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SUMMARY 

Monolinks are produced in a Chemical Crosslinking Mass Spectrometry experiment and are more abundant 

than crosslinks. They convey residue exposure information, but so far have not been used in the modelling 

of protein structures. Here we present the Monolink Depth Score (MoDS), for assessing structural models 

based on the depth of monolinked residues, corresponding to their distance to the nearest bulk water. Using 

simulated and reprocessed experimental data from the Proteomic Identification Database, we compare the 

performance of MoDS to MNXL, our previously-developed score for assessing models based on crosslinking 

data. Our results show that MoDS can be used to effectively score models based on monolinks, and that 

combining the scores (XLMO score) leads to overall higher performance. The work strongly supports the 

use of monolink data in the context of integrative structure determination. We also present XLM-Tools, a 

programme to assist in this effort, available at: https://github.com/Topf-Lab/XLM-Tools. 

https://github.com/Topf-Lab/XLM-Tools
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INTRODUCTION 

The determination of protein structure is essential for our understanding of the processes governing 

biological functions. The most common techniques for determining protein structures are X-ray 

crystallography, NMR spectroscopy and cryo-electron microscopy. However, these techniques can be time-

consuming and are not always useful due to factors such as protein size and flexibility. An alternative 

approach is computational prediction of protein structure, using various approaches, such as homology 

modelling, threading and ab-initio (Deng et al., 2018). The quality of the predicted models varies depending 

on both the modelling method employed and the system being investigated. A challenge (in the field) is to 

rank models according to their accuracy (Won et al., 2019). 

Chemical Crosslinking Mass Spectrometry (XLMS) is a technique which can assist in predicting monomeric 

structural models (Matthew Allen Bullock et al., 2016; Young et al., 2000; Zelter et al., 2010) as well as for 

multi-subunit protein complexes (Bullock et al., 2018a; Kosinski et al., 2015; Tosi et al., 2013; Wu et al., 

2012) and has been gaining popularity in recent years. It is a technique that allows the generation of solvent 

accessible distance restraints for structural modelling purposes (Leitner et al., 2010; Seebacher et al., 2006). 

It has advantages over the traditional structural determination methods such as being relatively quick and 

cheap to perform, can be performed in samples that are not entirely pure, and recently has been used in the 

context of whole cellular environments (Kaake et al., 2014). 

XLMS is performed by subjecting a protein or a complex to a chemical crosslinking reagent by covalent 

labelling, which will then react with solvent accessible residues on the protein surface (the type of residue 

depends on the chemistry of the crosslinking reagent). The two residues may be crosslinked if they are 

within a maximum Solvent Accessible Surface Distance (SASD) of each other (dictated by the length of the 

crosslinker). SASD is the shortest distance between the two residues on the surface of the protein (Matthew 

Allen Bullock et al., 2016). After crosslinking, the protein is digested using a protease (normally trypsin), 

yielding four different types of peptides: unmodified, looplinks, crosslinks and monolinks. At this point, a 

peptide enrichment procedure (usually strong cation exchange) is often employed to remove unmodified 
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peptides, which are of no informational value, however, they will also remove some lesser charged species 

such as monolinks and loop-links (Leitner et al., 2010). Looplinked, crosslinked and monolinked peptides 

are then sequenced using LC-MS/MS to identify the residues which have been modified. 

Crosslinks are the most information rich peptides in an XLMS experiment. They provide two types of 

complementary information: they are a marker of solvent accessibility for the two residues associated and 

they also provide a distance constraint between the two. We recently utilised this information to produce 

the Matched and Non-Accessible Crosslink Score (MNXL) (Matthew Allen Bullock et al., 2016). This 

score, which encapsulates both the distance and solvent accessibility information in a crosslink, showed 

increased performance compared to previously-used scores that are based only on the Eucledian distance 

(Herzog et al., 2012; Leitner et al., 2012). The MNXL score compares a list of SASDs between the 

crosslinkable residues against a list of experimentally determined crosslinks. The SASDs provide 

information on each potential crosslink in terms of solvent accessibility and crosslink length (Matthew Allen 

Bullock et al., 2016). The MNXL program (i) will check whether an input BS3/DSS crosslink is solvent 

accessible (number of non-accessible crosslinks, NoNA); (ii) will check if the length of the crosslink is 

within a maximum bound of 33 Å (NoV), and (iii) will score the solvent accessible crosslinks according to 

a pre-determined probability distribution of experimentally determined crosslinks (Expected Solvent 

Accessible Surface Distance - ExSASD). In the case of MNXL, SASDs are generated using a program 

called Jwalk (Matthew Allen Bullock et al., 2016). MNXL was benchmarked on data generated with 

BS3/DSS crosslinks, both of which have a linker length of 11.4 Å.  

Investigating the utility of solvent accessibility for scoring models based on crosslinks provides an 

opportunity to explore another type of information coming from an XLMS experiment, namely monolink 

information. A monolink can be thought of very simply as a covalent label showing residue exposure. The 

advantage of monolinks comes from their higher frequency identification than crosslinks in an XLMS 

experiment. The recovery of crosslinks (the percentage of experimentally observed crosslinked peptides, 

compared with the total theoretically possible ones, see STAR methods) has been estimated to be between 
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8-25% (Herzog et al., 2012) in previous experiments. For monolinks, however, although recovery estimates 

have not been published, it is presumed to be higher, and in the range of 50-70%.  

Here, we introduce the Monolink Depth Score (MoDS) as a scoring function to assess a model structure 

based on this chemical labelling information. With MoDS we utilise residue depth, a measure which 

calculates the distance of a residue from the nearest bulk water molecules (Tan et al., 2011), therefore 

excluding non-bulk water found in cavities and trapped inside the protein structure.  We first show the utility 

of this score on a large benchmark with simulated monolinks. Next, we demonstrate the beneficial effect of 

combining monolink and crosslink-based scores, which we name Crosslink-Monolink (XLMO) score. We 

also assess the score on a smaller benchmark based on publicly available experimental XLMS data.  

RESULTS 

Theory 

The Monolink Depth Score (MoDS) is described as: 

𝑀𝑜𝐷𝑆 =  − σ 𝑅𝐷𝑛
𝑖=1  (1) 

Where i is every amino acid in the protein which has an associated monolink and RD is the Residue Depth 

of that amino acid. n is the total number of monolinked residues in the protein. 

The input to the method is a list of amino acids which have been modified by a crosslinker and a list of the 

residue depths calculated by DEPTH from the protein structure (Tan et al., 2011). It will then remove all 

non-bulk waters, where the latter are defined as four or more water molecules in a 4.2 Å radius (Figure 1A). 

Non-bulk waters are usually located in cavities and trapped inside the protein structure, and therefore are 

not representative of the solvent environment of the protein. The solvent configurations are then sampled in 

25 different orientations of the protein (solvation cycles), and residue depth is then measured as the average 

distance of the residue to the nearest bulk water molecule over all solvation cycles. Other than defining the 
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minimum number of “surviving” solvent as four, default settings were used in DEPTH calculations (Tan et 

al., 2011). 

We also combine MoDS with information from crosslinks using the Matched and Non-Accessible Crosslink 

(MNXL) score (as described in the introduction) (Matthew Allen Bullock et al., 2016). We calculate a 

Crosslink Monolink score (XLMO) by combining these two scores. We do this by calculating the z-scores 

for MoDS and MNXL and then adding these. 

MoDS, MNXL and XLMO performance on the simulated benchmark 

To evaluate MoDS, MNXL and XLMO performance statistically we tested it on the 3DRobot benchmark 

downloaded from the Zhang Lab (Deng et al., 2016), a benchmark of 200 model structures each of which 

has 300 decoy model structures. We simulated crosslinks and monolinks on these models at 20% recovery 

for crosslinks and 50% for monolinks (see STAR Methods). 

Figure 1B shows the results from chain A of a target with PDB Id: 3H87 from the simulated benchmark 

(3H87:A), with monolinks simulated at 50% recovery. In this example, the simulated monolinks are a good 

predictor of structure, owing to a correlation of 0.85 between MoDS and Cα-RMSD and precision and AUC 

of 0.92 and 0.94, respectively (Table S2). 

We compared the performance of the three scores MoDS, MNXL and XLMO at a constant recovery rate of 

20% for crosslinks and 50% for monolinks over the entire benchmark (Figure 2). Density plots representing 

the different scores in terms of AUC, correlation and precision (Figure 2A) show that MNXL performs 

better than MoDS over all statistical measures (significant with t-test P ≤  0.05). XLMO on average 

outperforms both MNXL and MoDS in terms of AUC (0.82, 0.78, 0.77, respectively); Spearman Correlation 

(0.59, 0.52, 0.48, respectively) and Precision (0.67, 0.64, 0.54, respectively) (Table S2) (significant with t-

test P ≤ 0.05 for all measures).  
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4IZX:A, which is a Macrolepiota proceraricin B-like lectin -trefoil structure is an example which 

demonstrates the improved performance of XLMO (Figure 2bi). Its residue depth varies greatly across the 

residues in the target structure (Figure 2Bii). MoDS shows reduced performance compared to MNXL in 

this model (Figure 2biii), however, combining these two scores (in XLMO) exhibits an increase in 

performance by all statistical measures (Table S2). 

MoDS, MNXL and XLMO performance on the experimental dataset 

A smaller dataset containing experimental crosslink data was used to assess the performance of the scores 

with experimentally-determined crosslinking results (Table 1). These datasets were acquired from the 

Proteomic Identification Database (PRIDE) and reprocessed (see STAR methods). The average residue 

depth for both crosslinked and monolinked residues over the entire dataset is around 6.35 Å (± 2.55 Å 

standard deviation). The values show overall worse performance than the simulated benchmark, with 

average AUC of 0.71 for MNXL, 0.71 MoDS and 0.73 for XLMO (Table 2). The mean scores here also 

show that MoDS performs better than MNXL in most cases, with the exceptions being CASP targets Human 

Exonuclease V, X0975, and Target Surface Protein from Enterococcus faecalis, X0987. XLMO 

performance is varied in comparison to MoDS and MNXL over the benchmark, it performs better in 0/6 

models by AUC (performs the same as MoDS for 3/6), 2/6 models in terms of correlation and in 1/6 in terms 

of precision (Table 2, excluding X0987:D1 and D2, which will be discussed later). Due to the small size of 

the benchmark, we could not show a significant difference between the scores in this benchmark. 

Creatine kinase (Figure 3) has only 9 crosslinks but 36 monolinks, and this is reflected in the higher scoring 

for MoDS over MNXL (residue depth for crosslinks is also more variable for crosslinks than monolinks, 

Figure S3). However, XLMO has a similar performance to MoDS for AUC and correlation (0.86 and 0.65), 

but a slight fall in precision (0.47 vs 0.45). On the other hand, in the example of CASP target, Glycoside 

Hydrolase Family 94 from Acholeplasma laidlawii X0985 (Figure 3), the two-domain protein has a larger 

number of crosslinks (59 crosslinks) relative to monolinks (68 monolinks). Surprisingly, for this model 

(bearing in mind the high number of crosslinks), MoDS outperforms MNXL for all statistical measures. 
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However, combining the information from both crosslinks and monolinks (in XLMO) results in a 

performance decrease for precision, no change in AUC and a small increase in correlation (0.51 for XLMO 

vs 0.45 for MoDS, Table 2). Another example of a two-domain protein is the CASP Target Surface Protein, 

Enterococcus faecalis, X0987, which performs much worse with MoDS scoring (Figure 3). It has 44 

monolinks vs. 49 crosslinks. This large number of crosslinks results in good MNXL performance (AUC: 

0.81, Correlation 0.43 and Precision 0.42, Table 2).  However, MoDS performance is much lower, with an 

AUC of 0.51, a correlation of -0.14 and a precision of 0.1. This poor MoDS performance affects XLMO 

performance, which is not improving over MNXL in this case (see more details below).  

Effect of residue depth on performance 

To investigate the reasons for large differences in the experimental benchmark performance, we observed 

the differences in residue depth for all monolinked residues between the target structure and the top 5-ranked 

models in terms of MoDS for Creatine Kinase (well performing) and X0987 (poorly performing) (Figure 

S3). For Creatine Kinase only 10 residues differ by more than 0.5 Å or less than -0.5 Å in residue depth 

from the target structure. Most of these residues are located in a flexible and exposed region of the protein 

towards the C-terminal end.  

This is in contrast with X0987, where surprisingly many of the residues which have associated monolinks 

have high residue depth in the target structure, ranging between 4.06-15.29Å. In the top-ranked models 

these residues are up to 8 Å shallower than in the target structure in terms residue depth. Looking in detail 

into this case, we observed that the performance of MoDS on domain 1 (D1, residues 11-195) and domain 

2 (D2, residues 196-402) alone exhibits a sizeable increase as compared to the full protein (precision for 

MoDS increases from 0.10 for the full X0987 target structure to 0.42 for X0987:D1 and 0.32 for X0987:D2, 

Table 2). The reason is likely that in the full structure some of the monolinks in D2 fall into the interface 

region between the two domains, therefore exhibiting high residue depth (Figures S3). This results in high 

variance for residue depth of monolinks in the overall structure and poor overall performance. However, 
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when separated, these residues in D2 have a lower residue depth (Figure S3) and scoring is improved for 

this domain.  

Effect of recovery on model scoring performance 

The recovery analysis of the entire simulated benchmark (Figure 4) shows that the MoDS performance does 

not plataeu, and continues to rise to 100% recovery. At the 50% recovery point (marking the assumed 

monolink recovery) MoDS has a correlation of 0.48 with Cα RMSD, Precision of 0.54, and AUC of 0.77. 

XLMO performance also rises to 100% but at a lower rate than MoDS, although MoDS performance never 

overtakes XLMO. At the 50% recovery point XLMO has a correlation of 0.60 with Cα RMSD, Precision 

of 0.66, and AUC of 0.83. 

As shown previously, the performance of experimental models varies greatly (Figure 4). Cases Creatine 

Kinase, human serum albumin (HSA), Myoglobin and X0985 perform in the range of what would be 

expected within the error range of the simulated benchmark. However, other cases appear to underperform 

given their monolink recovery rate, showing no obvious correlation between the recovery rate and the 

performance for either MoDS or XLMO. For example, X0975 has a 60% monolink recovery rate but appears 

to exhibit poorer performance than expected.  

DISCUSSION 

The information presented in this paper shows that monolinks can be used to obtain structural information 

on protein structures. Our analysis focused mainly on single domains but we also show that it can work on 

chains containing two domains (e.g. X0985). The monolink information is additional to the crosslink data 

coming from XLMS experiments that is typically used in the modelling of protein structure. Using simulated 

and experimental benchmarks, we showed that our monolink-based score (MoDS) carries valuable 

information and in a few cases performs better than the crosslink-based score (MNXL (Matthew Allen 

Bullock et al., 2016)). Furthermore, combining the two scores in the XLMO score can lead to improved 
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assessment of protein structure models when monolinks are simulated. For the case of experimental 

monolinks, however, there is more variability in the score’s performance. We have looked into the 

possibility of applying different relative weights to the MNXL and MoDS in the XLMO score; however, no 

significant difference in the results of the simulated benchmark have been observed. 

The recovery analysis shows that MoDS continues to rise in performance to 100% while the combined score 

(XLMO) increases at a slower rate, likely due to the influence of the MNXL score (which typically plateaus 

at around 25% crosslink recovery rate (Matthew Allen Bullock et al., 2016). However, there is a great 

difference in performance between MoDS and XLMO, with the latter performing a lot better especially at 

low monolink recovery rates.   

Although mean scores for the experimental benchmark indicate a similar picture in the experimental dataset, 

none of the models show an overall improvement for XLMO over all statistical measures. XMLO appears 

to perform better in cases where poor scoring is achieved for either MNXL or MoDS. XLMO can therefore 

balance out this poor performance obtained from individual scores.  

Relevance of Simulated Monolinks 

The simulation of monolinks was performed in order to obtain a realistic scoring performance, by randomly 

resampling crosslinks at 20% recovery and monolinks at 50% recovery. This approach allows all possible 

monolinks to be formed, thereby have maximal spatial coverage over the protein surface. As a result, 

simulated monolinks are likely to perform better on average than experimental monolinks for a given 

recovery rate.  

Prior to this study we could not find a reported recovery rate estimation for monolinks in the literature. Our 

small experimental dataset has allowed us to make such an estimation. When defining the expected number 

of monolinks as the number of lysine, serine, threonine and tyrosine residues with a residue depth below 

6.25Å (Figure S1), the data yields an average recovery rate of 50.64% (±14.06% standard deviation). Based 

on this we decided to implement a recovery rate of 50% when simulating monolinks. 
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To avoid using a residue depth cutoff to determine whether or not a residue can be monolinked in our 

calculations, we could potentially implement a probabilistic model for simulating monolinks (in a similar 

fashion to our probabilistic model we used to score crosslink length in MNXL (Matthew Allen Bullock et 

al., 2016)). This would entail weighting how likely a residue is to be monolinked based on its residue depth, 

given what is known from experimental data. The main impediment to this process is currently the lack of 

sufficient data to estimate such probabilities. 

Residue depth in MoDS 

The exclusion of non-bulk water molecules from residue depth calculations was the main motivation to use 

this score, as a residue is much more likely to react with a crosslinking reagent if it is accessible to bulk 

water. Since solvent accessibility cannot measure this propensity accurately (Chakravarty and Varadarajan, 

1999) we employed residue depth, which has been shown to be a better indicator of residue burial (due to 

its ability to distinguish between residues just below the protein surface and those closer to the core 

(Chakravarty and Varadarajan, 1999)). The complementary nature of residue depth and solvent accessibility 

(Liu et al., 2007; Tan et al., 2011, 2013), a property exploited in MNXL, may help explain the better 

performance of XLMO over MoDS/MNXL alone.  

Deep Residues in Experimental Models 

When simulating monolinks, only residues with a residue depth below 6.25Å are selected as potential 

monolinks. This result generally fits our experimental data, except one example – X0987 – the poorest 

performing case in the experimental benchmark in terms of MoDS scoring. In this case, several of the 

monolinks which are found in the experimental dataset are very deep in the structure, for instance 45% of 

monolinks in this model have a residue depth greater than 6.25Å. The structure itself consists of two β-

sandwich like domains connected by a short linker region, and most of these deep residues are present on 

the interface between the two domains. This could suggest that in solution, the two domains occupy a wider 

array of configurations with respect to one another, in comparison to the crystal, where they are likely to be 

more constrained. This is supported by the increased performance in terms of MoDS when the two domains 
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are separated. It should also be noted that MNXL performance decreases when the domains are separated, 

possibly owing to the loss of several crosslinks between the two. This may suggest monolink information 

can be valuable in capturing dynamics of the protein and can give clues about which residues are located on 

the interface. Furthermore, this may also explain why X0987 was not modelled well in the Critical 

Assessment of Techniques for Protein Structure Prediction 13 (CASP13) (Kryshtafovych et al., 2019), 

where this model achieved a maximum GDT-TS score of 35.5% using an approach requiring no 

experimental information (Fajardo et al., 2019).  

Utility of combining crosslink and monolink data  

Data derived from monolinks are very similar to those from covalent labelling approaches, which typically 

target arginines, acidic side chains, cysteines, histidines, lysines, tryptophans and tyrosines (Mendoza and 

Vachet, 2009). For example, Schmidt et al. combined covalent labelling with DEPC (which primarily labels 

surface exposed histidine residues, while also reacting with lysine, arginine, tyrosine, threonine and cysteine 

residues), native MS, and BS3 crosslinking to model the spinach F-type ATP synthase (Schmidt et al., 

2017). They showed that inclusion of both solvent accessible surface mapping and crosslinking aids the 

modelling performance. Other methods that can be combined with MS utilize non-specific covalent 

modification. The most prevalent of these methods are oxidative radical footprinting, where photoactivated 

radicals label surface exposed residues (Cornwell et al., 2018). Radical footprinting has previously been 

exploited in the modelling of protein structures through the Rosetta scoring function (Aprahamian et al., 

2018). Another approach of radical footprinting has been to determine the solvent accessible surface area 

based on an experiment and compare the value with a calculated value from a model structure (Xie et al., 

2017).  

What is true of all of these methods is that the labelling of residues is sparse, and therefore protein structure 

can rarely be unambiguously modelled in any of these cases, which results an ensemble of possible solutions 

that equally fit the experimental data. Therefore, a combination of any of such methods with chemical 

crosslinking can be very useful, and the advantage of our approach is that we combine this in one 
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experiment. Furthermore, our MoDS score could be potentially used in modelling based on these other 

methods.  

Experimental Considerations 

One of the motivations for this study is that monolinks are produced as a by-product in an XLMS 

experiment. No deviation from existing protocols is required to produce them; however, the information 

they convey is not currently being utilised in the field. Furthermore, there are conditions where this 

monolink information could be more useful, such as when using shorter crosslinkers. Using shorter 

crosslinkers (e.g. BS2G, which has a 7.7Å spacer arm as opposed to the 11.4Å arm found in BS3/DSS) has 

been suggested to lead to fewer crosslinks being formed and a rise in the number of monolinks (Rozbeský 

et al., 2018). In these instances, including monolink information using MoDS is likely to be even more 

important for protein structure modelling as there will be fewer crosslink data points from which to draw 

useful information. 

We show that monolinks can be used successfully in the modelling of protein structures. One type of 

information from an XLMS experiment, which has not been investigated is about the unmodified peptide, 

i.e an indication that a residue has not been modified by a crosslinker. However, since it is essential to 

perform a peptide enrichment step to remove many of these unmodified peptides, their disproportionate 

abundance with respect to crosslinks, monolinks and loop-links is unlikely to allowed their identification. 

Additionally, as described above, we cannot expect a 100% recovery rate for either crosslinks or monolinks. 

Therefore, we cannot assume that just because we have not detected a crosslink or monolink on a residue it 

cannot eliminate the theoretical possibility of that residue to chemically interact with the crosslinking 

reagent. 

The prevalence of monolinks in our dataset is interesting given how an XLMS experiment is often biased 

against them in two ways: enrichment and data acquisition. As mentioned above, enrichment approaches 

are necessary in an XLMS experiment to reduce the population of peptides below the MS detection limit. 

With generic methods such as Strong Cation Exchange, this biases an experiment away from detecting many 
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of the lesser charged peptides, such as monolinks and looplinks. This provides further reason to use 

crosslinks containing enrichment arms (e.g. biotin enrichment arms in CBDPS, Azide-A-DSBSO (Kaake et 

al., 2014)) and Pho-X (Steigenberger et al., 2019), which allow for specific enrichment of peptides that have 

been modified with the crosslinker without biasing the experiment away from the lesser charged monolinks 

and looplinks (also containing useful information). PhoX, for instance, was shown to increase the abundance 

of crosslink peptides by ~67 times and monolink peptides by ~30 times by IMAC enrichment, while 

unmodified peptides were reduced in abundance by ~200 times (Steigenberger et al., 2019). 

Furthermore, the majority of XLMS experiments use data-dependent acquisition to select precursors for 

sequencing, a strategy that typically looks for highly charged precursor ions. This is likely to similarly bias 

an XLMS dataset away from detecting monolink peptides. A solution could be the use of data-independent 

acquisition methods, which can be analysed for example by Spectronaut (Müller et al., 2019). 

SUMMARY 

This study shows that, when used in conjunction with MNXL, our monolinks-based scoring function, 

MoDS, should improve the ranking of protein structure models. This is seen clearly in our simulated 

Benchmark. Our experimental dataset also shows, on average, a higher performance of the combined 

MNXL and MoDS scoring (XLMO), although this is inconclusive due to the small size of the benchmark. 

To more accurately assess the effect of using experimentally obtained monolinks, larger datasets would be 

required. Although there are many crosslink datasets in the literature, most of them do not provide 

information on peptides other than the crosslinks, making the investigation of monolinks difficult. Although 

an increasing number of datasets from cross-linking experiments are being deposited in repositories (e.g. 

PRIDE or PDB-Dev), it will be useful to explicitly deposit the monolink data in those datasets to aid method 

development.  
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MAIN FIGURES 

 

Figure 1: Illustration of Monolink Depth Score (MoDS). A) i. Schematic of the measurement of residue 

depth, which is a precursor step to MoDS calculation. The shortest possible distance is calculated 

between the nearest bulk water and the residue in question, ignoring any non-bulk water molecules. 

ii. Structure of 3H87:A coloured by residue depth. B) Scatter plot of MoDS vs. C⍺-RMSD for a 
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target from the simulated benchmark (3H87:A). Points are split into True Positive (TP), False 

Positive (FP), False Negative (FN) and True Negative (TN). The target structure (which is ranked 

within the top 10 scoring models) is circled. 
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Figure 2: MoDS, MNXL and XLMO scoring for the simulated benchmark. A) Kernel Density Estimate 

Plots comparing the different scoring methods in terms of correlation, precision and AUC. 

Crosslinks are simulated at 20% recovery, monolinks at 50%. B) i. Scatter plots of each scoring 

methods vs. Cα-RMSD for 4IZX:A. Points are split into True Positive (TP), False Positive (FP), 

False Negative (FN) and True Negative (TN) and the target structure is circled. ii) Structure of 

4IZX:A coloured by residue depth. iii) Bar plot shows statistics for MNXL, MoDS and XLMO. 

 

Figure 3: Examples from the experimental dataset (CK for Creatine Kinase, and CASP13 targets X0985 

and X0987). Crosslinks shown on corresponding structures (left) coloured red, monolinked residues 

shown coloured in green. Bar graphs (middle) show statistics for MNXL, MoDS and XLMO. Scatter 

plots (right) show the 300 models for each protein scored with XLMO against C⍺-RMSD. 
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Figure 4: Recovery analysis of the simulated dataset with points from the experimental dataset (based on 

MoDS and XLMO scoring in black and red, respectively). Solid line denotes mean score over the 

entire simulated benchmark, shaded area shows standard deviation around the mean. Performance is 

shown as AUC, Spearman Correlation Coefficient (Correlation) and Precision, denoting the 
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relationship between C-RMSD and MoDS/XLMO. For each protein in the experimental dataset, 

black points indicate the performance of MoDS score, red points show the performance of XLMO 

score, and the shape of the point corresponds to each specific protein (shown in the figure legend). 

MAIN TABLES: 

Table 1: Experimental XLMS benchmark used in this analysis and PDB structures which they are 

associated to. 

Short-hand PRIDE Accession Protein PDB Id:Chain Description 

X0975 PXD010385 X0975 - CASP13 Target - Human 

Exonuclease V, loop modelled 

for missing residues at 76-89 

X0985 PXD010483 X0985 - CASP13 Target Glycoside 

Hydrolase Family 94 

Acholeplasma laidlawii 

X0987 PXD010410 X0987 6ORI CASP13 Target Surface Protein, 

Enterococcus faecalis 

HSA PXD002142 Human Serum 

Abumin 

1AO6:A (Sugio et al., 1999) 

Creatine 

 Kinase 

PXD006131 Creatine Kinase, 

Oryctolagus 

cuniculus 

2CRK Loop modelled for missing 

residues at 322-332. Only raw 

files related to CID fragmentation 

were used in this analysis. 

(Mohana Rao et al., 1998) 

Myoglobin PXD006131 Horse Heart 

Myoglobin 

2FRJ Only raw files related to CID 

fragmentation were used in this 

analysis. 
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(Copeland et al., 2006) 
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Table 2: Statistics from the experimental benchmark. Mean and Standard Deviation (STD) values exclude 

the two domains of X0987 (D1 and D2). 

  AUC Correlation Precision 

Model MNXL MoDS XLMO MNXL MoDS XLMO MNXL MoDS XLMO 

HSA 0.71 0.82 0.81 0.29 0.60 0.53 0.38 0.48 0.52 

Creatine 
Kinase 0.81 0.86 0.86 0.54 0.64 0.65 0.42 0.47 0.45 

Myoglobin 0.61 0.72 0.68 0.17 0.38 0.30 0.38 0.60 0.52 

X0975 0.50 0.50 0.50 0.04 0.00 0.01 0.10 0.07 0.08 

X0985 0.80 0.84 0.84 0.49 0.45 0.51 0.33 0.40 0.35 

X0987 0.81 0.51 0.70 0.43 -0.14 0.18 0.42 0.10 0.32 

X0987:D1 0.60 0.71 0.68 0.04 0.43 0.28 0.37 0.42 0.42 

X0987:D2 0.76 0.72 0.77 0.35 0.22 0.33 0.30 0.32 0.33 

Mean 
(Without 
X0987 D1 
and D2) 0.71 0.71 0.73 0.33 0.32 0.36 0.34 0.35 0.37 

STD 
(Without 
X0987 D1 
and D2) 0.12 0.15 0.12 0.18 0.29 0.22 0.11 0.20 0.15 
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STAR METHODS 

RESOURCE AVAILABILITY 
 

LEAD CONTACT 

 

Further information and requests for resources should be directed to and will be fulfilled by the 

lead contact, Prof. Maya Topf (m.topf@cryst.bbk.ac.uk). 

 

MATERIALS AVAILABILITY 

 

This study did not generate new unique reagents. 

 

DATA AND CODE AVAILABILITY 

 

We have shared the code for scoring protein structures using MNXL, MoDS and XLMO in the 

XLM-Tools program which can be found on the Topf-Lab Github at https://github.com/Topf-

Lab/XLM-Tools. 

METHOD DETAILS 
 

Testing of MoDS on a Simulated Benchmark 

For testing the scoring function, we used a large benchmark of protein structures and decoy models. This 

benchmark, which was downloaded from the Zhang Lab website, was generated using the 3DRobot decoy 

modelling algorithm (Deng et al., 2016). The benchmark contains 200 target PDB structures comprising a 

wide range of structural folds. Each of the 200 PDB structures have 300 decoy models associated with them, 

and they vary in similarity to the target structure (from 0 to ~12 Å Cα-RMSD). 

Monolinks were simulated for each of the 200 target structures, based on known properties of the BS3 and 

DSS crosslinkers, i.e., selecting only Lys, Thr, Ser, and Tyr.  residue depth was calculated for each residue 

and those containing residue depth below 6.25Å were considered “true” simulated monolinks and therefore 

selected for further analysis. This 6.25Å cutoff was derived from an analysis performed on a smaller 

benchmark that we previously used (Matthew Allen Bullock et al., 2016), showing optimal performance 

when using 50-60% recovery rate (the percentage of experimentally observed crosslinked/monolink 

peptides, compared with the total theoretically possible ones), which is currently the estimate in the field 

mailto:m.topf@cryst.bbk.ac.uk
https://github.com/Topf-Lab/XLM-Tools
https://github.com/Topf-Lab/XLM-Tools
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(Figure S1). The simulated monolinks for each target structure were then applied to all corresponding decoy 

models in the dataset, and the models were then scored using MoDS (Figure S2). 

Testing the Effect of Monolink Recovery Rate 

To investigate the effect of recovery on MoDS scoring we simulated monolinks at recovery rates for all 

integer percentage values from 1-100%. For each structure in the simulated benchmark we took the list of 

all potential monolinks (Lys, Thr, Ser, and Tyr residues in the target structure with a residue depth < 6.25Å) 

and selected a random set of amino acids for each given percentage recovery rate. This monolink list was 

then used to score all decoy structures with MoDS. Monolinks were randomly resampled 1000 times for 

each cutoff for each protein to gain a representative sample of different potential monolink configurations. 

Comparing MNXL and MoDS Scoring on Simulated Crosslinks and Monolinks 

Model structures’ monolinks were simulated and randomly resampled with a constant recovery rate set at a 

50%, which reflects the average recovery rate we see in our experimental dataset (see Discussion). 

Crosslinks were simulated at 20% recovery from a list of all possible Solvent Accessible Surface Distances 

(SASDs) using Jwalk (Bullock et al., 2018b; Matthew Allen Bullock et al., 2016). Since Jwalk calculates 

Cα-Cα SASDs, maximum distance of 33 Å was used to select “true” simulated crosslinks, to account for 

the length of the lysine side chains, the linker length and flexibility of the two (assuming the use of DSS 

and BS3 crosslinkers) (Bullock et al., 2018b; Matthew Allen Bullock et al., 2016).  

Decoy models were scored with an in-house script that outputs both MNXL and MoDS (XLM tools 

available at: https://github.com/Topf-Lab/XLM-Tools). Scores are converted into Z-scores and a 

combination score (XLMO) is calculated by summing the two scores (Figure S2). 

Experimental Crosslink and Monolink Preparation 

Experimental data containing both crosslink and monolink information was obtained from the Proteomic 

Identification Database (PRIDE) and was reprocessed (Martens et al., 2005) (Table 1). Reprocessing of the 

data was necessary for a fair comparison of the results and because often monolink data was not present in 
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the associated publications. The criteria were: the protein was crosslinked by BS3/DSS, the protein was 

monomeric, separation of higher order oligomers was performed, either raw files or detailed CSV files 

including all peptides are provided and an experimentally derived PDB structure was available. 

Raw files were converted to MGF files, which were then processed into mzXML files using msconvert 

(scan numbers were checked and corrected using an in-house script) (James et al., 2019). Fasta sequences 

were obtained for the PDB structures to be searched, and were used to generate reverse decoy sequences. 

These files were then used as input into the Xquest/Xprophet pipeline (Leitner et al., 2013), parameters for 

crosslink search were derived from the individual datasets. Xprophet crosslink assessment used an error 

range of -10 - 10 ppm (Leitner et al., 2013). 

Experimental Benchmark Decoy Model Generation 

Benchmark decoy models were generated for assessing the performance of the scoring function. For each 

protein model 300 decoy structures were generated with a Cα-RMSD range of approximately 0-15Å. Two 

models were incomplete: CASP13 target Human Exonuclease V (X0975) (Cheng et al., 2019) and Creatine 

Kinase (Table 1) containing missing regions of 12 and 10 residues respectively. We used the loopmodel 

function in MODELLER9.22 (Webb and Sali, 2014) to complete these models. 100 models were generated 

and scored using SOAP potentials (Dong et al., 2013). The model with the best SOAP potential was selected 

(after manual inspection) as the “target” structure for the benchmark. 

Next, random alignments for all benchmark cases were generated for the target sequence structure using an 

in-house script, which introduces random gaps in a constrained manner to ensure that they can produce 

model structures within an acceptable Cα-RMSD range. 300 sub-optimal alignments with gaps were 

produced and then used by MODELLER9.22 Automodel function (Webb and Sali, 2014) to output 

corresponding decoy models.  

QUANTIFICATION AND STATISTICAL ANALYSIS 
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A modified version of Jwalk (Matthew Allen Bullock et al., 2016) was produced, which allows Solvent 

Accessible Surface Distances (SASDs) to be calculated not only between Lys residues but also between 

Ser, Thr and Tyr residues. Jwalk was then applied to all decoy models per benchmark target. The DEPTH 

algorithm (Tan et al., 2011) was then run on these models to obtain residue depth information. Experimental 

recovery rates were calculated as the percentage of the experimental crosslinks and monolinks over the 

theoretical maximal number of crosslinks and monolinks, respectively. 

Model structures were scored based on both crosslinks and monolinks, with crosslinks scored using MNXL 

(Matthew Allen Bullock et al., 2016) and monolinks using MoDS, and using the combined XLMO score. 

The relationship between MoDS and Cα-RMSD was evaluated using Spearman Correlation 

Coefficient, Precision, and the Area Under the ROC Curve (AUC) (Hand and Till, 2001). Precision 

is defined as TP/(TP+FP), where TP are True Positives and FP are False Positives, with a threshold 

of 4 Å and the top 10% scoring models (Table S1). ROC curves are calculated as the True Positive 

Rate (TPR) (Equation 1) against the True Negative Rate (TNR):  

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
     (2) 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
    (3) 

where FN are False Negatives and TN are True Negatives, and the threshold for the % top scoring models 

for deciding positive models being varied over the course of the calculation.  

SUPPLEMENTAL TABLE TITLE 

Table S2: Related to Figure 2. Averaged statistics for all models scored in the simulated dataset.  
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Figure S1: Related to STAR Methods. Plot showing MoDS performance when the maximum depth cutoff for 

simulating monolinks (i.e, identifying “true” monolinks) is varied. Monolinks were simulated at 50% 

recovery, red line shows mean performance over the benchmark from Bullock et al (Matthew Allen Bullock 

et al., 2016), shaded area shows standard deviation. Black dotted line at 6.25Å shows the optimum 

performance.



Figure S2: Related to STAR Methods. Flowchart showing the 
process for MNXL and XLMO scoring. Sticks represent 
crosslinkers, coloured circles show where a residue is attached



Figure S3: Related to Figure 3. Plots showing the difference in RDs between monolinked residues in the native structure and in 

the 5 top-ranked models, based on MoDS (CK on top and X0987 in the bottom). Residues associated with difference > 0.5 Å

or < -0.5 Å are shown on the structure, coloured red for depth decrease, green for depth increase and black for no change. 

For target structure X0987 d1 and d2 represent the residue range associated with domain 1 and domain 2, respectively.



Value Definition

TP C⍺-RMSD ≤ 4Å, above score threshold

FP C⍺-RMSD > 4Å, above score threshold

TN C⍺-RMSD > 4Å, below score threshold

FN C⍺-RMSD ≤ 4Å, below score threshold

Table S1: Related to STAR Methods. 
Definitions of binary classifiers.


