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operate under significant uncertainty. The present work proposes a Decision Support
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Abstract

The availability and the quality of drinking water are key requirements for the well-being and the
safety of a community, both in ordinary conditions and in case of disasters. Providing safe drinking
water in emergency contributes to limit the intensity and the duration of crises, and is thus one of the
main concerns for decision-makers, who operate under significant uncertainty. The present work
proposes a Decision Support System for the emergency management of drinking water supply
systems, integrating: i) a vulnerability assessment model based on Bayesian Belief Networks with the
related uncertainty assessment model; ii) a model for impact, and related uncertainty assessment,
based on Bayesian Belief Networks. The results of these models are jointly analyzed, providing
decision-makers with a ranking of the priority of intervention. A GIS interface (G-Net) is developed
to manage both input spatial information and results. The methodology is implemented in L’ Aquila
case study, discussing the potentialities associated to the use of the tool dealing with information and

data uncertainty.

Keywords: Emergency management; Drinking water supply systems; Bayesian Belief Networks;

Uncertainty Analysis; Decision Support System
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1. Introduction

Modern societies highly rely on infrastructures, which provide critical services and guarantee the
quality of life for citizens (Zhao et al. 2016). The increase in both frequency and intensity of extreme
events contributes to create additional challenges to the infrastructure providers (Eidsvig et al. 2017).
Particularly, water supply infrastructures are essential for health, sanitary and economic reasons and,
consequently, there is high pressure on water organizations to provide customers with a continual and

efficient water supply (Mala-Jetmarova et al. 2017).

Several approaches are available for protecting water supply infrastructures from a wide variety of
stresses, either supporting system performances assessment in case of extreme events (EPA 2015) or
driving the selection of suitable actions for vulnerabilities mitigation (Fragiadakis et al. 2013).
Methods typically vary with the type of system, the aim of the analysis, and the available information.
A broad classification is into qualitative, semi-quantitative and quantitative approaches (Pagano et al.
2014a; Eidsvig et al. 2017). Quantitative tools require detailed data and a high computational burden,
but provide reliable numerical outcomes for decision-makers (Fragiadakis et al 2013, Diao et al.
2016). Qualitative approaches support ranking risk levels, screening and identifying critical scenarios
(Eidsvig et al. 2017), based on the use of classes (e.g. ‘high’, ‘medium’, ‘low’). Semi-quantitative
techniques (e.g. probabilistic methods such as Bayesian Belief Networks) guarantee a compromise

between such classes.

One of the most challenging tasks in these methods is uncertainty management. Uncertainty
represents the lack of exact knowledge, which is inherently associated to water supply systems
planning, design and operation (Tanyimboh 2017). Specifically, the uncertainties related to
emergency onset and evolution (Perng and Buscher 2015) as well as the difficulty in collecting
reliable data and the ambiguity in the understanding of specific phenomena should be properly
considered. These issues deeply affect the capability to identify optimal decisions for emergency

management (Pagano et al. 2014b, Gaudard and Romerio 2015). Enhancing the understanding of

3
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uncertainties could support developing a representative picture of the current knowledge and its

potential deficiencies (Uusitalo et al. 2015, van der Keur et al. 2016).

Bayesian Belief Networks (BBNs) have shown several useful features to support decision-making
under uncertainty for water supply systems (Molina et al. 2011). BBNs allow the integration of
various types of information combining qualitative and quantitative aspects (Gonzalez-Redin et al.
2016, Phan et al. 2016). They support reasoning from uncertain evidence to uncertain conclusion
(John et al. 2016), treating both data and model uncertainty (Marcot 2012, Uusitalo et al. 2015,

Gonzalez-Redin et al. 2016).

Within this framework, the present work describes a Decision Support System (DSS) for the
emergency management of drinking water supply infrastructures. The DSS is based on the integration
of: i) a probabilistic vulnerability assessment model, based on BBNSs, to identify the most critical
elements of the infrastructural system; ii) the associated uncertainty estimate; iii) a BBN-based model
for impact assessment; iv) the associated uncertainty estimate. The most relevant innovation of the
present work is twofold. Firstly, the definition of a methodology to perform a joint vulnerability and
impact assessment of infrastructural failure, with an explicit uncertainty analysis. This is a crucial
requisite in the definition of a set of decision-makers' preferences to support defining a priority of
actions in emergency. Secondly, overcoming one of the main limits of BBNs, which are not inherently
characterized by a spatial nature, a GIS interface (G-Net) was built to support the management of
input spatial information and results visualization. The DSS was developed with the cooperation of
the Italian Department of Civil Protection (DPC), tested with several Italian water utilities
(Acquedotto Pugliese S.p.A., Gran Sasso Acqua S.p.A. and AIMAG S.p.A.), and implemented in a

relevant case study: L’Aquila (Italy) earthquake in 2009.

The paper is structured as follows. After the present introduction, Section 2 provides an overview of

BBNs features and applications. Section 3 describes the architecture of the developed tool. Section 4
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discusses the relevance of L’Aquila case study, while section 5 includes a discussion on the main

results related to the implementation of G-Net, analyzing its potential and limitations.

2. Methodological background: Bayesian Belief Networks

BBNs combine graph theory and probability theory, consisting of directed acyclic graphs and
associated joint probability distribution (Pearl 1988). The graph nodes represent variables, whereas
the edges represent conditional dependencies. The strength of the dependency is represented by
conditional probabilities: each variable X is associated to a probability function P(Xi|pai) that takes as
input pai, i.e. a set of predecessors of X; which make Xi independent on all other predecessors.
Variables that are judged as direct causes of X; satisfy this property, and are the parent variables of
the node. BBNs thus allow the probabilistic representation of interactions between variables (Pearl
1988, Phan et al. 2016). The importance of BBNs is mainly related to the ability to coordinate bi-
directional inferences, supporting the representation and analysis of uncertain knowledge as well as

different modes of reasoning (Pearl 1988).

BBNs have become an increasingly popular modelling technique to deal with complexity and
uncertainty and several studies focused on the potentialities of BBNSs to support decision-making in
several emergency conditions (e.g. Sobradelo et al. 2015, Wu et al. 2017). Referring specifically to
water supply infrastructures exposed to external stresses, BBNs were mainly used to build models for
pipe breaks using learning from past breaks, integrating multiple kinds of data and modeling explicitly
the dependencies, using probabilities updates and a representation of uncertainty (Francis et al. 2014,

Kabir et al. 2015, Kabir et al. 2016).

A wide scientific literature underlined that BBNs are able to support: the integration of various types
of information (e.g. analytical models, expert knowledge, literature and historical data) (Gonzalez-
Redin et al. 2016, Phan et al. 2016), the possibility of reasoning from uncertain evidence to uncertain

conclusions (John et al. 2016), the explicit treatment of uncertainties (Uusitalo 2007, Uusitalo et al.
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2015, Gonzalez-Redin et al. 2016). Furthermore, BBNSs are also flexible enough to support a revision

of probabilities in the light of additional information or observations availability.

BBNs have also some limitations. Firstly, nodes are often discretized with only a few states and in
qualitative terms (e.g. ‘high’ or ‘low’), providing a coarse representation (Uusitalo, 2007). Secondly,
the BBNs structure is linear and static, and does not directly account for the analysis of feedback
loops and dynamic issues (Uusitalo, 2007). Furthermore, BBNs do not natively provide a spatial

representation of variables.

Specifically referring to the last issue, Johnson et al. (2011) identified four ways to integrate GIS and
BBNs: i) GIS input to BBN, when GIS layers are used as input nodes; ii) GIS input to, and output
from BBN, in case GIS is also used to visualize the output of a BBN; iii) BBN and GIS complex
interactions; iv) BBN and GIS within a larger framework, where BBNs model one factor and GIS
models other factors. Integrated methodologies based on BBNs and GIS were recently proposed (e.g.
Landuyt et al. 2015, Gonzalez-Redin et al. 2016, Molina et al. 2016, Liu et al. 2016), showing
remarkable potentialities. Uncertainty maps can be developed as well, as discussed by Landuyt et al.

(2015).

3. Model description

The present work describes a DDS developed for decision-makers involved in the management of

drinking water supply infrastructures under emergency conditions.

The DSS is based on the integration of:

— A probabilistic vulnerability assessment model, based on BBN, for the infrastructural system.
The model is integrated in a GIS tool (G-Net) in order to facilitate data input and to provide a

geographical visualization of results (Section 3.1).
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— An uncertainty analysis related to the results of the vulnerability assessment model, used to
analyze the impacts of the available knowledge (and existing gaps) on the results (Section
3.2).

— A BBN-based probabilistic model for impact assessment, useful to quantify the magnitude of
the impacts of an event (Section 3.3).

— An uncertainty analysis related to the results of the impacts assessment model (Section 3.3).

In the end, decision-making is supported through the definition of a ranking order among the elements
of the network, based on the integration of information on infrastructural vulnerability, impacts and

related uncertainties.

3.1 G-Net tool for the spatial vulnerability assessment

The first element of the DSS is a vulnerability assessment tool for drinking water supply
infrastructures based on BBNs, whose conceptual structure is described in Pagano et al. (2014a). The
tool is composed of a set of BBNs quantifying the vulnerability levels of drinking water supply
systems from source to tap, with respect to physical (earthquakes, landslides) or CBR hazards (water
contamination).

The following Fig. 1 shows the BBN used to analyze the physical vulnerability of water mains. It
may be used either to assess the global vulnerability level, or the vulnerability associated to specific
mechanisms (i.e. breaking, corrosion, joint extraction and security level). The variables in grey
represent the ‘parent’ variables (input), whereas those in yellow are the ‘child’ variables (output).
Three main classes of data are included in the model: infrastructural data (e.g. diameter, material,
thickness, etc.); environmental data (e.g. seismicity, soil mechanical characteristics, etc.); operative
data (e.g. hydraulic variability, maintenance performed/scheduled, etc.). The outcome is, for each
element of the network under investigation, a set of probability values associated to the states of
specific output variables. Further details on model building are included in the Supplementary

Material.
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FIG1
Fig. 1 BBN for the physical vulnerability assessment of water mains
It is worth mentioning that each pipe is analyzed independently, thus neglecting the role of structural
or functional interconnections, dependencies and cascading effects (e.g. a vulnerable element might
have impacts on the whole infrastructure downstream). This allows easily identifying the most

vulnerable elements of the whole network (further details in Pagano et al. 2014a).

Based on the feedbacks obtained by the potential end-users, i.e. DPC and water utilities, a GIS
interface was built, in order to facilitate spatial data processing and results representation. The toolbox
G-Net consists of an expanded development of a GIS application supporting the vulnerability
assessment tool. It is specifically designed to support the integration with Netica™ software by means
of an automated procedure. The tool is composed of customized interfaces working in ArcGIS®

software (by Esri) environment with wizards configured as interface between Netica™ and ArcGIS®.

The tool has been designed using open-source Python scripting language, fully supported by
ArcGIS® and able to extend the basic functionality of GIS and to automate the workflow (Tateosian
2015). A loosely-coupled integration strategy between ArcGIS® and Netica™ was used. This means
that the latter is not completely encapsulated within a GIS environment, but takes advantage of the
database, the visualization and the analysis capabilities of a GIS (Karimi and Houston 1996, Johnson

etal. 2011)

G-Net was developed both for the collection, analysis and attribution of spatial input data and for the
visualization and mapping of the outcomes of the vulnerability assessment. Referring to the different
classes of BBN-GIS interactions introduced above (Johnson et al. 2011), G-Net refers to the second

category, which is ‘GIS input to, and output from BBN’.
A schematic overview of the procedure carried out by the tool is shown in the Fig. 2.

FIG 2
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Figure 2. G-Net procedure for vulnerability assessment and mapping: (a) selection of the analysis to
perform; (b) data association to the input variables; (c) input variables export procedure; (d) output

vulnerability map.

G-Net firstly requires the selection of the subsystem to analyze, among all the elements of a drinking
water infrastructure, both linear (e.g. water mains) and punctual (e.g. tanks, pumping systems, etc.).
Secondly, the user should select the kind of analysis to carry out (Figure 2a), i.e. physical or CBR
vulnerability assessment. Additional data related to the input variables in the BBN can be manually
or automatically associated to the file (Figure 2b). If some data concerning a certain variable are not
available, a uniform probability distribution is considered and the BBN propagates the related

uncertainty up to the output variables.

Once the GIS pre-processing is complete, G-Net exports a table for the input variables in a format
easily manageable by Netica™ (Figure 2c). Following the vulnerability assessment procedure in
Netica™, a table with modeling results can be imported again in GIS, and joined to the available file,
through the same toolbox. Afterwards, the resulting BBN is shown in the vulnerability map (Figure

2d).

3.2 Uncertainty analysis

The present section aims at defining a method to analyze and map the uncertainty associated to BBNS,
supporting the identification of its root causes. Reference is made to the work by Marcot (2012), who
suggested metrics for estimating model performances and uncertainty. Referring to BBNS,
uncertainty pertains to the dispersion of Posterior Probability Distribution (PPD), i.e. the spread of

alternative predictions.

Firstly, the sensitivity analysis (SA) supports determining the degree to which a variation in PPD is
explained by other variables, and depicts the underlying probability structure of a model (Marcot
2012). It was performed with respect to the variable ‘breaking vulnerability’, and the results are

proposed in the Table 1. The results of SA are also used for scenario analysis (see section 5).
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Table 1. Results of the sensitivity analysis performed with respect to the variable ‘breaking

vulnerability’
TABLE 1

The more sensitive to a variable the model is, the more important is to collect related information.

Having reliable data on key variables is a crucial requisite to reduce uncertainty.

Secondly, the uncertainty associated to BBNSs is estimated using the Shannon entropy H(X) referring
to the output variable (‘breaking vulnerability’ for the vulnerability assessment model). It is defined
as the average amount of information conveyed by a stochastic source of data. The concept of
Shannon Entropy is fundamental in information theory and, besides sharing some intuition with
Boltzmann’s theory, some aspects are analogous to those used in statistical thermodynamics. The
Shannon entropy can be used as a synthetic measure of uncertainty, related to the number of
alternatives and characteristics of the probability distribution over the states of a random variable

(Das 1999). It is expressed as follows, using a logarithmic form:
H(X) = = Xiz1 P(x)logP (x;) 1)

H(X) measures the average information required in addition to the current knowledge to remove the
ignorance associated to the probability distribution of X. If the current state of knowledge is complete,
then H(X) = 0. If it is total ignorance (uniform probability distribution), the additional information
required to pin down an alternative is maximum. A normalized value of entropy can be calculated as
H(X) = H(X)/H(X)mqx- For the purposes of the present work, the Shannon entropy is used to
estimate the uncertainty related to the main output variables (i.e. ‘breaking vulnerability’ and

‘impacts’).

3.3 Impact assessment
The levels and types of adverse impacts are the result of a physical event interacting with vulnerable

elements. The aim of emergency managers is directly related to the reduction of impacts, both before

10
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and after a disaster occurs (McCormick 2016). Correctly assessing the impacts of an emergency is
not a straightforward task, due to the complexity associated to a comprehensive analysis of costs and

consequences (Sobradelo et al. 2015).

For the purpose of the present work, the impact assessment is performed through another BBN

(Figure 3), based on the following key variables:

- ‘Flow rate’: measure of the service loss, depending on the number of users potentially
affected. The values ‘high’, ‘medium’ and ‘low’ are defined considering whether the ratio
between the local flow rate and the maximum upstream value is higher than 0.7, between 0.3
and 0.7 or lower than 0.3.

- ‘Diameter’: measure of the cost for repair, proportional to pipe diameter. The values ‘high’,
‘medium’ and ‘low’ are defined for each element considering whether the ratio between the
local diameter and the maximum value is higher than 0.7, between 0.3 and 0.7 or lower than
0.3.

- ‘Relevance’: defines the presence of critical users and services (e.g. hospitals). The values
‘high’, ‘medium’ and ‘low’ are defined considering the importance of the services depending
on the infrastructure.

- ‘Redundancy’: defines the presence of additional paths for water supply. The values ‘Yes’

and ‘No’ are defined considering the presence of other paths that can be activated.

FIG 3

Figure 3. BBN for impact assessment

4. L’Aquila case study

L’ Aquila province (central Italy) was struck by a severe earthquake on 6 April 2009. Several damages
to structures and infrastructures were detected over a broad area (Kongar et al. 2017). Referring to

the water supply system, the major damage occurred on an important steel pipe (diameter 600 mm;

11
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pressure 25-30 atm), which failed because crossing the surface trace of a fault activated during the
earthquake (Pagano et al. 2017). The operation of the whole system was stopped in order to allow the
restoration of infrastructural functionality and to limit the impacts of the multiple damages occurred
in the urban distribution system. According to the interviews held with technicians involved in
emergency operations, the fragmented and uncertain knowledge related to infrastructural conditions,
particularly in the urban area, was a key limit during emergency operations. The available data were
often not reliable and directly usable, since mainly deriving from personal experience, and thus
difficult to share, visualize and integrate. Most of emergency operators acknowledged the lack of
reliable infrastructural information as a main issue hampering the effectiveness of emergency

management strategies.

5. Results and discussion

5.1 Vulnerability assessment

The main results of the vulnerability assessment procedure, performed through G-Net in L’Aquila
case study, are represented in Figure 5(a) along with the results of the uncertainty assessment. These
results are identified in the following as the ‘BASE’ scenario. The map plots the probability values

associated to the state ‘high’ of the variable ‘breaking vulnerability’.

The Figure 5(a) shows the presence of several elements having values of ‘breaking vulnerability’
from ‘medium’ to ‘high’. Model predictions were tested comparing the results with the position of
the main pipe breaks occurred during the earthquake. Particularly, the highest values of ‘breaking
vulnerability’ were found for the pipe damaged in 2009. Then, other elements characterized by a
significantly high ‘breaking vulnerability’ were identified as well, and the result discussed with GSA

S.p.A,, resulting in a correspondence with some well-known vulnerabilities of the infrastructure.

5.2 Uncertainty analysis and mapping

12



1 Starting from the results of the SA (Section 3.2), an influence analysis was performed. It allows

22 evaluating (and comparing) the effects on PPD from selected input variables set to specific scenario

53  values. Conducting influence runs can help reveal the degree to which individual or sets of input

6

74 variables could affect output probabilities. This is helpful in a decision-setting, where management

8

18 5 might prioritize activities to best effect desirable, or to avoid undesirable outcomes (Marcot 2012).

11
12

136  The following scenarios were analyzed and discussed:

14

15

167 ]
17

18

19 8

20

219 J
22

2319
24
25

2611 °
27

287
29

BEST Scenario: all the variables to their optimal state — i.e. minimizing the vulnerability of
the system.
WORST Scenario: all the variables to their worst state — i.e. maximizing the vulnerability of
the system.
UNCERTAIN Scenario: all the variables to an ‘unknown’ state — i.e. the input variables have

uniform probability distribution, in case no information is available.

30
212'13 Three additional scenarios were built as well, changing the state of some variables according to the
33

3414  results of the SA. The variables modified in each scenario are identified in the Table 1.

35
36
375 °
38

39
4010
41

427

43
S
46

4719
48

490
50

51

521

53

5%) o
55

56
5723
58
59
60
61
62
63
64
65

SENSIT (1). The scenario is built setting three key environmental variables to the worst state:
‘seismicity’, ‘existing instabilities’ and ‘dynamic loads’. All the variables considered in this
scenario represent external conditions, and thus their state cannot be improved.

SENSIT (2). The scenario is built considering the positive impact of actions performed on
variables that can be modified through specific strategies. These variables may be
representative of both structural and operational aspects. In this scenario, a subset of variables
IS set to the best state.

SENSIT (3). The scenario is built considering the four most influential variables, according

to the sensitivity analysis, all set to the worst state.

13
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The results are summarized (according to Marcot 2012) in terms of PPD of the output variable
‘breaking vulnerability’ (Figure 4). The ‘BEST’, “WORST’ and ‘UNCERTAIN’ scenarios show an
intuitive PPD for the output variable. The comparison between the scenarios ‘SENSIT (3)’ and
‘SENSIT (1)’ suggest that few variables, mainly related to environmental conditions, are highly
influential on the result. From a practical point of view, this means that a deep knowledge of the
environment in which a system is located (e.g. seismicity of the area, existing instabilities) is crucial
for the reliable estimate of ‘breaking vulnerability’. The Scenario ‘SENSIT (2)’ is indeed relevant in
order to assess the impact of potential improvements on infrastructural and operational features.
Although the effect on the output PPD is lower, acting on the infrastructure and changing operative

conditions may contribute to reduce significantly the vulnerability level of the system.

FIG4

Figure 4. Results of the influence analysis in the scenarios

The Shannon entropy was then used to produce uncertainty maps, as shown in Fig. 5. Referring to
the ‘BASE’ scenario, the values of H(X) were computed for the whole network and spatially plotted
along with the results of the vulnerability assessment (Fig. 5a). The same procedure was used to map

the impacts magnitude and the related uncertainty (Fig. 5b).

The relevance of H(X) for uncertainty assessment was further tested through specific simulations,
analyzing the impacts of the lack of important input information on the reliability of model results.
The ‘BASE’ Scenario was built considering a full knowledge of the input variables required by the

model. Referring also to Table 1, the following scenarios were created:

e U(1) Scenario considers complete uncertainty for the input variables identified with (1) in
Table 1. Three highly influential environmental variables (according to the SA): ‘seismicity’,

‘existing instabilities” and ‘dynamic loads’, are treated as unknown.
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e U(2) Scenario considers complete uncertainty for the input variables identified with (2) in
Table 1. Both structural and operative features are set to a uniform probability distribution.
e U(3) Scenario considers uncertainty for the input variables identified with (3) in Table 1 and

the four most relevant variables according to the SA are set as unknown.

The H(X) was used in the cited scenarios, to quantify the cumulative uncertainty related to unknown
inputs. Following the ‘chain rule’ for entropy, the global entropy of a group of random variables was
computed as the sum of conditional entropies. The values of H(X) are 0, 0.067, 0.012 and 0.083
respectively for BASE, U(1), U(2) and U(3) scenarios. This suggests that although the scenario U(2)
IS characterized by a higher number of unknown variables, their impact on modeling results is lower
if compared to the key variables neglected in both U(1) and U(3) scenarios. Both U(1) and U(3)
scenarios suggest that the knowledge related to environmental conditions is a key requirement to
perform a reliable vulnerability assessment. Furthermore, referring particularly to the scenario U(3),
the highest value of H(X) is representative of a more critical condition, due to the highly uncertain set

of available input data.

5.3 Impact assessment

The results of the impact assessment can be represented, as in the Figure 5b, based on the probability
associated to the state ‘high’ of the variable ‘impacts’. Both a numerical and a chromatic scale are

used. As already discussed, the map represents also the associated uncertainty.

FIG5

Figure 5. a) Results of vulnerability assessment and related uncertainty; b) Results of impacts

assessment and related uncertainty.

5.4 Recommendations for decision-makers

The present section aims at supporting decision-makers in prioritizing the interventions on a drinking

water supply infrastructure. The values of infrastructural vulnerability, the magnitude of the expected
15



impacts, and the role of uncertainty are jointly taken into account. The network elements are
compared considering different combinations of ‘vulnerability under uncertainty’ and ‘impacts under
uncertainty’. Considering the drinking water supply infrastructure under analysis, each network
element is characterized by the set of attributes A = {ay, @y, ayy, @3y}, such that A, =
{Vi, Voo V1L €1, € €1 Ut i Urms Urp Uzn, Uam, Uz, + FEPresents the set of all possible values that the

elements of A can take, over which a decision-maker has preferences. The attributes are:

— a4, vulnerability based on the state ‘high’ of the variable ‘breaking vulnerability’. The possible

values of the attribute are a; = {high (v;,), medium (v,,), low (v})};

— a,, impact assessment through the analysis of the exposure to the potential effects of failures

represented by the values a, = {high (ep,), medium (e,,), low (e;)};

- ay, and a,,, uncertainty associated respectively to vulnerability and impact assessment, according

to H(X), ayy = {high (uyp), medium (uyy,), low (uqy;)}

and a,,, = {high (uyy), medium (uy,y,), low (uy)}.

Throughout this section, the symbol > denotes a decision maker’s preference relation, x > y means
that x is preferred to y. The decision-makers have the following order of preferences: a higher value
of vulnerability/exposure has priority compared to a lower one: vy, > v,,, > v;and e, > e,, > e;. The
preferences elicitation was performed through semi-structured interviews held with Civil Protection
operators and engineers working for the local water utility. Considering the combination between the
two attributes, the decision-makers should prioritize the highest possible value of a; combined with
the highest possible value of a,: vye, > vpe, > Vmen > vpe; > Upeym > Viey > Ve > Viey >
v;e;. However, as discussed in section 5.2, the “uncertainty’ is a key attribute that decision-makers
take into account. Considering the preferences on the other attributes, a lower value of uncertainty
associated respectively to vulnerability and impact assessment is preferred to a higher value: uq;u,; >

U Upm > UimUpp > U Uop > UimUam > UgplUpp > UpmUop > UgplUam > UgpUop -
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Accordingly to the preference statements, we obtain the following compact representation supporting

the definition of a ranking order among the different potential 81 conditions:

VpepUqiUy > VpepUqUpm > VppUUimUyy > Vhepl Uy > VpepUUimUam > VpepUiplUy >

> UpepUimUzp > VpepUipUpm > VpepUiplpp > VplpUy Uy > VplplyUpy > 0 >

> e > vlelulhuzh - T1 > rz > T3 > e > 7‘81

Consequentially, in relation to the water supply network under analysis, we obtain the spatial
representation of ranking as in the Fig. 6. The mapping of results allows decision-makers to identify
the elements of the network where interventions should be primarily oriented either in emergency

conditions or in ordinary management, to reduce the risk levels for the whole system.

FIG6
Figure 6. Ranking of the network elements

6. Conclusions

This work describes a DSS for decision-making in the emergency management of drinking water
supply systems. The methodology was implemented in L’ Aquila case study. The model is composed
of a BBN-based vulnerability assessment tool for drinking water supply infrastructures, with the
related uncertainty analysis and a BBN-based model to estimate impacts magnitude, with the related
uncertainty analysis. The tools are integrated in a comprehensive methodology, based on preferences
orders, capable to jointly take into account all the previous information, and to define a ranking order
among the elements of the infrastructural system. This ranking simply suggests a priority of action
for decision-makers. Overcoming one of the main limitations of BBNs -i.e. the difficulties in
performing spatial analyses- the development of a GIS interface (G-Net), for data structuring and
results analysis, revealed highly useful to improve the effectiveness of the tool, helping in visualizing
the outcomes, quantifying uncertainty, and identifying the final ranking. Future activities will be

oriented mainly to the analysis of temporal aspects related to the dynamic evolution of system
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behavior (see e.g. Pagano et al. 2017) and to the implementation of models based on complexity

theory to support the analysis of interconnected systems.
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1
Node Mutual Info Percent Variance of Beliefs Scenario

Breaking Vulnerability 1.3976 100 0.363296

External stress level 0.19371 13.9 0.044494

Mechanical features 0.09952 7.12 0.02237

Physical vulnerability 0.04676 3.35 0.01062

Seismicity 0.04403 3.15 0.010404 1), 3)
Existing instabilities 0.02028 1.45 0.004848 1), 3)
Actual conditions 0.01908 1.37 0.004305

Soil mechanical characteristics 0.01267 0.907 0.002837 3)
Hydraulic efficiency 0.01221 0.874 0.002945

Safety level 0.00808 0.578 0.001839
Extra-maintenance 0.0056 0.401 0.001275 (2), (3)
OP/NP 0.00312 0.223 0.000758 )
Dynamic loads 0.00269 0.193 0.000649 Q)
Flexibility 0.00212 0.152 0.000485

Hydraulic variability 0.00138 0.0991 0.000338

Age/Design life 0.00111 0.0797 0.000256 )
Joint extraction vulnerability 0.00084 0.0598 0.000204

Maintenance: performed/scheduled 0.00077 0.0548 0.000175 (2)
Joint type 0.00063 0.0452 0.000145 )
Diameter 0.00059 0.0422 0.000137 2
Depth 0.0004 0.0283 9.49E-05 )
Joint frequency 0.00014 0.0102 3.25E-05 (2
Corrosion vulnerability 0.00004 0.00251 0.000008

Pipe coating 0.00003 0.00235 7.9E-06

Cathodic protection 0.00001 0.000767 2.6E-06

Thrust restraint 0 0 0 2
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Analysis and validation of the BBN-based vulnerability assessment tool

The present section aims at providing additional details on the BBN-based vulnerability assessment
methodology, mainly focusing on a set of specific information related to model building and

validation.

The following Table S1 (from Pagano et al. 2014a) includes a detailed description of all the input
variables included in the BBN proposed in Fig. 1 of the paper. The meaning and the states of the
variables are included. It is worth to consider that mutual exclusivity is encoded via the states of
nodes, having particular attention in a proper identification of specific causal pathways (i.e. the
specific vulnerability mechanisms).

Table S1 Description of the input variables adopted, of their meaning and states

Input variable Meaning States
Cast iron
Material Different materials determine variable mechanical behaviors and show a Steel
specific response to corrosion, breaking and deterioration phenomena. Concrete
Plastic
. ) . . . High
Thickness A greater thickness accounts for greater resistance and corrosion resiliency. L
ow
. . Inner and outer pipe coatings guarantee optimal resistance to chemical Yes
Pipe coating . L -
actions, deterioration and corrosion. No
i i i i ial limiti Yes
Cathodic protection Actlvg protection systems reduce pipe electrical potential limiting
corrosion. No
i ifi Yes
Thrust restraint The presence of _thrust restraints balances specific forces (e.g.
hydrodynamic force in curves) No
Diameter Studies have shown that pipe breaks tend to reduce for pipes with greater >200 mm
diameters. <200 mm
Rigid
Joint type The flexibility of pipe joints conditions their response to external actions. Semi-rigid
Flexible
High
Joint frequency The frequency of pipe joints conditions the overall flexibility of the system. Medium
Low
Depth Buried systems are less exposed to superficial events (e.g. floods) and often Superficial
P not clearly visible. Buried
. . High
Length The_hlgher th_e_lgngth of the system, the lower the effectiveness of Medium
monitoring activities.
Low
Soil mechanical | The mechanical properties of soil and backfill properties influence the Good
characteristics system’s response to external actions. Poor
h | level is ch i Iso through th lysi High
Seismicity Tl eexpgctet_j external stress level is ¢ aracterized also through the analysis Medium
of the seismicity of the investigated area.
Low
T . Increasing vulnerabilities are expected where local instabilities (e.g. faults Yes
Existing instabilities . -
or landslides) already exist. No
i i i > Frequent
Dynamic loads The hlgh_e.r the dynamic loads (e.g. traffic loads) the higher the system’s
vulnerability. Absent
| i iti imity of electricity li | riigh
External pressures Loca aggressive conditions (e._g: proximity of electricity lines, externa Medium
currents) may increase vulnerability levels.
Low
Soil resistivity summarizes a series of soil chemical, physical and High
Soil resistivity Medium

biological features determining the expected behavior in terms of
corrosion.

Low
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A water system is much more vulnerable if subjected to significant

High

Hydraulic variability variations in hydraulic conditions, particularly pressure. In the case of Medium
water mains, the entity of hydrostatic pressure is considered. Low
. o . . . . . High (0.66 - 1)
Opergtlng Pressure /| Apipeis much more vulnerable if operating pressure is close to its nominal Medium (0.33 - 0.66)
Nominal Pressure pressure.
Low (0 - 0.33)
N Most hydraulic structures are hidden. Recognizable structures are more Yes
Visibility .
exposed to sabotage and terrorist acts. No
- Accessible structures (without fences or walls) are more exposed to Yes
Accessibility -
sabotage and terrorist acts. No
. Surveillance by employees or monitoring systems reduces the risk of Yes
Surveillance . .
intrusion and accelerates emergency responses. No
Qualitative and quantitative monitoring systems (both local and Existing and CO”ti”UOUS
Monitoring centralized), especially if continuous, help in quickly detecting problems Existing non continuous
and faults. Absent
Failure probability follows the classical ‘bathtub’ curve: older systems are >0.8
Age / Design Life less efficient and more subject to deterioration, newly completed ones may 01-08
be affected by construction faults. <0.1
. . . . . ) . Low
Maintenance: Regular maintenance contributes to improving pipe conditions and Medium
Performed/Scheduled response to external stresses. High
19
- Past unexpected maintenance activities denote vulnerable areas or Frequent
Extra Maintenance o -,
vulnerability conditions due to local factors. Absent

The variables included in the model (the total number of nodes is 40) were also topologically ordered.
Given a DAG, the topological ordering of variables (X1, Xz, ..., Xn) is an ordering in which parents
are ordered before the children. The topological order (one of the possible topological orders) of the
elements of the network is: (External pressures, Soil resistivity, Material, Pipe Coating, Cathodic
protection, Thickness, Hydraulic variability, Operating pressure/Nominal pressure, Thrust restraint,
Soil mechanical characteristics, Diameter, Joint Frequency, Joint type, Seismicity, EXisting
Instabilities, Dynamic loads, Depth, Visibility, Accessibility, Surveillance, Length, Monitoring, Extra
maintenance, Age/Design life, Maintenance performed/scheduled; Environmental aggressiveness,
Corrosion resiliency, Hydraulic efficiency, Joint extraction vulnerability, Mechanical features,
External stress level, ‘Passive’ protection level, ‘Active’ protection level, Actual conditions;
Protection level, Corrosion vulnerability, Breaking vulnerability, Safety level; Physical
vulnerability).

D-Separation can be considered in order to analyze independence of nodes. Particularly, according to
the D-separation rule, A is d-separated from B by C if all the paths between sets A and B are blocked
by elements of C. Such rule enables to quickly determine whether a finding at one node can possibly
change the beliefs at another by only looking at the link structure of a Bayes net. Equivalently, D-
Connected nodes can be also identified, i.e. the nodes whose beliefs could change if findings were
obtained for a currently selected node, based on the graph connectivity (or vice-versa). The following
table S2 summarizes, for each node of the BBN, the set of D-Connected nodes (the complementary
sub-set will be D-Separated).

Table S2. D-connected nodes

Node
External pressures
Soil resistivity
Material

D-connected nodes
Environmental aggressiveness, Corrosion vulnerability, Physical vulnerability
Environmental aggressiveness, Corrosion vulnerability, Physical vulnerability
Corrosion resiliency, Corrosion vulnerability, Physical vulnerability




Pipe Coating Corrosion resiliency, Corrosion vulnerability, Physical vulnerability

Cathodic protection Corrosion resiliency, Corrosion vulnerability, Physical vulnerability

Thickness Corrosion resiliency, Corrosion vulnerability, Physical vulnerability

Hydraulic variability Hydraulic efficiency, Breaking vulnerability, Physical vulnerability

Operating pressure/nominal Hydraulic efficiency, Joint extraction vulnerability, Breaking vulnerability,
pressure Physical vulnerability

Thrust restraint

Joint extraction vulnerability, Physical vulnerability

Soil mechanical characteristics

Mechanical features, Breaking vulnerability, Physical vulnerability

Diameter

Mechanical features, Breaking vulnerability, Physical vulnerability

Joint frequency

Flexibility, Mechanical features, Joint extraction vulnerability, Breaking
vulnerability, Physical vulnerability

Joint type

Flexibility, Mechanical features, Breaking vulnerability, Physical vulnerability

Seismicity

External stress level, Breaking vulnerability, Physical vulnerability

Existing instabilities

External stress level, Breaking vulnerability, Physical vulnerability

Dynamic loads

External stress level, Breaking vulnerability, Physical vulnerability

Depth External stress level, ‘Passive’ protection level, Protection level, Safety level,
Breaking vulnerability, Physical vulnerability

Visibility ‘Passive’ protection level, Protection level, Safety level, Physical vulnerability

Accessibility ‘Passive’ protection level, Protection level, Safety level, Physical vulnerability

Surveillance ‘Active’ protection level, Protection level, Safety level, Physical vulnerability

Length ‘Active’ protection level, Protection level, Safety level, Physical vulnerability

Monitoring ‘Active’ protection level, Protection level, Safety level, Physical vulnerability

Extra maintenance

Actual conditions, Safety level, Corrosion vulnerability, Mechanical features,
Breaking vulnerability, Physical vulnerability

Age/Design life

Actual conditions, Safety level, Corrosion vulnerability, Mechanical features,
Breaking vulnerability, Physical vulnerability

Maintenance:
performed/scheduled

Actual conditions, Safety level, Corrosion vulnerability, Mechanical features,
Breaking vulnerability, Physical vulnerability

Environmental aggressiveness

Soil resistivity, External pressures, Corrosion
vulnerability

vulnerability, Physical

Corrosion resiliency

Material, Pipe coating, Cathodic protection, Thickness, Corrosion vulnerability,
Physical vulnerability

Hydraulic efficiency

Hydraulic variability, Operating pressure/Nominal pressure, Joint extraction
vulnerability, Breaking vulnerability, Physical vulnerability

Joint extraction vulnerability

Hydraulic efficiency, Operating pressure/Nominal pressure, Thrust restraint,
Joint frequency, Flexibility, Mechanical features, Breaking vulnerability,
Physical vulnerability

Mechanical features

Joint extraction vulnerability, Diameter, Joint frequency, Diameter, Joint type,
Flexibility, Soil mechanical characteristics, Breaking vulnerability, Physical
vulnerability, Corrosion vulnerability, Safety level, Actual conditions, Extra-
maintenance, Age/Design life, Maintenance: performed/scheduled.

Flexibility

Joint type, Joint frequency, Joint extraction vulnerability, Mechanical features,
Breaking vulnerability, Physical vulnerability

External stress level

Seismicity, Existing instabilities, Dynamic loads, Depth, ‘Passive’ protection
level, Protection level, Safety level, Breaking vulnerability, Physical
vulnerability.

‘Passive’ protection level

Accessibility, Visibility, Depth, Protection level, Safety level, External stress
level, Breaking vulnerability, Physical vulnerability

‘Active’ protection level

Surveillance, Length, Monitoring, Protection level, Safety level, Physical
vulnerability

Actual conditions

Extra-maintenance, Age/Design life, Maintenance: performed/scheduled,
Corrosion vulnerability, Breaking vulnerability, Mechanical features, Physical
vulnerability

Corrosion vulnerability

Extra maintenance, Age/Design life, External pressure, Maintenance:
performed/scheduled, Soil resistivity, Material, Pipe coating, Cathodic
protection, Thickness, Corrosion resiliency, Environmental aggressiveness,
Actual conditions, Safety level, Mechanical features, Breaking vulnerability,
Physical vulnerability
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Protection level

Length, Monitoring, Surveillance, ‘Active’ protection level, Accessibility,
Visibility, Depth, ‘Passive’ protection level, External stress level, Protection
level, Safety level, Breaking vulnerability, Physical vulnerability

Safety level

Length, Monitoring, Surveillance, ‘Active’ protection level, Accessibility,
Visibility, Depth, ‘Passive’ protection level, External stress level, Protection
level, Safety level, Breaking vulnerability, Mechanical features, Safety level,
Extra-maintenance, Age/Design life, Maintenance: performed/scheduled,
Corrosion vulnerability, Physical vulnerability

Breaking vulnerability

Extra-maintenance, Age/Design life, Maintenance: performed/scheduled, Actual
conditions, Corrosion vulnerability, Hydraulic variability, Hydraulic efficiency,
Operating pressure/Nominal pressure, Joint extraction vulnerability, Diameter,
Soil mechanical characteristics, Mechanical features, Flexibility, Jint frequency,
Joint type, Seismicity, Existing instabilities, Dynamic loads, Depth, External
stress level, ‘Passive’ protection level, Protection level, Safety level, Breaking
vulnerability, Physical vulnerability

Physical vulnerability

All the variables are D-Connected.

In the following Table S3, the junction tree of the vulnerability assessment BBN is included. A
junction tree is an internal structure that Netica uses for belief updating. Netica compiles a Bayes net
or decision net into a junction tree for efficiency. The junction tree T of triangulated net G is a tree
with the cliques of G as nodes, such that for every node N of G, if we remove from T all cliques not
containing N, the remaining subtree remains connected. In other words, any two cliques containing
N are either adjacent in T or connected by a path made entirely of cliques that contain N.

Table S3. Junction tree

Clique [Joined To] Size Member nodes (* means home)

0 [0 15] 54 Protection level, Depth, *Safety level, Actual conditions

1 [0214] 54 Depth, Safety level, External stress level, Breaking vulnerability,
Actual conditions

2 [135] 243 Safety level, External stress level, Actual conditions, Breaking
vulnerability, Joint extraction vulnerability

3 [2413] 243 Corrosion vulnerability, Safety level, Actual conditions, Breaking
vulnerability, Joint extraction vulnerability

4 [3] 162 *Physical vulnerability, Corrosion vulnerability, Safety level,
Breaking vulnerability, Joint extraction vulnerability

5 [2 6] 729 External stress level, Actual conditions, Mechanical features,
Hydraulic efficiency, *Breaking vulnerability, Joint extraction
vulnerability

6 [578] 162 Flexibility, Actual conditions, Mechanical features, Hydraulic
efficiency, Joint extraction vulnerability

7 [6] 72 *Mechanical features, *Diameter, Flexibility, Actual conditions,
*Mechanical features

8 [6912] 54 Operating pressure/Nominal pressure, Hydraulic efficiency, Joint
extraction vulnerability

9 [8 10 11] 54 Joint frequency, Operating pressure/Nominal pressure, Flexibility,
Joint extraction vulnerability

10 [9] 54 *Thrust restraint, Joint frequency, Operating pressure/Nominal
pressure, *Joint extraction vulnerability

11 [9] 18 *Joint type, *Joint frequency, *Flexibility

12 [8] 27 *Hydraulic variability, * Operating pressure/Nominal pressure,
*Hydraulic efficiency

13 [3 1819 20] 81 Environmental aggressiveness, Corrosion resiliency, *Corrosion
vulnerability, Actual conditions

14 [1] 72 *Existing instabilities, *Seismicity, *Dynamic loads, Depth,
*External stress level

15 [016 17] 54 ‘Passive’ protection level, ‘Active’ protection level, *Protection
level, Depth




16 [15] 24 *Visibility, *Accessibility, *’Passive’ protection level, *Depth

17 [15] 54 *Monitoring, *Surveillance, *Length, *’Active’ protection level

18 [13] 96 *Material, *Pipe coating, *Cathodic protection, *Thickness,
*Corrosion resiliency

19 [13] 27 *External  pressures,  *Soil  resistivity,  *Environmental
aggressiveness

20 [13] 54 *Extra  maintenance,  *Age/Design life,  *Maintenance:

performed/scheduled, *Actual conditions
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Abstract

The availability and the quality of drinking water are key requirements for the well-being and the
safety of a community, both in ordinary conditions and in case of disasters. Providing safe drinking
water in emergency contributes to limit the intensity and the duration of crises, and is thus one of the
main concerns for decision-makers, who-must—In-such-cases-decision-makers have-to-operate under
significant uncertainty-due-to-the-incomplete-and-timited-set-of-information-available. The present
work proposes a Decision Support System for the emergency management of drinking water supply
systems, which-is-buHt-integrating: i) a vulnerability assessment model based on Bayesian Belief

Networks:—+) with the related an-uncertainty assessment model; iit) a model for impact, and related

uncertainty assessment, based on Bayesian Belief Networks. The results of these models are jointly
analyzed, providing decision-makers with a ranking of the priority of intervention. A GIS interface

(G-Net) is developed to manage both input spatial information; and results. The methodology is

implemented in L’ Aquila case study, which-is-partictlarhyrelevant-in-the recent-history-of-disasters:

discussing Fthe potentialities associated to the use of Bayesian—Networks—to—support—decision-
makersthe tool dealing with information and data uncertainty;-are-diseussed.

Keywords: Emergency management; Drinking water supply systems; Bayesian Belief Networks;

Uncertainty Analysis; Decision Support System
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1. Introduction

to-guarantee-the-quahity-of Hfeforcitizens{Zhao-et-al—2016)-Since-mModern societies highly rely

on infrastructures, which provide critical services and guarantee the quality of life for citizens (Zhao

et al. 2016). Nevertheless T the-the eurrentincrease in both frequency and intensity of extreme events

contributes to create additional challenges to the infrastructure providers eperating-in-the-aftermath

of-high-impacts—oceurrences—(Eidsvig et al. 2017). Among—al-tifelinesParticularly, water supply

systems-infrastructures are essential for health, sanitary and economic reasons and, consequently,

there is high pressure on water organizations to provide customers with a continual and efficient water

supply, under specific delivery requirements and operational constraints (Bagheri et al. 2010, Mala-

Jetmarova et al. 2017).

Several approaches are mentioned—in—the—scientific—and—greyHterature—aiming—atavailable for

protecting water supply infrastructures from a wide variety of stresses, either supporting system
performances assessment in case of extreme events (e-g—EPA 2015) or driving the selection of

suitable actions for vulnerabilities mitigation (Fragiadakis et al. 2013,-Pagano-etal-2014a). Methods

to-assess-the—performances—of-infrastructural-systems—understress-typically vary with the type of
system, the aim er—of the specificphaseanalysis—of-the—analysis{e-g—planning—or—emergency
management), and the available information. PrebabHisticmodeting,—statistical-analyses—of past

mentioned-in-the-Hterature (ERA-2015,Eidsvigetak—2017)-A broad classification is gererathy-into

qualitative, semi-quantitative and quantitative approaches (Pagano et al. 2014az; Eidsvig et al. 2017).

Quantitative tools require detailed data and a higher computational burden, but gererathy-provide

highhy-reliable numerical outcomes for decision-makingmakers;-typicathy-using-rumericalvaluesand
detaHed-analyses—oferitical-scenarios (e-g—Fragiadakis et al 2013, Diao et al. 2016). Qualitative
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approaches support ranking risk levels, screening scenarios-and identifying critical scenarios-enes
(Eidsvig et al. 2017), based on the use of werds-er-classes (e.g. ‘high’, ‘medium’, ‘low”). Fhe-class

ef-sSemi-quantitative techniques (e.g. probabilistic methods such as Bayesian Belief Networks)

guarantees a compromise between the-such main—features—of-thetwo—classes—ef-tools—and-data
reguirement.

One of the most challenging tasks in al-these methods is uncertainty management,-a-key-aspect-also

‘Uncertainty represents the lack of exact knowledge, regarcdless—of-its—causes—{Refsgaard—etal
2007-which is inherently Ffirsthyirst—of-al—uneertatnty—is—associated to water supply systems

planning, design and eperatioroperation;-due -e-g-te-structural-characteristics-and-hydraulic-capacity;
variable—demand-and-—random-fluctuations—servicetevel (Malm—et-al—2015-Tanyimboh 2017).

Seeendhy-Specifically-partictarly-in-emergency-conditions, besides-the uncertainties related to their
emergency onset;—ature and evolution (Perng and Buscher 2015)-) as well as the difficulty in

collecting reliable data—medeltmitations— and the ambiguity in the understanding of specific

phenomena—imphy

forecast-is-behavieral-evelution_should be properly considered-during-the-emergeney. Fhis-These

issues deeply affect the decision-makers—capability to identify optimal decisions for emergency

management (Pagano et al. 2014b, Gaudard and Romerio 2015). Several-schelars-highlighted-the
need-te—eEnhanceing the understanding of the-uneertainty-uncertainties could support in-erderte

developing a realisticrepresentative picture of the current knowledge and its potential deficiencies;

(Uusitalo et al. 2015, Swerd-Daniels-etal-2016,-van der Keur et al. 2016).

Bayesian Belief Networks_(BBNs) have shown several useful features to support decision-making

under uncertainty for water supply systems (Molina et al. 2011). FirsthyParticularhy-BBNs allow the

integration of various types of information—{e-g—anahsical-models,-expertknowledgetiterature-and

4
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histerical-data),—_combining qualitative and quantitative aspects (Gierdane—etal—2015-Gonzalez-

Redin et al. 2016, Phan et al. 2016)

Landuytetal2013,-Gonzalez-Redin-et-al2016)- and-. They Secondlythey-support reasoning from
uncertain evidence to uncertain conclusion (John et al. 2016), treating both —Fhe-uneertainties{data

(Yusitalo-2007-Marcot 2012, Uusitalo

et al. 2015, Gonzalez-Redin et al. 2016).Meore-specificalhy,—they-can-easty-handle-missing-or-little

Within this framework, the present work describes the-develepment-ef-a Decision Support System

(DSS) for the emergency management of drinking water supply systems-infrastructuresexpesed-to
extreme-events. Specificalhy T-the DSS is based on a-the integration of: i) a probabilistic vulnerability

assessment model, based on Bayesian-Behef-NetworksBBNs{BBN), which-is-used-to identify the

most critical elements of the eharacterize-the-infrastructural system-supperting-in-the-tdentification-of

the—critical-elements; ii) an-the associated uncertainty analysis-estimaterelated-to-theresults-of-the

vinerability-assessment-model; iii) a BBN-based prebabilistic-model for impact assessment;_iv) the
associated uncertainty estimate—useful-to-guantify-the-magnitude-of-impacts-ofan-event. The most

relevant innovation of the present work is twofold. Firstly, the definition of a methodology to perform

a joint vulnerability and impact assessment of infrastructural failure, with an explicit uncertainty

analysis. This is a crucial requisite in Athe definition of ajeintanakysis-ef set of decision-makers'

preferences ihr-emergency-to support defining-ever-the-network—attributes—is-proposed.—in-orderto

provide-aranking-of the-a priority of irtervention-actions_in emergency. Secondly, overcoming one

of the main limits of BBNs, which are not inherently characterized by a spatial nature, A-a GIS

interface (G-Net) is-was also-develepedbuilt to support the management of input spatial information
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and results visualization. The DSS was developed and-tested-with the cooperation of the Italian

Department of Civil Protection (DPC), tested and-of-with several Italian water utilities (Acquedotto

Pugliese S.p.A., Gran Sasso Acqua S.p.A. and AIMAG S.p.A.), and implemented - Fhe-DSS-has-been

then-tested-in a relevant case study: L’Aquila (Italy) earthquake in 2009.

The paper is structured as follows. After the present introduction, Section 2 anabyzes—+elevant

appheationsprovides an overview of BBNs_features and applications—r-thefield—of-emergency

making-under—unecertainty. Section 3 prevides—a—description—ef-describes the architecture of the

developed tool. Section 4 discusses the relevance of L’ Aquila case study, while section 5 includes a

discussion on the main results related to the implementation of G-Net, analyzing its potential and

limitations.

2. Methodological background: Bayesian Belief Networks

A-BBNs combines graph theory and probability theory, consisting of a-directed acyclic graphs -and
an-associated joint probability distribution (e-g—Pearl 1988-and-Jensen—1996). The graph nodes

represent variables, whereas the edges represent conditional dependencies._The strength of the

dependency is represented by conditional probabilities: Each-each rede-variable X is associated to a

probability function_P(Xi|pai) that takes as input pai, i.e. a set of predecessors of Xi which make X;

independent on all other predecessors. speeifie-Variables that are judged as direct causes of X; satisfy

this property, and are the set-ef-valuesfor-the-nede’s-parent variables of the node. and-gives-the

(Zhang-et-al—2016)-BBNs thus allow the probabilistic representation of interactions; which-support

to-picture-the-relationships-between the-variables (Pearl 1988, Phan et al. 2016)._The importance of

BBNs is mainly related to the ability to coordinate bi-directional inferences, supporting the

representation and analysis of uncertain knowledge as well as different modes of reasoning (Pearl

1988).
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BBNs have become an increasingly popular modelling technique to deal with complexity and

uncertainty and; partictdarlhy,—several studies focused on the potentialities of BBNs to support

decision-making in gifferent-several emergency conditions—Just-te-provide-afew-examples, BBNs
(e.0. Wang
e 2003 o-help-voleans-crisistnanegementLSobradelo et al. 2015, Fand-toanabzenatalges
Wu et al. 2017). BBNs—helped

Within the field of emergency managementR, several successful applications of BBNs referring
specifically to the-anahysis-of-water supply infrastructures exposed to external stresses,- BBNs were
mainly used to build amodels for pipe breaks based-enusing learning from past breaks-, integrating

multiple Kinds of data and modeling explicitly the dependencies, using probabilities updates and a

representation of uncertainty (a

data—{Francis et al. 2014, )-

A wide scientific literature underlined that BBNs are —able to support:: the integration of various

types of information: (e.g. analytical models, expert knowledge, literature and historical data)

(Gonzalez-Redin et al. 2016, Phan et al. 2016).: the possibility of reasoning from uncertain evidence
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to uncertain conclusions (John et al. 2016),: the explicit treatment of uncertainties (Uusitalo 2007,

Uusitalo et al. 2015, Gonzalez-Redin et al. 2016). Furthermore, BBNs are also flexible enough to

support a revision of probabilities in the light of additional information or observations availability.

Bayestan-approachesBBNs have also some limitations. Firstly, eontinuous-variables-are-not-easHy

integrated-within BBNs,-leading-oftento-nodes that-are often discretized with only a few states;- and
in qualitative terms (e.g. ‘high’ or ‘low’)—TFhese-states—might-, provide-providing enhy-a coarse
representation ef-the-nrede-(Uusitalo, 2007). Secondly, the BBNs structure ef-BBNs-is linear and

static, and does not directly account for the analysis of feedback loops and dynamic issues (Uusitalo,
2007:Bertoneet-al—2016). Furthermore, BBNs do not natively provide a spatial representation of

variables.

Specifically referring to the last issue, Johnson et al. (2011) identified four mair-ways to integrate
GIS and BBNSs: i) GIS input to BBN, when GIS layers are used as input nodes; ii) GIS input to, and
output from BBN, in case GIS is also used to visualize the output of a BBN; iii) BBN and GIS
complex interactions—+h-case-ditferentlayers-ef-information-from-a-GlS-are-combined; iv) BBN and
GIS within a larger framework, where BBNs model one factor and GIS models other factors-in-a
farger—system. Integrated methodologies based on en-tinking-BBNs with-and GIS were recently
proposed (e.g. Landuyt et al. 2015, Gonzalez-Redin et al. 2016, Molina et al. 2016, Liu et al. 2016),

showing remarkable potentialities.

8
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maps can be developed as well-, as discussed by Landuyt et al. (2015)-cempared-standard-deviation

3. Model description

The present work describes a DDS developed for decision-makers involved in the management of

drinking water supply infrastructures under emergency conditions.

The DSS is based on the integration of:

— A probabilistic vulnerability assessment model, based on Bayesian-Belief-Networks {BBN3,
for the used-to-characterizinge-the-infrastructural system-perfermances—in-case-of-extreme

events. The model is integrated in a GIS tool (G-Net) in order to facilitate data input and to
provide a geographical visualization of results (Section 3.1).

— An uncertainty analysis related to the results of the vulnerability assessment model, —H-is

based-on-the-metrics—normally—used-with-BBNs,—and-used to analyze the impacts of the

available knowledge (and existing gaps) on the results (Section 3.2).
— A BBN-based probabilistic model for impact assessment, useful to quantify the magnitude of

the impacts of an event (Section 3.3}.).

— An uncertainty analysis related to the results of the impacts assessment model (Section 3.3).

In the end, decision-making is supported through the definition of a ranking order among the elements

of the network, based on the integration of information on infrastructural vulnerability, related

uheertainty-and-impacts_and related uncertainties.

3.1 Deseription-of-the-toel{G-Net) tool for the spatial vulnerability assessment

The first element of the DSS is a vulnerability assessment tool for drinking water supply

infrastructures based on BBNs, whose conceptual structure is described #-detats-in Pagano et al.
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(2014aa). The tool is composed of a set of BBNs quantifying the vulnerability levels of drinking
water supply systems from source to tap, with respect to eitherphysical (e-g-earthquakes, landslides)
or CBR hazards (water contamination). A-ceuple-ef BBNs-is-thus-assectated-to-each-subsystem-of-a
trinki e inf .

The following Fig. 1 shows the BBN used to analyze the physical vulnerability of water mains-ef

drinking-watermains. It may be used either to assess the global vulnerability level, or the vulnerability
associated to specific mechanisms (i.e. breaking, corrosion, joint extraction and security level-tewards
human-aetions). The variables in grey represent the ‘parent’ variables (input), whereas those in yellow

are the ‘child’ variables (output).

main classes_of data are included in the model: physieak-infrastructural data; related-to-inrfrastructural

characteristics—(e.g. diameter, material, thickness, etc.);; environmental data (e.g. seismicity, soil
mechanical characteristics, etc.)—and—; operative data (e.g. hydraulic variability, maintenance
performed/scheduled, etc.). The outcome is, for each element of the network under investigation, a
set of probability values associated to the states of ene-er-merespecific output variables{i-e-the-global

-. Further details on

model building are included in the Supplementary Material.

FIG1

Fig. 1 BBN used-for the physical vulnerability assessment of water mains

One-of the-assumptions-ef-the-It is worth mentioning that medel{Pagano-et-al—20%4a)isthat-each
element-pipe of the-whole-infrastructural netwerk-is analyzed independently, thus neglecting the role

of structural or functional interconnections, dependencies and cascading effects (e.g. the—a

vinerabitity-vulnerable element ef-an—element-might have impacts on the whole infrastructure

downstream-thatarc-noghostodnceardingte-tho-proseptapprench). This asstmptiopisporformodior

the-sake-of simphicityn-orderto-eastyallows easily -identifying the most eritical-vulnerable elements

of the whole network (further details in Pagano et al. 2014a).
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Several-Based on the feedbacks en-medelfunctioning-were-colected-mainly-interacting-with-obtained
by the potential end-users-efthetosl, i.e. Dept-of CivilProtection{DPC the-emergency-management
- and water utilities, —Fhe-mairissues-emerged-are-summarized-in-the-folowing—-a GIS

interface is—heededwas built, in order to facilitate spatial data processing and the-results spatial

representation-6

Net)-was-built-accordingly. Goingfurtherinto-detalstThe toolbox {G-Net} consists of an expanded

development of a GIS application supporting the vulnerability assessment }
- a L L A 'A'le" ll==l 'le' A l. a A a - l? 'l= l' ..v= lllll t—oI.G__N_etH

is specifically designed to support the integration with Netica™ software by means of an automated

procedure—a-whi me-typica i are-organi in-a ificw w. The tool is

composed of customized interfaces working in ArcGIS® software (by Esri) environment with

wizards-speeifically configured as interface between Netica™ and ArcGIS®.

The tool has been designed using open-source Python scripting language, fully supported by

ArcGIS® and able to extend the basic functionality of GIS and to automate the workflow (Tateosian

2015). ing-aA loosely-coupled integration strategy between ArcGIS® and Netica™ was used.

This means that the latter is not completely encapsulated within a GIS environment-as+a-the-tightly—

coupled-approach, but takes advantage of the database, the visualization and the analysis capabilities
of a GIS (Karimi and Houston 1996, Johnson et al. 2011))-From-the technical peintofview the tool

11
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FhetoslboxtorspatalanabsisLG-Net) was developed by—RSA-CMNRwith-a-bwolold-oblechves

FirsthyH-the-tootbox-sheuld-be-usedboth for the collection, analysis and attribution of spatial input

data—wi % and H-is-used-tefor the

wvisuahize-visualization and mapping of the outcomes of the Bayesian—vulnerability assessment.
Referring to the different classes of BBN-GIS interactions introduced above (Johnson et al. 2011),

the-developed-toelG-Net refers to the second category, which is ‘GIS input to, and output from BBN’.
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A schematic overview of the procedure carried out by the tool is shown in the-fellowingthe Fig.ure

32.

FIG 32

Figure 32. G-Net procedure for vulnerability assessment and mapping: (a) selection of the analysis
to perform; (b) data association to the input variables; (c) input variables export procedure; (d)

output vulnerability map.

G-Net firstly requires the selection of the subsystem to analyze, among all the elements of a drinking

water infrastructure, both linear (e.g. water mains) and punctual (e.g. tanks, pumping systems, etc.);

data—formatfor-Esri-software}. Secondly, the user should select the kind of analysis to carry out

(Figure 3a2a), i.e. physical or CBR vulnerability assessment. Additional data related to the input

variables in the BBN can be manually or automatically associated to the file—eitherthrough—an

attribution-by-the-end-user (Figure 3b2b). If the-some data concerning a certain variable are not

available, the-userecould-attribute-a uniform probability distribution to-the-inputdataforthis-variableis

considered and the —BBN propagates the infermation-abeut-the-related uncertainty up to the output

variables.

on-fuzzy sets-{Pagano-etal-2014a).

Once the GIS pre-processing is complete, G-Net exports a table for the input variables in a format
easily manageable by Netica™ (Figure 3¢2c). Following the vulnerability assessment procedure in
Netica™, a table with modeling results can be imported again in GIS, and joined to the available file,
through the same toolbox. Afterwards, the resulting BBN resutis-can-beis shown in the vulnerability
map (Figure 3d2d).

aeetpinen oo aeh clan o banpenend e
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3.2 Uncertainty analysis

The aim-of-the-present section is-teaims at defindefininge a waymethod to analyze and map the

uncertainty associated to the-Bayesian—vunerabitityassessment-modelBBNSs, also-supporting the

identification of its root causes. Reference is made to the work by Marcot (2012), who suggested

metrics for estimating model performances and uncertainty. Referring to BBNSs, uncertainty pertains

to the dispersion of Pposterior probabiity-Probability vatues-Distribution (PPD), i.e. the spread of

alternative predictions.

Firstly, the sensitivity analysis (SA) supports determining the degree to which a variation in PPD is
explained by other variables, and-basicatly depicts the underlying probability structure of a model
(Marcot 2012,—Pagane—et—al—2014a). It was performed with respect to the variable ‘breaking

vulnerability’, and the results are proposed in the-foHowing Table 1. The results of SA are also used

{see-section-5-fer-detatls); for scenario analysis (see section 5).

Table 1. Results of the sensitivity analysis performed with respect to the variable ‘breaking

vulnerability’
Node Mutual Info Percent Variance of Beliefs Scenario
Breaking Vulnerability 1.3976 100 0.363296
External stress level 0.19371 13.9 0.044494
Mechanical features 0.09952 7.12 0.02237
Physical vulnerability 0.04676 3.35 0.01062
Seismicity 0.04403 3.15 0.010404 1), 3)
Existing instabilities 0.02028 1.45 0.004848 1), 3)
Actual conditions 0.01908 1.37 0.004305
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Soil mechanical characteristics 0.01267 0.907 0.002837 3)

Hydraulic efficiency 0.01221 0.874 0.002945

Safety level 0.00808 0.578 0.001839
Extra-maintenance 0.0056 0.401 0.001275 (2), (3)
OP/NP 0.00312 0.223 0.000758 2
Dynamic loads 0.00269 0.193 0.000649 Q)
Flexibility 0.00212 0.152 0.000485

Hydraulic variability 0.00138 0.0991 0.000338

Age/Design life 0.00111 0.0797 0.000256 )
Joint extraction vulnerability 0.00084 0.0598 0.000204

Maintenance: performed/scheduled 0.00077 0.0548 0.000175 (2)
Joint type 0.00063 0.0452 0.000145 2
Diameter 0.00059 0.0422 0.000137 )
Depth 0.0004 0.0283 9.49E-05 )
Joint frequency 0.00014 0.0102 3.25E-05 (2)
Corrosion vulnerability 0.00004 0.00251 0.000008

Pipe coating 0.00003 0.00235 7.9E-06

Cathodic protection 0.00001 0.000767 2.6E-06

Thrust restraint 0 0 0 )

sensitive to a variable the model is, the more important is to collect related information. Having

reliable data on key variables is a crucial requisite to reduce uncertainty.

Secondly, the uncertainty associated to BBNSs is estimated using the Shannon entropy H(X) referring

to the output variable (‘breaking vulnerability’ for the vulnerability assessment model). It is defined

as the average amount of information conveyed by a stochastic source of data. The concept of

Shannon Entropy is fundamental in information theory and, besides sharing some intuition with

Boltzmann’s theory, some aspects are analogous to those used in statistical thermodynamics. The

Shannon entropy can be used as a synthetic measure of uncertainty, related to the number of

alternatives and characteristics of the probability distribution over the states of a random variable

(Das 1999). It is expressed as follows, using a logarithmic form:Seeondhy;-the-uncertainty-associated
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HX) = —-Y,P(x)logP(x;) (1)

H (X) measures the average information required in addition to the current knowledge to remove the
ignorance associated to the probability distribution of the-variable-X. Highervalues-of HGXare-thus
asseciated-to-more-uneertatn-deeistons—If the current state of knowledge is complete, then H(X) = 0.
If it is total ignorance (uniform probability distribution), the additional information required to pin
down an alternative is maximum. A normalized value of entropy can be calculated as H(X) =

H(X)/H(X)max- For the purposes of the present work, the Shannon entropy is used to estimate the

uncertainty related to the main output variables (i.e. ‘breaking vulnerability’ and ‘impacts’).Fhe-main

3.3 Impact assessment

The levels and types of adverse impacts are the result of a physical event interacting with vulnerable
elements. The aim of emergency managers is directly related to the reduction of impacts, both before
and after a disaster occurs (McCormick 2016). Correctly assessing the impacts of an emergency is
not a straightforward task, due to the complexity associated to a comprehensive analysis of costs and

consequences (Sobradelo et al. 2015).

For the purpose of the present work, the impact assessment is performed through another BBN ;

shewn-n-(Figure 43)-), based on the following Fhe-basicidea-is-to-estimate-the-impacts-of apotential
disruption—of—the—infrastructure—identifying—the—key driversvariables .o
following:
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- __a)Flow rate’: measure of the service loss, depending on the number of users potentially

affected. The values ‘Hhigh’, ‘Mmedium’ and ‘Elow’ are defined considering whether the

ratio between the local flow rate and the maximum upstream value is higher than 0.7, between

0.3 and 0.7 or lower than 0.3.

- ‘Diameter’: measure of the cost for repair, proportional to pipe diameter. The values ‘Hhigh’,

‘Mmedium’ and ‘Lelow’ are defined for each element considering whether the ratio between

the local diameter and the maximum value is higher than 0.7, between 0.3 and 0.7 or lower

than 0.3.

- ‘Relevance’: defines the presence of critical users and services (e.g. hospitals). The values

‘Hhigh’, ‘Mmedium’ and ‘Llow’ are defined considering the importance of the services

depending on the infrastructure.

- ‘Redundancy’: defines the presence of additional paths for water supply. The values ‘Yes’

and ‘No’ are defined considering the presence of other paths that can be activated.

FIG 43

Figure 43. BBN for impact assessment

ially aff . . local fl
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4. L’Aquila case study:relevanece-ane-matn-issues

L’Aquila province (central Italy) was struck by a severe earthquake on 6 April 2009. Apart-frem-a
huge-number-ef-casualties;sSeveral damages to structures and infrastructures were detected over a
broad area (Kongar et al. 2017). Referring specificathyto the water supply system, the major damage
occurred on an important steel pipe (diameter 600 mm; pressure 25-30 atm), which failed because
crossing the surface trace of a fault activated during the earthquake (Belee-and-Bi-Bueei-2017-Pagano

etal. 2017).

Emergency-managers-decided-to-stop-tThe operation of the whole system was stopped; in order to

allow the restoration of infrastructural functionality and to limit the impacts of the multiphicity

efmultiple damages occurred in the urban distribution system. Neverthelessthis-decision-had-a-streng

According to the interviews held with technicians involved in emergency operations, the fragmented
and uncertain knowledge related to infrastructural conditions, particularly in the urban area, was a

key limit +r-during emergency operations-in-the-aftermath-of the-disaster. Infrastructural-data-were

The available data were often not reliable and directly usable, since mainly deriving from personal

experience, and thus difficult to share, visualize and integrate. Most of emergency operators
acknowledged the lack of reliable infrastructural information as a main issue hampering the
effectiveness of emergency management strategies.
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5. Results and discussion

5.1 Vulnerability assessment

The main results of the vulnerability assessment procedure, performed through G-Net in L’Aquila

case study, are represented in Figure 5(a) along with the results of the uncertainty assessment. These

results are identified in the following as the fellewing-as—‘BASE’ scenario. The map plots the

probability values associated to the state ‘high’ of the variable ‘breaking vulnerability’.

The foHewing—Figure 5(a) shows the presence of several elements having values of ‘breaking
vulnerability’ from ‘medium’ to ‘high’. Model predictions were tested comparing the results with the
position of the main pipe breaks occurred during the earthquake. Particularly, tParticularhy,Fthe
highest values of ‘breaking vulnerability’ were found for the pipe damaged in 2009. Then, other
elements characterized by a significantly high ‘breaking vulnerability’ were identified as well, and

the result discussed with GSA S.p.A., resulting in a with—a—pesitive—outcome—related—to—the

identification-ofcorrespondence with some well-known vulnerabilities of the infrastructure.
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5.2 Uncertainty analysis and mapping

Starting from the results of the sensitivity-analysisSA propesed-in-the-(Section 3.2), an influence

analysis was performed. It allows evaluating (and comparing) the effects on PPD from selected input

variables set to specific scenario values{generathy-best-or-weorst-cases). Conducting influence runs

can help reveal the degree to which individual or sets of input variables could affect output
probabilities. This is helpful in a decision--setting, where management might prioritize activities to

best effect desirable, or to avoid undesirable outcomes (Marcot 2012).

The following scenarios were analyzed and are-discussed-in-the-foHewing:

e BEST Scenario: the-secenario-is-buit-setting-all the variables to their optimal state — i.e.

minimizing the vulnerability of the system.

e WORST Scenario: the-seenario-is-buit-setting-all the variables to their worst state — i.e.
maximizing the vulnerability of the system.

e UNCERTAIN Scenario: the-scenario-is-buitsetting-all the variables to an ‘unknown’ state —
i.e. the input variables have al-an-uniform probability distribution, in case no information is

available.

Three additional scenarios were built as well, changing the state of some variables according to the

results of the SA. The variables modified in each scenario are identified in the Table 1.

e SENSIT (1). The scenario is built setting three key environmental variables to the worst state:
‘seismicity’, ‘existing instabilities” and ‘dynamic loads’;-which-are-amengthe-mestinfluential
variables-on—breakingvulnerability”. All the variables considered in this scenario represent

external conditions, and thus their state cannot be improved.
e SENSIT (2). The scenario is built considering the positive impact of actions performed on

variables that can be modified through specific strategies. These variables may be
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representative of both structural and operational aspects. In this scenario, a subset of variables
IS set to the best state.
e SENSIT (3). The scenario is built considering the four most influential variables, according

to the sensitivity analysis, all eentextualhy-set to the worst state.

The results are summarized (according to Marcot-et-ak 2012); in terms of PPD of the output variable
‘breaking vulnerability” (Figure 64). The ‘BEST’, “WORST’ and ‘UNCERTAIN’ scenarios show an
intuitive PPD for the output variable. The comparison between the scenarios ‘SENSIT (3)’ and
‘SENSIT (1)’ suggest that few variables, mainly related to environmental conditions, are highly
influential on the result. From a practical point of view, this means that a deep knowledge of the
environment in which a system is located (e.g. seismicity of the area, existing instabilities) is crucial
for providing-athe reliable estimate of ‘breaking vulnerability’—Nevertheless-these-variables-cannot
be-medified-or-significanthy-conditioned. The Scenario ‘SENSIT (2)’ is indeed relevant in order to
assess the impact of potential improvements on infrastructural and operational features;-which-can-be
meodified. Although the effect on the output PPD is lower, acting on the infrastructure {beth-through

design-and-matntenance)-and changing operative conditions may contribute to reduce significantly

the vulnerability level of the system.

FIG 64

Figure 64. Results of the influence analysis in the medeled-scenarios

The Shannon entropy was then used to produce uncertainty maps, as shown in Fig. 5. H-was-firstly

used-in-Referring to the ‘BASE’ scenario, foeusing-on-the-main-output-variable+.e—thebreaking

the values of H(X)

were computed for the whole network and spatially plotted along with the results of the vulnerability

assessment_(Fig. 5a)-inr-orderto-deseribe-the-spatial-variation-of-uncertainrty. The same procedure was
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The relevance of the-Shannen-entropy-H (X) for uncertainty assessment was further tested through
specific simulations, analyzing the impacts of the lack of important input information on the reliability

of model results.

i lsic

The ‘BASE’ Scenario was built considering a full knowledge of the input variables required by the

model. Referring also to Table 1, the following scenarios were created:

o U-(1) Scenario :this-secenarie—was-buti-considerings complete uncertainty for the input
variables identified with (1) in Table 1. Particularhy, T-three highly influential (aceerdingte
the-sensitivity—analysisy-environmental variables (according to the SA):—e: ‘seismicity’,
‘existing instabilities’ and ‘dynamic loads’, are set-to-a-uniferm-probabHity-distributionthat
is-they-are-treated as unknown.

o U-(2)-) Scenario this-scenario-was-butt-censideringconsiders complete uncertainty for the

input variables identified with (2) in Table 1. Both structural and operative features are set to

a uniform probability distribution.

o U-(3)_Scenario:—this—seenario—was—but—_coensidering—considers uncertainty for the input
variables identified with (3) in Table 1.-+a-this<ase; and the four most relevant variables

according to the SA are set as unknown.
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The Shannen-entropy-H (X) was used -in the cited scenarios, to quantify the cumulative uncertainty
related to unknown inputs. Following the ‘chain rule’ for entropy, the global entropy of a group of

random variables was computed as the sum of conditional entropies. The values of H(X) Shannen

entropy-are 0, 0.067, 0.012 and 0.083 respectively for BASE, U(1), U(2) and U(3) scenarios. Fhis-A

e : Nowi lo.2:

: :
BASE 0
U3 0.067
u2) 0.012
ug) 0.083

Fhe-outcomes—of-this-uneertainty—anabystirstlyThis -suggests that although the scenario U-(2) is

characterized by a higher number of unknown variables, their impact on modeling results is lower if
compared to the key variables neglected in both U-(1) and U-(3) scenarios. Both U-(1) and U-(3)
scenarios suggest that the knowledge related to environmental conditions is a key requirement to
perform a reliable vulnerability assessment. Furthermore, referring particularly to the scenario U-(3),
the highest value of the-Shannen-entrepyH(X) is representative of a more critical condition, due to

the highly uncertain set of available input data.

5.3 Impact assessment

The results of the impact assessment can be geographicalhy-represented, as in the follewing-Figure
85b, which—is—based on the probability associated to the state ‘High’-high’ of the variable
‘lmpaets’impacts’. Both a numerical and a chromatic scale are used. H-is-worth-to-remind-that-the

areaAs already discussed, the

map represents also the associated uncertainty.

FIG 85
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sighificant-consequences-downstreama) Results of vulnerability assessment and related uncertainty;

b) Results of impacts assessment and related uncertainty.

5.4 Recommendations for decision-makingmakers

Integrating-theresultsalready-deseribed—the-atm-of the-The present section is-teaims at supporting

the-decision-makers in prioritizing the interventions on a drinking water supply infrastructure;aiding

eriticalities. The-specific values of infrastructural vulnerability, the magnitude of the expected

impacts-asseciated-to-a-potential-fatlure, and the role of data-and-rfermation-uncertainty related-te

modellingresults-are jointly taken into account.

network elements alternatives-to-beare compared represent-conditions-where-consideringa different

combinations of ‘vulnerability under uncertainty’ and ‘petential-impacts under uncertainty’-are-feune;

Considering the drinking water supply infrastructure under analysis;we-denote- X ={xr o the

set-network-elements(rn—=-254)-Each-, each network element -th—=-254)-is characterized by the set

of attributes A = {aq, ay, ayy, 02}, such that Ap =
{Vn, Vi V1, €1, € €1 Uy 1y Usmy Un g, Uy, Uon, Usy, + FEPresents the set of all possible values that the
elements of A can take, over which a decision-maker has preferences. Specificalhy T-the attributes

are:
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— a4, vulnerability based on the state ‘high’ of the variable ‘breaking vulnerability’. The possible
values of the attribute are a; = {high (vy,), medium (vy,), low (v;)};

— a,, impact assessment through the analysis of the exposure to the potential effects of failures
represented by the values a, = {high (ey), medium (e,,), low (e;)};

— gy and ar,,, respeetively-uncertainty associated respectively to vulnerability and te-the-impact

assessment, according to_—the—values—of thenormalized—Shannon—entropy—H(X), a;y =
{high (u,), medium (u ), low (u,;)}

and ay, = {high (uz,), medium (u,,), low (uy)}.

Throughout this section, the symbol > denotes a decision maker’s preference relation, x > y means

that x is preferred to y-feroneormerecriteriaconsidered-all-tegether—. The decision-makers

have the following order of preferences: -a higher value of vulnerability-/exposure has priority

compared to a lower one:{ v, > v,,, > v;} and a-highervalue-of-exposure-has-priority-compared-to-a

lower-value{e, > e,, > e;)»—. TTFhe rankingpreferences elicitation was performed through Ssemi-

structured interviews were-held with Civil Protection operators and with-engineers working for the
local water utility.

operations-to-support-in-theranking-ameng-the-attributes—CConsidering the combination between

the two attributes, e—and-a; the decision-makers should prioritize the highest possible value of a,

combined with the highest possible value of a,: vhe, > vhem > vmen > vpe; > Vmem > vien >
vme; > vien > vie;. However, as discussed in section 5.2, the ‘uncertainty’ &4-iS a key attribute

that decision-makers take into account. Ne—matter—theConsidering the preferences on the other

cenditionsattributes, a lower value of the—uncertainty” associated respectively to vulnerability and

impact assessment variable-is preferred to a higher value: w1, > Uy Uy, > Uimllsg > Ug ity >

UpmUpm > Ugplyp > UpmUap > Ugplom > Uppllpp —BRE >ttty
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-Accordingly; to the preference statements, Censidering-the-combination-between—a,—and-a,—We
obtain the following compact preferenees-representation; supporting the definition of a ranking order

among the different potential 81 conditions-we-get:

UpepUqUy; > VpepUy Uy > VpepUymUny > VpepUy Uz > VplplyUam > Vpepliply >

> VpepUimUop > VpepUiplUpm > VpepUipUpp > VpepUq Uy > VplplUqUpm > *°°

.

> e > VieiUipUyp = T > v, > T1713—>—4772;7->—5915— >—-17"6—->—-17";z—->—-'b78— > Y981

Consequentially, consideringthein relation to the water supply network under analysis, we obtain the

spatial representation of ranking as in the fellowing-Figure. 96. The mapping of results allows

decision-makers to identify the elements of a-complexthe network where interventions should be

primarily oriented either in emergency conditions or in ordinary management, to reduce the risk levels

for the whole system. Wi

6. Conclusions

FIG 96

Figure 96. Ranking of the network elements-ofthe-network: Priority-decreases-from-elements
lonci I lonci |
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This work describes the-develepment-of-a Decision-SuppertTFeelDSS for decision-makers-making
velved-in the emergency management of drinking water supply systems;--case-of-extreme-events.
The Meodeling-methodology activities-were-carried-out-in-tight-cooperation-with-both-the-lahan
Department-of Civil-Protectionand-the-toelwas implemented in L’ Aquila earthguake-case study. The

model is composed of:—+ a BBN-based vulnerability assessment tool for drinking water supply

infrastructures, with the related :—H)-an-uncertainty analysis teel—-and a BBN-based model to

estimate impacts magnitude, #r-terms-of-beth-economic-consequences-and-service-Hmitationwith the

related uncertainty analysis. The tools are integrated in a comprehensive methodology, based on

preferences orders, capable to jointly take into account all the previous information, and to define a
ranking order among the elements of the infrastructural system. This ranking simply suggests a
priority of action for decision-makers. Overcoming one of the main limitations of BBNs -i.e. the
difficulties in performing spatial analyses- the development of a GIS interface (G-Net), used-for data
structuring and results analysis, revealed highly useful to improve the effectiveness of the tool,

helping in visualizing the outcomes, understanding—the—related—quantifying uncertainty, and

identifying the final ranking. Future activities will be oriented mainly to the analysis of temporal

aspects related to the dynamic evolution of system behavior (see e.g. Pagano et al. 2017) and to the

implementation of models based on complexity theory to support the analysis of interconnected

systems.
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