (7.30)
there. Thus
¥, =-g+2B,)" —4B,7" +....., (7.31)
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~

giving aa—l: ~ —g at the top surface.

So equation (7.29) simply extends in terms of Z to
[p-i¥ |=g2+ 4+ A5+ 4,57 + AP+ 4,2+, (132)

with 4 =4,=4,=4,=..=0 and 4,,4,4,,4,,... pure imaginary in order to
satisfy equations (7.28a), (7.28b) along Zz = iy and Z = x. The constants 4, and B, are

determined by the global solution which takes into account the ship-side and not by

the local solution. The relationship between the constants is given by

Ao,z,a,s,.... = iBO,Z,A,b,....' (7.33)
Hence, along the side free surface we find

—iP, = iB, +iB,%* +iB,* +.... (7.34)
so that

¥, =-B,-B,#* - B, &' —...... (7.35)

But, considering the gravity effect alone, we require P=— f, from equation (7.17).

Thus we finally obtain the form
£, =(B, +B, 2> + B3* +..)-t. (7.36)

This is consistent with the findings in the previous sections and tends to confirm that

the local solution near the top corner is regular in Z .
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C Programs to evaluate side-free-surface function with x-coordinate,
Cc for a given value of gravity

PROGRAM GFS

integer i,imax
real x(1000),xhat (1000),sfs(1000),vv(1000),g,t,acosh(1000)

g=10
t=0.2

open (1,file="plo")
open (9,file="vv.dat")

do 10 i=1,1000
read (unit=1,fmt=*) x(1i),sfs (i)
c Increment time value for small and large times
if (x(i).ge.100) then
write(9,*)'! ;
if (t.le.1) then
t=t+0.2
else
t=t+2.0
endif
else

c Evaluate f2 with gravity effect term and write to file

xhat (i) = x(i)

acosh(i)=log( (t/xhat(i)) + ( (((t/xhat(i))**2)-1)**0.5 ) )

vw(i)= sfs(i) + ((g/2)*({t*(((t**2)-(xhat (i)**2))**0.5))
-((xhat (i) **2) *acosh(i))))

if (x(i).eq.0.0l1) datum=vv(i)
if (x(i).eq.0) then

write (9,*%*) '0 0!
else
write (9,*) xhat (1) -0.01,vv(i)-datum
endif
endif

C End program at end of input file
if (x(i) .ge.1000) goto 20

10 continue

close (1)
close (9)

20 end

7.1 Program to evaluate the side free surface function with ¥, for a given value of gravity.
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Chapter 8

CHAPTER 8

Water flow adjacent to an inclined

ship-side moving downwards

8.1 Introduction

In this chapter a moving inclined ship-side will be investigated in brief for the case of
downward motion. The ship-side is taken to be moving downward but in its own
plane. Here the flow configuration and main flow structure appear at first sight to be
similar to the earlier vertical case. This is for negligible gravity force. The diagram
given below defines the domain of the problem in the Cartesian coordinate system

consisting of X| (vertical), y| (horizontal), which are identical with x, y used earlier

but are in a more convenient notation here.

SHIP MOTION T,<_

BU

Figure 8.1 The inclined ship-side problem

For the inclined case, the only difference from the previous vertical case occurs in the
outer inviscid problem where the Laplace equation must be solved with the following
new conditions. With reference to the diagram below, the top CO has the same
boundary conditions as for the vertical case, and similarly for the side portion OA.

Side AB, however, must match to the boundary layer on the ship-side at an angle a

(where 0<a <.r) below the horizontal. If a is equal to y this corresponds to the

earlier vertical case.
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Figure 8.2 The domain of the analysis

We may solve this inclined ship-side problem by mapping the xi, y, plane to the
original %-plane of the vertical case for which the analysis has been performed in

chapter 5.

8.2  Transformation to %-plane

The unknown scaled pressure satisfies Laplace’s equation in X/, y\,

V=/,=0, (8.1)

as expected in potential flow. This is as in equation (5.5).

Also, as in chapter 5, the Cauchy-Riemann equations hold between and V,,

where pressures and velocities are scaled as before. So a complex potential function

to control the problem may be defined as p - /'T,, which is analytic in Z;(= +b"),

say 3(z, ), with the stream function Y again satisfying # = and V=

The boundary conditions considered here are that: the pressure p is prescribed to be

zero on sides COA (from condition 2 of chapter 4); and * is prescribed in terms of

the given boundary layer displacement as -~(so the normal derivative o or, in the
n
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polar coordinates of figure 8.3, % , 1s prescribed) on the inclined side AB (from

1

matching with the boundary layer); while the water is at rest in the far-field (condition

3). The precise form here of chapter five’s function 4 or g_p_ , from matching with the
n

viscous boundary layer solution, can be determined subsequently. We need to remark
however that the stated linearised boundary conditions on the side OA and implicitly
on the inclined side below the leading edge point B are somewhat artificial, due to the
non symmetry present for the latter and the off-vertical free surface for the former, in
general. Instead the global effects may be expected to be nonlinear in reality.
Nevertheless, the above formulation provides the beginnings of a generalisation from

the original vertical side case of the earlier chapters.

To solve the inviscid flow problem we may again introduce a conformal
transformation, which allows consideration of the problem in the original Ya-plane.
The mapping is, say,

z,=z", (8.2)

where z; is the complex coordinate for the Y-plane of chapter 5, as shown now in fig.
8.3, and N is defined below.

The z; coordinate system is now defined by the polar coordinates 7,6,, and z, by

r, .8, so that (8.2) reads
rye D N NG -a12) (8.3)
and hence we have

r=r", (8.4)

_ A
6, _N(e, 2]+ - (8.5)
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nll<9” <In!2-a
X, X
A A
7i -plane Transforms va - plane
to
Figure 8.3 Mapping from inclined plane to %-plane
So on the BAO °‘side’ portion we obtain from (8.5)
g A
bh=ri = =34 (8.6)
and on the OC ‘top’ portion we have also
(8.7)
with the interval “ < and 0 <r, <oo for the entire outer region of water

flow. Here, to repeat, a is the angle between the inclined slope and the horizontal as
indicated in figure 8.2. Also N = 2{7’1" ) in view of (8.5), (8.6), and so N is positive
u-a

for the present range of a values.
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The mapping into the z;-plane gives us again Laplace’s equation in terms of x,, y,,

V,’ p =0 say, which can then be solved in exactly the same way as in chapter 5. The
only difference is observed at the stage of the match with the boundary layer, where
o(r,)= é‘(rlN). Here the boundary layer model is transformed according to the
coordinate transformation (8.2) in a similar manner as with section 5.4. The boundary
condition on the 4B portion of the axis is given by the derivative as ¥, = -d(7,1) ;

thus we have the boundary conditions on the pressure, which are of mixed type. We

may now proceed using the function p— /¥, as explained in chapter 5.

8.3  The general displacement derivative function ¥
We therefore derive as follows a general displacement-like function based on the
aforementioned considerations. We may again employ directly the Cauchy-Hilbert

relationship, similar to (5.25),

IP(& ME 9

where now ¥ = -r,> = -r,>Y from the transformation (8.4). So equation (8.8) using

equations (5.21) and (5.24) with the new limits on the integral, in a manner similar to

that in as with section 5.3, becomes

T —\-1/2
) ("1A2N —p 2N yi2 (_ rlAzN —ﬁ) e ,
e e i s s ELY L SU LD

With reference to fig.8.3, we have the values 7, =¢ and 7, =(¢+L), and so using

(8.4) we conclude that the corresponding distances are r,, =¢" and r,, =(¢+L)", at
time ¢; this is for the impulsively-started downward moving ship-side oriented at the

inclination a.

For general times ¢ of order O(1) we could evaluate (8.9) numerically using the values

of &6(r;,t) from our previous boundary layer computations in chapters 2,3.
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We prefer to use a modelled form as in the previous chapters. In terms of the

transformed coordinates 7, =r,"" , the model reads

(t+L—rlN)l/2a1 for r,>" >r™ > 12, (8.10)

1/2 2N

a,t for L*>r* >, (8.11)

in the new range 0 < < L. Again, &, =8, for the range 1> > r*" > r,>" . Also here

4

O, = (2al B from the values at the trailing edge. For the special vertical case of

a =—72£ and N=1, the displacement function equations (8.10-11) reduce to (5.30-31),

as expected.

Thus, using the general model for J, we have

B Gt Nty A e Vil B QPO P
w, =l I e ( 5, (t))dg
— _nr!w)”z _:jm (“:15;—_'5_ é)?;/z (‘9:((—5 Y2 4t+L) e }is?
=("1A2N""12N)”2 -r,,,’”(_rm )-”2 5 ("2
- | =5 lo.(+2a)}iE
P B T Sl it ) R
S (t){l - { (_’.12”_5_)45}, (8.12)

where again the four constituent terms refer to the respective portions in the overall

3 2N 2N . . o g .
region ©>r"" >r,” . So we obtain, after differentiation, the final expression for

the displacement derivative function in the concise form

(I‘ 2N_r2N)1/2 a
P, = 4 ,,l (55@1-7191)—55, (8.13)
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where the two integrals are defined as

®, = I (_rlf 2,:2—) dE, (8.14)
5)_”2 1/2 -1/2

L d 8.15

.[N (—r 2N_§) (( ~§)2 +1+ ) g, (8.15)

~fis

which we will proceed to determine in the next section. For the special case of the Y-
plane analysis of chapter 5, a=7/2 and N = 1, and equations (8.13-15) reduce to
(5.34-6) as expected.

8.4  Evaluation of the @, and Q, integrals
To evaluate the @, and Q, integrals, we use the substitution > =-r AZN - é_ . Thus

we obtain for the @, integral, in a similar manner to (5.37b),

12 v \!/2
q)l - (r1A2N -—rIZN)'W{ﬂ'—Ztan'l[ - N4 2N] :|, (8.16)

ha —Nh

while for the Q, integral we have the form

(’hm_hw)uz(, 2 2N /2)‘1/2
Q =2 +L(n? 41, ) dm. (8.17)

1 2 IN N
(m*+n,” -n"")

2_ aNun
(L=rig")

The form (8.17) of the integral is again suitable for computation using Simpson’s rule
as given in the following section. Also the form (8.16) is well defined, and

substituting back into equation (8.13) we have

l L2 N 1/2
a _ - T, a
Y, = __{T‘;tan ‘(Tmﬁj +-2—'(r1A . )”ZQ,}, (8.18)
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which is the final form for the displacement derivative function of the inclined ship

side.

8.5  Computational solution of general ¥, function

The evaluation of the general displacement derivative function which includes the
Q, integral is described in this section. The flow chart for the program is given below
and the results are presented in the figures that follow the program (Program 8.1) at
the end of the chapter. Program 8.1 now includes evaluation of the Q, integral which

is a function of the angle of inclination, «, of the ship-side. Computations were

performed for five values of « in the range 0 < a < §4£ Each run was for selected

non-dimensional times not exceeding the non-dimensional length of the ship-side,

which here is unity. The times considered were for four equal intervals in the range

0.2-0.8.
Define variables xa, xabar, xb, xbbar,
ra, rb, L, t, g & rr, Alpha, Ang

Evaluate mand h

Evaluate psi(t) for region 2 (Blasius-
Rayleigh solution)

Evaluate psi(t) for region 1 (wake solution) by evaluating omega
integral, as a function of Angle, using Simpson’s rule
C Output results )
PROGRAM 8.1

The P, profiles (figures 8.4-8.8) are similar to those of section 5.4. For the case of
a =x/2, the profiles are identical since this corresponds to the special case of the

vertical ship-side case. As the angle is increased, the wake regions became more
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pronounced and elongated relative to the overall profiles. Further, the limiting cases
of nearly horizontal side motion where &« >0+, a - 7 — are clearly of much
interest. The former case for instance resembles the so-called planing or gliding flow
discussed in Milne-Thompson (1968, page 324) on purely inviscid grounds. It should
be recalled however that the present boundary conditions imposed along the sides OA
and below B are rather artificial, a feature which restricts the direct applicability to
planing flows. It would be interesting to study this further.
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8.6  Fortran 77 programs and figures

222



Ahkhkhkhkdkdkdhkhkhkhkhdkhhhkhkhhkhkhdhdhhhkhkhkkdhdkhthhhhkkhkhhhhi

February 2000 D.Papadopoulos

khkhkhkdkkkkhkhkkhkdkhkhkhkhkhhbhkhkdbdbhdbhkhkhkkhkdbhkhkhkhkhkhkhkhkhhkhhkk
INCLINED SHIP-SIDE PROBLEM
Program to evaluate the Psi(t) variation with general r-coordinate

and produce entire displacement function [y] valid for small times
khkkhkhkhkhkdkhkhkhkdkhkdbhkhkhhkhkdhhbdhdbhkhkhhdhhkdhkhkhrhdhhkkdkhkkkhkd

kkkkkkhkhkhkkhkkhkhkhkhkhkhkhkhhkdhhkrhkhdhhkhkkhhkhkhkkdhkhkhkdkkx

QO aononooanan

**%x Definition of all variables, except y ***
program gpsi

REAL 0(2000),res,h,L,t,sun
REAL u,ra,rb,r,pi,q,rr,y,yl,y2,term, rho, ALPHA, ANG
INTEGER i,j,mm,m

open (9,file="vv.dat")

mm = 360

L =1

pi = 3.1415927 ;

ALPHA=(pi) /2
ANG:pi/(2*(pifALPHA))

c General loop to evaluate psi(t) for various times,
C with constraint t<L

do 3000 t=0.2,0.9,0.2

C ra means rla, rb means rlb and r means rl and rr means r2

t
t+L

ra
rb

C g means al and a0
q = 0.25

C *** Determination of m and h
m (2 * mm) + 3
h ( (((rb** (2*ANG)) - (ra** (2*ANG)) )**0.5)
- (((L**2) - (ra** (2*ANG) ) )**0.5)) /((2*mm) + 2)

C *** Evaluate Psi(t) for rb-t<r<rb, i.e. Blasius part

do S r = rb-0.01,xb-t,-0.01
yY1=-gq*0.5* ((rb- (x**ANG) ) ** (-0.5))
WRITE (unit=9,fmt=*) r,yl

S continue

c *** BEvaluate Psi(t) for rb-t<r<ra, i.e. Rayleigh part

do 10 r = rb-t,ra,-0.01

y2=-q*0.5* (t**(-0.5))

WRITE (unit=9,fmt=*) r, y2
10 continue

C ***General loop to evaluate psi(t) (including constituent omega
C integral) for values of the r-coordinate ***

do 1000 r = (ra-0.001),0.01,-0.001

8.1  Program to evaluate the ¥, variation with X, valid for inclined problem.
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C *** Evaluate o(j), also evaluating u(j) at each j ***

do 24 j = 1,m-1
u = ((j - 1) * h)+( ( (L**2) - (ra**(2*ANG)) )*=*0.5)
o(j) = 2*((rb+(((u**2)+(ra** (2*ANG)))**0.5))**(:0.5))
/ ({ra** (2*ANG) ) + (u**2) - (r** (2*ANG) ) )
24 continue
C *** Evaluate first and final terms of omega integral ***

sum = o(1)+ o(m) + (4*o(m-1))

c *** Evaluate complete integral (i.e. including the intermediate terms)

do 27 i = 1,mm

j=2*1i
sum = sum + (4.0 * o(j)) + (2.0 * o(j+1))
27 continue
res = (sum * (h/3.0))
c *+%* Evaluate and output results for psi(t) [y] ***

term=(( (rb** (2*ANG)) - (ra** (2*ANG)))
[ ((ra** (2*ANG) ) - (r** (2*ANG))) )**0.5

rho=g* (t**(-0.5))

Y =(-0.15915)*q*res*(((ra**(2*ANG))—(r**(2*ANG)))**0.5) -
- (rho*0.31831*atan(term))

WRITE (unit=9,fmt=*) r,y

1000 continue

WRITE (unit=9,fmt=%*)

3000 continue
close (9)
end
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CHAPTER 9

Other related flow configurations and comments

9.1 Introduction

In this chapter we consider briefly some related flow problems. These problems have
been studied to some extent in the present project but remain to be completed in
further research. One such problem is that of upward ship-side motion, where a short

discussion is given in the following section.

Another problem that should be mentioned is the case of oscillating ship-side motion
in which we expect the analysis to be harder, however, due to the difficulty of the
appropriate boundary conditions. Such a problem is studied by Hocking (1987) where
the vertical oscillation of a flat plate partially immersed in a non-wetting fluid
produces a radiated wavetrain when the contact line between the plate and the free
surface of the fluid cannot move freely along plate. He found that the generation of
waves depends to a significant extent on the condition applied at the intersection of

the free surface and the body.

On the other hand a more realistic configuration than that of chapter 8 is the wedge-

shaped geometry of figure 9.1.

SHIP MOTION

3.L.

Figure 9.1 Wedge-shaped geometry

This is beyond the present scope of the thesis, except for @ near K 12, {a being the

angle of inclination to the horizontal), because the inviscid region becomes nonlinear.
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Also the configuration for the inclined side for both upward and downward motions
where the gravity effect is included needs further study. The target of such a study is

to predict whether the water will have a ‘splashing” effect as discussed in chapter 8.

Finally, concerning the square root behaviour defined in equation (5.17) near the
contact point, the equivalent of the Kutta condition in the inviscid portion of the water
motion remains not fully known for the present context of viscous-inviscid flows,
where the inviscid part of the motion is only slightly disturbed compared with the
viscous part. This suggests that further study should be made of viscous-inviscid
properties close to a contact point, where in effect a free surface detaches at a trailing

edge.

9.2  The upward ship-side motion

In this section we consider the basic construction for the upward ship-side motion
problem. Again the unsteady viscous boundary layer equations are assumed to hold
near the ship-side (for some time at least), while in the rest of the water flow the
inviscid Euler equations apply, leading possibly to potential-flow properties as

described in chapter 4 and 5.

The ship-side is moving upwards vertically, and so the velocity of the water for
positive time (#>0) is expected to correspond to moving downwards relative to the
ship-side. Here we note that the pressure p is equal to zero in the air but is generally
non-zero in the water, the atmospheric pressure level again being taken as zero for
convenience. The development of the problem is thus straightforward and is similar to
that of chapter 4. As before, we employ the unsteady Navier-Stokes equations and
relevant boundary conditions for the flow. In a similar manner as in chapter 4, the
Reynolds number is taken to be large and the scaled governing equations are defined

again as

+uu; +viu, =-g+u,, 9.1)

(9.2)
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where the constant gravity force is also included. The atmospheric pressure is taken to

be zero without loss of generality, time >0, X,y are the vertical and horizontal fixed
spatial axes respectively, and u,v are the corresponding velocity components in a

similar method as before. We now use a transformation to make the problem more
definite for x<0, (x,y,f) > (x,n,t), where n= yf(f £ Here f(x,t) is an

unknown-scaled (shape) function of the vertical fixed spatial axis and time. The

boundary conditions are now defined by

Z=9=0at n=0 (at wall), (9.3)
HII:O,*G:O atqzl, (9.4)

where the range of interest is — k(¢) < X <0, and &(¢) is defined in section 4.3.2 since
the ship-side is moving upwards (X < 0). In principle this final set of equations may

be solved in almost exactly the same way as with the equation set of chapter 2, which
describe the external boundary layer flow past an aligned flat, for a given value of the
gravity term g.
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CHAPTER 10

Conclusions

In the first part of the thesis (chapters 2,3) the unsteady incompressible boundary
layer mainly over a flat plate that is started impulsively from rest with uniform
velocity was considered. The two cases that were studied were those of the flow on
the finite-length plate and the flow in the wake downstream of the plate. On the plate,
the numerical solution was obtained using the Gaussian elimination method, where
the previously obtained similarity results were found to be retrieved fairly well. A
Blasius-Rayleigh-like flow regime was observed to exist over the plate. A major part
of the convergence towards the Hall solution seemed to occur over the first five
normalised time steps. A link with the double-stepping procedure of Smith and
Timoshin (1996) was discussed and a comparison with a Blasius modified solution

was also made and proved supportive.

For the trailing edge and the near wake Goldstein solution in the unsteady flow
adjacent to the flat plate, in a similar manner as with the flat plate analysis, a Gaussian
elimination of the discretized system of flow equations was undertaken with modified
boundary conditions for the wake region. The numerical results observed were in
close agreement with those of Papageorgiou and Smith (1989) in the steady state at
large times. Grid refinement was performed for each of the coordinate directions and
time for both the plate and wake problems. Numerically converging solutions were
indicated.

Numerical investigations of the scaled displacement and skin friction quantities were
also performed. The wake displacement results, which were later used for the side
free surface solution, were found to be in very good agreement with the subsequent
numerical predictions of Li (2000). Also the present numerical treatment for a
modified boundary condition corresponding to an unsteady outer stream rather than a
steady one was studied in order to make the problem and approach more widely

applicable.
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The second part (chapters 4-9) of the thesis consisted predominantly of the downward
vertical and inclined ship-side motion problems. The flow problems were modeled
and then investigated both analytically and numerically (chapters 4-6) using
appropriate reductions from the Navier-Stokés equations. The solution compared
favourably with those in previous work such as that of Li (2000). Further, the vertical
problem was investigated in its outer inviscid region to deduce the shape of the upper
and side free surfaces (chapter 6) generated by the downward motion of the ship-side.
Close agreement between the analytical forms based on the development of a
displacement derivative function and the computational results was observed. The

results were found to make good sense from a physical perspective.

For the case of the downward vertical ship-side motion problem, the influence of
relatively small gravity was also investigated (chapter 7). The results show a trend
towards ‘splashing’ of the water onto the ship-side for sufficiently large times with
any positive gravity factor g . For the case of the ship-side inclined at a general angle
to the horizontal (chapter 8), the results showed agreement with the special vertical
case of chapter 5. There was a trend in the displacement derivative function to
become more elongated for smaller angles to the horizontal. Finally, other related

cases were considered (chapter 9).

The principal results of this thesis are probably those for the unsteady flat plate flow
itself, in chapters 2, 3, and for the predicted free surface shapes in chapters 6 and 7.
Future research would be of interest on expanding the other related cases mentioned
just above, as well as on the influences of allowing slip at or near the contact point (as
opposed to the present assumption of no slip) and on the effects of increasing the
relative gravity force. In particular the case of an oscillating ship-side is clearly one of
practical significance also. Small oscillations or waves have been studied previously,
most notably in the linear context, corresponding for instance to relatively large
slipping of the moving contact point. It would be interesting to extend this case to the
current setting, especially given that Elliott & Smith’s (1998) work shows flow
deceleration having an important influence on the solution structure near the trailing

edge in the no-slipping configuration.
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APPENDIX A

The approximate model for the displacement-like function

A slightly simpler model for the displacement-like function is presented in this

appendix. It has the function O, given by

(A. 1)

satisfying the boundary condition Y =0 at the leading edge %= -A , as sketched in
figure A. 1.

More Accurate

model
LE SHIP SIDE T.E
Approximate > r
model
Figure A.l The approximate and more accurate models

The model captures some elements of both the approximate Rayleigh part of the
efflux contribution (boundary layer displacement) in region 2 and the leading edge

effect.

Substituting (A.1) into (5.28) leads to the following expression for the displacement

function valid for A. 1 the ship-side.

- A2
% w2 "
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To analyze the integral in equation (A.2), we use the substitution ¢ = X, —& , so that

the integral becomes

0 -I/2 -
j — (g~ %,)"* +L)dg. (A3)
(x- xA +q)

+

We further substitute ¢ = m* to obtain the final integral

(5.4*'7:’)”2
I(m) = j —2———((m2——fA)”2+Z)dm (A.4)

o (=% +m’)
for the interval X, <x <0.

To evaluate the integral in (A.4) and hence evaluate the displacement function ¥, of

(A.2), we employ Simpson’s rule as given in for the Fortran 77 program at the end of
the appendix, as program A.1.

The results are presented at the end of the chapter, and show the variation of the
integral / with velocity #, for various X -stations. We will now compare these results

with the analytical solution for the integral / given below.

Next, we investigate local analytical solutions for the present simplified ship-side
model. We examine the solution for two cases of interest, near the origin as x ~ 0,
and as X approaches the trailing edge where X — X,. The question is whether we

obtain results that correlate well with the computational results. We analyse the

integral in (A.4) for both cases.

At ¥=0, first, if we first substitute T'> =%, >0, the integral in equation (A.4)

becomes

| B (4)-s(2) *9)
2 (T r r




Appendix A

where A =ylL" - T" . The selected values for the trailing edge are =~ =-t* = -6, and

for the length L = 8. Hence equation (A.5) using these values gives the value of the
integral Ifm) as 7.124. This result is very close to the numerical result of 7.160

(generated by program A. 1 evaluated near the origin at x =-0.05, for L=%).

As X-> | second, we substitute x- x* = >0 near the leading edge, with

€ «X. We then expect the integral (A.4) to be dominated by the small m

contribution, wherem = 6m is small and m~\. Thus the integral in (A.4) becomes

,.Zt (A.6)

n¥0
leading to

S (A7)

Table A.l represents analytical values calculated from equation (A.7) together with

computational values for selected values of x .

g g
-5,8 0447 35.124 51.556 0.5861
-5.5  0.707 22.214 31.624 0.5688
-5.2  0.894 17.462 24.327 0.5531
-5.0 1.000 15.708 21.415 0.5444
-4.0 1414 11.107 14.241 0.5120
-3.0 1.732 9.064 11.110 0.4892
-2.0 2.000 7.854 9268 0.4712
-1.0 1236 7.024 8026 0.4563
-0.05 2.439 6.439 7.160 0.4440
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The variation of the integral contained within the displacement function, as well as the

displacement function itself, are plotted against X in figures A2 and A3,
respectively. The results suggest that as ¥ approaches X, (which is -6), the analytical
and computational results diverge marginally. This suggests that the approximate

model for the displacement-like function is unsatisfactory. The evaluation of ¥, from

equation (A.2) is also shown.

In contrast to this approximate model, an accurate solution was developed which is

described in section 5.4 of the thesis.
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24

25

Al

Problem: Downward motion of ship in stationary fluid
Analysis of flow in the "nearly still" Region 3

program simpsons rule ) .

REAL £(100),res,h,sum,u,xbar,xabar,L,LB,t,pi,r,y
INTEGER i,j,mm,m

xbar = - 5.8

mm = 15

L =8

t=(6**0.5)

r=0.25

pi=3.1415927

xXabar = -(t**2)

define £(j), j = 1, and m, where (m = 2mm + 2)

m= (2 * mm) +2
IB = (L + ((-xabar)**0.5))
h = (((xabar + (LB**2))**(0.5)) / (2 * mm - 1))

!

WRITE (6,*) '
WRITE (6,*) ' Integral results for xabar =', xabar
WRITE (6,%*) ' and for xbar =',xbar

WRITE (6,%*) '

Evaluate f(j) also evaluating u(j) at each j

do 24 j =1,m

u= ({(j - 1) * h)

£(j) = (2*( LB-( ((u**2)-xabar)**0.5)) ) / ( xbar -xabar+(u**2))
WRITE (6,*)' u=',u ,' £(j)=",£(3)

Evaluate first and final terms of the integral

sum = £(1) + £(m)

WRITE (6,*) ' sum{first term} = ' , sum

Evaluate the complete integral (including the intermediate terms)

do 25 i = 1,mm
j=2+i
sum = sum + (4.0 * £(3j)) + (2.0 * £(j+1))

Output results
WRITE (6,*) ' sum{whole} = ' , sum

res = (sum * (h / 3.0))
WRITE (6,*) ' res = ' , res
y=(((xbar-xabar) **0.5) *r*res) / (2*pi* (t**0.5))

WRITE (6,*) y,xbar

end

Program to evaluate ¥, using the approximate model.
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APPENDIX B

c Problem: To evaluate f1 integral for approximate solution for large ti

program s

REAL o(1000),res,sum,t,ybar,Q,h, f1,xdbar, mm, m
INTEGER 1i,j

C Definition of constants
mm=100
m= (2*mm) +2
h=1/m
c General loop for value of large time

do 2000 t=10,50,10
C Loop for values of y-coordinate
do. 1000 ybar=1,20,1
xdbar = (ybar**2) / (t**2)
C Evaluate function o(Q) for whole interval

do 24 j =1,m
0= ((j-1)*h)

24 o(j) = ((Q**0.5)*(1-0))/ ((xdbar+(Q**2))**1.5)

C Evaluate first and final terms of the integral
sum = o(1) + o(m)+ (4* o(m-1))

C Evaluate the complete integral (including intermediate terms)
do 25 i = 1,mm
j = 2*i

25 sum = sum + (4.0 * o(j)) + (2.0*0(3+1))

res = (sum * (h / 3.0))
f1 = 0.17678 * (t**0.5) * (xdbar**0.5) * res

C Output Results for fl1 versus y-coordinate
WRITE (6,*) ybar, f1

1000 continue
WRITE (6,*) '°
2000 continue

end

B.1  Program to evaluate the approximate solution for f; valid for large times
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