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ABSTRACT

The work in the thesis is concerned with the unsteady laminar two-dimensional flow 

of an incompressible fluid, at high Reynolds numbers, in the presence of a moving 

solid surface which is usually taken to be flat. There are two main aspects, one a 

numerical and analytical study, and the other on modeling. The unsteady flow past a 

flat plate is examined first, for the case of an impulsively started aligned plate in a 

free stream. Numerical solutions are obtained by an apparently novel and simple 

semi-implicit method, both for the plate boundary layer flow solution, which is found 

to agree with that based on the Blasius and Rayleigh forms, and for the wake solution 

beyond the trailing edge including the Goldstein near-wake form. Analysis is also 

performed to check the method in some detail, the numerical accuracy of the method 

is investigated, and the method is applied to other types of starting motion of the flat 

plate.

The method is subsequently extended to configurations modeling (in an apparently 

novel way) water flow induced by a flat vertical ship-side which is undergoing 

upward and/or downward motions partly submerged in a body of water under air. The 

model of the water flow in the downward case is based on the thin, inner, unsteady 

boundary layer produced on the ship-side, which is moving in its own plane, and a 

thick outer region of potential flow that responds to the small efflux or influx due to 

the ship-side boundary layer. The air-water interface is treated as a free surface, 

nearly horizontal at the top of the bulk of the water but nearly vertical beside the ship. 

The latter part of the free surface adjoins the wake of the ship-side boundary layer, 

this wake being found to be identical with that for which flow solutions are given 

earlier in the thesis. The junction between the boundary layer and wake, that is the 

contact point, typically exhibits no relative slip, while at the junction between the two 

parts of the free surface a tiny passive region forms. Similar modeling applies to 

upward motions in principle. The Froude number is taken to be large. The numerical 

work yields the efflux or displacement function for all finite scaled times and analysis 

is performed for both small and large times. The potential-flow analysis is with the 

aim of predicting the behaviour with time of the air-water interfaces both at the top



and at the side. The effect of reducing the Froude number is also examined. Further 

applications are considered, including those of a more general case of an inchned 

ship-side surface undergoing motion and a rotating, partly submerged, circular 

cylinder.
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Chapter 1

CHAPTER 1 

Introduction

1.1 Prologue

The concern in this thesis is with certain viscous fluid flow problems which involve 

the high Reynolds number solution of the Navier-Stokes equations for assumed 

laminar flow. The Reynolds number is defined in the usual way, as a characteristic 

velocity scale multiplied by a characteristic length scale and divided by the kinematic 

viscosity of the fluid, and it provides a measure of the inertial forces relative to the 

viscous forces in the majority of the fluid motion.

One central part of this effort is to investigate the unsteady flow past a flat plate 

numerically employing a semi-implicit method. This approach is then extended to a 

class of problems associated with the unsteady motion of fluid adjacent to a moving 

partially immersed body such as a ship-side in which there exists a two phase air- 

water system. These include the consideration of inclined geometries and the 

incorporation of gravity effects into the flow problem. For the ship-side analyses, 

major consideration will also be given to the development of the upper free and side 

free surfaces as well as the associated moving contact point.

Thus the present investigation is based on combining three areas of research, in effect, 

namely the theory of high Reynolds number flows (especially unsteady boundary 

layers and wakes), predictions for free surface flows, and modeling of a moving 

contact point.

The flow problems studied here are inherently nonlinear. The constitutive equations 

of the laminar boundary layer in particular are nonlinear coupled partial differential 

equations, for which there exist only numerical or approximate solutions in general. 

There are families of relatively simple flows which can reduce the boundary layer 

equations to forms which are amenable to analysis which does not involve the 

solution of partial differential equations. These are the similarity flows of which the 

most famous is the Blasius solution (1908). The conditions on the validity of these
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Chapter 1

solutions are still debated, but it can be said that they have been very useful in a wide 

number of boundary layer studies. In the cases of present interest, however, 

computation is almost unavoidable.

The flow problems here are also unsteady. A classical problem of fluid mechanics is 

the determination of the unsteady viscous flow over a flat plate of finite length, which 

is aligned with the uniform stream of fluid far from the plate and is impulsively 

started from rest (Prandtl 1963, Landau & Lifshitz 1987, Dimitriou 1993). The 

unsteadiness in the problem may exist through the varying nature of the constituent 

boundary conditions with time or through the unsteadiness of the flow itself 

(Schlichting 1970, Telionis 1981, White 1991). The resultant formation of the 

boundary layer and the wake region are inherently unsteady in their nature and thus 

difficult to model. Consequently, there have been to date relatively few quantitative 

investigations of the problem.

The three areas of research referred to above are considered in turn in the following 

sections.

1.2 Literature survey

A review of relevant theoretical and numerical investigations that have been 

performed is given in the following sections for both the finite flat plate problem and 

free surface problems involving motion adjacent to a partially immersed body.

1.2.1 The flat plate problem

The unsteady problem of a flat plate of finite length that is aligned to the mainstream 

flow, in which the mainstream velocity is impulsively raised from zero to a constant 

velocity has been considered by Blasius (1908), Rayleigh (1911), in order to 

ascertain the nature of the growth of the boundary layer. The classical Rayleigh 

solution (which ignores the leading and trailing edges of the plate and treats the flow 

as if on a plate of semi-infinite length) is independent of the streamwise direction and 

gives a square-root temporal growth in the boundary layer thickness.

In his ground-breaking analysis, Stewartson (1951) used the fact that disturbances 

travel downstream in the boundary layer at a finite speed of propagation, and then
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diffuse instantaneously across the layer, to suggest that the presence of the leading 

edge is known to only a finite portion of the flow; that is, the solution at a distance x 

from the leading edge is independent of the streamwise coordinate until a time x IU^. 

For suitable early times or further downstream, the flow behaves as though the plate is 

fully infinite, this giving the Rayleigh solution on the plate. (The trailing edge effect is 

discussed in sub-section 1,2.2 below). Lam & Crocco (1959), Hall (1969) and Dennis 

(1972) confirmed this theory numerically and Watson (in Hall’s (1969) appendix) 

showed that for large values of time the solution approaches the steady-state Blasius 

form. Stewartson (1973) in a continuation paper developed the structure of the 

eigenfunctions which describe the maimer in which the dependence on jc enters the 

flow solution. For finite bodies, the dual effect of leading and trailing edges has also 

been considered; for example in Williams (1982) and Williams & Stewartson (1983) 

it was shown that under some conditions the effect of the trailing edge can dominate 

the initial stages of the motion. This is distinct from the situation discussed in the next 

sub-section. Also, an investigation for the small time analytical solution by Elliott and 

Smith (1998) addressed the effect of a smooth deceleration of the external stream on 

an aligned flat plate boundary layer.

Reviews of other basic unsteady boundary layer flows are given by Elliott and Smith 

(1998) and Degani et al. (1998), including flow past an impulsively started circular 

cylinder for example and issues of unsteady separation.

1.2.2 Wake solution

The steady basic flow immediately downstream of the sharp trailing edge of a flat 

plate can be divided into the flow in a thin viscous wake, within which is contained a 

near wake region, and outside the wake region the uniform incompressible main 

stream, which continues only slightly disturbed. The flow in the thin wake is 

governed by the boundary-layer equations again and in the near wake is described by 

means of the asymptotic expansion of Goldstein (1930). (The same structure applies 

to the unsteady setting below.)

The typical laminar wake is very unstable in reality. Yet owing to the complex nature 

of the unperturbed steady flow, there have been very few theoretical investigations of

17
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wake instability that employ correct wake features. Most investigators have only 

modeled basic flow properties in a rather ad hoc fashion and, for example, have 

computed growth rates at a position where the resultant basic profile roughly 

corresponds to the physical flow (see in Sato & Kuriki 1961, Mattingly & Criminale 

1972, Papageorgiou & Smith 1989). Stability calculations have been performed 

however for basic flow profiles which are solutions of the boundary-layer equations 

with the appropriate boundary conditions that hold in the thin viscous wake, by 

Papageorgiou & Smith (1989). Another aspect, the linear stability of parallel shear 

flow to long-wavelength perturbations, has been the subject of a paper by Drazin and 

Howard (1966). The paper focused on jet and shear-layer-type profiles, and the results 

can be extended to wakes. It was found that the detailed properties of the velocity near 

the wake centreline are insignificant then, and that the dependence on the undisturbed 

velocity far away from the centreline is more important for such perturbations. Again, 

the issue of absolute instability in the wake is a significant one, as reviewed recently 

by Smith et al. (2000). Their paper, which contains many references on the subject, 

also points to the importance of using realistic velocity profiles rather than ad hoc 

ones in the wake.

The study by Elliott & Smith (1998) was one of the first investigations to solve both 

the unsteady boundary layer and the unsteady wake flows, in their case in response to 

unsteady disturbances in the mainstream flow. This setting, with fully nonlinear 

unsteadiness being present in the thin wake, is the one of most current concern.

1.2.3 Free surface analyses, and moving contact points

In order to analyse basic features of the free-surface effects that influence the 

frictional resistance on a ship-side, Chang et al. (1994) have investigated the unsteady 

boundary layer using finite element analysis. The laminar boundary layer equations 

are expanded with the assumption of small amplitude waves, and the second order 

equations, which describe the effect of the ffee-surface, are solved by a simplified 

integral method. The ship frictional resistance is found to decrease due to the free 

surface wave. The results explicitly indicate that the ship viscous resistance is 

dependent on the Froude number, which is defined here as the ratio of the square of 

the characteristic velocity scale to the product of the gravitational acceleration (g) and 

the characteristic length scale, although some authors adopt instead the square root of
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this quantity to define the Froude number. The present Froude number yields a 

measure of the typical inertial forces relative to the gravity effects.

In this thesis we will be applying a simple no-slip condition at the moving contact 

point or line, which is the common interface between the air-water and the solid 

boundary. As the solid boundary moves downwards into the water, say, it is expected 

that in reality the contact point will move relative to the solid boundary, but here we 

keep to the no-slip case as a prime one to be explored. It is worth mentioning some of 

the many other aspects of moving contact points nevertheless. Some general problems 

relevant to the ship side analysis and the behaviour of the air-water interface near the 

contact line may be found in Foda & Cox (1980), King (1991), Vanden-Broeck & 

Tuck (1994), Billingham & King (1995), King et al. (1998), and more recently in 

Somalinga & Bose (2000). The study of Foda & Cox examines the spreading on a 

water-air interface of a thin liquid film for the situation in which surface tension 

gradients drive the motion. (Such capillary effects are excluded from consideration in 

the work of the present thesis but are still of much interest, for example see the recent 

paper of Kang & Vanden-Broeck 2000). King investigates the moving contact lines in 

slender fluid wedges. He finds the asymptotic and numerical solutions for a novel 

two-point boundary-value problem and the displacement of the contact point. 

Vanden-Broeck & Tuck investigate the flow near the intersection of the free surface 

with a vertical wall. The free surface here typically makes an angle of 120° with the 

wall and it is assumed that the velocity close to separation is small. A nontrivial local 

solution with 90° and 180° contact angles is also computed here by a series truncation. 

Billingham and King (1995) analyse computationally and analytically the problem of 

a flat plate penetrating an air-water interface for both small and large times using the 

boundary integral method. It is found that far-field capillary waves are generated 

when the contact angle is close to 90° and, as time increases, the interface becomes 

more non-linearly deformed. King et al. (1998) perform an extension of the same 

method to the case of an inclined plate/interface system. Similar profiles are again 

found. Somalinga and Bose (2000) investigate, using finite elements, the development 

of the free surface located between a static wall and a rod entering the fluid in a 

dynamic wetting process. General profiles are predicted for displacement and velocity 

fields for a numerical mesh which appears to be relatively coarse.
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A similar problem is that of the development of the free surface flow past the bow of 

a ship in water of finite depth (Vanden-Broeck 1989). The problem is solved 

numerically using series truncation for various values of the Froude number. The 

development of the free surface for this geometry is briefly investigated. Concerning 

the above and subsequent works, we remark that in the current study the influence of 

gravity will be taken to be relatively small (corresponding to the Froude number being 

large), but it is interesting also to note some of the properties found in the literature 

for non-small gravity effects (for example Vanden-Broeck & Dias 1996, Daboussy et 

al. 1998).

For the moving ship-side analysis in which the effect of gravity is included, there 

exist comparatively few studies, one of which is Fraenkel and McLeod (1997). Their 

analytical study is concerned with the entry of a blunt wedge into a horizontal free 

surface. The behaviour of the contact angle and point is investigated. Another 

analysis is that by Daboussy et al. (1997). Here the series truncation method is applied 

to standard geometry flows under the influence of gravity and predicts the shape of 

the free surfaces.

For completeness, we may also mention Howison et al.’s (1991) work in which the 

impact response of a wedge entering a free surface is considered in the absence of 

gravity. The free surfaces are predicted analytically for various geometries of the 

penetrating body.

Finally here, it is interesting to consider numerical values of the Reynolds number and 

Froude number that might be encountered in practice. For a ship oscillating in water 

where approximately v==0.01 e.g.s. and gravity is 981 cm/s^, the vertical length scale 

could be in the range 10 cm to 500 cm and the vertical velocities concerned could be 

in the range 50 cm/s to 200 cm/s, say. Thus values of Re are calculated in the range 

5x10"^ to 10̂ . The range of values of Froude number is 0.005 to 4 for these types of 

flow. These numbers are also quoted in chapter 7 later in the thesis.
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1.3 Numerical investigations

A quite common feature of unsteady boundary layer motions is that they often involve 

rather problem-specific singular behaviour, either at early times or at specific 

locations, for example near a leading edge or a trailing edge, in addition to being 

inherently nonlinear. The specific computational approach used in this thesis has been 

applied previously to study steady two- and three-dimensional boundaiy layer flows 

involving singular behavior, such as Smith and Timoshin (1996 a,b), and is advocated 

also for unsteady flows of the type concerned in this thesis. The other published 

numerical methods of most accuracy, applied to unsteady boundary layer flows 

different from the ones of current interest, appear to be the Lagrangian approach of 

Van Dommelen (1981), Peridier et al. (1991 a,b), Degani et al. (1998) and the 

adaptive gridding approach of Adams et al. (1995), although Li (2000) has recently 

developed an equally accurate compact differencing approach.

All numerical investigations described in the present study are performed using the 

programming languages Fortran 77 and 90. Flow charts for the various programs 

included in the thesis are given in the text and the complete program listings at the 

end of the relevant chapters. Specific numerical procedures for integration and 

differentiation, such as Simpson’s rule and the solution of systems of equations, have 

been adapted from Roache (1976), James et al. (1985) and Gerald & Wheatley (1989).

The rates of convergence of the numerical solutions with grid resolution were 

investigated by varying the interval sizes of the computational runs for both spatial 

coordinates and time. Thus convergence of the various solutions that were found was 

established in a manner similar to that in Markatos & Assimacopoulos (1995).

1.4 Structure of the thesis

The thesis is partitioned into two major sections, which reflect the present combining 

of the three areas of research mentioned earlier in the introduction, a combination 

which appears to be novel. Part A considers the unsteady flat plate problem including 

the leading and trailing edge phenomena. Part B then considers the application of the 

work of Part A to the case of a downward moving ship-side. The problem is further 

generalised to that of an inclined ship-side and also to include the effects of gravity.
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In Part A, a semi-implicit method is applied to allow for the leading and trailing edges 

of the flat plate. Chapter 2 considers the unsteady flat plate problem, for which the 

velocity profiles in the boundary layer are ascertained with respect to both spatial 

coordinates and with respect to time. A numerical grid is defined for finite 

differencing. The well-known Blasius and Rayleigh forms of solution hold on the 

plate sufficiently near the leading edge and sufficiently far downstream of it, 

respectively. In between them a similarity form (Stewartson, Hall) applies in which 

the streamwise and normal distances x, y  scale with positive powers of the time t. As 

grid refinement is increased, the solution is found to converge. We choose to tackle 

the whole solution by means of a parabolic time-marching technique for a number of 

reasons including the desire for a flexible treatment applicable to many different 

unsteady flows. Chapter 3 investigates the nature of the unsteady wake. Additionally, 

the scaled displacement and skin friction responses along the plate are predicted, and 

an investigation incorporating modified boundary conditions for the far-field flow is 

made. In the wake there is again a similarity solution for sufficiently small times and 

distances, whereas we seek the solution computationally for all times and distances. 

As far as we are aware this is the first calculation to include the unsteady wake as part 

of the total computation for such an impulsively started motion. In fact the word “is” 

should perhaps be replaced by “was at the time of its being done, in about 1997”, 

because Li (2000) has since performed a numerical study of the flow problem 

involved.

Part B considers the problem of the ship-side motion, mainly downwards in an 

initially stationary fluid. In the investigation Chapter 4 takes the depth of the partially 

submerged ship-side within the stationary fluid (water) to set a definite length scale 

for the ensuing motion, which rules out the possibility of a global similarity solution. 

The problem is developed from the full governing equations employing suitable 

boundary conditions, and the Froude number is taken to be large. Various 

transformations are employed in order to develop the analysis and build into the 

problem realistic phenomena, with a view to obtaining the influence of the viscous 

displacement on the inviscid majority of the water flow. The area of investigation is 

divided into three regions which are analysed separately. For each of the regions, the 

initial and boundary conditions are developed and incorporated. In Chapter 5, the 

various regions are further considered in the complex plane. To aid the investigation,
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a displacement derivative function is developed from the Cauchy-Hilbert relationship. 

Modeling of the problem is then undertaken for both small and large times, in which 

the displacement derivative function is evaluated. Chapter 6 subsequently uses the 

viscous displacement derivative function and mixed boundary conditions for the 

development of the solution for the shapes of the upper and side free surfaces. Direct 

relationships are found between the upper free and side free surface shapes and the 

displacement derivative function.

Chapter 7 contains more advanced considerations of the ship-side flow including the 

effect of gravity on the side free surface behaviour. The gravity effect is built into the 

problem by re-considering the original boundary conditions and incorporating the 

gravity contribution together with the viscous displacement derivative function of the 

earlier chapters. The development of the problem is in a similar manner as with 

chapter 5. An alternative method is also investigated to find the side free surface 

equation including the gravity effect. In Chapter 8, the analysis is then extended to the 

general case of an inclined ship-side moving downwards. For this case, the conformai 

transformation used is for a general angle of inclination to the horizontal, with the 

earlier studied vertical motion being a special case. A general transformation in the 

complex plane is developed valid for a range of inclinations to the horizontal, and 

consequently a general displacement derivative function is developed. The solution is 

then evaluated numerically for a range of angles, and comparison is made with the 

vertical case (90°) of chapter 5.

The thesis concludes with a short discussion on other types of configuration and on 

upward ship-side motion, along with a summary.
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CHAPTER 2

The flow past an impulsively started 
finite flat plate» and its computation

2.1 Introduction

The subject of this chapter is the incompressible boundary layer over a flat plate that 

is started impulsively from rest with uniform velocity. The fundamental problem of 

the flat plate of finite length is of most interest to us, including its wake properties, but 

we start here with the semi-infinite case in effect. The two cases are identical between 

the leading and trailing edge of the finite-length plate anyway, because of the 

parabolic nature of the governing equations below. The development of the flow in 

time has two simple features, for a given position x  along the plate. In the beginning 

of the analysis, the flow is identical almost everywhere to that given by Rayleigh for 

an infinite plate; but the flow transforms, for large times (i.e. t » I ) ,  to that given by 

Blasius for a semi-infinite plate in a steady uniform stream. Stewartson (1951), Hall 

(1969), Dennis (1972) and others have studied the problem in terms of similarity 

variables. For the current, mainly numerical, study the plate considered was divided 

into multiple .^-stations and time marching was used in order to obtain a more widely 

applicable analysis of the flat plate and related problems. An indication of the 

difficulties associated with the problem may be gained from an examination of the 

governing differential equations and boundary conditions.

We consider the problem in the rectangular coordinate system x, y, t with lines x=0 

and y=0 fixed at the leading edge of the plate, and with the %-axis and y-axis parallel 

and normal to the plate, respectively. At high Reynolds numbers Re the unsteady 

boundary layer equations apply, at least for some finite time interval. These equations 

hold in a number of contexts, including the case of ship-side water motions as will be 

investigated in Part B of the thesis. Thus we concentrate (in Part A of the thesis) on a 

numerical method of solution of the unsteady boundary layer equations suitable for a 

variety of imposed free stream conditions (or imposed pressure gradients) and wall 

conditions.
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We attempt to develop a fairly flexible computational solution approach. A quite 

common feature of unsteady boundary layer motions is that they often involve rather 

problem-specific singular behaviour, either at early times or at certain locations, for 

example near a leading edge or a trailing edge, in addition to being inherently 

nonlinear. The specific approach used in the thesis has been applied previously to 

study steady two- and three-dimensional boundary layer flows involving singular 

behavior, by Smith and Timoshin (1996 a,b), and is advocated also for unsteady flows 

of the type concerned in this thesis.

The governing equations are the unsteady two-dimensional boundary-layer equations, 

for a uniform free stream in the first instance. In non-dimensional variables these may 

be written

d u d v  
—  +  — =  0 , 
dx dy

du du du d^u
 +  W--------h V  = ----- - ,
dt dx dy dy

(2 1) 

(2 2)

where the variables are defined as:

;c' u' Ut' ^

&  = UL

L Uy=  , ,v =

(2 3 )

Here x' and y \  t \  u' and v' are the usual dimensional measures of distance, time, 

and velocity, v  is the kinematic viscosity, and L and C/ are a reference length and a 

reference velocity, respectively. It is convenient to take Z, to be a representative 

distance from the leading edge, in the case of a semi-infinite plate, and U to be the 

velocity of the free stream relative to the plate.

The boundary conditions at the surface and at the outer edge of the boundary layer are
26



Chapter 2

at y  = 0, w = V = 0 (at the wall), (2.4)

as 0 0 , w -> 1 (outside the boundary layer), (2.5)

in turn. Away from the leading edge, for large values of x  and/or for small times r, we 

observe that the flow is equivalent to an impulsively started infinite plate with no 

leading edge. Thus setting the derivatives with respect to x in equations (2.1-2.2) 

equal to zero, we have there the Rayleigh solution, for

^  > 1, a = ««(^) = - j = \ e ^ '  ■ d Ç  (2.6)

l4 t 2̂ 0 0 '

The explanation of why this is for ^ > 1, rather than >oo, is given by

Stewartson (1951) and revolves around the subtle matching (which takes place in a 

zone close to x=t) with the solution holding nearer the leading edge. In general this is 

x>U t where U is the velocity of the external flow, and thus the Rayleigh solution 

holds for x > t . Now, for sufficiently large times at fixed x and/or for sufficiently 

small X values, setting the derivative with respect to / in equation (2.2) equal to zero, 

we have the Blasius solution, for

where =

There is no known analytical method for the direct solution of equations (2.1)-(2.2) 

subject to the boundary and limiting conditions (2.4)-(2.7). However, the number of 

independent variables may be reduced from three to two as in Stewartson (1951) and 

Hall (1969). We may consider the new independent variables

= (2.8) 
X y j x
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with K = (2.9)
ylx

which yield a similarity solution. 

Equations (2.1) and (2.2) then become

du ^Su ^
ÔT

ÔU d^ u
( l - T u ) - ------- - - F  —  = — T. (2.11)

V / dS dS

respectively. Here S  is the Blasius variable, while the Rayleigh variable is given by

Ç = —= ,  and the boundary conditions can be expressed as functions of only T and 
2^|T

S. The equations (2.10) and (2.11) therefore may be solved numerically for u and V in 

terms of T and S  alone, as has previously been addressed by Hall (1969). A difficulty 

with the numerical task in the above S-T formulation should be noted, however. It is 

that the property of parabolic dependence (in the original system (2 . 1 )-(2 .2 )) is 

observed in a sense, because of the expanding coordinates associated with the S-T 

formulation; the problem (2.10)-(2.11) is parabolic in the positive T direction if 

u < but parabolic in the negative T direction if w > T '*, due to the coefficient (1- 

Tu) in (2.11). Hence the overall problem in (2.10)-(2.11) is elliptic in effect, and this 

requires multiple sweeping in T for instance.

2.2 Entire flat-plate problem

In contrast with Hall’s (1969) approach for the semi-infinite plate, an outline is given 

in this section of the numerical method used for directly solving equations (2 . 1 ) and 

(2.2) subject to the boundary conditions (2.4) to (2.5) and the initial state k = 1, v = 0 

everywhere, rather than the similarity form of (2 .8 )-(2 . 1 1 ).

The flow problem (2.1)-(2.2) is parabolic in the positive x  direction provided that u is 

positive or zero, as well as being parabolic in time t. We assume the general linear

approximation as the basis of the semi-implicit numerical method, as
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suggested by Smith and Timoshin, along with a similar approximation for v—  and
dy

du
'd i

, to determine the unknowns u, v at the current station x and time t. The velocity

components are denoted by w, v at the previous %-station, x-Ax, for the current time t, 

and by u at the current jc-station, x, for the previous time, t-At. These values are 

assumed known, as represented in figure 2.1. Additionally, Ax and At are the small 

streamwise and time steps, respectively. The approximation is first order in %, 

requiring tiny %-steps Ax for accuracy, but second-order accuracy in y  will be 

imposed subsequently. For now the differential form in terms of y is retained.

v e lo c i ty  c o m p o n e n ts  
a t  p r e v io u s  x - s ta t io n

v e lo c i ty  c o m p o n e n ts  
a t  c u r re n t  x - s ta t io n

v e lo c i ty  c o m p o n e n ts  
f o r  c u r re n t  t im eI n c o m in g  f lo w

v e lo c i ty  c o m p o n e n t  
f o r  p r e v io u s  t im eu { x j  -

c u r re n t  x - s ta t io n  o f  a n a ly s is
■ ^ ___________

Velocity components for flat-plate analysisFigure 2.1

Thus equation (2.2) becomes

~ \ u - u
At

+ u ^ u - u \  _du d^u
(2 .12)

essentially an equation for u alone at a given x station and given time t. 

Next, the central differencing representations in y  are given by
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and

d^u ^  u { h j \k ) -2 u ih j -h k )  + u { i,j-2 ,k )
(Ayf

du u ( i j \ k ) - u { iJ - 2 ,k )
dy

(2.13)

(2.14)

where are the step counters for the x and y  coordinate directions and time, 

respectively.

Equations (2.13-2.14) are applied to equation (2.12), giving

+ v(/-l,y,A:)

A/
' u { i j , k ) - u { i j - 2 , k )

2Ay

Ax

u{i, j ,  k ) -2 -  u{i, j  - 1 , ̂ ) + u{i, j  -  2 , k)
Ay'

(2.15)

This is regarded as an equation for the u values at the x-station i. The velocity 

component v may be obtained afterwards from equation (2 . 1 ) which is written as 

dv -  (w -  w )
dy Ax

or, using the values of u and u averaged over j.

Ay

Y ̂ (f, y, ̂ ) -  %/(/ -1, y, ̂ ) 1 ̂  r u { i j - \ , k ) - u { i - \ J - \ , k ) \

W Ax Ax
(2.16)

JJ

This implies that

/  A, A
v(^y,^) = - ^  ^  { u { i J , k ) - u { i - \ J , k )  + u { i J - \ , k ) - u { i - \ J - \ , k ) )  

2lAxy

+K^y~i>^)- (217)

The initial and boundary conditions for the system are as follows. At the first r-step, 

i.e. / = A/, we have u { iJ ,k - \ )  equal to unity everywhere, corresponding to the
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undisturbed uniform stream. Likewise at the first jc-step, i.e. jc = Ax, we have ü  equal 

to unity and v equal to zero. The conditions at the wall,y=l, are defined at each x- 

step as w = v = 0  at}/ = 0  (the no-slip wall condition), and u is defined as unity, the 

velocity of the far-field flow, foxy at j  =ymax, corresponding to the furthest value of y  

in the far-field, in view of (2.4), (2.5).

The unknown variables in the tridiagonal system of equations (2.15) for 

2 < y < (y m ax-1) are u(ij,k), u(ij-\,k), u(ij~l,k). The solution may be found as 

follows, with equation (2.15) expressed in the form

diu(ij,k) + bu(ij-l,k) + c-u(ij-2,k) = d . (2.18)

Thus, collecting the coefficients of the three unknowns, equation (2.15) becomes

w(/,y,A:)
2Ay Ay' + w(̂ »y

2
Ay At Ax y

+ u { i,j-2 ,k )
2Ay Ay' At Ax

(2.19)

2.2.1 Solution by Gaussian elimination for the flow velocities

To solve equation (2.18) or (2.19), for a given value of the jc-station counter i and time 

counter k, we use Gaussian elimination. The general form of the system of n- 

equations, which incorporate the boundary conditions for the far-field flow and the 

wall, is given as

" 1 0 0 0

C2 b2 0

0 Ca bs as

0 0 0 Cn-

0 0 0 0

  0

0

  Q

bn-l 3̂-1
0 1

Ui

U2

Us

Uta-1

Un

0

dj

ds

dn-l

1

, (2 .20)
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with passive subscripts having been dropped. 

Thus we have the augmented matrix formulation

1 0 0 0  • ............... 0 0

C 2 b : 0  • ............... 0 d 2

0 C 3 b 3 ■................ 0 d 3

i

0 0 0 b p - i  a n - i ^ 0 - 1

.  0 0 0 0 0  1 1  .

a i 0 0  , 7 t i  ^

0 P z a 2 0  •................ 0 JC2

0 0 P 3 & 3  •................ 0 %

0 0 0 0 P n - 1  a ^ . i n-1

0 0 0 0 0  1 1

where lAy =  b y -

7 l y = d y -

( % - / 9 / /  P y - y ) ,  

(7 Iy .y  C y /  P y . y ) .

>

(2.21)

(2.22)

Also we note that tti = ai = 0 and pi = 1.

Hence the velocity for a typical value of j  is given by Uy = {nj- % u,+y) / py.

2.3 Numerical solution

The flow chart for the structure of the computer program to evaluate the u velocities 

at ijjc  is given below.

The local system of equations for u,v at the height counter j  above the flat plate is 

thereby solved at a given x-station for the time counter k. After the velocity 

components w,v at j  have been evaluated the routine moves on to the next x-station. 

Once all the x-stations have been traversed, the procedure time-marches to the next 

value of the time counter k+\. This describes the overall semi-implicit marching 

numerical method. An investigation of how well the method performs (especially

32



Chapter 2

concerning its accuracy) will be described below by comparing its results with the 

Hall similarity solution and observing the grid refinement effect on the rate of 

development of the solution, in order to estimate adequate grid sizes.

Define storage matrices for u(i,j,2) 
& v(ij,2), and variables

Output results for each time step and x-station

Nested loops for values of time k and x-station /

Implementation of initial and boundary conditions

Define 2D coefficient array and a(j), b(i), c(j) and d(j) vectors

Define increment sizes dx, dy & dt and set all 
values of storage and coefficient matrices to zero

Calculate values of non-zero a(J), b(j), c(j) & d(j) 
coefficients for local equation system for each row j

March to next x-station and then to next time step on 
completion of all x-stations

Solve local equation system by Gaussian elimination 
and obtain u(/) by back-substitution and v(/)

PROGRAM 2.1

Overall the advantages of the semi-implicit approach appear to be the following: it is 

relatively easy to program and to modify; it is fast in computer time for reasonable 

grid sizes; it can be made second order accurate in both x, r, through the double­

stepping procedure of Smith and Timoshin (1996), through three-point backward

differencing for the x-derivatives, or through iteration on the current m, v values to
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incorporate non-linearity; unusually for a numerical scheme for a partial differential 

equation, the approach can be checked in quite some detail by analytical means (see 

below in sections 2.4-2.7); and finally it is flexible in terms of alterations in the 

boundary conditions, for example in the free stream or at the wall or wake centre-line 

(see Chapter 3).

2.3.1 Results and discussion

Comparing the results with the predictions of Hall (1969), convergence to the 

similarity solution of Hall occurs after fewer time steps for a finer grid, i.e. for smaller 

values of the time and streamwise intervals. At and zk, respectively. The variation of

^ du
y ŝ o

the surface shear in particular with normalised time T (equation 2.8) is shown

in figures 2.2-5, together with Hall’s predictions, for computational runs employing 

various levels of grading with respect to time. The numbers of time-steps thus chosen 

for examination of convergence of the solution were between one and thirty. The 

profiles are presented for runs performed for three values of Ax, to assess the level of 

grid refinement in the x-coordinate direction, in figures 2.3-5. Hall found that by T=4, 

the transition from Rayleigh to a steady-state Blasius flow regime was completed.

Rayleigh

Blasius

Figure 2.6 General form of the Hall solution

As more time steps are employed in the runs, the solution converges more closely to 

the Hall solution, which is of the approximate form shown below in figure 2.6. As a 

general observation, the major part of the convergence to the Hall solution occurs 

over the first five time steps. By employing a larger number of time steps in the run.
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the rate of convergence increases. By employing smaller values of zk, the rate of 

convergence to the Hall solution, with respect to number of time steps, was faster and 

surprisingly attained with fewer-time steps. For example, when Ax is 0.001, 30 time 

steps are required for fairly adequate convergence towards Hall’s solution, whereas 

for Ax equal to 0.0002 only 4 time steps are required for a similar level of 

convergence. It will also be observed that even for a single time step, the general two- 

part form of the solution curve is obtained. Thus the rate of convergence in terms of 

the number of time steps appears to be a function of the streamwise step. As T tends 

to infinity, we notice that the profile is more or less constant.

The results altogether seem to capture the correct form of the solution qualitatively, 

and quantitative agreement also emerges if the grid taken is sufficiently refined. Grid 

refinement was performed in, for instance, the x-coordinate direction, while keeping 

the same level of grid refinement in the y-coordinate direction and with respect to 

time. Additionally, unequal steps were taken for the grid size refinement in order to 

check for convergence of solution more efficiently. The velocity computed was 

monitored at three given locations whose positions were fixed. Refinement with 

respect to x and t yielded negligible changes in the values of w, as shown in figures 2.7 

and 2.8. Figure 2.9 shows grid refinement with respect to y, where the results show 

steady convergence for reducing Ay. This suggests that the solution is well converged 

with respect to the current sizes of Ax, Ay and At.

2.4 Analytical properties at first x-station

2.4.1 The near-Blasius solution (initial time interval)

It is interesting to reconsider the general finite-difference equation (2.12) at the point 

x=Ax and t=At. There, m = w = 1  and v = 0 as stated earlier. So we have

= (2.23)

for y = 1 to 1 0 0  to match with the computational program, where Q -

and h = A y. This set of difference equations can be solved exactly.
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The general solution is

(2.24)

where À] and Xi are the roots of the characteristic equation

A ^-(2 + Q V )A  + l = 0. (2.25)

One root, X\ say, is greater than 1 and the other, Xi, is less than 1. In order to compare 

with the numerical results, we employ the boundary conditions at the wall and at 

infinity. In doing this, we obtain A = 0 and B = -1. The value of is found to be 150 

f  I 1 ^from = —  + —  with At = 0.02 and Æ  = 0.01, and the value of Ay taken is 0.1. 
{At Ax)

So the two roots are = 3.186 > 1 and X2 = 0.314 < 1. Then equation (2.24) yields uj 

= 0 . 6 8 6  which agrees exactly with the computed result at the first %-station i=l and at

y=l in the numerical results. In addition, the implied dependence on j / ^ / 2  j ^ / 2

in (2.23)-(2.25) agrees with the known similarity form: see (2.8)-(2.11).

2.4.2 The Rayleigh solution for jc>t

For jc>t, we have from equation (2.12) the approximation

and the far-field and wall conditions apply, namely: u tends to unity as y  tends to 

infinity, and u is equal to zero when y is equal to zero.

Equation (2.26) implies the second order differential equation

d^u
dy^

- « 6  (2.27)

where Q = —  now.
At

The general solution is given as before by w = A2^ + +1, and as before we find
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A = 0 ,B  = -\. Substituting in the numerical values we have = 50 with ât = 0.02, 

and /ly = 0.1 again, which gives the values A,i = 2(>l)and A,2 = 0.5(<1). So the solution 

yields w = 0.5 aty = 1, which agrees with the numerical results for the Rayleigh range

obtained by the above computations. The implied dependence on is also in

agreement with the known exact form of solution noted just after (2 . 1 1 ).

2.5 Analysis at the second Jc-station (jc = 2Ax)

Following the analytical solution obtained in section 2.4 for the first %-station of the 

plate at A: = Ax, we see that the two computational programs above yield identical 

values. We now consider the possibility of an analytical based solution for the second 

jc-station at the point x = 2Ax. This is done for two reasons: first, for the sake of 

comparing with and checking the numerical approach of sections 2.3, 2.4; second (in 

principle), for examining from an alternative viewpoint the double-stepping procedure 

of Smith and Timoshin (1996), which is advocated as a means of obtaining second- 

order accuracy in x. As before, we initialise the values of w and v , for the previous x- 

station. For w we use the solution for u derived already at the first %-station (section 

2.4) and for v we then use the continuity equation. Hence w = 1 -  e~ ^ , w = 1 and 

— e~^
=  over the first step. Thus continuity gives

Ax

(2.28a)

using V -  0 at)/ = 0, at the first Jc-station.

In addition, after some operations in equation (2.12), we obtain a differential equation 

of the apparently unusual form

v —  + (a-be-°^)u = ^ ,  (2.28b)
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for u at the second Jc-station, where a = and b = \/Ax, while v is the right-hand 

side of (2.28a). We next transform equation (2.28b) into a form that is susceptible to 

solution.

Setting s = we find again after various operations the form

+ j(l + K — Ks)Us — (1 — Ks)u = 0, (2,29)

where the constant K = blQ^,  which is a parameter dependent on the and4r 

intervals, and the homogeneous version of (2.28b) is addressed first seeking to obtain 

a form of the equation that is susceptible to solution, we perform the following series 

of manipulations. By further setting u = AB, we obtain the equation in the form

s \A B '' + 2A'B’ + A’B)+s(} + K -  KsXAB' + A 'B ) - ( } -  Ks)AB = 0. (2.30)

To solve equation (2.30), we choose B to eliminate the terms containing A, and we 

thus define B as

5  = (2.31)

Inserting B into equation (2.30), we therefore obtain the standard form for A.

s^A" + A Ks 1+ (3 + /l)---------(3 + / l ) = 0 (2.32)

Of more practical use subsequently (see sections 2.5.1, 2.6 below), however, is the 

non-homogeneous counterpart of (2.29), namely

T ^  ~ Ks) — (1 — Ks)u = —1 + 2Ks — Ks^, (2.33)
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which is subject to the conditions w(l) = 0 and w(0) = 1, for u{s). The value of K  lies 

between 0 and 1. The homogeneous version then is the same as equation 22.6.17 of 

Abramowitz and Stegun (1972). Using their standard solution, we obtain

(2.34)

where Ln''‘‘\x )  is the generalized Laguerre polynomial and a is a known constant. 

On the other hand, we need a particular integral for the right hand side terms. For the 

-\+2Ks terms, a particular integral is a=\+s, but there seems to be no straightforward 

particular integral for the -  Ks^ term. We return to (2.33) shortly.

So instead, for general values of K, we next solved equation (2.33) numerically using 

a tri-diagonal system as in section 2.2.1. The results are given in section 2.6 for 

various values of K.

2.5.1 Analytical solution for small K

An investigation of an analytical solution of (2.33) valid for small K is useful here. 

Equation (2.33) becomes, for small K,

+ su^ -  w = -1 , (2.35)

subject to the conditions w(l) = 0  and w(0 ) = 1 .

The solution is u = As + Bs~  ̂+1. Then u(0) = 1 implies that B = 0 and w(l) = 0 

implies that A = -I. Therefore we have the simple result u = l - s . This agrees with 

the trends of our numerical results in the figures below for decreasing K.

2.6 Computational results and discussion for jc = 2Ax

The program used for the evaluation of u at 2Ax is identical to Program 2.1. The only 

differences arise in the use of the height variable s (=(/-! )Æ) for the evaluation of the
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coefficients of the velocities in (2.33), rather than as in equation (2.19). The results for 

the second %-station are then presented in figures 2.10-2.12.

For various values of jmax = 700, 21, 41, 81, and interval parameter AT, the results 

show that as AT is increased from 0.05 to 0.9, the non-linear nature of the velocity 

profile becomes gradually more emphasised. This is shown by the results for a given 

value of jmax, and varying K.

To add to this, we observe that the steady Blasius solution can be tackled similarly. 

Here Ar -> oo in effect. So becomes VAx. By solving equation (2.24) and also 

employing (2.25) to evaluate which was found to be 0.382, for Ax = 0.01 and Ay = 

0.1. The calculated values of velocity wj are found to be u\ = 0.618, ui = 0.854 and W3  = 

0.944 which agree exactly with those found computationally.

The computed value of the scaled wall shear with x, for the current grid spacing, is 

given in figure 2.13, together with the true Blasius values. Fair agreement is observed 

for values of x > 0.03.

2.7 The modified Blasius solution

For another analytical based comparison with the numerical work, we employ a 

Blasius ‘modified’ solution for the steady-state solution as x -> 0. This is defined as 

follows.

If w = f \ Ç ) , where Ç = y !  x ^'^, then

i f ”/ "  + ̂  = 0, (2.36)

together with the conditions

/(0 )  = / '(0 )  = 0 (2.37a)

and

f \ a )  = \. (2.37b)
__
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Here a  is taken to be a finite positive constant, representing a modification of the 

classical Blasius case which has a  being large in effect. Here, the parameter a is the 

wavenumber of the disturbance when the wake thickness is scaled out (Papageorgiou 

& Smith 1989).

Numerical integration shows that A = /"(O) = 0.332... when a » \  [see the Blasius 

case in Jones & Watson (1963)]. On the other hand, when we select à  « 1 ,  we 

expect Z"' = 0 from (2.36) to leading order since the range of Ç is then small. So we 

may anticipate that then

/  = + (2.38)

with unknown constants a,b,c. From equation (2.37a) we see that c = 0 and ^ = 0. 

Also equation (2.37b) requires 2âa  = 1 and thus â  is determined as

<î= — . (2.39)
2a

So finally we obtain, using (2.39) in (2.36), in prediction that

/ ' ( 0 ) ~ -  â s à ^ O .  (2.40)
a

Equation (2.40) gives the Blasius modified behaviour for small a  and has been 

included in program 2.3 for comparison. Figure 2.14 shows the variation of /"(O) 

with a  for values of a  up to five, from our numerical solution of (2.36)-(2.37b); the 

numerical solutions at these a  values are joined together simply by straight lines. The 

Blasius value 0.332... for f"{0) is closely approached for a  near 5. For small a  the

asymptote (2.40) is remarkably close to the numerical results, due to the nature of the 

resultant series, thus providing an encouraging check on the latter. In fact (2.40) 

apparently works well for a  as large as 2 or more. Figures 2.15-18 present the 

variation with C, for a range of values of a ,  of /" ( th e  shear function), / '( th e
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velocity function) and /  (the stream function). The emergence of the simple forms 

implied in (2.38)-(2.40) for these profiles is evident for a  values below about 3.

2.8 Fortran 77 and 90 programs and figures
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Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C PROGRAM TO SOLVE 2-D PROBLEM FOR FLAT PLATE
C by Dimitrios P. Papadopoulos
C JULY 1998
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C Define variables
program plate
INTEGER i,j,k,imax,j max,kmax,ntmax,nt 
REAL dy,dt,dx, f ,x

C Define 3D storage arrays for computed values of u(i,j,k) & v(i,j,k)
REAL u (102,102,2),v(102,102,2),s s (102)

C Define 2D coefficient array and u(j) & d(j) vectors which form the"local" 
C system of equations for solution at each x-station

REAL coefficient(1051,1051),dvector(1051)
REAL a (1051),b(1051),c(1051),d(1051),mi(1051),pi(1051)
INTEGER col

C Define increment sizes and storage-matrix dimensions
dx = 0.01
dy = 0.1
dt = 0.02
imax = 20
jmax = 20
kmax = 2
ntmax:= 1950

Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C IMPLEMENTATION OF BOUNDARY CONDITIONS *
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

DO 42 k = 1,kmax,1
DO 41 j = 1,jmax,1
DO 40 i = 1,imax,1

C Un-influenced flow field (before introduction of plate)
IF (k.EQ.l) u(i,j,k) = 1.0

C Flow field at first x-station (at leading edge of plate)
IF (i.EQ.l) THEN

u(i,j,k) = 1.0 
v(i,j,k) = 0.0 

ENDIF
C Flow field at the wall (non-slip condition)

IF (j.EQ.l) THEN 
u(i,j,k) = 0.0 
v(i,j,k) = 0.0 

ENDIF
u(l,l,k) = 1.0

C Flow field outside boundary layer region
IF (j.EQ.jmax) u(i,j,k) = 1.0

2.1 Program to solve 2-D problem for flat plate.
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4 0 CONTINUE
41 CONTINUE
42 CONTINUE
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C ASSEMBLE LOCAL SYSTEM OF EQUATIONS *
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C nested loops for each value of time and x-station
k=2
DO 200 nt=l,ntmax,1 
DO 90 i = 2,imax,1

C Set all terms of coefficient matrix equal to zero
DO 69 j=l,jmax,1 
DO 68 col=l,jmax,1 
coefficient(j,col) = 0

68 CONTINUE
69 CONTINUE
C calculate values of non-zero coefficients - row by row (j)

DO 70 j = 1,jmax,1
IF (j.EQ.l) THEN 

dvector(j) = 0 
coefficient(j ,j) = 1.0 

ENDIF
IF (j.EQ.jmax) THEN 

dvector(j) = 1.0 
coefficient(j,j) = 1.0 

ENDIF
IF ((j.NE.l).AND.(j.NE.jmax)) THEN
a ( j ) = (v(i-l, j , k) / (2*dy) ) - (l/(dy'^*2))
b (j ) = (1/dt) + (u (i-1, j ,k)/dx) + (2/(dy’̂*2) )
c (j)= (- (1/(dy**2))) - (v(i-l,j,k)/ (2*dy;)
d(j)=((1/dt) * u(i,j,k-1)) + ((u(i-l,j,k)**2) * (1/dx))
coefficient(j,j-1) = c(j) 
coefficient(j,j) = b(j) 
coefficient(j,j+1) = a (j) 
dvector(j) = d(j)
ENDIF

70 CONTINUE
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C SOLVE SYSTEM OF EQUATIONS WITH GAUSSIAN ELIMINATION *
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C we define values of transformed coefficients row by row (j)
C first, evaluate mi and pi for each row (j)

m i (1)=1 
p i (1)=0
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DO 75 j=2,(jmax-1),1
mi(j)=b(j)-((c(j)*a(j-l))/mi(j-l)> 
pi (j ) =d( j ) - ( (c (j ) *pi ( j -1) ) /mi (j -1) )

C second,insert mi and pi for each row(j) and also c(j)=0
coefficient(j,j-1)=0 
coefficient(j/j)=mi(j) 
dvector(j)=pi(j)

75 CONTINUE
C solve for u(j) by back substitution

u(i,l,k) = 0 
DO 80 j=(jmax-1),2,-1
u(i, j ,k) = (pi (j ) - (a(j ) *u(i, j+l,k) ) ) /mi (j )

80 CONTINUE
C calculate v(j)

v(i,l,k) = 0 
DO 85 i=2,jmax,1
f =-((dy/ (2*dx) ) * (u(i, j,k)-u(i-l, j,k)+u(i, j-l,k)-u(i-l, j-l,k) ) )
v(i,j,k) = (v(i,j-l,k)) + f

85 CONTINUE
90 CONTINUE
C Copy values from k=2 to k=l and print for current time step nt.

do 102 i=l,imax,1 
do 101 j =1,jmax,1 
u(i,j,1)=u(i,j,2) 
v(i,j,l)=v(i,j,2)

101 continue
102 continue

if ((nt.eq.3).or.(nt.eq.2 0).or.(nt.eq.120).or.
(nt.eq.320).or.(nt.eq.520)) then

do i=2,imax,1 
x=(i-l)*dx
ss(i)=( ((4*u(i,2,2))-u(i,3,2)) ) / (2*dy)

C *(x**0.5)
C WRITE (6,*)' x=',x,' ; ss=',ss(i) ,' time',nt
C WRITE (6,*) X  , ss(i)

enddo
C WRITE (6,*) ''

endif
200 CONTINUE
C Print out values for u(i,j,k) and v(i,j,k) at each time step & x-station

DO 225 i=2,imax,1 
k=2
DO 210 j=jmax,1,-1
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WRITE (6,*)' U  ', j , u(i,j,k)
210 CONTINUE

WRITE (6,*)' '
DO 220 j=jmax,l,-l 
WRITE (6,*)' V ', j , v(i,j,k)

220 CONTINUE
WRITE ( 6 , * ) '  '

225 CONTINUE
240 end
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Q **********************************************************
c PROGRAM TO FIND RESULT AT THE SECOND X-STATION
C by Dimitrios P. Papadopoulos
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C Define variables
INTEGER i,j,k ,imax,j max,kmax 
REAL dy, dt,dx,s,Q,kay

C Define 3D storage arrays for computed values of u(i,j,k) & v(i,j,k)
REAL u(701,701,2)

C Define 2D coefficient array and u(j) & d(j) vectors which form the"local" 
C system of equations for solution at each x-station

REAL coefficient(701,701),dvector(701)
REAL a (701),b(701),c(701),d(701),mi (701) ,pi(701)
INTEGER col

C Define increment sizes and storage-matrix dimensions
dx = 0.001 
dt = 0.002 
imax = 2 
jmax = 51 
kmax = 31
dy = 1.0 / (jmax-1.0) 
kay = 0.9 
Q = 12.47

C Set all values of storage-matrix equal to zero
10 DO 32 k = 1,kmax,1

DO 31 j = 1,jmax,1 
DO 30 i = 1,imax,1

u(i,j,k) = 0.0
3 0 CONTINUE
31 CONTINUE
32 CONTINUE
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C IMPLEMENTATION OF BOUNDARY CONDITIONS *
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

DO 42 k = l,kmax,1 
DO 41 j = 1,jmax,1 
DO 40 i = 1,imax,1

C Un-influenced flow field (before introduction of plate)
IF (k.EQ.l) u(i,j,k) = 1.0

C Flow field at first x-stations (at front of plate)
IF (i.EQ.l) THEN

u(i,j,k) = 1.0 
ENDIF

C Flow field at the wall (non-slip condition)
IF (j.EQ.l) THEN 

u(i,j,k) = 1.0 
ENDIF

2.2 Program to find results at the second jc-station.
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c Flow field outside boundary layer region 
IF (j.EQ.jmax) u(i,j,k) = 0.0

4 0 CONTINUE
41 CONTINUE
42 CONTINUE
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C ASSEMBLE LOCAL SYSTEM OF EQUATIONS *
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C nested loops for each value of time and x-station
DO 100 k = 2,kmax,1 
DO 90 i = 2,imax,1

C Set all terms of coefficient matrix equal to zero
DO 6 9 j=l,jmax,1 
DO 68 col=l,jmax,1 
coefficient(j,col) = 0

68 CONTINUE
69 CONTINUE
C calculate values of non-zero coefficients - row by row (j)

DO 70 j = 2,jmax,1
IF (j.EQ.l) THEN 

dvector(j) = 1.0 
coefficient(j,j) = 1.0

ENDIF
IF (j.EQ.jmax) THEN 

dvector(j) = 0 
coefficient(j,j) = 1.0

ENDIF
IF ((j.NE.l).AND.(j.NE.jmax)) THEN 
s = (j -1) *dy
a (j) = ((s**2)/ (dy**2)) - (s*(1 + kay - (kay*s))/ (2*dyj)
b (j) = ((kay*s)-1-((2*(s**2) ) / (dy**2)) )
c(j) = ((s**2) / (dy**2)) + (s*(1 + kay - (kay*s))/(2*dy))
d (j) = ((2*kay*s)-1-(kay*(s**2)))
coefficient(j,j-1) = a (j) 
coefficient(j,j) = b(j) 
coefficient(j,j+1) = c(j) 
dvector(j) = d(j)
ENDIF

70 CONTINUE
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C SOLVE SYSTEM OF EQUATIONS WITH GAUSSIAN ELIMINATION *
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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c we define values of transformed coefficients row by row (j)
C first, evaluate mi and pi for each row (j)

mi(l) = 1
pi ( 1) = 1
mi (2) = b (2)
pi (2) = d(2) - a(2)
DO 75 j=3,(jmax-1),1
mi (j ) =b( j) - ( (a (j ) *c ( j -1) ) /mi (j -1) )
pi (j ) =d( j ) - ( (a (j ) *pi ( j -1) ) /mi (j -1) )

C second,insert mi and pi for each row(j) and also a (j)=0
coefficient(j ,j-1)=0 
coefficient(j ,j)=mi(j) 
dvector(j)=pi(j)

75 CONTINUE
C solve for u(j) by back substitution 

DO 80 j=(jmax-1),2,-1
u(i, j ,k) = (pi (j) - (c(j) *u(i, j+l,k) ) )/mi(j)

80 CONTINUE
90 CONTINUE
100 CONTINUE
C Print out values for u(i,j,k) and v(i,j,k) at each time step & x-station

DO 13 0 k=2,kmax,1 
DO 125 i=2,imax,1
WRITE (6,*) ' '
WRITE (6,*)' x-station ', i ,' time ', k
DO 110 j=jmax,1,-1
WRITE (6,*)' u ', j , u(i,j,k)

110 CONTINUE
WRITE (6,*)' '

125 CONTINUE
130 CONTINUE
140 end
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Q* * * * * * * *  -k * ie ic * * * * *  -k -k *5LAS IÜS PîTÔ ÎTSITl* *******************************

MODULE kind 
IMPLICIT NONE
INTEGER, PARAMETER : : dp = SELECTED_REAL_KIND(8,30)
END MODULE kind
MODULE similarity_solution

: kbot = 0, ktop = 2048 
: etabot = 0.0_dp, etatop = 5.0_dp 
: ubot = 0.0_dp, utop = 3.0_dp, psibot = 0.0_dp 
: deta

eta
delta eta 
f; fv

USE kind 
IMPLICIT NONE 
INTEGER, PARAMETER 
REAL(KIND=dp), PARAMETER 
REAL(KIND=dp), PARAMETER 
REAL(KIND=dp)
REAL(KIND=dp), DIMENSION(:) , ALLOCATABLE 
REAL(KIND=dp), DIMENSION(:), ALLOCATABLE 
REAL(KIND=dp), D I M E N S I O N A L L O C A T A B L E
END MODULE similarity_solution
PROGRAM main

IMPLICIT NONE
CALL allocate_similarity_solution 
CALL set_similarity_solution 
CALL write_data_files
END PROGRAM main
SUBROUTINE allocate_similarity_solution 
USE kind
USE similarity_solution 
IMPLICIT NONE
INTEGER : : k

ALLOCATE( eta(kbot:ktop) )
ALLOCATE( delta_eta(kbot+1:ktop) ) 
ALLOCATE( f(kbot:ktop,1:3) ) 
ALLOCATE( fv(kbot:ktop,1: 3) )
deta = (etatop - etabot)/ (REAL((ktop-kbot),dp))

= etabot + REAL((k-kbot),dp)*deta
DO k = kbot, ktop 

eta(k)
END DO
DO k = kbot+1, ktop 

delta_eta(k)
END DO

= deta

END SUBROUTINE allocate_similarity_solution
SUBROUTINE set_similarity_solution

USE kind 
IMPLICIT NONE

2.3 Program to evaluate the Blasius modified behaviour for small a

50



CALL newton(0.0_dp)
END SUBROUTINE set_similarity_solution 
SUBROUTINE newton(wall_shear)
USE kind
USE similarity_solution 
IMPLICIT NONE
REAL(KIND=dp) : : wall_shear, phi, phi_dashed

f (0,1) = psibot 
f (0,2) = ubot 
f(0,3) = wall_shear
fv(0,l) = 0.0_dp
fV(0,2) = 0.0_dp
fV(0,3) = 1.0_dp
phi = 1.0_dp

DO WHILE( ABS(phi) > 1.0E-12_dp)
CALL runge_kutta(kbot, ktop, eta, delta_eta, f, fv) 
phi = f(ktop,2) - utop
phi_dashed = fv(ktop,2)
wall_shear = wall_shear - (phi/phi_dashed)
f(0,3) = wall_shear
WRITE(6,*)phi, wall_shear

END DO 
END SUBROUTINE newton
SUBROUTINE runge_kutta(kbot, ktop, t, h, x, v)

USE kind 
IMPLICIT NONE 
INTEGER, INTENT(IN)
REAL(KIND=dp), DIMENSION(0 :ktop), INTENT(IN) 
REAL(KIND=dp), DIMENSION(1 :ktop), INTENT(IN) 
REAL(KIND=dp), DIMENSION(0:ktop,1:3), INTENT(INOUT) 
INTEGER

kbot, ktop
t
h
X ,  V
k

DO k = kbot+1, ktop
CALL runge_kutta_step(t(k-1),h(k),x(k-l,1:3),v(k-l, 1:3) ,x(k,l:3),v(k,l:3)) 
END DO

END SUBROUTINE runge_kutta
SUBROUTINE runge_kutta_step(t, h, x, v, xout, vout)

USE kind 
IMPLICIT NONE
REAL(KIND=dp), INTENT(IN) :: t, h
REAL(KIND=dp), DIMENSI0N(1:3), INTENT(IN) : : x, v
REAL(KIND=dp), DIMENSION(1:3), INTENT(OUT) : : xout, vout
REAL(KIND=dp), DIMENSION(1:3) : : fl, f2, f3, f4, fvl, fv2, fv3, fv4
CALL evaluate_functions(t, x, v, fl, fvl) 
fl = h*fl 
fvl = h*fvl
CALL evaluate_functions(t+(0.5_do*h), x + (0.5_dp*f1) , v + (0.5_dp*fvl), f2, fv2) 
f2 = h*f2 '
fv2 = h*fv2
CALL evaluate functions(t+(0.5_dp*h), x + (0.5_dp*f2), v + (0.5_dp*fv2), f3, fv3)
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f3 = h*f3 
fv3 = h*fv3
CALL evaluate_functions(t+h, x+f3, v+fv3, f4, fv4) 
f4 = h*f4 
fv4 = h*fv4

xout = X  + ((fl + (2.0_dp*f2) + (2.0_dp*f3) + f4)/6.0_dp) 
vout = V  + ((fvl + (2.0_dp*fv2) + (2.0_dp*fv3) + fv4)/6.0_dp)
END SUBROUTINE runge_ku11 a_s t ep
SUBROUTINE evaluate_functions(t, x, v, f, fv)
USE kind 
IMPLICIT NONE
REAL(KIND=dp), INTENT(IN) :: t
REAL(KIND=dp), DIMENSION(1:3) , INTENT(IN) : : X ,  v
REAL(KIND=dp), DIMENSION(1:3) , INTENT(OUT) : : f ,  fv

f(l) = x(2) 
f (2) = x(3)
f(3) = -0.5 dp*x(l)*x(3)
fv(l) = v(2) 
fv(2) = v(3)
fv(3) = -0.5_dp*((x(3)*v(l)) +x(l)*v(3))

END SUBROUTINE evaluate_functions
SUBROUTINE write_data_files
USE similarity_solution 
IMPLICIT NONE
INTEGER ; : k

OPENdO, FILE='profiles.dat')
DO k = kbot, ktop

WRITE(10,FMT=30)eta(k), f(k,l), f(k,2), f(k,3)
END DO 
CLOSE(10)
FORMAT(4F12.6)

END SUBROUTINE write data files
30
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Variation of surface  shear with T. 
(dx = .001 dy = .02 dt = .002)
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Variation of surface  shear with T 
(dx = .0005 dt = .002 dy = .02)
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Grid Effect: dz variation evaluated at 3 locations

N

?

0.8

0.7

0.6

0.5

0.4

0.3

0 .2

0.1

0

-

1 1 1 1 1 1

-

+ + + +
+

+ + + +
+

+ + + +
+

—

1 1 1 1 1 1

—

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Fig. 2.9
dz



14- 1-1997

LEADING EDGE X=2DX FOR 
DIFFERENT VALUES OF K

1.100
-Hl-JM = 21 K=0.05 

= 21 K=0.1 
JM = 21 K=0,3 

- o ^ J M  = 21 K=0.66 
= 21 K=0.9

1.000

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0.000

0 10 20

0 s
Fig, 2.10 60



LEADING EDGE X=2DX FOR 
DIFFERENT VALUES OF K

14- 1-1997

1.100

1.000

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0.000

0  JM =41 K =0,05

0 JM =41 K =0.66 
0  JM = 41 K =0.9

0 10 2 0 30 40

0
Fig. 2.11 61



LEADING EDGE X=2DX FOR 
DIFFERENT VALUES OF K

14- 1-1997

1.100

1.000

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0.000

0 10 20 30 40 50 60 70 80 90

0
Fig. 2.12 62



Computed wall shear and Blasius Value
9

8

—^ C o m p u te d  wall shear 

—■ — Blasius value
7

6

5

4

3

2

1

0

(0
Q)
sz
(/)

0.01 0.02 0.03 0.04 0.05 0.06
X (distance along plate)

0.07 0.08 0.09 0.1

Fig. 2.13



The variation of shear function with alpha
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Chapter 3

CHAPTER 3

The trailing edge and the wake 

for the unsteady flat plate problem

3.1 Introduction

In this section, we study the flow field in the wake region at high Reynolds numbers 

Re. Wakes are common occurrences in flow around and adjacent to various geometric 

boundaries and are significant in many physical situations. Generally, these flows are 

unstable in reality and thus it is important to obtain a clear understanding of the 

mathematical nature of the flow field that constitutes the wake involved. The main 

problem considered is that of an infinitely thin aligned flat plate travelling with 

uniform speed in a viscous incompressible fluid, after an impulsive start at time / = 0. 

We then proceed to calculate the flow velocities at successive wake stations, which 

are obtained as solutions of the unsteady wake boundary-layer equations. The 

numerical results generated in earlier work on steady wakes indicate fairly good 

agreement with the asymptotic theory and some experimental work (see Papageorgiou 

and Smith 1989).

Due to the inherent scales, the wake region is ideally suited to numerical analysis 

based on the boundary-layer equations as in chapter 2, which is the approach that will 

be undertaken in the current chapter.

Throughout this chapter, the origin of the Cartesian coordinate system is again fixed 

at the leading edge and the Reynolds number is assumed to be asymptotically large. 

Also w, V , p  are the scaled component velocities in the x- and y- directions, and the 

scaled pressure, respectively, and 'P is taken to be the scaled stream function for the 

two-dimensional flow.

3.2 Trailing edge and wake solution

When the fluid leaves the trailing edge, the laminar boundary layers from either side 

of the plate merge and are accelerated to form a thin wake. The thickness of the wake
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is of order Re~^^ and the motion is governed by the unsteady two-dimensional 

boundaiy-layef equations. The velocity u in the jc-direction is symmetric in profile 

about the wake centerline (y = 0) and thus has zeroy-derivative at>̂  = 0.

In chapter 2 we investigated the governing equations of the unsteady two-dimensional 

boundary layer for a uniform free stream. In non-dimensional variables these may be 

written as equations (2.1) and (2.2). The solution provided there was for every te­

station in the domain of the flat plate.

In this section, we investigate the trailing edge and wake problem using equations

(2.1) and (2.2). For times t< \ (where the ‘endplate’ value of x is unity), the w-profile 

entering the wake from the boundary layer is the Rayleigh solution, with zero v, both 

above and below the centreline y = 0. Hence in the wake, in numerical terms, we have

^ u -V \ J u - ü ^
àt

+ u
Ax

+ O^Uy=Uyy,  ( 3 . l )

where w = (1 -e  ^ )  is the numerical Rayleigh solution, in which = 1 1— H----
\A t Ax j

Here the partial differential equation (3.1) holds only in the immediate wake and is 

hyperbolic, since « is a function of %, y  and t. The near-wake scaling for the original 

differential equations as well as the difference equations, at small times /, is w ~ 1, 

Y ~ , y  ~ , (jc -1) ~ r , (where the ‘endplate’ value of .x is 1), and strictly a

similarity form applies similar to that in the unsteady upstream boundary layer 

(Stewartson, Hall) and to the Goldstein form for the near wake. The similarity form 

for this region of unsteady flow suffers from the same difficulty as that mentioned in 

chapter 2 for the unsteady flow on the plate, however, namely its effectively elliptic 

character due to the expanding coordinates locally. So we discard the (direct) 

similarity approach. Another reason for doing this is the question of flexibility, again 

as in chapter 2. Later in this section we describe the results obtained fi’om marching 

forward in x at all times t> 0  from the near wake to the jc-station where the uniform 

stream « = 1 is attained. This is at % = 1+r.

70



Chapter 3

If we introduce a new function s, which is equal to the exponential function e ~ ^ , 

equation (3.1) implies the differential equation

Q2 _ 2  , 

66"
— s - { Q ^ - b s ) u  = 0,  
ds

(3.2)

1 1
where O = —  and b = — .

M ^x

Given the complexity of equation (3.2), the problem is considered from a numerical 

point of view using Gaussian elimination for the flow velocities as described below.

3.2.1 Solution by Gaussian Elimination.

For every Jc-station in the wake, the flow below the plate influences the flow from 

above and vice versa, due to the absence of the solid boundary. Thus the two flows 

converge in a symmetric manner into a single flow as shown in figure 3.1, and (2.1),

(2.2) have to be solved numerically again.

Line o f  sy m m e tn
x=0,

W A K EU i = C .v=endplate

U2

U „ = l

Un=l
Flow field for finite length flat-plate analysisFigure 3.1
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The flow problem remains symmetric and in the wake the centreline velocity, Wj, 

assumes a finite numerical value. The equation along the wake centreline is now 

different to that for the plate region in that it relates the uj velocities , «i and Uq to

each other, where Uq is the same as due to symmetry. Thus for the wake centreline 

where y=l, we have

(3.3)

That is in terms of (2.18) and (2.19), for a given value of the Jc-station counter / which 

is greater than the endplate value, and time counter k, we again apply Gaussian 

elimination. The general form of the system of n equations, which incorporates the 

boundary condition for the far-fleld flow, is given as

"bi (ai+Ci) 0 0 •• ... 0 " " u, di

C2 bz az 0 S » ! 0 U2 d2

0 C3 bs as • ... 0 Us = ds
1

0 0 0 Co-l bn-l an-1 iVi (Li
 ̂ 0 0 0 0 0 1 ^ .  1 .

(3.4)

Thus we have the augmented matrix after the various row transformations as

M l a / 0 0 ............. ... 0 7tl ^

0 a z 0 ............. ... 0 Tl2

0 0 a s ............. ... 0 ÏÏ3

0 0 0 0 p„-i a n - 1 ^ n-1

0 0 0 0 0 1 1

where = V - ( % - / % / | L l y - / )

7T, = dy- {Tlj.! Cj I

(15)
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We note that tci= di, |lii= bi and also a /=  (ai + cJ.

Hence the velocity for a given value of J is again given by Uy = (Tty- % Uy+y) / \Xj.

3.3 Numerical solution and discussion

Program 3.1 to evaluate the u component of velocity at stations x downstream of the 

trailing edge as well as on the plate itself is almost identical to program 2.1. The only 

difference is that the step consisting of the evaluation of the coefficients for the local 

equation systems (for each row j)  has two alternative sets of equations; one for the flat 

plate region and the other for the wake region. The program is given at the end of this 

chapter.

Figures 3.2-3.5 show the wake values of u along the central axis of symmetry, 

uCENTRELINE, plotted against x-station. Here the flat plate is of unit length (i.e. the value

of the variable endplate in the program is 1). The profiles for Ucentreune &re presented 

for selected values of time t, showing how they develop over time. In the figures, the 

profiles are labelled with the associated time step number. The initial profile is a step 

function, as required, since the wake has not started to develop then and the velocity 

virtually everywhere is unity. As time increases, the values of the wake velocity 

reduce in a nonlinear fashion with respect to time, converging towards a finite steady 

state variation for very large times. The grids employed in the analysis had values of 

Ax = 0.016-0.008-0.004, Ay = 0.08-0.04-0.02 and At = 0.008-0.004-0.002.

Close agreement is observed between our wake results at large t and those predicted 

by the steady state solution of Papageorgiou and Smith (1989)’s figure 4. The 

streamwise variation of the centreline velocity in the wake is represented from their 

steady-flow calculation for comparison.

Figure 3.6 show the variation of Ucentreune with time t, at a given value of x=1.04 in

the wake, a location immediately downstream of the trailing edge. The general trend 

is asymptotic to a steady-state value of approximately u=025. In figure 3.7, the u 

values with time are given for various heights y  above the centreline, and convergence 

to the external far-field flow is observed for heights above the y=3 level which agrees
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favourably with the conclusion of Papageorgiou & Smith (1989). The variation of u 

with y  for the first j:-station (at a distance of jf=0.016) is given in figure 3.8, for 

various values of time. It was found that the results agreed with the Blasius solution.

Grid refinement was performed, as before, for each of the coordinate directions and 

time. The refinement was again performed using unequal interval sizes for efficiency. 

The velocity computed was monitored at three given locations in the region of the 

wake whose positions were fixed. Refinement with respect to x, y  and t yielded 

negligible changes in the values of w, as shown in figures 3.9-3.11. This again tends to 

demonstrate numerically converged solutions.

3.4 The scaled displacement and skin friction

As far as we know, the present study provides the first computational solution for the 

unsteady flat plate problem including its wake. A subsequent study is made by Li 

(2000), however, and there is a perhaps mildly relevant paper by Phillips (1996) but in 

the unusual context of motion past a plate whose length varies in a specific way with 

time.

This similarity problem is itself quite difficult to solve numerically because of a 

reversal in direction of the parabolicity involved and its is quite problem-specific. We 

choose instead to use a flexible computational method based on time-marching using 

the form.

Thus program 3.1 was modified accordingly for the above case, investigates the 

numerical response for two grid sizes. The first one is for Ax=0.0l6, Æ=0.008 and 

Ay=O.OS, and the second computation is for half these increment sizes. Profiles of Ô 

against x are given in figures 3.12-13 for times ranging between /=0.024 and /=4.16, 

and for a given value of y=6.4. For the displacement, agreement is found to be closer 

with the analytical solution for the computation performed using the finer grid. There 

is also observed to be a small kink in the Blasius solution for very small times, which
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seems to be an anomaly of the approach. The boundaiy layer and wake displacement 

functions are given in figures 3.14-16 for values of time in the range 0.2-1 for use in 

part B of the thesis. These results are in good agreement with the numerical 

predictions according to the approach of Li (2000) (a quite different approach based 

on second order differencing as in the Crank-Nicholson method), which have been 

computed for the same values of time and are shown for comparison in figures 3.17 

and 3.18. This provides an encouraging verification of our results which have been 

produced using the existing time-marching method.

The structure of the program to evaluate now, the skin friction quantity, ss, along the 

plate is the same as for program 3.1, but now with the evaluation of ss at the end. The 

relation for the skin friction is given by

ss = (3,7)

From the profiles for skin friction against %, (figure 3.19), for various values of time, 

(figure 3.20), we observe that there is apparent convergence towards the steady-state 

Blasius solution, section 2.7, for larger values of time.

3.5 Numerical solution for modified boundary condition w -> f { t )

In order to make the current numerical analysis more widely applicable, program 3.1 

was modified to accommodate a more general free stream condition, u-> f{ i )  as 

jy -> 0 0 , as given in program 3.2. This means employing new boundary conditions for 

the far-field and first x-station (the leading edge) which now incorporate the time 

variable implicitly. As a result, substitution of these modified boundary conditions 

into the local system of equations (2.20) yields modified coefficients d(/) only. This 

demonstrates that the numerical approach is extremely flexible in its application to 

more general problems, since it may be used for anyy(r) in principle. For the current 

case, the function^O is given by
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The u profiles against x for a height y=0.16 close to the centreline, are given in figures 

3.21-23, for the same three grid sizes as before. Following the classic Blasius- 

Rayleigh-like behaviour in the plate region, the wake profile function exhibits an 

initial increase with time followed by a movement downstream, resulting in a 

reduction of the fimction of (3.8) with increasing time. The apparent singularity at the 

leading edge of the plate is due to the nature of the boundary conditions defined in the 

program. Given the fact that virtually no noticeable difference in the solutions is 

observed between the three grids, it is concluded that there is probably sufficient 

convergence of the solutions here.

Figures 3.24-26 show the variation of u versus height y for the three grid sizes, with 

the corresponding Blasius solution also shown. For large values of time convergence 

with the Blasius solution (where rj = y!x^'^)  is observed, e.g. for the /=8 profile. 

Figure 3.27 shows various u profiles with time for the three grids. Closest agreement 

with the Blasius solution of 0.107 is observed for the finest grid.

76



Chapter 3

3.6 Fortran 77 programs and figures
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Q ***************************************************
C PROGRAM TO SOLVE 2-D PROBLEM FOR WAKE AREA
C by Dimitrios P. Papadopoulos
C
C OCTOBER1997 - NOVEMBER 1998
CQ **************************************************

C Define variables
program endplate
INTEGER i,i,k,imax,jmax,kmax,ntmax,nt 
REAL ^y, dt,dx,x,f

C Define 3D storage arrays for computed values of u(i,j,k) & v(i,j,k)
REAL u(402,402,2),v(402,402,2)

C Define 2D coefficient array and u(j) & d(j) vectors which form the 
C "local"system of equations for solution at each x-station

REAL coefficient(402,402),dvector(402)
REAL a(402),b(402),c(402),d(402) ,mi (402),pi(402)
INTEGER col

C Define end of plate variable and length of plate
INTEGER endplate 
REAL length

C Define increment sizes and storage-matrix dimensions
length=l 
dx = 0.004
dy = 0.02 
dt = 0.002 
imax = 400 
jmax = 400 
kmax = 2
endplate =length/dx
ntmax=1950
nt=l

C Set all values of storage-matrix equal to zero
10 DO 32 k = l,kmax,l

DO 31 j = l,jmax,l
DO 30 i = 1,imax,1

u(i,j,k) = 0.0 
v(i,j,k) = 0.0

30 CONTINUE
31 CONTINUE
32 CONTINUE
Q ***************************************************
C IMPLEMENTATION OF BOUNDARY CONDITIONS *
Q ***************************************************

3 5 DO 42 k = 1,kmax,1

3.1 Program to solve 2-D problem for wake area.
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DO 41 j = 1 , jmax,1 
DO 40 i = 1,imax,1

C Un-influenced flow field (before introduction of plate)
IF (k.EQ.l) u(i,j,k) = 1.0

C Flow field at first x-station (at leading edge of plate)
IF (i.EQ.l) THEN

u(i,j,k) = 1.0 
v(i,j,k) = 0.0 

ENDIF
C Flow field at the wall (non-slip condition)

IF ((j.EQ.l).AND.(i.LE.endplate)) THEN 
u(i,j,'k) = 0.0 
v(i,j,k) = 0.0 

ENDIF 
u(l,l,k) =1.0

C Flow field in the wake
IF ( (j.EQ.l) .AND. (i.GT.endplate)) v(i,j,k) = 0.0

C Flow field outside boundary layer region 
IF (j.EQ.jmax) u(i,j,k) =1.0

40 CONTINUE
41 CONTINUE
42 CONTINUE

Q ************************************************************************
C EVALUATE U(I,J,K) + V(I,J,K) FOR EACH X-STATION (I),
C FOR THE CURRENT TIME STEP (K).Q ************************************************************************

50 k = 2
DO 90 i = 2,imax,1

C Set all terms of coefficient matrix equal to zero
DO 69 j=l,jmax,l 
DO 68 col=l,jmax,l 
coefficient(j,col) = 0

68 CONTINUE
69 CONTINUE
C calculate values of non-zero coefficients - row by row (j)

DO 70 j = l,jmax,l
IF ((j.EQ.1).AND.(i.LE.endplate)) THEN 

dvector(j) = 0 
coefficient(j,j) = 1.0

ENDIF
IF (j.EQ.jmax) THEN 

dvector(j) = 1.0 
coefficient(j,j) = 1.0

ENDIF
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IF ((j.NE.1).AND.(j.NE.jmax)) THEN
a(j) = (v(i-l, j ,k) / (2*dy) ) - (l/(dy'^*2))
b(j) = (1/dt) + (u(i-l,j,k)/dx) + (2/(dy**2))
c(j) = (- (l/(dyk*2))) - (v(i-l,j,k)/(2*dy))
d(j) = ((1/dt) * u(i,j,k-D) + ( (u(i-l, j ,k) **2) * (l/dx) )
coefficient (i,j-l) = c(j). 
coefficient(j,j) = b(j) 
coefficient(j,j+1) = a(j) 
dvector(j) = d(j)

ENDIF
C Calculation of U(i,j,k) on the zero-line of symmetry in the wake

IF ((j.EQ.l).AND.(i.GT.endplate)) THEN 
a(l) = - (2/(dy**2))
b(l) = (1/dt)+ (u(i-l,l,k)/dx)+(2/(d/**2))
d(l) = ((1/dt) * u(i,l,k-l))+((u(i-l,l,k)**2) * (l/dx))
coefficient(1,1) = b(l) 
coefficient(1,2) = a(l)
ENDIF

70 CONTINUE
Q ********************************************************************
C * SOLVE SYSTEM OF EQUATIONS WITH GAUSSIAN ELIMINATION ' *Q ********************************************************************

C we define values of transformed coefficients row by row (j)
C first, evaluate mi and pi for each row (j)

IF (i.LT.endplate) THEN 
m i (1) = 1  
pi(l) = 0 
ENDIF
IF (i.GT.endplate) THEN 
mi (1) = b (1) 
pi(l) = d(l)
ENDIF
DO 75 j = 2,(jmax-l),l
mi(j) = b(j) - ( (c (j ) *a( j-1) )/mi (j-1) ) 
pi(j) = d(j) - ( (c (j ) *pi ( j-1) )/mi (j-1) )

C second,insert mi and pi for each row(j) and also c(j)=0
coefficient(j,i-l) = 0 
coefficient(],]) = mi(j) 
dvector(j) = pi(j)

75 CONTINUE
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c solve for u(j) by back substitution 
DO 80 j = (jmax-1),2,-1
u(i,j,k)= (pi(j)- (a(j)*u(i,j+l,k)))/mi(j)

80 CONTINUE
u(i,l,k) = 0 
IF (i.GT.endplate) THEN
u(i,l,k) = (pi(l) - (a(1)*u(i,2,k)))/mi(1)
ENDIF

C calculate v(j) not on centre line where it is zero
v(i,l,k) = 0  
DO 85 j=2,jmax,l
f =-( (4y / (2*dx))*(u(i,j,k)-u(i-l,j,k)+u(i,j-l,k)-u(i-l,j-l,k))) 
v(i,j,k) = (v(i,j-l,k)) + f 

85 CONTINUE
90 CONTINUE

Q ********************************************************************
C COPY RESULTS IN ARRAY FOR CURRENT TIME STEP AND OUTPUT RESULTS *
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C Copy results from current k value to previous k value
do 1060 i=l,imax,l 
do 1050 j=l,jmax,l 
u ( i, j , 1) =u ( i, j , 2 )
V ( i, j , 1) =v ( i, j , 2 )

1050 continue
1060 continue

C Output u(i,j,k) results for all time (k) values for a given j height
C above plate, at a fixed x-distance in the wake region.

i=260
j=31
WRITE (6,*) nt, u(i,j,2)

C Output u(i,j,k) & v(i,j,k) results for symmetric y=0 line in wake
C region, for a given value of k.

if ((nt.eq.3).or.(nt.eq.20).or.(nt.eq.220).or.(nt.eq.520)) then
WRITE (6,*) 'Wake profile results'
WRITE (6,*) ''
do i=200,imax,l 
x=dx*(i-l)
WRITE (6,*) X, u(i,j,2) 
enddo
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WRITE (6,*) 
endi f

€ Return to beginning for solution of next time step k
nt=nt+l
if (nt•le.ntmax) go to 50

2000 end
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Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C PROGRAM TO SOLVE 2-D PROBLEM FOR PLATE & WAKE AREA
C IN OTHER BOUNDARY CONDITIONS.
C
C by Dimitrios P. Papadopoulos
C
C NOVEMBER 1998
C0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C Define variables
program alteration
INTEGER i,j,k,imax,j max,kmax,ntmax,nt 
REAL dy,dt,dx,x,f

C Define 3D storage arrays for computed values-of u(i,j,k) & v(i,j,k)
REAL u(202,202,2),v(202,202,2)

C Define 2D coefficient array and u(j) & d(j) vectors which form the"local" 
C system of equations for solution at each x-station

REAL coefficient(202,202),dvector(202)
REAL a (202),b(202),c(202),d(202),mi (202),pi(202)
INTEGER col

C Define end of plate variable and length of plate
INTEGER endplate 
REAL length

C ' Define increment sizes and storage-matrix dimensions
length=l 
dx = 0.016 
dy = 0.08 
dt = 0.008 
imax = 101 
jmax = 101 
kmax = 2
endplate =length/dx
ntmax=2101
nt=l

C Set all values of storage-matrix equal to zero
10 k = 1

DO 31 j = l,jmax,l 
DO 30 i = l,imax,l

u(i,j,k) = 0.0 
v(i, j ,k) = 0.0

30 CONTINUE
31 CONTINUE
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C IMPLEMENTATION OF BOUNDARY CONDITIONS *
p  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

3.2 Program to solve 2-D problem for flat plate and wake area with modified boundary conditions.
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35 k = 2
DO 41 j = l,jmax,l 
DO 40 i = IfimaXfl

C Flow field at first x-station (at leading edge of plate)
IF (i.EQ.l) THEN

u(i,j,k) = (nt*dt)/((nt*dt)+1) 
v ( i ; j  yk) = 0.0 

ENDIF
C Flow field at the wall (non-slip condition)

IF ((j.EQ.l).AND.(i.LE.endplate)) THEN 
u(i,j,k) = 0.0 
v(i,j,k) = 0.0 

ENDIF
C Flow field in the wake

IF ((j.EQ.l).AND.(i.GT.endplate)) v(i,j,k) = 0.0 
C Flow field outside boundary layer region

IF (j.EQ.jmax) u(i,j,k) =(nt*dt)/((nt*dt)+l)
40 CONTINUE
41 CONTINUE

Q ************************************************************************
C EVALUATE U(I,J,K) + V(I,J,K) FOR EACH X-STATION (I),
C
C FOR THE CURRENT TIME STEP (K) .
Q - ************************************************************************

SO k = 2
DO 90 i = 2,imax,1

C Set all terms of coefficient matrix equal to zero
DO 69 j=l,jmax,l 
DO 68 col=l,jmax,l 
coefficient(j,col) = 0

68 CONTINUE
69 CONTINUE
C calculate values of non-zero coefficients - row by row (j)

DO 70 j = 2,jmax,1
IF ( (j.EQ.l).AND.(i.LE.endplate)) THEN 

dvector(j) = 0 
coefficient(j,j) = 1.0

ENDIF
IF (j.EQ.jmax) THEN 

dvector(j) = 1.0 
coefficient(j,j) = 1.0
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ENDIF
IF ( (j .NE.l) .AND. (j .NE. jmax) ) THEN
a(j) = (v(i-l,j,k)/ (2*dy)) - (1/(d **2))
b(j) = (1/dt) + (u(i-l,j,k)/dx) + (2/(dy**2))
c(j) = (- (l/(dy**2))) - (v(i-l,j,k)/(2*dy))
d(j) = ((1/dt) * u(i,j,k-l)) + ((u(i-l,j,k)**2) * (l/dx))

,+ ( 1.0/( (1.0+(nt*dt))**2) )
coefficient(j,j-1) = c(j) 
coefficie%t(j,j) = b(j) 
coefficient(j,j+1) = a(j) 
dvector(j) = d(j)

ENDIF
C Calculation of U(i,j,k) on the zero-line of symmetry in the wake

IF ((j.EQ.l).AND.(i.GT.endplate)) THEN 
a(l) = - (2/(dy**2))
b(l) = (l/dt) + (u(i-l,l,k)/dx) + (2/(d.y**2) )
d(l) = ((1/dt) * u(i,l,k-l))+((u(i-l,l,k)**2) *(l/dx))

+ ( 1.0/((1.0+(nt*dt))**2) )
coefficient(1,1) = b(l) 
coefficient(1,2) = a(l)
ENDIF

70 CONTINUE
Q ********************************************************************
C * SOLVE SYSTEM OF EQUATIONS WITH GAUSSIAN ELIMINATION *
Q ********************************************************************

C we define values of transformed coefficients row by row (j)
C first, evaluate mi and pi for each row (j)

IF (i.LT.endplate) THEN 
mi(l) = 1  
pi(l) = 0 
ENDIF
IF (i.GT.endplate) THEN 
mi (1) = b(l) 
pi(l) = d(l)
ENDIF
DO 75 j = 2,(jmax-1),1
mi(j) = b(j) - ( (c (j) *a(j-l) )/mi (j-1) ) 
pi(j) = d(j) - ( (c (j) *pi (j-1) )/mi (j-1) )

C second,insert mi and pi for each row(j) and also c(j)=0
coefficient(j,j-1) = 0
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coefficient(],]) = mi(j) 
dvector(j) = pi(j )

75 CONTINUE
C solve for u(j) by back substitution

if (i.le.endplate) u(i,l,k) = 0.0
DO 80 j = (jmax-1),2,-1
u(i,j,k)= (pi(j) - (a(j)*u(i, j+l,k) ) )/mi(j)

80 CONTINUE
IF (i.GT.endplate) THEN
u(i,l,k) = (pi(l) - (a(l)*u(i,2,k)))/mi(1)
ENDIF

C calculate v(j) not on centre line where, it is zero
v(i,l,k) = 0  
DO 85 j=2,jmax,1
f =-((dy / (2*dx)) * (u(i,j,k)-u(i-l,j,k)+u(i,j-l,k)-u(i-l,j-l,k))) 
v(i,j,k) = (v(i,j-l,k)) + f 

85 CONTINUE
90 CONTINUE

Q ********************************************************************
C COPY RESULTS IN ARRAY FOR CURRENT TIME STEP AND OUTPUT RESULTS *
Q ********************************************************************

C - Copy results from current k value to previous k value
do 1060 i=l,imax,l 
do 1050 j=l,jmax,l 
u(i,j,l)=u(i,j,2) 
v(i,j,l)=v(i,j,2)

1050 continue
1060 continue

C Output u(i,j,k) results for all time (k) values for a given j height
C above plate, at a fixed x-distance in the wake region.

i=21
j=4
WRITE (6,*) nt, u(i,j,2)

C Output u(i,j,k) & v(i,j,k) & ss(i) results for symmetric y=0 line
C in wake region, for a given value of k.

if((nt.eq.3).or.(nt.eq.20).or.(nt.eq.100).or.(nt.eq.220). 
or.(nt.eq.350).or.(nt.eq.520).or.(nt.eq.820). 
or.(nt.eq.1000)) then
WRITE (6,*) 'Wake profile results'
WRITE (6,*) ''

C do i=2,imax,l
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do j=l,jmax,l 
x=dx*(i-1) 
y=dy* (j-1)
WRITE (6,*) y, u(i,j,k)
enddo
enddo
WRITE { 6 ,*) '' 
endif

Return to beginning for solution of next time step k 
nt=nt+l
if (nt.le.ntmax) go to 35

2000 end
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Chapter 4

CHAPTER 4 

The downward vertical ship-side motion problem

4.1 Introduction

We now address a fairly fundamental application or applied problem, involving 

modelling. Our concern in the next few chapters is with the fluid (water) flow induced 

by the downward motion of a vertical flat solid surface, referred to herein as the ship- 

side. Initially, the ship-side and the water are at rest, at time t=0. The water then 

occupies the quarter plane x>0, y<0, as shown in figure 4.1.

Above the water, the fluid (air) motion is assumed to be dynamically negligible 

throughout, with the dominant stress forces there being only those due to uniform 

atmospheric pressure. The water surface acts as a free surface, with standard free 

surface conditions holding there (Batchelor 1967, Brotherton-Ratcliffe and Smith 

1989, and see shortly below), and the evolution of this free surface for positive times t 

is to be found.

The governing equations, in general, are the continuity and unsteady Navier-Stokes 

equations

? 4 - » '  w " )dx dy

— + «— + v— = g - ^  + Re"‘V^«, (4.1b)
dt dx ôy Sx

+ = + (4.1c)
dt ÔX dy dy

for the assumed two-dimensional flow of the water, which is taken to be

incompressible. Here denotes the Laplacian operator and g = - è
d x ^ d y ^

represents the normalized gravity force, related to the Froude number: see in chapter 1
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and in (4.30) below. The Reynolds number is given by Re = — , in terms of a
V

characteristic dimensional velocity Ù and length L of the ship-side and the 

kinematic viscosity v  of the water [Lamb (1932)].

The appropriate boundary conditions are that, first, the velocity (w,v) of the water at 

the (given) ship side is equal to that of the side itself (condition 1), i.e. there is no slip; 

second, at the unknown water surface (conditions 2a-c) there is zero tangential stress, 

the pressure p  is atmospheric wherever the radius of curvature of the free surface is 

relatively large (this is seen below to be almost everywhere, at high Reynolds 

numbers) and the kinematic condition on the velocity field is satisfied, i.e. no fluid 

particle can leave the free surface; and, third, the water is at rest ( m , v  tend to zero) far 

from the ship side (condition 3). The precise free-surface conditions 2a-c read, 

respectively.

( " ,+  vJCl -» ? /)  = 2(u, -  )V,,

p  = - - ' i T  +Vy),Re(l + 7,  )

’' = 7 ,+ “ 7 ,.

for a free surface at }/ = rj{x,t) say, with negligible surface tension. The contact point, 

where the water intersects the ship-side, is assumed here to have no movement 

relative to the ship side. In addition, there is a boundary condition to apply underneath 

the ship-side, if the side is to be treated as one of finite length, as considered 

subsequently (condition 4).

At high Reynolds numbers the controlling equations (4.1a-c) reduce to the boundary 

layer equations in a water layer near the ship side and to the potential flow equations 

in the water outside that layer, as examined below. An outer sub-region also occurs. 

The various layers or regions are considered in turn in this chapter, together with the 

matching conditions between them and the other appropriate boundary conditions. 

The upper free surface (the shape of the majority of the water surface, away from the
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ship-side) and the side free surface (the shape of the water surface close to the ship 

side) of the water are thereby determined.

The unsteady viscous boundary layer equations are found to hold near the ship-side 

(for some finite time interval at least), then, whereas in the rest of the flow the 

inviscid Euler equations apply, leading to potential-flow properties. The application of 

the unsteady boundary layer equations in the present context of ship-side motions 

forms the anticipated connection with the work of chapters 2-3 on numerical 

solutions.

The aim of this part of the research is to predict, amongst other things, the resulting 

shape of the upper free surface of the water produced by the moving ship-side as the 

upper free surface evolves with the passage of time /. The initial state is shown below 

in Figure 4.1 before any motion of the ship-side occurs. The atmospheric pressure is 

taken to be zero without loss of generality, and in the water the pressure p i s  g times 

X initially since the density of the water has been normalized to unity in essence. The 

velocities w,v are initially zero. The initial state is thus consistent with (4.1 a-c) and 

the boundary conditions described above.

A IR

WATER C/OX
c/3
om

Figure 4.1 Ship-side analysis

\/

The motion of the vertical ship-side may be analysed first in the two central cases that 

are of interest here, which are the downward and upward motions, respectively. The
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first case is considered in chapters 5 and 6, and the second case is briefly addressed in 

chapter 9.

4.2 The ship-side falls vertically

This case holds when the ship-side is moving vertically downwards, i.e. the relative 

velocity of the water corresponds to the adjacent fluid moving upwards. We will study 

this problem using the main regions, which are defined by figure 4.2, for high 

Reynolds numbers.

A IR

WATER

OQ
p = 0

nearly still x = k(t)

to

Boundary Layer
Leading EdgeFigure 4.2 Downward motion of ship-side

The body of water flow next to the ship-side is divided into three regions labeled 1 to 

3, respectively. Regions 1 and 2 constitute the boundary layer region, and region 3 the 

remainder of the body of water which is expected to be nearly still. The fixed spatial 

coordinate system x, y  has its origin at the geometric intersection of the water surface 

level and the ship-side wall at the initial time. Additionally, the coordinate 

direction is defined with its origin (at the ship side) corresponding to the region 1- 

region 2 interface, which is also known as the “contact point” by virtue of the fact that 

the water and air meet the ship-side wall at this point and which, as we have noted
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already, is taken to move with the ship side velocity, so that there is no slip of the 

contact point relative to the ship side. This point is defined by a given fimction k(t) 

say {x=k(t)) since the vertical position of the point is a prescribed fimction of time.

An important boundary condition (condition 2b) is that the pressure is equal to zero in 

the water at the side free surface in region 1, in view of the thin layer of air assumed 

to be immediately adjacent to the ship side in which the pressure is zero, by 

definition. The downward velocity of the ship-side Uw(t) (= ^'(0) > given as a fimction 

of time, is also indicated. The lower edge of the ship-side corresponds, by analogy, to 

the leading edge of the fiat plate. In essence we take here a symmetric-fiow 

configuration, for convenience, corresponding to a thin vertical flat plate moving 

downwards in the water, so that on the x-axis underneath the leading edge where y  is 

zero V must be zero for symmetry.

4.3 Investigation of the various regions

Regions 1 and 2 of the analysis are considered successively below, taking into 

account the various associated boundary conditions, while outer region 3 is 

considered in Chapter 5. Each region will be analysed separately using the unsteady 

two-dimensional boundary layer or potential flow equations suitably. Extensions of 

earlier analyses for external flow past a fiat plate will be made in order to perform the 

overall analysis of the current ship-side problem.

For all the ship-side problems, the Reynolds number Re is taken to be large. Further, 

in the analysis given below, the gravity force is included in part of the working for 

completeness, but in fact is later taken to be either negligible or small. Also, partly to 

clarify, the time is assumed to be positive, t>0, gravity g is constant, and w,v are the x- 

, y- velocity components.

4.3.1 Region 1

In this region, defined by 0 < j: < k{t) and y  = 0(Re"*^^), we start with the flow 

equations and the boundary conditions, as well as the initial conditions. Thus 

y  = Re"*̂  ̂Y say, with Y of 0(1), and we are seeking to determine the motion of the 

water near the ship-side.
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The governing flow equations become

û  + uu^ + Vuy = g + W}T » (4.2a)

u^4-Vy = 0, (4.2b)

from a classical boundary-layer argument applied to (4.1 a-c), with v expressed as 

Re"̂ ^̂  V and with V of order unity for the balance of continuity. In addition, the side 

free surface is assumed to be close to the ship side within a normal distance of order 

Re'*^  ̂ at characteristic 0(1) values of x. The y-momentum equation (4.1c) yields 

dp I dY being zero, in effect, leaving p  independent of T; but then the side-free-surface 

requirement of zero (atmospheric) pressure mentioned earlier (condition 2b) dictates 

that p  must be identically zero; hence only the g term remains on the right side of

(4.2a), next to the dominant viscous term which is d^u/dY^ . The boundary 

conditions are

w -> [w -  edge\ as F -> -oo, (4.3)

where w-edge is zero if g is negligible, for matching to the far-field flow.

In order to obtain the free surface condition, we require the function q{x,y,t) to be 

constant. The condition then is dqf = which implies

^  + = (4.4)
dt dx dy

So, we may write q -  f - Y  at 7 = f { x j \  to obtain

Uy = 0 , V ^ f , + u f ^ .  (4.4a)

In place of the latter condition, we may write, also, g = F  -  jc to obtain

w = F, + VFy at X = F{Y,t) . (4.4b)
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Here f(x,t) is an unknown scaled (shape) function of the vertical fixed spatial axis and 

time, and F(Y,t) is an unknown scaled (shape) function of the horizontal fixed spatial 

axis and time. The first of the boundary conditions (equation 4.3) is, in the case of 

negligible gravity, the far-field condition (condition 3) that holds at a sufficiently 

large horizontal distance from the ship-side. The latter boundary conditions (equations 

4.4a,b) describe conditions 2a,c, including the unknown shape /  of the side free 

surface, which is separated from the ship-side wall. We shall discuss (4.3) more later 

in the thesis but we note for now that u = [w-edge] satisfies the nonlinear equation

—  g  for general g values, in view of (4.2a).
dt dx

The initial conditions are

u — V = 0 for t = 0, (4.5)

which correspond to the flow starting from a state of rest.

4.3.2 Region 2

In the adjacent region 2, defined by x>  k(t) above the leading edge, in accordance 

with the moving ship side, similarly we have dpjdY being negligible and so

p ^ g { x - k { t ) )  (4.6)

to match with the bulk of the water. As in the previous subsection the governing flow 

equations for this region become

M,+ww,+Fwy =g- /7,+Wj^,  (4.7)

(4.8)

from the orders of magnitude in (4.1 a-c) again. Clearly however g and -  p^ cancel 

out in (4.7) due to the relation (4.6).

The associated boundary conditions are
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tt = w^(r),F = 0 (4.9)

at y = 0 (no-slip wall conditions) and

w -> 0 as 7 -> - 0 0  (4.10)

for matching to the far-field flow.

Boundary condition (4.9) stipulates that there is no slip at the ship-side wall 

(condition 1). This means that there the downward velocity of the water is equal to 

that of the ship-side, k'{t), and there is no transverse water velocity

component. Boundary condition (4.10) stipulates that the water velocity tends to zero 

in the far-field, where there is virtually no motion (condition 3). In addition, the initial 

condition is

u = V = 0 for t = 0, (4,11)

corresponding to starting from rest.

Now we substitute into the flow equations (4.7) and (4.8) the coordinate shift

x = k{t)4- X*. (4.12)

Then (4.7) and (4.8), with (4.6), become

Uf + wwy + Vuj -  k'û . = 0 + Wjy, (4.13)

M.+Ky =0.  (4.14)

Also, we put

u ^ u - k \ t \  (4.15a)

Ÿ  = 'P-A:'(r)y, (4.15b)

and
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F = F - k { t \  (4.15c)

which yield the final equations

Uf + m i + VUy -  - k \ t )  + ïÎyy , (4.16)

+K^=0,  (4.17)

together with the boundary conditions

w=0,F = 0 a t y  = 0, (4.18)

Ü -> -k '{ t \  as 7 -> - 0 0 , (4.19)

and the initial condition

u=-k\Qi) at r = 0. (4.20)

Here we observe that the final set of equations given above, i.e. (4.16)-(4.20), apply 

for the interval 0 < %' < x *le where x *le denotes the constant leading edge value of

X* .

Next, we return to region 1 and make the same transformation as was made for region 

2. The following equations are thus obtained for region 1 :

+ Vuy = -k"{t) + g + Wyjr, (4.21)

=0, (4.22)

from (4.2a,b), along with the boundary conditions, from (4.3), (4.4a,b),

û  -> -kXt) + [w -  edge] as 7 -> -o o . (4.23)

and i/y = 0,i7 + = F, + VFy - k'Fx^ at x* = F - k ,  (4.24)

i.e. ïiy =0,ïï+ k' = Fi + k' + VFy - k'F^. at x* = F, (4.24a),

where F = F - k ,

i.e. üy =0,ïï = F, + VFy at x* = F .  (4.24b)
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The above equations (4.21-4.24) for region 1 apply for -k{t)<x* <0 (or 

0 <.% < k{t) ), but -  0 0  < y < f ( x \ t )  say, where /  is negative.

The final equation set (4.16-4.20) of region 2 which is to be solved is exactly the same 

as the equation set of chapter 2 that describes the external boundary layer flow past an 

aligned flat plate (i.e. the Blasius-Rayleigh form), for any g value. Moreover, the 

equations (4.21)-(4.24b) will be shown in the next section to correspond to those of an 

external aligned (i.e. Goldstein type) wake, if g is zero. The assumption of 

effectively zero gravity in the analysis will be discussed more later. Thus, region 1 

corresponds to a wake region, with the contact point (at the region 1-region 2 

interface) corresponding to the trailing edge. Region 2 corresponds to the main flat 

plate area. Further, the lower edge of the ship-side wall in region 2 represents the 

leading edge of the plate.

The direct correspondence between the present ship-side problem for zero g and the 

earlier flat plate problem means that the computational work required here is a natural 

extrapolation of the research performed in part A of the thesis. However, the differing 

boundary conditions involving u^{t) can yield a different flow pattern in general.

4.4 Initial application to the ship side [Regions 1-2]

This application to the ship-side motion is the well-known impulsive start problem. 

The problem is defined by the following conditions: k(t) = Tt and = T , where T 

is a positive constant.

In this problem Uw is independent of x *, which makes the whole flow problem of 

region 2 the same as for the flat-plate boundary layer problem of chapter 2. The 

equations (4.16)-(4.20) must now be solved, but for a different coordinate system and 

velocities, which are for this example - x * Y and -  i7, -  F , respectively.

The solution for region 2 then gives the starting profile (w ) for region 1. Therefore in 

the wake region 1, we have to solve equations (4.21)-(4.24b) for the interval

0 < {-X* ) < T t , with the profile ïï defined as that at the trailing edge of the ship-side
—
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at JT* = 0 (figures 4.3-4). For sufficiently small times, this value (w) is given by the 

Rayleigh profile as noted in chapter 3.

Blasius Rayleigh Wake

SHIP SIDE T E

u

\ / ' I

Figure 4.3

y V

Forms of viscous boundary layer and wake regions

The issue here is how we may now solve equations (4.21)-(4.24b) applied to this 

example, which are:

region 1region 2

Figure 4.4 Velocity profiles for regions 1 and 2

W, + UU^. + VUy = g +Uy y ,  

Ü . +Vy  = 0 ,

(4.25)

(4.26)

with the associated boundary conditions

Û -F  + [u -  edge] as f  -> -oo,
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üy = 0, (4.28)

and,

ü = F,+VFy ed F (Y , t ) . (4.29)

The gravity term g  here acts as a pressure gradient which is favourable in the x* 

(downward) direction, as expected both from physical consideration and from our 

comment just prior to (4.5), for the wake only (region 1), whereas it is effectively 

absent in the boundary layer of region 2. However, as indicated earlier, we will 

neglect the gravity contributions for now (we return to them in chapter 7). We 

introduce the Froude number.

F r ^ ^ ,  (4.30)
gL

in line with the definition described in chapter 1.

Thus, in equations (4.25)-(4.29), neglecting the gravity effect is associated with Fr

(which is equal to g ~ \  according to (4.30) if Fr is — and using page 115) being
gL

large. The neglect of gravity here also makes the boundary condition (4.27) become 

w - r  at large negative T, since [w-edge] is then zero, consistent with the governing 

equations.

We now transform the coordinates and velocity components by inverting the 

coordinate direction of jc* with Jc, which is negative downwards, so that

>v
V = - V ,

r = - y .

Û =  —M ,

X =  X*LE -  X J

r  (4.31)
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We know that at the edge of the boundary layer, the displacement in regions 1 and 2 

may be written as Y » f .  In chapter 3 we have calculated the wake displacement 

Ô. Thus using the coordinate transformation of (4.31) the displacement becomes 

'T « - 7  -  . So in equation (4.15b), we find that

^ ^ { - Y - 5 )  + k \ t ) Y . (4.32)

Thus, due to the fact that k* = V = \ here, we obtain from (4.32) the result

(4.33)

at the outer edge of the viscous layers.

The equations now become

+ =0 + ̂ ^ , (4.34)

(4.35)

with the boundary conditions

w —> F -  [w -  edge] as 7 -> + qo, (4.36)

M^=0a t7  = /( i , r ) ,  (4.37)

and V = f t  + %  at 7 =  / ( i , f ) . (4.38)

We note that almost all the negative signs cancel out here due to the x* -axis inversion 

of equations (4.31).

Finally, we apply the Prandtl transposition (see Rosenhead 1963), and we introduce 

7 ,  F as moving coordinates,

7 - / =  7, (4.39a)
_ _
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v  = ( f ,+ ù r , )+ v (4.39b)

Under the transformation (x ,Y j )  we observe that

df —> df +

(4.40)

So now the equations (4.34), (4.35) become

-¥ÛÛ^-¥VÛ^ (4.41a)

(4.41b)

with the boundary conditions (neglecting g again)

w r  as 7 -> +0 0 , 

= 0 at 7 = 0 ,

F = 0 at 7 = 0,

(4.42)

(4.43)

(4.44)

since (4.38) yields / ) + % + F  = / ) + % a t  7 = 0  and so the terms in /  cancel out.

The positive constant F can be normalized to unity without loss of generality. Hence 

we obtain precisely the earlier wake problem for an aligned flat plate, as applied to 

this example of an impulsively started ship-side.

Therefore the entire flow solution in regions 1 and 2 for negligible gravity is exactly 

that determined earlier in Part A for uniform flow past an aligned finite flat plate. It is

interesting that the free-surface shape, /(x ,r ) , of the water-air interface is not
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determined through this means, as it is removed from the problem through the Prandtl 

transposition described above. The boundary layer and wake displacement 

) • 0 { x j )  will be analysed in the next chapter.

WATER 

AIR

/>0

1 I Prandtl 
(transposition)

V  Y

Figure 4.5 Transposition for time t=0 and t>0

Î

Y

:  /(%x)

WATER

Y
A

>  «
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CHAPTER 5 

Modeling and analysis of downward vertical 

ship-side motion (continued)

5.1 Introduction

The flow problem of the ship-side described in section 4.4 was concluded to be 

equivalent to that for the wake behind a flat plate (or the Rayleigh solution for 

sufficiently early times), if the gravity effect is small. This is exactly as studied in 

chapters 2-3 (Part A of the thesis) and it means that, at least in the beginning, we 

effectively have the unsteady flow due to an impulsively started flat plate of finite 

length. The leading edge of the plate has a small Navier-Stokes region and the trailing 

edge has a small triple-deck region. The flow, as before, is near-Blasius in the 

neighbourhood of the leading edge and, further downstream, the flow on the plate 

essentially becomes of a Rayleigh form, followed by the unsteady wake. The viscous 

flow solution in the wake region 1 is unaffected by the shape of the side surface of the 

water, except in so far as the Prandtl transposition holds. The determination of the 

side firee surface is really part of the outer inviscid problem of region 3, which is 

controlled by the small efflux conditions or small displacements that emerge from the 

solution in the viscous regions 1 and 2.

Our main aim in this chapter is to determine the flow field adjacent to the ship-side, 

consisting of the combined regions 1, 2 and the further outward region 3. This 

depends on a function of both the vertical spatial coordinate and of time, say h {x j ) , 

representing the small viscous displacement mentioned above.

5.2 Development of outer region problem

For conciseness, we denote the spatial fixed axes as {x,y) and the velocity

components as Re '^^{u,V) as shown in figure 5.1. This is distinct from the notation in 

chapter 4 but the overlap between the inner and outer regions is relatively simple, as 

we will see.
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In the region 3 (the “outer region”) we obtain from (4. la-c) the equations:

= 0 ,

-  Pi-> 

K =-Pv-

(5.1)

(5.2)

(5.3)

p  =  0

« (scaled)

R e g io n  1 o
p '  (scaled)

R e g io n  2

^  = Kx,i)

[b>

p  =  0

Figure 5.1 Domain of analysis showing regions

The nonlinear advection terms are negligible here because the velocity components 

are small, and the viscous terms are negligible because of the order-one spatial scales, 

while g  is omitted for now, based on the assumption of a sufficiently large Froude

number. We note that û ,V ,p  are all typically of order unity.

Equations (5. l)-(5.3) in the water yield

“  Pyy ~  Pxx ”  ^yl +  ^xl ”  ( 5-4 )
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So the unknown jMOsswe satisfies Laplace’s equation in ^ , j) ,

V V = 0 ,  (5.5)

as expected m potential flow.

Also, from the continuity and x -momentum balances we have

= - P s  ^ V y i - P ü ^  (5-6)

while from the y  -mmnentum balance

~ ~p^  ■ (5*7)

Hence we have similarly F, satisfying  ̂Laplace’s equationV^F, = (>, as does F in 

view of the start from rest, and in addition

(5.8)

and dp{p^^)^-dp.{V,). (5.9)

Thus the Cauchy-Riemann equations hold between pj  ̂ and F ,. So a complex 

potential fimction to control tiie problem may be defined as p -  , which is analytic 

in z(=x + ̂ ) , say 3 (f) , with the stream function 'F now satisfying u = and

V = - % .

The boundary conditions, as shown by figure 5 .1, are that the pressure p  is prescribed 

to be zero on side COA and p^=-V^{=^^)  is prescribed as h{xj)  on side AB, 

while the water is at rest in the fiir-fleld (conditions). Thus h = along AB.
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To solve the flow problem we may now introduce a conformai transformation, which 

allows consideration of the problem in an upper Vi-plane instead of the original Va- 

plane. It should be noted that an alternative approach to the conformai mapping would 

be to perform a reflection about the y  -axis in an image system.

The mapping is

2 = - f .  (5.10)

The mai^jed coordinate system is now defined by the polar coordinates r , # , s o  that

(5.11)

where z  -  , z  = , and hence we have

r = f \  <5.12)

0 = 2 0 - 7 t (5.13)

(see also Milne-Thompson 1968).

So on the BAO portion we obtain from (5.13)

ê  =  7T => 0 =  7T , (5.14)

and on the OC portion we have

= (5.15)
2

as shown in figme 5.2.

The new interval is 0 < ^  < ;r , with 0 < F < oo, for the outer region water flow. The 

m oping into the z -plane gives us again Laplace’s equation, = 0, in the !4-plane,
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—

where denotes the operator + Also, we require that the pressure p  is

equal to zero on the CO and OA portions and at infinity (condition 3), while on the AB 

portion of the axis the derivative —  = h{x,t) is analysed below; thus we have that

the boundary conditions on the pressure are of mixed type.

y
0 < 6  <7T

z -  plane Transforms
to z -  plane

Figure 5.2 Transformation from %-plane to ‘/4-plane

We may now proceed using the function p -C V ,,  as mentioned before. So we have 

the complex function

p - / T , = 3 ( z ) (5.16)

In view of the mixed boundary conditions, with their crossover at the point A, we 

define

f  + = (5.17)

where

_ =-l/2g-(,g)/2

(5J&0

(5.18b)
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in terms of polar coordinates r ,0  with tiie origin shifted to (3c^,0). We have along 

the real axis

r r on the right: ^ = 0 ,  (5.19a)

on the left: ^  = ;t . (5.19b)

We note that an alternative to (5.17) is to work ^\ith a Vi power instead of -Vi and 

make allowance for possible non-decay in the far-field, but we choose to use the 

above method, which yields the same end results. Further, concerning (5.17),

denotes the value of 3(z) at z = x^. This is expected to be finite and in fact equal to 

-  there, since p  is zero for x just above x^ and is assumed to be continuous at 

x^ . In addition, - along the ship side and wake can be anticipated to be ^  (to match 

with regions 1,2 as in (4.33)), which is continuous at the trailing edge x —x^ from 

the flow solutions in chapters 2,3 and has a non-zero value, say S  = ^o(f), at the 

trailing edge. So we allow for the Sq factor by subtracting it off in (5.17), where
r

3o = iS^ i t ) , leaving (3  -  3„ ) zero at J  = , which then keeps {P + iQ) finite there

despite the inverse square root term involved. The solution for 'F, appears to be 

unique. Eigenfunctions associated with far-field circulation for instance, which can 

arise in aerodynamics, are ruled out here by the mixed boundary conditions on p,
t

along the edge of the % plane. Again, p  and ^are  to decay in the far-field, and 0^ is

finite in general. Hence with the inverse square root in (5.17) the complex function 

(P + /0  also decays in the far-field. Continuing from the above we see that

r { x - x ^ y \ p - i ' ¥ , +  i r o ) .X > X ^  (5.20a)

L ( x ^ - x y ' ' \ - i p - ' ¥ , + r o ) - x K x ^ .  (5.20b)

f

where = - S q . From these equations, we have along the Ic -axis for lc<x^
_
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and

P = - ( x ^ - x ) - ' ' \ m , - n ) ,  (5.21)

Q = -{x^ -x) - ' ' ^p .  (5.22)

Similarly along the x  -axis for x > we obtain

P = {x -x^ ) - ' ' ^p ,  (5.23)

and

Q ^ - { x - x ^ r ' \ % - n ) .  (5.24)

The right-hand side of (5.23) is zero here, because of the zero pressure condition on 

COA in figure 5.1. In view of (5.21) and (5.23) we see that the quasi-pressure 

function P(3c,0) is known for all J .  Also it is assumed that the quasi-pressure 

variation P tends suitably to zero in the far-field of the outer region 3.

5 3  The displacement derivative function Wt

We derive as follows an expression for the displacement-like function % along the 

axes based on the aforementioned considerations. We may now employ directly the 

Cauchy-Hilbert relationship [Christ (1989) and Zayed(1996)],

1 7P{^)d^

which gives us Q along the jc -axis. The integral here and in succeeding formulae is 

the Cauchy principal value.

At this point, we make the problem more definite by introducing a constant L, which 

is the initial length of the submerged ship-side as shown in figure 5.3. The depth of 

the leading edge of the ship-side measured from the original water surface in the

original coordinate system x,y  is given by the depth function L{t), where
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L = { L - x ^ ) .  The location of the leading edge of the plate, that simulates the ship- 

side, is thus given on the x -axis by the expression jCg = -L{t) = x ^ { t ) - L .

In the 14-plane analysis domain, for the region x > x ^  and substituting from equations 

(5.21) and (5.24), we obtain from equation (5.25) a form applied to the current 

problem,

(5.26)

p  =  0

(ÏË>

o

Figure 5.3 Domain of analysis for displacement derivative function

The above expression for Y ,, the displacement-like function or the derivative of the 

negative displacement in effect, is thus valid along the ship side AB and the region 

-CO < X < Xg. We next employ equation (5.3), which is valid for the outer region 3, 

along with matching to the viscous region solutions (see (4.33)), in order to obtain the 

associated function Y, on the right-hand side of (5.26), i.e. along entire region

-  00 < JC < . Thus we have
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= Pj) = ~^xi s (5.27)

where ^ is  the scaled boundary layer and wake displacement function which was 

determined in chapters 2,3. Equation (5.27) corresponds to an ‘injection’ of fluid

effect due to the positive relationship V,

Thus = with zero function of in tention and

= (5.28)

in view of (5.26).

5A Model solutions

An approximate model for the displacement-like function is studied in Appendix A. 

However, a major shortcoming of that model lies in its treatment of the leading edge 

for the ship-side. In order to perform a more realistic analysis, as compared with that 

for the approximate model, it is necessmy not only to define the leading edge as a 

moving coordinate with the length of the ship-side as constant, but also to treat the 

Rayleigh contribution satisfactorily. The accurate region 2 Blasius-Rayleigh solution 

influences the region 1 wake solution, thus simulating the problem of a downward 

moving ship-side more effectively. The present model and its analysis are pursued in 

order to obtain a smoother and more acceptable solution for the displacement 

derivative function %

We commence the analysis with the expression for îff given in equation (5.2&) which 

must be computed for x > x ^  (i.e. for both the edges of region 1 and region 2), but 

now taking into consideration a new model of the boundary layer displacement 

function S, in terms of J(= -x^  ) for Jc < 0, using the map transformation equation 

(5.10). The problem has the leading edge of the plate being defined by Xg (see Figure 

5.3) which is a function of time and is less than x^ , as opposed to the approximate

model which employs an alternative treatment of the leading edge (Ap>pendix A).
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Here as elsewhere the boundary condition has to be recognized as being applied to 'F 

or (since the boundary layer gives T  « - 5 { x j )  as ^  ^  oo at the boundary layer

edge as in equation (4.33)) in terms of the fixed Jc, j) coordinates.

So equation (5.2S) becomes now

4 - , = -
7t ( â - f )

(5.29)

but in the integral here it must be recognised that 6  and hence are zero for f  less 

than x^{= -x^ ) ,  whereas 5^ of course is not, since it is independent of ^ . With 

reference to Figure 5.3, we have the value x ^ = - t  and X g - - 4 - L ,  and so using 

transformation (5.10) we may conclude that and x^ at time t,

for the impulsively-started downward moving ship-side.

For typical times t of order 0(1}, we could evaluate (5.29) numerically using the 

numerical values of ô{x,t) from our previous boundary layer computations in

chapters 2,3. However, a model for S  is more fhiitful analytically in the form

S  =

( X - X g )  « 1  for X g  < X < X g  + f .

1/2

(5.30)

(5.31)

for times satisfying 0 < r  <(Jc^ -  x^). Later times are incmporated subsequently, in 

section 5.7.

The coefficients and are real positive constants such that â  is continuous at the 

point x = x^ +/ .  Hence ccg . Equation (5.30) in effect accounts for the Blasius 

component and equation (5.31) accounts for the Rayleigh component of the 

displacement function. The above model for â  now represents the numerical solution
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fairly well, as shown in section 3.4, and in terms of the transformed coordinates 

X = -x^  the model reads

+ Z/+ (— for Xÿ < x < —l}', (5.32)

a^t 1/2 ÏOX -L^ <x <x ^ ,  (5.33)

arin the new range 0 < t < L .  Also here, Sq = — from the values at the trailing
(2f"")

edge.

This leads to a new analytical expression for (from equation (5.29)) using the 

“improved” model for S, namely

J
F T — \ l / 2  -L^ f —  e \ - l / 2

d4

n

n -Ü ( x - 4 )
(5,34)

where the four constituent terms refer to the respective portions in the region 

- 0 0 < T < ^  So we obtain, after differentiation, the final expression for the 

displacement derivative function in the concise form

%  =
7T \

(5 35)
y

since the last two integrals shown in (5.34) cancel out due to S, = Sq for the range 

- Û  <x<x^  , Here the two remaining integrals are denoted as
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<D= f (5.36a)

(5.36b)

which we will proceed to determine in the next section.

5.4.1 Evaluation of 0  and Q integrals

To evaluate first the Q integral, we make the substitution -  ^ , with new

limits for the integral [Evans (1989)]. Thus the integral becomes

(x + t ■¥in )
(5.37a)

We note that here 0 < r < L and x > - t ^ , because x^ = - t ,̂ so that the result is well 

defined. The form (5.37a) of the integral is suitable for computation using Simpson’s 

rule.

In a similar manner, using the same substitution wî  = X a ~ ^  and a table of integrals 

[Swokowski (1979)], we obtain

0  = — tan * 
P P

r(^2_^2)l /2\
(5.37b)

where /? = (^ -  ^̂  ) . The form (5.37b) is well defined, and substituting back into 

equation (5.35) we have

4', = ~ i - ? 2 r ta n - ' { V - n (5.38)

which is the final form for the displacement derivative fimction.
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5.4.1 Computational solution for the modeled 'F,

The computational solution for the present modeled (equation 5,38) is described

in this section, based on the evaluation of the Q integral in section 5,4,1, The flow 

chart for the program is given below and the results are presented in the figures that 

follow the program (Program 5.1) at the end of the chapter.

The results for the variation of with tiie x -coordinate are (resented in figures 5.4

for selected non-dimensional times not exceeding the non-dimensional length of the 

ship-side, which is unity. The times considered were for four equal intervals in the 

range 0.2-0.8. Larger times greater or equal to unity will be considered in section 5.8, 

since there is a restriction for the relatively small time analysis of t<L, from the limits 

implicit in (5.37a).

We recall that there exists a Blasius-like region in the initial portion of the plate near 

the leading edge followed by a Rayleigh region. For relatively small times, the 

contribution from the Rayleigh component is clearly the more significant. However, 

as time increases, the effect of Rayleigh profile is almost entirely eclipsed by that of 

the dominating Blasius type-flow that occupies an increasing proportion of the plate 

length. Thus the characteristic plateau in the Ŷ  profile associated with the Rayleigh

type tends to disappear as time increases, as observed in figure 5.4. Additionally, in 

region 1, there exists the Goldstein wake behaviour which is clearly distinguishable 

and exhibits a non-linear profile in which the gradient is largest at the trailing edge 

but flattens off with increasing distance from the trailing edge. This is fiuther 

emphasised by the displacement derivative profiles of the wake region only, in figure 

5.5. As time increases, the wake region profile flattens off, becoming almost perfectly 

flat for r=l, as shown by figure 5.6.

The model employed a higher degree of mesh refinement near the point of contact 

between regions 1 and 2, in order to ensure an accurate account of the discontinuity at 

this point.
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Define variables xa, xabar, 
xb, xbbar, L, t, q & r

Evaluate m and h

Evaluate psi(t) for region 1 (wake solution) by evaluating 
omega integral using Simpson’s rule

Evaluate psi(t) for region 2 (Blasius- 
Rayleigh solution)

^  Outputiesults ^

PROGRAM 5.1

5.5 Analytical properties of the solution

We investigate the solution analytically below for two cases of interest.

5.5.1 At J = 0.

For the integral, we substitute in equation (5.37a) = -x^ > 0, and J  = 0 to find

Q (5.39)

which is of 0(1).

5.5.2 A sjc-> jc / .

We write x = x ^ + s  and x = x ^ + p  near the leading edge, where s, pi are small 

increments. Using the fact that x -  - x ^ , we have Xj + pi = - ( x /  + 2x^s + 6"̂ ) which 

gives x^-\- pi = Xj^~ 2x^s -  . Thus pi = - 2 x ^ s , neglecting the higher order term.

Again for the integral in equation (5.37a), we have
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0  =  2 " J  if+L + ijn^-x^)"')
{x^+ûi

1 / 2  dm
(5.40)

which is 0(1) generally.

5.6 Investigation for small times, f « l

In this section, we consider evaluating equation (5.29) for small given the 

displacement function ô  from the model of (5.32) and (5.33). There is now more than 

one length scale of interest for the small time analysis, given that jĉ  , are small.

First, we have the general \x\ ~ 1 scale which allows the assumption of the trailing- 

edge depth being negligible, We again consider a constant side speed of unity, 

imposed for r > 0. 

In order to examine the problem on the main | |̂ ~ 1 scale of concern, we simplify 

equation (5.29) to the form

(5.41a)

since x , is small now.

After the examination of the integrals we have

j l / 2  X b  / _ e \ - l / 2  ,  _  f

% =  —  f ( . t m  -  So (0^  t  ( x - c )
(5.41b)

Using integration and the substitution = - ^ , (5,41b) yields for small times

(5.41c)
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for the model of (5.30), (5.31) but where the Blasius term is negligible compared with 

the Rayleigh term. If the distance from the origin is taken to be small, we have

= -Ôq as we have assumed in the. beginning of the analysis. In any case

(5.41c) is valid for small times where \x\ is of order unity. We have also assumed here 

that, from the mapping, Xg = -Xg^ = -L   ̂ to leading order at small times.

5.7 Investigation for larger times

We now investigate the problem for non-dimensional times greater than the depth 

scale L (the non-dimensional length of the ship’s side). We re-introduce directly the 

displacement derivative function 'F, for the problem from equation (5.29). We

observe that for large times the second component of (5.31) now disappears. This is 

due to the fact that this term represents the Rayleigh component, which in a sense has 

been swept ‘downstream’ into the wake. Hence the flow adjacent to the ship-side has 

now developed into a purely Blasius type, for such larger times.

The ship-side parameters are clearly identified as x ^ ~ - t  and Xg = - t - L ,  with the 

previous model of S  given by equation (5.30). Employing the transformation of 

(5.32), the displacement derivative function reduces to give

% = - K
a.

•A, (5.42)
J

where we now define the integral that is contained within the new 'F̂  expression, 

valid for large times, as

This clearly extends in time from the expression (5.36a) holding at earlier times. To 

evaluate A, we use the previous transformation ^ to obtain
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1/2

dm , (5.44)
{x + t +m )

which may now be resolved computationally, for example by use o f Simpson’s rule.

5.8 Computational solution for larger times

The program for the solution of which includes the A integral is similar to that of

section 5.4.2 and is given as Program 5.2 in this chapter. The length parameter is 

again taken to be unity and thus the times under consideration are now greater than or 

equal to 1.

The entire (figure 5.7) and wake region profiles (figure 5.8) of with x are

presented for equal time intervals in the range /=J to t=24. We observe that the 

profiles follow a similar description to those of Program 5.1 in section 5.4.2, but with 

the fimdamental differences that the Rayleigh effect is absent and the wake profile 

joins in a continuous manner with the Blasius-type portion.

5.9 A check for larger times

For an analytical check on the larger time case, we consider approaching the trailing 

edge x^ in both the negative and positive directions along the x -coordinate axis.

5.9.1 A s x ^ x /

We define e to be an infinitesimal positive constant such that x = x^+s^  near the 

trailing edge. We then substitute m = in (5,44) to derive the expression

(5.45)

Thus the displacement derivative function becomes, locally.

(5.46)
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For the value of ship-side length L=\  we obtain the value -0.125 for from (5.46) 

valid for larger times. It is concluded that near the trailing edge, 3c « , the analytical

and computational values are in exact agreement.

5.9.2 As X -> x /

In order to see whether the above result is true for the other case, as J  we

perform the following investigation. We have that

from (5.32) and since x = x^=- t^ ,  Thus

Y, — (5. 48)

This agrees exactly with equation (5.46), confirming that is continuous across the 

trailing edge. Thus the same result for 'F, is observed when ^proaching the trailing 

edge from both the wake side and the plate (ship) side.

5.10 General form of the displacement derivative function

The general forms of the displacement derivative function valid for both small and 

large times are sketched in figure 5.9. The large time forms are predominantly 

Blasius-like forms and contain no Rayleigh effect, as compared with the smaller time 

forms. Figure 5.10 shows the computational %  profiles for small and larger values of 

time in the range 0 < / < 3. A smooth trend in the general form of the profiles may be 

observed as time increases. For small values of time the wake region profile is 

pronounced, but this flattens off with increasing time. For f>\ there is no 

distinguishable Goldstein near-wake region profile, in the sense that it is continuous 

with the Blasius-like displacement, whereas there exists a discontinuity for smaller 

times. Thus we observe a continuous trend of the %  profiles with time and this 

appears to be physically sensible.
_
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o\

t=\

t<\

sh ip  s id e w a k e

XX V

Figure 5.9 Profiles for % for smaller and larger times

The previous investigations were for a given value of L, which was taken as unity in 

order to coincide with the wake displacement solution of chapter 3. It will now be 

shown that the solution for large times is independent of the ship-side length 

parameter L. We will examine the displacement for ship-side lengths L~7, at large 

times t. In considering equation (5.44), we see that the square of the upper limit of the 

A integral is {t + L f  -  ItL + Û , and so typically m = 0{t^'^).

Employing the transformation m = expanding in a power series in (5.44), 

substituting x = t^x and then putting m = {2Ü '^)s\nê  say, yields

(5.49)

We then use this expression for the A integral in the %  equation (5.42) to obtain

a. (5.50)
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for large t. Thus we observe that 'T, is independent of the ship-side length parameter 

L then.

We now present the following tables to compare the large-time asymptotic prediction

(5.50) with the computational results for two values of time, t=9 and r=48. Graphs of 

these results are presented in figures 5.11.

For t=9 we have

-81

-64

-49

-36

-24

-16

-9

-4

-1

-0.24

(asyniptoticj ^^(annpututional)

Indeterminate

-0.1288

-0.0939

-0.0791

-0.0703

-0.0659

-0.0626

-0.0605

-0.0594

-0.0591

-0.124

-0.092

-0.077

-0.066

-0.062

-0.059

-0.057

-0.055

-0.054

-0.054

Table 5.1

For r=48

-81

-64

-49

-36

-24

-16

-9

-4

(asymptotic) ^^(com putational)

-0.0260

-0.0259

-0.0258

-0.0257

-0.0256

-0.0256

-0.0256

-0.0255

-0.0252

-0.0250

-0.0249

-0.0248

-0.0247

-0.0247

-0.0247

-0.0247

149



Chapter 5

-1 -0.0255 -0.0247

-0,24 -0.0255 -0.0247

Table 5.2

From the results, there is a small relative error between the asymptotic and 

computational results for both values of time. Referring to figure 5.11, the 

computational and analytical results are in veiy close agreement for the larger value 

of time, 48, which is expected given that the asymptotic solution is valid for large 

times. There is observed, however, a marginal error for the smaller value of time, as 

demonstrated by the computational and the analytical results.
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5.11 Fortran 77 programs and figures
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Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C January 1998 D.Papadopoulos
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C Program to evaluate the Psi(t) variation with x-coordinate
C and produce entire displacement function [y] valid for small times
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C Problem: Downward motion of ship in stationary fluid
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C *** Definition of all variables, except y ***
program psi
REAL o (1000),res,h,L,t,sum
REAL u,xbar,xabar,xbbar,xa,xb,x,pi,q,r,y,yl,y2,term,rho 
INTEGER i,j,mm,m
mm = 360 
L = 1
pi = 3.1415927 ,

C General loop to evaluate psi(t) for various times,
C with constraint t<L

do 3000 t=0.2,0.9,0.2
xa = -t 
xb = xa-L
xbbar = - ((xb)**2 ) 
xabar = - ((xa)**2 )

C q means ol and r means aO
q = 0.25 
r = 0.25

C *** Determination of m and h
m = (2 * mm) + 3
h = ((( - (t**2) + ((t+L)**2) )**0.5) - ( ( (L**2) -

(t**2))**0.5))/((2*mm) + 2)
C *** Evaluate Psi(t) for xb<x<xb+t, i.e. Blasius part

do 5 X = xb,xb+t,0.01
xbar = -((x)**2 )
yl=-q*0.5*((x-xb)**(-0.5))
WRITE (6 ,*) xbar,yl 

5 continue
C *** Evaluate Psi(t) for xb+t<x<xa, i.e. Rayleigh part

do 10 X = xb+t,xa,0.01 
xbar = -((x)**2 ) 
y2=-r*0.5*(t**(-0.5))
WRITE (6 ,*) xbar, y2 

10 continue
C ***General loop to evaluate psi(t) (including constituent omega
C integral) for values of the x-coordinate within initial range near
C xa, having higher level of numerical refinement ***

do 1000 X  = (xa+0.001),(xa+0.101),0.005

5.1 Program to evaluate the variation with x , valid for small times.
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xbar = - ( (x)**2 )
*** Evaluate o(j), also evaluating u(j) at each j *** 
do 24 j = l,m-l
u = ((] - 1) * h)+( ( (L**2) - (t**2) )**0.5) ,
o(j) = 2*((t+L+((u**2+t**2)**0.5))**(-0.5))/(xbar+t**2+u**2)

C *** Evaluate first and final terms of omega integral ***
sum = o(l)+ o(m) + (4*o(m-l))

C *** Evaluate complete integral (i.e. including the intermediate terms)
do 27 i = l,mm 
j = 2 * i

27 sum = sum + (4.0 * o(j)) + (2.0 * o(j+l))
res = (sum * (h/3.0))

C *** Evaluate and output results for psi(t) [y] *** '
term=( (( L **2) - (t**2)) / (xbar-xabar) )**0.5 
rho=r* (t** (-0.5))
y = -((0 .5/pi)*((xbar-xabar)**0 .5)*(q*res))- 

( rho*0.31831*atan(term) )
WRITE (6 ,*) xbar,y

1000

C
C
C
C

1024

continue
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

*** General loop to evaluate psi(t) (including omega integral)
for values of the x-coordinate within secondary range having a lower
level of numerical refinement (i.e. larger x-coordinate interval) ***
do 2000 X  =  (xa+0.2),-0.05,0.1
xbar = - ( (x)**2 )
*** Evaluate o(j), also evaluating u(j) at each j *** 
do 1024 j = l,m-l
u = ( (j - 1) * h) + ( ( (L**2) - (t**2) )**0.5)
o(j) = 2*((t+L+((u**2+t**2)**0.5))**(-0.5))/(xbar+t**2+u**2)

1027

*** Evaluate first and final terms of omega integral *** 
sum = o(l)+ o(m) + (4*o(m-l))
*** Evaluate the complete integral (i.e. including the intermediate 
terms) ***
do 1027 i = l,mm 
j = 2 * i
sum = sum + (4.0 * o(j)) + (2.0 * o(j+l)) 
res = (sum * (h/3.0))

<** Evaluate and output results psi(t) [y],
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term=( (( L **2) - (t**2)) / (xbar-xabar) )**0.5 
rho=r*(t**(-0 .5))
y = -( (0 .5 /pi)*( (xbar-xabar)**0 .5)*(q*res))- 

( rho*0.31831*atan(term) )
WRITE (6 ,*) xbar,y

2 0 0 0 continue
WRITE (6 ,*)

3000 continue
end
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Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C JUNE 1998 D.Papadopoulos
0 ***********************************************************
C Program to evaluate the Psi variation with x-coordinate
C for LARGE TIMES
0 ***********************************************************

C Problem: Downward motion of ship in stationary fluid
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

0 *** Definition of all variables, except y ***
program simps
REAL lam(lOOOO),y,yl,res,h,L,t,sum 
REAL u,xbar,xabar,xbbar,xa,xb,X,pi,q,dt 
INTEGER i,j,mm,m 
mm =360 
L = 1
pi = 3.1415927 
dt=l

C q means ol ,
q = 0.25

C General loop to evaluate Psi(t) for various times
do 3000 t=l,2,dt
xa = -t 
xb = xa-L 
xbbar = -((xb)**2 ) 
xabar = -((xa)**2 )

0 *** Determination of m and h ***
m = (2 * mm) + 3
h = ( (- t**2 + (t+L)**2 )**0.5) / ((2*mm) + 2)

0 *** Evaluate Psi(t) for xb<x<xb+t, i.e. Blasius part
do 500 X  = xb,xa,0.01 
xbar = -((x)**2 ) 
yl=-q*0.5*((x-xb)**(-0.5))
WRITE (6 ,*) xbar,y 1 

500 continue

0 *** General loop to evaluate psi (including lamda integral) ***
0 *** for values of the x-coordinate ***

do 2000 X  = (xa+0.01),0.01,0.01
xbar = - ((x)**2 )

0 *** Evaluate lam(j), also evaluating u(j) at each j ***
do 1024 j = l,m-l 
u = ( (j - 1 ) * h)

1024 lam(j) = 2*( (t+L+( (u**2+t**2)**0.5) )**(-0.5) )/(xbar+t**2+u**2)
0 *** Evaluate first and final terms of lamda integral ***

sum = lam(l)+ lam(m) + (4*lam(m-l))
0 *** Evaluate the complete integrals (i.e. including the

5.2 Program to evaluate the %  variation with x , valid for larger times.
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c intermediate terms) ***
do 1027 i = l,mm 
j = 2 * i

1027 sum = sum + (4.0 * lam(j)) + (2.0 * lam(j+l))
res = (sum * (h / 3.0))

C *** Evaluate and output results for psi(t) [y],
y = -((0.5)/pi) * ((xbar-xabar)**0.5) * q * res
WRITE ( 6 , * )  xbar,y 

2000 continue
WRITE (6,*)

3000 continue
end
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Psi(t) variation with x-coordinate valid for small times
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Psi(t) variation with x-coordinate valid for small times [wake region]
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Psi(t) variation with x-coordinate for time t=1
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Psi(t) variation with x-coordinate valid for large times
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Psi(t) variation with x-coordinate valid for large times [wake region]
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Psi(t) Variation with x-coordinate valid for all times
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Computational & Asymptotic solutions for Psi-t for large times
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CHAPTER 6

The shape of the upper and side free surfaces for 

vertical downward ship-side motion

6.1 Development of the upper free surface equations

In this chapter we determine the shapes of the water-air interfaces at the top free 

surface and the side free surface. In chapter 4, the solution for the viscous boundary 

layer and wake flow adjacent to the ship-side was ascertained. This is used next to 

determine the behaviour of the top air-water interface, which is present in the nearly- 

still outer region 3. This behaviour may be described by an “upper free surface” 

function / j .  In the governing equations of (5.1)-(5.3) which describe the flow, the

unknown upper free surface position Jc = Re"^^^-/,(T,0 is controlled by 

O = ^ ( x - R e - ‘'^-/.(j> ,0)i.e .by

“ = (61)
O f

evaluated at Jc = 0, from a Taylor expansion and using the property that the velocities 

Kq~̂ '^{u,V) are small. Here (6.1) is equivalent to condition 2c, as given at the 

beginning of chapter 4.

At high Reynolds numbers, which are of concern to us, the initial motion of the fluid 

is most pronounced in the inner regions (regions 1,2) where the unsteady boundary 

layer equations apply for some finite time interval. We now turn our attention to 

determine the scaled velocity ù , and hence the upper free surface function f \ , in the 

outer region. In order to evaluate w, we begin the analysis in this chapter by 

reconsidering the outer region (region 3) of the system. There is also an extra zone, 

possibly of dimensions 0{Re^'^) by 0{Re^'^) and governed by the full Navier-Stokes 

or Euler equations, with radius of curvature of order unity, that joins the viscous wake 

area and the outer inviscid solution together.
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The outer region 3 is described by

=-Py>

(6 .2)

as given by equations (5.1-5.3) in chapter 5, with zero pressure p  required along the 

upper free surface x = 0 (for j) > 0 ) as well as along j) = 0 (for 0 > Jc > ), and

with given efflux conditions along y  = 0 (for x^ < x < x^).

A schematic diagram of the flow-field illustrates the domain of our investigation and 

is given in figure 6.1, where, in addition to the boundary-layer regions adjacent to the 

ship side, there exists the upper free surface whose shape is now to be determined.

AIR
p = 0

Upper free surface
o

WATER
4> a t th e  s id e

Figure 6.1 Domain of analysis for upper free surface

We investigate the effect on the upper free surface, using the relation

(6 3)
,r=0

d f  5T
from (6.1).To now determine —-  we must first examine —— evaluated at .x = 0

a  cÿ
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In chapter 5, we obtained the formula (5.35), which is the solution for along 

y  = 0 for the transformed range x > x ^ .  Similarly, for the upper free surface solution 

at all points, we may use

(6.4)

with the map transformation z = -z^  giving

x = y ^ - x \  (6.5)

and ÿ  = - 2 ^ . (6.6)

Thus

iff ==:2y, (6-7)

and ÿ ‘ =-2x.  (6.8)

Thus (6.4) becomes, using equations (6.7) and (6.8),

qf, =='!:,(-<!;;) 4H'i';(2j/). (6.9)

The area of investigation is along the positive x -axis in the transformed I  -plane, in

order to examine the upper free surface along which x is zero, as shown in figure 6.2.

i

Xb x^

/ z - plane

Figure 6.2 The z -plane analysis

Equations (6.5) and (6.6) are thus expressed then as

jc = j)=, (6.10)
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and ÿ = 0 (6.11)

So equation (6.9) becomes

y = 0 (6.12)

Hence we may now obtain f \  by substitution of eqimtion (6.12) into (6.3) giving

d t  ' ' I  S c
(6.13)

or, more conveniently.

yv=o
(6.14)

The next step in the analysis is to insert into equation (6.14) the formula for

'F. which we have already developed in the previous chapter (equation 5.35 or

5.38) and which includes the displacement function Ô for downward motion, giving

' r , = - ^ t e t a n -
71 t J

+ f (6.15)

where n = J  L . { - ^ r T .
( â - f )

Thus, substituting equation (6.15) into (6.14), we obtain

dt^
= -ZJC 1/2

ac \

('/r2 ^2\M2\
(6.16)
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At this stage it is worth noting that x is positive, since here on the upper free surface 

x = y^ from (6.10). As we have already computed the numerical solution for 

along the x axis for all times in chapter 5, we may now proceed to determine directly 

the upper free surface function f \  from equation (6.16).

In the subsequent sections, we shall consider the computational and analytical 

properties of the upper free surface for both small and large values of time, and 

subsequently for a general value of the time variable, respectively.

6.2 The upper free surface equation for small times

Based on the analytical solution for Wt from Chapter 5, section 5.6, we develop the 

solution for the upper free surface at small times for the |jc| ~ 1 scale.

The upper free surface is found below to rise for all scaled times, which is sensible 

physically since the ship-side boundary layer is contributing a positive mass flux, 

namely + ôRe^'^ in scaled terms, into the outer-flow region 3. This is because fluid is 

being drawn or injected from the boundary layer as the ship-side moves downwards.

6.2.1 For the scale |J| ~ 1

Near the origin, in preparation for matching there, we have the behaviour of 'F, from 

consideration of equation (5.41c). Thus we expect that

'F »X y
^  rv  / - 1 / 2

' l  + O X (6.17a)

which implies

2t
a, = T* 0(1). (6.17b)

y

So equation (6.1) for the upper free surface function gives upon substitution the 

estimate
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Hence the upper free surface requires, upon integration.

On the other hand, when x » l ,  equation (5.41c) implies that

Y, = o ( r ‘'^3c-''^)

Thus equation (6 1) now gives the upper free surface satisfying

(6 18)

(6.19)

(6.20)

and thus

(6 21) 

(6.22)

The order estimates (6.19) and (6.22) together suggest an upper free surface effect as 

shown in Figure 6.3. This should be compared with the numerical profiles generated 

later.

-  u p p e r  f r e e  s u r f a c e

Figure 6.3 Order estimate for upper free surface

We now turn our attention to examining the upper free surface function /] in a more 

precise manner. We assume that equation (6.10) may be transformed as
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y = ̂ " '^ d y  = ^ ^ d x . (6.23)

Substituting equation (5.41c) for with unit length L, into (6.14), yields

dt^ cEc
tan-1

.M " JJ
(6.24)

where is a constant as defined in chapter 5. Equation (6.24) is a precise form for

the leading order upper free surface fimction, valid for small times. This may 

differentiated to yield the expression

dt^
ar

Tit 1/2
y "+ y

(6,25)

which gives upon successive integration the final form for the upper free surface 

function

3 /2

3 (y^ + l);r
(6.26)

This may be used directly for calculations of the analytical results for various values 

of y . The upper free surface asymptotic solution (6.26) is plotted against y  for time 

values 0.2 and 0.8 and is presented in figure 6.4 at the end of the chapter. Without the 

inclusion of gravity, the response of the free surface given by (6.26) is somewhat 

theoretical, since it is unlikely that this shape would carry on infinitely with respect to 

time.

6.3 Computational Solution

Program 6.1 is for the evaluation of the upper free surface function / j  from equation

(6.16). This consists of evaluating the derivative of / j  with respect to 3c and 

subsequently two successive numerical integrations with respect to t , for a fixed value
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of y , performed using the trapezoidal approximation. Figure 6.5 shows profiles of the 

upper free surface function,/ i ,  against the distance from the ship-side, j) ,  for a range 

of values of time from 0.2 to 1. As time marches on f \  increases nonlinearly with time. 

The maximum value of / j  occurs near the ship-side y , which is in line with the 

expectation as seen in figure 6.3.

Define variables xa, xabar, 
xb, xbbar, L, t, q & r

Output resultsPROGRAM 6.1

Evaluate limits m and h

Evaluate upper free surface function f  by integrating 
twice with respect to time accounting for varying time

Evaluate 1 st derivative of psi with respect to xbar 
accounting for varying xbar intervals

Evaluate ps/for regions 2 & 3 (Blasius- 
Rayleigh & wake solutions) by evaluating 

omega & phi integrals using Simpson’s rule

The profiles for / j  versus time are presented in figure 6.6, for selected values of y . 

As time marches on, /j  exhibits a smooth downward trend as previously described.

The computational solution for the upper free surface together with the asymptotic 

solution of (6.26) for /=0.8 are presented in figure 6.7. Very good agreement is 

observed between the two profiles.
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6.4 The upper free surface equation for large times

From previous analysis in chapter 5, we see that for large times t, the displacement 

derivative function given by equation (5.50) may be substituted into equation (6.14) to 

give the upper free surface function

(627)

This gives upon successive integration the asymptotic form for the upper free surface 

function for large times r » l ,  with x  remaining of order unity.

To calculate (6.28) we compute the integral in (6.28) using Simpson’s rule as given 

by program B1 of Appendix B.

When 3c ~ 0{t^), i.e. 3c of 0(1) the function thus has the order of magnitude

jr (6 :29)

Figure 6.8 shows the asymptotic form off \  for five values of large time in the range 

10<r <50 according to (6.28). (This gives, for small 3c, i.e.

/ i  ~ , implying that / j  is of order f at 0(1) distances x ; the linear growth in t

here agrees with the subsequent estimates for /j  at large times). So we will now seek 

to obtain f \  for all t, from a numerical treatment, to compare with the analytical form 

of(6.28).

6.5 Computational solution for larger times

In the same manner as with program 6.1, program 6.2 is concerned with the 

evaluation of the upper free surface function, but now for the larger times defined by 

OL. As a result, program 6.2 is identical in structure as with program 6.1 except for
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the only modification that the evaluation of Y, is via the integral A in (5.44) as

opposed to the integral Q in (5.36b), which are identical in form but with different 

limits.

The profiles for / ,  versus time are presented in figure 6.9, for odd integer values of 

y  in the range 1-20. As time marches on, / ,  exhibits a smooth almost linear trend 

downwards. The profiles against y  for various time values in the range 1-40 are 

presented in figure 6.10, and show that as time increases, the upper free surface 

descends with a peak at y  =2.

6.6 The side free surface function
The evaluation of the scaled side free surface function fs may be made via the 

following equation, which employs the displacement function (5.38) and the wake 

displacement function (3.6). The shape function of the side free surface is given by

(6 30)

for the region < J  < 0. This is effectively the function /u se d  in the wake study, in 

(4.4a). Here ô^{x,t)  is given by the boundary layer wake equation as derived 

computationally in chapter 3, while Y, is the displacement derivative function of 

chapter 5.

B la s iu s -R a y le ig h

% = 0sh ip  s id e w a k e

V
A

Figure 6.11 General form of upper and side free surface functions t ^  ^
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The general shape of the side free surface profile may thus be ascertained from 

examination of figure 6.11, where the displacement and wake profiles are sketched.

The numerical evaluation offs is generated by Program 6.3, which takes as inputs the 

numerical results for and generated by programs 3.1 and 5.1,

respectively. The values of time considered first were from 0.2 to unity. The profiles 

for fs with X are given in figure 6.12. It is observed that as time increases, which 

corresponds to the ship-side submerging, there is a gradual rise in the side free surface 

function. The profiles produced compare well with the subsequent computational 

predictions of Li (2000) as shown in figure 6.13. Figure 6.14 shows that for large 

values of time in the range 3-7, the fs profiles converge to a limiting profile.
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6.7 Fortran 77 programs and figures
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Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C February 1998 D.Papadopoulos
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C Program to evaluate the UPPER-FREE-SURFACE variation with
C y-coordinate and time for SMALL TIMES
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  *^* *

Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C Problem; Downward motion of ship in stationary fluid
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C *** Definition of all variables, except y,t ***
program smtop
REAL o(lOOO),Psi(1000),gradPsi(1000)
REAL res(1000),h,sum,term,rho 
REAL ystart,yprev,xbarprev,astart 
REAL dy,y,dt,t
REAL u,xbar,xabar,xbbar,xa,xb,pi,q,r
REAL ztt (1000,1000),zt(1000,1000) ,z (1000,1000)
INTEGER i,j,mm,m,n,nn,L,a,aa

imm =360 
L = 1
pi = 3.1415927

C q means aO and r means ol
q = 0.25 
r = 0.25

C Valid for values of small times: t<l,thus (aa*dt)<l
astart=0.05 
aa=19 
dt =0.05

C Valid for integer values of ystart (unity) and fractional values of dy
ystart=0.1 
nn=2 00 
dy=0.1
do 7000 a=l,aa 
t=((a-1)*dt)+astart

C * ** Determination of m and h ***
xa = -t 
xb = xa-L 
xbbar = -((xb)**2) 
xabar = - ( (xa)**2)
m = (2 * mm) + 3
h = ((( - (t**2) + ((t+L)**2) )**0.5) - ( ( (L**2) - (t**2) )**0.5))
((2*mm) + 2)

Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

do 2010 n=l,nn 
Psi(n)=0. 
gradPsi(n)=0.

2010 continue
C General loop to evaluate Top shape (including omega
C integral) for values of the xbar-coordinate

6.1 Program to evaluate the upper free surface variation with y , valid for small times.
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do 3000 n=l,nn 
y = ((n-1)*dy)+ystart 
xbar = y**2
*** Evaluate o(j), also evaluating u(j) at each } *** 
do 2024 j = l,m-l
u = ({j - 1) * h)+{ ( (L**2) - (t**2) )**0.5)
o(j) = 2*((t+L+((u**2+t**2)**0.5))**(-0.5))/ (xbar+t**2+u**2)

C *** Evaluate first and final terms of the omega integral ***
sum = o(l) + o(m) + (4*o(m-l))

C Evaluate complete integral including the intermediate terms
do 2027 i = l,mm 
j = 2 * i

2027 sum = sum + (4.0 * o(j)) + (2.0 * o(j+l))
res(n) = (sum * (h/3.0))

C *** Evaluate Psi(n) ***
term=( ( ( L'<**2) - (t**2)) / (xbar-xabar) )**0.5
rho=r*(t**(-0.5))
Psi(n) = -((0.5/pi)*((xbar-xabar)**0.5)*(q*res(n)))- 
( rho*0.31831*atan(term) )

3 000 continue
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C ** Evaluate gradient-Psi function accounting for varying intervals **
do 4000 n=2,nn
y = ((n-1)*dy)+ystart 
xbar = y**2
yprev=((n-2)*dy)+ystart 
xbarprev=yprev**2
gradPsi(n) = (Psi(n)-Psi(n-1)) / (xbar-xbarprev) 
ztt(n,a) = 2 * (xbar**0.5) * gradPsi(n)

4000 continue
7000 continue
C ** Evaluate integral across time using trapezoidal approximation **

do 9000 n=2,nn 
do 8000 a=l,(aa-l),l
zt(n,l) = 0.0
zt(n,a+1) = (dt*ztt (n, (a+1)))+zt(n,a)

8000 continue
9000 continue
C **Evaluate and output results for f**

do 9800 a=l,(aa-l),l
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do 9500 n=2,nn,l 
z (n,1)=0 . 0
z(n,a+1)= (dt*zt(n,(a+1)))+z(n,a)

C t = ((a-1)*dt)+astart
C WRITE (6,*) t, z(n,a)

y = ((n-1)*dy)+ystart 
IF (y.GE.0.5) THEN
WRITE (6,*) y, z(n,a)
ENDIF

9500 continue
WRITE (6,*) ''

9800 continue
end
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Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C March - October 1998 D.Papadopoulos
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C Program to evaluate the UPPER-FREE-SURFACE variation with
C y-coordinate and time for LARGE TIMES
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C Problem: Downward motion of ship in stationary fluid
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C *** Definition of all variables, except y,t ***
program grtop
REAL lam(lOOO),Psi(1000),gradPsi (1000)
REAL res(1000),h,sum 
REAL yprev,xbarprev,ystart,astart 
REAL u,xbar,xabar,xbbar,xa,xb,pi,q,r 
REAL y,dy,t,dt
REAL ftt(1000,1000),ft(1000,1000),f (1000,1000) ,
INTEGER i,j,mm,m,n,nn,a,aa,L
mm =360 
L = 1
pi = 3.1415927

C q means aO and r means ol
q = 0.25 
r = 0.25

C astart must be 100 times smaller than the magnitude of dt.
astart=0.01
aa=41
dt=l
ystart=0.1 
nn=2 00 
dy = 0.1

C *** General loop to evaluate ftt,ft and f functions over time domain *
do 7000 a=l,aa
t= ((a-1)*dt)+astart

C Determination of m and h
xa = -t 
xb = xa-L 
xbbar = -((xb)**2) 
xabar = -((xa)**2) 
m = (2 * mm) + 3
h = ( (- t**2 + (t+L)**2 )**0.5) / ((2*mm) + 2)

C Set all terms of arrays equal to zero
do 2 010 n=l,nn 
Psi(n)=0. 
gradPsi(n)=0.

2010 continue
do 3000 n=l,nn

6.2 Program to evaluate the upper free surface variation with y , valid for larger times.
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y = ((n-1)*dy)+ystart 
xbar = y**2

C *** Evaluate lam(j), also evaluating u(j) at each j ***
do 2024 j = l,m-l 
u = ( ( j - 1) * h)

2024 lam(j) = 2*((t+L+((u**2+t**2)**0.5))** (-0.5))/ (xbar+t**2+u**2)
C Evaluate first and final terms of the phi and omega integrals

sum = lam(l) + lam(m) + (4*lam(m-l))
C Evaluate the complete integrals (i.e. including the intermediate
C terms)

do 2027 i = l,mm 
j = 2 * i

2027 sum = sum + (4.0 * lam(j)) + (2.0 * lam(j+l))
res(n) = (sum * (h/3.0))

C *** Evaluate Psi(n) ***
Psi(n) = - (0.5/pi)*((xbar-xabar)**0.5)*q*res(n)

3000 continue
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C ** Evaluate gradient-Psi function accounting for varying intervals **
do 5000 n=2,nn
y = ((n-1)*dy)+ystart 
xbar = y**2
yprev=((n-2)*dy)+ystart 
xbarprev=yprev**2
gradPsi(n) = (Psi(n)-Psi(n-1)) / (xbar-xbarprev) 
ftt(n,a) = 2 * (xbar**0.5) * gradPsi(n)

5000 continue
7000 continue
C ** Evaluate integral across time using numerical approximation **

do 9000 n=2,nn 
do 8000 a=l,(aa-l),l
ft(n,l) = 0.0
ft(n,a+l)= (dt*ftt(n,(a+1)))+ft(n,a)

8000 continue
9000 continue
C **Evaluate and output results for f**

do 9800 a=l,(aa-l),l 
do 9500 n=2,nn
f(n,l)=0.0
f(n,a+1) = (dt*ft(n, (a+1)))+f(n,a)
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t=((a-1)*dt)+astart 
WRITE (6,*) t, f(n,a)
y = ((n-1)*dy)+ystart 
IF (y.GE.0.5) THEN
WRITE (6,*) y, f(n,a)
ENDIF

9500 continue
WRITE (6,*) ''

9800 continue
end
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c Programs to evaluate side-free-surface function with x-coordinate,
C for a given value of time

PROGRAM SFS 
integer i,imax
real x(lOOO),xx(1000),d(1000),w(1000),f (1000)
open (1,file="ww.dat") 
open (2,file="dd.dat") 
open (9,file="f.dat")
do 10 i=l,1000
read (unit=l,fmt=*) x(i),w(i)
read (unit=2,fmt=*) xx(i),d(i)
if ((x(i).gt.100).or.(xx(i).gt.lOO)) then
imax=i
go to 11
endif

10 continue ,
11 do 20 i=l,imax-l 

f (i)=d(i)-w(i)
write (unit=9,fmt=*) xx(i),f(i)

2 0 continue
close (1) 
close (2) 
close (9)

3 0 end

6.3 Program to evaluate the side free surface function with jc , for a given value o f time.
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Asymptotic Solution for small times
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Variation of upper-free-surface with y-coordinate valid for small times
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Variation of upper-free-surface with time valid for small times
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Asymptotic and Computational Solutions for small times
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Approximate solution for large times
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Variation of upper-free-surface with time valid for large times
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side-free-surface variation with x-coordinate valid for small times
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The shape of side free surface
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side-free-surface variation with x-coordinate valid for large times

IS

0.8

0.6

03

0.4

0.2

0 *■ 0.80.2 0.4 0.6 1
Fig. 6.14 X



Chapter 7

CHAPTER 7

Investigation of the gravity effect

7.1 Introduction

The subject of this chapter is an examination into the influence of gravity on the 

downward motion of a vertical flat solid surface. Again, the solid surface or ship-side 

and the water are initially at rest, at time M). Gravity, which is again labeled g here, 

alters the flow significantly when g is still small, specifically when g = ^ g with g

of order unity and € = Re“*̂ ,̂ where the Reynolds number is large. This corresponds 

to the Froude number Fr being assumed to be comparable with for

mathematical convenience; chapter 1 suggests that in practice Fr is about 0.005 to 4 

whereas Rê ^̂  is about 224 to 3162. The alteration then to the work of the previous 

chapters is felt only in the outer inviscid region where jc ~ 1 and ^  ~ 1, due to there 

being no effect at leading order in the inner region comprising the boundary layer and 

the wake.

The problem and its treatment are based on those of chapter 4 and 5, and in 

consequence the main aim here is to solve the Laplace equation subject to the 

influence of small values of gravity on the boundary conditions, in a fixed Jc and y  

coordinate system. So the unknown pressure is controlled by

v^p = 0 (7,1)

in the quarter-plane i  < 0, y > 0, as shown again in figure 7.1 below

Region 2 Region 1

00

Xa — —t

Figure 7.1 The domain for the analysis
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7.2 Derivation of the problem

To derive the current problem we may consider the equations as follows. We start 

with the unsteady Navier-Stokes equations but are able to neglect the viscous terms 

since x and y  are of order unity in the outer inviscid region. So we put

{u,v,p ,Y) = m - g m  + s{u ,v ,p ,Y) + . ., (7.2)

where s is small, g  = % and in similar manner to that in chapter 5, we obtain

(7.3)

which yields equation (7.1) as expected.

To derive the altered boundary condition in the problem we use the atmospheric 

balance

P = (7.4)

at the unknown top surface Jc = . Applying now equation (7.2), which suggests

that /i  is of order e, we obtain in equation (7.4) the dominant balance ^  = 0, which 

is in essence a “modified pressure” effect; that leaves

^  = 0 at Jc = 0. (7.5)

For the condition in the wake region, i.e. region 1, we start with /? = 0, i.e. 

atmospheric pressure, at the unknown surface

= (7.6)
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The expectation here is that ^  is also small, with to tend to unity, and again 

we have g = s g . So (7.6) gives ^  -  ̂ Jc = 0 at ^  = 0 from a Taylor expansion. 

Hence we obtain for the wake region

p ^ g x  at ^  = 0 (wake part). (7.7)

Additionally, for the boundary layer condition we can continue to use 

^ x t  = ~ ^ y =  -^^xty to obtain

^  at ^  = 0 (boundary layer part). (7.8)

Here S  is the given boundary layer (scaled) displacement along region 2, and in effect 

<5 = 0 for x < - t - L ,  where the ship-side length L is unity; equation (7.8) means that

Ÿ = - ^  along the edge of region 2 as in chapter 5. Finally, we assume again the 

condition in the far-field of 'F -> 0. Hence the only change due to allowing for the 

scaled gravity force g  occurs in the boundary condition (7.7).

7.3 Solution for the gravity effect

The solution of the gravity effect problem is based on forming p - i ^ ^ ,  which is 

analytic in z = x + iy , say 3 ( f ) , and is similar to the complex function examined in

chapter 5. Again we introduce the same conformai transformation z = - P , which

allows consideration of the problem in an upper !4-plane instead of the original Vi-

plane. The mapped coordinate system is again defined by the polar coordinates r , 0 ,  

in view of the mixed boundary condition similar to equation (5.17),

f  + = (7,9)

with now the additional gravity effect term included such that

3o = (-g r+  /<5o). Also we have as before (z-x^)~^^^ = ^-i/2 g-«ÿ) / 2

shifted polar coordinates.
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Continuing from the above we see that for x < x . ,  i.e. for ^  = ;r ,

P + iQ = + g t -  f^ ;), (7.10)

so that

P = F - ^ ' \ - % - S ' ) ,  (7.11a)

and

Q = r - ^ ' \ - p - g t ) .  (7.11b)

In a similar way for x > x ^  i.e. for ^  = 0, we have

f  + fg = r ' ' "  (ÿ -  zT, + gf -  ) , (7.12)

so that

and

P = r - ^ ' \ p ^ g t ) ,  (7.13a)

g  = (7.13b)

where r = { x -  x / ) .

7.3.1 The displacement function T,

In a similar manner with chapter 5, we can derive an expression for the displacement­

like function along the axes based on the aforementioned considerations. We may 

again employ directly the Cauchy-Hilbert relationship, as in (5.25),

Q{x) = — f ■ r_ , which gives us Q along the x  -axis. The integral here and in 

succeeding formulae is again the Cauchy principal value.

Thus for region x > x ^  we find
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+ g o ^ + - j ( f - ^ x r X g ' A  (7.14)
Æ-J ' ' X - ^  ;rJ

for the range 0 > x > - t .  Substituting (6.31) into (7.14) and using =-t^,  and 
X -  - x ^, we have

7t •L
Ô.-Ô, d^

x - 4

+ ̂ | ( f - x j - " : ( t - | ^ ' " ) ^
7T i  ' ' X - ^

7t i x - â
(7.15)

where the first term of (7.15) on the right-hand side is calculated in a similar way as in 

chapter 5 in view of (5.28). The remaining two terms correspond to the gravity effect, 

and after integration and manipulation they simply leave -  g  .

Thus (7.15) reduces to

- ( f 2, + d j  = -  j ( ^ - f ) - ' "  [<5, -  S', -S' ,  + g ( x - x J ' \ ( 7 . l 6 )
7t C  X - â

Following a procedure similar to that of section 5.4 we obtain again equation (5.38) 

but now with the additional gravity effect term, so that

(7.17)

Thus substituting the solution for*P, from equation (5.38), we have
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- { f î t  + ^ « ) = -
{Û - t y a.

+ ^ p Q U g ( j - ï , y ' “ (7.18)

where p , a , , a„ and Î2 are defined in chapter 5.

To help to evaluate (7.18) we initially omit the S  terms. Then using the notations 

X = -Jc^, = - r  ̂ , we obtain the gravity effect as

(7,19)

This gives

(7.20)

where the limits of the integral in (7.20) are defined for t>\x\. Hence upon 

integration, this yields

f i  - cosh (7.21)

This effectively is for large g  values. The right-hand side of (7.21) may now be 

plotted to obtain the general trend of the side free surface function when it consists of 

only the gravity effect term. Fig. 7.4 shows this variation with x  for g =0.2 for 

various values of time t. Also fig.7.5 shows the same variation but for various values 

of g  for a value of time r=l. The trends show that the function has a maximum at 

X =0 and a value of zero at the trailing edge of the ship-side, as expected physically. 

Also the function apparently increases without bound in magnitude for larger time 

and/or larger gravity values; this is explained at the end of the next subsection.
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However, in order to fully evaluate (7.18) at finite g , it is necessary add (7.21) into

(7.18) and evaluate the resulting expression computationally.

7.3.2 Alternative derivation of the modified side free surface equation

In this sub-section we consider how the following alternative approach captures the 

g gravity effect in a satisfactory manner. A proof of the boundary conditions of 

section 7.2 is also included in the analysis.

We first spot that (7.19) corresponds to the simple function

\p -  ]= P  + f(f  ̂ -% 2)"2ga. (7.22)

Let us check that it satisfies all the required conditions. Using now the top surface 

condition along z = iy, we have

[p -  gz + a{z -  ty^{z +

1/2 »

(7.23a)

(7.23b)

where a  is an unknown real constant and the branch cut for the square root is such 

that 0 < < ;r and Q<02<n  as shown in figure 7.2.

- t t

Figure 7.2 Analysis of side free surface function
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However, along the y  -axis we have 0̂  = -02 + n  and so (7.23b) becomes

. (7.24a)

Hence

ÿ  = 0 (7.24b)

as required. The condition along the x  -axis for the wake region -  r < i  < 0 gives

0^= 7 t , 02=0,  r ^= t - X  and 1 * 2 = Jc + / ,  and so we obtain

\p -  ]= g î + a{t^ -  . (7.25a)

Thence

p  = gx and %  = -a(t^ -  jc" ) ''" , (7.25b)

which again agrees with equation (7.7). For the boundary layer region Jc < - r , y  = 0, 

on the other hand, we have 0^=^ ,  0 2  = , r ^={ t - x)  and = |Jc + r|, and so we

have

Hence here

= 0 and p  = g x - a  x^ - t ^  (7.26b)

This agrees with equation (7.8). Also, equation (7.26b) as x tends to -oo become 

p ~ g x  + ax since 3c is negative. So we require for the far-field decay that a  =- g . 

Thus equation (7.25b) for the wake part becomes now

(S', ==);;(,: - Jc:)": == . (7Ji7)

This is exactly (7.19), thus confirming the result there. Moreover at the top comer, at 

jc  = 0, we see that = - g t , which leaves / j  negative as time t increases and also
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shows that /2  increases linearly with time, in keeping with the numerical results

described in the previous subsection.

7.4 Computational analysis

The computational evaluation of the entire expression for the modified side free 

surface function including the gravity effect term is given by program 7.1, and 

consists of adding the solution from (7,21) to the results for ^  from section 6.3. 

Figures 7.6-7.10 show the variation of the modified side free surface with x for 

gravity values in the range 0.4 < g <10. The values of times considered were five 

equal steps in the range 0.2 < r< 3.0. The results seem to make good physical sense. 

They also agree fairly well numerically with separate computations performed by Li 

(2000). As the value of gravity increases, the influence on the side free surface 

profiles becomes more pronounced. For the larger values of gravity, the effect on the 

side free surface is to draw it into the negative y  region sooner. On the other hand it

can be shown that the displacement contribution from Ô always dominates just above 

but sufficiently near the trailing edge position Jc = as / j  tends to zero, and that 

keeps / j  always positive there. Indeed the < t̂erm in / j  gives rise to positive 

coefficient times ( i  + /)*̂  ̂ in locally, whereas the g term gives rise to negative 

coefficient times (#4-f)^"^, essentially, and since the former (1/3) behaviour is the

greater it makes / j  locally positive. A trend towards ‘splashing’ of the water onto the 

ship-side is clearly indicated for sufficiently large times with any positive gravity 

factor g .

7.5 Analysis near the top corner

This local analysis is of some interest, if rather an aside, on the local inviscid solution 

very near the top comer with the gravity effect g present, although it also applies if 

g is zero. In section 7.2 it is seen that equation (7.7) yields along region 2 the

solution for / 2 , at small or finite \x\ for every time l. The aim here is to study locally 

both the side free surface at small |Jc| and the upper free surface shape, / i  at small \y\ 

for all time.
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Thus locally we have to solve again equation (7.1) in the quarter-plane as shown in 

figure 7.3,

p  = 0
—  00

Jc = 0Xu — —t — L

Figure 7.3 For the problem near the top com er

with

and

p  = 0 along .X = 0, for all jp > 0, 

p  = gx along ^  = 0, for all x < 0

(7.28a)

(7.28b)

The reason for (7.28b) is that the change in boundary conditions at x^ can be 

regarded as relatively far from the top comer.

We again construct the complex function p - i %  of z = x + iy, locally. The boundary 

conditions suggest that near the top z = iy we must have

\p - i 'v \= g iy  + m , + i B y  + ...... (7.29)

with real constants Then we obtain

==J9o -  icP-H a ,]/: -  + (7 30)

there. Thus

= -frH- 22!,j): -............t ..... , (7.31)
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giving —  » - g  at the top surface. 
dt

So equation (7.29) simply extends in terms of z to

[p -  ]= gz + A„ + A,z + + A,z^ + A J ‘' +...... (7.32)

with = Ay -  ... = 0 and A ,  pure imaginary in order to

satisfy equations (7.28a), (7.28b) along z = iy and z = x. The constants A„ and B„are 

determined by the global solution which takes into account the ship-side and not by 

the local solution. The relationship between the constants is given by

^ 0.2.4,6....  ~  ^^0,2,4.6 ......'

Hence, along the side free surface we find

-  = iB, + iB^x^ + iB,x^ +   (7.34)

so that

= -Bo -  B^x^ - B , x ^ ~ .....  (7.35)

But, considering the gravity effect alone, we require Y = from equation (7.17). 

Thus we finally obtain the form

/ j  = (5„ + +....)• f . (7.36)

This is consistent with the findings in the previous sections and tends to confirm that 

the local solution near the top comer is regular in z .
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7.6 Fortran 77 programs and figures
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C Programs to evaluate side-free-surface function with x-coordinate,
C for a given value of gravity

PROGRAM GFS 
integer i,imax
real x(lOOO) ,xhat (1000) , sfs (1000),w(1000) ,g,t,aeosh(1000)
g=10
t=0.2
open (1, file=''plo") 
open (9, file="w,dat" )
do 10 i=l,1000
read (unit=l,fmt=*) x(i),sfs(i)

C Increment time value for small and large times
if (x(i).ge.lOO) then

write(9,*)'' i
if (t.le.l) then
t=t+0.2
else
t=t+2.0
endif

else
C Evaluate f2 with gravity effect term and write to file

xhat (i) = X(i)
acosh(i)=log( (t/xhat(i)) + ( (((t/xhat(i))**2)-1)**0.5 ) ) 
w ( i ) =  sfs(i) + ( (g/2) * ( (t* ( ( (t**2) - (xhat (i) **2) ) **0 .5) )

-((xhat(i)**2)*acosh(i))))
if (x(i) . eq. 0 . 01) datum=w (i) 
if (x(i).eq.O) then
write (9,*) '0 O'
else
write (9,*) xhat(i)-0.01,vv(i)-datum 
endif 

endif
C End program at end of input file

if (x(i).ge.lOOO) goto 20
10 continue

close (1) 
close (9)

20 end

7.1 Program to evaluate the side free surface function with ;r, for a given value o f gravity.
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f2 variation with x-coordinate for gtilde=0.2 for various times
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f2 variation with x [gravity=1.0]
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f2 variation with x [gravity=2.0]
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f2 variation with x [gravity=5.0]
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f2 variation with x [gravity=10.0]

K>
K> CM

1

1

2

3

4

5

6
0 0.1 0.2 0.40.3 0.5 0.6 0.7 " 0.8 0.9 1

Fig. ).10



Chapter 8

CHAPTER 8 

Water flow adjacent to an inclined 

ship-side moving downwards

8.1 Introduction

In this chapter a moving inclined ship-side will be investigated in brief for the case of 

downward motion. The ship-side is taken to be moving downward but in its own 

plane. Here the flow configuration and main flow structure appear at first sight to be 

similar to the earlier vertical case. This is for negligible gravity force. The diagram 

given below defines the domain of the problem in the Cartesian coordinate system 

consisting of X\ (vertical), y\ (horizontal), which are identical with x , y  used earlier 

but are in a more convenient notation here.

SHIP MOTION

B.Ù
T,<-

Figure 8.1 The inclined ship-side problem

For the inclined case, the only difference from the previous vertical case occurs in the 

outer inviscid problem where the Laplace equation must be solved with the following 

new conditions. With reference to the diagram below, the top CO has the same 

boundary conditions as for the vertical case, and similarly for the side portion OA. 

Side AB, however, must match to the boundary layer on the ship-side at an angle a

(where 0 < a  < :/r) below the horizontal. If a  is equal to y  this corresponds to the 

earlier vertical case.
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p=0

p=0

Figure 8.2 The domain of the analysis

We may solve this inclined ship-side problem by mapping the xi, y, plane to the 

original %-plane of the vertical case for which the analysis has been performed in 

chapter 5.

8.2 Transformation to %-plane

The unknown scaled pressure satisfies Laplace’s equation in X[,y\,

V=/, = 0, ( 8 . 1)

as expected in potential flow. This is as in equation (5.5).

Also, as in chapter 5, the Cauchy-Riemann equations hold between and V,,

where pressures and velocities are scaled as before. So a complex potential function 

to control the problem may be defined as p - /'T,, which is analytic in Z;(= +b^) ,

say 3(z, ), with the stream function Y again satisfying û = and V = .

The boundary conditions considered here are that: the pressure p  is prescribed to be 

zero on sides COA (from condition 2 of chapter 4); and ^  is prescribed in terms of

the given boundary layer displacement as -^(so the normal derivative —  , or, in the
dn
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polar coordinates of figure 8.3, is prescribed) on the inclined side AB (from
d6^

matching with the boundary layer); while the water is at rest in the far-field (condition

3). The precise form here of chapter five’s fimction H ot  —  , from matching with the
dn

viscous boundary layer solution, can be determined subsequently. We need to remark 

however that the stated linearised boundary conditions on the side OA and implicitly 

on the inclined side below the leading edge point B are somewhat artificial, due to the 

non symmetry present for the latter and the off-vertical free surface for the former, in 

general. Instead the global effects may be expected to be nonlinear in reality. 

Nevertheless, the above formulation provides the beginnings of a generalisation from 

the original vertical side case of the earlier chapters.

To solve the inviscid flow problem we may again introduce a conformai 

transformation, which allows consideration of the problem in the original %-plane. 

The mapping is, say.

z, 012)

where zi is the complex coordinate for the %-plane of chapter 5, as shown now in fig. 

8.3, and N  is defined below.

The zi coordinate system is now defined by the polar coordinates and zi by 

2̂ , ^ 2  so that (8.2) reads

(8.3)

and hence we have

,2 ==r,", (8.4)

e^=N\
r K9 \ - — + —. (8.5)
V z j  I
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n l l < 9 ^  < I n !  2 - a X,
A

X
A

zi - plane Transforms
to

%2 - plane

Figure 8.3 Mapping from inclined plane to %-plane

So on the BAO ‘side’ portion we obtain from (8.5)

Û ^ 3/r0^=71 =>^, = — -  a (8.6)

and on the OC ‘top’ portion we have also

(8.7)

with the interval “  < and 0 < r, < oo for the entire outer region of water

flow. Here, to repeat, a  is the angle between the inclined slope and the horizontal as

indicated in figure 8.2. Also N  = n
2{7ü-a)

in view of (8.5), (8.6), and so N  is positive

for the present range of a  values.
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The mapping into the Z2 -plane gives us again Laplace’s equation in terms of X2 , y 2 -, 

^ 2  P -  0 say, which can then be solved in exactly the same way as in chapter 5. The 

only difference is observed at the stage of the match with the boundary layer, where 

= Here the boundary layer model is transformed according to the

coordinate transformation (8.2) in a similar manner as with section 5.4, The boundary 

condition on the AB portion of the axis is given by the derivative as ;

thus we have the boundary conditions on the pressure, which are of mixed type. We 

may now proceed using the function p - f V ,  as explained in chapter 5.

8.3 The general displacement derivative function ^

We therefore derive as follows a general displacement-like function based on the 

aforementioned considerations. We may again employ directly the Cauchy-Hilbert 

relationship, similar to (5.25),

6 = 1 ; %  (8.8)

where now x = - r ^  = from the transformation (8.4). So equation (8.8) using 

equations (5.21) and (5.24) with the new limits on the integral, in a manner similar to 

that in as widi section 5.3, becomes

'I (8.9)
^ -CO (-n -<?)•-  -*

With reference to fig.8.3, we have the values = t and = (r+ L), and so using

(8.4) we conclude that the corresponding distances are and = (̂  + L Y  , at

time r; this is for the impulsively-started downward moving ship-side oriented at the 

inclination a .

For general times t of order 0(1) we could evaluate (8.9) numerically using the values

of from our previous boundary layer computations in chapters 2,3.
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We prefer to use a modelled form as in the previous chapters. In terms of the

transformed coordinates , the model reads

1/2

(8.10) 

(8.11)

in the new range Q<t<L.  Again, S, = 0^ for the range Û  > . Also here

a .
^ 0  = — from the values at the trailing edge. For the special vertical case of 

(2  ̂ )

7ta  = Y  and A^=l, the displacement function equations (8.10-11) reduce to (5.30-31), 

as expected.

Thus, using the general model for we have

( 2/V 2A/ \ l / 2  -l} / 2A/ g \ - l / 2
('i^ - n  ) f (-n^ - h )

n

{ r ,r  - r C )
71 2N (-^1 - ^ )

2 N  F \ - l / 2

2 N  _.2A/\l/2 ^ 2 N  J n - 1 /2

1 - ( n /  ( - n /  - f )
7T

(8.12)

where again the four constituent terms refer to the respective portions in the overall 

region oo > . So we obtain, after differentiation, the final expression for

the displacement derivative function in the concise form

2 N  „2A/x1/2
( n /  )

77
a,

^ y
218
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where the two integrals are defined as

<D,= I (8.14)

(8.15)

which we will proceed to determine in the next section. For the special case of the %- 

plane analysis of chapter 5, a - n i l  and # =  1, and equations (8.13-15) reduce to 

(5.34-6) as expected.

8.4 Evaluation of the 0% and Qi integrals

To evaluate the 0% and integrals, we use the substitution . Thus

we obtain for the 0% integral, in a similar manner to (5.37b),

O'! = (fix - fl ) ;r -2 ta n -1
( j 2_  2N 

^  MX 
2 N  2 N

\ f i x  - f l  J
(8.16)

while for the Qj integral we have the form

Qj -  2 I if + L + (m̂
12

J r 2 , 2 N  27V X
+fix “ fl )

■dm. (8.17)

The form (8.17) of the integral is again suitable for computation using Simpson’s rule 

as given in the following section. Also the form (8.16) is well defined, and 

substituting back into equation (8.13) we have

' " ' = - 7
a 0   -1
. 1 / 2

tan  ̂Û - r . 2 N

IX
2 N  2 N

Vfu -r ,
a,

1 J
(8.18)
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which is the final form for the displacement derivative function of the inclined ship 

side.

8.5 Computational solution of general Y* function

The evaluation of the general displacement derivative function which includes the 

Qi integral is described in this section. The flow chart for the program is given below 

and the results are presented in the figures that follow the program (Program 8.1) at 

the end of the chapter. Program 8.1 now includes evaluation of the Qi integral which 

is a function of the angle of inclination, a ,  of the ship-side. Computations were

3^performed for five values of a  in the range 0 < or < — . Each run was for selected

non-dimensional times not exceeding the non-dimensional length of the ship-side, 

which here is unity. The times considered were for four equal intervals in the range 

0 .2- 0 .8.

Define variables xa, xabar, xb, xbbar, 
ra, rb, L, t, q & rr, Alpha, Ang

Output results

Evaluate m and h

Evaluate psi(t) for region 2 (Blasius- 
Rayleigh solution)

Evaluate psi(t) for region 1 (wake solution) by evaluating omega 
integral, as a function of Angle, using Simpson’s rule

PROGRAM 8.1

The Tt profiles (figures 8.4-8.8) are similar to those of section 5.4. For the case of 

a - k H ,  the profiles are identical since this corresponds to the special case of the 

vertical ship-side case. As the angle is increased, the wake regions became more
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pronounced and elongated relative to the overall profiles. Further, the limiting cases 

of nearly horizontal side motion where a - ^ 0  + , a - ^  n -  are clearly of much 

interest. The former case for instance resembles the so-called planing or gliding flow 

discussed in Milne-Thompson (1968, page 324) on purely inviscid grounds. It should 

be recalled however that the present boundary conditions imposed along the sides OA 

and below B are rather artificial, a feature which restricts the direct applicability to 

planing flows. It would be interesting to study this further.

221



Chapter 8

8.6 Fortran 77 programs and figures
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Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C February 2 000 D.Papadopoulos
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C INCLINED SHIP-SIDE PROBLEM
C Program to evaluate the Psi(t) variation with general r-coordinate
C and produce entire displacement function [y] valid for small times
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C *** Definition of all variables, except y ***
program gpsi
REAL o(2000),res,h,L,t,sum
REAL u,ra, rb, r,pi,q,rr,y,yl.,y2, term, rho,ALPHA,ANG 
INTEGER i,j,mm,m
open (9, file="w,dat") 
mm = 360 
L = 1
pi = 3.1415927
ALPHA=(pi)/2
ANG=pi/(2*(pi-ALPHA))

C General loop to evaluate psi(t) for various times,
C with constraint t<L

do 3000 t=0.2,0.9,0.2
C ra means rla, rb means rib and r means rl and rr means r2

ra = t 
rb = t+L

C q means al and aO
q = 0,25

C *** Determination of m and h
m = (2 * mm) + 3
h = ( (((rb**(2*ANG))-(ra**(2*ANG)) )**0.5)

-(((L**2)- (ra**(2*ANG)) )**0.5)) /((2*mm) +2)
C *** Evaluate Psi(t) for rb-t<r<rb, i.e. Blasius part

do 5 r = rb-0.01,rb-t,-0.01 
yl=-q*0.5*((rb-(r**ANG))**(-0.5))
WRITE (unit=9,fmt=*) r,yl 

5 continue
C *** Evaluate Psi(t) for rb-t<r<ra, i.e. Rayleigh part

do 10 r = rb-t,ra,-0.01 
y2 = -q*0.5* (t**(-0.5))
WRITE (unit=9,fmt=*) r, y2 

10 continue
C ***General loop to evaluate psi(t) (including constituent omega
C integral) for values of the r-coordinate ***

do 1000 r = (ra-0.001),0.01,-0.001

8.1 Program to evaluate the 'P, variation with jc , valid for inclined problem.
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c *** Evaluate o(j), also evaluating u(j) at each j ***
do 24 j = l,m-l
u = ((j - 1) * h)+( ( (L**2) - (ra**(2*ANG)) )**0.5)
o(j) = 2*((rb+(((u**2)+(ra**(2*ANG)))**0.5))**(r0.5))

/((ra**(2*ANG))+(u**2)- (r**(2*ANG)))
24 continue
C *** Evaluate first and final terms of omega integral ***

sum = o(l)+ o (m) + (4*o(m-l))
C *** Evaluate complete integral (i.e. including the intermediate terms)

do 27 i = l,mm 
j = 2 * i
sum = sum + (4.0 * o(j)) + (2.0 * o(j+l))

27 continue
res = (sum * (h/3.0))

C *** Evaluate and output results for psi(t) [y] ***
term=(((rb**(2*ANG)) - (ra**(2*ANG)))

/((ra**(2*ANG))-(r**(2*ANG))) )**0.5 
rho=q*(t**(-0.5))
y = (-0.15915)*q*res*(((ra**(2*ANG))-(r**(2*ANG)))**0.5)

- (rho*0.31831*atan(term))
WRITE (unit=9,fmt=*) r,y

1000 continue
WRITE (unit=9,fmt=*)

3 000 continue
close (9)
end
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Psi(t) variation with r1 [alpha=3pi/4]
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Psi(t) variation with r1 [alpha=pi/2]
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Psi(t) variation with r1 [alpha=pi/4]
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Psi(t) variation with r1 [alpha=pi/8]
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Psi(t) variation with r1 [alpha-»0]
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CHAPTER 9 

Other related flow configurations and comments

9.1 Introduction

In this chapter we consider briefly some related flow problems. These problems have 

been studied to some extent in the present project but remain to be completed in 

further research. One such problem is that of upward ship-side motion, where a short 

discussion is given in the following section.

Another problem that should be mentioned is the case of oscillating ship-side motion 

in which we expect the analysis to be harder, however, due to the difficulty of the 

appropriate boundary conditions. Such a problem is studied by Hocking (1987) where 

the vertical oscillation of a flat plate partially immersed in a non-wetting fluid 

produces a radiated wavetrain when the contact line between the plate and the free 

surface of the fluid cannot move freely along plate. He found that the generation of 

waves depends to a significant extent on the condition applied at the intersection of 

the free surface and the body.

On the other hand a more realistic configuration than that of chapter 8 is the wedge- 

shaped geometry of figure 9.1.

SHIP MOTION

3 .L .

Figure 9.1 Wedge-shaped geometry

This is beyond the present scope of the thesis, except for a  near k  12,  { a  being the 

angle of inclination to the horizontal), because the inviscid region becomes nonlinear.
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Also the configuration for the inclined side for both upward and downward motions 

where the gravity effect is included needs further study. The target o f such a study is 

to predict whether the water will have a ‘splashing’ effect as discussed in chapter 8.

Finally, concerning the square root behaviour defined in equation (5.17) near the 

contact point, the equivalent o f the Kutta condition in the inviscid portion o f the water 

motion remains not fully known for the present context of viscous-inviscid flows, 

where the inviscid part o f the motion is only slightly disturbed compared with the 

viscous part. This suggests that further study should be made o f viscous-inviscid 

properties close to a contact point, where in effect a free surface detaches at a trailing 

edge.

9.2 The upw ard ship-side motion

In this section we consider the basic construction for the upward ship-side motion 

problem. Again the unsteady viscous boundary layer equations are assumed to hold 

near the ship-side (for some time at least), while in the rest o f the water flow the 

inviscid Euler equations apply, leading possibly to potential-flow properties as 

described in chapter 4 and 5.

The ship-side is moving upwards vertically, and so the velocity o f the water for 

positive time {t>0) is expected to correspond to moving downwards relative to the 

ship-side. Here we note that the pressure p  is equal to zero in the air but is generally 

non-zero in the water, the atmospheric pressure level again being taken as zero for 

convenience. The development o f the problem is thus straightforward and is similar to 

that o f chapter 4. As before, we employ the unsteady Navier-Stokes equations and 

relevant boundary conditions for the flow. In a similar manner as in chapter 4, the 

Reynolds number is taken to be large and the scaled governing equations are defined 

again as

ü,+üü-^-\-vüy  = - g  + w^, (9.1)

Wif+v^=0,  (9.2)
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where the constant gravity force is also included. The atmospheric pressure is taken to 

be zero without loss o f generality, time t>0 ,  x , y  are the vertical and horizontal fixed 

spatial axes respectively, and z7,v are the corresponding velocity components in a 

similar method as before. We now use a transformation to make the problem more

definite for J < 0 ,  ( x ,y , / ) - > ( J ,7 ,0 ,  where is an

unknown-scaled (shape) function o f the vertical fixed spatial axis and time. The 

boundary conditions are now defined by

w = V = 0 at = 0 (at wall), (9.3)

= 0 ,  v = 0 at 7 = 1, (9.4)

where the range o f interest is -  k{t)  < J  < 0 , and k{f)  is defined in section 4.3.2 since 

the ship-side is moving upwards ( J  < 0). In principle this final set o f equations may 

be solved in almost exactly the same way as with the equation set o f chapter 2, which

describe the external boundary layer flow past an aligned flat, for a given value o f the

gravity term g .
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CHAPTER 10 

Conclusions

In the first part o f  the thesis (chapters 2,3) the unsteady incompressible boundary 

layer mainly over a flat plate that is started impulsively from rest with uniform 

velocity was considered. The two cases that were studied were those o f the flow on 

the finite-length plate and the flow in the wake downstream of the plate. On the plate, 

the numerical solution was obtained using the Gaussian elimination method, where 

the previously obtained similarity results were found to be retrieved fairly well. A 

Blasius-Rayleigh-like flow regime was observed to exist over the plate. A major part 

o f the convergence towards the Hall solution seemed to occur over the first five 

normalised time steps. A link with the double-stepping procedure o f Smith and 

Timoshin (1996) was discussed and a comparison with a Blasius modified solution 

was also made and proved supportive.

For the trailing edge and the near wake Goldstein solution in the unsteady flow 

adjacent to the flat plate, in a similar manner as with the flat plate analysis, a Gaussian 

elimination of the discretized system of flow equations was undertaken with modified 

boundary conditions for the wake region. The numerical results observed were in 

close agreement with those o f Papageorgiou and Smith (1989) in the steady state at 

large times. Grid refinement was performed for each o f the coordinate directions and 

time for both the plate and wake problems. Numerically converging solutions were 

indicated.

Numerical investigations o f the scaled displacement and skin friction quantities were 

also performed. The wake displacement results, which were later used for the side 

free surface solution, were found to be in very good agreement with the subsequent 

numerical predictions o f Li (2000). Also the present numerical treatment for a 

modified boundary condition corresponding to an unsteady outer stream rather than a 

steady one was studied in order to make the problem and approach more widely 

applicable.
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The second part (chapters 4-9) o f the thesis consisted predominantly o f the downward 

vertical and inclined ship-side motion problems. The flow problems were modeled 

and then investigated both analytically and numerically (chapters 4-6) using 

appropriate reductions from the Navier-Stokes equations. The solution compared 

favourably with those in previous work such as that o f Li (2000). Further, the vertical 

problem was investigated in its outer inviscid region to deduce the shape o f the upper 

and side free surfaces (chapter 6) generated by the downward motion o f the ship-side. 

Close agreement between the analytical forms based on the development o f a 

displacement derivative function and the computational results was observed. The 

results were found to make good sense from a physical perspective.

For the case o f the downward vertical ship-side motion problem, the influence o f 

relatively small gravity was also investigated (chapter 7). The results show a trend 

towards ‘splashing’ o f the water onto the ship-side for sufficiently large times with 

any positive gravity factor g  . For the case o f the ship-side inclined at a general angle 

to the horizontal (chapter 8), the results showed agreement with the special vertical 

case o f chapter 5. There was a trend in the displacement derivative function to 

become more elongated for smaller angles to the horizontal. Finally, other related 

cases were considered (chapter 9).

The principal results o f this thesis are probably those for the unsteady flat plate flow 

itself, in chapters 2, 3, and for the predicted free surface shapes in chapters 6 and 7. 

Future research would be o f interest on expanding the other related cases mentioned 

just above, as well as on the influences o f allowing slip at or near the contact point (as 

opposed to the present assumption o f no slip) and on the effects o f increasing the 

relative gravity force. In particular the case o f an oscillating ship-side is clearly one o f 

practical significance also. Small oscillations or waves have been studied previously, 

most notably in the linear context, corresponding for instance to relatively large 

slipping of the moving contact point. It would be interesting to extend this case to the 

current setting, especially given that Elliott & Smith’s (1998) work shows flow 

deceleration having an important influence on the solution structure near the trailing 

edge in the no-slipping configuration.
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APPENDIX A

The approximate model for the displacement-like function

A slightly simpler model for the displacement-like function is presented in this 

appendix. It has the function Ô, given by

(A. I)

satisfying the boundary condition Y = 0 at the leading edge % = -A , as sketched in 

figure A. 1.

More Accurate 
model

L.E T.ESHIP SIDE

>  rApproximate
model

Figure A .l The approximate and more accurate models

The model captures some elements of both the approximate Rayleigh part of the 

efflux contribution (boundary layer displacement) in region 2 and the leading edge 

effect.

Substituting (A.l) into (5.28) leads to the following expression for the displacement 

function valid for A. 1 the ship-side.

% = n 2f"1 / 2
(A.2)
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To analyze the integral in equation (A.2), we use the substitution q = , s o  that 

the integral becomes

0 — \I1

I  = -  \  t A  - a q - x J ' ^ + L ) d q .  (A.3)

We further substitute q -rn ^  to obtain the final integral

/("»)=  I  — :------- - a m ^ - x J ' ^ + L ) d m  (A.4)

for the interval < j: < 0.

To evaluate the integral in (A.4) and hence evaluate the displacement function o f

(A.2), we employ Simpson’s rule as given in for the Fortran 77 program at the end o f 

the appendix, as program A .l.

The results are presented at the end o f the chapter, and show the variation o f the 

integral I  with velocity u , for various x -stations. We will now compare these results 

with the analytical solution for the integral I  given below.

Next, we investigate local analytical solutions for the present simplified ship-side 

model. We examine the solution for two cases o f interest, near the origin as J  ~ 0 , 

and as x approaches the trailing edge where x - >Xj .  The question is whether we 

obtain results that correlate well with the computational results. We analyse the 

integral in (A.4) for both cases.

At J  = 0 , first, if  we first substitute = ~^ a > 0 , the integral in equation (A 4) 

becomes

—tan * 
F

^ 4 ^  .-s in h
y

0A5)
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where A = ylL  ̂ -  T̂  . The selected values for the trailing edge are = -t^ = -6 ,  and 

for the length L = 8. Hence equation (A.5) using these values gives the value of the 

integral I{m) as 7.124. This result is very close to the numerical result of 7.160 

(generated by program A. 1 evaluated near the origin at x = -0 .05 , for L=%).

As X -> , second, we substitute x -  x^ = > 0  near the leading edge, with

€ « X .  We then expect the integral (A.4) to be dominated by the small m 

contribution, where m = 6m is small and m ~ \ .  Thus the integral in (A.4) becomes

,.2t
m=0

(A.6)

leading to

5;r (A.7)

Table A.l represents analytical values calculated from equation (A.7) together with 

computational values for selected values of x .

g g

-5,8 0.447 35.124 51.556 0.5861

-5.5 0.707 22.214 31.624 0.5688

-5.2 0.894 17.462 24.327 0.5531

-5.0 1.000 15.708 21.415 0.5444

-4.0 1.414 11.107 14.241 0.5120

-3.0 1.732 9.064 11.110 0.4892

-2.0 2.000 7.854 9 268 0.4712

-1.0 1236 7.024 8 026 0.4563

-0.05 2.439 6.439 7.160 0.4440
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The variation o f the integral contained within the displacement function, as well as the 

displacement function itself, are plotted against 3c in figures A.2 and A.3, 

respectively. The results suggest that as x approaches 3ĉ  (which is -6), the analytical 

and computational results diverge marginally. This suggests that the approximate 

model for the displacement-like function is unsatisfactory. The evaluation o f from 

equation (A.2) is also shown.

In contrast to this approximate model, an accurate solution was developed which is 

described in section 5.4 of the thesis.
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AA. F o rtran  77 program s and figures
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C Problem: Downward motion of ship in stationary fluid
C Analysis of flow in the "nearly still" Region 3

program simpsons rule
REAL f (100),res,h,sum,u,xbar,xabar,L,LB,t,pi,r,y 
INTEGER i,j,mm,m
xbar = - 5.8 
mm = 15 
L = 8 
t=(6**0.5) 
r=0.25
pi=3.1415927 
xabar = -(t**2)

C define f(j), j = 1, and m, where (m = 2mm + 2)
m = (2 * mm) +2 
LB = (L + ((-xabar)**0.5))
h = (((xabar + (LB**2))** (0.5)) / (2 * mm - 1))
WRITE (6,*) ''
WRITE (6,*) ' Integral results for xabar =',xabar
WRITE (6,*) ' and for xbar =',xbar
WRITE (6,*) ''

C Evaluate f(j) also evaluating u(j) at each j
do 24 j = l,m 
u = ( (j - 1) * h)
f(j) = (2*( LB-( ((u**2)-xabar)**0.5)) ) / ( xbar -xabar+(u**2))

24 WRITE (6,*)' u=',u f(j)=',f(j)
C Evaluate first and final terms of the integral

sum = f(l) + f(m)
WRITE (6,*) ' sum{first term} = ' , sum

C Evaluate the complete integral (including the intermediate terms)
do 25 i = l,mm 
j = 2 * i

25 sum = sum + (4.0 * f(j)) + (2.0 * f(j+l))
C Output results
c WRITE (6,*) ' sum{whole) = ' , sum

res = (sum * (h / 3.0))
WRITE (6,*) ' res = ' , res
y=(((xbar-xabar)**0.5)*r*res) / (2*pi*(t**0.5))

WRITE (6,*) y,xbar 
end

A. 1 Program to evaluate 'P, using the approximate model.

241



M

5
G)
0)

CL
(0
Q

Variation of the displacem ent function integral

iiiii

A n a l y t i c a l  
C o m p u t a t i o n a lS M S fB lB sg\ "  . V Ù

60

50

40

30

20

10

0
-7 -5 -4 -3 -2 -1 0

x-bar

Fig. A.2



Variation of the displacement function (Psi-t) with
xbar

M M
-‘VàSÏI.

wÏÊÊmi
H g i i mmxmmm

K B

# # # #

-7 -6 -5
x-bar

-3 -2 -1 0

Fig. A.3



APPENDIX B

C Problem: To evaluate fl integral for approximate solution for large ti
program s
REAL o (1000),res,sum,t,ybar,Q,h,fl,xdbar,mm,m 
INTEGER i,j

C Definition of constants
mm=100 
m=(2*mm)+2  
h=l/m

C General loop for value of large time
do 2000 t=10,50,10

C Loop for values of y-coordinate
do 1000 ybar=l,20,1 
xdbar = (ybar**2) / (t**2)

C Evaluate function o(Q) for whole interval
do 24 j = l,m 
Q= ((j-l)*h)

24 o(j) = ((Q**0.5)* (1-Q))/ ((xdbar+(Q**2))**1.5)
C Evaluate first and final terms of the integral

sum = o(l) + o(m)+ (4* o(m-l))
C Evaluate the complete integral (including intermediate terms)

do 25 i = 1,mm 
j = 2*i

25 sum = sum + (4.0 * o(j)) + (2.0*o(j+l)) 
res = (sum * (h / 3.0))
fl = 0.17678 * (t**0.5) * (xdbar**0.5) * res

C Output Results for fl versus y-coordinate
WRITE (6,*) ybar,f1

1000 continue
WRITE (6,*) '•

2 000 continue
end

B. 1 Program to evaluate the approximate solution for/i valid for large times
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