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ABSTRACT

A three-dimensional computational design method is presented for multi-component 
marine ducted propulsors operating in axisymmetric shear flow.

An inverse design approach is adopted whereby the blade shapes at the specified 
design point are determined from a given blade circulation distribution and a 
condition of zero blade incidence. The corresponding three-dimensional propulsor 
flow field is also obtained, enabling the design-point performance of the synthesised 
design to be assessed.

Although based on an existing inviscid turbomachinery design technique, the method 
incorporates numerous modifications, firstly to enable propulsor mass flow to be 
determined, and secondly to model the shear flows that are encountered by 
propulsors operating within the boundary layers of ships.

Employing an assumption of inviscid flow and using the Clebsch representation of 
vorticity, both the propulsor through flow and bypass flow are described by 
simultaneous partial differential equations which are solved using finite difference and 
Fourier techniques.

The development of circumferential variations in both velocity and vorticity within the 
blade passages are included, as are the effects of spanwise variations of blade 
circulation. Moreover, by assuming that the duct wake remains axisymmetric 
slipstream contraction is accounted for.

In addition to the above formulation, a simplified three-dimensional formulation 
which neglects the development of circumferential variations in stagnation pressure is 
described, as is an "actuator duct" approach which neglects the circumferential 
variations of all flow quantities.

Computational results for practical ducted propulsors show the development of 
circumferential variations in flow quantities to have relatively little effect on either 
blades shape or overall propulsor performance predictions.



Finally, the experimental verification of the design method using a low speed wind 
tunnel is outlined. Velocity measurements conducted with a three-hole pitot probe 
show reasonable agreement with the predictions of the design method, whilst 
measurements of shaft power and mass flow show much closer agreement.
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NOMENCLATURE

mean tangential blockage factor 
D duct diameter

ê” unit normal to r = constant

êg unit normal to 0 = constant

ê” unit normal to z= constant

unit normal to Ç = constant 

ê” unit normal to rj = constant

f blade wrap angle (angular offset of blade camber line relative to
meridional plane)

F blade body force

H rothalpy (=/>*/ p)
i
L duct length
M Mach number
N the number of Fourier haiTnonics taken
Ny number of blades on a given blade row
Po absolute stagnation pressure
p I rotary stagnation pressure

Q Shaft torque
r radius
R„ Reynolds number
S(a) Sawtooth function

blade thickness normal to mean camber line 
tangential blade thickness 

V absolute velocity
W velocity relative to blade surface
(r,0,z) the cylindrical polar co-ordinate system
a  Chapter 7: yaw angle of the Cobra Probe

elsewhere: angular offset of a point relative to the key blade
6p(a) Periodic Delta Function
p fluid density
T drift function
\|/ Stokes stream function
0) shaft angular speed
r  circulation
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0  potential function
(Ç,0,ri) the body-fitted co-ordinate system (mesh quasi-streamlines defined by

T|=constant, mesh quasi-orthogonals by ^=constant)
O absolute vorticity

Subscripts
r radial component
0 tangential component
z axial component

derivative with respect to ^

n derivative with respect to r\
1 refers to the upstream blade row
2 refers to the downstream blade row
bl value on the blade surface/blade wake
le value at the blade leading edge
te value at the blade trailing edge
hub value at the hub
tip value at the blade tip
b value in the propulsor bypass flow
c value in the propulsor core (through) flow

Superscripts
+ value on the blade pressure surface
- value on the blade suction surface
q,p,n,0 q^, p^, nüi, zeroth (mean) component of an

Overbars
- circumferential average
~ periodic component (F = F - F )

Miscellaneous

—  partial derivative taken normal to the endwall 
dn

—  partial derivative taken along the endwall in the plane 0 = constant
ds
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CHAPTER 1 INTRODUCTION

Since its widespread adoption during the Nineteenth Century [1], a number of means 
have been proposed for improving the performance of the marine screw propeller 
(such as those outlined in [2], [3] and [4]). Of these "alternative" propulsion devices, 
perhaps none has found such widespread application as the ducted propulsor.

This type of device includes not only simple ducted propellers, which consist of a 
propeller enshrouded within an annular aerofoil (Figure 1.1), but also more elaborate 
configurations such as pumpjets ([5], [6]) where a second blade row is mounted 
immediately behind the first.

The development of the marine ducted propulsor as an alternative to conventional 
open propellers is directly attributable to experimental work earlier this Century by 
Stipa [7] and Kort [8]. Since then these devices have been installed on a wide variety 
of vessels ranging from tugs and trawlers through to supertankers, submarines and 
torpedoes. This success can be explained by classifying ducted propulsors into flow- 
accelerating or flow-decelerating types depending upon whether the presence of the 
duct increases or decreases the flow velocities at the blading.

Flow-decelerating configurations tend to result in increased static pressure at the 
blading and aft-acting duct forces. Consequently, low propulsive efficiencies have 
restricted the use of this type of device to cases where cavitation is a problem. 
However, flow-accelerating configurations are associated with forward-acting duct 
forces, yielding high propulsive efficiencies at high thrust loadings, and as a result 
have been installed on vessels such as tugs, torpedoes, submarines and large tankers.

In addition to the above advantages, the duct affords the blading some degree of 
protection from damage, and, acting as a screen, can reduce noise radiation to the far 
field; indeed, careful design can lead to very quiet operation for military or 
oceanographic purposes [6]. Moreover, the presence of the duct allows the blade tips 
to sustain hydrodynamic loading, offering opportunities for reduced propulsor 
diameter and increased utilisation of boundary layer inflow. Further improvements in 
propulsive efficiency can be obtained by the addition of a second blade row, usually in 
the form of either pre- or post- swirl stator vanes (to the inclusion of which the duct 
readily lends itself.) There is a widely held view [9] that pre-swirl stator vanes reduce 
the circumferential variations in velocity encountered by the rotor, leading to reduced
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propeller-induced noise and vibration; such vanes can also replace struts as a means 
of duct support.

Balanced against these advantages must be the additional cost associated with the 
installation of the duct, and inferior off-design performance (particularly when 
operating astern); problems of duct erosion caused by tip cavitation are well- 
documented [10] for large merchant ships and have never really been satisfactorily 
solved.
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Figure 1 . 1 : A Solid Model of a Five-Bladed Ducted Propeller
(Duct Cut Away and Duct Supports Omitted for Clarity)



CHAPTER 2 BACKGROUND ON DUCTED PROPULSOR
DESIGN

2.1 Review of Previous Work On Ducted Propulsons

2.1.1 Introductory Works and General Reviews
Firstly, "Principles of Naval Architecture" [1] gives an excellent overview of ducted 
propeller theory and experiments, whilst Clayton and Bishop [2], using momentum 
theory, give a more theoretical introduction to ducted propulsor technology.

An interesting review of early ducted propulsor work is given by Dyne [3], in which 
the concept of the ducted propeller is traced back beyond the experimental work of 
Stipa [4] and Kort [5] to original British patents for a ducted propeller and a contra- 
rotating ducted propulsor by Ramsey (1792) and Church (1829) respectively!

A review of early (pre-1970s) ducted propeller theory is presented by Wessinger and 
Maass [6], critically appraising the early computation schemes that preceded the 
sophisticated lifting surface approaches of today.

The report of 1973 RINA Symposium On Ducted Propellers [7] provides a 
comprehensive, if somewhat dated, review of many now well-established methods 
and ideas, together with a wealth of experimental results.

Finally, more up to date reviews of ducted propulsor research, past and present, 
together with suggestions for future research, can be found in Reports of the 
International Towing Tank Conference (ITTC), such as [8].

2.1.2 General Experimental and Theoretical Studies
Due to the complexity of the ducted propulsor problem much of the research in this 
field has been based on highly simplified theories or experimental studies.

Typical of this work is that of Oosterveld and Van Manen [9]. Here the 
characteristics of both flow-accelerating and flow-decelerating ducted propellers are 
discussed using the results of experimental investigations and simplified theoretical 
studies. Experiments were carried out using the Ka Propeller Series and standard 
nozzles developed at the Netherlands Ship Model Basin (NSMB), good agreement
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with momentum theory being reported. Criteria for the avoidance of flow separation 
on the duct are presented in diagrammatic form. For flow-accelerating nozzles the 
authors conclude that improvements in real efficiencies are only obtained at high 
screw loads, and that higher screw loads favour longer duct lengths. For flow- 
decelerating nozzles it is concluded that enhanced cavitation characteristics are only 
realised at low screw loadings, and that in such cases the nozzle must be relatively 
short to avoid large efficiency losses.

In [10] Oosterveld presents further results of experiments conducted using the Ka 
Screw Series. These standard screws developed at NSMB, were designed specifically 
for use within ducts, having wide blade tips to limit tip cavitation, with uniform pitch 
and flat face sections for ease of casting. A standard range of Nozzles for use with 
the Ka Series has also been developed. In this particular work open water results 
are presented for accelerating ducted propellers suitable for use on tugs and 
pushboats. The results show that conventional nozzles suffer from poor astern 
performance, and thus for vessels of this type it is desirable to fit nozzles with well- 
rounded, thick trailing edges. The performance of the ring propeller is also 
investigated. This device is essentially a ducted propeller with part or all of the duct 
fixed to the blade tips; problems associated with tip gaps are eliminated, but low 
efficiency due to viscous forces on the rotating duct has restricted full-scale 
application.

Optimum ducted propeller design charts based on standard screw series data are 
provided by Loukakis and Gelegnis [11], and Yosifov, Slatev and Staneva [12]. 
Wliilst useful in preliminary ship design for machinery selection, such charts must be 
of limited use when designing propul sors for large ships.

Van Manen [13] investigates the effect of radial load distribution on the performance 
of ducted propellers, addressing such areas as flow separation on the duct, cavitation 
and efficiency, and the effects of blade tip clearance. The study is based on 
experiments conducted for a range of duct and screw combinations, with varying tip 
clearances. The author reports that the effect of blade tip loading on cavitation is 
significant, although radial load distribution has practically no effect on efficiency loss 
due to tip clearance. Suggested features for propeller ducts are given, together with 
design diagrams for achieving "optimum" ducted propeller performance.

Lewis [14] derives analytic expressions for ducted propeller performance prediction 
(including some account for viscous losses) in the absence of shear flow, and presents
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design curves for both free-vortex and power law loading distributions. Some 
comparisons of surface vorticity numerical methods and experimental tests are also 
provided, reasonable agreement being found.

Lindgren et al [15] outline results of a study into the applicability of ducted and 
contra-rotating propellers to a 150,000 TDW tanker and a 12,000 TDW container 
ship using the design method outlined in [3]. The results indicate an improvement in 
open water efficiency of 7.5% and notably better cavitation characteristics by 
adopting a ducted propeller compared to a conventional propeller.

Several aspects of ducted propeller design, including hull-propeller interaction, tip 
clearance effects, and the beneficial effect of diffuser sections downstream of the 
blading are discussed by English and Rowe [7]. The authors postulate that the true 
benefit of ducted propellers in terms of efficiency ' is due to favourable hull-propeller 
interaction, arguing that open water efficiencies are generally no better than for open 
propellers. The advantages of steerable ducted propellers over conventional 
propeller-rudder combinations are highlighted, particularly in terms of propulsive 
efficiency and manoeuvrability, although costs seem to have prevented any large ship 
applications. By adopting a diffuser section on the duct downstream of the blading, 
slipstream velocity and hence jet losses can be reduced, and the authors present 
experimental results with various diffuser configurations to show this. The 
importance of keeping blade tip clearance to a minimum is also discussed, and 
proposals for reducing tip clearance losses using discharge jets on the duct are 
presented. Finally, the results of a slipstream survey of a model ducted propeller are 
given, circumferential mean velocities being shown.

Oosterveld [7] reviews a series of systematic open water ducted propeller 
experiments conducted at NSMB using both accelerating and decelerating nozzles 
(Figure 2.1). Attention is also given to right angle drives which allow for steerable 
ducted propellers. The application of ducted propellers to tugs, pushboats and large 
tankers is considered. The poor astern performance of ducted propellers is noted, 
and a nozzle with a well-rounded trailing edge (nozzle No. 37, Figure 2.1) is 
recommended for cases where this is a problem e.g. tugs; at high forward speeds this 
nozzle is quoted to be about 2% less efficient than the ubiquitous accelerating nozzle 
No. 19A. The concept of a non-axisymmetrical duct is outlined for reducing unsteady 
propeller forces and cavitation.
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Results of a design study for a ducted propeller for a large OBO carrier are given by 
Glover and Ryan [7]. Some of the more important design decisions are explained, 
with the method outlined in [16] being used to select suitable configurations for model 
testing. Model tests show good agreement with theory.

Emerson and Sinclair [7] outline a feasibility study into the application of a ducted 
propeller to an OBO carrier, including structural and fabrication considerations, and 
economic factors. The study utilised the lifting line analysis method outlined by Ryan 
and Glover [16]. The results of model experiments conducted for the alternative 
configurations are given, together with the result of tests conducted on non- 
axisymmetric ducts.

Caster [7] outlines the design, predicted performance and open-water experimental 
tests of three accelerating ducted propellers designed for improved backing 
performance. Performance predictions were conducted using the method of Dyne 
[3]. Generally good agreement between theory and experiment are reported, 
particularly in terms of ahead and backing efficiencies.

Experiments on ducted propellers in axial and inclined flows conducted at the 
Swedish State Shipbuilding Experimental Tank are reported on by Dyne [7].

Rising [7] briefly describes the studies resulting in the installation of a ducted 
propeller on a 130,000 TDW tanker, and a summary of full scale trial measurements.

In another short paper, Titoff [7] makes recommendations for empirical factors for 
use in determining hull-propeller interaction for ducted propellers.

Minsaas, Jacobsen and Okamoto [7] present suggestions, based on experimental 
results, for determining propulsion factors for ducted propellers, with correlation of 
full scale and experimental results for a 215000 TDW tanker. The effect of the 
ducted propeller on manoeuvrability is also discussed.

The installation and trials of a ducted propeller on the SS Golar Nichu, a 215,000 
TDW tanker (then the largest ship to have been fitted with such a device) is described 
by Andersen and Tani [7]. A detailed description of the design, along with masters' 
reports on ship handling and a comparison with sister ships fitted with conventional 
propellers are given. Results of manoeuvrability and hull vibration measurements are 
presented. The authors conclude that adopting the ducted propeller resulted in
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overall improvements in propulsive efficiency (approximately 5-7% depending on 
load condition), manoeuvrability and hull vibration problems.

Shpakoff [7] analyses the results of a model study of ducted propeller performance 
both in still water and in a seaway, using both open water and behind hull test results. 
The effect of duct fouling on propulsive efficiency is also considered using full scale 
results.

A paper on the structural design of ducts and duct supports is presented by Caldwell 
and Andrew [7]. Design philosophy, choices of structural configuration, and means 
of structural analysis are discussed. The various possible load actions and their 
practical means of estimation are outlined.

Spntvedt et al [7] present a study of large ducted propellers with respect to loads and 
response, based on full-scale recordings of duct pressures, deformations and strains, 
together with data for propeller blade strains. Correlations with various theoretical 
models are made. The authors draw attention to the growth and collapse of 
cavitation in the blade tip region, which may produce significant dynamic duct 
stresses, although duct stress and deformation due to static wave encounter and blade 
frequency loads are reported to be small.

The causes and effects of air-drawing (natural ventilation) with particular reference to 
ducted propeller performance are discussed by Hu se [7]. This fascinating 
phenomenon occurs in certain instances when the pressure in various parts of the 
propulsor flow field is less than atmospheric pressure, causing air to be drawn down 
from the free surface. Whilst the forced ventilation of propeller blades is a recognised 
means of reducing cavitation noise, in the case of natural ventilation the supply of air 
is out of control, and sudden reductions in thrust and torque may occur, resulting in 
severe noise and vibrations. The author presents the results of model tests where the 
effect of air drawing on thrust fluctuations and propeller-induced hull pressures were 
measured. Means of reducing ventilation, namely the use of hull-mounted fins and 
tilting the duct with its forward end downwards are assessed. It is concluded that 
ducted propellers are more prone to air drawing than equivalent open propellers at 
the same submergence. Duct tilting is shown to be more successful in reducing 
ventilation than the use of fins. In certain cases tilting of the duct was shown to 
improve propulsive efficiency by up to 6%. The problems of scale effects on 
predicting ventilation are highlighted, although it is argued that the general trends 
outlined are valid.
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Biskup [7] briefly develops a theoretical analysis method for the variable forces 
arising on a duct due to a propeller, including the effect of oblique flow.

Theoretical studies by Van Gunsteren and Van Gunsteren [17] conclude that the 
effect of a fixed propeller duct is to increase the turning diameter of a vessel, and 
improve the response time and stability on a straight line course, as full scale trials 
have proved.

Okamoto et al [18] report on full scale observations of cavitation onboard VLCCs, 
bulk carriers and other large, full-form ships. Due to the confused flow fields 
associated with these large vessels, early applications of ducted propellers in these 
cases were dogged by problems of duct erosion caused by tip cavitation. 
Investigations to assess the potential of anti-erosive materials and air injection in 
reducing this problem were conducted, the results of the latter being presented in this 
paper. Air injection is shown to be an effective means of reducing propeller noise and 
vibration. In the discussion section, means of eliminating tip vortex cavitation, such 
as off-loading the tips and swept-forward blades, are suggested.

The experimental verification of the ducted propeller analysis method presented in 
[19] is described by Hughes et al [20]. These tests, conducted after the numerical 
verification of the program, were conducted in a water tunnel at MIT, USA. The 
forces on the propeller and duct were measured over a range of advance coefficients, 
with circumferential-average flow velocities being measured at various stations 
upstream and downstream of the duct using a Laser Doppler Velocimetry (LDV) 
system. The authors stress that the LDV system enables velocities to be determined 
to with one percent. Saturating the water in the tunnel with air bubbles enabled the 
presence of the flow separation on the duct to be detected. The computational 
predictions show very good agreement with experimental results for cases where the 
flow does not separate from the duct.

Finally, it is interesting to consider ducted propulsors in relation to the entire field of 
"alternative propulsion devices". Reviews of these devices are given by Glover [21] 
and Blaurock [22]. Of particular relevance are the Mitsui Integrated Duct [23] 
(where the duct is mounted immediately upstream of the propeller) and Schneekluth's 
Wake Equalising Duct [24] (where a non-axisymmetric duct is mounted on the hull 
some distance upstream of the propeller). Both these devices, it is claimed, offer
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many of the benefits associated with ducted propeller installations at reduced cost and 
without many of the operating problems.

2.1.3 Computational Methods for Ducted Propulsors

Although theoretical studies such as the work of Morgan [25] lay the foundations for 
the numerical modelling of the ducted propulsor, the complexity of the ducted 
propulsor problem and the lack of powerful computing facilities meant that it was not 
until the first large ship applications in the late 1960's that the first computational 
schemes were developed.

One of the earliest computational schemes for the analysis of ducted propeller flow 
fields, based on the theory outlined in [25], is presented by Caster [26]. The so called 
Dickman-Wessinger mathematical model is adopted whereby the duct is represented 
by vortices and ring sources distributed along a circular cylinder of a diameter 
representative of the duct. The blading is represented using lifting line theory, 
developed by Lerbs [27] for moderately-loaded propellers. Only the steady 
components of velocity induced on the duct are considered. Comparisons with 
experimental results are given for a test propulsor at two operating conditions, 
showing good agreement.

Another early computational method for the design of ducted propellers is outlined by 
Dyne [3]. From inputs such as required thrust, tip diameter, shaft speed, blade 
number and circulation distribution, and cavitation margins, the method iteratively 
determines blade area, propulsive efficiency, duct thrust and shape, and blade camber 
and thickness until the required propulsive thrust is achieved. The duct is represented 
by ring source and vortex distributions along a cylindrical surface, the hub (assumed 
cylindrical) also being represented using ring sources. When determining certain 
features such as duct thrust and duct shape an assumption of an infinite number of 
blades is made, this being modelled using a uniform distribution of ring and rectilinear 
vortices; as a consequence this approach is applicable only to cases of moderate and 
light blade loadings. When determining such quantities as blade thrust and camber, 
the blades are represented as radial lifting lines. The approach cannot deal with shear 
flow and takes no account of viscous effects, and no experimental verification is 
given. As can be seen, this method involves a number of simpHfying assumptions, 
although it represents one of the most advanced works of its time.
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Morgan and Caster [28] assess the adequacies of the early ducted propeller theories 
in assessing ducted propeller and annular aerofoil performance. By comparison with 
experimental results they conclude that the theories available to them predicted forces 
and duct pressure distributions adequately provided flow separation did not occur on 
the duct surface. They emphasise the limited applicability of the results due to the 
limited number of geometries considered, and also areas where improvements in 
predictions were needed, such as the pressure distribution on the duct interior surface. 
The importance of the avoidance duct flow separation is also stressed.

Turbal [7] introduces the interesting concept of a non-axisymmetrical propeller duct, 
and describes a method for calculating flow characteristics of ducted propellers fitted 
with these ducts. The method involves a number of simplifying assumptions (notably 
"linearisation" of the governing equations), with the blading being represented by an 
actuator disc and the duct by a surface vorticity distribution. Such non- 
axisymmetrical propeller ducts offer the benefit of reduced circumferential variations 
in flow velocity encountered by the blading, and hence reduced unsteady propeller- 
induced vibration and noise. However, such ducts would require careful design to 
achieve satisfactory design performance, and the complexity of the design problem, 
and fabrication costs, seem to have prevented any large scale applications to date. 
The off-design performance of this type of device must be a source of concern, 
particularly avoidance of duct separation when manoeuvring; indeed, off-design 
unsteady propeller forces may be worse than for a conventional ducted or open 
propeller.

A method for the design of marine propeller ducts in shear flow is presented by Lee 
[29]. The duct thickness and loading distribution is specified, with an actuator disc 
model being used for the blading. This approach, which assumes inviscid, 
axisymmetric through flow, includes the effects of non-uniform blade loadingk 
Fourier transform techniques are used to reduce a simplified form of the Euler 
Equation to a series of linear simultaneous equations, enabling duct camber to be 
solved for iteratively. It should be noted, however, that the duct so obtained, whilst 
giving satisfactory performance at the design point, may well show undesirable 
behaviour off-design such as flow separation. If possible, it is desirable to adopt a 
"standard" duct that has been proven in an extensive series of experimental tests, such

 ̂ Here, as indeed throughout this thesis, the term "non-uniform blade loading" is used to refer to 
instances where span wise variations of blade circulation are encountered, and thus cases where 
bound vorticity is shed from the blade trailing edge. Likewise, the term "uniform blade loading" is 
used to refer to instances where no spanwise variations in blade circulation occur, and thus where no 
bound vorticity is shed from the blade trailing edge. It should therefore be noted that cases of 
"uniform blade loading" do not necessarily correspond to cases of uniform blade pressure loading.
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as the NSMB nozzles shown in Figure 2.1. None-the-less, computational duct design 
methods are still of considerable use in developing new duct profiles.

A significant development in the field of computational methods was the analysis 
method of Ryan and Glover [16]. Here the hub and shroud are represented by means 
of surface vorticity distributions (rather than by the less sophisticated Dickman- 
Wessinger model) with the propeller blades modelled as lifting lines. This approach 
yields both the flow through field around the propulsor and the duct pressure 
distribution. Although the effects of a non-uniform blade loading are included, the 
method cannot directly deal with cases of sheared inflow such as those encountered 
by a propulsor operating within the wake of a ship, and the effects of slipstream 
contraction and the circumferential variations of duct circulation are neglected.

Gibson and Lewis [7] (see also [30]) present a similar, but rather simpler approach, 
whereby the propeller is modelled by an actuator disc. Results obtained were similar 
to those above, and although later extended to include the effects of blade tip 
clearance [31], the method suffers from similar limitations.

More recently the analysis method of Robins [32], again using an actuator 
disc/surface vorticity model, includes the effects of sheared onset flow and slipstream 
contraction by imposing vortex sheets within the flow and applying a condition of 
zero pressure jump across these sheets. However, the swirl induced by the blading is 
neglected and the method suffers from the usual limitations of the actuator disc 
approach i.e. only circumferential mean velocities are obtained and only limited 
information regarding the required blade shapes can be found.

In one of the most extensive studies of its kind, Falcao de Campos [33] firstly 
develops a numerical procedure solving for the potential flow around isolated ducts 
using surface singularity distributions, and then outlines a means of introducing 
boundary layer displacement to account for viscous action. The author then 
formulates the ducted propeller analysis problem in terms of Stokes stream function, 
representing the blading by means of an actuator disc, and accounting for blade- 
induced swirl. Discrete vortex sheets are used to represent axisymmetric sheared 
onset flow, the entire problem being solved by an iterative procedure involving 
streamline tracing. The numerical methods described are then applied to investigate 
hull-propulsor interaction. Finally, a ducted propeller design procedure utilising the 
outlined numerical methods is given, the blades being designed using Lerbs' induction 
factor method; correction factors given for conventional propellers by Morgan et al
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[34] are recommended. A wide range of experimental results are given throughout 
the report, with generally good agreement with numerical results being achieved.

Zchmiechen and Zhou [35] derive an optimum propulsion condition based on energy 
distribution in the jet wake for multi-blade row ducted propulsors, enabling the 
principal parameters of the propulsor, including mass flow, to be determined. An 
energy-based streamline iteration method is then used to determine the propulsor flow 
field, with the blading represented as a pump stage. Circumferential variations in flow 
velocity are neglected, although the method takes some account of viscous losses via 
loss factors, and can deal with sheared onset flow and slipstream contraction. As 
stated earlier, the propulsor mass flow rate is fixed as input to the streamline iterative 
procedure, rather than being determined interactively, and this must limit the accuracy 
of the results. As the approach accounts for finite blade chord, it should be possible 
to use the predicted streamline paths in the design of blading, although this is not 
highlighted by the authors.

A sophisticated analysis method is given by Kerwin et al [19], utilising a panel 
representation of the duct and hub, and a vortex lattice representation of the blading. 
The method is capable of modelling the periodic flow within the blade passages and 
accounts for circumferential variations in duct circulation. Since only the solid 
surfaces of the propulsor are represented and not the entire flow domain, this 
approach is potentially very fast. However, the method is potential-based and as such 
is unable to deal with sheared inflow. Slipstream contraction and other wake 
characteristics have to be specified by the user and the panel representation of the 
geometry is necessarily quite complicated.

Hughes and Kinnas [36] report on the extension of this analysis method to include 
pre-swirl stator vanes, although only the circumferentially averaged interactions 
between the propeller and stator are included, and again, shear flow effects are not 
included. The subsequent experimental verification of the method is outlined, this 
involving blade and duct force measurements for a model propulsor mounted in a 
water tunnel. The experimental results show very good agreement with the 
predictions of the method for the cases where the duct flow remains attached.

Szantyr and Glover [37] present a detailed analysis method based on unsteady, 
deformable lifting surface theory for ducted propellers operating in a three- 
dimensional, non-uniform velocity field. The duct and blades, together with their 
associated wakes, are represented by discrete vortex elements distributed on
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representative surfaces, whilst blade and duct thickness are modelled by distributions 
of sources and sinks. This method, previously applied to open propellers, models the 
occurrence and extent of the different types of cavitation, and unsteady propeller and 
hull pressure forces can also be found. It would seem, however, that the effects of 
radial variations in onset flow are neglected, and again | slipstream contraction is 
neglected.

An inverse design method based on a streamline curvature/blade-to-blade technique is 
presented by Furuja and Chiang [38]. The required blade shapes are obtained directly 
as an output from this method, and unlike most of the other methods reviewed, this 
approach explicitly includes a second blade row. However, it is by no means clear 
whether the method can model either shear flow or slipstream contraction, nor 
whether mass flow is specified as an input to the process. Three-dimensional effects 
in the blade passages are only partially accounted for.

Finally, there exists a number of methods concerned with the optimisation of ducted 
propeller blade circulation. Typical of this is the work of Kinnas and Coney ([39], 
[40]). Using a panel representation of the duct and representing the blades by radial 
lifting lines, a non-linear optimisation technique yields minimum torque for a 
prescribed blade thrust and optimum blade chords from specified blade cavitation 
criteria. Sanchez-Caja [41] has extended this work to include hub effects, although 
again it is assumed that the vortex wakes align with the undisturbed onset flow, and 
the method cannot model shear.

2.2 Classification of Computational Methods for Ducted Propulsors

From Section 2.1.3 it can be seen that computational methods for ducted propulsors 
generally fall into one of three categories :-

2.2.1 Analysis Methods
Analysis methods solve for the propulsor flow field for a given propulsor geometry 
and a specified operating condition, thus enabling the performance of a given 
propulsor (and hence its suitability) to be assessed for a range of operating 
conditions.

Inputs to analysis methods include the duct and hub geometry, the shaft speed and the 
velocity profile far upstream of the propulsor. For lifting surface methods it is also
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necessary to specify the blade shapes, although this is generally not necessary for 
actuator disc and lifting line models which may therefore be used much earlier in the 
design process.

Typical output from an analysis method might include the duct pressure distribution, 
propulsor thrust and torque, and an estimate of propulsive efficiency. Whilst lifting 
surface methods also yield estimates of blade pressure distributions from which 
cavitation performance may be assessed, such detailed information cannot be derived 
directly from actuator disc or lifting line methods.

Typical analysis methods are the actuator disc models of [7] (Gibson and Lewis), [32] 
and [33], and the lifting line approaches of [16] and [26]. Here the computed flow 
field is based on either a specified blade circulation distribution or disc pressure 
loading, rather than on blade shapes.

More sophisticated analysis methods are typified by the lifting surface methods of 
[19] and [37] which fully account for blade both shapes and the effect of a finite 
number of blades.

2.2.2 Load Optimisation Methods
This group of methods, for use in the early stages of ducted propulsor design, is 
concerned with the optimisation of blade circulation distributions for either a specified 
blade thrust or torque. Such methods ([39], [40], [41]) typically use either actuator 
disc or lifting line models for the blading, with the duct and hub modelled by surface 
singularity distributions. Generally these methods cannot deal with either sheared 
onset flow or slipstream contraction.

2.2.3 Inverse Design Methods
Inverse design methods are used to determine some feature of a ducted propulsor 
design, such as blade shape or duct geometry. This is achieved by specifying some 
corresponding feature of the propulsor flow field, such as the required blade 
circulation distribution for blade design, or the duct pressure distribution if the duct 
shape is to be determined. By then specifying the remainder of the propulsor 
geometry, together with the operating condition for which the propulsor is to be 
designed, the entire ducted propulsor design and the associated design-point flow 
field can be obtained. The suitability of the synthesised design can then be assessed in

36



terms of cavitation, the likelihood of flow separation, and propulsor thrust and 
torque. Once a satisfactory design has been generated, off-design performance 
(which cannot normally be obtained from the inverse design method) can be appraised 
using either an analysis method or by experiment.

To date relatively little research has been directed at the development of inverse 
design methods for ducted propulsors. However, the few methods that exist have 
generally been applied to either duct design or blade design, as follows:-

(i) Duct Inverse Design Methods
The only methods of this type found were those by Lee [29], which solve for 
duct shape from a specified duct pressure distribution, and Dyne [3] (which also 
solves for blade shape). Whilst of considerable use in studies into duct shape, 
this class of method seems only to be of limited use in designing propulsor ducts 
for specific applications as they optimise duct shape for a single design point, 
and take no account of viscous action which may result in unsatisfactory duct 
performance even at this design point.

For most marine cases satisfactory off-design performance and ease of duct 
manufacture are of such importance that it seems to be common practice for 
designers instead to adopt "standard" duct profiles such as those presented in 
Figure 2.1; these have been proven to give satisfactory performance over a 
wide range of operating conditions by extensive experimental studies and 
numerous full-scale applications.

(ii) Blade Inverse Design Methods
Blade shapes are arguably the most crucial aspect of a ducted propulsor design, 
as it is the blading that absorbs the shaft power and typically generates over 
80% of the propulsor thrust [9]. Once the duct geometry has been selected, it is 
blade performance that determines the efficiency of the propulsor. As a result it 
is the application of inverse design methods to blade design that shows the most 
promise, and indeed, it is in this area that the remainder of this thesis will 
concentrate.

Apart from the work of the author (see Roddis and Zangeneh [42], and 
Zangeneh and Roddis [43]) which is based on the approach outlined in Chapters 
4 and 5, the only other inverse design methods of this type found were those 
of Dyne [3] (which also solves for duct shape), and Furuja and Chiang [38]. All
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these methods determine blade shape from a specified blade circulation 
distribution.

2.3 Existing Techniques for the Design of Ducted Propulsor Blading

Some of the companies and institutions involved in the design of ducted propulsors 
are, perhaps understandably, rather secretive about the detailed techniques they 
employ in the design of ducted propulsor blading. However, based on published 
literature, and the rather limited knowledge of the author, the following alternative 
methods of blade design seem to be most widely employed:-

2.3.1 "Trial-and-Error"
It is usually possible to obtain an approximate blade design based either on some 
existing design or simplified theory. Using either experimental tests or a 
computational analysis method, this blade geometry can be systematically modified on 
a "trial-and-error" basis until the desired performance is achieved. This type of 
approach, which relies heavily on the experience of the designer, is time-consuming, 
and, if experimental techniques are employed, expensive. As such this approach is 
only normally used to "fine tune" a blade design during the later stages of the design 
process, immediately prior to construction.

2.3.2 Standard Series Data
Another approach to propulsor blading design is the use of standard propeller series 
data, such as the Ka ducted propeller series presented in [9]. However, considering 
the sensitivity of blade performance to the environment in which a particular 
propulsor operates, one might reasonably conclude that blade design from standard 
propeller series is unlikely to give optimum propulsive efficiency at the propulsor 
design point. Given the cost associated with the installation of a propulsor duct, one 
might conclude that a more sophisticated approach to design is warranted, at least for 
large-ship applications of ducted propulsors where the potential for fuel savings is 
huge. Additionally, for certain cases such as twin blade row propulsors, standard 
series data is not available, and therefore cannot be used.

2.3.3 Actuator Disc/Lifting Line Theory
Blading may be designed using the computational results of either actuator disc or 
lifting line based analysis methods (such those given in [16], [26], [32] and [33]), 
which compute the propulsor flow field based on a specified blade circulation or blade 
loading distribution rather than from input blade shapes. Alternatively, the output
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from one of the load optimisation methods presented in [39], [40] and [41] may be 
used. In either instance the blade may be considered as series of "blade elements" 
[44], whereby at each radius the blade is assumed to act as a two-dimensional 
hydrofoil. There are then two possible approaches:-

1) From the analysis method the relative flow angles at the blade leading and 
trailing edges can be obtained, with the blade chord being selected from 
the pressure loading predictions. The camber line of each blade element 
can then be designed as a curve that aligns with the relative flow at the 
leading and trailing edges. These blade elements can then be combined to 
generate a surface which can be faired if required. A blade thickness 
distribution, based on structural considerations, can then be superimposed 
to obtain the final blade geometry.

The major disadvantage of this method is that away from the blade leading 
and trailing edges the choice of camber line path is completely arbitrary; 
considerable skill and experience must be involved in obtaining a 
satisfactory blade pressure distribution.

Although not mentioned explicitly in any of the literature reviewed, this 
approach, whilst rather crude, is highly plausible, and has probably been 
used in the past.

2) Utilising the output from the analysis method, each blade element can be 
designed by aligning its camber line with the predicted relative velocity 
field at the blade trailing edge, as outlined by Falcao de Campos [33]. 
Blade chord can then be chosen based on the estimated blade loading 
distribution, the final design being obtained by applying a suitable blade 
thickness distribution, such as those given for open propellers by O'Brien 
[44].

The resulting designs are, however, in many ways inferior to those 
obtained from 1) above, as the adoption of flat camber lines ensures a 
non-zero blade incidence at the design point. For highly loaded blades 
such a flow regime may result in a harsh pressure gradient around the 
blade leading edge, and such undesirable flow phenomena as cavitation or 
flow separation.
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As a result, the elemental camber lines are often modified using lifting 
surface correction factors in order to achieve zero (ideal) incidence at the 
leading edge. Further correction factors, either theoretical or empirical, 
can be applied to account for errors associated with neglecting blade 
chord, blade thickness, blade number and skew. For ducted propellers 
Falcao de Campos [33] suggests the use of lifting surface correction 
factors given by Morgan et al [34] for open propellers.

If the effects of shear flow are not included in the analysis method, as is 
often the case, they are usually accounted for by superimposing some 
representative velocity profile onto the velocities predicted at the blading 
(see Dr. Falcao de Campos's contribution in [42]).

It is this type of approach that seems to be most widely used in ducted 
propulsor design. Although relatively simple to use, this technique relies 
on a rather confusing array of assumptions regarding slipstream 
contraction, wake geometry and blade shapes, the net effect of which is 
that blade shapes become increasingly inaccurate for higher blade 
loadings. Furthermore, once the radial distribution of circulation has been 
specified, the designer is left with very little control over blade shape.

Both the above blade element methods rely on the blade-induced swirl being either 
specified or computed by the analysis method.

2.3.4 Inverse Design
The final means of ducted propulsor blade design is the inverse design approach, as 
outlined in Section 2.2.3. Of the existing blade inverse design methods, that of Dyne
[3] represents a computational implementation of the blade element/analysis method 
design procedure discussed in Section 2.3.3, with the addition of an iterative 
procedure to determine duct shape; as such it would be expected to suffer from 
similar limitations. Meanwhile the inverse design method given by Furuja and Chiang 
[38] seems to have a number of limitations, as summarised in Section 2.1.3, and, to 
date, appears not to have been widely adopted.
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2.4 The Potential for the Application of Turbomachine Methods to the 
Design of Marine Ducted Propulsor Blading

Of the fundamental approaches to propulsor blade design listed in Section 2.3, it is 
perhaps the inverse design approach that is conceptually most neat, this approach 

also offering the best prospect for the rapid, low-cost generation of satisfactory 
designs.

It can be seen from Section 2.3.3 that existing inverse design methods for ducted 
propulsors are limited both in number and in application, and are based on somewhat 
restrictive and dated mathematical approaches.

However, as outlined by Borges [45] and Zangeneh [46], inverse design methods 
have found considerable application in the field of turbomachinery blade design. 
Typically, inverse design methods for turbomachinery blading utilise recent 
developments in computer power much more fully than corresponding ducted 
propulsor design methods, enabling the rapid generation of blade shapes whilst 
leaving the designer with considerable control over blade performance. As blade 
shapes are determined interactively with the associated flow field, a minimum of 
assumptions are involved, and full account of both finite blade number and blade 
chord can be made.

As will be outlined in the next Chapter, there is considerable scope for the application 
of turbomachinery methods to the inverse design of ducted propulsor blading. The 
extension of one such method to the design of ducted propulsor forms the basis of 
this thesis.
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CHAPTER 3 THE APPLICATION OF TURBOMACHINERY
METHODS TO THE DESIGN OF DUCTED 
PROPULSOR BLADING

3.1 Introduction

The closing Section of the previous Chapter considered some of the inadequacies of 
existing techniques for the design of ducted propulsor blading, and noted the disparity 
between such methods and those used for the design of turbomachinery blading.

The present Chapter will consider the general applicability of turbomachine design 
methods to the ducted propulsor design problem. To these ends only blade design 
methods for internal flow turbomachines will be considered, as it is on the extension 
of one such method to ducted propulsor design that the remainder of this thesis will 
concentrate. The design method adopted for this thesis will then be considered in 
detail, along with the modifications required to enable ducted propulsor flows to be 
modelled satisfactorily.

3.2 Summary of the Ducted Propulsor and Turbomachine Design Problems

3.2.1 The Internal Flow Turbomachine Design Problem
Although the term "internal flow turbomachine" embraces a wide range of bladed 
devices including turbines, compressors, pumps and certain types of gas turbines 
(Figure 3.1), the design problem for all these cases may be represented in schematic 
form by Figure 3.2.

When designing these types of machine one generally only has to consider flow 
restricted between hub and shroud endwalls of arbitrary geometry. As a result the 
mass flow rate is usually specified as an input to the design procedure in terms of a 
velocity profile. This velocity profile is taken sufficiently far upstream of the blading 
as to be assumed independent of the actual blade design.

The design procedure must take account of whether the working fluid is either 
compressible or incompressible, and also any heat addition to the fluid by combustion 
or some other process. In many instances there may be more than one blade row, in
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which case the design is usually considered as a series of rotor-stator or contra- 
rotating blade "stages".

3.2.2 The Ducted Propulsor Design Problem
The ducted propulsor design problem may be represented in schematic form by 
Figure 3.3.

Here the working fluid is sea water, which, under normal conditions is 
incompressible. All power is transmitted to the water via the blading, there being no 
combustion process or other form of large scale heat addition to consider. On 
grounds of efficiency there are normally no more than two blade rows, although in the 
past there have been proposals for triple blade row stator-rotor-stator ducted 
propulsors [1].

As marine propulsors generally operate deep within the boundary layer of the parent 
vessel not only do severe radial variations in onset flow need to be accounted for, but 
also large-scale circumferential variations in velocity due to the non-axisymmetry of 
the parent hull and the presence of control surface wakes.

The action of the propulsor blading generally induces a considerable flow incidence at 
the duct leading edge. Alhed to this there is a tendency for the propulsor slipstream 
to contract downstream of the duct trailing edge. As a consequence, the flow 
velocities within the duct and the corresponding propulsor mass flow cannot be 
adequately predicted before the design has been generated. Accurate design therefore 
entails the determination of propulsor mass flow in conjunction with the propulsor 
flow field. This can only be achieved by modelling both the propulsor through flow 
("core" flow) and bypass flow from far upstream of the propulsor (where the flow is 
unmodified by the presence of the propulsor) to far downstream into the wake (where 
the propulsor slipstream is fully contracted). Further complications may be associated 
with the presence of such physical boundaries as the free surface and the seabed.

Due to the "jet" of water expelled from the propulsor there is a continuous sheet of 
vorticity shed from the duct trailing edge. Full account of this "duct wake" must be 
taken if satisfactory estimates of propulsor mass flow and slipstream trajectory are to 
be obtained.

Generally, the design aim is to maximise overall propulsor thrust (and hence 
propulsive efficiency) for some specified shaft power and flow condition. However,
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compromises are necessary to ensure that satisfactory performance is achieved at off- 
design conditions. In particular, the avoidance of blade and duct cavitation is highly 
desirable under all operating conditions, as its occurrence not only reduces propulsive 
efficiency, but also greatly increases noise and vibration problems, and can cause both 
duct and blade erosion. Perhaps of even greater importance is the avoidance of flow 
separation on the duct and blading, as this can have a catastrophic effect on propulsor 
performance.

3.3 The Applicability of Internal Flow Turbomachine Methods to the 
Design of Ducted Propulsor Blading

From Sections 3.2.1 and 3.2.2 it can be seen that there are considerable differences 
between the internal flow turbomachine and ducted propulsor design problems.

Firstly, due to the absence of flow compressibility and heat addition for the case of 
the ducted propulsor, the ducted propulsor design problem is, in many ways, much 
simpler than that for many types of internal flow turbomachines.

However, for the ducted propulsor problem the flow is not restricted between hub 
and shroud end walls. Instead the problem domain has to be extended to incorporate 
both the propulsor through flow and bypass flow for considerable distances upstream 
and downstream of the duct. Consequently, there is a solid body (the duct) contained 
within the problem domain, which, together with the duct vortex wake, requires 
special treatment.

Furthermore, propulsor mass flow cannot be specified as an input to the design 
process, but rather must be determined in conjunction with the propulsor blade shapes 
and flow field.

The circumferential and radial variations in onset flow encountered by the blading are 
generally much greater for ducted propulsors than for most types of turbomachine; 
some account of these shear effects must be taken if satisfactory propulsor 
performance is to be achieved.

Despite these substantial differences, there is one fundamental principal common to 
both ducted propulsors and other turbomachine types; namely one of energy transfer 
between a fluid and rotating blading in close proximity to solid surfaces. As a result
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blade design methods for internal flow turbomachines such as those that are outlined 
in the next section are fundamentally suitable for application to ducted propulsor 
design. The differences highlighted in the preceding paragraphs are relatively 
superficial in comparison to the underlying similarity, and can be dealt with by the 
appropriate application of mathematical and computational techniques.

3.4 Existing Blade Design Methods for Internal Flow Turbomachinery:
The Benefits of the Clebsch Approach

A substantial amount of research has be done on the computational inverse design of 
turbomachinery blading, most of which is based on inviscid flow theories. Whilst it 
would be inappropriate to consider this work in depth here, extensive reviews are 
given by Borges [2] and Zangeneh [3]. It is, however, interesting to briefly consider 
some of the alternative approaches to the turbomachine design problem.

Firstly it should be noted that many authors (for example Zangeneh [3], and Lewis
[4]) classify design methods for turbomachinery blading as either "true" or "semi" 
inverse design methods. "Semi" inverse design methods differ from "true" inverse 
design methods in that they employ existing analysis methods in conjunction with 
systematic modifications of some initial blade shape to meet the design criteria. This 
classification is, however, somewhat confusing and will not be used in this thesis, as 
many "true" inverse design methods also solve for blade shape iteratively. The net 
result is the same regardless of whether a "true" or "semi" inverse design approach is 
used; namely the design of blading in accordance with some specified design point 
condition.

In any case, the following fundamental approaches to the computational design of 
turbomachinery blading seem to be most common

1) Specification of a Blade Velocity Distribution
One approach to the blade inverse design problem is to specify the velocity 
distribution on both the pressure and suction surfaces of the blade. Such a 
method for the design of two-dimensional cascades is presented by Murgusen 
and Railly [5] who used a surface vorticity representation of the blading (the so- 
called "Martensen" technique [4]). At first sight this technique is rather 
appealing, as by specifying the velocity distribution one is, in effect, also 
specifying the blade pressure distribution. As a consequence the designer is left

51



with considerable control over both blade forces and the occurrence of such 
undesirable flow phenomena as flow separation and cavitation. However, this 
approach to the blade inverse design problem is far from ideal. As the velocity 
distribution on both sides of the blade is specified, the method solves for both 
blade camber and thickness. Consequently, the resulting blade thickness 
distribution is not related to structural considerations. Furthermore, as viscous 
effects are not included in the design procedure, it is possible to perceive 
situations, such as those discussed by Lewis ([4], p.301), where a wholly 
unsatisfactory thickness distribution would be obtained, resulting in the 
occurrence of flow separation on the blading.

The two dimensional method of Thompkins and Tong [6] attempts to address 
these severe limitations. Here an initial estimate of blade camber and thickness 
is systematically modified to achieve a given blade pressure distribution with a 
time-marching Euler solver. The main advantage this particular method offers 
is that it is possible to apply constraints to the blade geometry; if a geometry 
satisfying both the constraints and the pressure distribution cannot be found, a 
solution satisfying the constraints and a relaxed pressure distribution is found 
instead. However, for cases where the pressure distribution is relaxed the 
resulting blade performance may well be unsatisfactory.

2) Specification of a Velocity Distribution on One Side of the Blade 
Together with Blade Thickness
An alternative approach to inverse design is to specify the velocity distribution 
on one side of the blade together with blade thickness and iteratively solve for 
blade shape. In these cases it is generally the velocity distribution on the suction 
side of the blade that is specified, as this provides the most effective means of 
avoiding flow separation, and, where relevant, cavitation. This type of method 
is typified by the classic two-dimensional blade design method of Wilkinson [7], 
where the blading is modelled using surface vorticity distributions. The 
principal disadvantage of this technique is that it is difficult to relate the 
specified suction surface velocity distribution to the blade pressure distribution 
and blade forces that are obtained as output. Considerable experience must 
therefore be required if a satisfactory design is to be obtained with a single 
design run; this must, to some extent, detract from the arguments in favour of 
using such an inverse design method.
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3) Spécification of Blade Pressure Loading and Blade Thickness
It is possible to determine blade shapes from a specified blade pressure 
loading (i.e. the difference in pressure between the blade pressure and suction 
surfaces) and blade thickness. Whilst such an approach enables the blade forces 
to be specified as an input to the design procedure, cavitation performance and 
the likelihood of flow separation can only be assessed from the output blade 
pressure and velocity distributions. This type of method, which does not seem 
to have been widely employed in the field of turbomachinery design, is typified 
by the two-dimensional design method of Novak and Haymann-Haber [8] where 
the tangential variations in flow quantities are represented by Taylor series 
expansions.

4) Specification of a Blade Circulation Distribution
A final approach to the inverse design problem is to determine blade shape from 
a specified blade circulation distribution. As blade circulation is not normally 
used as an indicator of blade performance it might perhaps be regarded as a 
poor choice of design parameter. However, it can be related to blade force 
using estimates of flow velocity at the blade, and in practice is found to give the 
designer excellent control over the performance of the synthesised design. 
Typical of this kind of approach is the two-dimensional design method of Betz 
and Flugge-Lotz [9], where the blade circulation distribution is specified 
directly. A more recent example is the two-dimensional technique of 
Hawthorne et al [10], where blade circulation is specified in terms of the blade- 
induced tangential velocity (see Appendix VIII); such an approach is ideally 
suited to twin blade row designs where the downstream blade row is specifically 
designed to eliminate swirl from the efflux.

It will be noted that all the methods outlined in [5]..[10] are two-dimensional design 
methods. The design of a complete blade using these methods is very similar in 
overall terms to the propulsor blade design technique outlined in Section 2.3.3, and 
involves division of the blade into a series of two-dimensional blade elements which 
are designed independently and then "stacked" on top of each other.

This design procedure can be implemented computationally to give a quasi three- 
dimensional design method. Such methods determine blade shapes by iterating 
between a two-dimensional blade design method and an axisymmetric throughflow 
analysis program. Typical of such quasi three-dimensional design methods is the
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procedure presented by Jennions and Stow ([11], [12]) which enables both the design 
and analysis of turbomachine blading.

These two-dimensional and quasi three-dimensional design methods offer some 
potential for application to ducted propulsor design. However, it is the use of three- 
dimensional blade design methods, whereby a blade is designed as a single entity 
rather than as a "stack" of independently-designed blade elements, that offers most 
promise for ducted propulsor applications. In particular, a three-dimensional 
approach enables the entire blade geometry to be determined in conjunction with the 
surrounding flow field, with the development of circumferential variations of flow 
quantities within the blade passages being accounted for. The resulting blade shapes 
are therefore based on a minimum number of assumptions.

As was noted by Zangeneh [3], and Dang [13], it is the circulation-based approach 
outlined in 4) above that lends itself most readily to the three-dimensional design of 
blading, and indeed, most existing methods of this type (such as those given by Zhao 
et al [14], Ockurounmu and McCune [15], and Tan et al [16]) are circulation-based.

Of these three-dimensional blade design techniques, it was the method of Tan et al 
[16], based on the Clebsch representation of vorticity [17], that was chosen for the 
ducted propulsor design method presented in this thesis. This method is well 
established in the field of turbomachinery design, and as will be outlined in the next 
two Sections, many of the techniques required to extend the approach to ducted 
propulsor flows have already been developed.

3.5 Background on the Clebsch Approach to Blade Design

The fundamental feature of the ducted propulsor design method presented in this 
thesis is its use of the Clebsch representation of vorticity. As will be detailed in 
Chapter 4, this approach (presented by Lamb [17]) enables flow velocities to be 
formulated in terms of a potential function (which represents the irrotational 
component of the velocity field) and a series of physically-significant scalar flow 
quantities (which describe the rotational component of flow). Provided that a suitable 
Clebsch formulation can be found for a given flow problem (as was the case with the 
ducted propulsor problem considered in this thesis), the end result is that the 
equations of motion of the fluid reduce to a form in which they may be solved.
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It is through the use of this approach that the ducted propulsor design method 
presented in this thesis can be traced back to the work of Hawthorne et al [10] who 
applied the Clebsch representation to the inverse design of two dimensional cascades. 
Here the flow was assumed to be inviscid and incompressible, with blade thickness 
being neglected. Series expansions were used to represent the development of 
circumferential variations of velocity within the blade passages, enabling blade shape 
to be determined iteratively from a prescribed mean tangential velocity distribution 
and conditions of zero incidence and no flow normal to the blade camber line. As 
stated by the authors, the key advantage of the Clebsch-based formulation over the 
more traditional Biot-Savait approach to the inverse design problem (typified by the 
method of Betz and Flugge-Lotz [9]) is that it can readily be extended to three- 
dimensional blade design problems.

The extension of the Clebsch technique to the three-dimensional design of annular 
cascades is presented by Tan et al [16]. Again, blade thickness, flow compressibility 
and viscous effects were neglected, with further assumptions of uniform onset flow 
and uniform blade loading being made. The flow velocity was split into 
circumferentially averaged and periodic components, the former being represented 
using Stokes stream function and the latter using a Clebsch formulation and series 
expansions. As with the two-dimensional method [10], blade shape was determined 
iteratively from the blade boundary condition together with a condition of ideal 
incidence. An "actuator duct" simplification of the method (as originally outlined by 
Hawthorne [18]) is also presented, whereby the cascade is assumed to consist of an 
infinite number of blades of finite chord.

The approach was later extended to include blade thickness, as outlined by Dang and 
McCune [19] who considered the design of two-dimensional cascades. To these ends 
a mean tangential blockage factor similar to that employed by Denton [20] was used.

Further work by Dang and McCune [21] applied the Clebsch approach to the three- 
dimensional inverse design of rectilinear cascades for cases of incompressible shear 
flow. Here a Clebsch formulation for vorticity and velocity was employed, this being 
similar in overall form to that used in this thesis (see equations 4.16 and 4.22). The 
pitch-averaged component of the flow field was again modelled using a stream 
function, whilst the periodic component was represented using "smoothing" functions 
(i.e. series expansions). Blade shapes were obtained iteratively for a specified mean 
tangential velocity distribution, although blade thickness was neglected. The results 
presented clearly show both the development of secondary flow patterns within the
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blade passages and the corresponding Bernoulli surface distortions, as discussed in 
the theoretical work of Hawthorne [22] and Horlock and Lakshminarayana [23].

Borges [2], again neglecting blade thickness, extended the work of Tan et al [16] to 
the inverse design of turbomachines of arbitrary meridional geometry for cases of 
incompressible flow. In a departure from the previously adopted solution procedure, 
a finite difference representation of the governing equations was used together with 
co-ordinate transformation techniques, this being necessary to simplify the application 
of boundary conditions to the arbitrary geometry problem. As with the earlier 
methods an iterative solution procedure was adopted. In order to validate the 
method, performance comparisons were made between two turbines, one designed 
using the Clebsch-based approach and the other using an existing design technique. 
Experimental results showed the Clebsch method to yield notable improvements in 
performance over the existing design method.

A summary of the Clebsch-based inverse design method is presented by Hawthorne 
and Tan [24]. A range of possible applications of the method are briefly discussed. 
Of particular relevance to the work presented in this thesis is the extension of the 
method to deal with non-uniform blade loading, axisymmetrically sheared onset flow, 
and multiple-blade row designs.

The work of Borges was further extended to deal with cases of compressible flow by 
Zangeneh ([3], [25]). Two alternative approaches are presented, one taking full 
account of the development of circumferential variations in fluid density, the other 
being a simplified approach where the circumferential variations in density are 
neglected. In both instances blade thickness effects were included via a mean 
blockage factor similar to that used by Dang and McCune [19]. Computational 
results for a practical subsonic test case show the simplified approach to provide a 
very good approximation to the fully three-dimensional method with significantly 
reduced computational requirements. The computational verification of the method 
using Denton's three-dimensional inviscid Euler solver [26] is outlined, very good 
agreement with the predictions of the inverse design method being obtained.

Zangeneh [27] later coupled this design method with a three-dimensional Navier- 
Stokes solver developed by Dawes [28] to enable the design procedure to take some 
account of viscous effects. Again two alternative approaches are presented. One 
accounts for viscous effects through the introduction of an aerodynamic blockage 
distribution throughout the meridional geometry, whilst the other approach
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introduces a vorticity term that is related to entropy gradients. Results indicate that 
the entropy gradient approach represents viscous effects fairly accurately.

Finally, the work of Dang and Wang [29] extends the actuator duct approach given 
by Tan et al [16] to deal with blade thickness, flow compressibility and 
axisymmetrically sheared onset flow, with viscous effects being modelled through the 
use of blockage and entropy-increase terms. Solution of the problem is via a finite 
volume technique. The resulting design method can deal with multiple blade row 
designs, computational results being presented for a low-pressure multi-stage 
centrifugal compressor.

Numerous techniques from all the above works were utilised in the ducted propulsor 
design method presented in Chapters 4 and 5. However, due to the arbitrary nature 
of ducted propulsor geometries and the insignificance of flow compressibility, it is the 
inverse design method of Borges [2] that, in overall terms, represents the starting 
point from which the ducted propulsor design method was developed. It should be 
further noted, however, that the detailed formulation of the ducted propulsor design 
method and many of the computational techniques employed were based on the work 
of Zangeneh ([3], [25]), but with flow compressibility neglected.

3.6 Extension of the Clebsch Approach to the Inverse Design of Marine 
Ducted Propulsor Blading

With reference to the differences between the ducted propulsor and turbomachine 
design problems highlighted in Section 3.3, the extension of the turbomachine design 
method of Borges [2] to the case of ducted propulsor design involved the following 
fundamental modifications:-

1) Modifications to Account for Non-Uniformities of Onset Flow
For the reasons stated in Section 4.2, it was not possible to include the effects 
of circumferential variations in onset flow in the ducted propulsor design 
method. However, the effects of axisymmetrically sheared onset flow and the 
associated development of circumferential variations of rothalpy within the 
blade passages were fully included in the design procedure. This was achieved 
using a Clebsch formulation for vorticity similar to that employed by Dang and 
McCune [21], although the solution procedure adopted was considerably
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different from these authors (who only considered the design of rectilinear 
cascades).

2) Inclusion of the Effects of Non-Uniform Blade Loading
For cases of non-uniform blade loading^ not only is it necessary to satisfy the 
zero loading (Kutta) condition at the blade trailing edge explicitly, but it is also 
necessary to account for the sheets of vorticity that are shed from the blade 
trailing edges. To achieve this, techniques similar to those used by Dang and 
McCune [21], and Hawthorne and Tan [24] were employed, whereby the blade 
wakes are treated as extensions of the blade with zero pressure loading.

3) Inclusion of a Second Blade Row
To enable twin blade row propulsors to be designed it was necessary to allow 
for the presence of a second blade row of arbitrary speed downstream of the 
first. This was achieved using a development of the techniques outlined very 
briefly by Hawthorne and Tan [24], whereby the flow downstream of the 
upstream blade row is based on time-averaged quantities, with additional 
modifications to account for the presence of shear flow.

4) Modifications to the Problem Domain
The problem domain as presented for the turbomachine design problem required 
considerable modification to enable both the propulsor through flow and bypass 
flow to be modelled from far upstream of the propulsor to far downstream into 
the wake. This involved the inclusion of solid wall boundary conditions within 
the problem domain to model both the duct surface and the duct vortex wake. 
It was also necessary to apply a boundary condition of negligible flow 
disturbance at a suitably large value of radius. Further modifications were 
required to allow for both finite duct thickness (see Section 5.6) and the 
discontinuity in flow quantities across the duct wake (Section 5.5).

5) Determination of Propulsor Mass Flow
In order for propulsor mass flow to be determined in conjunction with the 
propulsor flow field, it was necessary to devise a computational scheme 
whereby a condition of zero pressure jump (i.e. the Kutta condition) was 
applied iteratively at the duct trailing edge.

See the footnote at the bottom of page 32.
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6) Propulsor Slipstream Contraction
Due to the jump in velocity across the duct vortex wake (Figure 3.3) it was 
found necessary to adopt the procedure outlined in Section 5.5 to account for 
propulsor slipstream contraction.

These modifications together with the formulation of the ducted propulsor design 
method will now be detailed in the coming Chapters.
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CHAPTER 4 PROBLEM FORMULATION FOR THE INVERSE
DESIGN METHOD

4.1 Introduction

This chapter will outline the algebraic formulation of the computational inverse design 
method for marine ducted propulsors that forms the basis of this thesis. This method 
offers a number of advantages over the existing techniques described in Chapter 2.

Firstly, the method can not only deal with axisymmetric sheared onset flow, but also 
allows for the development of a three-dimensional velocity field within the blade 
passages, and the corresponding three-dimensional shear effects. Employing 
assumptions of inviscid, incompressible flow and using the Clebsch representation of 
vorticity, both the propulsor through flow and bypass flow are described by partial 
differential equations in terms of Stokes stream function, a potential function and 
Clebsch variables. By modelling the region of flow from far upstream of the 
propulsor to far downstream into the wake the effects of slipstream contraction are 
fully included. The approach can deal with multiple-component designs such as 
rotor-stator and contra-rotating propulsors, as well as simpler single blade row 
designs, and the effects of non-uniform blade loading^ and finite blade chord are fully 
included.

As an inverse design method, the required blade shapes are obtained directly as an 
output from the numerical procedure together with the complete propulsor flow field. 
From this output the blade pressure jumps, propulsor thrust and torque, and the duct 
pressure distribution can be calculated at the design point enabling the suitability of 
the synthesised design to be assessed. It is felt that such an approach is more 
appropriate to the early stages of design than some of the analysis methods listed in 
Chapter 2 which require blade shapes to be provided as input.

4.2 Underlying Assumptions of the Inverse Design Method

With reference to the simplified problem domain for the ducted propulsor shown in 
Figure 4.1, it is necessary to make the following assumptions regarding the propulsor 
and its associated flow field:-

See the footnote at the bottom of page 32,
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(a) Inviscid flow
Whilst undesirable, it is necessary to assume that the flow is inviscid in 
order to reduce the computational task to a manageable size.

(b) Incompressible flow
This is not perceived as a problem, as sea water largely satisfies this 
condition.

(c) Axisymmetric Onset Flow
In order to obtain a unique solution for blade shape, it is necessary to 
assume that the velocity profile on the far upstream boundary is 
axisymmetric.

(d) Fluid of Infinite Extent
Allied to the assumption of axisymmetric onset flow, it is necessary to 
assume that the fluid is of infinite extent, and therefore that the presence 
of such boundaries as the sea surface and the seabed may be neglected.

(e) Negligible Tip Clearance
The clearance between the blade tips and the duct is assumed to be small, 
in keeping with good design practice.

(f) Axisymmetric Duct Wake
For simplicity, the duct wake is assumed to be axisymmetric, its 
trajectory and the propulsor mass flow rate being determined from 
consideration of the mean (circumferential-average) flow quantities.

(g) Cavitation Absent
The occurrence of cavitation on the duct and blading is neglected. This is 
not deemed to be too great a limitation, as it is generally desirable to 
avoid cavitation at the design point on grounds of efficiency, and also to 
prevent blade and duct erosion.

It is further necessary to extrapolate the duct trailing edge to a sharp point in order to 
achieve satisfactory convergence of the propulsor mass flow.

4.3 Representation of Vorticity

The key feature of the entire method is that the flow vorticity is modelled using the 
Clebsch representation of vorticity (see Lamb [1]). This approach is already well 
established in the field of general turbomachine design, previous applications having
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included the inverse design of cascades for cases of incompressible flow ([2], [3]), 
compressible flow [4] and shear flow [5] (see Section 3.5).

This transformation enables the vorticity to be written in the form

Q = V?ixV|i 4.1

where the intersection of the surfaces A,=constant and p.=constant define the vortex 
lines within the flow.

For a given vortex line there are generally an infinity of Clebsch variables that satisfy 
this relationship. However, for equation 4.1 to be valid throughout the flow domain, 
the Clebsch variables X and p. must be chosen to be fully compatible with the 
equations of motion of the fluid. If this is the case it then follows (Appendix X) that

V = VO-i-^Vp. 4.2

where 0  is a potential function representing the irrotational component of the 
velocity field, and the second term represents the rotational component.

4.4 Derivation of the Governing Equations

Adopting the cylindrical polar co-ordinate system shown in Figure 4.2, a relative 
velocity W may be defined relative to the blading, viz:-

W = V -  (orëg 4.3

Defining the blade surfaces by

a  = Q - f ( r ,z )=  : m = 0 , 1 , 2 , . . - 1  4.4
^  b

the condition of no flow normal to the blade may then be expressed

•Va = 0 4.5

Now, the Euler Equation maybe written [6]
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pW X Q = p V //+ pFVa 4.6

where H  is rothalpy and the term pFVa represents the blade force on the fluid which 

must act normal to the blade on the blade surface.

Taking the tangential component of equation 4.6 at the blade surface, it can be seen 
that

Now, as it can be shown that

30

circumferentially averaging equation 4.7 over one blade pitch (i.e. over the range 
0  < 0 < 2n/Nf^ ) yields

F = -W „-V rV ;

As the blade force is exerted at the blade surfaces, it follows that

f  = F5,(a) = - ( w „ V ^ ) 5 , ( a )  4.8

with equation 4.6 becoming

W x Û  = V //-(w „V 7v;)5 ,(a )V a  4.9

where 5^(a) is the periodic delta function given in Appendix II.

Now, taking the dot product of equation 4.9 with W and applying condition 4.5 it
follows that

W V H  = 0 4.10
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The flow vorticity is now split into components as follows :-

Q = 4.11

where represents the blade bound/shed vorticity, and is the additional 
component of vorticity associated with the presence of shear flow. Decomposing 
each component of vorticity as in equation 4.1, and noting that is only non-zero 

on the blade/blade wake surface, equation 4.11 may be written

o  = (  VI» X  Vn ( a ) + X Vn, 4.12

provided A,,, and p., are chosen from considerations of the equations of 

motion. Since the blade bound/shed vorticity must lie on the blade surfaces/wakes, it 
is immediately apparent that A.̂  = a  may be chosen. Additionally, setting X  ̂= H , 

equation 4.9 may be written

f2 =  ( V a x  V / / X  V|i^ 4.13

Substituting equation 4.13 into 4.9 and applying condition 4.10 now yields

F  = (W „-V nJ§^(a) 4.14

W*Vx = l 4.15

where x = |i^

Comparing equation 4.14 with equation 4.8 it can be seen that

Likewise from equation 4.15 it can be seen that x is the "Drift Function" given by 
Hawthorne [7]. This quantity represents the time between fluid particles passing 
some reference plane and reaching the point of concern in the fluid, as can be seen by 
expressing equation 4.15 in the integral form
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' iw

where s is distance along the particle path.

The full Clebsch representation of vorticity is therefore

n  = (VrV0 X V a)ô^(a) + V //x  Vx 4.16

At this stage it should be stressed that swirl is assumed to be absent from the onset 
flow. As a result the first term on the right hand side of this equation is zero 
upstream of the blading and in the bypass flow.

Furthermore, it should be noted that equation 4.16 is almost identical to the Clebsch 
formulation used (without derivation) by Dang and McCune [5], the only difference 
being that they use a tangential velocity term relevant to the design of rectilinear 

cascades in place of rV^ . Additionally, the first term on the right hand side of 

equation 4.16 is identical to the expression for vorticity derived by Borges [3] which 
has been widely applied to the design of turbomachinery blading in the absence of 
shear flow ([2], [3], [4]).

Now, whilst rV̂  on the blading is specified as an input to the design process, rV̂  

downstream of the blading is determined by the condition that the blade wakes cannot 

sustain a pressure jump. Thus substituting F=0 into equation 4.8, rV  ̂ downstream 

of the blading can be determined from

W ,;-V 5% =0 4.17

the implication of this being that the trailing vortex lines he along the wake 
streamlines.

At this stage it is convenient to split the velocity field into circumferential mean and 
periodic components along similar lines to Tan et al [2], viz

V = V + V 4.18
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For computational convenience the velocity field V is formulated in terms of Stokes 
stream function, \j/, as follows:-

" ' - i f

" ■ - i f
where is a mean tangential blockage function introduced to account for blade 

thickness:-

2 tc r
7] = tangential blade thickness

= blade thickness normal to mean camberline 
(determined from structural considerations)

N̂ , = number of blades

This model for blade thickness, previously employed by Dang and McCune [8], and
Zangeneh [9], represents the blade thickness as a circumferentially-distributed
blockage. As a consequence blade thickness is only accounted for in the 
circumferential mean component of velocity.

Now, the periodic velocity field V is formulated in terms of a periodic potential 
function 0 (r,8 , z), as follows. Firstly, using the fundamental definition of vorticity

a  = V xV  4.20

it can be shown that

Q = V x V  4.21a

n  = VxV 4.21b
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Therefore, from equations 4.21b and 4.16 it can be seen that one formulation for the 
periodic velocity field is

V = VO -  5(a)VrVe + HVz  -  zV{H +H ) + xVH 4.222

where 5(a)^ is the sawtooth function defined in Appendix II, and O (r,0 ,z) is a

purely periodic potential function representing the irrotational component of the flow 
field.

Now, since the mean velocity V is represented using Stokes stream function and 
therefore automatically satisfies the condition

V.V = 0 4.23

the condition of Continuity reduces to

V.V = 0  4.24

which when combined with of equation 4.22 gives

V^O= 5(a)V^rVe + (VrV^.Va)5'(a) -  //V^x -  V//-Vx 

+ xV^(T7+h ) + Vx v (77+h ) -  xv*// + v x -v //
4.25

The one remaining condition for the formulation to be valid is that the mean velocities 
as given in equations 4.19a,b must satisfy equation 4.21a. Since the radial and axial 
components of equation 4.21a are independent of Stokes Stream function, this 
condition may be stated as

(Vx v)-êe =[VrVe X Va + V / / X  Vx]-Cq 4.26

At this stage it is convenient to introduce the Discrete Fourier Transform (DPT) to 
represent the tangential variations in the flow quantities (see Appendix I). This 
approach, previously used by Borges [3] and Zangeneh [4], allows the equations to

2 Equation 4.22 can easily be proved, since taking the curl o f both sides yields equation 4.16, as 
required

 ̂ It can be shown (see Appendix II) that 5'(a) = 5 (a) — 1
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be solved on a two-dimensional meridional mesh and thus offers a number of benefits 
in terms of computational speed and efficiency.

So, representing H , x and 0  by Inverse Discrete Fourier Transforms (IDFTs):-

N I2-1

0>(r,e,z)= 4.27
n = -N I2n̂O

N /2 -1

H(r,e,z)=  2^//"(r,z)e‘'"*""" 4.28
n = -N I2

N /2-1

x(r,0 ,z)=  4,29
n = - N / 2

It will be noted that as the flow in the tangential direction is of period equal to the 
blade pitch,

2  jr ]c
0 = ------  \ k = \,2 ,...,N  4.30

NN,b

Additionally, the sawtooth function S{a) and its first derivative 5 '(a )  may be written 
(Appendix II)

N /2-1

S(a)=  X  — 4. 31
fi=-JV/2 ^ b  n*0

N /2-1

S '(a )=  4.32
n= -N !2
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Substituting equations 4.27..4.32 into equation 4.22, utilising equations 4.18, 4.19a,b 
and 4.30, and using the Frequency Convolution Theorem (Appendix I), it will be seen 
that the formulation for the velocities on the blade (where 5 (a) = 0 = /( r ,z ) )

are

r̂bl =
1 d\\f 

rB, dz
+

N/2-1

n = -N I2
*#0

0 0 '
Or Or - s

N/2-1

p = - N / 2
q*0

Or
4.33a

V a u ,  =Qbl +
N/2-1

n = -N /2n*0

r \
N /2-1

Prr<l

p = -N I2q*0

iN.nQ
4.33b

Kbi =
1 Ov w  

+ — —  + >
rB, Or n = -N I2n*0

N /2-1

Oz Oz -  I
p = -N /2q*0

07/'
Oz

4.33c

where

(az —p + A) : (/z — p) < —N 12
( n - p - N )  : ( n - p )  > N / 2 - 1
( n - p )  : - N 12 < { n - p )  < N / 2 - 1

4.34

Likewise, applying IDFTs to equations 4.25, the condition of continuity becomes

n = -N I2nitO
Or' Oz' r Or

,i2 ti  t  n /N
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NU

n = - N / 2

d X
a /

+  —
1 9rK  aV K
r dr

+
le- îN .n f

dz‘ nN.

drV, d f  I drV, a / 
0r (fr dz dz

-inNj

13%*
r3r

2^0 \
+

3z'y vŷ  y

^a//" ax" dH" axM
dr dr

/-\2

9z dz

+ Iyv/2-i r â z/A»
+   +

p = - N I 2  V q̂O
dr^ rdr 3z'

% -' f  dH^ 3%" a // '' ax’ pqNlH^x^
p=?î/2l  Br 3r dz dz

î 2k  k  n 
» N

where q is as defined in equation 4.34.

By inspection, the only way this relationship can hold is if the n^i component of the 
LHS corresponds directly to the rA component of the RHS. Hence, dropping the 
summation.

^ a '0 " a^o"
dz‘

1 ao"
r dr

4.35

'"aVK.
a /

^a'x"
dr'̂

+ —
la r K
r dr

+
a 'r ic
az'

le
nN,

drV, d f  drV, a / )

+
lax*
rdr

2 , 0  \
+

a'x
d r

H" -

fa //"  ax* a//" a%*l
dr dr dz dz

N /2-1

+
p = - N / 2  V 

q*0
a /

+
rdr

+
dr

+ + d H ^ ^  _ p q N j H ^ ^
p=-A//2V dz r^q̂O
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where n 0 and q is as defined in equation 4.34.

By applying Stokes stream function, IDFTs and the Frequency Convolution Theorem, 
equation 4.26 reduces to

1 1 9(1 /5 ,) 1 1 9 (1 /5 ,) 9 y
rB, 9z^ 9z

+

9z r5, dr^

1 d\\f 
r^B. dr

r dr dr

drV, df drV, df ^  f  dH^ 9x~" dH^ 9%"'^
dr dz dz dr p = - N /2 dz dr dr dz

4.36

with equations 4.5 and 4.17 expanding as

"  “ '■1 4.37

dr zbl dz
4.38

It can be seen that equations 4.35 and 4.36 are similar to expressions presented by 
Zangeneh [4] for compressible flow, but with additional terms included to account for 
the presence of shear, and some simplification due to the absence of flow 
compressibility.

Now, representing the fully three-dimensional relative velocity field using IDFTs

N /2-1

II
n = -N /2

N /2-1

W (r,e ,2)= 4.39

it can be seen from equations 4.3, 4.18, 4.19a, b, and 4.34 that

a<J>" drv.
dr

+ 9x0 N /2-1

+
dW

p=N/2  
q*0  y

4.40a
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ty ; = — : n = 0 
rB. dz

w;= ^ : n ^ O
^  p=—N I2  ^

q*0

rV.Wl = —^-co r : M = 0

W'"= 3 0 ” le 
dz ^ nNf, dz dz ,=AV2

9*0 /

ty ; = + — ^  : n = 0
rS. dr

4.40b

: n ^ O

4.40c

Using the Frequency Convolution Theorem and equations 4.28, 4.29 and 4.34 
therefore enables equations 4.10 and 4.15 to be rewritten

T  = 0
n = - N H  p = - N I 2  ^  3 Z

n=—N /2  p=—N /2 dz

Since in each instance the right hand side of each equation does not vary 
circumferentially, it follows that

p = - N / 2 dr dz
4.41

p = - N I 2 dr dz
1 : n =0
0  : n ^ 0

4.42
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where - N l 2 < n < N  12- 1 .

4.5 Determination of Propulsor Mass Flow and Relocating the Duct Wake

The mass flow through the propulsor and the corresponding duct circulation must be 
such that the Kutta condition is satisfied at the duct trailing edge. This is essentially a 
requirement that the duct trailing edge cannot sustain a pressure jump, and is 
formulated as follows.

Firstly, for simplicity it is necessary to base this condition on circumferentially- 
averaged flow quantities. Such an approach still allows for circumferential variations 
in duct circulation, yet failure to do so would result in a non-cylindrical duct wake 
which would hugely increase the computational requirements.

Thus, applying the Bernoulli Streamline Theorem to the core and bypass flows at the 
duct trailing edge

— -  — 2 — 2

and

where subscripts b and c refer to the bypass and core flows respectively.

For the case of a single blade row, at the duct trailing edge, and the Kutta

condition requires that P^=P^, giving

= 2 cort^ -  K ) '  

which using the equations 4.19(a), (b) may be re-written
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This equation is used to determine the value of y  on the duct (i.e. propulsor mass 
flow).

Now, for the general case of finite blade tip loading there is a discontinuity in both 
meridional and tangential flow velocity along the length of the duct wake (the 
interface between the duct through flow and bypass flow, as shown in Figure 4.1). 
This prevents the value of stream function here being updated using equation 4.36, 
since the mean vorticity (and thus the right hand side of equation 4.36) tend to infinity 
here. This problem is dealt with by applying a condition of zero pressure jump, 
identical to equation 4.43, along this discontinuity, the justification being that a 
streamline (i.e. the duct wake) cannot sustain a finite pressure jump.

4.6 Summary

It can be seen here that the ducted propulsor inverse design problem has reduced to a 
series of seven simultaneous non-linear partial differential equations, which can be 
solved for the unknown flow variables as follows:-

Unknown Ouantitv Equation No.
Stokes Stream Function y 4.43 on Duct and

4.36 Elsewhere
3-D Potential Function 0 4.35
3-D Rothalpy H 4.41
3-D Drift Function T 4.42
Blade Shape f 4.37

Mean Swirl rV̂ .L38
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CHAPTER 5 NUMERICAL SOLUTION OF THE GOVERNING 
EQUATIONS

5.1 Equation Transformation

The governing equations of the inverse design problem, as given in Chapter 4, are 
solved at each point on a meridional mesh of quasi-streamlines and quasi-orthogonals, 
typical meshes being shown in Figures 6.4 and 6.18 (note that solid boundaries such 
as the hub and duct always lie along quasi-streamlines).

To ease the solution process, with particular reference to the application of boundary 
conditions, this mesh is mapped onto a rectangular "computational" mesh using co­
ordinate transform techniques ([1], [2]). This is achieved in a manner similar to that 
employed in the blade design method of Borges [3], and proceeds as follows.

Firstly, a body-fitted co-ordinate system (%,0,T|) is chosen according to the 
transformation

(r,e,z) - 4  (5 ,8 ,T|)

such that the lines T|=constant and %=constant lie along the quasi-streamlines and 
quasi-orthogonals of the meridional mesh respectively (see Figure 6.4). Defining the 
transformation parameters by

''n -  ^  ^ 5.1

a  = 4  + < 5.2
P = z^z^+ 5.3

Y = 4  + 5.4

DR = 5.5

DZ = az^ -  2pz^ 4- yz^ 5.6

1  = ( z ^ D R - r ^ D Z ) l j 5.7

Z = [r^DZ -  z^DR)j j 5.8
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which are identical to those used by Borges [3], it can be shown that for any variable 
f  (r,z)

dz

If = Wfry -

+ - 2 0 4 , +  +

5.9

5.10

5.11

and also that

e; =

e., =

e, =

e, =

= + z^êJ/Vâ

= (/-çê, + Zçê,)/Vv 

(-z ,ê , + r^ ê .) /Æ  

(zçê, -  rçêJ/V 7  

[ r^ 4 â i \  + r ^ ^ ê ; ) / j  

(zçV âê” + z^V Ÿê;)/y

5.12

5.13

5.14

5.15

5.16

5.17

where and êj, are unit tangent vectors to Ç=constant and T|=constant respectively, 

and êç and êJJ are the corresponding unit normals.

Applying these relationships to equations 4.40a..c yields

w ^ .ê ;

7 0 ;  -  P<i>ç
- i n N J

+
le

nN,
(y(zV e),-p(rV ,),)

+ //" (Y X » -P t“)
N /2-1  ,

-  I  -  P # ( )
p = -N I2g*0

: n = 0

nj^O

5.18a
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w ; =
Wl n h - i

p = -N I2
q*0

rK -  cor n = 0

5.18b

W".e^
J^fâ

a<l>ç -  p o “

nN, '  '

p = -N I2
q*Q

W "-ê; = : n = 0
fg,Vô(

5.18c

where q is as defined in equation 4.34.

By transforming equations 4.33a..c it can be shown that

V«-êç
V, N /2 -1  J n N t f

rB,4oL + I
n = -N I2n*Q

/Voc

-  p o ;

+ / / " ( a x “ -  P x ;)

/ \
-  X

p= -N I2
V

5.19a

V ^ 'ë ;  ^  +  y, ---r=-
n̂O

ri>; -  P<i>5

+ / /" ( y x » -  p x " )
N /2-1

-  X  ^ 1 7 -  p w ;)
p = -N /2

V

5.19b
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“  T "  ^  ;^  n = -N I2  ^n̂O

t  \
N /2-1

M0" -  2
p = - N  12 q*0

5.19c

with equations 4.37, 4.38,4.41 and 4.42 becoming

ê")/, + V Ÿ (v „ -ê ;) / ,  = - ( v , „  -  Cùr) 5.20

5.21

N /2-1

I
p = - N I 2 +

V r
i ^ p W ^ H P

=  0

for - N l 2 < n < N I 2 - \

N /2-1

I
p = - N I 2

+ V Ÿ (w « ê ;X

+

for - N / 2 < n < N / 2 - l

where again q is as given in equation 4.34.

The transformed version of equation 4.36 is

1 : rt =  0

Q : n ^ Q

+ TV,

+ (aB,(l/B,)ç -  + T + / z , / r ) y ,

+ (y S ,a /S ,) , -  PS,(l/B,)ç + Z + / z ç / r ) v .

5.22

5.23

5.24
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- r B J
    N /2 -1

('■Ve),/ç -  + X
p = - N / 2

where now B, = l —^  and 7] = t J  1 + — /, ,+7/ , ,  ) 
2n:r ' "V

In a similar fashion, equation 4.35 becomes

/
aOçç -  2P<D̂  + +^  * TTl

Jz,
T  ^ 4),

+

V r
2 » r 2  r 2 ^ n

„2

5.25

(X  rV — 2 PrV + y rV e

+
V V

nn

-  e-"*/(a rVe,/ç -  p rV,J^ -  p rV,J^ + y r V e jJ

-  2px^ + yx^  ‘‘'ïïn

V
+

r n
y y

-  ( a x “//" -  Px»//; -  P x X  + y x ;/ / ; )

N /2-1

+  I  X’
p = - N / 2q*0

oH£ -  2p//' + y / / : -------- 3 / / '

f  / Z t, ^ r  / z 3
+ J  ^ / / (  + 1 + — ^

V I  '* J I  ^  V
N ;

N /2 -1  J ^ h J ^ n n

+ £  a x ; / / (  -  p x | / / ;  -  p x ; / / (  + y x ; / / ;  -  ^ - M / / v
p = - N I 2  V 

q*0

2^2,



where - N / 2 < n < N  H - l  \ and q is as defined in equation 4.34.

Finally, noting that the duct and duct wake always he along the duct quasi-streamline 

due to the re-meshing procedure, = 0  here, and the duct Kutta condition for a 

single blade row propulsor (equation 4.43) becomes

Vw -  v î t  = (2(0 rVsc - v t )  5.26

Thus, it can be seen that the inverse design problem for a single blade row ducted 
propulsor has been reduced to a series of seven partial differential equations 
(5.20..5.26) which can be solved for f, rVe downstream of the blading, 

/ / ” : «  = - N / 2 ,N / 2 - l ,  x" : « = - N /2 ,N /2 - 1 ,  \|/ off the duct/duct wake, 

<!>'*:« = - N /2 ,N /2 - l ,a n d  y  on the duct/duct wake respectively upon discretisation 
and application of the appropriate boundary and initial conditions.

5.2 Numerical Solution of the Transformed Equations^

The governing equations were solved using finite difference techniques ([2], [4]) to 
represent the meridional derivatives of the flow variables.

Equations 5.24 and 5.25 are elliptic in nature, and as such were discretised using the 
second order accurate central difference expressions given in Appendix III. Both 
equations were then solved throughout the mesh using the "Cycle C" Multigrid 
Algorithm given by Brandt [5]. This iterative method, previously used in Clebsch- 
based blade design methods by Borges [3] and Zangeneh [6], offers a significant 
increase in computational speed when compared to more conventional Successive 
Over Relaxation (SOR) Schemes [4]. This approach does, however, place some 
restrictions on the choice of mesh, especially the total number of quasi-orthogonals 
and quasi-streamlines chosen.

At this stage it should be noted that the potential function, <b(r, 0, z) is, by definition, 
real. Thus the positive half of the frequency spectrum d)"(r,z): n=-N/2, N/2-1 can be 
found as the complex conjugate of the negative half of the spectrum, as outlined by 
Zangeneh[6]

The discretised forms of the governing equations are given in Appendix VI.
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i.e. 0"(r,z) = R e  ( 0"(r,z) ) -  i I m (  z) ) : - N / 2 < n < - l  5.27

rather than by direct solution of equation 5.25.

Equations 5.20 and 5.21 are hyperbolic in nature, and were discretised using the 
Crank-Nicholson Implicit Scheme outlined in [4]. This approach, previously 
employed by Borges [3] and Zangeneh [6] results in these equations being satisfied at 
the midpoints of the grid rather than at the grid points themselves. The result is two 

equations which enable rV  ̂ and the blade wrap angle /  to be solved at each quasi- 

orthogonal by solving a tridiagonal system of equations (Appendix VI). Using this 

technique rV  ̂ is marched downstream of the blade trailing edge within the core flow, 

whilst /  is marched upstream and downstream of the blade "stacking condition" (see 
Section 5.4).

Equations 5.22 and 5.23 are also hyperbolic in nature, and as such were also 
discretised using a Crank-Nicholson Implicit Scheme. Since H and x are three- 
dimensional functions, this approach yields a block tridiagonal system of equations 
(see Appendix VI) for both H" and x" : n=-N/2, N/2-1 at each quasi-orthogonal. This 
enables both H" and x" to be marched downstream of initial conditions on the far 
upstream boundary.

It should be noted that solving the block tridiagonal equations for H and x is a time- 
consuming process. Although the time taken can be reduced by some 40% by 
processing the right hand side vectors of the H and x equations together (the 
coefficient matrix is identical for both equations 5.22 and 5.23), solving for H and x 
dominates the computational procedure in terms of CPU time. An efficient Fortran?? 
routine for solving block tridiagonal systems of equations is given by Anderson, 
Tannehill and Fletcher [2], and can easily be modified to deal with complex elements 
and a second right hand side vector.

Finally, it was found necessary to smooth the velocity, rothalpy and drift function 
fields given by equations 5.18a..c, 5.19a..c, 5.22 and 5.23 by multiplying the n* 
harmonics of each of these quantities by the "sigma" factor

^  SINl I : - N ! l < n < N 1 2  — \ where n # 0
Inn
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given by Lanczos [7]. This approach, as used by Zangeneh [8], significantly reduces 
the distortions of these quantities which result from the occurrence of Gibbs' 
Phenomena [9] in the vicinity of the blade jumps in velocity, rothalpy and drift 
function.

5.3 Boundary Conditions

5.3.1 Stream Function \j; (Equation 5.24):-
a) As there is no flow through the hub, a condition of constant stream function is 

applied along the hub quasi-streamline.

b) On the far upstream boundary it is assumed that the flow velocities are 
unaffected by the presence of the blading, enabling stream function to be 
determined from a specified velocity profile.

c) On the far downstream boundary, it is assumed that the propulsor slipstream is 
fully contracted and therefore that V^=0

i.e. ^  = 0.
oz

d) Since there can be no flow through the duct surface, a condition of constant 
stream function is applied along the duct and duct wake, the value of which is 
determined by applying equation 4.43 (the Kutta Condition) at the duct trailing 
edge.

e) It is assumed that the r = oo boundary is sufficiently far from the propulsor for 
the pressure here to be unmodified by the presence of the propulsor, and for the 
velocity field to be axisymmetric

i , .

Further assuming that and formulating in terms of Stokes stream

function, it follows that

^  = r^J2H° 5.28
O Z
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5.3.2 Potential Function 0  (Equation 5.25)
a) Since the onset flow is assumed axisymmetric and swirl is assumed absent from 

the onset flow, a Dirichlet condition of 0= 0 (i.e. 0"=O) is applied on the far 
upstream boundary, which corresponds to V = 0.

b) It is assumed that the r = «> boundary is sufficiently far from the propulsor for 

the periodic velocities to be very small here (i.e. V = 0), thus a boundary 
condition of 0"=O is applied here.

c) On the hub, duct and duct wake surfaces a condition of V.e^ = 0 is applied, 

which when combined with the corresponding \)/ boundary conditions 
corresponds to a condition of no flow across these surfaces.

d) On the far downstream boundary, the second derivative of 0  along quasi­

streamlines is set to zero i.e. a condition of 0"% = 0  is satisfied.

Whilst this is only an approximate boundary condition, it enables a periodic 
potential function caused by trailing vortex sheets to be sustained, and was 
adopted in the absence of a more appropriate condition. It should be noted that 
for the case of uniform blade loading, the circumferential variations in velocity 
decay to zero as the far downstream boundary is approached, and thus this von 
Neuman boundary condition may be replaced by a much simpler j Dirichlet 
condition of 0" =0 in such cases.

5.4 Initial Conditions

5.4.1 Blade Wrap Angle f (Equation 5.20)
Here the initial condition takes the form of a "stacking" condition (see Tan et al [10]), 
whereby the blade wrap angle f is fixed at one station along the blade chord, relative 
to which the values of f at all other points on the blade/wake are determined. In the 
simplest case, a radial stacking condition may be applied, although greater degrees of 
skew can be obtained by the specification of a non-radial stacking condition.
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5.4.2 Mean Swirl (Equation 5.21)

This equation is used only to determine rV  ̂ downstream of the blading and thus the 

specified rV  ̂ distribution at the blade trailing edge serves as the initial condition for 

this equation.

5.4.3 Rothalpy H (Equation 5.22)
The value of rothalpy on the far upstream boundary can be determined from the 
specified velocity profile, and this forms the initial condition for equation 5.22. Since 
swirl is assumed absent from the onset flow, rotary stagnation pressure equates to the 
absolute stagnation pressure at the far upstream boundary, and, by defining this 
boundary as a static pressure reference (i.e. p=0), the initial condition for H may be 
expressed

— ^  5.29
P 2

with H" : since the onset flow is axisymmetric.

5.4.4 Drift Function t  (Equation 5.23)
The far upstream boundary is used as the reference for drift function. Its value is set 
to zero here, this forming the initial condition for t.

5.5 Solving for Propulsor Mass Flow and Tracing the Duct W ake 
Trajectory

Equation 5.26 (the duct Kutta Condition) is applied at the duct trailing edge in order 
to update the value of \)/ here (and hence propulsor mass flow).

Equation 5.26 is also applied at each point along the assumed position of the duct 
wake to obtain a value of Y consistent with the current position. Applying a 
condition of no flow across the wake, it then becomes possible to trace an updated 
trajectory consistent with the current value of Y on the duct. To ease the 
implementation of this procedure, the downstream portion of the solution grid is 
remeshed each time the trajectory is updated in order to ensure that the duct wake 
(and hence the discontinuity in flow quantities) remains on the duct quasi-streamline. 
The overall procedure for determining propulsor mass flow and slipstream trajectory 
is as shown in Figure 5.1.
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At this point it should be noted that as velocity, rothalpy, drift function and potential 
function are, in general, discontinuous on both the duct and duct wake, both the 
upper and lower surface values of these quantities have to be calculated and used as 
appropriate in the computational scheme.

5.6 Modelling Duct Thickness

The finite difference approach together with the duct boundary condition enables two 
alternative definitions of the duct surface to be used; one corresponding to the duct 
upper surface and one the lower surface. When solving at mesh points above the 
duct, the upper surface definition and its associated geometric derivatives are used, 
whilst beneath the duct the lower surface definitions are used. Thus, by the inclusion 
of extra logic structures into the program code, it becomes possible to model the 
effects of finite duct thickness in addition to infinitesimal duct thicknesses.

5.7 Satisfying the Kutta Condition at the Blade Trailing Edge

For the Kutta condition to be satisfied at the blade trailing edge equation 5.21 must 
hold here. For cases of uniform blade loading this can be achieved implicitly by

specifying a blade circulation distribution that satisfies (rVg)  ̂= 0  at the blade trailing

edge. However, for cases of non-uniform blade loading the following scheme for 
explicitly satisfying the Kutta condition after each blade shape iteration was 
developed:-

a) Marching rV  ̂ one quasi-orthogonal upstream from the trailing edge using 

equation 5.21.

b) Scaling the blade rVg distribution along each quasi-streamline to match the 

updated values obtained in a) above.

c) Smoothing the blade rV  ̂ distribution along quasi-streamlines to remove the 

resulting discontinuity in slope immediately upstream of the blade trailing edge. 

This is achieved by assuming a cubic variation in rV  ̂ between this discontinuity 

and a point typically four or five points upstream of the trailing edge. This
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cubic distribution is applied to each quasi-streamline individually in such a way 

that the value rV  ̂ and its slope remain unaltered, both at the trailing

edge and at the other end of the spline.

Although by necessity the blade rV  ̂ distribution is modified by this process, the 

values of rV  ̂ at the leading and trailing edges (and thus the overall blade circulation 

distribution) remain unmodified. The smoothing process adopted ensures that the 

slope of the rV̂  distribution at the trailing edge is unmodified, thereby ensuring that 

the blade Kutta condition is still satisfied after smoothing.

5.8 Solution Procedure

The iterative procedure adopted for the solution of the single blade row ducted 
propulsor inverse design problem, as implemented in a Fortran?? code, is shown in 
Figure 5.1.

It should be noted that this procedure determines blade shape for a specified blade 
circulation distribution. However, if, as is often the case, blade shape is to be 
determined for a specified shaft torque, it is possible to envisage an extra tier being 

added to the iterative procedure whereby the blade rV  ̂ distribution is successively 

scaled to achieve the desired torque.

5.9 Inputs and Outputs From the Design Process

The inputs to and outputs from the inverse design problem for single blade row 
ducted propulsors can be summarised as follows:-

5.9.1 Inputs
a) Velocity profile on the far upstream boundary (as obtained from a wake 

survey or Computational Fluid Dynamics (CFD) estimates);

b) Blade circulation distribution in terms of rV̂  (see Appendix VIII);

c) Axial blade chord and location;
d) Duct and hub geometry;
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e) Shaft angular velocity;
f) Blade thickness distribution (based on structural considerations);
g) Fluid density;
h) Number of blades.

5.9.2 Outputs
a) Propulsor mass flow.
b) Blade and blade wake shapes (in terms of the wrap angle f);
c) Fully three-dimensional velocity field;
d) Fully three-dimensional drift function and rothalpy fields;

e) rVg downstream of the blading;

From the above it is possible to determine all flow pressures. Of particular interest is 
the blade pressure distribution which can be computed using equation A5.2 
(Appendix V); this can be used to assess cavitation performance at the design point, 
and also integrated to yield blade thrust and torque. Additionally, the blade relative 
velocity distribution can be calculated from equation A5.4, enabling the likelihood of 
flow separation on the blades to be predicted.

5.10 Addition of a Second Blade Row

5.10.1 Modifications to the Computational Procedure
The inclusion of a second (downstream) blade row in the computational procedure 
involves only a small increase in computational time, and involves the following 
modifications to the design process:-

a) Specification of the shaft speed, number of blades, axial chord, location, and 

thickness and rV̂  distributions for the additional blade row.

b) For there to be a unique solution for blade shape, it is necessary for the 
downstream blade row to encounter axisymmetric onset flow. Therefore, a 
"mixing" plane, similar to that used by Hawthorne and Tan [11], is defined on 
one quasi-orthogonal between the trailing edge of the upstream blade row and 
the leading edge of the downstream row (see Section 5.10.3). At the mixing 
plane both the flow velocity and the flow vorticity are circumferentially- 
averaged, this being achieved as outlined in Section 5.10.2.
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c) At the mixing plane the relative co-ordinate system is changed from that of the 
upstream blade row to that of the downstream row. Thus the values of 
rothalpy here are reset in accordance with

H " ^  H " + rV,{(S>, -  © ,) 5  3 0

where subscripts 1 and 2 refer to the upstream and downstream blade rows 
respectively.

d) Downstream of the mixing plane the number of blades is taken to be that for the 
downstream blade row.

e) It is necessary to march rV  ̂ downstream between the two blade rows using 

equation 5.21. The distribution on the downstream blade row is then 

scaled in such a way as to match the updated values of kVq at its leading edge, 

whilst maintaining the specified values of kVq at its trailing edge.

f) To give an extra degree of control over blade shapes, an independent stacking 
condition is specified for the downstream blade row, this being used to 
determine all blade/wake shapes downstream of the mixing plane.

g) In addition to the Kutta condition at the trailing edge of the upstream blade row 
it is necessary to satisfy a zero-incidence condition at the leading edge of the 

downstream blade row. This essentially involves marching rV^ one quasi­

streamline downstream from the leading edge of the downstream row (using 

equation 5.21), and then scaling and smoothing the new kVq distribution using 

similar techniques to those employed for the blade Kutta condition (see Section 
5.7). Additionally, if a non-uniform swirl distribution is chosen at the trailing 
edge of the downstream row, it is further necessary to satisfy the Kutta 
condition here explicitly.

h) Since rothalpy is reset at the mixing plane in accordance with c) above, there is 
generally a jump in rothalpy across the duct wake. Therefore the duct Kutta 
condition (equation 5.26) for multiple blade row propulsors is modified to

5 .3 1
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From the procedure outlined above it should be apparent that it would be a relatively 
simple matter to include even more blade rows in the computational procedure if 
required.

5.10.2 Circumferentially-Averaging Velocity at the Mixing Plane
As stated in section 5.10.1, for the twin blade row problem the velocity field is
circumferentially averaged at the mixing plane using the following procedure:-

1) From equations 4.16 and 5.18a..c it can be seen that the shear component of the
periodic velocity and vorticity fields can be circumferentially-averaged at the
mixing plane by circumferentially-averaging rothalpy and drift function here i.e. 
setting

//"  = 1" = 0  : 5.32

2) A downstream potential function is defined which replaces the upstream 
potential 0  within the core flow downstream of the mixing plane. This 
dissociates the periodic potential function downstream of the mixing plane from 
that upstream. The upstream potential function 0  is modified so that it satisfies 

a downstream boundary condition of 0^  ̂ = 0  at the mixing plane.

3) From equations 4.16 and 4.22 it can be seen that the only general means of 
circumferentially-averaging the remainder of the velocity and vorticity fields is if 
0 2  satisfies

V02 = 5(a)VÂ% 5.33

at the mixing plane.

Unfortunately, not only would such a potential function require Von Neuman 
conditions on each boundary (highly undesirable from the point of view of 
numerical stability), but worse still it would seem that no such function that 
satisfies this relationship exists.
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The solution adopted therefore was for to satisfy the Dirichtlet condition 
d>2 = 0 at the mixing plane (its far upstream boundary), and the Von Neuman

condition 0 2  ̂ = 0  on the far downstream boundary.

From equations 4.16 and 4.22 it can be seen that this approach is sufficient for both 
the velocity and vorticity fields to be purely axisymmetric immediately downstream of 
the mixing plane, provided that:-

(a) the upstream blade row is uniformly loaded (i.e. VrVg = 0 at the mixing plane);

(b) the mixing plane is sufficiently far (typically half a blade chord) upstream of the 
downstream blade row leading edge (see Section 5.10.3).

However, for cases of a non-uniformly loaded upstream blade row (VrVg at the 

mixing plane), the resulting velocity at the mixing plane is clearly non-axisymmetric 

(equation 4.22 gives V = -S'(a)VrV^). As a result the velocity and vorticity 

downstream of the mixing plane were formulated as:-

V = V<I>J -  5(a) V(rVe -  rV,„) + HVx

-I- T v {h  + h )x + xVH

Q = VrV^xVa + v(rV, -  rV,„)x V a (5 ^ (a ) - l)  

+ V //xV x

5.34a

5.34b

where rV  ̂ = at the mixing plane, and is assumed to be convected along mean 

streamlines to points downstream of this plane, satisfying

= 0 5.35

Whilst this "induced swirl" formulation ((^V^-rVg^) is, in effect, the mean swirl 

induced by the downstream blade row) is not strictly mathematically rigorous, it does 
ensure that the velocity and vorticity fields are axisymmetric at the mixing plane, and 
prevents the periodic component of the shed vorticity from being transferred across
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the mixing plane. Furthermore, for cases of uniform blade loading this approach 
yields identical solutions to those obtained from steps 1...3 above.

Considerable time and thought was devoted to the problem of the non-uniformly 
loaded upstream blade row, and this solution was the best that could be found bearing 
in mind the limitations imposed by the concept of the mixing plane.

5.10.3 Positioning of the Mixing Plane
It is generally desirable to position the mixing plane as far downstream of the 
upstream blade row as possible to prevent the downstream boundary condition of O 
(which is only approximate - see Section 5.3.2) from significantly affecting the three- 
dimensional velocity field around the upstream blade row. However, it is also 
desirable for the mixing plane to lie far upstream of the downstream blade row so that 
the upstream boundary condition on the downstream potential function » does not 

inhibit the development of three-dimensional velocities around the downstream blade 
row.

Results of studies on the positioning of the mixing plane are too lengthy to present in 
detail here. However, it was found that for loading distributions such as those used in 
Chapter 6 the errors (as reflected in blade shape predictions) associated with the 
proximity of the mixing plane to the blading are small, provided that the mixing plane 
is no closer than one quarter of a blade chord to either blade row.

5.11 Simplified Computational Runs

Three types of computational run of the inverse design method can be conducted, 
each of differing complexity and CPU time requirements:-

5.11.1 Fully Three-Dimensional Runs
As described in the preceding pages.

5.11.2 Three-Dimensional Mean Shear Runs
Here rothalpy and drift function are assumed to remain axisymmetric throughout the 
flow domain, being determined using the mean flow velocities rather than from the 
three-dimensional velocity field.
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Thus equations 5.22 and 5.23, used to determine rothalpy H and drift function x, 
simplify to

5.36

5.37

with //"  = x" = 0 : n^O.

This results in equations 5.18...5.21 and 5.24...5.26 reducing to

: n ^ O

w " .ê :  = : n = 0
5.38a

: n * 0

= — -  -  cor : n = 0

w ê :  = : « = o

5.38b

W " ê " = - ^  
'  y Va

V

: n ^ O

5.38c

101



v ^ . ê : = - ^
NJ2 \̂ ^inNJ

n*Q
5.39a

£. -  'V (V„.ê; =
'■B.-v/Ÿ n éin  /VŸ/î O

5.39b

V e « = -^ +
n= -N I2

n*Q

5.39c

V ^ K  ê")/, + V Ÿ K  'ê ;) /n  = - ( K «  -  w ) 5.40

V^(v„-ê") (rVe), + V 7 K , ê;) (rV,), = 0 5.41

-  2pVç, + TVnn 

+ (<xS,(l/B,)ç -  p g , ( l / g , \  + T + 7 z , / r ) v ç  

+ (yB,(1/B,), -  pS,a/B,)ç + Z + 7 z , / r ) v ,

5.42

-  2po^ + +

n ^ N t r ^+
r  /z.>i

z + —  ̂
l  '■ y

V r
2»r2 i-2̂ w

le - in N ^ f

nN,

(X  rV — 2 ^rV +  y rV e.

+
V V

+
V ' ■y

5.43

-  e - " '/ ( a  rV e/ç -  p rV ,J^  -  p rV ,J^  + y rV e ,/J  ( fo rn ^ )
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-  Vn" = —  (20) rVe. - V l )  5.44

Upon discretisation, equations 5.36 and 5.37 enable H and T to be marched 
downstream from the initial conditions by solving a simple tridiagonal system of 
equations on each quasi-orthogonal rather than a complex block tridiagonal system. 
Further reductions in computational time are associated with the absence of 
convolved terms in the right hand sides of equations 5.38...5.43. The net result, as 
will be shown in Chapter 6, is a huge saving in computational time when compared to 
the fully three-dimensional approach, with little difference in blade shape predictions 
apparent.

It should be noted that this mean shear approach still makes allowance for the three- 
dimensional velocity field that develops in the blade passages.

However, the shear vorticity associated with the development of circumferential 
variations in drift function and rothalpy within the blade passages (i.e. the component 
V // xVx -  V //x V x  of the right hand side of equation 4.16) is neglected. As a 
consequence no account is taken of the circumferential variations of shear vorticity 
(outlined in [12],[13] and [14]) that develop within the blade passages. In particular, 
no allowance is made for the filaments of shear vorticity that develop at the blade 
surface and are ultimately shed from the blade trailing edge (the occurrence of this 
type of vorticity, which is due to "vortex-stretching", is discussed by Hawthorne 
[12]).

In many ways this "mean shear" approach is analogous to the "mean density" 
approach to blade design suggested by Zangeneh [6] where circumferential variations 
in density were neglected but circumferential variations in velocity were included.

5.11.3 Actuator Duct Runs
With this approach, originally presented by Hawthorne [15], the propulsor velocity 
field is assumed to remain axisymmetric. Thus all flow quantities also remain 
axisymmetric, and equations 5.18..5.21 and 5.24..5.26 reduce to
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w “.ê; = v „ . ê ; = — 5 .4 5 a

- -c o r  5.45b

W ".ê; = W ; = W \ë ;  = 0  : n ^ 0  5.45d

Æ ( v „ - ê 'I / ç  + ( v „ - ê ; ) / ,  = -  cor) 5.46

ê;) W , \  + V 7 (v „ -ê ;)  w ,  = 0  5.47

Va (w ^ -ê ”) W" + VŸ ( w “ -ê;) / / “ = 0 5.48a

H" = 0 : n * 0  5.48b

V â ( w “ -êç")t“ + V7 ( w ‘’- ê ; ) t “ = y 5 .4 9 a

x" = 0 : n ^ O  5.49b

«V s -  2PVç, + W t,

+ (oB ,(l/S,)ç -  PB,(1/B,), + T + 7 z , / r ) v ç  5.50

+ (yB|G/A)ii “  P®i(l/^t)ç + £  + Jz^/r)\\t^

-  W ) ç / ,  + //çX“ -

104



„2 j2 __
V t -  Vn» = ——  (2corVec -V»c)  5.51

Note that equation 5.25 is no longer used as 0  is set to zero for axisymmetric flow. 
This approach is even faster than the three-dimensional mean shear run, since the 
potential function and the associated three-dimensional terms are not evaluated. 
Large reductions in storage requirements are also realised, with all flow variables 
being of the real rather than complex type. Whilst significantly less accurate than the 
three-dimensional methods for highly-loaded blades due to the absence of periodic 
effects, this approach is none-the-less very fast and robust, and is ideal for use in the 
early stages of design.

5.12 Numerical Problems Associated with the Normal Derivative of rVg at the 

Endwalls

Research on Clebsch-based blade inverse design methods has shown there to be 
numerical problems associated with three-dimensional runs for cases where the

• 1 r  u  j  / .  , B rV g 3 /  BrVg 3 /tangential component of bound vorticity (i.e. the component  -----------   of
dn ds ds dn

the right hand side of equation 4.16) is non-zero at the endwalls.

The presence of this endwall singularity, which is discussed in detail by Borges [3] 
and Zangeneh ([6], [8]), would seem to be a result of the assumption of inviscid flow 
which makes no allowance for the presence of wall boundary layers. Both these 
authors attribute these numerical difficulties to the large velocities at the endwalls 
resulting from the blades (which are modelled as vortex sheets) intersecting the 
endwalls obliquely.

This type of problem, as encountered with the Clebsch-based approach to blade 
design, was first reported by Tan et al [10]. Here it was found necessary to force the 
tangential component of bound vorticity to zero at the endwalls in order to achieve 
satisfactory numerical convergence of an inverse design method for axial machines.

As only cases satisfying = 0 at the endwalls were considered, this was achieved
on

by forcing the normal derivative of wrap angle, — , to zero at the endwalls.
on
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Later, Borges [3] encountered similar problems with his arbitrary geometry inverse 
design method, and as a result found it necessary to adopt two approximations to 
achieve numerical convergence. Firstly, the second term on the left hand side of 
equation 5.20 was neglected when determining blade wrap angle/within three mesh 
points of the endwalls. Then, having achieved numerical convergence, the value of

—  was gradually extrapolated from an unaltered value three grid points from the 
on
endwalls down to zero at the endwalls. It was argued that these approximations were 
reasonable as they were only applied close to the endwalls where viscous effects 
(which were not modelled) would be expected to dominate.

However, for the ducted propulsor design method outlined in this thesis the solution 
adopted was identical to that suggested by Zangeneh [6], whereby the normal 

derivatives of both kVq and wrap angle /  are assumed to be zero when enforcing the 

endwall boundary condition for the potential function (as given in Section 5.3.2) 
along the hub and duct. Although it is not strictly mathematically rigorous, it is found 
that by satisfying this simplified boundary condition, computational problems for both 
the fully three-dimensional and three-dimensional mean shear runs are avoided. This 
procedure is much simpler to implement than the approach of Borges [3], and, since it 
is only applied at the endwalls, is arguably more accurate.

5.13 Numerical Problems Associated with Fully Three-Dimensional Runs

A number of numerical problems were encountered during the development of the 
ducted propulsor inverse design codes. It should be stressed that these problems, 
which are outlined below, were encountered only with fully three-dimensional runs of 
the program, and not the actuator duct or three-dimensional mean shear runs:-

a) Preliminary work suggested that it was necessary to specify a far upstream 
velocity profile which resulted in a condition of zero derivative of velocity 
normal to the endwalls in order to achieve convergence of fuUy three- 
dimensional runs for all but the most gentle cases of shear.

As this problem was not encountered with three-dimensional mean shear runs, 
the cause would seem to be associated with the development of circumferential 
variations of shear vorticity within the blade passages. In particular, it seems
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likely that the problem is a result of the concentrated sheets of shear vorticity 
that develop on the blade ("filament" vorticity using the terminology of 
Hawthorne [12]) rather than due to the circumferentially-distributed component 
of shear vorticity ("distributed secondary circulation" [12]).

By a similar arguments used by Borges [3] and Zangeneh [6] (Section 5.12) to 
account for an endwall singularity associated with bound vorticity, a sheet of 
filament vorticity would be expected to generate a singularity at the endwalls 
for cases where the blade intersects the endwall obliquely.

No matter, it was found that by using the technique given in Appendix VII to 
force the normal derivative of rothalpy along the endwalls to zero 

(i.e. dH’̂ Jdn = 0 :- N 1 2 < n < N 1 2 - \ )  prior to evaluating the potential 
function 0 ,  convergence could be achieved for more general runs where the 
normal derivative of velocity at the endwalls was non-zero. In effect, what this 
procedure amounts to is gradually decaying the periodic component of shear 
vorticity down to zero at the endwalls from an unaltered value typically four or 
five mesh points away. Whilst this approach is not, mathematically-speaking, 
accurate, since H near the endwalls should be determined from equations 5.22, 
it enables solutions to be obtained for a wide range of cases in which otherwise 
none could be obtained. Any associated errors should be located close to the 
endwalls where one would expect viscous effects (which are not included in the 
inverse design method) to dominate blade performance.

b) In equation 4.22 the shear component of the periodic velocity field is written

//Vx -  z V { H  + H)  + xV/ /

However, it could have been written more simply as

H V x - H V x  

or alternatively as

xV// -  X V//

Whilst this would simplify the problem formulation, all attempts to implement 
this in a computer program resulted in numerical problems. The cause of these
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problems seems to be that rothalpy and drift function are discontinuous on the 
blade surface, and as a result any attempt to evaluate the terms //Vx and x VH 
using Fourier techniques results in large-amplitude spiked functions which 
cause the program to "crash". By formulating the velocity field as in equation 
4.22, which is equally valid, these problems are avoided. Although one 
remaining term, x V H , might be expected to cause similar numerical problems, 
results indicate that this term is always very small since x « x ,  and thus its 
presence does not affect the convergence of the problem.

c) Generally for the ducted propulsor problem the mesh boundary is taken as far 
downstream as practical to allow for slipstream contraction, and this! led to 
numerical problems resulting in the design program "crashing". Attempts to 
locate the root cause of this difficulty, which generally occurs several blade 
iterations into the iterative procedure (Figure 5.1), were hampered by the vast 
quantity of data used by the computer programs. However, one of the 
following possible causes seem likely

1) The circumferential variations in rothalpy and drift function (which 
continue to develop indefinitely downstream of the propulsor) become 
very large close to the outlet boundary. This leads to problems in 
evaluating the derivatives of rothalpy and drift function using Fourier 
techniques for the reasons outlined in b) above, resulting in the program 
crashing.

2) The circumferential variations in rothalpy and drift function become very 
large close to the outlet boundary for the reasons stated in 1) above, and 
become incompatible with the far downstream boundary condition for the 
potential function (see Section 5.3.2) which is only approximate. This 
results in numerical instability which causes the program to crash.

3) Successively solving for the fully three-dimensional rothalpy and drift 
function at each quasi-orthogonal is a numerically-intensive task. It may 
be that the round-off errors associated with this procedure accumulate to 
such an extent that spurious values of these variables are calculated 
towards the downstream boundary, causing the program to crash.

This would explain why this problem was not encountered when the 
design method presented in this thesis was applied to the design of pump
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blading; for the pump problem one generally requires fewer than half the 
number of quasi-orthogonals used in ducted propulsor design. 
Additionally, it could also account for why it was necessary to freeze the 
development of the periodic rothalpy and drift function fields (see below) 
even for lightly-loaded propulsors where the circumferential variations of 
these quantities would be expected to be small.

Unfortunately it was difficult to investigate this theory of failure because 
the use of double precision complex variables is not permitted [16] in 
FORTRAN 77 (the programming language used for the inverse design 
codes). Even if this were possible, the already vast storage requirements 
associated with the fully three-dimensional code would double along 
with the computational time, and this would have been beyond the 
capabilities of the available computing facilities.

Whilst it was also conceivable that the cause was flow reversal within the blade 
passages (which would have involved modifications to the marching routines 
used to solve for H and x), the occurrence of the problem for lightly-loaded test 
cases made this seem unlikely, and indeed computational tests for flow-reversal 
confirmed that this was not the cause.

In any case, it was found necessary to freeze the development of the periodic 
components of rothalpy and drift function within the core flow at some quasi- 
orthogonal downstream of the duct trailing edge in order to achieve 
convergence. This was achieved by forcing H" and x" (where « 0) to be
constant along quasi-streamlines downstream of this quasi-orthogonal, and then 
applying the appropriate frequency shift to ensure that the jumps in rothalpy and 
drift function in this region remained at the blade surface.

Computational results have shown that if it is implemented only "far" 
downstream of the blading (typically downstream of the duct trailing edge), 
then freezing the development of rothalpy and drift function in this manner does 
not noticeably alter the predicted blade shapes.
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CHAPTER 6: COMPUTATIONAL RESULTS

In order to illustrate of the capabilities of the ducted propulsor inverse design method 
outlined in Chapters 4 and 5, computational results are presented for the following 
cases:-

6.1 M erchant Ship Ducted Propeller

This single blade row propulsor, suitable for a 200 000 TDW tanker, has principal 
particulars based broadly on data presented by Andersen and Tani [1], consisting of a 
six-bladed propeller with a shaft speed of 135rpm mounted on a cylindrical hub of 
diameter 1.81m. The blading is enshrouded by an NSMB No 19A nozzle (Figure 
A9.1, Appendix IX) of tip diameter 7.8m. The meridional outline of each blade is 
defined by

Leading Edge: z=  -0.07513 r + 1.5680
Trailing Edge: z=  +0.07513 r + 2.3321

where z=0 corresponds to the duct leading edge and r and z are in m. The blade
normal thickness corresponds to the NACA C4 distribution shown in Figure A9.3
(Appendix IX), where x is the axial distance from the blade leading edge.

The far downstream boundary is taken to be 5.1m downstream of the duct trailing 
edge. The far upstream boundary is taken to be 6.0m upstream of the duct leading 
edge, the circumferential-average velocity profile here being defined by

V ,=  -0.2982 r2 + 2.9817 r + 1.0458 m/s : r < 5.0m

V^= 8.5 m/s : r > 5.0m

= 0.0 : all r

the meridional velocity varying between a value of 6.796 Knots on the hub and a free 
stream value of 16.505 Knots at a radius of 5.0m, as shown in Figure 6.1.

The circulation distribution on the blading is defined by
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rV^=6K{r)

where z' =

V 2 3

(z-Zk)
(Zk-Z„)

vc  ̂I s

K{r) = 2A5 + 2.{)5{r-r,.)SIN r -r .
\ \

hub -0 .57C
V'v JJ

as shown in Figures 6.2 and 6.3. Note that the hub is not fully off-loaded, but is 

instead assigned a very small loading (through rV̂  ) in order to avoid numerical 

problems during the implementation of the blade Kutta Condition.

A fully three-dimensional run, a three-dimensional mean shear run, and an actuator 
duct run were conducted on the 257 x 65 meridional mesh shown in Figure 6.4. Four 
multigrid levels were used, with sixteen harmonics (N=16) being used for the three- 
dimensional runs. Since the blades are non-uniformly loaded, the Kutta Condition 
was enforced explicitly at the blade trailing edge using the technique outlined in 
Section 5.7.

The final meridional mesh for the fully three-dimensional run, as output from the 
computational procedure is shown in Figure 6.5. Comparing this with Figure 6.4, the 
effect of the remeshing procedure outlined in Section 5.5 can be seen to be very 
small, a slight divergence of the propulsor slipstream being predicted.

The mean streamline patterns predicted by the fully three-dimensional run is shown in 
Figure 6.6, the corresponding mean velocity vectors being shown in Figure 6.7; these 
give a very good indication of the overall propulsor flow field, the latter plot clearly 
showing the jump in velocity across the duct wake. Note that the corresponding 
plots for the actuator duct and three-dimensional mean shear runs are not presented 
as they are indistinguishable from those presented here.

The predicted mean duct pressure distributions for the three runs are shown in Figure
6.8, and are essentially indistinguishable from each other. As can be seen from Figure
6.9, which compares the pressure distribution for the fully three-dimensional run with 
a comparable run conducted with zero blade thickness, the effect of blade thickness 
on the mean duct pressure distribution seems to be much greater than the presence of
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any three-dimensional effects. Blade thickness also seems to account for the rather 
"bumpy" appearance of the inner surface pressure distributions shown in Figure 6.8.

The blade shapes predicted by the three types of run are compared in figure 6.10 and 
6.11. Here the predictions of the fully three-dimensional and three-dimensional mean 
shear runs differ significantly only in the region of the hub; this could well be a result 
of the forced modifications to the rothalpy field in the vicinity of the hub for the fully 
three-dimensional run (see Section 5.13), rather than due to fully three-dimensional 
shear phenomena. Furthermore, even the actuator duct blade shapes differ only 
slightly from the three-dimensional predictions.

Predicted blade static pressure distributions (calculated using equation A5.2, 
Appendix V) are shown in Figure 6.12, these being of particular use in assessing the 
likelihood of blade cavitation, and, when applied to equation A3.5, the likelihood of 
flow separation on the blades. In these plots the radial variation of loading on the 
blades is readily apparent. As with the blade shapes, it can be seen that the blade 
pressure distributions for the fully three-dimensional and three-dimensional mean 
shear runs are almost identical. However, the pressure distributions given by the 
actuator duct run differ significantly from either of these three-dimensional runs.

A comparison of the initial (specified) blade rV̂  distribution with the final distribution 

as output from the computational procedure is given in Figure 6.2, showing the 
modifications associated with the enforcement of the Kutta condition at the blade 
trailing edge to be small.

It will be seen in Figure 6.12 that the result of enforcing the Kutta condition (using 
the method outlined in Section 5.7), together with the solution of equation 5.21 
downstream of the blading, is that the Kutta condition is not satisfied at the blade 
trailing edge, but rather half a mesh point upstream of it and half a mesh point 
downstream of it. This is because the adopted Crank-Nicholson discretisation results 
in equation 5.21 being satisfied at the mid-point between quasi-orthogonals, rather 
than at the trailing edge mesh points themselves. The resulting blade pressure jump at 
the trailing edge is non-zero, although it can be reduced in magnitude by reducing the 
quasi-orthogonal spacing on the blade.

Figure 6.13, shows the development of circumferential variations in velocity within 
the core flow for both the fully three-dimensional and three-dimensional mean shear 
runs. Not only are these two sets of plots indistinguishable, but there also seems to
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be no appreciable circumferential variations in radial and tangential velocity, implying 
that three-dimensional effects are weak.

From Figure 6.14, the development of circumferential variations in rothalpy within 
the core flow can be seen to be very small in comparison with the circumferential 
average values of rothalpy. Given the small differences in blade shape and flow field 
predictions between the fully three-dimensional and three-dimensional mean shear 
runs, the development of circumferential variations in shear vorticity (outlined in the 
theoretical work of Hawthorne [2], Hawthorne and Armstrong [3] and Horlock and 
Lakshminarayana [4]) would therefore appear to be negligible.

From Table 6.1 it can be seen that both the mass flows and propulsor forces predicted 
by the three types of run are identical to within 0.5%, again this suggesting that three- 
dimensional flow effects are not significant for this propulsor.

Some words of caution are warranted regarding the values of duct thrust shown in 
Table 6.1. Much of the axial duct force for the propulsor is borne by the duct leading 
edge, where rather poor resolution of the duct pressure distribution (Figure 6.8) is 
obtained due to the high curvature and slope of the duct profile. Thus, integration of 
the duct pressure distribution to yield duct thrust/drag often results in spurious 
values; this, to some extent, seems to account for the rather large values of duct 
thrust presented in Table 6.1. Although this problem can to some extent be alleviated 
by adopting close quasi-orthogonal spacings around the duct leading edge, this leads 
to problems in generating the mesh, and can also cause computational problems 
associated with the variable spacing of quasi-orthogonals.

Finally, from Figure 6.15 it can be seen that the computational time requirement of 
three-dimensional mean shear run was only marginally (around 10%) greater than the 
actuator duct run, and yet this run yielded notably improved estimates of such 
features as blade shapes and the blade pressure distribution. The fully three- 
dimensional run, which took more than twice as long to converge as either of the 
these two runs, yielded no significant improvement in flow field or blade shape 
predictions compared to the much faster three-dimensional mean shear run.
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6.2 Submarine Propulsors

(a) Rotor-Stator Submarine Propulsor
This propulsor, suitable for a submarine of 5000 Tonnes submerged 
displacement, consists of a 14-bladed rotor of shaft speed 95.5rpm mounted 
upstream of an 17-bladed stator. The leading and trailing edges of the upstream 
blade row are defined by z=0.67m and z= 1.34m, and those for the downstream 
row by z=2.01m and z=2.68m respectively, where z=0.0 m corresponds to the 
duct leading edge. The normal thickness of the blading is as shown in Figure 
A9.3 (Appendix IX) where A=0.75 and x is the axial distance from the blade 
leading edge. A radial stacking condition is applied at the trailing edge of each 
blade row.

The far upstream velocity profile (taken at z=-5.0m) varies from a value of 
2.07m/s (4.02 Knots) on the hub to a free stream value of 10.35m/s (20.10 
Knots) at a radius of 6.9m, being defined by

V,= -0.468111 + 6.459932 r -  12.286766 m/s : r  < 6.9m
= 10.0 m/s : r > 6.9m

y ,=  -0.125454 r2 + 1.731262 r -  3.292853 m/s : r < 6.9m 
-  10.0 m/s : r > 6.9m

as shown in Figure 6.16.

The circulation distribution (Figure 6.17) on the upstream blade row is defined 
by

?Ve= 8.5(3z'^- 2z'^) m V s 

and that on the downstream blade row by 

rVe = 8 .5(1 -  3z '^+ 2z’’) m V s 

where z'=

c = blade chord
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It should be noted that both these rV  ̂ distributions implicitly satisfy the Kutta 

condition at their respective blade trailing edges.

The hub is defined by

r = -0.268z + 1.426 m : z<  4.612 m

with

r = 0.2 m : z > 4.612 m

in order to avoid numerical problems associated with computing stream 
function and at very small values of radius.

The duct (a much-modified NSMB No.l9A nozzle) is defined as shown in 
Figure A9.2 (Appendix IX).

(b) Contra-Rotating Submarine Propulsor
The particulars for this propulsor are as for the rotor-stator propulsor given in
(a) above, but with shaft speeds of 47.75rpm and -47.75rpm for the upstream 
and downstream blade rows respectively.

For both these propulsors fully three-dimensional, three-dimensional, and actuator 
duct runs were conducted on a VAXstation 4000vlc using the 257x65 meridional 
mesh shown in Figure 6.18. For the three-dimensional runs 16 Fourier harmonics 
were used due to the limitations of the available computing facilities.

The predicted mean streamline patterns for the fully three-dimensional runs are shown 
in Figure 6.20, the corresponding mean velocity vectors being presented in Figure 
6.21.

Figure 6.19 shows the modified meridional mesh as output from the fully three- 
dimensional run of the rotor-stator propulsor. Comparing with Figure 6.18, the 
effects of remeshing the downstream portion of the mesh to allow for slipstream 
contraction (see Section 5.5) are clearly visible.
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Figure 6.22 shows the predicted duct pressure distributions (based on the mean flow 
variables) for the two propulsors. As with the merchant ship propulsor in Section 
6.1, the difference between the predictions of the actuator duct runs and the three- 
dimensional runs is negligible.

The mean duct pressure distributions predicted by the fully three-dimensional runs are 
compared with equivalent runs conducted in the absence of blade thickness in Figure 
6.23. As for the merchant ship ducted propeller, this shows the "bumpy" appearance 
of the pressure distributions on the duct inner surface in Figure 6.23 to be associated 
with the blade thickness. This also serves to emphasise the significant effect blade 
thickness has on the duct pressure distribution, at least for the idealised case of 
inviscid flow and zero tip clearance.

Predicted blade shapes are shown in Figures 6.24, 6.25, 6.26 and 6.27. It can be seen 
that there are noticeable differences between the actuator duct blade shapes and those 
given by the three-dimensional runs. However, there is no appreciable difference 
between the blade shapes predicted by the fully three-dimensional and three- 
dimensional mean shear runs except close to the endwalls, and this difference is 
probably attributable to forcing the normal derivative of rothalpy at the hub and duct 
to zero for the fully three-dimensional runs (see Section 5.13) rather than any three- 
dimensional shear phenomena.

Figures 6.28 and 6.29 show the corresponding blade pressure distributions for the 
rotor-stator and contra-rotating propulsors respectively. In each instance the 
differences between the actuator duct results and the three-dimensional runs are far 
greater than the slight differences between the fully three-dimensional and three- 
dimensional mean shear results. This would seem to imply that the three-dimensional 
shear phenomena discussed in Section 5.11.2 are not significant for these two 
propulsors.

The development of circumferential variations in velocity predicted by the fully three- 
dimensional runs for the rotor-stator and contra-rotating propulsors are shown in 
Figures 6.30 and 6.31 respectively, the periodic flow within the blade passages being 
clearly visible in Figure 6.31; the results of the three-dimensional mean shear runs are 
indistinguishable from these plots, and so will not be presented here.

Figures 6.32, 6.33, 6.34 and 6.35 show the corresponding contours of rothalpy and 
drift function for both propulsors, the effect of circumferentially-averaging rothalpy
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and drift function at the mixing plane (see Section 5.10) being visible in each instant. 
The development of circumferential variations in both rothalpy and drift function 
within the core flow can be seen to be very small for both propulsors. These plots are 
further evidence that the circumferential variations in shear vorticity are small for 
these propulsors. It should also be noted that the lack of significant circumferential 
variations in drift function is indicative of the relative unimportance of circumferential 
variations in velocity with these designs, and would suggest that the blades are lightly 
loaded.

The predicted mass flow and propulsor forces for the rotor-stator propulsor are given 
in Table 6.2, and those for the contra-rotating propulsor in Table 6.3. It will be seen 
that there is virtually no difference in both mass flow predictions between the fully 
three-dimensional, three-dimensional mean shear and actuator duct runs for either 
propulsor. Additionally, it will be noted that the two propulsors have near-identical 
(i.e. within less that 0.5%) mass flow rates; this perhaps would be expected they have 
a common duct and hub geometry, absorb the same shaft power, and have zero swirl 
at the duct trailing edge.

The shaft torques calculated by integrating the blade pressure jumps can be seen to 
differ by up to 7.5% from the theoretical values (obtained as the product of mass 

flow, shaft speed, and the overall change in rV  ̂ induced by the blading). It must also 

be assumed that the values of blade thrust are similarly inaccurate, as these are 
calculated using a similar technique. Improved estimates of blade thrust and torque 
could have been obtained by conducting runs with additional mesh points on the 
blade, thereby improving the accuracy of the pressure integration. However, the 
limitations of the available computing facilities prevented this.

The values of shaft torque and overall propulsor thrust given by the fully three- 
dimensional, three-dimensional mean shear and actuator duct runs are within 0.5% of 
each other. In the case of the contra-rotating propulsor the predicted total propulsor 
thrust is some 7% higher than the rotor-stator propulsor (which absorbs almost the 
same shaft power), this being directly attributable to the quite substantial thrust 
sustained on its duct; the rotor-stator propulsor has a net drag on the duct, although 
its blades sustain a greater thrust than the contra-rotating propulsor.

It is interesting to note that although the two blade rows of the contra-rotating 
propulsor absorb the same shaft power, the downstream blade row's contribution to
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the overall propulsor thrust is over 1.5 times that of the upstream blade row, due to 
the different blade angles on the downstream row.

Finally, a summary of computational times for the rotor-stator and contra-rotating 
propulsors is presented in Figures 6.36 and 6.37 respectively, showing the three- 
dimensional mean shear runs to be only marginally more time consuming than the 
actuator duct runs. The fully three-dimensional runs, which seem to offer no 
noticeable improvement in accuracy over the three-dimensional mean shear runs, 
require roughly 2.5 times as much computer time to converge.

6.3 Duct Only Runs

Actuator duct runs were conducted for the following interesting cases:-

(a) Duct and Hub in a Sheared Onset Flow
As for the merchant ship propulsor in Section 6.1, but in the absence of 
the blading i.e. no work done on the fluid.

(b) Duct and Hub in a Uniform Onset Flow
As for the arrangement outlined in Section 6.3.1, but with a uniform axial 
flow velocity on the far upstream boundary of 8.5m/s (16.5 Knots)

As in each of these cases there is no mechanism for the development of three- 
dimensional flow phenomena, actuator duct runs suffice.

The predicted streamline patterns, velocity vectors, and duct pressure distributions for 
the two cases are shown in Figures 6.38..6.40 and 6.41..6.43 respectively.

In each instance no work is done on the fluid, and as a result one would expect the 
velocity profile on the far downstream boundary to be identical to that far upstream, 
with zero jump in velocity across the duct wake. From figures 6.39 and 6.40 it can be 
seen that it is this which the method predicts. As a consequence these simple cases 
proved to be an ideal means of verifying both the implementation of the duct Kutta 
condition (as outlined in Section 5.5) and the corresponding mass flow predictions of 
the design method.
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The duct pressure distributions (Figures 6.40 and 6.43) compare very well in overall 
form to that given by Falcao de Campos [5] for an isolated duct in uniform flow. In 
each instance a duct thrust is predicted (Table 6.4), although as with all the other 
runs, attention is drawn to the rather poor resolution of pressure close to the duct 
leading edge.

6.4 Concluding Comments

Due to the largely confidential nature of military and commercial applications of 
ducted propulsors, it has proved very difficult to obtain detailed full-scale design data 
for comparison with numerical results from the inverse design method. However, the 
author is confident that the generic test cases presented in Sections 6.1 and 6.2 are 
representative of existing full-scale propulsors. With respect to these results, the 
author offers the following concluding comments:-

1) In the numerical solution of the actuator duct and three-dimensional mean 
shear runs it is the determination of propulsor mass flow that dominates the 
computational procedure in terms of CPU time requirements. As a result the 
computational times for the three-dimensional mean shear runs presented in 
Figures 6.15, 6.36 and 6.37 are little different from the corresponding actuator 
duct runs that do not include three-dimensional effects.

However, for the fully three-dimensional runs it is the solution of the block 
tridiagonal systems of equations (equations A6.5 and A6.6, Appendix VI) that 
dominates the solution process, resulting in the much greater computational 
times required for the fully three-dimensional runs when compared to the 
simplified runs. Additionally, storing the three-dimensional rothalpy and drift 
function fields is memory-intensive.

When solving the block tridiagonal equations, storage requirements vary 
roughly in proportion to the number of Fourier harmonics taken, N, with 
solution times varying approximately in proportion to IsP. Thus, due to the 
limitations of the available computing facilities it was found necessary to limit 
N to no greater than 16, resulting in relatively poor resolution of the jumps in 
rothalpy at the blade (Figures 6.14, 6.32 and 6.33).
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2) When compared to the three-dimensional runs, the actuator duct runs produce 
a very good estimate of overall propulsor performance (i.e. propulsor thrust, 
torque, mass flow, etc.), with reasonable estimates of such detailed 
characteristics such as blade shapes and blade pressure jumps being obtained.

3) The fully three-dimensional runs seem to yield little improvement in propulsor 
flow field and blade shape estimates over the three-dimensional mean shear 
runs which neglect the circumferential variations in rothalpy and drift function.

The only noticeable differences between the predictions of the two three- 
dimensional approaches are in the vicinity of the hub and duct, and would seem 
to be more a result of forcing the normal derivative of rothalpy to zero here 
(see Section 5.13 and Appendix VII), than due to any three-dimensional shear 
phenomena.

4) Bearing in mind the above comments, it might reasonably be concluded that for
practical marine ducted propulsor design three-dimensional mean shear runs of 
the inverse design method generally suffice.

Alhed to this, the effects of circumferential variations in shear vorticity 
suggested by the theoretical work of Hawthorne [2], Hawthorne and 
Armstrong [3], and Horlock and Lakshminarayana [4] would seem to be
sufficiently small to be neglected in ducted propulsor blade design, at least for
cases of axisymmetric onset flow.

It should be noted, however, that no conclusions can be drawn regarding the 
significance of three-dimensional shear phenomena at off-design conditions.

5) For submarine propulsors restrictions on propulsor weight together with the
desire to utilise boundary layer inflow to best effect [6] mean that duct 
diameter is limited, and as a consequence the mass flow rate is relatively low 
for the shaft power. However, minimising acoustic signature is of prime 
concern for this type of application, and therefore a relatively large number of 
lightly loaded blades is usually adopted.

One might also reach similar conclusions for surface warships, where although 
duct diameter is restricted by both the relatively shallow draught of these
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vessels and the twin shaft configuration usually adopted, limiting propulsor 
noise is again of key importance.

For large merchant ships of deep draught, restrictions on propulsor diameter 
and weight are less pressing. Consequently large duct diameters and 
correspondingly high propulsor mass flows are desirable on grounds of 
propulsive efficiency (i.e. minimising "jet wake loss") [7]. Whilst usually only a 
single blade row configuration with a maximum of six blades is adopted on 
grounds of cost, avoidance of cavitation is a key factor in the choice of blade 
loading. Thus for large merchant ship applications one might assume that a 
relatively small number of large area, relatively lightly-loaded blades are 
adopted.

The adoption of relatively light blade loadings in each of these instances in 
some way helps to explain the relative insignificance of three-dimensional flow 
phenomena in the ducted propulsor designs outlined in this Chapter.

However, it should be noted that ducted propulsors for towing vessels such as 
a tugs or trawlers may be designed for a static ("bollard pull") condition (the 
extension of the inverse design method to deal with such cases is considered in 
Chapter 8). Under such circumstances the undisturbed onset flow is zero, and 
very high blade loadings may result. Thus, three-dimensional shear effects may 
well be significant in such instances, although it is quite likely that flow 
cavitation would be more of a concern.

6) It is generally found that using the procedure outlined in Section 5.7 to 
explicitly satisfy the Kutta condition at the blade trailing edge involves only 

slight modifications to the specified blade rV  ̂ distribution provided that:-

(a) The specified rV  ̂ distribution satisfies the condition =0 at the

blade trailing edge;

(b) The mesh quasi-streamlines align approximately with the final 
meridional velocity at the blade trailing edge.

7) It should be noted that, taken in isolation, circumferential variations in drift 
function are not indicative of the three-dimensional shear effects discussed in
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[2], [3] and [4], as they occur even in cases where shear is absent (i.e. 
V // = 0).

8) Whilst for brevity the duct pressure distributions presented in this Chapter are 
based on mean flow variables, it should be noted that the three-dimensional 
methods enable the circumferential variation of duct pressure to be evaluated if 
required.

9) Unfortunately little information on the avoidance of flow separation on 
propulsor ducts was found in the available literature (Chapter 2). As a 
consequence no assessment of the suitability of the duct profiles adopted in this 
Chapter can be made. However, the duct pressure distributions for the 
merchant ship propulsor (Figures 6.8 and 6.9) compare well in overall form to 
those presented by Gibson and Lewis [8] and Falcao de Campos [5] for ducted 
propellers mounted on afterbodies in the absence of shear flow.

10) It should also be stressed that the results presented in this Chapter are based on 
an assumption of inviscid flow. Unfortunately no means were available for 
assessing the effect flow viscosity and the associated duct, hub and blade 
boundary layers would have on the predicted results, although it would 
certainly be wrong to assume that these effects are negligible.
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Run Type: Actuator Duct 3D Mean Shear Fully 3D

Mass Flow Rate 556.09 556.23 556.52
(Tonnes/Second)
Shaft Torque 1805.0 1806.8 1807.1
(kNm)
Shaft Power 25.518 25.543 25.547
(MW)
Total Blade 1748.8 1744.3 1744.3
Thrust (kN)
Duct Thrust (kN) 847.90 847.57 847.91

NB

1) Values Based On a Sea Water Density of 1.025 Tonnes/m^.

2) The values of duct thrust shown are based on circumferentially-averaged flow quantities.

Table 6.1: Predicted Mass Flow Rates, Propulsor Forces and Shaft 
Power for the Merchant Ship Ducted Propulsor

127



Run Type: Actuator Duct 3D Mean Shear Fully 3D

Mass Flow Rate 130.27 130.17 130.15
(Tonnes/Second)

Rotor Torque (kNm) 1217.4 1212.8 1214.5
Theoretical Rotor 1107.3 1106.5 1106.4
Torque (kNm)

Stator Torque (kNm) -1188.5 -1188.0 -1187.5

Theoretical Stator -1107.3 -1106.5 -1106.4
Torque (kNm)

Theoretical Shaft 11.073 11.065 11.064
Power (MW)

Rotor Thrust (kN) 1176.0 1166.8 1166.1
Stator Thrust (kN) 236.7 236.0 236.8
Duct Thrust (kN) -35.9 -25.8 -24.8
Total Thrust (kN) 1376.8 1377.0 1378.1

NB

1) Values Based On a Sea Water Density of 1.025 Tonnes/m^.

2) The values of duct thrust shown are based on circumferentially-averaged flow quantities.

Table 6.2; Predicted Mass Flow Rates, Propulsor Forces and Shaft 
Power for the Rotor-Stator Submarine Propulsor
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Run Type: Actuator Duct 3D Mean Shear Fully 3D

Mass Flow Rate 130.29 130.21 130.22
(Tonnes/Second)

Upstream Blade Row 1166.1 1158.8 1160.5
Torque (kNm)
Theoretical Upstream 1107.5 1106.8 1106.9
Blade Row Torque
(kNm)

Downstream Blade -1223.2 -1220.0 -1219.2
Row Torque (kNm)
Theoretical -1107.5 -1106.8 -1106.9
Downstream Blade 
Row Torque (kNm)

Theoretical Total 11.075 11.068 11.069
Shaft Power (MW)

Upstream Blade Row 478.9 472.5 471.3
Thrust (kN)
Downstream Blade 784.5 782.2 781.5
Row Thrust (kN)
Duct Thrust (kN) 208.7 211.5 221.4
Total Thrust (kN) 1472.1 1466.2 1474.2

NB

1) Values Based On a Sea Water Density of 1.025 Tonnes/m^,

2) The values of duct thrust shown are based on circumferentially-averaged flow quantities.

Table 6.3: Predicted Mass Flow Rates, Propulsor Forces and Shaft 
Power for the Contra-Rotating Submarine Propulsor

129



Run Type: Duct & Hub in Duct & Hub in
Shear Flow Uniform Flow

Mass Flow Rate 310.48 406.43
(Tonnes/s)

Duct Thrust (kN) 391.11 394.72

(Values Based On a Sea Water Density of 1.025 Tonnes/m^)

Table 6.4: Predicted Mass Flow Rates and Duct Forces for the Duct Only 
Runs
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Figure 6 . 6 : Mean Streamline Patterns Predicted by the Fully
Three-Dimensional Run of the Merchant Ship Propulsor

Figure 6 . 7 : Mean Velocity Vectors Predicted by the Fully Three-
Dimensional Run of the Merchant Ship Propulsor
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Figure 6. 1 3 : Relative Velocity Vectors in the Transverse ( r - 0) 
Plane as Predicted by the Three-Dimensional Runs 
of the Merchant Ship Propulsor
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Figure 6.13 (Continued)
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Figure 6.13 (Continued)
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Figure 6.13 (Continued)

a.
a
S
c

IQ

3

2.

l i l0

-2.
4 3 -2 1 0

3D Mean S h e a r  Run

Distance from Meridional Plane (m)

§•
1
2

3.

2.

0.

-2.
0.-4. -3. 2 1 .

3D Mean Shear Run

Distance from Meridional Plane (m)

(d) Duct Trailing Edge

145



Duc*

M « H -3 6 .l2 m V t‘ (Dud) 
Mia H - 8.20 n f / , ' (Hub)

(a) Blade Leading Edge

DMancc froni Meridional Plane (m)

4.0

3.5

3 0a
2.5

2.0
1.5s-
1.0

M » H -36.12 m>/i* (Duct) 
Min H -8.20 m>/i> (Hub)

tt5

0.0
1.5 2 0 2.5 3.00.0 0.5 1.0

(b) Blade Trailing Edge

DM ancc (com Meridional Plane (m)

4.0

3.0

■I 10 .

1.0

00 .

Max H - 36.12 mVs> (Duel) 
M io H -8.20 m>/i> (Hub)-10

-20- 3 0 -1.0 0.0

(c) Duct Trailing Edge

Diatancc (com Meridional Plane (m)

NB
Number of Contours per Plot = 30

Figure 6 . 1 4 : Contours of Rothalpy in the Transverse ( r - 0 )  Plane
for the Merchant Ship Propulsor

146



Actuator Duct Run

5 hours 59 min
350 -

300 -

C 250 -

200 - 2 hours 56 min
2 hours 42 min

150 -

100 ■

3D Mean S h e a r  Run Fully 3D Run

1) Runs Conducted on a VAXstation 4000VLC
2) Times Based on an Initial Estimate for Propulsor Mass 

Flow of 502 Tonnes/second

Figure 6.15: Computational Times for the Merchant Ship Propulsor



4̂
OC

10.000
- L E G E N D  -

—  -  Axial Velocity

  R adia l Velocity

  M eridional Velocity8.500

2  7.000

if)
3

03
CC 5.500

4.000

2.500
0.00 3.00 6.00 9.00 12.00 15.00

Velocity (m/s)

Figure 6.16; Far Upstream Velocity Profile for the Generic Submarine Propulsors



8.500 n

6.800 -

5.100 -

^  3.400 -
C  
CO 0)

1.700 H

0.000
0.0 60.0 120.0 180.0 240.0

% Upstream Blade Chord

1
300.0

- LEGEND -
 Upstream Blade Row

 Downstream Blade Row

15.00 -1

9.00 -

3.00 -

-3.00 -

-9.00 -

-15.00
0.0 60.0

I120.0 I
180.0

I
240.0

% Upstream Blade Chord

I
300.0

Figure 6 . 1 7 : Blade Circulation Distribution (in Terras
of rV^ ) for the Generic Subraarine Propulsors

149



ÊÊÊ» i

Méridional Mesh for the Rotor-Stator and Contra- 
Rotating Submarine Propulsons



Figure 6 . 1 9 : Meridional Mesh as Output from the Fully Three-
Dimensional Run of the Rotor-Stator Submarine 
Propulser
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(a) Rotor-Stator Propulsor

Figure 6 . 2 0 : Mean Streamline Patterns Predicted by the Fully Three-
Dimensional Runs of the Generic Submarine Propulsors

(b) Contra-Rotating Propulsor
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(a) Rotor-Stator Propulsor

(b) Contra-Rotating Propulsor

Figure 6 . 2 1 : Mean Velocity Vectors Predicted by the Fully Three-
Dimensional Runs of the Generic Submarine Propulsors
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Figure 6 . 3 0 : Relative Velocity Vectors in the Transverse (r- 0)
Plane as Predicted by the Fully Three-Dimensional 
Run of the Rotor-Stator Propulsor
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Figure 6.30 (Continued)
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Figure 6.30 (Continued)
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Figure 6 . 3 1 : Relative Velocity Vectors in the Transverse (r- 6)
Plane as Predicted by the Fully Three-Dimensional 
Run of the Contra-Rotating Propulsor
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Figure 6.31 (Continued)
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Figure 6.31 (Continued)

«
E
”m
c
o
2
b
CL3

0
8

0.6
- 0 . 4 0.0 0 . 4

(e) Mid-Chord #2

Distance from Meridional Plane (m)

c
CDa.
1
T3

fc
SO.
a
S
c

%

2
.0
.8
.6

4

.2

.0

.8

.6
0.0 0 . 4 0.8

(f) Trailing Edge #2

Distance from Meridional Plane (m)

1 . 5  -

2
^  1 .0

s
CL

s  0 . 5  
Q

0.0 ■ I . I , I ■■ I , 1
0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 . 0  1 . 2  

Distance from Meridional Plane (m)

(g) Duct Trailing Edge

M
#1 Refers to the Upstream 

Blade Row 
#2 Refers to the Downstream 

Blade Row

167



22
20

Duel

U%k
0.8

Max H=2I 38 mVi* (Dud) 
Min H= 4 38 niVs> (Hub)

0 6

0 6 1 6  1.8 2 0  2.2 2.40.8 12 1410
Distance from Meridional Plane (m)

2.4

2.2

2.0

?

I 1.4

1.2

O
Max H - 21.38 in '/s' (Dud) 
Min 4.38 m>/i> (Hub)

0 8

0.0 0  2 0 4 0 6 0.8 10

(a) Leading Edge #1

Distance from Meridional Plane (m)

(b) Trailing Edge #1

22
2.0

1.6

1.2

1.0
Max H« 106 38 m*/»» (Dud) 
Min H - 89.38 n f / i ' (Hub)

0.8 T T
-0.4 -0.2 0.0 0 2  0.4 0 6

Distance from MerWlomal Plane (m)

(c) Leading Edge #2

2.0 -

1.6

§•
1.0

0 8
'Max H - 106 38 in'/s* (Dud) 
Min H - 89.38 (Hub)

0 6

0 0  0.2 0 4  0.6

Distance from  Merldlontd Plane (m)

(d) Trailing Edge #2

2.0

0 8

0 6
Max H» 106.38 i n ' / I *  (Dud) 
Min H= 89.38 m '/s' (Hub)

0 4 1 ’ I '  1

(e) Duct Trailing Edge

0 0  0.2 0 4  0.6

Distance from Meridional Plane (m)

m
1) Number of Contours per Plot = 30
2) #1 Refers to the Upstream Blade Row 

#2 Refers to the Downstream Blade Row

Figure 6.32: Contours of Rothalpy in the Transverse (r- 0) Plane
for the Rotor-Stator Propulsor

168



Hade

M ax H = ll 39 m W  (Duel) 
Min H= 4 38 m’/j> (Hub)Hub-

16  1.814120.2 0.4 0 6 0 8 I 0
D blanre from Meridional Plane (m)

(a) Leading Edge #1

2 4

S
I

20
1.8

Ma» H= 21.39 m'/»* (Duct) 
Min H - 4.38 m»/«» (Hub)0 8

0 0 0  2 0 4 0.6 100.8

Distance from Meridional Plane (m)

(b) Trailing Edge tfl

Ma» H« 106 39 m'/i* (Duct) 
Min H» 89.38 m'A’ (Hub)

•0.8 -0.6 -04  -02 0 0

Distance from M eridional Plane (m)

(c) Leading Edge #2

2.0

Max H - 106.39 m*/s* (Duct) 
Min H= 89 38 m*/s* (Hub)

0.0 0 2  0 4  0 6  0 8

Distance from M eridional Plane (m)

(d) Trailing Edge #2

1.6

1.2

1.0

0 8  -

0.6 -
Max 11= 106 39 m'/»' (Duct) 
Min H= 89 38 m*/s' (Hub)

0.4

0 0  0 2 0 4 0 6  0 8 10 1.2

(e) Duct Trailing Edge

DIstanct from Méridional Plane (m)

m
1) Number of Contours per Plot = 30
2) #1 Refers to the Upstream Blade Row 

#2 Refers to the Downstream Blade Row

Figure 6 . 3 3 : Contours of Rothalpy in the Transverse ( r - 0 )  Plane
for the Contra-Rotating Propulsor

169



?.o
Duel

Blade

Blade
a

Hub0.0 M u  T -  I 9 4 :  (Duct) 
Min X •  0 .98 1  (Hub)

0.6
0 . 6  0 . 8  1 .0  I .2  1 .4  1 .0  1 .8  2 . 0  2 . 2  2 .4

Disunce from Meridiond PUne (m)

2 .4

2 . 2

2.0

I .8

I .6

I .4

I .2

I .0 Max X » 2.40 s (Duct) 
Min X »  1.04: (Hub)

0.8

0 . 0  0 . 2  0 .4  0 . 6  0 . 8  1 .0

(a) Leading Edge U1

Didance from Meridional Plane (m)

(b) Trailing Edge #1

2 2
2 . 0

I .8

I .0
I .4

1.2

1 .0
Max x - 2 . l l  s (Duct) 
Min X .  I l l  I  (Hub)

0.8

0 . 4  - 0 .2  0 . 0  0 . 2  0 .4  0 . 6

Didance from Meridional Plane (m)

(c) Leading Edge #2

2 . 0

I .8

I .0
I .4

1 . 2

1.0

0.8 Max x - 2  1 8 : (Duct) 
Min X -  1.17: (Hub)

0.6

0 . 0  0 . 2  0 .4  0 . 6

Didance from Meridional Plane (m)

(d) Trailing Edge #2

2 . 0

I
I

§•

2  0.8

0.6
Max x - 2 .2 5 :  (Duct) 
Min X -  I 2 2 :  (Hub)

0 .4

0 . 0  0 . 2  0 .4  0 . 6

Didance from Meridional Plane (m)

(e) Duct Trailing Edge

NB
1) Number of Contours per Plot = 30
2) tfl Refers to the Upstream Blade Row 

#2 Refers to the Downstream Blade Row

Figure 6.34: Contours of Drift Function in the Transverse (r- 0)
Plane for the Rotor-Stator Propulsor

170



2 . 6

Duct2 .4

2 . 2
E

2 . 0 Blade,

I§■
i Blade

Max 1.95$ (Duel) 
Min T ■ 0.98 $ (Hub)Hub

0 . 2  0 .4  0 . 6  0 . 8  1 .0  1 .2  1 .4  1 .8  I .B

2 .4

2 . 2

Î
I

2.0

§•

I .0 Max x > 2 .0 6 i  (Duct) 
Min X -  I 04$ (Hub)

0.8

0 . 0  0 . 2  0 .4  0 . 6  0 . 8  1 .0

Distance from Meridional Plane (m) Distance feom Meridional Plane (m)

(a) Leading Edge ffl (b) Trailing Edge ffl

2 . 2

2 .0B
I 1.8

1 . 0

B-

1 .0

0.8 Max x - 1 1 3 :  (Duct) 
Min X .  I l l  :  (Hub)

0 .0

- 0 . 8  - 0 . 6  - 0 .4  - 0 . 2  0 . 0

2.0

8
1 . 6

.2

1 .0

0.8 'Max X -2 .2 0 i  (Duct) 
Min x - 1 .1 7 t  (Hub)

0 .0

0 .0 0 .2 0 . 4  0 . 0

Distance from Mcridiooal Plane (m) Distance from MeritBooal Plane (m)

(c) Leading Edge ff2 (d) Trailing Edge ff2

I

I

§•
0.8

S
0.8 Max X -  2.27 s (Duct) 

Min X -  1.23 s (Hub)
0 .4

0 . 0  0 . 2  0 .4  0 . 6  0 . 8  1 .0  1 .2

Distance frixti Meridional Plane (ro)

(e) Duct Trailing Edge

m
1) Number of Contours per Plot = 30
2) #1 Refers to the Upstream Blade Row 

ff2 Refers to the Downstream Blade Row

Figure 6.35: Contours of Drift Function in the Transverse (r-0)
Plane for the Contra-Rotating Propulsor

171



N)

250 T

200 -

. 5  150 -

a>
100 +

Q_o
50 --

1 hour 12 min

3 hours 25 min

1 hour 25 min

Actuator Duct Run

NB

3 0  Mean S h ea r  Run Fully 3 0  Run

1) Runs Conducted on a VAXstation 4000VLC
2) Times Based on an Initial Estimate for Propulsor Mass 

Flow of 120 Tonnes/second

Figure 6.36: Computational Times for the Rotor-Stator Propulsor



-Jw

200 j  

180 -  

160 -  

^  140 -

I  120 -  

100 --

80 -- 

60 -- 

40 -- 

20  - -  

0 -

o>
E

Q_CJ

1 hour 8 min
1 hour 18 min

3D Mean S hear  Run

3 hours 12 min

Fully 3D RunActuator Duct Run

1) Runs Conducted on a VAXstation 4000VLC
2) Times Based on an Initial Estimate for Propulsor Mass 

Flow of 120 Tonnes/second

Figure 6.37 : Computational Times for the Contra-Rotating Propulsor



Figure 6. 3 8 : Predicted Streamline Patterns for the Merchant
Ship Duct and Hub in Shear Flow

Figure 6.39: Predicted Velocity Vectors for the Merchant
Ship Duct and Hub in Shear Flow
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Figure 6.4 1 : Predicted Streamline Patterns for the Merchant
Ship Duct and Hub in Uniform Flow

Figure 6. 4 2 : Predicted Velocity Vectors for the Merchant
Ship Duct and Hub in Uniform Flow
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CHAPTER 7 EXPERIMENTAL VERIFICATION OF THE INVERSE 
DESIGN METHOD

7.1 Introduction

With work on the ducted propulsor design method complete, attention turned to the 
verification of the computational results. Three means of achieving this were 
considered:-

(a) Verification Using a Computational Analysis Method
This approach would have involved designing a test propulsor using the ducted 
propulsor design method, and then comparing the resulting flow field 
predictions with those of a computational analysis method.

Such an approach was particularly attractive in terms of both time requirements 
and cost. However, a ducted propeller analysis code that could model both 
three-dimensional phenomena and shear flow was not available.

Some consideration was given to verifying the design method using a pump
analysis method based on a finite volume method [1]. This was rejected,
however, as only the propulsor through flow could have been modelled, and no 
assessment of mass flow predictions could have been made from such an 
approach. Additionally, in its present form, this analysis method was reported 
to be ill-suited to modelling incompressible flow.

(b) Experimental Verification Using a Cavitation Tunnel
This approach would have entailed mounting a test propulsor (with blading
designed by the inverse design method) and afterbody in a cavitation tunnel, 
with mesh screens upstream to stimulate the required far upstream velocity 
profile. Flow measurements using Laser Doppler Velocimetry (LDV) together 
with pressure taps on the duct surface would then enable the three-dimensional 
flow field and duct pressure measurements to be compared with the predictions 
of the inverse design method. Alternatively, a simpler, but cheaper, less time- 
consuming series of experiments could have been conducted based on 
measurements of shaft torque and the duct pressure distribution.
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Whilst this was the preferred means of verification, unfortunately no cavitation 
tunnel was available at UCL, and construction of such a facility, or use of one 
outside UCL was deemed unacceptable due to limitations of both cost and time 
scale.

(c) Experimental Verification Using a Low Speed Wind Tunnel
This proposal involved recommissioning a low speed wind tunnel that had lain 
idle at UCL for some years (Figure 7.1). A test propulsor would be mounted 
within a lengthened working section with mesh screens mounted at the 
upstream entrance to the working section to stimulate an axisymmetric sheared 
onset flow.

Initial plans were to measure the three-dimensional velocity field around the 
propulsor using either Hot Wire Anemometry (HWA) or Laser Doppler 
Velocimetry (LDV) techniques. However, due to the limited time and funding 
available for the verification work, these sophisticated measurements were 
rejected in favour of much simpler measurements of the time-averaged 
propulsor flow field using a pitot probe. It was also hoped that flow 
visualisation tests could be conducted using either tufts or smoke, and that the 
absorbed shaft power and the duct pressure distribution could be measured.

There were a number of disadvantages associated with this approach. In 
particular, the limited dimensions of the wind tunnel working section (Section 
7.2) and the desire to minimise wall interference effects restricted the maximum 
permissible propulsor diameter to an estimated 0.2m. Not only did the use of 
such a small test propulsor limit the accuracy of the flow measurements, but 
also necessitated certain compromises in the selection of a shaft speed; 
achieving turbulent flow on the blades implied the selection the highest possible 
shaft speed, whilst the need to avoid the effects of flow compressibility 
suggested that a low shaft speed should be adopted. Ultimately a compromise 
shaft speed of 4000rpm was selected (see Section 7.2.3), although this was far 
from ideal from the point of view of either Mach Number or Reynolds Number. 
The high shaft speed meant that a high performance motor would have to be 
used, increasing costs significantly.

Despite these problems, this proposal was the means finally chosen for verifying 
the inverse design method on grounds of both time and cost.
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7.2 Verification using a Low Speed Wind Tunnel

As stated in the previous section, verification of the ducted propulsor inverse design 
method was conducted using a low speed open suction wind tunnel available at UCL. 
Details of this facility as originally constructed can be found in [2], and may be 
summarised as follows:-

Working Section: Cross Sectional : 0.61m x 0.61m
Length = 1.2m

Speed Range On Longitudinal Centre Line: 1.5 to 23.0 m/s

The experimental work consisted of the following stages:-

7.2.1 Recommissioning the Wind Tunnel
This work entailed constructing a lengthened (2.4m vice 1.2m) working section to 
satisfactorily house the propulsor assembly (Figure 7.2), and modifying the automated 
traverse rig (which was unserviceable) to allow for manual traverse and an increased 
traverse range.

It is interesting to note that doubling the working section length was found to have 
negligible effect on the air speed range that could be achieved in the working section.

7.2.2 Preliminary Measurements
In the absence of the propulsor rig, the wind tunnel was run with overlaid discs of 
wire mesh placed at the upstream end of the tunnel working section, the objective 
being to generate an axisymmetric velocity profile. The axial velocity field was 
measured at various stations along the length of the working section using a simple 
pitot-static probe (Figure 7.3). Having ascertained that the decay of the velocity 
profile over the centre portion of the working section (where the propulsor was to be 
mounted) was small, the velocity profile to be used as input to the inverse design 
method was measured together with the position of its minimum velocity. As can be 
seen from Figure 7.4, this profile deviated slightly from axisymmetry, and was 
therefore circumferentially-averaged using a Least Squares approach (NAG routine 
E02BAF given in [3]). The resulting axisymmetric velocity profile as input to the
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inverse design method (together with the original velocity measurements) are shown 
in Figure 7.5.

7.2.3 Propulsor Design
Using the final velocity profile obtained from the procedure given in Section 7.2.2, a 
single blade row propulsor was designed using the ducted propulsor inverse design 
method outlined in Chapters 4 and 5.

An NSMB No.l9A duct profile (Figure A9.1, Appendix IX) was selected for the test 
propulsor, this duct profile having found widespread application on merchant ships. 
However, the length to diameter ratio (L/D) of the Duct was increased from 0.5 to 
0.6 to allow for the installation of a second blade row at a later date if required. In 
order to minimise wall-interference effects which affect propulsor mass flow, the 
interior diameter of the duct was set to 0.2m, thereby allowing a clearance of 
approximately 1.5D between the duct and tunnel walls (Figure 7.6).

Minimising blade tip clearance diameter in accordance with good design practice, a 
blade tip diameter of 0.198m was then selected.

At this stage a hub diameter of 0.08m (corresponding to a hub to tip ratio of 0.404), 
and a constant axial blade chord c=0.03m (=D/4) were chosen, both being 
representative of full scale ducted propulsors. Additionally, the blade leading edges 
were chosen to be 3c/2 downstream of the duct leading edge so that the blading was 
mounted centrally within the duct.

A seven-bladed design was chosen, so as to represent both merchant ship propulsors 
which may have as few as four blades, and propulsors for military applications which 
may have more than ten blades on each blade row. Adopting more blades would have 
increased the time required to manufacture the propulsor, and could have led to 
"blade overlap" which would have complicated the mounting arrangements for the 
blades.

At this point it was necessary to select a shaft speed for the design. It was essential 
to select the shaft speed in such a way that the blade flow would be fully turbulent; 
failure to do so could have resulted in laminar or transitional flow phenomena which 
are not encountered on full scale propulsors, rendering any results invalid. However, 
it was also necessary to keep the blade Mach Number as low as possible (ideally less
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than 0.3) to prevent flow compressibility from affecting the performance of the
propulsor. Thus, using the definition of blade Reynolds Number given by O'Brien [4]

D 7.1

and defining blade Mach Number by 

y

a 7.2

where +(oV„",

■t
0̂.7 = 70% of Tip Radius 

7;  ̂ = Tip Radius (0.099m)

= Axial Velocity at 70% of Tip Radius (Taken to be 10m /s) 

= Axial Velocity at Blade Tip (Taken to be 30m / s)

C(, 7 = Blade Chord at 70% Tip Radius 
CÛ = Shaft Angular Speed (Rads / s)
V = Kinematic Viscosity of the Flow Medium

(Typically 1.461 x 10'  ̂m^ / s for Air at Room Temperature) 

a = Speed of Sound in the Flow Medium

(Typically 340.3m / s for Air at Room Temperature)

a shaft speed of 4000rpm was selected using the plots shown in Figures 7.7 and 7.8, 
corresponding to M=0.15 and R^=6.3xlO"*; this was deemed to be the best 
compromise between viscous and compressibility considerations.

Although Reynolds Numbers for full scale propulsors are typically as high as 3x10^, 
such a value could not be achieved in the wind tunnel without there being supersonic 
flow on the blades. In any case, it was hoped that any problems with laminar or 
transitional flow on the blades could have been solved using turbulent trips.

The blade normal thickness distribution adopted is as given in Figure A9.3 (Appendix 
IX), where x is the axial distance from the blade leading edge. Once computational 
results were available the suitability of this thickness distribution was assessed using
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simple one-dimensional methods for blade strength assessment similar to those 
presented by Marscher [5].

Some consideration was given to adopting a cantilevered shaft arrangement whereby 
both shaft supports would have been located downstream of the duct. However, 
whirling analyses showed such an arrangement to be impractical as it would have 
entailed positioning the shaft supports and bearing housings (with their associated 
aerodynamic interference) close to the duct trailing edge. Therefore, the shaft support 
arrangement shown in Figure 7.2 was adopted, albeit reluctantly, as the presence of 
the upstream shaft support (which was fitted with a fairing) would inevitably have 
some effect on propulsor performance.

A shaft length of 1.0m was chosen to ensure minimum aerodynamic interference 
between the shaft mounts and drive mechanism, and the propulsor. A simple whirling 
analysis was conducted using the Rayleigh method outlined in [6]; this showed that if 
a solid steel shaft was adopted, shaft whirl (which could cause the blading to contact 
with the duct) would be avoided. Beam calculations showed both the static bending 
stresses in the shaft and the associated shaft deflection to be negligible.

The "far upstream" velocity profile adopted for the computational runs is as shown in 
Figure 7.5, the variation in velocity between the hub and tunnel wall being 
representative of that experienced within the afterbody boundary layer of a ship. For 
computational purposes the "far upstream" boundary was taken to be 0.24m upstream 
of the duct leading edge.

After considering a number of alternative blade rV  ̂ distributions, that shown in 

Figure 7.9 and defined by

212137.563z^ - 5341.301z^ 
17.046Z + 0.230

: z < -0.008m

-250.0z^ + 23.684Z + 0.339 ; -0 .0 0 8 m < 2 < 0 .008m 7.3

-110096.711z’ + 2392.321z^ 
+ 2.54ÔZ + 0.395

: z > 0.008m

was adopted as it was felt, having considered the blade velocity distribution, that this 
would minimise the risk of flow separation on the blades. It will be noted that for
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simplicity, this distribution was chosen to give zero radial variation in rVg, and, taking 

the density of air to be 1.225 kg/m ^, resulted in a torque coefficient

which is representative of full scale propulsors.

The initial design of the blading was obtained using the ducted propulsor design 
method outlined in Chapters 4 and 5 and the 257x65 meridional mesh shown in 
Figure 7.10. The mean streamlines, velocity vectors, duct pressure distribution and 
blade shapes as predicted by the method are shown in Figures 7.11, 7.12, 7.13 and 
7.14 respectively.

To achieve improved resolution for the manufacture of the blading, the final blade 
design was generated using a simplified version of the inverse design method that 
only modelled the flow within the duct from just downstream of the duct leading edge 
to just upstream of the duct trailing edge. This run was conducted on the 113x49 
meridional mesh shown in Figure 7.15, using the mass flow and velocity estimates of 
the previous runs as input. Due to the relative insignificance of three-dimensional 
shear effects (suggested by Figure 7.14) the final design was generated using a three- 
dimensional mean shear run and 16 Fourier harmonics (N=16). The final blade 
shapes used in the manufacture of the blading (based on an estimated propulsor mass 
flow of 0.911 kg/s) are shown in Figures 7.16 and 7.17.

7.2.4 Selection of a Suitable Drive Mechanism
Due to the high shaft speed required a high performance DC servo-motor was 
selected to drive the propulsor shaft, with speed control being achieved using a 
thyristor drive. Although motor manufacturers suggested that a conventional servo- 
amplifier might give greater speed control, the thyristor drive was selected on 
grounds of cost, and, when combined with an in-line choke was found to give speed 
control well within the ±1% accuracy of the hand-held photo-electric tachometer used 
to measure shaft speed.

For simplicity a belt drive was used to transmit power to the propulsor shaft, with the 
motor being mounted at the downstream end of the shaft so as to minimise the effect 
of its presence on propulsor performance.
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The shaft was mounted on deep groove ball bearings situated in bearing housings at 
each end of the shaft. This type of bearing was chosen as it was cheap, compact, and 
well able to transmit the shaft thrust without the need for a dedicated thrust bearing.

7.2.5 Manufacture of the Propulsor Test Rig
Each of the propulsor blades was machined as an individual blade segment on a 
Cincinnati CIM-X three-axis NC milling machine, sufficiently small machining steps 
being taken so as to eliminate the need for hand finishing of the blade surfaces. The 
blades were machined with a 5mm root radius, both for ease of manufacture and 
reasons of blade strength. Each blade (Figure 7.18) was then bolted into a recessed 
pocket on the shaft.

The duct was also machined on the NC milling machine prior to hand-finishing on a 
lathe, with the remainder of the design being manufactured using conventional 
workshop techniques.

The entire ducted propulsor assembly (as shown in Figure 7.2) was then mounted on 
an aluminium base plate for alignment purposes, and end-loaded into the tunnel 
working section (Figure 7.6).

7.2.6 Selection of a Probe for the Propulsor Flow Field Measurements
Having decided (for the reasons outlined in Section 7.1(c)) to measure only the time 
averaged velocity field around the test propulsor, it was decided that these 
measurements could best be conducted using some form of pitot probe.

Although the use of a simple pitot-static probe was briefly considered, several factors 
all but excluded the use of this type of device:-

1) As the total pressure tube is coaxially housed within the outer (static pressure)
tube, pitot-static probes are generally larger than some of the other types of
probe available. It was felt, given the small size of the test propulsor, that a
pitot-static probe (and its supports) would cause unnecessary disturbance to 
the propulsor flow field, thereby impairing its own performance, and possibly 
that of the propulsor.

2) For accuracy, the static pressure taps of a pitot-static probe are generally 
located several probe diameters (see Chue [7]) downstream of the total 
pressure tap (which lies at the tip). As a consequence this type of device is
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rather ill-suited to cases where rapid spatial variations of flow velocity are 
encountered, such as downstream of the test propulsor.

3) Measurements of axial and tangential velocity downstream of the propulsor 
would entail incrementally yawing the probe to obtain a "null" reading 
(whereby the probe is aligned with the flow). Whilst this in itself would be 
rather tedious, the use of a conventional "L" shaped probe (such as that shown 
in Figure 7.3) would also necessitate repositioning the probe to maintain the 
spatial position of the probe tip,

4) As pitot-static probes generally display poor sensitivity to yaw, the 
measurement of the downstream velocity field as outlined in 3) above was 
deemed to be insufficient accurate for the purposes of the experiments.

As a consequence the use of a five-hole pitot probe (see [7], [8]) was considered. 
Use of such a probe would have enabled all three components of time-averaged 
velocity (i.e. 1/  ̂ l^ a n d l/ ) to be measured simultaneously. Furthermore, all 

measurements could have been conducted with the probe at fixed angles of yaw and 
pitch, eliminating the tedious task of nulling the probe at each measurement position. 
Additionally the close spacing of the pressure taps around the tip of the five-hole 
probe minimises measurement errors associated with the tap spacing. However, this 
type of probe generally requires empirical calibration over a range of pitch and yaw 
angles, which means that the probe support structure must allow for both pitch and 
yaw.

After considering the difficulty of incorporating a calibrated yaw and pitch mechanism 
into the probe traverse system, and having noted the insignificance of radial velocities 
predicted by the blade design method (Figures 7.11 and 7.12), use of a five-hole 
probe was rejected in favour of the three-hole Cobra (Conrad) probe shown in Figure 
7.19.

As outlined by Chue [7], the three-hole Cobra probe (as opposed to the two-hole 
variant) enables both components of flow velocity in the plane of the probe head (i.e. 
normal to the stem) to be measured simultaneously provided the third component of 
velocity (parallel to the stem) remains small. For the purposes of measuring the 
propulsor flow field, this involved measuring the axial and tangential components of 
velocity, whilst neglecting the radial component. The Cobra probe shares the 
compact tap spacing of five-hole probes, and as with five hole probes, measurements
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can be conducted with the probe at a fixed angle of yaw. Whilst it is still necessary to 
empirically calibrate the probe over a range of yaw angles (Section 7.3), there is no 
need to pitch the probe, resulting in both a simpler traverse mechanism and a simpler 
calibration procedure.

7.2.7 Experimental Readings
The following experimental measurements were made with the ducted propulsor 
operating at its design point:-

1) Velocity Measurements
Having calibrated the Cobra probe (see Section 7.3.1), a series of radial 
traverses were conducted above the shaft at various stations around the test 
propulsor (Figure 7.23), throughout which time the probe remained aligned 
with the shaft axis. Upon completion of the traverses, the probe pressures 
(which were measured using a bank of U-tube manometers inclined at 20° to 
the horizontal) were converted into axial and tangential velocity components 
using the technique outlined in Section 7.3.2, and compared with the 
predictions of the blade design method as shown in Figures 124..1.21.

In addition, using the results shown in Figures 7.25(f) and 7.27(a) the flow

angles (tan'^(Ve/V'J) were calculated 8mm (0.067 duct lengths) upstream of

the duct trailing edge, these being compared with the predictions of the design 
method in Figure 7.28.

Finally, the velocity measurements shown in Figure 7.25(f) were integrated to 
yield propulsor mass flow, this being compared with the computational 
prediction in Table 7.1.

2) Shaft Power Measurements
In addition to the detailed flow measurements outlined in 1) above, it was 
thought worthwhile to obtain a more general indication of overall propulsor 
performance.

To these ends the electrical power absorbed by the shaft motor was measured 
under design conditions, firstly with the duct and blading in place, and then 
with these items removed. By subtracting the latter result (which represents, at 
least approximately, the transmission losses in the drive mechanism) from the
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first, an estimate of the power absorbed by the blading was obtained, as shown 
in Tables 7.2 and 7.3.

In addition to the above measurements, some attempt was made at flow visualisation 
using both smoke traces and tufts, although for the reasons given in Section 7.6.7, 
little was obtained in terms of meaningful results.

Additionally, the installation of pressure taps on the duct surface was considered to 
enable the duct pressure distribution to be measured and compared with 
computational predictions. However, this would have entailed machining a trench in 
the outer surface of the duct to conceal the necessary pressure tubes. Thus, due to 
limitations of time and concerns regarding the effect of this machining operation on 
duct circularity (and therefore blade tip clearance), these measurements were 
removed from the experimental schedule.

7.3 Use of the Three-Hole Cobra Probe for Measuring the Test Propulsor 
Flow Field

7.3.1 Calibration of the Three-Hole Cobra Probe
The Cobra probe was calibrated using the procedure outlined by Chue [7], which in 
turn is attributable to the work of Rajaratnam and Muralidhar [9].

This calibration assumes that when the probe is yawed at an angle a  to the flow 
direction, the pressures p^, andp^ recorded by the three pressure taps A, B and C 

(Figure 7.19) may be written

P a =  P«.,ic +  7-4

Pb = P™,k + f^aWPdyn^^U: 7-5

Pc = P.U.BC + l^cWPayn^^ 7.6

where and p̂ ynamic the true static and dynamic pressures at the probe tip, and 

, Kg and are calibration factors that are assumed to be functions of yaw angle 

a  only.
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Having made this assumption, the probe was mounted in the wind tunnel working 
section and aligned with the shaft axis to provide a yaw reference. The probe was 
then positioned towards the upstream end of wind tunnel working section, well clear 
of the test propulsor and tunnel walls, and the mesh screens (Section 7.2.2) removed 
(temporarily) from the entrance to the working section. Upon operating the wind 
tunnel fan, a uniform stream would now be encountered by the probe, and the 
calibration could begin.

The probe pressure readings {Pa, pg andp^)  were measured at successive yaw angles 

in the range -6 0 °< a < 6 0 ° . With these measurements complete, the static and 

dynamic pressures and pdynamic) of the uniform stream were measured using the 

pitot-static probe shown in Figure 7.3, enabling the variation of the calibration 
coefficients and^^) with yaw angle a  to be determined from equations

7.4..7.Ô. The resulting calibration coefficients, as shown in Figure 7.20, are almost 
identical to those presented by Chue [7].

Now, by combining equations 7.4..7.6 it was possible to define an additional 
calibration coefficient

^ P b ~ P a ^ 

V P c ~ P a )
7.7

As with K^,KgàndK^,  this coefficient is purely a function of yaw angle a. 

However, unlike these other coefficients it can be determined solely from probe 
pressure readings, without the need for prior knowledge of the local static and 
dynamic flow pressures.

The fiill range of À'o(a) values determined from the calibration readings is shown in 

Figure 7.21, However, for the purposes of the propulsor flow measurements, it was 
expected that the flow incidence onto the probe would lie within the range 
-10° < a  < 60°, and as a consequence only the range of Kq values shown in Figure 

7.22 were used in interpreting the results of these measurements.

Having obtained this truncated range of Kq values the probe calibration was 

complete.
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However, in closing, it is interesting to note that as an alternative to the form given in 
equation 1.1, Kq could have been defined as

P c ~ P a

\ P b - P a )

^o(^) ~
\ ^ C  ~ ^ B  J

^ P a  ~ P b ^  

P c ~ P b

or

^o (^) ~
^ K b — K c j

P a - P c

^ P b  P c  j

Nevertheless, the combination given in equation 7.7 was adopted as its denominator 
is non-zero over the range of values (Figure 7.22) considered for the propulsor flow 
field measurements. Additionally, unlike some of these other forms, each value of Kq 

defined by equation 7.7 can be associated with a unique value of yaw angle a  over 
the range of a  encountered during the propulsor measurements; this latter property is 
essential to the determination of flow velocity using the technique outlined in Section 
7.3.2.

7.3.2 Determination of Axial and Tangential Velocity Around the Test 
Propulsor Using the Cobra Probe

Having calibrated the Cobra probe as outlined above, the probe traverses described in 
Section 7.2.7 were conducted. For each position of the probe tip the tap pressures 

, Pg and P(̂  were recorded, enabling the time-averaged axial and tangential 

velocities to be determined as follows:-

1) Using equation 7.7, the value of Kq was calculated.

2) Using this value of Kq and the calibration results shown in Figure 7.22, the 

value of probe yaw angle a  was determined using linear interpolation.

3) Using this value of a  and the calibration results shown in Figure 7.20, 
K^, Kg and K^ were determined using linear interpolation.
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4) Having thus determined the values of Kg andA^^, the dynamic pressure 

Pdynamic could theu be obtained by combining any two of equations 1 A. .1.6. In 

practice equations 7.4 and 7.6 were used in order to avoid arithmetical 
problems, resulting in the expression

&\ynamic
^  P c ~ P a  ^ 7.8

Additionally, although the static pressure was not required for the

verification of the ducted propulsor design method, it could, none-the-less, 
have been calculated from equation 7.4, viz

Pmüc = Pa -  7.9

5) Having determined pdynamiĉ  the magnitude of the time-averaged flow velocity, 

|V|, was calculated from

= 7.10

where p is the density of the air in the wind tunnel.

6) Noting that a  was measured relative to the shaft axis, the time averaged 
velocity was be resolved into axial and tangential components, viz:-

= |V |cos(a) 7.11

Ve = |V|sin(a) 7.12

which could then be compared with the predictions of the inverse design 
method.

7.4 Measurement Errors Associated with the Use of the Cobra Probe

There are a number of errors associated with the use of the three-hole Cobra probe 
for measuring the propulsor flow field, and it is worthwhile considering these before
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the flow field results are considered. The possible sources of error are similar to 
those presented by Blake [8] for the measurement of time-averaged and steady flow 
pressures, and may be summarised as:-

1) Probe Alignment Errors
Prior to calibration it was necessary to physically align the probe with the shaft 
axis (the yaw reference). The delicate construction of the probe somewhat 
hindered this procedure, and as a result this alignment was only accurate to an 
estimated tolerance of ±1.5°.

Likewise, in order to correlate the probe readings with the predictions of the 
blade design method it was necessary to position the probe tip at a known 
distance forward of the blading and above the shaft axis before commencing 
experimental readings. Again the fragility of the probe precluded the use of 
spacers for this task, and as a consequence this positioning had to be checked 
with a ruler, with an estimated accuracy of ±lmm.

Although not unreasonably large, these errors were exacerbated by the small 
size of the test propulsor, and add to the cumulative effects of the errors listed 
below.

2) Flow Pitch Incidence Errors
The use of the three-hole Cobra probe in these experiments makes no 
allowance for the presence of radial velocities. Although computational results 
(see Section 7.2.6) suggest that radial velocities around the propulsor are very 
small in comparison to axial velocity, this is none-the-less a source of error, 
with the dynamic pressure due to radial velocity being recorded as an 
augmentation of axial and tangential velocity by the probe.

3) Turbulence Errors
As shown by Blake [8], when measuring time-averaged flow pressures using a 
pressure probe, the effect of flow turbulence is to increase the value of 
pressure recorded by each of the pressure taps. For the test propulsor the 
principal sources of turbulence were the mesh screens used to generate the 
onset shear flow, the turbulence associated with the shaft and duct supports 
(Figure 7.2), and the velocity fluctuations associated with the development of 
circumferential variations of velocity within the blade passages.
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However, in obtaining the flow velocities from the recorded pressures 
(equations 7.11..7.15), only the difference in pressure between the pressure 
taps is used. Thus, assuming the turbulence errors recorded by each hole to be 
near-identical, once might reasonably assume that this source of error is small.

4) Probe-Wall Interaction
To avoid any risk of damage, the probe was brought no closer than 5mm to the 
shaft or duct, whilst the probe supports prevented the probe being brought 
closer than about 80mm to the tunnel wall. As a consequence any errors 
associated with streamline deflection due to probe-wall interaction should be 
negligible.

5) Influence of Probe Supports
Whilst the probe was supported towards the top end of its stem (i.e. well 
downstream of and well above the probe tip), the flow disturbance caused by 
the probe support nevertheless represents a source of error in the measurement 
of the flow velocities, and, moreover, one that is difficult to quantify. Suffice it 
to say that every effort was taken to minimise the interference effects 
associated with the presence of the probe supports.

6) Flow Disturbance Caused by the Probe
The fundamental principal behind the use of the Cobra probe for flow velocity 
measurement is that it disturbs the flow field in which it is placed; if there were 
no flow disturbance then for cases of zero yaw (i.e. the "null" condition) the 
pressure recorded by the centre and side holes would be identical, and it would 
therefore be impossible to decompose the measured pressures into static and 
dynamic components.

However, the size of the probe tip (Figure 7.19) ensures that any associated 
flow disturbances are negligible compared to those caused by the action of the 
propulsor, whilst the probe stem is sufficiently far downstream to have 
negligible effect on the recorded pressures.

7.5 Physical Features of the Test Rig Affecting Propulsor Performance

In addition to the sources of error outlined in Section 7.4 which are directly 
associated with the use of the Cobra probe for velocity measurement, there are a
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number of features of the test rig itself that limit the extent to which the test propulsor 
represents the idealised model input to the blade design method. These include:-

1) The Aerodynamic Blockage of the Test Propulsor Assembly
Due to time constraints, the axisymmetric velocity profile input to the blade 
design method was based upon measurements taken within the tunnel working
section before the test propulsor assembly was installed (see Section 7.2.2).
Thus, the blading, as manufactured, took no account of the modifications to 
the velocity profile caused by the presence of the test rig. In particular, the 
aerodynamic blockage of the assembly (Figure 7.6) is quite large and might be 
expected to result in a measured velocity gradient greater than that specified for 
the blade design.

2) Flow Interference Caused by the Shaft and Duct Supports
Although the downstream shaft support was deliberately positioned sufficiently 
far downstream (0.5m) of the blading to minimise any flow disturbance, the 
duct support, the upstream shaft support and the upstream bearing housing 
inevitably cause the onset flow field to deviate from axisymmetry.

Whilst these problems were minimised by fitting a nose cone (2:1 ellipsoid) to 
the end of the upstream shaft bearing housing, and fitting a foam fairing (not 
shown in Figure 7.2) to the upstream shaft support, these interference effects 
still represent a source of error that it is difficult to quantify.

3) Tunnel Wall Interference
The close proximity of the tunnel walls to the test propulsor must, to some 
extent, modify the test propulsor flow field. In particular, the presence of the 
tunnel wall might be expected to increase the velocity in the region of the 
bypass flow, whilst reducing the flow velocity in the core flow, causing a 
corresponding reduction in propulsor mass flow. This type of interference was 
not modelled by the blade design method (which allows free flow across the 
wall boundary), resulting in yet another source of error that it is difficult to 
quantify.

4) Non-Axisymmetry of Onset Flow
As stated in Section 7.2.2, the propulsor onset flow deviated from axisymmetry 
(Figure 7.4). As a consequence it was necessary to base the blade design on 
the circumferentially-averaged onset flow. Although this undoubtedly results
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in a difference between the computational predictions and the experimentally- 
measured velocities, practical full-scale ducted propulsors rarely (if ever) 
encounter axisymmetric flow, and thus the significance of this error must be 
regarded as a test of the applicability of the blade design method to practical 
propulsors.

7.6 Discussion of the Experimental Results

7.6.1 Axial Velocity Measurements on the Computational "Far Upstream" 
Boundary

The results of axial velocity measurements on the "far upstream" boundary of the 
blade design method (two duct lengths upstream of the duct leading edge) are shown 
in Figure 7.24.

Although similar in overall form, the axial velocities recorded by the Cobra probe 
with the propulsor operating (Curve D) differ quite substantially (by around 20%) 
from those input to the blade design method (Curve A). It was thought worthwhile 
to investigate these differences in some depth, and as a consequence, two additional 
traverses were conducted as follows.

Firstly, the Cobra probe traverse was repeated with the propulsor idle (i.e. with zero 
shaft speed), these results being represented in Figure 7.24 by Curve C. Then, 
another traverse was conducted, again with the propulsor idle, but this time using the 
pitot-static probe (Figure 7.3) that had been used to determined the input velocity 
profile for the blade design method (Section 7.2.2). The results of this latter traverse 
are represented by Curve B in Figure 7.24.

It can be seen that these two latter traverses show successive reductions in axial 
velocity and correspond much more closely to the specified velocity profile (Curve A) 
than that does the profile measured with the propulsor operating (Curve D).

As a result, the author attributes the differences between the axial velocity profile 
input to the blade design method and that measured by the Cobra probe with the 
propulsor running to the following cumulative sources of error:-
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(a) The velocity induced by the propulsor
Although the flow velocity induced by the action of propulsor decreases with 
distance upstream of the propulsor, the difference between Curves C and D 
would seem to imply that it remains significant at the computational upstream 
boundary, where it should ideally be zero. This could have been avoided by 
taking the computational boundary even further upstream.

(b) Differing Accuracy of the Pitot Probes Used
The pitot-Static probe used in determining the input to the blade design 
method was less accurate than the Cobra probe. In particular, the physical size 
of the pitot-static probe is much greater than that of the Cobra probe, and as 
such it would be expected to be less accurate than the Cobra probe due to the 
correspondingly greater disturbance it imparts on the flow. In addition, due to 
the spacing between its static and total pressure taps (see Section 7.2.6), the 
pitot-static probe might be regarded as less accurate at measuring local flow 
velocities than the Cobra probe whose pressure tappings are located close 
together on a compact probe tip.

This source of error is represented in Figure 7.24 by the difference between B 
and C. Had the Cobra probe been available at the time the blading was 
designed, this problem could have been avoided by using this probe, rather 
than the pitot-static probe, to measure the upstream velocity profile.

(c) The Aerodynamic Blockage of the Test Propulsor Assembly
For the reasons stated in Section 7.5, the velocity profile input to the blade 
design method was based on measurements taken before the test propulsor was 
installed in the working section, and as such took no account of the increase in 
flow velocity caused by the aerodynamic blockage of this assembly.

Had the velocity profile for the blade design method been determined after the 
ducted propulsor had been installed in the wind tunnel, this source of error 
could have been avoided.

(d) Non-Axisymmetric Onset Flow
As outlined in Section 7.2.2, the axial velocity profile input to the blade design 
method represents merely an axisymmetric approximation to the true "far 
upstream" velocity profile, and therefore one might expect some difference 
between the specified velocity profile and that actually achieved. Given the
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practical difficulties in generating a truly axisymmetric velocity profile using 
mesh screens it is difficult to see how this source of error could have been 
avoided.

This factor, together with that outlined in (c) above, is represented by the 
differences between Curves A and B in Figure 7.24.

It will be noted that of all these sources of error, all bar that given in (d) could be 
avoided if a new set of blading were designed using the recommendations detailed in 
(a)..(c) above. Indeed, if a new blade design were to be produced, there would be the 
potential for reducing the differences between the measured and specified velocity 
profiles to within 5%. This would be a great improvement over the present results, 
and would be likely to improve the correlation between the computational and 
experimental results outlined below.

7.6.2 Axial Velocity Measurements Away from the Computational Far 
Upstream Boundary

The axial velocity measurements conducted away from the computational "far 
upstream" boundary are shown in Figure 7.25(a)..(i), generally comparing quite well 
in overall form with the computational predictions.

At larger radii and in the bypass flow the differences between the computation 
predictions and the experimental readings remain large (at around 20%) downstream 
of the "far upstream" boundary. However, at lower radii the computational 
predictions become increasingly more accurate as the flow approaches the propulsor, 
with Figure 7.25(b) showing near parity between the predicted and measured velocity 
profile at lower radii.

Whilst to some extent this improved correlation at lower radii can be attributed to 
viscous effects associated with the shaft boundary layer, and wall-interference effects 
(Section 7.5), both of which tend to reduce the velocity in the core flow region, such 
a trend might also have been expected due to the action of the blading dominating the 
behaviour of the fluid in the vicinity of the propulsor.

The velocity measurements conducted downstream of the blading within the duct 
(Figure 7.25(f)) also compare much better with the computational predictions, 
particularly at around tip radius where the two curves are almost identical. Towards 
the hub the differences between the measured velocities and the computational
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predictions increases to around 12%, although this difference can, in part, be 
attributed to the presence of the shaft boundary layer and the blade root radius. 
Additionally, the sharp drop-off in axial velocity measurements at the blade tip would 
seem to be due to the blade tip clearance (which results in only partial energisation of 
the flow immediately adjacent to the duct), and also the presence of the duct 
boundary layer.

Downstream of the duct (Figures 7.25(g).. (i)) the presence of the duct wake is clearly 
reflected in the measured values by a sharp velocity gradient at roughly the same 
radius as the computational prediction. Although one would not expect the 
measurements to yield a true discontinuity in velocity across this wake due to flow 
viscosity, the effects of blade tip clearance must undoubtedly reduce the resolution of 
the duct wake still further.

As the flow proceeds downstream from the duct trailing edge it can be seen that the 
duct wake, as measured, broadens out, again due to viscous action. As a 
consequence, the core flow predictions of the computational method show excellent 
agreement (i.e. to within 3%) with the measured values far downstream of the 
propulsor (Figure 7.25(i)), although the differences within the bypass flow remain 
large.

7.6.3 Tangential Velocity Measurements Upstream of the Duct
The results of tangential velocity measurements conducted upstream of the duct 
leading edge are shown in Figure 7.26.

Bearing in mind the accuracy of the probe alignment (Section 7.4) and manometer 
readings, it can be seen that away from the shaft the measured tangential velocities 
are effectively zero, in keeping with the assumptions of the blade design method.

However, close to the shaft the tangential velocities rise sharply due to the skewed 
shaft boundary layer (which has both tangential and axial components of velocity), 
which is not modelled by the blade design method. Even had the upstream portion of 
the shaft been shrouded within a static housing (as is usually the case with practical 
marine propulsors), little could be done to prevent the growth of such a boundary 
layer within the blade passages. Thus, the extent to which the swirl induced by the 
shaft affects propulsor performance must be regarded as a measure of the applicability 
of the blade design method to practical marine propulsors.
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7.6.4 Measured Flow Angles Downstream of the Blading
The flow angles recorded within the core flow at a position 8mm (0.067L) upstream 
of the duct trailing edge are shown in Figure 7.28.

Although the computationally-predicted flow angles become increasingly inaccurate 
towards the hub, this would seem to be due to the blade root radius (Figure 7.18) and 
presence of the shaft boundary layer. Likewise, the differences between the 
computational and experimental values of flow angle close to the duct can be 
attributed to the effects of blade tip clearance, and also the presence of the duct 
boundary layer.

Overall the flow angle measurements compare very well with the predictions of the 
blade design method. In many ways this would have been expected, for once shaft 
speed has been fixed, it is the blade geometry rather than the propulsor onset flow 
that determines these flow angles (the Kutta condition ensures that there are no 
significant velocities normal to the blade camberline at the blade trailing edge, 
resulting in this strong interdependence between blade shape and flow angle).

It will be noted that the difference between the predicted and measured flow angles 
remains almost constant over the majority of the core flow at approximately 1.5°. 
This would seem to imply that these differences are due to the effects of probe 
misalignment (discussed in Section 7.4) rather than any inadequacies of the blade 
design method.

7.6.5 Tangential Velocity Measurements Downstream of the Blading

The results of tangential velocity measurements (expressed in terms of rV  ̂) 

downstream of the blading are shown in Figure 7.27(a)..(d).

Figure 7.27(a) shows the results of the traverse conducted within the duct, just 
upstream of the duct trailing edge. As with the axial velocity measurements the sharp 

reduction in rV  ̂ at the tip is probably due to duct boundary layer and blade tip 

clearance, whilst the sharp rise in rV  ̂ close to the hub would seem to be associated 

with the skewed shaft boundary layer mentioned in Section 7.6.3.

Measurements downstream of the duct (Figures 7.27(b)..(d)) clearly show the 
presence of the duct wake. Once again, the results show this wake to broaden as it 
passes downstream of the propulsor.
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Overall, it can be seen that the measured values of rV  ̂ within the core flow straddle 

the computational predictions. Towards the hub the measured values of rVg are 

generally lower than the computational predictions, whilst at larger core flow radii the 
measured values exceed the design method predictions; at the mid-point of the core 

flow the computational and experimental values of rV  ̂ are almost identical.

As the propulsor efflux passes downstream, there seems to be little change in the 

radial distribution of rV  ̂ within the core flow, except immediately adjacent to the 

shaft and the duct wake. Indeed, the measured values of rV  ̂ in the core flow do not 

differ from the computational predictions by more than 20%, and, over the majority 
of this region than more than 8%. It is felt that this represents quite good agreement 
when the following factors are taken into account:-

1) The axial velocity profile specified as input to the blade design method differs 
quite substantially from that actually achieved by with the test propulsor (see 
Section 7.6.1).

2) The effects of tunnel wall interference and the shaft boundary layer (see 
Sections 7.5 and 7.6.2) further affect the performance of the test propulsor.

3) Due to the large difference between axial velocity and tangential velocity 
around the propulsor, the tangential velocities determined using the Cobra 
probe are very sensitive both to slight misalignments of the probe (Section 7.4) 
and small errors in the manometer readings. The significance of this source of 
error is highlighted by the error bands shown in Figures 7.27(a)..(d) which 
allow for an effective probe misalignment of ±1.5°.

Given an estimated misalignment in excess of 1.0° (Section 7.6.4), probe 
misalignment is undoubtedly responsible for some of the difference between the 

computational and experimental values of rV  ̂ within the core flow, and would 

also seem to be the cause of the non-zero values of rV  ̂ in the bypass flow.

In particular, 1) and 2) above result in the design method overestimating axial 
velocity close to the hub, and underestimating axial velocity close to the duct (Figure 
7.25(f)). Given that the flow angles downstream of the blading are largely fixed by 
the blade geometry (see Section 7.6.4), the result of these experimental errors can
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only be that the computational method overestimates the values of rV  ̂ close to the 

hub and underestimates those close to the duct. Thus, the manner in which the 

measured values of core flow rV  ̂ straddle the computational predictions (Figure 

7.27(a)) would seem to be more attributable to experimental error (i.e. 1) and 2) 
above) than any limitations of the blade design method.

In closing, the importance of these tangential velocity measurements cannot be over­

stressed. Firstly, rV  ̂ is one of the principal inputs to the blade design method, and is 

therefore one of the principal quantities upon which the accuracy of the blade design 

method must be assessed. Additionally the radial distribution of rV  ̂ downstream of 

the blading can be related to the shaft torque through momentum theory, and as such 
might be regarded as a key indicator of propulsor performance.

7.6.6 Shaft Power Measurements
The results of the shaft power measurements are presented in Tables 7.2 and 7.3.

As can be seen, the power absorbed by the blading as measured is 7% less than that 
predicted by the blade design method, which it is felt represents very good agreement 
if the sources of error outlined in Sections 7.4, 7.5 and 7.6.1 are considered.

7.6.7 Mass Flow Calculation
By integrating the measured axial velocity profile shown in Figure 7.25(f) an estimate 
of mass flow rate was obtained for the test propulsor, as shown in Table 7.1.

If the results presented in Table 7.1 are taken at face value it would seem that the 
ducted propulsor design method is capable of estimating propulsor mass flow to a 
very reasonable degree of accuracy (i.e. within 6%). Furthermore, if the mass flow 
results are considered in conjunction with the shaft power results in Section 7.6.6, it 
might be concluded that the design method gives very good estimates of overall 
propulsor performance.

It will be noted that even though the velocities measured far upstream of the 
propulsor were generally greater than the computational predictions (Section 7.6.1), 
the experimentally determined value of mass flow is some 6% lower than that 
predicted by the computational method. This over-estimation of propulsor mass flow 
by the blade design method (where one might reasonably expect an under-estimation) 
could well be due to the wall-interference effects outlined in Section 7.5, which
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fortunately tend to compensate for the higher than expected measured axial velocities 
upstream of the propulsor.

7.6.8 Attempts at Flow Visualisation
In addition to the above experimental readings, it had also been hoped to conduct 
flow visualisation tests by injecting smoke from a smoke generator into the propulsor 
flow field. Some limited preliminary tests were conducted with the propulsor 
operating under design conditions, with smoke traces upstream of the duct seeming 
to mirror the streamline patterns shown in Figure 7.11 rather well. However, the 
limited output from the smoke generator and the presence of flow turbulence 
prevented any meaningful observations of flow downstream of the blading from being 
made. Unfortunately, the smoke generator (which was rather antiquated!) soon 
proved unserviceable, and could not be used in the preparation of results for this 
thesis.

Further attempts at flow visualisation were made using tufts (strands of wool or 
cotton) suspended from a probe. The problem encountered here was that tufts of 
sufficient size to be recorded on film were of such stiffness as not to respond well to 
the propulsor flow field, and no useful results were obtained.

7.7 Concluding Comments

The net effect of the errors outlined in Section 7.6.1 was that the test propulsor 
blading was designed for different flow conditions to those actually encountered. The 
additional sources of error highlighted in Sections 7.4 and 7.5 further limit the validity 
of the experimental results. As a consequence, it is difficult to draw any definite 
conclusions from the experimental work, although it would seem that the differences 
between the computational and experimental results are more due to errors associated 
with the test procedure than any limitations of the ducted propulsor design method.

Whilst the axial velocity measurements differ quite substantially (by around 20%) 
from the predictions of the design method away from the propulsor, this would seem 
to be due to the sources of error outlined in Section 7.6.1, together with wall 
interference and viscous effects. Closer to the propulsor these differences are much 
smaller, and in overall form the measured velocity profiles agree very well with the 
computational predictions.
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As discussed in Section 7.6.4, the flow angles downstream of the blading are 
primarily determined by blade geometry and shaft speed, being relatively insensitive to 
the local axial velocity. Consequently, the measured flow angles downstream of the 
blading agree very well with the predictions of the blade design method, except 
immediately adjacent to the duct and hub where some differences would have been 
expected.

For the reasons discussed in Section 7.6.5, the tangential velocity measurements 
downstream of the blading were strongly affected by the errors outlined in Section
7.6.1. Additionally, the tangential velocity measurements were found to be quite 
sensitive to errors associated with the probe alignment and manometer readings, and 
as a result are only considered to be accurate to within 1% (this accuracy is based on 
an effective probe misalignment of 1.5° at 20° yaw). Given these two sources of 
error, and also that the tangential velocity measurements downstream of the blading 
generally lie within the error bands associated with probe misalignment (see Figure 
7.27), it is concluded that the blade design method yields very reasonable estimates of 
tangential velocity within the propulsor flow field.

As regards overall propulsor performance, the computationally-determined values of 
shaft power (less transmission losses) and mass flow rate differ by only 1% from the 
measured values. Under the circumstances it is felt that this represents very good 
agreement.

Summarising, it is felt that the experimental results show the ducted propulsor design 
method to yield at least reasonable estimates of the design point propulsor flow field, 
and good estimates of overall propulsor performance

However, one of the key recommendations of this thesis (see Chapter 8) is that the 
experiments should be re-run with new blades designed in accordance with the 
suggestions of Section 7.6.1. The resulting improvements in accuracy would enable a 
far more detailed assessment of the blade design method to be made, at minimal extra 
cost in terms of time, effort and expense.

In closing, it should be noted that the experiments conducted in this Chapter were 
rather limited in scope. In particular, the measurements were conducted for a single 
blade row propulsor of uniform blade loading displaying little sign of slipstream 
contraction. It should be readily apparent that a far more extensive series of tests
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would be required before the design method could be applied to the design of fuU 
scale propulsors with confidence.
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Propulsor Mass Flow^ (kg/s)

Prediction of Blade Design Method 0.911

Calculated from Axial Velocity 0.858
Measurements

t  Based on an air density of 1.225 kg/m3

Table 7.1: Comparison of Computational and Experimental Values of
Propulsor Mass Flow Rate
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DC Motor DC Motor
Current (Amps) Voltage (Volts)

Power (Watts)

Test Propulsor 
Running at 
Design Point

5.1 83.3 424.83

Shaft Running 
Under Design 
Conditions with 
Duct and 
Blading 
Removed

2.65 80.0 212.0

Table 7.2: Shaft Power Measurements for the Test Propulsor

Power Absorbed by Blading (Watts)

Test Propulsor Running at Design Point

Prediction of Blade Design Method

212.83

228.96

Table 7.3: Comparison of Shaft Power Measurements with the Prediction 
of the Blade Design Method

206



«

Fon 
S e c t  io nW o rk in g  S e c t i o nC o n t r o c  t i on Di f f userM o u th Chom be r

Pi leh Control  
Uochonitm 1er  
Fon

T r e v e r s e  
Geor V

Figure 7 . 1 : View of the Low Speed Wind Tunnel with the
Modified Working Section (Based on a Drawing 
Presented by El-Gamal [2])



208



C o n n e c to r s  for
5mm 0 / S  D i o  T u b in g

D i o  5 / 8
20

P r o b e  S tem  
D i o  5 / 1 6 *

1170

6  H o l e s  D i o  1 m m  
E q u o I  I y  S p o c e d  
A r o u n d  C i r c u m f e r e n c e

T i p  H o l e  
D i o  1 m m

35

135

Figure 7 . 3 ; The Pitot-Static Probe Used for the Initial 
Velocity Profile Measurements

209



0.2

0.1

B
<L>
C

a  0.0

g
u

—0.1 
(L>
§
<

I -0.2
tos

-0 .3

-0 .05 0.05-0 .15 0.15

Transverse Distance from Shaft Centre Line (m)

Experimental

Least Squares (Axisymmetric) 
Approximation as Input to Blade 
Design Method

No. of Contours = 8 
Min. Velocity = 7.74 m/s 
Max. Velocity = 22.40 m/s

Figure 7 . 4 ; Comparison of the Measured Velocity Field with that 
Input into the Blade Design Method

210



0.2000

0.1600

2  0.1200 -

"O
^  0.0800 -

0.0400
- LEGEND -

+  Experimental Readings
 Input to Blade Design Method

0.0000
5.00 9.00 13.00 17.00 21.00 25.00

Axial Velocity (m/s)

Figure 7.5: The Final "Far Upstream" Velocity Profile as Input
into the Blade Design Method



Working Section Boundary

Figure 7 . 6 : End View (to Scale) of the Test Propulsor
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as Predicted by the Fully Three-Dimensional Run
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Figure 7 . 1 2 ; Mean Velocity Vectors for the Test Propulsor
as Predicted by the Fully Three-Dimensional Run
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(a) Ob lique View from Upstream (b) Axial View from Downstream

Figure 7 . 1 8 : Photographs of a Test Propulsor Blade Prior to Installation On the Shaft
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Figure 7.23: Measurement Stations for the Test Propulser Flow Field



K)
tooc

0 . 2 0 0 0  - I

0.1680 -

2  0.1360
O)3  
13
rr 0.1040 —

0.0720 -

0.0400
0.00 5.00

'O f  +' 
P  ik /

/ ,0  f  +'
/+.0

10.00
I

15.00

Axial Velocity (m/s)

20.00

- LEGEND-
-4— Experimental (Cobra Probe, 

Propulser Operating)

4K-- Experimental (Cobra Probe, 
Propulser Idle)

•G ••• Experimental (Pitot-Static 
Probe, Propulser Idle)

Original Input to Blade 
Design Method

25.00

Figure 7.24; Comparison of the Axial Velocity Mesurements on the Computational 
"Far Upstream" Boundary (240mm (2L) Upstream of the Duct Leading 
Edge) with the Velocity Profile Specified as Input to the Blade 
Design Method



Figure 7.25: Comparison of the Axial Velocity Measurements
Around the Propulser with the Predictions of 
the Blade Design Method
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Figure 7.25 (Continued)
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Figure 7.25 (Continued)
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Figure 7.25 (Continued)
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Figure 7.25 (Continued)
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Figure 7.27: Comparison of the Mean Swirl ( rV̂  ) Measurements 
Downstream of the Blading with the Predictions of 
the Blade Design Method
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Figure 7.27 (Continued)
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CHAPTER 8: SUGGESTED AREAS FOR FUTURE RESEARCH

The research work outlined in this thesis highlighted several possible avenues of 
future research. These include:-

1) The Development of a Fully Three-Dimensional Analysis Method for 
Ducted Propulsors Operating in Shear Flow

Whilst the inverse design method outlined in this thesis enables the design point 
performance of a ducted propulser to be predicted, there is a pressing need for 
a similarly capable three-dimensional analysis program to enable the off-design 
performance of synthesised designs to be predicted. Unlike the methods given 
in Section 2.3, such a method should ideally have the capability to model 
sheared onset flow (preferably non-axisymmetric), slipstream contraction and 
the presence of a second blade row simultaneously.

This requirement could be met by extending an existing turbomachine analysis 
method to the case of ducted propulsor flows. Although the ducted propulsor 
analysis problem is arguably much more complicated than that for the internal 
flow turbomachine, the turbomachine analysis methods reviewed by McNally 
and Sockol [1] and Zangeneh [2] are generally more sophisticated than those 
currently employed in the field of ducted propulsor design.

Particularly promising candidate methods are the finite volume method of 
Denton [3] and the Dawes' Navier-Stokes solver [4]. Both these methods have 
already found widespread application in the field of turbomachine design. At 
present these approaches are applicable only to flow between endwalls of 
infinite extent and assume the far upstream velocity field to be axisymmetric. 
Furthermore, the associated program codes were written for compressible flow 
problems, and it is believed that there may be difficulty in achieving 
computational convergence for marine propulsors where the flow is 
incompressible. Considerable effort would have to be directed at extending 
these two methods to ducted propulsor analysis, particularly as regards 
determining propulsor mass flow and dealing with the duct wake. However, if 
successful the resulting analysis methods would offer substantial advantages 
over those presented in Chapter 2. The extension of Dawes' method to ducted
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propulsors is particularly exciting, as for the first time it would be possible to 
conduct a detailed viscous analysis of propulsor performance.

Alternatively, a Clebsch-based analysis program based on the inverse design 
method presented in Chapters 4 and 5 could be developed. Here, blade shape 

rather than rV̂  would be fixed as an input to the method, with rV̂  on the blade 

rather than blade shape being determined as output. Some limited development 
work conducted by the author suggested that whilst convergence of the 
actuator duct analysis problem could be achieved, numerical problems 
associated with evaluating the potential function <E> prevented any three- 
dimensional solutions from being obtained. Time-constraints have prevented 
investigation of this problem, although it has been suggested that its cause is 
non-zero incidence of the blades. Research into solving these difficulties could 
prove very worthwhile, as the modifications required to convert the inverse 
design code into an analysis code are minimal.

In any event, it is possible to envisage a sophisticated ducted propulsor inverse 
design/analysis package which would not only be highly marketable, but also 
offer the prospect of considerable improvements in propulsor performance.

2) The Development of a Fully Three-Dimensional Inverse Design Method for 
Open Propellers

Although the state of the art of blade design methods for conventional marine 
propellers (as reviewed by Kerwin [5]) is much further advanced than that for 
ducted propulsor blading, it is felt that the ducted propulsor design method 
outlined in this thesis could readily be extended to the design of these devices.

Indeed, in many respects the open propeller problem is much simpler than that 
for the ducted propulsor, since there is no duct geometry to consider, and, at 
least for the case of zero tip loading, there is no jump in velocity across the tip 
streamline.

The resulting method would offer a number of advantages over existing 
propeller lifting surface design techniques such as those presented by Greeley 
and Kerwin [6], and Brockett [7]. These methods often make assumptions 
regarding propeller loading, hub geometry, slipstream contraction and the
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influence of shear flow, and furthermore, at present, do not include a second 
blade row.

Using the techniques outlined in Section 5.10, a twin blade row propeller design 
code could be developed for the design of tandem propellers, contra-rotating 
propellers, and propeller/vane wheel combinations, all of which have come to 
prominence in recent years as a means of improving propulsive efficiencies ([8], 
[9]).

3) Further Investigations into Numerical Problems Associated With the 
Ducted Propulsor Inverse Design Method

As stated in Sections 5.12 and 5.13, a number of difficulties were encountered 
in obtaining computational convergence of the ducted propulsor inverse design 
codes under certain circumstances. Whilst considerable effort was expended 
investigating these problems, and practical means for their avoidance are 
presented, it is possible that given further work more satisfactory means of 
dealing with them might be obtained.

4) Further Work On the Verification of the Ducted Propulsor Inverse Design 
Method

For the reasons discussed in Sections 7.7 and 7.6.1, it is strongly recommended 
that the experiments outlined in Chapter 7 should be re-run with a new set of 
blading designed in accordance with the suggestions of Section 7.6.1. This 
should considerably improve the correlation between the experimental 
measurements and computational predictions, and would also enable firmer 
conclusions to be drawn regarding the accuracy of the ducted propulsor inverse 
design method.

Additionally, it was noted in Section 7.7 that the experiments conducted for this 
thesis were rather limited in scope, and as such even a re-run of these tests 
would not fully verify the design method. It is therefore proposed that a more 
extensive series of experiments should be conducted, both for single and twin 
blade row designs using either hot wire anemometry (HWA) or laser-Doppler 
velocimetry (LDV) techniques. These tests, involving measurements of
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circumferential variations in velocity, would enable the validity of the 
assumptions presented in Section 4.2, together with the overall accuracy of the 
computational method, to be assessed in detail. To improve the accuracy of the 
results a wind tunnel with a larger working section should be utilised, not only 
to minimise wall-interference effects, but also to enable a larger test propulsor 
to be used. Were a cavitation tunnel to be made available the accuracy of 
cavitation predictions could also be appraised.

5) Comparison of the Ducted Propulsor Design Method with Existing 
Computational Techniques

It would be very interesting to compare design results obtained from the 
ducted propulsor design method with comparable results obtained using the 
analysis methods outlined in Section 2.2, and the blade design methods 
outlined in Sections 2.3.3 and 2.3.4. Not only would this provide at least an 
approximate means of verifying the computational procedure, but it would also 
enable the significance of the various assumptions inherent in these methods 
(such as those associated with slipstream contraction and sheared onset flow) 
to be assessed.

6) Modification of the Ducted Propulsor Design Method to Deal with Static 
("Bollard Pull") Design Conditions

Ducted propulsors for certain towing vessels such as tugs may be designed for 
a static ("bollard pull") condition where the vessel is stationary in the water 
with the propulsor generating some specified thrust. Under these conditions 
the velocity profile far upstream of the propulsor tends to zero, with the flow 
velocity at the blading being purely a result of the action of the blading (Figure 
8. 1).

Under these conditions the ducted propulsor design method as presented in this 
thesis is no longer applicable, since specifying zero velocity on the far upstream 
boundary results in zero mass flow and numerical failure.

However, it is envisaged that the design method could be extended to deal with 
such circumstances by replacing theiDirichlet condition for stream function on
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the far upstream boundary (which at present is based on a specified 
axisymmetric velocity profile) by an appropriate von Neuman condition. In 
particular, the condition

3z

would seem ideal, at least for the simplified case of a cylindrical hub, as it 
allows for the velocity induced by the propulsor on the far upstream boundary 
(which, whilst small, is none-the-less non-zero), yet also implies the absence of 
axial variations in flow velocity far upstream, as one would expect.

By similar arguments, for more general cases where a non-cylindrical hub is 
employed a far upstream condition of

8.2

is suggested. Whilst this condition is mesh dependent, one generally defines 
the quasi-streamlines to align approximately with the flow far upstream, and so 
this is not considered to be too great a problem.

It should be noted, however, that equations 8.1 and 8.2 represent von Neuman 
boundary conditions; when combined with the von Neuman conditions for 
stream function on the r = ©o and far downstream boundaries it could well be 
that problems are encountered in achieving numerical convergence.

For propulsor design under static conditions there are also problems associated 
with the very steep flow incidence one would expect at the duct leading edge 
(Figure 8.1). The principal area of concern is the location of the r = ©© 
boundary which would have to be located some considerable distance away 
from the propulsor for the stream function boundary condition given in Section 
5.3.1(e) to be valid. As a consequence, special attention would have to be paid 
to meshing the bypass region to ensure that a computationally efficient mesh is 
adopted.
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Allied to this steep duct incidence, it is conceivable that reverse flow could 
occur in the bypass flow region, in which case the marching routines for H and 
X would have to be modified.

For certain towing applications (e.g. tugs) astern performance is a prime 
consideration in design and thus ducts with well-rounded trailing edges (Figure 
8.1) are often adopted (e.g. Nozzle No. 37, Figure 2.1). In the absence of a 
well-defined separation point at the duct trailing edge, it would be necessary to 
specify a point of flow separation at the duct trailing edge. As noted by Falcao 
de Campos [10], the arbitrary specification of such a stagnation point can have 
a significant effect on the accuracy of propulsor performance predictions, 
particularly as regards the duct pressure distribution.

Additionally, it is not practical to extrapolate the trailing edge of a well- 
rounded duct to a point in the manner described in Section 4.2. Consequently, 
due to the relatively poor flow resolution that could be achieved close to the 
trailing edge of a well-rounded duct using a computational mesh, it is likely 
that difficulties would be encountered in achieving convergence of propulsor 
mass flow by application of the Kutta condition at the duct trailing edge. The 
only obvious solution to this problem would be to specify both the point of 
flow separation from the duct and also the duct wake trajectory for a few mesh 
points downstream. Propulsor mass flow could then be determined from the 
application of the Kutta condition at some point on the duct wake.

Under "bollard pull" conditions it is quite likely that high blade loadings would 
be encountered. Thus, not only could the three-dimensional shear effects 
discussed in Chapter 6 become significant for these cases, necessitating the use 
of fully three-dimensional runs (Section 5.11.1), but also cavitation (which one 
generally tries to avoid at the design point) may occur, raising doubt over the 
accuracy of the blade design method.

Summarising, it can be seen from the above that considerable work would be 
required if the ducted propulsor design method presented in this thesis were to 
be applied to the design of ducted propulsors under "bollard pull" conditions. 
However, given that propulsors for towing vessels are often designed to 
achieve a specified "bollard pull", there may well prove to be demand for such 
a design method.
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Finally, it should also be noted that the problems associated with well-rounded 
duct trailing edges, as outlined above, would be encountered even if the 
blading were to be designed for a free-running condition (i.e. with onset flow). 
It is therefore felt that further research into the application of the design 
method to cases where such ducts are employed is warranted.

7) An Inverse Design Method for Ducted Propulsors Based on a Specified 
Blade Loading Distribution

The inverse design method as presented in Chapters 4 and 5 determines 
propulsor blade shapes from a specified blade circulation distribution (expressed 
in terms of kVq ). As the flow velocities at the blading are not known in advance 

it is difficult to obtain the required shaft torque in a single design run. Whilst 
this problem can be overcome by adding an extra tier to the iterative procedure 
(as suggested in Section 5.8), perhaps a more computationally efficient 
approach is to modify the method to design for a specified distribution of blade

pressure loading {p'  ̂-  p~) rather than for a given blade circulation distribution.

With such an approach the blade rV̂  distribution would be updated each blade 

iteration, being marched downstream from an initial condition (e.g. = 0 ) at
the blade leading edge using equation A5.2:-

W„-VrV, = -
27tp

Having obtained the updated blade kVq distribution in this way, the 

computational procedure is then identical to that for the circulation-based 
approach outlined in this thesis. As a consequence this pressure loading-based 
method could be developed from the existing method with a minimum of 
modifications.

Not only would the resulting method enable shaft torque to be specified as an 
input to the design process, but it would also enable the zero incidence and

blade Kutta conditions to be satisfied by merely setting (p'  ̂-  p~) = 0 at the
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blade leading and trailing edges. Furthermore, cavitation performance could be 
assessed in advance from estimates of static pressure at the blading.

It should noted, however, that equation 5.2 is based on an assumption of zero 
jump in rothalpy across the blade (Appendix V), and as such would not, strictly- 
speaking, be valid for fully three-dimensional runs. None-the-less, this modified 
inverse design method is very promising, and, bearing in mind the insignificance 
of three-dimensional shear effects highlighted in Chapter 7, this latter limitation 
is not too great a cause for concern.

8) Development of a Family of Generic Ducted Propulsor Designs

Due to the commercial and military applications of ducted propulsors it proved 
very difficult to obtain detailed ducted propulsor design and performance data 
during the course of the work outlined in this thesis. This lack of data severely 
hampered attempts to verify the ducted propulsor inverse design method 
presented in this thesis.

Were authors to publish computational and experimental results for a standard 
series of ducted propulsors designs, then these problems might be avoided in the 
future. Such a family of generic designs might consist of say four or five 
propulsors typical of tug, trawler, submarine and large merchant ship 
applications. In the long term such standardisation of data would greatly reduce 
the time, effort and expense involved in verifying computational methods and 
developing new experimental techniques.
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CHAPTER 9: CONCLUDING COMMENTS

The author would like to make the following closing comments regarding the work
presented in this thesis:-

1) The inverse design method presented in this thesis provides a fast and efficient 
means of designing ducted propulsor blading, and yet leaves considerable 
control of the design in the hands of the designer. The main limitations of the 
method would appear to associated with the assumption of inviscid flow, which 
takes no account of the hub, duct and blade boundary layers. Although the 
effects of blade cavitation are also neglected, this is considered to be less of a 
limitation, for ducted propulsors are generally designed to avoid this type of 
flow phenomenon.

It is felt that the approach could readily be extended to the design of other 
marine propulsion devices such as open propellers, contra-rotating propellers, 
water jets, and propeller-vane wheel combinations.

2) The computational results presented in this thesis seem to indicate that the 
development of circumferential variations of shear vorticity within the blade 
passages may be neglected during the design of blading for practical ducted 
propulsors. As a result, the three-dimensional mean shear simplification of the 
ducted propulsor design method yields blade shape and performance estimates 
comparable to the much more complicated and time-consuming fully three- 
dimensional approach.

However, the results also suggest that the development of circumferential 
variations of velocity within the blade passages of practical ducted propulsor 
designs is quite significant. Consequently the actuator duct simplification of the 
ducted propulsor design method, whilst both fast and robust, yields results that 
are, to some extent, inferior to either of the three-dimensional approaches.

It should be stressed that these conclusions are based on free-running design 
conditions only, where relatively light blade loadings are usually adopted in 
order to maximise propulsive efficiency, and (for military applications) minimise 
acoustic signature.
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Some words of caution are therefore warranted for cases where higher blade 
loadings may be used, such as the static pull design condition considered in 
Chapter 8. Here blade loadings may be such that three-dimensional shear 
phenomena are significant, in which case use of the fully three-dimensional 
approach would be desirable. However, in such instances blade cavitation, 
which is not accounted for in the design method, may well be a problem, casting 
the validity of the results into doubt.

3) Although the experimental work outlined in Chapter 7 goes some way towards 
verifying the computational design method presented in this thesis, these tests 
were limited in both scope and accuracy. It is felt that further verification work 
(such as that suggested in Chapter 8) will be required before true confidence 
can be placed in the predictions of this ducted propulsor design method.

4) It must be stressed that the ducted propulsor design method outlined in this 
thesis produces performance data and required blade shapes for a single design 
point. However, as with other design methods (Section 2.3), the method 
cannot assess the suitability of the synthesised design at the design point, and 
no estimate of off-design performance can be obtained without the use of a 
separate analysis method.

The final decision regarding the suitability of a given design must therefore be 
made by the designer based on numerous conflicting requirements such as off- 
design performance, acoustic signature, cavitation performance and efficiency.
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APPENDIX I: PROPERTIES OF THE DISCRETE FOURIER
TRANSFORM

Definition of the Discrete Fourier Transform

There are several alternative definitions ([1], [2], [3]) of the discrete Fourier 
Transform (DFT). However, the form adopted in this thesis is

X" = — : - N ! 2 < . n < N ! 2 - \  A l.l

with the form of the Inverse Discrete Fourier Transform (IDFT) being

N I2-1

I ;
n = -N I2

x(k)= A1.2

where n and k are integers, and x(k) is a function of period N defined over the range 
—N 1 2 < k < N / 2 - \ .  It will be noted that equations A l.l and A1.2 are identical to 
those used by Zangeneh [3].

Periodic Nature of the DFT

From equation A l.l it follows that

Since g = 1 for all values of the integer k, it can therefore be seen that

X" A1.3

i.e. the DFT of a function of period N is also of period N.

Frequency Domain Convolution Theorem

Consider some function c{k) of period N which is the product of two functions x{k) 
and y(k), also of period N, viz
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c{k) = x{k) y{k)

Representing x(k), y(k) and c(k) by IDFTs, it can be seen that

N /2 -1  N H - l  N I2 - \
In k q lN' ' ^ ( j n ^ i l n k n l N  _  ^  ^p ^ i2 n k p /N  ^  yfg'

n=—N I2  p = -N I2  q = -N  12

Further defining m={p-\-q) yields

N I 2 - \  N I2 -1  N / 2 - 1 + P
' '^ ( j n ^ i 2 v in l N  _  '^ ^ p ^ i2 T ik p lN  ^ y

n=—N I2  p=—N I2 m = -N I2+ p

However, as both F'"  ̂ and are functions of period N, it follows that

N /2-1+ P  N /2 -1
y ^ m - p ^ i 2 7 c / : ( m - p ) / V    y  m - P ^ i 2 7 d : ( m - p ) / A /

m=—N I2+ p m=—N  12

Therefore

V /2 -1  N !2 - \  N /2 -1
^ ^ ^ ^ n ^ i2 n k n /N  _  ^ ^ ^ p ^ i 2 n k p l N  y  m - f  g i2 7 U :(m -p )/N

n=—N f2  p=—N  12 m=—N I2

or

N /2 -1  N /2 -1  N /2-1
'^ ^ ^ n ^ i2 n k n lN  _  ^i^nkmlN

n=—N /2  m = -N /2  p = -N I2

Noting that the component of the LHS must correspond to the component of 
the RHS for equality (i.e. n=m), it follows that

N /2-1
-Pc ’ =

p = -N I2

Thus, noting from equation A1.3 that

y n - p    y  fi-p + N    y  n - p - N

it follows that
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N/2-1

C" = ' ^ X ’'¥" A1.4
p = -N I2

where q =
( n - p  + N) : ( n - p )  < - N i l
( n - p - N )  : {n-p)  > N /2 -1
{n —p) : —N /2  < {n — p) ^  N 1 2 — 1

Equation A 1.4 is a form of the Frequency Convolution Theorem given by Brigham 
[1] and Cooley et al [2].
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APPENDIX II: FOURIER REPRESENTATION OF THE PERIODIC
DELTA FUNCTION 5p(a) AND THE SAWTOOTH 
FUNCTION S(a)

As given by Stroud [1], a function f(t) of period s, defined over the interval 0 < f j 
may be represented by the Fourier series

N /2 -1

/(O  = A2.1
n = -N I2

where

F ' =  dt A2.2

provided that:-

1) /(f) is single-valued;
2) /(f) is continuous or has a finite number of finite discontinuities;

O N  A  ’3) /(f) and —  are piecewise continuous.
dt

This Fourier representation can be applied to both the periodic Delta Function and the 
Sawtooth function used in Chapter 4 as follows:-

1) Periodic Delta Function 5p(a)
This function, shown in Figure A2.1 has the following properties:

(a) S^(a) = 0 : a ^ m s ,  m = ...,-2 ,-1 , 0, 1, 2,...

(b) A s a —>/7W, bp(a)-^oo : m = ...,-2 ,-l, 0, 1, 2,..

(c) j]8 /a )  (fa = 1

(d) £—^ 0  r V ( a ) 5  fa)fia  = 5F(a = 5)
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Therefore, defining Ô" to be the n‘*’ Fourier coefficient of 8^(a), it can be 

seen from equation A2.2 that

s 
=  1

and therefore from equation A2.1 that

Nn-\
E

n = -N H

It will be noted that this delta function is related to the periodic Dirac Delta 
Function, given by Lighthill [2] by

5p(ot) = s A2.4

2) Sawtooth Function S(a)
This Function (Figure A2.2) has the following properties:-

(a) A slope of minus unity for a  : m = ...,-2 ,-1 , 0, 1, 2,,

(b) A jump of s ?Lt a  = ms : m = ...,-2 ,-1 , 0, 1, 2,...

(c) da = 0

Defining 5" to be the n* Fourier coefficient of S(a), it can be seen from 
equation A2.2 that

r  = I  f‘5(a)
S

271/7
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with

5" = 0 : n = 0

Therefore from equation A2.1 it follows that

S(a) = Y (—
N I2

'•’‘0 A2.5

Furthermore, differentiating this expression with respect to a  gives

N /2-1

S'(a) = 2  A2.6
n = - N H

from which it follows that

5'(a) = 8 /a )  -  1 A2.7

It will be noted that equations A2.3, A2.5 and A l.l  are the expressions given by 
Hawthorne et al [3].

Now, applying equations A2.3, A2.5 and A2.6 to the case of the blade inverse design 
problem (see Chapter 4) where s is the angular spacing of the blades (i.e. j = 27t/A )̂ 

yields

N /2 -1

/i= -N /2

A2.8

N /2-1

S'(a) = A2.9
M =-N/2

N /2-1

5 / a )  = £  A2.10
n = -N I2

as used by Zangeneh [4].
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APPENDIX III: SECOND ORDER ACCURATE FINITE
DIFFERENCE EXPRESSIONS

Consider a function F( ,̂T|) known at discrete points (i,j) on a two-dimensional 
square mesh, where the two sets of mesh lines are defined by

^ = si = Constant
and

y\ = sj -  Constant

respectively, where i and j are integers and j is a constant. Using the techniques 
outlined by Smith [1], the derivatives of F with respect to  ̂ and r\ may be written in 
terms of the following second order accurate Finite Difference expressions

Central Difference Expressions

0ri 2s

a'F ^ F(i + l J ) - 2 F ( i J )  + F i i - l J )  

d^F ^  F{iJ  + l ) - 2FH J)  + F ( i J - l )
an" /

a"F ^ F{i + l j  + \ ) - F i i - \ J  + l ) -F( i  + \ J - l )  + F { i - \ J - l )  
a^ari 4 '̂

A3.1

A3.2

A3.3

A3.4

A3.5
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Forward Difference Expressions

^  ^ -3F(f, j)  + 4F(/ +1, j) -  F a + 2, j)
Is

^  ^ -3F(f,j)  + 4F/, 7 +1) -  F(f, 7 + 2) 
dr\ 2s

d^F ^  2F(i, J) -  5F(i +1, j) + 4F(i+2, j) - F ( i  + 3, j) 

3 ' f  2F(i, j) -  5F(i, j  + \) + AF(iJ + 2 ) - F ( i J  + y)
3n"

Backward Difference Expressions

^  ^ 3 F 0 \;)-4 F (/- l,y )  + F (/-2 ,;)
2s

^  ^ 3 F (/,;)-4 F (/,y -l)  + F (/,;-2 )  
ari 2s

a ' f  ^ 2F((,;•)-5F(/-1 , j)  + 4F(f- 2 , j ) - F { i - 3,;)
a^'

a^F 2F(f, ;•) -  5F(/, y -1) + 4F(f, y -  2) -  F(f, y -  3)

A3.6

A3.7

A3.8

A3.9

arî  J

A3.10

A3.11

A3.12

A3.13

These expressions were employed in the finite difference discretisation of the ducted 
propulsor design method (Appendix VI).
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APPENDIX IV: SOME USEFUL VECTOR RELATIONSHIPS

The following expressions, as presented by Acheson [1], were of considerable use in 
the formulation of the ducted propulsor design method (Chapters 4 and 5):-

Vector Identities

V(fg) = fVg + gVf 
V-(fF) = fV-F + F-Vf 
Vx(fF) = fVxF -  FxVf 
V(FxG) = GVxF -  FVxG 
V-(Vf) = V2f 
Vx(Vf) = 0 
V(VxF) = 0
Vx(VxF) = V(V-F) -  VT 
Fx(GxH) = (F H)G -  (F G)H
F (GxH) = H (FxG) = G (HxF) 
F(GxH) = -G(FxH)
F-(GxH) = -F-(HxG)

Triple Vector Product
1
} Triple Scalar Product
J

A4.1
A4.2
A4.3
A4.4
A4.5
A4.6
A4.7
A4.8
A4.9
A4.10
A4.11
A4.12

Formulae for Div, Grad and Curl in Cylindrical Polar Co-ordinates

V  ■ Ï ' -  * * Ï * '
A4.13

V-F = l^irFr) .

r dr
+  —

r ae
+

dz
A4.14

'•êe êz

VxF = -
3 3 2
3r 30 dz A4.15

r

Fr rF, F.

1 dF, drF.
39 dz

e. + (dF d F \ .  i fdrF^ 3/v L------------L 0  _  --------2------------L

 ̂3z dr J  ̂ r \  dr 30
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V"F = -1 a (  dF\ 1 d^F d'̂ F
dr '■ a 7 j  + ^4.16
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APPENDIX V: DETERMINATION OF BLADE PRESSURE AND 
VELOCITY JUMPS

Blade Pressure Jump

From equation 4.8, the force the rotating blade exerts on the fluid may be written

/«  = -p K ,-V r t^ )5 ,(a )V a  A5.1

Resolving this body force in the tangential direction and integrating over one blade 
pitch

(w«-Vrt^)5,(a) de

i.e. blade force per unit meridional area = — W» ■ VrVe
N, "

However, blade force per unit meridional area = (p̂ -p ), where superscript + refers to 
the pressure side of the blade and - the suction side. Therefore an expression for the 
pressure jump on the blade is

(p * -p -) = ^  W -̂VrVe A5.2

which is similar to the expression given by Hawthorne and Tan [1] for a stationary 
turbomachine blade in inviscid, incompressible, irrotational flow. The right hand side 
of this equation can be evaluated using the output from the inverse design method 
outlined in Chapters 4 and 5.

Blade Velocity Jump

Applying the Bernoulli Streamline Theorem on the pressure and suction surfaces of 
the blade respectively, and neglecting the jump in rothalpy on the blade (which cannot 
be expressed in closed form):-
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p* _ 0)V"
p = + —

2 „2/? __ W W Cû r
—  = //m ---------    + —

From this it can be seen that

W .W  _ ^ p ^ - p
2 2 p

A5.3

However,

W W W +.W  (W" + W^) (W -W + )

Thus, equation A5.3 becomes

w .wNow, as - .2-'- = 1, this equation may be rewritten
|W,

p J |W,

from which it can be seen that for some value of the constant K

(W --W +) = ^ P^-P~^
y|w„

where is the normal to
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Again neglecting the jump in H on the blade, it can be shown from the Bernoulli 
streamline Theorem that there can be no jump in pressure on the blade if there is no 
corresponding jump in velocity. It therefore follows that K=0, giving

(W --W +) =
|W „f

Taking the modulus of each side, the equation for the jump in relative velocity on the 
blade becomes

W - W l  = ' , , ' A5.4
p|W„|

which again is similar to the expression given by Hawthorne and Tan [1] for a 
stationary turbomachine blade in inviscid, incompressible, irrotational flow.

Substituting equation A5.2 into this gives the final expression

|W"-W-| = K-Vrt^l  A5.5

for the jump in relative velocity on the rotating blading.
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APPENDIX VI: EQUATION DISCRETISATION

Defining G(ij) be the value of any function G at the intersection of the i* quasi- 
orthogonal of the solution mesh with the j* quasi-streamline, and using the finite 
difference expressions given in Appendix III, enables the discretised forms of 
equations 5.20...5.26 (Section 5.2) to be written as follows:-

Stream Function \\f (Equation 5.24)

This equation is elliptic in nature and was therefore discretised using the second order 
accurate central difference formulae given in Appendix III, becoming

+  { c ^  +  C ^ 2 A  (1 / B , \  +  (1 / B, ) J W  +  1 J )

+ W -1 .7 )

+ (c „4+C^4 iB,(1/S,),+C^,,B,(1/B,)J X|/(i,y +  l)

+ - C.^4iB,(1 / B,)n - Cw,42B,(1 / B,)J  V ('.V -l)

+ ^«6 vO + i, y+1) + ¥ 0  - i , y - 1 )
“ m̂6 ¥0 ’ + l>y ~ l) -  m̂6 ¥0 ’“ l»y + l)

= R. A6.1

where

Cml =
- 2 ( o  +  y )

^m2 -
a
7  +

T + J z j r  

2s

^m3 -  

^m4 —

a  

/  “

J *

T + J z j r  

Is
I L- Jz^j r

2s

^mS -
Y ' L - J z ^ j r

2s

C„6 = - P
2.y^
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^mbl\ ~

^mb2l ~

m̂bAl ~

m̂b42 ~

a
2s

zP
2s

X
25

zP
25

= -rB,J
N / 2 - l

r \ h - r V , L + - P

p = -N I2

Potential Function 0  (Equation 5.25)

This equation is also elliptic, and was discretised using a similar strategy to that used 
for y , yielding:-

d>"(/,y) + C,2<D"(/ +  l ,y )  +  C^3 0 " ( i - l , y )

+ C^,0'‘(/,y + l) + C,5d>"(/,y-l) + C,,0"(f + l,y + l)

~  +  - I )  + Ĉ 7d>'‘( / - l , y - l )  -  C^7<I)"(z-l,y+ 1)

where

= R. A6.2

^p2 -

-2{a + y)

^PS = 

^pe =

Cpi -

a
?  25
CX _ T- J z ^ j r  

2 s
X  ,
5̂  25
Y Ij-^-Jz^jr 
5̂  25
zP
25̂

zP
25"
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nN,

-2P  +y rV,

+ (t -
r̂ I +

n n

JzA£ + — i
r

rK

(a  '•V,^/ç -  P '■ n ,/. -  P '•Ve,/ç + Ï  )
a x ^ - i p t ^ + Y ^

/
+

V V
T - J z A /

z\ +
r

\

\
\  y  ̂ J V ^ ) )

-  (a//ç"x“ -  p//ç"x; -  p//;x« + y H X )

N /2-1+ I
p = -N /2  

q*Q

N /2-1

+ É
p = -N /2

q*Q

a//£ - 2p//' + Y//^

+ / /(  +

ÏÏH

f z . V  
I '■ y

_ l ^ N Î É
J

aH( x l  -  p//(T^ -  + j H; zI ^

q =

{n — p + N) ’ {n —p) < —N / 2  
{n — p — N) '. {n —p) > N / 2  — \
(n — p) .* —N / 2  < ( / 2  —/?) < N /2  —1

and -N/2 < n < N/2-1 : n?0.

Blade Wrap Angle f (Equation 5.20) and Mean Swirl rVe (Equation 5.21)

These equations, being hyperbolic in nature, were discretised using the Crank- 
Nicholson Implicit Scheme, producing:-

- Q / ( f , ; - l )  + Q/(f ,y)  -H Q /( f ,y  + l)

■■■"    + C ^ f { i - \ , j - \ )  4- C g f i i - l J )  -  C ^ f { i - \ J  + \)

A6.3
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and

-  Q  rVe(i,y-l) + Cg rV%{ij) + Q  rV%{iJ + \) A6.4

r V — -V) + CgrVQ{i — \, j) — C^rVe(/-l,y+ 1)

where

Each of these two equations reduces to a tridiagonal system of equations (Figure 
A6.1) which may be solved at each quasi-orthogonal using techniques similar to those 
presented by Press et al [1].

Drift Function H (Equation 5.22) and Drift Function t  (Equation 5.23)

These equations are also hyperbolic and were discretised in a similar fashion to A6.3 
and A6.4 above:-

N/2-1

K
p=—NI2

+ (C,+C,)« '’(/,;■) + Cj//'’(/,y+ D)

= A6.5
N /2 - 1

£ ( + Q / / ^ ( i - l , y - l )  +  -  C , H ^ { i - l J  +  l))
p = - N / 2

N /2 - 1

X (-Q x ^ ( / ,y - l)  + {Q+C,)x^(iJ)  + Qx^(/,y + l))
p = - N /2

p A6.6
N /2 -1

+ %(+ C2 X ^ (i-l,y -l) + (C] -C jx ^ (i-l,y )  -  Cj x ^ (/-l,y+ 1))
p=—N /2

where
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+

Cy=CMJ, p , n)  =

hij) J

V Ÿ w 'ê ;n \
+

H i , j )

VŸw^-ê;

hüù
1 : M = 0
0 : n^O

-N/2<n<N/2-l

(/z-p  + N) : {n- p)  < - N U
{ n - p - N )  : {n- p)  > N / 2 - 1
{n-p)  : - N i l  < {n- p)  < N / 2-1

These equations reduce to a system of block tridiagonal equations at each quasi- 
orthogonal, with complex sub-matrices of size NxN, as shown in Figure A6.2 (see 
also Anderson et al [2], and Fletcher [3]).

Duct Kutta Condition (Equation 5.26)

This equation was discretised using second order accurate forward and backward 
difference expressions for and respectively, giving

4r^J^{2(ùrVec-vi )
- Z

W J )  =_ V A6.7

where
= + 16\|/^(/,y-l) -  8\j/(/,y-l) \i/(z,y-2)-i-Y^(/,y-2)

-  16y^(/,y-1-1) -I- 8\|/(/,y-i-l) \|/(z,y+ 2)-\|/^(z,y+ 2)

^ 2  = + 6\|/(/,y-2) -  24Y (/,y-l) -f- 24\|/(/,y + l) -  6\\f{iJ + 2)
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APPENDIX VIT: FORCING THE NORMAL DERIVATIVE OF
ROTHALPY TO ZERO AT THE ENDWALLS

As stated in Section 5.13, it was generally found necessary to force the normal 
derivative of rothalpy at the endwalls to zero 
i.e. satisfy

V// ê; = 0 A7.1

in order to achieve satisfactory convergence for fully three-dimensional runs of the 
ducted propulsor inverse design programs.

This was achieved by imposing

V/f" ë; = 0 : - N l 2 < m < N n - l  A7.2

along the hub quasi-streamline, the duct upper and lower surfaces, and the duct wake. 
The technique used was similar to that employed by Borges [1] to force the normal 
derivative of blade wrap angle to zero at the endwalls and involves linearly

extrapolating the value of V//'” • eJJ from an unmodified value typically 4 or 5 mesh 

points away from the endwall down to zero at the endwall for N I2 ^ ^ I2 -1 .  This 
results in the equation

: - N I 2 < m < N / 2 - \  A7.3

where is the required value of obtained from linear

extrapolation. Expanding equation A7.3 and applying the co-ordinate transform 
techniques outlined in Section 5.1 gives

h ;  -

^ J
 ̂ æ  = : - N l 2 < m < N ! 2 - \  A7.4

This equation is discretised using second order accurate finite difference expressions 
(see Appendix III). In the region of the hub endwall a central difference discretisation

of together with a backward difference discretisation of / / ” are used, whilst at
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the tip endwall a forward difference discretisation of is used. In each instance 

boundary conditions of =0 are applied on the far upstream and far downstream 

boundaries, and for the case of a ducted propulsor, the duct leading edge.

The discretised form of A7.4 so obtained enables each Fourier harmonic of rothalpy 
(including the mean component) to be individually marched one quasi-streamline at a 
time towards the endwalls by solving a tridiagonal system of equations (see Appendix 
VI) on each quasi-streamline. The initial condition for this procedure is the rothalpy 
distribution on a quasi-streamline typically four or five mesh points from the relevant 
endwall. The result is a rothalpy distribution which has only been modified close to 
the endwalls, and which satisfies equation A7.1 at the endwalls, as required
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APPENDIX VIII: THE RELATIONSHIP BETWEEN rVg AND BLADE
CIRCULATION

Consider an element of a turbomachine blade taken at constant radius r, where 5r is 
the span of the element and co is the shaft angular speed (Figure A8.1).

Define two points A and B to lie at the leading edge and trailing edge of the element 
respectively, with a third point P lying at some arbitrary point on the blade. Let Vq ̂  ,

and Vq be the circumferential mean tangential velocities at points A, B and P 

respectively.

If the circumferential mean axial velocity, 1/ , is assumed to be invariant along the 
section chord, and if the circumferential variations in shear vorticity are neglected, 
then circulation theory [1] enables the lift force on section AP to be written

SL^ = p r ^ V ,  A8.1

where is the circulation between the leading edge and point P. It will be noted 

that this lift force acts parallel to the induced velocity (Vq - V qu) therefore lies in 

the tangential direction.

The corresponding elemental torque on section AP is therefore

^Qap = 1/ A8.2

However, as the mass flow over the blade element may be written

m = iKprV^ A8.3

the one-dimensional Euler turbine equation [2] enables the elemental torque per blade 
to be written

b
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Comparing equations 8.2 and 8.4 it follows that the circulation along constant radius 
between the blade leading edge and any point P(r,z) on the blade may be written

= A8.5

Furthermore that the circulation around the entire blade section may be written

n ' ’) = — -''p0te) A8.6

which is similar to the expressions given by Hawthorne and Tan [3], and Dang and 
Wang [4].

These last two equations represent the fundamental relationship between blade 
circulation and mean swirl rV̂  . They enable blade circulation to be specified in terms

of rVg , as was the case with the inverse design method presented in this thesis.
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APPENDIX IX: DUCT PROFILES AND BLADE THICKNESS
DISTRIBUTIONS
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L e a d  i n g  
E d g e

Edge

P e r c e n t  z / L L o w e r  S u r f o c e  y / L U p p e r  S u r f a c e  y / L

0.0 0.1825 0.1825
1 .25 0.1466 0.2072
2 .5 0.1280 0.2107
5 .0 0.1037 0.2080
7.5 0.0800 JI
10. 0.0634 iI
15. 0.0387 11
20. 0.0217
25. 0.0100
30. 0.0048
40. 0.0000 S t r a i g h t  L i n e

50. 0.0000
60. 0.0000
70. 0.0029
80. 0.0082
90. 0.0145 1f
95. 0.0186 ]f
100. 0.0236 0.0607

R a d i u s  of  any p o i n t  on d u c t  r e l o t i v e  t o s h o f t  o x i s  -  y + D/2 + c

Where:  D « moximum b l o d e  t i p  d i o me t e r  
c -  b l o d e  t i p  c i e o r o n c e

Duct  l e o d i n g  edge f i l l e t  d i o me t e r  -  5 . 5 7 x  L 
Duct  t r o i l i n g  edge  f i l l e t  d i o me t e r  -  3.78% L

L/D - 0 . 5  g i v e s  on NSMB No.19A Duct

Figure A9.1: A Duct Profile for a Merchant Ship Propulsor

280



tooc

L  =  3 . 3 5 m

r

z (m) Lower Sur f ace  r (m) Upper S u r f a ce  r (m)

0 . 0 3 . 3 9 1 3 . 3 9 1
0 . 0 4 2 3 . 2 6 0 3 . 4 6 3
0 . 0 8 4 3 . 1 8 6 3 . 4 6 3
0 . 1 6 8 3 . 0 8 3 3 . 4 3 2
0 . 2 5 1 2 . 9 8 1 3 . 3 9 6
0 . 3 3 5 2 . 9 0 3 3 . 3 6 1
0 . 5 0 2 2 . 7 7 5 3 . 2 9 0
0 . 6 7 0 2 . 6 7 3 3 . 2 1 9
0 . 8 3 7 2 . 5 8 9 3 . 1 4 9
1 . 0 0 5 2 . 5 2 7 3 . 0 7 8
1 . 3 4 0 2 . 4 2 1 2 . 9 3 6
1 . 6 7 5 2 . 3 3 1 2 . 7 9 4
2 . 0 1 0 2 . 2 4 1 2 . 6 5 2
2 . 3 4 5 2 . 1 6 1 2 . 5 1  1
2 . 6 8 0 2 . 0 8 9 2 . 3 6 9
3 . 0 1 5 2 . 0 2 1 2 . 2 2 7
3 . 1 8 2 1 . 99 0 2 . 1 5 6
3 . 3 5 0 1. 961 2 . 0 8 6

S h o f t  A x i i

Figure A9.2; A Duct Geometry for a Submarine Propulsor



L e a d i n g
E d g e

T r 0  i I i n g  
E d g e

K)OOK) x < 0 .  3
1 / 2  2 3

y / C  -  A (  0 . 1 5 4 9 2 0 ( x / C )  -  0 . 0 6 1 0 0 4 ( x / C )  -  0 . 2 8 3 6 6 6 ( x / C )  + 0 . 3 3 2 5 2 7 ( x / C )  )

2 3
x > - 0 . 3  ; y / C  -  A(  0 . 0 4 0 3 1 8  + 0 . 0 6 6 1 4 7 ( x / C )  -  0 . 1 1 8 2 4 8 ( x / C )  + 0 . 0 1 7 7 8 3 ( x / C )  )

W h e r e :  A i s  a n  a r b i t r a r y  c o n s t a n t
C i s  b l a d e  c h o r d  
Ma x i mu m y - 0 . 0 5 AC  
L e a d i n g  E d g e  R a d i u s  -  0 . 0 6 A C  
T r a i l i n g  Edge  R a d i u s  -  0 . 0 3 A C

A -  1 . 0  g i v e s  o NACA C4 t h i c k n e s s  d i s t r i b u t i o n

Figure A9.3: A Blade Thickness Distribution



APPENDIX X: HELMHOLTZ DECOMPOSITION AND THE
CLEBSCH REPRESENTATION OF VORTICITY

For the reasons outlined in Section 3.4, it was the Clebsch Representation of velocity 
and vorticity (see Section 4.3) that was adopted for the work presented in this thesis, 
as it was felt that this approach was the best means of developing a fully three- 
dimensional ducted propulsor design method with a minimum of assumptions. This 
appendix now gives further details of the Clebsch approach. However, it is interesting 
to consider first the more traditional approach of modelling flow fields using 
Helmholtz decomposition.

Helmholtz Decomposition
With this approach [1] the velocity is expressed as the sum of an irrotational vector 
and a solenoidal vector, viz.

V = VO + V xT  AlO.l

where O is a scalar potential and Y is a solenoidal vector potential. The first term on 
the right hand side of this equation represents the irrotational component of the 
velocity field, whilst the second terni accounts for the rotational component.

Noting [1] that Y is solenoidal (i.e. V-Y=0) it can then be seen that the corresponding 
flow vorticity is

a  = VxV = V(V Y) -  V'Y

or
a  = -V 'Y  A10.2

Additionally applying the condition of continuity (V*V=0) to equation AlO.l gives

V"0 = 0 A10.3

The Helmholtz decomposition of velocity is very useful for certain cases, such as 
plane two-dimensional flow, where Y becomes the stream function which is constant 
along streamlines.
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The Clebsch Formulation
Here the velocity is decomposed in the form

V = Vd) + A10.4

where 0  is a scalar potential, and X and |J. are scalar functions. The first term on the 
right hand side of this equation represents the irrotational component of the velocity 
field and is identical to the corresponding term in the Helmholtz decomposition. 
Although the second term on the right hand side represents the rotational component 
of the velocity field, it is foimulated differently to the corresponding term in the 
Helmholtz decomposition, and thus accounts for the difference between the Clebsch 
and Helmholtz decomposition of velocity.

Now, using equation A 10.4 the vorticity may be written

Q. = V xV  = VxVd) + Vx(XV|i)
= IV x V|i + VÀxVp.

he. Q. = V lxV|a A10.5

From tliis it can be seen that the Clebsch representation satisfies the solenoidal 
condition on vorticity (i.e. V T2 = 0) as required. It should be noted that there are 
generally an infinite number of combinations of X, and |i that satisfy equations A10.4 
and A10.5 at a given point in the flow field. However, for the Clebsch representation 
to be valid throughout the flow domain it is necessary for X and |i to be chosen so as 
to be fully compatible with the equations of motion of the fluid, in which case X and |i 
tend to correspond to quantities of physical significance such as rothalpy, drift 
function and blade shape (see Section 4.4).

To inteipret the significance of the Clebsch scalars X and \i equation A10.5 can be 
used to show that

= VA. (V?ixV|i ) = 0

and
Vfi Q = Vp, (VÀxVjj, ) = 0

As VX is noimal to the surfaces X=constant, and V|i is normal to the surfaces |i 
=constant, it can then be seen that the vortex lines lie in both the surfaces l=constant
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and |i=constant. In other words, the vortex lines of the flow always lie along the 
intersection of the surfaces X=constant and |i=constant (Figure AlO.l).
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Figure AlO.l: The Physical Significance of the Clebsch Scalars X and


