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Abstract 1 

The availability and the quality of drinking water are key requirements for the well-being and the 2 

safety of a community, both in ordinary conditions and in case of disasters. Providing safe drinking 3 

water in emergency contributes to limit the intensity and the duration of crises, and is thus one of the 4 

main concerns for decision-makers, who operate under significant uncertainty. The present work 5 

proposes a Decision Support System for the emergency management of drinking water supply 6 

systems, integrating: i) a vulnerability assessment model based on Bayesian Belief Networks with the 7 

related uncertainty assessment model; ii) a model for impact, and related uncertainty assessment, 8 

based on Bayesian Belief Networks. The results of these models are jointly analyzed, providing 9 

decision-makers with a ranking of the priority of intervention. A GIS interface (G-Net) is developed 10 

to manage both input spatial information and results. The methodology is implemented in L’Aquila 11 

case study, discussing the potentialities associated to the use of the tool dealing with information and 12 

data uncertainty. 13 

 14 
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1. Introduction 1 

Modern societies highly rely on infrastructures, which provide critical services and guarantee the 2 

quality of life for citizens (Zhao et al. 2016). The increase in both frequency and intensity of extreme 3 

events contributes to create additional challenges to the infrastructure providers (Eidsvig et al. 2017). 4 

Particularly, water supply infrastructures are essential for health, sanitary and economic reasons and, 5 

consequently, there is high pressure on water organizations to provide customers with a continual and 6 

efficient water supply (Mala-Jetmarova et al. 2017).  7 

Several approaches are available for protecting water supply infrastructures from a wide variety of 8 

stresses, either supporting system performances assessment in case of extreme events (EPA 2015) or 9 

driving the selection of suitable actions for vulnerabilities mitigation (Fragiadakis et al. 2013). 10 

Methods typically vary with the type of system, the aim of the analysis, and the available information. 11 

A broad classification is into qualitative, semi-quantitative and quantitative approaches (Pagano et al. 12 

2014a; Eidsvig et al. 2017). Quantitative tools require detailed data and a high computational burden, 13 

but provide reliable numerical outcomes for decision-makers (Fragiadakis et al 2013, Diao et al. 14 

2016). Qualitative approaches support ranking risk levels, screening and identifying critical scenarios 15 

(Eidsvig et al. 2017), based on the use of classes (e.g. ‘high’, ‘medium’, ‘low’). Semi-quantitative 16 

techniques (e.g. probabilistic methods such as Bayesian Belief Networks) guarantee a compromise 17 

between such classes.  18 

One of the most challenging tasks in these methods is uncertainty management. Uncertainty 19 

represents the lack of exact knowledge, which is inherently associated to water supply systems 20 

planning, design and operation (Tanyimboh 2017). Specifically, the uncertainties related to 21 

emergency onset and evolution (Perng and Buscher 2015) as well as the difficulty in collecting 22 

reliable data and the ambiguity in the understanding of specific phenomena should be properly 23 

considered. These issues deeply affect the capability to identify optimal decisions for emergency 24 

management (Pagano et al. 2014b, Gaudard and Romerio 2015). Enhancing the understanding of 25 
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uncertainties could support developing a representative picture of the current knowledge and its 1 

potential deficiencies (Uusitalo et al. 2015, van der Keur et al. 2016).  2 

Bayesian Belief Networks (BBNs) have shown several useful features to support decision-making 3 

under uncertainty for water supply systems (Molina et al. 2011). BBNs allow the integration of 4 

various types of information combining qualitative and quantitative aspects (Gonzalez-Redin et al. 5 

2016, Phan et al. 2016). They support reasoning from uncertain evidence to uncertain conclusion 6 

(John et al. 2016), treating both data and model uncertainty (Marcot 2012, Uusitalo et al. 2015, 7 

Gonzalez-Redin et al. 2016). 8 

Within this framework, the present work describes a Decision Support System (DSS) for the 9 

emergency management of drinking water supply infrastructures. The DSS is based on the integration 10 

of: i) a probabilistic vulnerability assessment model, based on BBNs, to identify the most critical 11 

elements of the infrastructural system; ii) the associated uncertainty estimate; iii) a BBN-based model 12 

for impact assessment; iv) the associated uncertainty estimate. The most relevant innovation of the 13 

present work is twofold. Firstly, the definition of a methodology to perform a joint vulnerability and 14 

impact assessment of infrastructural failure, with an explicit uncertainty analysis. This is a crucial 15 

requisite in the definition of a set of decision-makers' preferences to support defining a priority of 16 

actions in emergency. Secondly, overcoming one of the main limits of BBNs, which are not inherently 17 

characterized by a spatial nature, a GIS interface (G-Net) was built to support the management of 18 

input spatial information and results visualization. The DSS was developed with the cooperation of 19 

the Italian Department of Civil Protection (DPC), tested with several Italian water utilities 20 

(Acquedotto Pugliese S.p.A., Gran Sasso Acqua S.p.A. and AIMAG S.p.A.), and implemented in a 21 

relevant case study: L’Aquila (Italy) earthquake in 2009. 22 

The paper is structured as follows. After the present introduction, Section 2 provides an overview of 23 

BBNs features and applications. Section 3 describes the architecture of the developed tool. Section 4 24 
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discusses the relevance of L’Aquila case study, while section 5 includes a discussion on the main 1 

results related to the implementation of G-Net, analyzing its potential and limitations. 2 

2. Methodological background: Bayesian Belief Networks 3 

BBNs combine graph theory and probability theory, consisting of directed acyclic graphs and 4 

associated joint probability distribution (Pearl 1988). The graph nodes represent variables, whereas 5 

the edges represent conditional dependencies. The strength of the dependency is represented by 6 

conditional probabilities: each variable Xi is associated to a probability function P(Xi|pai) that takes as 7 

input pai, i.e. a set of predecessors of Xi which make Xi independent on all other predecessors. 8 

Variables that are judged as direct causes of Xi satisfy this property, and are the parent variables of 9 

the node. BBNs thus allow the probabilistic representation of interactions between variables (Pearl 10 

1988, Phan et al. 2016). The importance of BBNs is mainly related to the ability to coordinate bi-11 

directional inferences, supporting the representation and analysis of uncertain knowledge as well as 12 

different modes of reasoning (Pearl 1988). 13 

BBNs have become an increasingly popular modelling technique to deal with complexity and 14 

uncertainty and several studies focused on the potentialities of BBNs to support decision-making in 15 

several emergency conditions (e.g. Sobradelo et al. 2015, Wu et al. 2017). Referring specifically to 16 

water supply infrastructures exposed to external stresses, BBNs were mainly used to build models for 17 

pipe breaks using learning from past breaks, integrating multiple kinds of data and modeling explicitly 18 

the dependencies, using probabilities updates and a representation of uncertainty (Francis et al. 2014, 19 

Kabir et al. 2015, Kabir et al. 2016).  20 

A wide scientific literature underlined that BBNs are able to support: the integration of various types 21 

of information (e.g. analytical models, expert knowledge, literature and historical data) (Gonzalez-22 

Redin et al. 2016, Phan et al. 2016), the possibility of reasoning from uncertain evidence to uncertain 23 

conclusions (John et al. 2016), the explicit treatment of uncertainties (Uusitalo 2007, Uusitalo et al. 24 
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2015, Gonzalez-Redin et al. 2016). Furthermore, BBNs are also flexible enough to support a revision 1 

of probabilities in the light of additional information or observations availability. 2 

BBNs have also some limitations. Firstly, nodes are often discretized with only a few states and in 3 

qualitative terms (e.g. ‘high’ or ‘low’), providing a coarse representation (Uusitalo, 2007). Secondly, 4 

the BBNs structure is linear and static, and does not directly account for the analysis of feedback 5 

loops and dynamic issues (Uusitalo, 2007). Furthermore, BBNs do not natively provide a spatial 6 

representation of variables.  7 

Specifically referring to the last issue, Johnson et al. (2011) identified four ways to integrate GIS and 8 

BBNs: i) GIS input to BBN, when GIS layers are used as input nodes; ii) GIS input to, and output 9 

from BBN, in case GIS is also used to visualize the output of a BBN; iii) BBN and GIS complex 10 

interactions; iv) BBN and GIS within a larger framework, where BBNs model one factor and GIS 11 

models other factors. Integrated methodologies based on BBNs and GIS were recently proposed (e.g. 12 

Landuyt et al. 2015, Gonzalez-Redin et al. 2016, Molina et al. 2016, Liu et al. 2016), showing 13 

remarkable potentialities. Uncertainty maps can be developed as well, as discussed by Landuyt et al. 14 

(2015).  15 

3. Model description 16 

The present work describes a DDS developed for decision-makers involved in the management of 17 

drinking water supply infrastructures under emergency conditions.  18 

The DSS is based on the integration of: 19 

 A probabilistic vulnerability assessment model, based on BBN, for the infrastructural system. 20 

The model is integrated in a GIS tool (G-Net) in order to facilitate data input and to provide a 21 

geographical visualization of results (Section 3.1). 22 
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 An uncertainty analysis related to the results of the vulnerability assessment model, used to 1 

analyze the impacts of the available knowledge (and existing gaps) on the results (Section 2 

3.2). 3 

 A BBN-based probabilistic model for impact assessment, useful to quantify the magnitude of 4 

the impacts of an event (Section 3.3). 5 

 An uncertainty analysis related to the results of the impacts assessment model (Section 3.3). 6 

In the end, decision-making is supported through the definition of a ranking order among the elements 7 

of the network, based on the integration of information on infrastructural vulnerability, impacts and 8 

related uncertainties.  9 

3.1 G-Net tool for the spatial vulnerability assessment 10 

The first element of the DSS is a vulnerability assessment tool for drinking water supply 11 

infrastructures based on BBNs, whose conceptual structure is described in Pagano et al. (2014a). The 12 

tool is composed of a set of BBNs quantifying the vulnerability levels of drinking water supply 13 

systems from source to tap, with respect to physical (earthquakes, landslides) or CBR hazards (water 14 

contamination).  15 

The following Fig. 1 shows the BBN used to analyze the physical vulnerability of water mains. It 16 

may be used either to assess the global vulnerability level, or the vulnerability associated to specific 17 

mechanisms (i.e. breaking, corrosion, joint extraction and security level). The variables in grey 18 

represent the ‘parent’ variables (input), whereas those in yellow are the ‘child’ variables (output). 19 

Three main classes of data are included in the model: infrastructural data (e.g. diameter, material, 20 

thickness, etc.); environmental data (e.g. seismicity, soil mechanical characteristics, etc.); operative 21 

data (e.g. hydraulic variability, maintenance performed/scheduled, etc.). The outcome is, for each 22 

element of the network under investigation, a set of probability values associated to the states of 23 

specific output variables. Further details on model building are included in the Supplementary 24 

Material. 25 
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FIG 1 1 

Fig. 1 BBN for the physical vulnerability assessment of water mains 2 

It is worth mentioning that each pipe is analyzed independently, thus neglecting the role of structural 3 

or functional interconnections, dependencies and cascading effects (e.g. a vulnerable element might 4 

have impacts on the whole infrastructure downstream). This allows easily identifying the most 5 

vulnerable elements of the whole network (further details in Pagano et al. 2014a). 6 

Based on the feedbacks obtained by the potential end-users, i.e. DPC and water utilities, a GIS 7 

interface was built, in order to facilitate spatial data processing and results representation. The toolbox 8 

G-Net consists of an expanded development of a GIS application supporting the vulnerability 9 

assessment tool. It is specifically designed to support the integration with NeticaTM software by means 10 

of an automated procedure. The tool is composed of customized interfaces working in ArcGIS® 11 

software (by Esri) environment with wizards configured as interface between NeticaTM and ArcGIS®. 12 

The tool has been designed using open-source Python scripting language, fully supported by 13 

ArcGIS® and able to extend the basic functionality of GIS and to automate the workflow (Tateosian 14 

2015). A loosely-coupled integration strategy between ArcGIS® and NeticaTM was used. This means 15 

that the latter is not completely encapsulated within a GIS environment, but takes advantage of the 16 

database, the visualization and the analysis capabilities of a GIS (Karimi and Houston 1996, Johnson 17 

et al. 2011) 18 

G-Net was developed both for the collection, analysis and attribution of spatial input data and for the 19 

visualization and mapping of the outcomes of the vulnerability assessment. Referring to the different 20 

classes of BBN-GIS interactions introduced above (Johnson et al. 2011), G-Net refers to the second 21 

category, which is ‘GIS input to, and output from BBN’.  22 

A schematic overview of the procedure carried out by the tool is shown in the Fig. 2. 23 

FIG 2 24 
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Figure 2. G-Net procedure for vulnerability assessment and mapping: (a) selection of the analysis to 1 

perform; (b) data association to the input variables; (c) input variables export procedure; (d) output 2 

vulnerability map. 3 

G-Net firstly requires the selection of the subsystem to analyze, among all the elements of a drinking 4 

water infrastructure, both linear (e.g. water mains) and punctual (e.g. tanks, pumping systems, etc.). 5 

Secondly, the user should select the kind of analysis to carry out (Figure 2a), i.e. physical or CBR 6 

vulnerability assessment. Additional data related to the input variables in the BBN can be manually 7 

or automatically associated to the file (Figure 2b). If some data concerning a certain variable are not 8 

available, a uniform probability distribution is considered and the BBN propagates the related 9 

uncertainty up to the output variables. 10 

Once the GIS pre-processing is complete, G-Net exports a table for the input variables in a format 11 

easily manageable by NeticaTM (Figure 2c). Following the vulnerability assessment procedure in 12 

NeticaTM, a table with modeling results can be imported again in GIS, and joined to the available file, 13 

through the same toolbox. Afterwards, the resulting BBN is shown in the vulnerability map (Figure 14 

2d).  15 

3.2 Uncertainty analysis 16 

The present section aims at defining a method to analyze and map the uncertainty associated to BBNs, 17 

supporting the identification of its root causes. Reference is made to the work by Marcot (2012), who 18 

suggested metrics for estimating model performances and uncertainty. Referring to BBNs, 19 

uncertainty pertains to the dispersion of Posterior Probability Distribution (PPD), i.e. the spread of 20 

alternative predictions.  21 

Firstly, the sensitivity analysis (SA) supports determining the degree to which a variation in PPD is 22 

explained by other variables, and depicts the underlying probability structure of a model (Marcot 23 

2012). It was performed with respect to the variable ‘breaking vulnerability’, and the results are 24 

proposed in the Table 1. The results of SA are also used for scenario analysis (see section 5). 25 
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Table 1. Results of the sensitivity analysis performed with respect to the variable ‘breaking 1 

vulnerability’ 2 

TABLE 1 3 

The more sensitive to a variable the model is, the more important is to collect related information. 4 

Having reliable data on key variables is a crucial requisite to reduce uncertainty. 5 

Secondly, the uncertainty associated to BBNs is estimated using the Shannon entropy H(X) referring 6 

to the output variable (‘breaking vulnerability’ for the vulnerability assessment model). It is defined 7 

as the average amount of information conveyed by a stochastic source of data. The concept of 8 

Shannon Entropy is fundamental in information theory and, besides sharing some intuition with 9 

Boltzmann’s theory, some aspects are analogous to those used in statistical thermodynamics. The 10 

Shannon entropy can be used as a synthetic measure of uncertainty, related to the number of 11 

alternatives and characteristics of the probability distribution over the states of a random variable 12 

(Das 1999). It is expressed as follows, using a logarithmic form: 13 

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔𝑃(𝑥𝑖)
𝑛
𝑖=1     (1) 14 

𝐻(𝑋) measures the average information required in addition to the current knowledge to remove the 15 

ignorance associated to the probability distribution of 𝑋. If the current state of knowledge is complete, 16 

then 𝐻(𝑋) = 0. If it is total ignorance (uniform probability distribution), the additional information 17 

required to pin down an alternative is maximum. A normalized value of entropy can be calculated as 18 

𝐻̅(𝑋) = 𝐻(𝑋) 𝐻(𝑋)𝑚𝑎𝑥⁄ . For the purposes of the present work, the Shannon entropy is used to 19 

estimate the uncertainty related to the main output variables (i.e. ‘breaking vulnerability’ and 20 

‘impacts’). 21 

3.3 Impact assessment 22 

The levels and types of adverse impacts are the result of a physical event interacting with vulnerable 23 

elements. The aim of emergency managers is directly related to the reduction of impacts, both before 24 
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and after a disaster occurs (McCormick 2016). Correctly assessing the impacts of an emergency is 1 

not a straightforward task, due to the complexity associated to a comprehensive analysis of costs and 2 

consequences (Sobradelo et al. 2015).  3 

For the purpose of the present work, the impact assessment is performed through another BBN 4 

(Figure 3), based on the following key variables:  5 

- ‘Flow rate’: measure of the service loss, depending on the number of users potentially 6 

affected. The values ‘high’, ‘medium’ and ‘low’ are defined considering whether the ratio 7 

between the local flow rate and the maximum upstream value is higher than 0.7, between 0.3 8 

and 0.7 or lower than 0.3. 9 

- ‘Diameter’: measure of the cost for repair, proportional to pipe diameter. The values ‘high’, 10 

‘medium’ and ‘low’ are defined for each element considering whether the ratio between the 11 

local diameter and the maximum value is higher than 0.7, between 0.3 and 0.7 or lower than 12 

0.3. 13 

- ‘Relevance’: defines the presence of critical users and services (e.g. hospitals). The values 14 

‘high’, ‘medium’ and ‘low’ are defined considering the importance of the services depending 15 

on the infrastructure. 16 

- ‘Redundancy’: defines the presence of additional paths for water supply. The values ‘Yes’ 17 

and ‘No’ are defined considering the presence of other paths that can be activated. 18 

FIG 3 19 

Figure 3. BBN for impact assessment  20 

4. L’Aquila case study 21 

L’Aquila province (central Italy) was struck by a severe earthquake on 6 April 2009. Several damages 22 

to structures and infrastructures were detected over a broad area (Kongar et al. 2017). Referring to 23 

the water supply system, the major damage occurred on an important steel pipe (diameter 600 mm; 24 
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pressure 25–30 atm), which failed because crossing the surface trace of a fault activated during the 1 

earthquake (Pagano et al. 2017). The operation of the whole system was stopped in order to allow the 2 

restoration of infrastructural functionality and to limit the impacts of the multiple damages occurred 3 

in the urban distribution system. According to the interviews held with technicians involved in 4 

emergency operations, the fragmented and uncertain knowledge related to infrastructural conditions, 5 

particularly in the urban area, was a key limit during emergency operations. The available data were 6 

often not reliable and directly usable, since mainly deriving from personal experience, and thus 7 

difficult to share, visualize and integrate. Most of emergency operators acknowledged the lack of 8 

reliable infrastructural information as a main issue hampering the effectiveness of emergency 9 

management strategies.  10 

5. Results and discussion 11 

5.1 Vulnerability assessment 12 

The main results of the vulnerability assessment procedure, performed through G-Net in L’Aquila 13 

case study, are represented in Figure 5(a) along with the results of the uncertainty assessment. These 14 

results are identified in the following as the ‘BASE’ scenario. The map plots the probability values 15 

associated to the state ‘high’ of the variable ‘breaking vulnerability’. 16 

The Figure 5(a) shows the presence of several elements having values of ‘breaking vulnerability’ 17 

from ‘medium’ to ‘high’. Model predictions were tested comparing the results with the position of 18 

the main pipe breaks occurred during the earthquake. Particularly, the highest values of ‘breaking 19 

vulnerability’ were found for the pipe damaged in 2009. Then, other elements characterized by a 20 

significantly high ‘breaking vulnerability’ were identified as well, and the result discussed with GSA 21 

S.p.A., resulting in a correspondence with some well-known vulnerabilities of the infrastructure.  22 

5.2 Uncertainty analysis and mapping 23 
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Starting from the results of the SA (Section 3.2), an influence analysis was performed. It allows 1 

evaluating (and comparing) the effects on PPD from selected input variables set to specific scenario 2 

values. Conducting influence runs can help reveal the degree to which individual or sets of input 3 

variables could affect output probabilities. This is helpful in a decision-setting, where management 4 

might prioritize activities to best effect desirable, or to avoid undesirable outcomes (Marcot 2012). 5 

The following scenarios were analyzed and discussed: 6 

 BEST Scenario: all the variables to their optimal state – i.e. minimizing the vulnerability of 7 

the system.  8 

 WORST Scenario: all the variables to their worst state – i.e. maximizing the vulnerability of 9 

the system.  10 

 UNCERTAIN Scenario: all the variables to an ‘unknown’ state – i.e. the input variables have 11 

uniform probability distribution, in case no information is available. 12 

Three additional scenarios were built as well, changing the state of some variables according to the 13 

results of the SA. The variables modified in each scenario are identified in the Table 1. 14 

 SENSIT (1). The scenario is built setting three key environmental variables to the worst state: 15 

‘seismicity’, ‘existing instabilities’ and ‘dynamic loads’. All the variables considered in this 16 

scenario represent external conditions, and thus their state cannot be improved. 17 

 SENSIT (2). The scenario is built considering the positive impact of actions performed on 18 

variables that can be modified through specific strategies. These variables may be 19 

representative of both structural and operational aspects. In this scenario, a subset of variables 20 

is set to the best state. 21 

 SENSIT (3). The scenario is built considering the four most influential variables, according 22 

to the sensitivity analysis, all set to the worst state. 23 
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The results are summarized (according to Marcot 2012) in terms of PPD of the output variable 1 

‘breaking vulnerability’ (Figure 4). The ‘BEST’, ‘WORST’ and ‘UNCERTAIN’ scenarios show an 2 

intuitive PPD for the output variable. The comparison between the scenarios ‘SENSIT (3)’ and 3 

‘SENSIT (1)’ suggest that few variables, mainly related to environmental conditions, are highly 4 

influential on the result. From a practical point of view, this means that a deep knowledge of the 5 

environment in which a system is located (e.g. seismicity of the area, existing instabilities) is crucial 6 

for the reliable estimate of ‘breaking vulnerability’. The Scenario ‘SENSIT (2)’ is indeed relevant in 7 

order to assess the impact of potential improvements on infrastructural and operational features. 8 

Although the effect on the output PPD is lower, acting on the infrastructure and changing operative 9 

conditions may contribute to reduce significantly the vulnerability level of the system. 10 

FIG 4 11 

Figure 4. Results of the influence analysis in the scenarios 12 

The Shannon entropy was then used to produce uncertainty maps, as shown in Fig. 5. Referring to 13 

the ‘BASE’ scenario, the values of 𝐻(𝑋) were computed for the whole network and spatially plotted 14 

along with the results of the vulnerability assessment (Fig. 5a). The same procedure was used to map 15 

the impacts magnitude and the related uncertainty (Fig. 5b). 16 

The relevance of 𝐻(𝑋) for uncertainty assessment was further tested through specific simulations, 17 

analyzing the impacts of the lack of important input information on the reliability of model results. 18 

The ‘BASE’ Scenario was built considering a full knowledge of the input variables required by the 19 

model. Referring also to Table 1, the following scenarios were created: 20 

 U(1) Scenario considers complete uncertainty for the input variables identified with (1) in 21 

Table 1. Three highly influential environmental variables (according to the SA): ‘seismicity’, 22 

‘existing instabilities’ and ‘dynamic loads’, are treated as unknown.  23 
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 U(2) Scenario considers complete uncertainty for the input variables identified with (2) in 1 

Table 1. Both structural and operative features are set to a uniform probability distribution.  2 

 U(3) Scenario considers uncertainty for the input variables identified with (3) in Table 1 and 3 

the four most relevant variables according to the SA are set as unknown.  4 

The 𝐻(𝑋) was used in the cited scenarios, to quantify the cumulative uncertainty related to unknown 5 

inputs. Following the ‘chain rule’ for entropy, the global entropy of a group of random variables was 6 

computed as the sum of conditional entropies. The values of 𝐻(𝑋) are 0, 0.067, 0.012 and 0.083 7 

respectively for BASE, U(1), U(2) and U(3) scenarios. This suggests that although the scenario U(2) 8 

is characterized by a higher number of unknown variables, their impact on modeling results is lower 9 

if compared to the key variables neglected in both U(1) and U(3) scenarios. Both U(1) and U(3) 10 

scenarios suggest that the knowledge related to environmental conditions is a key requirement to 11 

perform a reliable vulnerability assessment. Furthermore, referring particularly to the scenario U(3), 12 

the highest value of H(X) is representative of a more critical condition, due to the highly uncertain set 13 

of available input data.  14 

5.3 Impact assessment 15 

The results of the impact assessment can be represented, as in the Figure 5b, based on the probability 16 

associated to the state ‘high’ of the variable ‘impacts’. Both a numerical and a chromatic scale are 17 

used. As already discussed, the map represents also the associated uncertainty. 18 

FIG 5 19 

Figure 5. a) Results of vulnerability assessment and related uncertainty; b) Results of impacts 20 

assessment and related uncertainty.  21 

5.4 Recommendations for decision-makers 22 

The present section aims at supporting decision-makers in prioritizing the interventions on a drinking 23 

water supply infrastructure. The values of infrastructural vulnerability, the magnitude of the expected 24 
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impacts, and the role of uncertainty are jointly taken into account. The network elements are 1 

compared considering different combinations of ‘vulnerability under uncertainty’ and ‘impacts under 2 

uncertainty’. Considering the drinking water supply infrastructure under analysis, each network 3 

element is characterized by the set of attributes  𝒜 =  {𝛼1, 𝛼2, 𝛼1𝑢, 𝛼2𝑢}, such that 𝒜ℒ =4 

 {𝑣ℎ, 𝑣𝑚, 𝑣𝑙 , 𝑒ℎ, 𝑒𝑚, 𝑒𝑙, 𝑢1ℎ , 𝑢1𝑚, 𝑢1𝑙, 𝑢2ℎ , 𝑢2𝑚, 𝑢2𝑙 , } represents the set of all possible values that the 5 

elements of 𝒜 can take, over which a decision-maker has preferences. The attributes are: 6 

 𝛼1, vulnerability based on the state ‘high’ of the variable ‘breaking vulnerability’. The possible 7 

values of the attribute are 𝛼1 = {ℎ𝑖𝑔ℎ (𝑣ℎ), 𝑚𝑒𝑑𝑖𝑢𝑚 (𝑣𝑚), 𝑙𝑜𝑤 (𝑣𝑙)}; 8 

 𝛼2, impact assessment through the analysis of the exposure to the potential effects of failures 9 

represented by the values 𝛼2 = {ℎ𝑖𝑔ℎ (𝑒ℎ), 𝑚𝑒𝑑𝑖𝑢𝑚 (𝑒𝑚), 𝑙𝑜𝑤 (𝑒𝑙)}; 10 

 𝛼1𝑢 and 𝛼2𝑢 uncertainty associated respectively to vulnerability and impact assessment, according 11 

to 𝐻̅(𝑋), 𝛼1𝑢 = {ℎ𝑖𝑔ℎ (𝑢1ℎ), 𝑚𝑒𝑑𝑖𝑢𝑚 (𝑢1𝑚), 𝑙𝑜𝑤 (𝑢1𝑙)}  12 

and 𝛼2𝑢 = {ℎ𝑖𝑔ℎ (𝑢2ℎ), 𝑚𝑒𝑑𝑖𝑢𝑚 (𝑢2𝑚), 𝑙𝑜𝑤 (𝑢2𝑙)}. 13 

Throughout this section, the symbol ≻ denotes a decision maker’s preference relation, 𝑥 ≻  𝑦 means 14 

that 𝑥 is preferred to 𝑦. The decision-makers have the following order of preferences: a higher value 15 

of vulnerability/exposure has priority compared to a lower one: 𝑣ℎ ≻ 𝑣𝑚 ≻ 𝑣𝑙 and 𝑒ℎ ≻ 𝑒𝑚 ≻ 𝑒𝑙. The 16 

preferences elicitation was performed through semi-structured interviews held with Civil Protection 17 

operators and engineers working for the local water utility. Considering the combination between the 18 

two attributes, the decision-makers should prioritize the highest possible value of 𝛼1 combined with 19 

the highest possible value of 𝛼2: 𝑣ℎ𝑒ℎ ≻ 𝑣ℎ𝑒𝑚 ≻ 𝑣𝑚𝑒ℎ ≻ 𝑣ℎ𝑒𝑙 ≻ 𝑣𝑚𝑒𝑚 ≻ 𝑣𝑙𝑒ℎ ≻ 𝑣𝑚𝑒𝑙 ≻ 𝑣𝑙𝑒𝑚 ≻20 

𝑣𝑙𝑒𝑙. However, as discussed in section 5.2, the ‘uncertainty’ is a key attribute that decision-makers 21 

take into account. Considering the preferences on the other attributes, a lower value of uncertainty 22 

associated respectively to vulnerability and impact assessment is preferred to a higher value: 𝑢1𝑙𝑢2𝑙 ≻23 

𝑢1𝑙𝑢2𝑚 ≻ 𝑢1𝑚𝑢2𝑙 ≻ 𝑢1𝑙𝑢2ℎ ≻ 𝑢1𝑚𝑢2𝑚 ≻ 𝑢1ℎ𝑢2𝑙 ≻ 𝑢1𝑚𝑢2ℎ ≻ 𝑢1ℎ𝑢2𝑚 ≻ 𝑢1ℎ𝑢2ℎ . 24 
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Accordingly to the preference statements, we obtain the following compact representation supporting 1 

the definition of a ranking order among the different potential 81 conditions: 2 

𝑣ℎ𝑒ℎ𝑢1𝑙𝑢2𝑙 ≻ 𝑣ℎ𝑒ℎ𝑢1𝑙𝑢2𝑚 ≻ 𝑣ℎ𝑒ℎ𝑢1𝑚𝑢2𝑙 ≻ 𝑣ℎ𝑒ℎ𝑢1𝑙𝑢2ℎ ≻ 𝑣ℎ𝑒ℎ𝑢1𝑚𝑢2𝑚 ≻ 𝑣ℎ𝑒ℎ𝑢1ℎ𝑢2𝑙 ≻ 3 

≻ 𝑣ℎ𝑒ℎ𝑢1𝑚𝑢2ℎ ≻ 𝑣ℎ𝑒ℎ𝑢1ℎ𝑢2𝑚 ≻ 𝑣ℎ𝑒ℎ𝑢1ℎ𝑢2ℎ ≻ 𝑣ℎ𝑒𝑚𝑢1𝑙𝑢2𝑙 ≻ 𝑣ℎ𝑒𝑚𝑢1𝑙𝑢2𝑚 ≻ ⋯ ≻ 4 

≻ ⋯ ≻ 𝑣𝑙𝑒𝑙𝑢1ℎ𝑢2ℎ = 𝑟1 ≻  𝑟2  ≻  𝑟3  ≻ ⋯ ≻  𝑟81 5 

Consequentially, in relation to the water supply network under analysis, we obtain the spatial 6 

representation of ranking as in the Fig. 6. The mapping of results allows decision-makers to identify 7 

the elements of the network where interventions should be primarily oriented either in emergency 8 

conditions or in ordinary management, to reduce the risk levels for the whole system.  9 

FIG 6 10 

Figure 6. Ranking of the network elements  11 

6. Conclusions 12 

This work describes a DSS for decision-making in the emergency management of drinking water 13 

supply systems. The methodology was implemented in L’Aquila case study. The model is composed 14 

of a BBN-based vulnerability assessment tool for drinking water supply infrastructures, with the 15 

related uncertainty analysis and a BBN-based model to estimate impacts magnitude, with the related 16 

uncertainty analysis. The tools are integrated in a comprehensive methodology, based on preferences 17 

orders, capable to jointly take into account all the previous information, and to define a ranking order 18 

among the elements of the infrastructural system. This ranking simply suggests a priority of action 19 

for decision-makers. Overcoming one of the main limitations of BBNs -i.e. the difficulties in 20 

performing spatial analyses- the development of a GIS interface (G-Net), for data structuring and 21 

results analysis, revealed highly useful to improve the effectiveness of the tool, helping in visualizing 22 

the outcomes, quantifying uncertainty, and identifying the final ranking. Future activities will be 23 

oriented mainly to the analysis of temporal aspects related to the dynamic evolution of system 24 
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behavior (see e.g. Pagano et al. 2017) and to the implementation of models based on complexity 1 

theory to support the analysis of interconnected systems. 2 
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 1 

Node Mutual Info  Percent  Variance of Beliefs Scenario 

Breaking Vulnerability 1.3976 100 0.363296  

External stress level 0.19371 13.9 0.044494  

Mechanical features 0.09952 7.12 0.02237  

Physical vulnerability 0.04676 3.35 0.01062  

Seismicity 0.04403 3.15 0.010404 (1), (3) 

Existing instabilities 0.02028 1.45 0.004848 (1), (3) 

Actual conditions 0.01908 1.37 0.004305  

Soil mechanical characteristics 0.01267 0.907 0.002837 (3) 

Hydraulic efficiency 0.01221 0.874 0.002945  

Safety level 0.00808 0.578 0.001839  

Extra-maintenance 0.0056 0.401 0.001275 (2), (3) 

OP/NP 0.00312 0.223 0.000758 (2) 

Dynamic loads 0.00269 0.193 0.000649 (1) 

Flexibility 0.00212 0.152 0.000485  

Hydraulic variability 0.00138 0.0991 0.000338  

Age/Design life 0.00111 0.0797 0.000256 (2) 

Joint extraction vulnerability 0.00084 0.0598 0.000204  

Maintenance: performed/scheduled 0.00077 0.0548 0.000175 (2) 

Joint type 0.00063 0.0452 0.000145 (2) 

Diameter 0.00059 0.0422 0.000137 (2) 

Depth 0.0004 0.0283 9.49E-05 (2) 

Joint frequency 0.00014 0.0102 3.25E-05 (2) 

Corrosion vulnerability 0.00004 0.00251 0.000008  

Pipe coating 0.00003 0.00235 7.9E-06  

Cathodic protection 0.00001 0.000767 2.6E-06  

Thrust restraint 0 0 0 (2) 
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No

0
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Cathodic protection
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Passive protection level
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0
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25.0
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100
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Plastic

100
0
0
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Analysis and validation of the BBN-based vulnerability assessment tool 1 

The present section aims at providing additional details on the BBN-based vulnerability assessment 2 

methodology, mainly focusing on a set of specific information related to model building and 3 

validation. 4 

The following Table S1 (from Pagano et al. 2014a) includes a detailed description of all the input 5 

variables included in the BBN proposed in Fig. 1 of the paper. The meaning and the states of the 6 

variables are included. It is worth to consider that mutual exclusivity is encoded via the states of 7 

nodes, having particular attention in a proper identification of specific causal pathways (i.e. the 8 

specific vulnerability mechanisms).  9 

 10 

Table S1 Description of the input variables adopted, of their meaning and states 11 

Input variable Meaning States 

Material 
Different materials determine variable mechanical behaviors and show a 

specific response to corrosion, breaking and deterioration phenomena. 

- Cast iron 

- Steel 

- Concrete 

- Plastic 

Thickness A greater thickness accounts for greater resistance and corrosion resiliency. 
- High 

- Low 

Pipe coating 
Inner and outer pipe coatings guarantee optimal resistance to chemical 

actions, deterioration and corrosion. 

- Yes 

- No 

Cathodic protection 
Active protection systems reduce pipe electrical potential limiting 

corrosion. 

- Yes 

- No 

Thrust restraint 
The presence of thrust restraints balances specific forces (e.g. 

hydrodynamic force in curves) 

- Yes 

- No 

Diameter 
Studies have shown that pipe breaks tend to reduce for pipes with greater 

diameters. 

- >200 mm 

- <200 mm 

Joint type  The flexibility of pipe joints conditions their response to external actions. 

- Rigid 

- Semi-rigid 

- Flexible 

Joint frequency The frequency of pipe joints conditions the overall flexibility of the system. 

- High 

- Medium 

- Low 

Depth  
Buried systems are less exposed to superficial events (e.g. floods) and often 

not clearly visible. 

- Superficial 

- Buried 

Length 
The higher the length of the system, the lower the effectiveness of 

monitoring activities. 

- High 

- Medium 

- Low 
Soil mechanical 

characteristics 

The mechanical properties of soil and backfill properties influence the 

system’s response to external actions. 

- Good 

- Poor 

Seismicity 
The expected external stress level is characterized also through the analysis 

of the seismicity of the investigated area. 

- High 

- Medium 

- Low 

Existing instabilities  
Increasing vulnerabilities are expected where local instabilities (e.g. faults 

or landslides) already exist. 

- Yes 

- No 

Dynamic loads 
The higher the dynamic loads (e.g. traffic loads) the higher the system’s 

vulnerability. 

- Frequent 

- Absent 

External pressures 
Local aggressive conditions (e.g. proximity of electricity lines, external 

currents) may increase vulnerability levels. 

- High 

- Medium 

- Low 

Soil resistivity 

Soil resistivity summarizes a series of soil chemical, physical and 

biological features determining the expected behavior in terms of 

corrosion. 

- High 

- Medium 

- Low 
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Hydraulic variability 

A water system is much more vulnerable if subjected to significant 

variations in hydraulic conditions, particularly pressure. In the case of 

water mains, the entity of hydrostatic pressure is considered. 

- High 

- Medium 

- Low 

Operating Pressure / 

Nominal Pressure  

A pipe is much more vulnerable if operating pressure is close to its nominal 

pressure. 

- High (0.66 - 1) 

- Medium (0.33 - 0.66) 

- Low (0 - 0.33) 

Visibility  
Most hydraulic structures are hidden. Recognizable structures are more 

exposed to sabotage and terrorist acts. 

- Yes 

- No 

Accessibility  
Accessible structures (without fences or walls) are more exposed to 

sabotage and terrorist acts. 

- Yes 

- No 

Surveillance  
Surveillance by employees or monitoring systems reduces the risk of 

intrusion and accelerates emergency responses. 

- Yes 

- No 

Monitoring  

Qualitative and quantitative monitoring systems (both local and 

centralized), especially if continuous, help in quickly detecting problems 

and faults. 

- Existing and continuous 

- Existing non continuous 

- Absent 

Age / Design Life  

Failure probability follows the classical ‘bathtub’ curve: older systems are 

less efficient and more subject to deterioration, newly completed ones may 

be affected by construction faults. 

- >0.8 

- 0.1 - 0.8 

- <0.1 

Maintenance: 

Performed/Scheduled  

Regular maintenance contributes to improving pipe conditions and 

response to external stresses. 

- Low 

- Medium 

- High 

Extra Maintenance  
Past unexpected maintenance activities denote vulnerable areas or 

vulnerability conditions due to local factors.  

- Frequent 

- Absent 

 1 

The variables included in the model (the total number of nodes is 40) were also topologically ordered. 2 

Given a DAG, the topological ordering of variables (X1, X2, …, Xn) is an ordering in which parents 3 

are ordered before the children. The topological order (one of the possible topological orders) of the 4 

elements of the network is: (External pressures, Soil resistivity, Material, Pipe Coating, Cathodic 5 

protection, Thickness, Hydraulic variability, Operating pressure/Nominal pressure, Thrust restraint, 6 

Soil mechanical characteristics, Diameter, Joint Frequency, Joint type, Seismicity, Existing 7 

Instabilities, Dynamic loads, Depth, Visibility, Accessibility, Surveillance, Length, Monitoring, Extra 8 

maintenance, Age/Design life, Maintenance performed/scheduled; Environmental aggressiveness, 9 

Corrosion resiliency, Hydraulic efficiency, Joint extraction vulnerability, Mechanical features, 10 

External stress level, ‘Passive’ protection level, ‘Active’ protection level, Actual conditions; 11 

Protection level, Corrosion vulnerability, Breaking vulnerability, Safety level; Physical 12 

vulnerability). 13 

 14 

D-Separation can be considered in order to analyze independence of nodes. Particularly, according to 15 

the D-separation rule, A is d-separated from B by C if all the paths between sets A and B are blocked 16 

by elements of C. Such rule enables to quickly determine whether a finding at one node can possibly 17 

change the beliefs at another by only looking at the link structure of a Bayes net. Equivalently, D-18 

Connected nodes can be also identified, i.e. the nodes whose beliefs could change if findings were 19 

obtained for a currently selected node, based on the graph connectivity (or vice-versa). The following 20 

table S2 summarizes, for each node of the BBN, the set of D-Connected nodes (the complementary 21 

sub-set will be D-Separated). 22 

Table S2. D-connected nodes 23 

Node D-connected nodes 

External pressures Environmental aggressiveness, Corrosion vulnerability, Physical vulnerability 

Soil resistivity Environmental aggressiveness, Corrosion vulnerability, Physical vulnerability 

Material Corrosion resiliency, Corrosion vulnerability, Physical vulnerability 



Pipe Coating Corrosion resiliency, Corrosion vulnerability, Physical vulnerability 

Cathodic protection Corrosion resiliency, Corrosion vulnerability, Physical vulnerability 

Thickness Corrosion resiliency, Corrosion vulnerability, Physical vulnerability 

Hydraulic variability Hydraulic efficiency, Breaking vulnerability, Physical vulnerability 

Operating pressure/nominal 

pressure 

Hydraulic efficiency, Joint extraction vulnerability, Breaking vulnerability, 

Physical vulnerability 

Thrust restraint Joint extraction vulnerability, Physical vulnerability 

Soil mechanical characteristics Mechanical features, Breaking vulnerability, Physical vulnerability 

Diameter Mechanical features, Breaking vulnerability, Physical vulnerability 

Joint frequency Flexibility, Mechanical features, Joint extraction vulnerability, Breaking 

vulnerability, Physical vulnerability 

Joint type Flexibility, Mechanical features, Breaking vulnerability, Physical vulnerability 

Seismicity External stress level, Breaking vulnerability, Physical vulnerability 

Existing instabilities External stress level, Breaking vulnerability, Physical vulnerability 

Dynamic loads External stress level, Breaking vulnerability, Physical vulnerability 

Depth External stress level, ‘Passive’ protection level, Protection level, Safety level, 

Breaking vulnerability, Physical vulnerability 

Visibility ‘Passive’ protection level, Protection level, Safety level, Physical vulnerability 

Accessibility ‘Passive’ protection level, Protection level, Safety level, Physical vulnerability 

Surveillance ‘Active’ protection level, Protection level, Safety level, Physical vulnerability 

Length ‘Active’ protection level, Protection level, Safety level, Physical vulnerability 

Monitoring ‘Active’ protection level, Protection level, Safety level, Physical vulnerability 

Extra maintenance Actual conditions, Safety level, Corrosion vulnerability, Mechanical features, 

Breaking vulnerability, Physical vulnerability 

Age/Design life Actual conditions, Safety level, Corrosion vulnerability, Mechanical features, 

Breaking vulnerability, Physical vulnerability 

Maintenance: 

performed/scheduled 

Actual conditions, Safety level, Corrosion vulnerability, Mechanical features, 

Breaking vulnerability, Physical vulnerability 

Environmental aggressiveness Soil resistivity, External pressures, Corrosion vulnerability, Physical 

vulnerability 

Corrosion resiliency Material, Pipe coating, Cathodic protection, Thickness, Corrosion vulnerability, 

Physical vulnerability 

Hydraulic efficiency Hydraulic variability, Operating pressure/Nominal pressure, Joint extraction 

vulnerability, Breaking vulnerability, Physical vulnerability 

Joint extraction vulnerability Hydraulic efficiency, Operating pressure/Nominal pressure, Thrust restraint, 

Joint frequency, Flexibility, Mechanical features, Breaking vulnerability, 

Physical vulnerability 

Mechanical features Joint extraction vulnerability, Diameter, Joint frequency, Diameter, Joint type, 

Flexibility, Soil mechanical characteristics, Breaking vulnerability, Physical 

vulnerability, Corrosion vulnerability, Safety level, Actual conditions, Extra-

maintenance, Age/Design life, Maintenance: performed/scheduled. 

Flexibility Joint type, Joint frequency, Joint extraction vulnerability, Mechanical features, 

Breaking vulnerability, Physical vulnerability 

External stress level Seismicity, Existing instabilities, Dynamic loads, Depth, ‘Passive’ protection 

level, Protection level, Safety level, Breaking vulnerability, Physical 

vulnerability. 

‘Passive’ protection level Accessibility, Visibility, Depth, Protection level, Safety level, External stress 

level, Breaking vulnerability, Physical vulnerability 

‘Active’ protection level Surveillance, Length, Monitoring, Protection level, Safety level, Physical 

vulnerability 

Actual conditions  Extra-maintenance, Age/Design life, Maintenance: performed/scheduled, 

Corrosion vulnerability, Breaking vulnerability, Mechanical features, Physical 

vulnerability  

Corrosion vulnerability Extra maintenance, Age/Design life, External pressure, Maintenance: 

performed/scheduled, Soil resistivity, Material, Pipe coating, Cathodic 

protection, Thickness, Corrosion resiliency, Environmental aggressiveness, 

Actual conditions, Safety level, Mechanical features, Breaking vulnerability, 

Physical vulnerability  



Protection level Length, Monitoring, Surveillance, ‘Active’ protection level, Accessibility, 

Visibility, Depth, ‘Passive’ protection level, External stress level, Protection 

level, Safety level, Breaking vulnerability, Physical vulnerability 

Safety level Length, Monitoring, Surveillance, ‘Active’ protection level, Accessibility, 

Visibility, Depth, ‘Passive’ protection level, External stress level, Protection 

level, Safety level, Breaking vulnerability, Mechanical features, Safety level, 

Extra-maintenance, Age/Design life, Maintenance: performed/scheduled, 

Corrosion vulnerability, Physical vulnerability 

Breaking vulnerability Extra-maintenance, Age/Design life, Maintenance: performed/scheduled, Actual 

conditions, Corrosion vulnerability, Hydraulic variability, Hydraulic efficiency, 

Operating pressure/Nominal pressure, Joint extraction vulnerability, Diameter, 

Soil mechanical characteristics, Mechanical features, Flexibility, Jint frequency, 

Joint type, Seismicity, Existing instabilities, Dynamic loads, Depth, External 

stress level, ‘Passive’ protection level, Protection level, Safety level, Breaking 

vulnerability, Physical vulnerability 

Physical vulnerability All the variables are D-Connected. 

 1 

In the following Table S3, the junction tree of the vulnerability assessment BBN is included. A 2 
junction tree is an internal structure that Netica uses for belief updating. Netica compiles a Bayes net 3 
or decision net into a junction tree for efficiency. The junction tree T of triangulated net G is a tree 4 

with the cliques of G as nodes, such that for every node N of G, if we remove from T all cliques not 5 
containing N, the remaining subtree remains connected. In other words, any two cliques containing 6 

N are either adjacent in T or connected by a path made entirely of cliques that contain N. 7 
 8 

Table S3. Junction tree 9 

Clique [Joined To] Size Member nodes (* means home) 

0 [0 15] 54 Protection level, Depth, *Safety level, Actual conditions 

1 [0 2 14] 54 Depth, Safety level, External stress level, Breaking vulnerability, 

Actual conditions 

2 [1 3 5] 243 Safety level, External stress level, Actual conditions, Breaking 

vulnerability, Joint extraction vulnerability 

3 [2 4 13] 243 Corrosion vulnerability, Safety level, Actual conditions, Breaking 

vulnerability, Joint extraction vulnerability 

4 [3] 162 *Physical vulnerability, Corrosion vulnerability, Safety level, 

Breaking vulnerability, Joint extraction vulnerability 

5 [2 6] 729 External stress level, Actual conditions, Mechanical features, 

Hydraulic efficiency, *Breaking vulnerability, Joint extraction 

vulnerability 

6 [5 7 8] 162 Flexibility, Actual conditions, Mechanical features, Hydraulic 

efficiency, Joint extraction vulnerability 

7 [6] 72 *Mechanical features, *Diameter, Flexibility, Actual conditions, 

*Mechanical features 

8 [6 9 12] 54 Operating pressure/Nominal pressure, Hydraulic efficiency, Joint 

extraction vulnerability 

9 [8 10 11] 54 Joint frequency, Operating pressure/Nominal pressure, Flexibility, 

Joint extraction vulnerability 

10 [9] 54 *Thrust restraint, Joint frequency, Operating pressure/Nominal 

pressure, *Joint extraction vulnerability 

11 [9] 18 *Joint type, *Joint frequency, *Flexibility 

12 [8] 27 *Hydraulic variability, * Operating pressure/Nominal pressure, 

*Hydraulic efficiency 

13 [3 18 19 20] 81 Environmental aggressiveness, Corrosion resiliency, *Corrosion 

vulnerability, Actual conditions 

14 [1] 72 *Existing instabilities, *Seismicity, *Dynamic loads, Depth, 

*External stress level 

15 [0 16 17] 54 ‘Passive’ protection level, ‘Active’ protection level, *Protection 

level, Depth 



16 [15] 24 *Visibility, *Accessibility, *’Passive’ protection level, *Depth 

17 [15] 54 *Monitoring, *Surveillance, *Length, *’Active’ protection level 

18 [13] 96 *Material, *Pipe coating, *Cathodic protection, *Thickness, 

*Corrosion resiliency 

19 [13] 27 *External pressures, *Soil resistivity, *Environmental 

aggressiveness 

20 [13] 54 *Extra maintenance, *Age/Design life, *Maintenance: 

performed/scheduled, *Actual conditions 

 1 
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2 
 

Abstract 1 

The availability and the quality of drinking water are key requirements for the well-being and the 2 

safety of a community, both in ordinary conditions and in case of disasters. Providing safe drinking 3 

water in emergency contributes to limit the intensity and the duration of crises, and is thus one of the 4 

main concerns for decision-makers, who must. In such cases, decision-makers have to operate under 5 

significant uncertainty due to the incomplete and limited set of information available. The present 6 

work proposes a Decision Support System for the emergency management of drinking water supply 7 

systems, which is built integrating: i) a vulnerability assessment model based on Bayesian Belief 8 

Networks; ii) with the related an uncertainty assessment model; iii) a model for impact, and related 9 

uncertainty assessment, based on Bayesian Belief Networks. The results of these models are jointly 10 

analyzed, providing decision-makers with a ranking of the priority of intervention. A GIS interface 11 

(G-Net) is developed to manage both input spatial information, and results. The methodology is 12 

implemented in L’Aquila case study, which is particularly relevant in the recent history of disasters. 13 

discussing Tthe potentialities associated to the use of Bayesian Networks to support decision-14 

makersthe tool dealing with information and data uncertainty, are discussed. 15 

 16 

Keywords: Emergency management; Drinking water supply systems; Bayesian Belief Networks; 17 

Uncertainty Analysis; Decision Support System 18 
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3 
 

1. Introduction 1 

Lifeline systems consist of a set of interconnected infrastructures (e.g. water, gas, electricity, 2 

communication, transportation systems) supporting the provision of critical services and contributing 3 

to guarantee the quality of life for citizens (Zhao et al. 2016). Since mModern societies highly rely 4 

on infrastructures, which provide critical services and guarantee the quality of life for citizens (Zhao 5 

et al. 2016). NeverthelessT, the the current increase in both frequency and intensity of extreme events 6 

contributes to create additional challenges to the infrastructure providers operating in the aftermath 7 

of high-impacts occurrences (Eidsvig et al. 2017). Among all lifelinesParticularly, water supply 8 

systems infrastructures are essential for health, sanitary and economic reasons and, consequently, 9 

there is high pressure on water organizations to provide customers with a continual and efficient water 10 

supply, under specific delivery requirements and operational constraints (Bagheri et al. 2010, Mala-11 

Jetmarova et al. 2017).  12 

Several approaches are mentioned in the scientific and grey literature aiming atavailable for 13 

protecting water supply infrastructures from a wide variety of stresses, either supporting system 14 

performances assessment in case of extreme events (e.g. EPA 2015) or driving the selection of 15 

suitable actions for vulnerabilities mitigation (Fragiadakis et al. 2013, Pagano et al. 2014a). Methods 16 

to assess the performances of infrastructural systems under stress typically vary with the type of 17 

system, the aim or of the specific phaseanalysis of the analysis (e.g. planning or emergency 18 

management), and the available information. Probabilistic modelling, statistical analyses of past 19 

events, empirical approaches, system dynamics-based approaches, agent-based approaches are 20 

mentioned in the literature (EPA 2015, Eidsvig et al. 2017). A broad classification is generally into 21 

qualitative, semi-quantitative and quantitative approaches (Pagano et al. 2014aa; Eidsvig et al. 2017). 22 

Quantitative tools require detailed data and a higher computational burden, but generally provide 23 

highly reliable numerical outcomes for decision-makingmakers, typically using numerical values and 24 

detailed analyses of critical scenarios (e.g. Fragiadakis et al 2013, Diao et al. 2016). Qualitative 25 
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approaches support ranking risk levels, screening scenarios and identifying critical scenarios ones 1 

(Eidsvig et al. 2017), based on the use of words or classes (e.g. ‘high’, ‘medium’, ‘low’). The class 2 

of sSemi-quantitative techniques (e.g. probabilistic methods such as Bayesian Belief Networks) 3 

guarantees a compromise between the such main features of the two classes of tools and data 4 

requirement.  5 

One of the most challenging tasks in all these methods is uncertainty management, a key aspect also 6 

to be incorporated in water supply systems management (Beh et al. 2017). 7 

 Uncertainty represents the lack of exact knowledge, regardless of its causes (Refsgaard et al. 8 

2007).which is inherently Ffirstlyirst of all, uncertainty is associated to water supply systems 9 

planning, design and operationoperation, due  e.g. to structural characteristics and hydraulic capacity, 10 

variable demand and random fluctuations service level ((Malm et al. 2015, Tanyimboh 2017). 11 

Secondly Specifically, particularly in emergency conditions, besides the uncertainties related to their 12 

emergency onset, nature and evolution (Perng and Buscher 2015), ) as well as the difficulty in 13 

collecting reliable data, model limitations,  and the ambiguity in the understanding of specific 14 

phenomena imply limitations in the capability to describe a given infrastructural system, and to 15 

forecast its behavioral evolution should be properly considered during the emergency. This These 16 

issues deeply affect the decision-makers capability to identify optimal decisions for emergency 17 

management (Pagano et al. 2014b, Gaudard and Romerio 2015). Several scholars highlighted the 18 

need to eEnhanceing the understanding of the uncertainty uncertainties could support in order to 19 

developing a realisticrepresentative picture of the current knowledge and its potential deficiencies, 20 

and to avoid overconfidence in quantitative data and marginalization of non-quantifiable information 21 

(Uusitalo et al. 2015, Sword-Daniels et al. 2016, van der Keur et al. 2016).  22 

Bayesian Belief Networks (BBNs) have shown several useful features to support decision-making 23 

under uncertainty for water supply systems (Molina et al. 2011). FirstlyParticularly, BBNs allow the 24 

integration of various types of information, (e.g. analytical models, expert knowledge, literature and 25 
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historical data),  combining qualitative and quantitative aspects (Giordano et al. 2015, Gonzalez-1 

Redin et al. 2016, Phan et al. 2016) that can be combined also with new variables and knowledge 2 

(Landuyt et al. 2013, Gonzalez-Redin et al. 2016). and . They Secondly, they support reasoning from 3 

uncertain evidence to uncertain conclusion (John et al. 2016), treating both . The uncertainties (data 4 

and model uncertainty, model uncertainty or both) are explicitly treated and included in BBNs by 5 

propagating them throughout the network up to the final node (Uusitalo 2007, Marcot 2012, Uusitalo 6 

et al. 2015, Gonzalez-Redin et al. 2016).More specifically, they can easily handle missing or little 7 

data, and typically yield good prediction. Furthermore, BBNs also represent a valuable tool for 8 

decision-makers, since costs and risks associated to different management strategies can be easily 9 

assessed (Uusitalo, 2007; Mohajerani et al. 2017).  10 

Within this framework, the present work describes the development of a Decision Support System 11 

(DSS) for the emergency management of drinking water supply systems infrastructuresexposed to 12 

extreme events. Specifically,T the DSS is based on a the integration of: i) a probabilistic vulnerability 13 

assessment model, based on Bayesian Belief NetworksBBNs (BBN), which is used to identify the 14 

most critical elements of the characterize the infrastructural system supporting in the identification of 15 

the critical elements; ii) an the associated uncertainty analysis estimaterelated to the results of the 16 

vulnerability assessment model; iii) a BBN-based probabilistic model for impact assessment; iv) the 17 

associated uncertainty estimate, useful to quantify the magnitude of impacts of an event. The most 18 

relevant innovation of the present work is twofold. Firstly, the definition of a methodology to perform 19 

a joint vulnerability and impact assessment of infrastructural failure, with an explicit uncertainty 20 

analysis. This is a crucial requisite in Athe definition of a joint analysis of  set of decision-makers' 21 

preferences in emergency to support defining over the network attributes is proposed, in order to 22 

provide a ranking of the a priority of intervention actions in emergency. Secondly, overcoming one 23 

of the main limits of BBNs, which are not inherently characterized by a spatial nature, A a GIS 24 

interface (G-Net) is was also developedbuilt to support the management of input spatial information 25 
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and results visualization. The DSS was developed and tested with the cooperation of the Italian 1 

Department of Civil Protection (DPC), tested and of with several Italian water utilities (Acquedotto 2 

Pugliese S.p.A., Gran Sasso Acqua S.p.A. and AIMAG S.p.A.), and implemented . The DSS has been 3 

then tested in a relevant case study: L’Aquila (Italy) earthquake in 2009. 4 

The paper is structured as follows. After the present introduction, Section 2 analyzes relevant 5 

applicationsprovides an overview of BBNs features and applications in the field of emergency 6 

management for infrastructural systems, focusing on the key potentialities and limits in decision-7 

making under uncertainty. Section 3 provides a description of describes the architecture of the 8 

developed tool. Section 4 discusses the relevance of L’Aquila case study, while section 5 includes a 9 

discussion on the main results related to the implementation of G-Net, analyzing its potential and 10 

limitations. 11 

2. Methodological background: Bayesian Belief Networks 12 

A BBNs combines graph theory and probability theory, consisting of a directed acyclic graphs  and 13 

an associated joint probability distribution (e.g. Pearl 1988 and Jensen 1996). The graph nodes 14 

represent variables, whereas the edges represent conditional dependencies. The strength of the 15 

dependency is represented by conditional probabilities: Each each node variable Xi is associated to a 16 

probability function P(Xi|pai) that takes as input pai, i.e. a set of predecessors of Xi which make Xi 17 

independent on all other predecessors. specific Variables that are judged as direct causes of Xi satisfy 18 

this property, and are the set of values for the node’s parent variables of the node. and gives the 19 

probability of the variable represented by the node, thus defining the intensity of the dependency 20 

(Zhang et al. 2016). BBNs thus allow the probabilistic representation of interactions, which support 21 

to picture the relationships between the variables (Pearl 1988, Phan et al. 2016). The importance of 22 

BBNs is mainly related to the ability to coordinate bi-directional inferences, supporting the 23 

representation and analysis of uncertain knowledge as well as different modes of reasoning (Pearl 24 

1988). 25 



7 
 

BBNs have become an increasingly popular modelling technique to deal with complexity and 1 

uncertainty and, particularly, several studies focused on the potentialities of BBNs to support 2 

decision-making in different several emergency conditions. Just to provide a few examples, BBNs 3 

were used to describe the structure, uncertainty and losses of earthquake disaster chains ( (e.g. Wang 4 

et al. 2013), to help volcano crisis management (Sobradelo et al. 2015, ) and to analyze natural gas 5 

pipeline network accidents, supporting emergency operation (Wu et al. 2017). BBNs helped 6 

overcoming the difficulties in decision-making for water supply systems, particularly considering the 7 

lack of information regarding their operation and failure conditions, supporting maintenance planning 8 

(Mokhtar et al. 2016). A participatory BBN modelling approach was used to develop a risk 9 

assessment tool for estimating water quality-related health risks associated with extreme events 10 

(Bertone et al. 2016). 11 

Within the field of emergency managementR, several successful applications of BBNs referring 12 

specifically to the analysis of water supply infrastructures exposed to external stresses,. BBNs were 13 

mainly used to build a models for pipe breaks based onusing learning from past breaks , integrating 14 

multiple kinds of data and modeling explicitly the dependencies, using probabilities updates and a 15 

representation of uncertainty (and covariate data, which proved insensitive to missing or incomplete 16 

data (Francis et al. 2014, ). A BBN-based failure prediction models was proposed for water mains, 17 

integrating infrastructural features, soil information and pipe breakage data into a GIS (Kabir et al. 18 

2015, ). Fuzzy Bayesian Belief Network were used by Kabir et al. (2016) for the safety assessment 19 

of oil and gas pipelines, due to their capability to model explicitly the dependencies of events, update 20 

probabilities and represent uncertain knowledge, thus strengthening decisions when empirical data 21 

are lacking.  22 

A wide scientific literature underlined that BBNs are : able to support:; the integration of various 23 

types of information, (e.g. analytical models, expert knowledge, literature and historical data) 24 

(Gonzalez-Redin et al. 2016, Phan et al. 2016),; the possibility of reasoning from uncertain evidence 25 
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to uncertain conclusions (John et al. 2016),; the explicit treatment of uncertainties (Uusitalo 2007, 1 

Uusitalo et al. 2015, Gonzalez-Redin et al. 2016). Furthermore, BBNs are also flexible enough to 2 

support a revision of probabilities in the light of additional information or observations availability. 3 

 Shabarchin and Tesfamariam (2016) developed a BBN-based model in GIS to assess internal 4 

corrosion for oil and gas pipelines, integrating also expert judgment. A decision support approach 5 

based on Fuzzy Bayesian Networks was developed for assessing the conditions of existing pipelines 6 

(Zhang et al. 2016). Bayesian Networks were used also to support water pipe leakage prediction (Leu 7 

and Bui 2016). 8 

Bayesian approachesBBNs have also some limitations. Firstly, continuous variables are not easily 9 

integrated within BBNs, leading often to nodes that are often discretized with only a few states,  and 10 

in qualitative terms (e.g. ‘high’ or ‘low’). These states might , provide providing only a coarse 11 

representation of the node (Uusitalo, 2007). Secondly, the BBNs structure of BBNs is linear and 12 

static, and does not directly account for the analysis of feedback loops and dynamic issues (Uusitalo, 13 

2007; Bertone et al. 2016). Furthermore, BBNs do not natively provide a spatial representation of 14 

variables.  15 

Specifically referring to the last issue, Johnson et al. (2011) identified four main ways to integrate 16 

GIS and BBNs: i) GIS input to BBN, when GIS layers are used as input nodes; ii) GIS input to, and 17 

output from BBN, in case GIS is also used to visualize the output of a BBN; iii) BBN and GIS 18 

complex interactions, in case different layers of information from a GIS are combined; iv) BBN and 19 

GIS within a larger framework, where BBNs model one factor and GIS models other factors in a 20 

larger system. Integrated methodologies based on on linking BBNs with and GIS were recently 21 

proposed (e.g. Landuyt et al. 2015, Gonzalez-Redin et al. 2016, Molina et al. 2016, Liu et al. 2016), 22 

showing remarkable potentialities.  23 

Referring to the most widely used BBNs software packages, none of them proposes meaningful ways 24 

to graphically represent the uncertainties associated to the output. Nevertheless, several uUncertainty 25 
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maps can be developed as well. , as discussed by Landuyt et al. (2015) compared standard deviation 1 

maps, probability maps, sampled maps, ignorance maps, cumulative probability maps as techniques 2 

to represent and analyze and represent uncertainty. Each one has its specific potentialities and 3 

limitations, depending on type of output data, degree of uncertainty and objectives, final users.  4 

3. Model description 5 

The present work describes a DDS developed for decision-makers involved in the management of 6 

drinking water supply infrastructures under emergency conditions.  7 

The DSS is based on the integration of: 8 

 A probabilistic vulnerability assessment model, based on Bayesian Belief Networks (BBN), 9 

for the used to characterizinge the infrastructural system performances in case of extreme 10 

events. The model is integrated in a GIS tool (G-Net) in order to facilitate data input and to 11 

provide a geographical visualization of results (Section 3.1). 12 

 An uncertainty analysis related to the results of the vulnerability assessment model, . It is 13 

based on the metrics normally used with BBNs, and used to analyze the impacts of the 14 

available knowledge (and existing gaps) on the results (Section 3.2). 15 

 A BBN-based probabilistic model for impact assessment, useful to quantify the magnitude of 16 

the impacts of an event (Section 3.3).). 17 

 An uncertainty analysis related to the results of the impacts assessment model (Section 3.3). 18 

In the end, decision-making is supported through the definition of a ranking order among the elements 19 

of the network, based on the integration of information on infrastructural vulnerability, related 20 

uncertainty and impacts and related uncertainties.  21 

3.1 Description of the tool (G-Net) tool for the spatial vulnerability assessment 22 

The first element of the DSS is a vulnerability assessment tool for drinking water supply 23 

infrastructures based on BBNs, whose conceptual structure is described in details in Pagano et al. 24 
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(2014aa). The tool is composed of a set of BBNs quantifying the vulnerability levels of drinking 1 

water supply systems from source to tap, with respect to either physical (e.g. earthquakes, landslides) 2 

or CBR hazards (water contamination). A couple of BBNs is thus associated to each subsystem of a 3 

drinking water supply infrastructure. 4 

The following Fig. 1 shows the BBN used to analyze the physical vulnerability of water mains of 5 

drinking water mains. It may be used either to assess the global vulnerability level, or the vulnerability 6 

associated to specific mechanisms (i.e. breaking, corrosion, joint extraction and security level towards 7 

human actions). The variables in grey represent the ‘parent’ variables (input), whereas those in yellow 8 

are the ‘child’ variables (output). 9 

The model is able to manage and integrate a wide range of data and information, belonging to tThree 10 

main classes of data are included in the model: physical infrastructural data, related to infrastructural 11 

characteristics (e.g. diameter, material, thickness, etc.);, environmental data (e.g. seismicity, soil 12 

mechanical characteristics, etc.) and ; operative data (e.g. hydraulic variability, maintenance 13 

performed/scheduled, etc.). The outcome is, for each element of the network under investigation, a 14 

set of probability values associated to the states of one or morespecific output variables (i.e. the global 15 

physical vulnerability or the vulnerability associated to the specific mechanisms).. Further details on 16 

model building are included in the Supplementary Material. 17 

FIG 1 18 

Fig. 1 BBN used for the physical vulnerability assessment of water mains 19 

One of the assumptions of the It is worth mentioning that model (Pagano et al. 2014a) is that each 20 

element pipe of the whole infrastructural network is analyzed independently, thus neglecting the role 21 

of structural or functional interconnections, dependencies and cascading effects (e.g. the a 22 

vulnerability vulnerable element of an element might have impacts on the whole infrastructure 23 

downstream that are neglected according to the present approach). This assumption is performed for 24 

the sake of simplicity, in order to easilyallows easily  identifying the most critical vulnerable elements 25 

of the whole network (further details in Pagano et al. 2014a). 26 
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Several Based on the feedbacks on model functioning were collected mainly interacting with obtained 1 

by the potential end-users of the tool, i.e. Dept. of Civil Protection (DPC, the emergency management 2 

agency)  and water utilities, . The main issues emerged are summarized in the following: i) a GIS 3 

interface is neededwas built, in order to facilitate spatial data processing and the results spatial 4 

representation of the results; ii) the a quantitative analysis of data and model uncertainty is crucial to 5 

support decision-making in emergency; iii) the magnitude of impacts is a key driver for decision-6 

makers; iv) integrating and taking jointly into account all these aspect is not a straightforward process. 7 

The model was thus developed following the above issues/suggestions, and a GIS-based interface (G-8 

Net) was built accordingly. Going further into details, tThe toolbox (G-Net) consists of an expanded 9 

development of a GIS application supporting the vulnerability assessment of drinking water supply 10 

infrastructures, with data, models and user interfaces all integrated in GIS environmenttool. G-NetIt 11 

is specifically designed to support the integration with NeticaTM software by means of an automated 12 

procedure in which some typical GIS functions are organized in a specific workflow. The tool is 13 

composed of customized interfaces working in ArcGIS® software (by Esri) environment with 14 

wizards specifically configured as interface between NeticaTM and ArcGIS®. 15 

The tool has been designed using open-source Python scripting language, fully supported by 16 

ArcGIS® and able to extend the basic functionality of GIS and to automate the workflow (Tateosian 17 

2015). following aA loosely-coupled integration strategy between ArcGIS® and NeticaTM was used. 18 

This means that the latter is not completely encapsulated within a GIS environment as in the tightly–19 

coupled approach, but takes advantage of the database, the visualization and the analysis capabilities 20 

of a GIS (Karimi and Houston 1996, Johnson et al. 2011)). From the technical point of view, the tool 21 

has been developed in a GIS framework and customized using open-source Python scripting 22 

language, fully supported by ArcGIS® and able to extend the basic functionality of GIS and to 23 

automate the workflow (Tateosian 2015). 24 

 25 
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The global structure of the model is summarized in the following Fig. 2. 1 

FIG 2 2 

Figure 2. Conceptualization of the model and connection with spatial data for decision-making 3 

The toolbox for spatial analysis (G-Net) was developed by IRSA-CNR with a twofold objective. 4 

Firstly,; i) the toolbox should be usedboth for the collection, analysis and attribution of spatial input 5 

data with a spatial dimension to the variables of the model; ii). Secondly, and it is used tofor the 6 

visualize visualization and mapping of the outcomes of the Bayesian vulnerability assessment. 7 

Referring to the different classes of BBN-GIS interactions introduced above (Johnson et al. 2011), 8 

the developed toolG-Net refers to the second category, which is ‘GIS input to, and output from BBN’.  9 

Going further into details, the toolbox G-Net consists of an expanded development of a GIS 10 

application supporting the vulnerability assessment of drinking water supply infrastructures, with 11 

data, models and user interfaces all integrated in GIS environment. G-Net is specifically designed to 12 

support the integration with NeticaTM software by means of an automated procedure in which some 13 

typical GIS functions are organized in a specific workflow. The tool is composed of customized 14 

interfaces working in ArcGIS® software (by Esri) environment with wizards specifically configured 15 

as interface between NeticaTM and ArcGIS®. 16 

The tool has been designed following a loosely-coupled integration strategy between ArcGIS® and 17 

NeticaTM. This means that the latter is not completely encapsulated within a GIS environment as in 18 

the tightly–coupled approach, but takes advantage of the database, the visualization and the analysis 19 

capabilities of a GIS (Karimi and Houston 1996, Johnson et al. 2011). From the technical point of 20 

view, the tool has been developed in a GIS framework and customized using open-source Python 21 

scripting language, fully supported by ArcGIS® and able to extend the basic functionality of GIS and 22 

to automate the workflow (Tateosian 2015). 23 
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A schematic overview of the procedure carried out by the tool is shown in the followingthe Fig.ure 1 

32. 2 

FIG 32 3 

Figure 32. G-Net procedure for vulnerability assessment and mapping: (a) selection of the analysis 4 

to perform; (b) data association to the input variables; (c) input variables export procedure; (d) 5 

output vulnerability map. 6 

G-Net firstly requires the selection of the subsystem to analyze, among all the elements of a drinking 7 

water infrastructure, both linear (e.g. water mains) and punctual (e.g. tanks, pumping systems, etc.), 8 

available in vector data format (shapefile or features stored inside georeferenced database, both native 9 

data format for Esri software). Secondly, the user should select the kind of analysis to carry out 10 

(Figure 3a2a), i.e. physical or CBR vulnerability assessment. Additional data related to the input 11 

variables in the BBN can be manually or automatically associated to the file, either through an 12 

automatic overlay between the input vector and the available layers in the database, or through manual 13 

attribution by the end user (Figure 3b2b). If the some data concerning a certain variable are not 14 

available, the user could attribute a uniform probability distribution to the input data for this variableis 15 

considered and the . BBN propagates the information about the related uncertainty up to the output 16 

variables. The tool allows end-users also to define some variables using linguistic assessment, based 17 

on fuzzy sets (Pagano et al. 2014a).  18 

Once the GIS pre-processing is complete, G-Net exports a table for the input variables in a format 19 

easily manageable by NeticaTM (Figure 3c2c). Following the vulnerability assessment procedure in 20 

NeticaTM, a table with modeling results can be imported again in GIS, and joined to the available file, 21 

through the same toolbox. Afterwards, the resulting BBN results can beis shown in the vulnerability 22 

map (Figure 3d2d). Additional functionalities are included in the toolbox, and an exhaustive help 23 

accompanies each step of the procedure. 24 
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3.2 Uncertainty analysis 1 

Estimating uncertainty is fundamental for effective decision-making. Such uncertainty may be either 2 

related to the inherent structure of the model (‘conceptual’ uncertainty) or to information quality 3 

(‘data’ uncertainty). Particularly the issue of ‘data’ uncertainty is crucial in emergency operations. 4 

Understanding the quality and quantity of the available information, as well as how to improve it, is 5 

crucial to improve decisions (Hsu et al. 2012). 6 

The aim of the present section is toaims at defindefininge a waymethod to analyze and map the 7 

uncertainty associated to the Bayesian vulnerability assessment modelBBNs, also supporting the 8 

identification of its root causes. Reference is made to the work by Marcot (2012), who suggested 9 

metrics for estimating model performances and uncertainty. Referring to BBNs, uncertainty pertains 10 

to the dispersion of Pposterior probability Probability values Distribution (PPD), i.e. the spread of 11 

alternative predictions.  12 

Firstly, the sensitivity analysis (SA) supports determining the degree to which a variation in PPD is 13 

explained by other variables, and basically depicts the underlying probability structure of a model 14 

(Marcot 2012, Pagano et al. 2014a). It was performed with respect to the variable ‘breaking 15 

vulnerability’, and the results are proposed in the following Table 1. The results of SA are also used 16 

(see section 5 for details), for scenario analysis (see section 5). 17 

Table 1. Results of the sensitivity analysis performed with respect to the variable ‘breaking 18 

vulnerability’ 19 

Node Mutual Info  Percent  Variance of Beliefs Scenario 

Breaking Vulnerability 1.3976 100 0.363296  

External stress level 0.19371 13.9 0.044494  

Mechanical features 0.09952 7.12 0.02237  

Physical vulnerability 0.04676 3.35 0.01062  

Seismicity 0.04403 3.15 0.010404 (1), (3) 

Existing instabilities 0.02028 1.45 0.004848 (1), (3) 

Actual conditions 0.01908 1.37 0.004305  
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Soil mechanical characteristics 0.01267 0.907 0.002837 (3) 

Hydraulic efficiency 0.01221 0.874 0.002945  

Safety level 0.00808 0.578 0.001839  

Extra-maintenance 0.0056 0.401 0.001275 (2), (3) 

OP/NP 0.00312 0.223 0.000758 (2) 

Dynamic loads 0.00269 0.193 0.000649 (1) 

Flexibility 0.00212 0.152 0.000485  

Hydraulic variability 0.00138 0.0991 0.000338  

Age/Design life 0.00111 0.0797 0.000256 (2) 

Joint extraction vulnerability 0.00084 0.0598 0.000204  

Maintenance: performed/scheduled 0.00077 0.0548 0.000175 (2) 

Joint type 0.00063 0.0452 0.000145 (2) 

Diameter 0.00059 0.0422 0.000137 (2) 

Depth 0.0004 0.0283 9.49E-05 (2) 

Joint frequency 0.00014 0.0102 3.25E-05 (2) 

Corrosion vulnerability 0.00004 0.00251 0.000008  

Pipe coating 0.00003 0.00235 7.9E-06  

Cathodic protection 0.00001 0.000767 2.6E-06  

Thrust restraint 0 0 0 (2) 

 1 

Sensitivity is calculated with input variables set to uniform prior probability distributions (Marcot 2 

2012) and supports in the identification of the most influential variables of the BBN. The more 3 

sensitive to a variable the model is, the more important is to collect related information. Having 4 

reliable data on key variables is a crucial requisite to reduce uncertainty. 5 

Secondly, the uncertainty associated to BBNs is estimated using the Shannon entropy H(X) referring 6 

to the output variable (‘breaking vulnerability’ for the vulnerability assessment model). It is defined 7 

as the average amount of information conveyed by a stochastic source of data. The concept of 8 

Shannon Entropy is fundamental in information theory and, besides sharing some intuition with 9 

Boltzmann’s theory, some aspects are analogous to those used in statistical thermodynamics. The 10 

Shannon entropy can be used as a synthetic measure of uncertainty, related to the number of 11 

alternatives and characteristics of the probability distribution over the states of a random variable 12 

(Das 1999). It is expressed as follows, using a logarithmic form:Secondly, the uncertainty associated 13 
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to model predictions is estimated using the Shannon entropy H(X). It can be used as a synthetic 1 

measure of uncertainty, related to the number of alternatives and characteristics of the probability 2 

distribution over the states of a variable (Das 1999). It is expressed as follows: 3 

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔𝑃(𝑥𝑖)
𝑛
𝑖=1     (1) 4 

𝐻(𝑋) measures the average information required in addition to the current knowledge to remove the 5 

ignorance associated to the probability distribution of the variable 𝑋. Higher values of 𝐻(𝑋) are thus 6 

associated to more uncertain decisions. If the current state of knowledge is complete, then 𝐻(𝑋) = 0. 7 

If it is total ignorance (uniform probability distribution), the additional information required to pin 8 

down an alternative is maximum. A normalized value of entropy can be calculated as 𝐻̅(𝑋) =9 

𝐻(𝑋) 𝐻(𝑋)𝑚𝑎𝑥⁄ . For the purposes of the present work, the Shannon entropy is used to estimate the 10 

uncertainty related to the main output variables (i.e. ‘breaking vulnerability’ and ‘impacts’).The main 11 

advantages related to the use of the Shannon entropy instead of other metrics, are the significance of 12 

information in case of skewed distributions and the absence of any influence of user-defined 13 

thresholds.  14 

3.3 Impact assessment 15 

The levels and types of adverse impacts are the result of a physical event interacting with vulnerable 16 

elements. The aim of emergency managers is directly related to the reduction of impacts, both before 17 

and after a disaster occurs (McCormick 2016). Correctly assessing the impacts of an emergency is 18 

not a straightforward task, due to the complexity associated to a comprehensive analysis of costs and 19 

consequences (Sobradelo et al. 2015).  20 

For the purpose of the present work, the impact assessment is performed through another BBN , 21 

shown in (Figure 43). ), based on the following The basic idea is to estimate the impacts of a potential 22 

disruption of the infrastructure identifying the key driversvariables, namelydescribed in the 23 

following:  24 
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- a) ‘Flow rate’: measure of the service loss, depending on the number of users potentially 1 

affected. The values ‘Hhigh’, ‘Mmedium’ and ‘Llow’ are defined considering whether the 2 

ratio between the local flow rate and the maximum upstream value is higher than 0.7, between 3 

0.3 and 0.7 or lower than 0.3. 4 

- ‘Diameter’: measure of the cost for repair, proportional to pipe diameter. The values ‘Hhigh’, 5 

‘Mmedium’ and ‘Lolow’ are defined for each element considering whether the ratio between 6 

the local diameter and the maximum value is higher than 0.7, between 0.3 and 0.7 or lower 7 

than 0.3. 8 

- ‘Relevance’: defines the presence of critical users and services (e.g. hospitals). The values 9 

‘Hhigh’, ‘Mmedium’ and ‘Llow’ are defined considering the importance of the services 10 

depending on the infrastructure. 11 

- ‘Redundancy’: defines the presence of additional paths for water supply. The values ‘Yes’ 12 

and ‘No’ are defined considering the presence of other paths that can be activated. 13 

- costs, both social (e.g. service loss) and economic (repair costs, proportional to diameter); b) 14 

relevance (i.e. potential critical users); c) redundancy (existence of alternative paths). A more 15 

detailed description of the variables is in the following Table 2. 16 

FIG 43 17 

Figure 43. BBN for impact assessment  18 

Table 2. Description of the variables used for impact assessment 19 

Variable Definition Description 

Flow rate Impact associated to the number of users 

potentially affected.  

The values ‘High’, ‘Medium’ and ‘Low’ are defined 

considering whether the ratio between the local flow rate 

and the maximum upstream value is higher than 0.7, 

between 0.3 and 0.7 or lower than 0.3. 

Diameter Defines the impacts of damages in terms 

of costs for repair, proportional to the 

diameter. 

The values ‘High’, ‘Medium’ and ‘Low’ are defined for 

each element considering whether the ratio between the 
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local diameter and the maximum value is higher than 0.7, 

between 0.3 and 0.7 or lower than 0.3. 

Relevance Defines the presence of critical users and 

services (e.g. hospitals) 

The values ‘High’, ‘Medium’ and ‘Low’ are defined 

considering the importance of the services depending on 

the infrastructure. 

Redundancy Defines the presence of additional paths 

for water supply. 

The values ‘Yes’ and ‘No’ are defined considering the 

presence of other paths that can be activated (e.g. bypass). 

 1 

4. L’Aquila case study: relevance and main issues 2 

L’Aquila province (central Italy) was struck by a severe earthquake on 6 April 2009. Apart from a 3 

huge number of casualties, sSeveral damages to structures and infrastructures were detected over a 4 

broad area (Kongar et al. 2017). Referring specifically to the water supply system, the major damage 5 

occurred on an important steel pipe (diameter 600 mm; pressure 25–30 atm), which failed because 6 

crossing the surface trace of a fault activated during the earthquake (Dolce and Di Bucci 2017, Pagano 7 

et al. 2017).  8 

Emergency managers decided to stop tThe operation of the whole system was stopped, in order to 9 

allow the restoration of infrastructural functionality and to limit the impacts of the multiplicity 10 

ofmultiple damages occurred in the urban distribution system. Nevertheless, this decision had a strong 11 

impact on the local community, whose access to such a crucial service was limited for some days.  12 

According to the interviews held with technicians involved in emergency operations, the fragmented 13 

and uncertain knowledge related to infrastructural conditions, particularly in the urban area, was a 14 

key limit in during emergency operations in the aftermath of the disaster. Infrastructural data were 15 

not readily available, since most of information were unstructured and not accessible by operators. 16 

The available data were often not reliable and directly usable, since mainly deriving from personal 17 

experience, and thus difficult to share, visualize and integrate. Most of emergency operators 18 

acknowledged the lack of reliable infrastructural information as a main issue hampering the 19 

effectiveness of emergency management strategies.  20 
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Based on the lessons learned in L’Aquila earthquake, the main potentialities of the proposed 1 

integrated DSS to support decision-making on drinking water supply system in case of disasters are 2 

investigated and described in the following.  3 

5. Results and discussion 4 

5.1 Vulnerability assessment 5 

The main results of the vulnerability assessment procedure, performed through G-Net in L’Aquila 6 

case study, are represented in Figure 5(a) along with the results of the uncertainty assessment. These 7 

results are identified in the following as the following as ‘BASE’ scenario. The map plots the 8 

probability values associated to the state ‘high’ of the variable ‘breaking vulnerability’. 9 

The following Figure 5(a) shows the presence of several elements having values of ‘breaking 10 

vulnerability’ from ‘medium’ to ‘high’. Model predictions were tested comparing the results with the 11 

position of the main pipe breaks occurred during the earthquake. Particularly, tParticularly,T the 12 

highest values of ‘breaking vulnerability’ were found for the pipe damaged in 2009. Then, other 13 

elements characterized by a significantly high ‘breaking vulnerability’ were identified as well, and 14 

the result discussed with GSA S.p.A., resulting in a with a positive outcome related to the 15 

identification ofcorrespondence with some well-known vulnerabilities of the infrastructure.  16 

FIG 5 17 

Figure 5. Results of the vulnerability assessment model performed through G-Net 18 

Globally, the implementation of the model supports building a comprehensive knowledge framework 19 

on the conditions of the infrastructure, thus identifying its main criticalities. Although the model is 20 

primarily meant to support emergency management activities, it can be used for ordinary operation 21 

as well (e.g. to prioritize and schedule maintenance). 22 

 23 
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5.2 Uncertainty analysis and mapping 1 

Starting from the results of the sensitivity analysisSA proposed in the (Section 3.2), an influence 2 

analysis was performed. It allows evaluating (and comparing) the effects on PPD from selected input 3 

variables set to specific scenario values (generally best or worst cases). Conducting influence runs 4 

can help reveal the degree to which individual or sets of input variables could affect output 5 

probabilities. This is helpful in a decision- setting, where management might prioritize activities to 6 

best effect desirable, or to avoid undesirable outcomes (Marcot 2012). 7 

The following scenarios were analyzed and are discussed in the following: 8 

 BEST Scenario: the scenario is built setting all the variables to their optimal state – i.e. 9 

minimizing the vulnerability of the system.  10 

 WORST Scenario: the scenario is built setting all the variables to their worst state – i.e. 11 

maximizing the vulnerability of the system.  12 

 UNCERTAIN Scenario: the scenario is built setting all the variables to an ‘unknown’ state – 13 

i.e. the input variables have all an uniform probability distribution, in case no information is 14 

available. 15 

Three additional scenarios were built as well, changing the state of some variables according to the 16 

results of the SA. The variables modified in each scenario are identified in the Table 1. 17 

 SENSIT (1). The scenario is built setting three key environmental variables to the worst state: 18 

‘seismicity’, ‘existing instabilities’ and ‘dynamic loads’, which are among the most influential 19 

variables on ‘breaking vulnerability’. All the variables considered in this scenario represent 20 

external conditions, and thus their state cannot be improved. 21 

 SENSIT (2). The scenario is built considering the positive impact of actions performed on 22 

variables that can be modified through specific strategies. These variables may be 23 
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representative of both structural and operational aspects. In this scenario, a subset of variables 1 

is set to the best state. 2 

 SENSIT (3). The scenario is built considering the four most influential variables, according 3 

to the sensitivity analysis, all contextually set to the worst state. 4 

The results are summarized (according to Marcot et al. 2012), in terms of PPD of the output variable 5 

‘breaking vulnerability’ (Figure 64). The ‘BEST’, ‘WORST’ and ‘UNCERTAIN’ scenarios show an 6 

intuitive PPD for the output variable. The comparison between the scenarios ‘SENSIT (3)’ and 7 

‘SENSIT (1)’ suggest that few variables, mainly related to environmental conditions, are highly 8 

influential on the result. From a practical point of view, this means that a deep knowledge of the 9 

environment in which a system is located (e.g. seismicity of the area, existing instabilities) is crucial 10 

for providing athe reliable estimate of ‘breaking vulnerability’. Nevertheless, these variables cannot 11 

be modified or significantly conditioned. The Scenario ‘SENSIT (2)’ is indeed relevant in order to 12 

assess the impact of potential improvements on infrastructural and operational features, which can be 13 

modified. Although the effect on the output PPD is lower, acting on the infrastructure (both through 14 

design and maintenance) and changing operative conditions may contribute to reduce significantly 15 

the vulnerability level of the system. 16 

FIG 64 17 

Figure 64. Results of the influence analysis in the modeled scenarios 18 

The Shannon entropy was then used to produce uncertainty maps, as shown in Fig. 5. It was firstly 19 

used in Referring to the ‘BASE’ scenario, focusing on the main output variable, i.e. the ‘breaking 20 

vulnerability’, as a simple measure of the uncertainty related to model results. Tthe values of 𝐻(𝑋) 21 

were computed for the whole network and spatially plotted along with the results of the vulnerability 22 

assessment (Fig. 5a), in order to describe the spatial variation of uncertainty. The same procedure was 23 

This coupling (Figure 7) supports the identification of the most critical elements of the system (e.g. 24 
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high vulnerability associated with low uncertainty) and the areas where additional information would 1 

be primarily beneficialused to map the impacts magnitude and the related uncertainty (Fig. 5b). 2 

Decision-makers can be thus supported to schedule (and prioritize) actions and to identify locations 3 

where additional data and investigation would be worth. 4 

FIG 7 5 

Figure 7. Coupled spatial representation of model results and related uncertainty 6 

The relevance of the Shannon entropy 𝐻(𝑋) for uncertainty assessment was further tested through 7 

specific simulations, analyzing the impacts of the lack of important input information on the reliability 8 

of model results. The selection of the input variables to be considered in such analysis, was performed 9 

according to the sensitivity analysis.  10 

The ‘BASE’ Scenario was built considering a full knowledge of the input variables required by the 11 

model. Referring also to Table 1, the following scenarios were created: 12 

 U (1) Scenario : this scenario was built considerings complete uncertainty for the input 13 

variables identified with (1) in Table 1. Particularly,T three highly influential (according to 14 

the sensitivity analysis) environmental variables (according to the SA):, i.e. ‘seismicity’, 15 

‘existing instabilities’ and ‘dynamic loads’, are set to a uniform probability distribution, that 16 

is they are treated as unknown.  17 

 U (2): ) Scenario this scenario was built consideringconsiders complete uncertainty for the 18 

input variables identified with (2) in Table 1. Both structural and operative features are set to 19 

a uniform probability distribution.  20 

 U (3) Scenario: this scenario was built  considering considers uncertainty for the input 21 

variables identified with (3) in Table 1. In this case, and the four most relevant variables 22 

according to the SA are set as unknown.  23 
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The Shannon entropy 𝐻(𝑋) was used , in the cited scenarios, to quantify the cumulative uncertainty 1 

related to unknown inputs. Following the ‘chain rule’ for entropy, the global entropy of a group of 2 

random variables was computed as the sum of conditional entropies. The values of 𝐻(𝑋) Shannon 3 

entropy are 0, 0.067, 0.012 and 0.083 respectively for BASE, U(1), U(2) and U(3) scenarios. This A 4 

summary of the results is proposed in the following Table 3: 5 

Table 3. Results of the Shannon entropy for the cited scenarios 6 

Scenario Shannon entropy (input variables) 

BASE 0 

U (1) 0.067 

U (2) 0.012 

U (3) 0.083 

The outcomes of this uncertainty analysfirstlyThis  suggests that although the scenario U (2) is 7 

characterized by a higher number of unknown variables, their impact on modeling results is lower if 8 

compared to the key variables neglected in both U (1) and U (3) scenarios. Both U (1) and U (3) 9 

scenarios suggest that the knowledge related to environmental conditions is a key requirement to 10 

perform a reliable vulnerability assessment. Furthermore, referring particularly to the scenario U (3), 11 

the highest value of the Shannon entropyH(X) is representative of a more critical condition, due to 12 

the highly uncertain set of available input data.  13 

5.3 Impact assessment 14 

The results of the impact assessment can be geographically represented, as in the following Figure 15 

85b, which is based on the probability associated to the state ‘High’ high’ of the variable 16 

‘Impacts’impacts’. Both a numerical and a chromatic scale are used. It is worth to remind that the 17 

impacts associated to the pipes actually occur downstream, in the urban areaAs already discussed, the 18 

map represents also the associated uncertainty. 19 

FIG 85 20 
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Figure 85.. Results of impact assessment. Higher values of the state ‘high’ of the variable ‘impacts’ 1 

are those associated to elements of the infrastructure whose damage could cause the most 2 

significant consequences downstreama) Results of vulnerability assessment and related uncertainty; 3 

b) Results of impacts assessment and related uncertainty.  4 

5.4 Recommendations for decision-makingmakers 5 

Integrating the results already described, the aim of the The present section is toaims at supporting 6 

the decision-makers in prioritizing the interventions on a drinking water supply infrastructure, aiding 7 

in the definition of strategies in emergency management operations and to reduce the main 8 

criticalities. The specific values of infrastructural vulnerability, the magnitude of the expected 9 

impacts associated to a potential failure, and the role of data and information uncertainty related to 10 

modelling results are jointly taken into account.  11 

In order to address the problem of ranking among the network elementsMore specifically, Tthe 12 

network elements alternatives to beare compared represent conditions where consideringa different 13 

combinations of ‘vulnerability under uncertainty’ and ‘potential impacts under uncertainty’ are found, 14 

e.g. highly vulnerable elements of the network, having potentially high associated impacts are by far 15 

more relevant for a decision-maker than elements with low vulnerability and low impacts. 16 

Nevertheless, intermediate situations need a more careful assessment, also considering that results 17 

uncertainty is a key parameter to be taken into account. 18 

Considering the drinking water supply infrastructure under analysis, we denote 𝑋 = {𝑥1, … , 𝑥𝑛 } the 19 

set network elements (𝑛 = 254). Each  , each network element  (𝑛 = 254) is characterized by the set 20 

of attributes  𝒜 =  {𝛼1, 𝛼2, 𝛼1𝑢, 𝛼2𝑢}, such that 𝒜ℒ =21 

 {𝑣ℎ, 𝑣𝑚, 𝑣𝑙 , 𝑒ℎ, 𝑒𝑚, 𝑒𝑙, 𝑢1ℎ , 𝑢1𝑚, 𝑢1𝑙, 𝑢2ℎ , 𝑢2𝑚, 𝑢2𝑙 , } represents the set of all possible values that the 22 

elements of 𝒜 can take, over which a decision-maker has preferences. Specifically,T the attributes 23 

are: 24 
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 𝛼1, vulnerability based on the state ‘high’ of the variable ‘breaking vulnerability’. The possible 1 

values of the attribute are 𝛼1 = {ℎ𝑖𝑔ℎ (𝑣ℎ), 𝑚𝑒𝑑𝑖𝑢𝑚 (𝑣𝑚), 𝑙𝑜𝑤 (𝑣𝑙)}; 2 

 𝛼2, impact assessment through the analysis of the exposure to the potential effects of failures 3 

represented by the values 𝛼2 = {ℎ𝑖𝑔ℎ (𝑒ℎ), 𝑚𝑒𝑑𝑖𝑢𝑚 (𝑒𝑚), 𝑙𝑜𝑤 (𝑒𝑙)}; 4 

 𝛼1𝑢, and 𝛼2𝑢 respectively uncertainty associated respectively to vulnerability and to the impact 5 

assessment, according to  the values of the normalized Shannon entropy 𝐻̅(𝑋), 𝛼1𝑢 =6 

{ℎ𝑖𝑔ℎ (𝑢1ℎ), 𝑚𝑒𝑑𝑖𝑢𝑚 (𝑢1𝑚), 𝑙𝑜𝑤 (𝑢1𝑙)}.  7 

and 𝛼2𝑢 = {ℎ𝑖𝑔ℎ (𝑢2ℎ), 𝑚𝑒𝑑𝑖𝑢𝑚 (𝑢2𝑚), 𝑙𝑜𝑤 (𝑢2𝑙)}. 8 

Throughout this section, the symbol ≻ denotes a decision maker’s preference relation, 𝑥 ≻  𝑦 means 9 

that 𝑥 is preferred to 𝑦 for one or more criteria considered all together. . The decision-makers 10 

have the following order of preferences:  a higher value of vulnerability /exposure has priority 11 

compared to a lower one: ( 𝑣ℎ ≻ 𝑣𝑚 ≻ 𝑣𝑙) and a higher value of exposure has priority compared to a 12 

lower value (𝑒ℎ ≻ 𝑒𝑚 ≻ 𝑒𝑙). . TThe rankingpreferences elicitation was performed through Ssemi-13 

structured interviews were held with Civil Protection operators and with engineers working for the 14 

local water utility. They were asked, according to their experience in emergency management 15 

operations, to support in the ranking among the attributes. CConsidering the combination between 16 

the two attributes, 𝛼1 and 𝛼2, the decision-makers should prioritize the highest possible value of 𝛼1 17 

combined with the highest possible value of 𝛼2: 𝑣ℎ𝑒ℎ ≻ 𝑣ℎ𝑒𝑚 ≻ 𝑣𝑚𝑒ℎ ≻ 𝑣ℎ𝑒𝑙 ≻ 𝑣𝑚𝑒𝑚 ≻ 𝑣𝑙𝑒ℎ ≻18 

𝑣𝑚𝑒𝑙 ≻ 𝑣𝑙𝑒𝑚 ≻ 𝑣𝑙𝑒𝑙. However, as discussed in section 5.2, the ‘uncertainty’ 𝛼1𝑢 is a key attribute 19 

that decision-makers take into account. No matter theConsidering the preferences on the other 20 

conditionsattributes, a lower value of the ‘uncertainty’ associated respectively to vulnerability and 21 

impact assessment variable is preferred to a higher value:  𝑢1𝑙𝑢2𝑙 ≻ 𝑢1𝑙𝑢2𝑚 ≻ 𝑢1𝑚𝑢2𝑙 ≻ 𝑢1𝑙𝑢2ℎ ≻22 

𝑢1𝑚𝑢2𝑚 ≻ 𝑢1ℎ𝑢2𝑙 ≻ 𝑢1𝑚𝑢2ℎ ≻ 𝑢1ℎ𝑢2𝑚 ≻ 𝑢1ℎ𝑢2ℎ . and 𝑢𝑙 ≻ 𝑢𝑚 ≻ 𝑢ℎ. 23 

instanceThe possible values of the ‘vulnerability under uncertainty’ is represented through the 24 

following set: 25 
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.Accordingly, to the preference statements, Considering the combination between 𝑎1𝑢 and 𝛼2 we 1 

obtain the following compact preferences representation, supporting the definition of a ranking order 2 

among the different potential 81 conditions, we get: 3 

𝑣ℎ𝑒ℎ𝑢1𝑙𝑢2𝑙 ≻ 𝑣ℎ𝑒ℎ𝑢1𝑙𝑢2𝑚 ≻ 𝑣ℎ𝑒ℎ𝑢1𝑚𝑢2𝑙 ≻ 𝑣ℎ𝑒ℎ𝑢1𝑙𝑢2ℎ ≻ 𝑣ℎ𝑒ℎ𝑢1𝑚𝑢2𝑚 ≻ 𝑣ℎ𝑒ℎ𝑢1ℎ𝑢2𝑙 ≻ 4 

≻ 𝑣ℎ𝑒ℎ𝑢1𝑚𝑢2ℎ ≻ 𝑣ℎ𝑒ℎ𝑢1ℎ𝑢2𝑚 ≻ 𝑣ℎ𝑒ℎ𝑢1ℎ𝑢2ℎ ≻ 𝑣ℎ𝑒𝑚𝑢1𝑙𝑢2𝑙 ≻ 𝑣ℎ𝑒𝑚𝑢1𝑙𝑢2𝑚 ≻ ⋯ ≻ 5 

≻ ⋯ ≻ 𝑣𝑙𝑒𝑙𝑢1ℎ𝑢2ℎ = 𝑟𝑣1 ≻  𝑟𝑣2  ≻  𝑟𝑣3 ≻  𝑣4 ≻  𝑣5  ≻  𝑣6 ≻  𝑣7 ≻  𝑣8 … ≻  𝑟𝑣981 6 

 7 

𝑣ℎ𝑢𝑙 ≻ 𝑣ℎ𝑢𝑚 ≻ 𝑣𝑚𝑢𝑙 ≻ 𝑣ℎ𝑢ℎ ≻ 𝑣𝑚𝑢𝑚 ≻ 𝑣𝑙𝑢𝑙 ≻ 𝑣𝑚𝑢ℎ ≻ 𝑣𝑙𝑢𝑚 ≻ 𝑣𝑙𝑢ℎ  Considering the 8 

combination between 𝑎1𝑢 and 𝛼2 we obtain the following preferences representation, supporting the 9 

definition of a ranking order among the different potential conditions. 10 

Consequentially, considering thein relation to the water supply network under analysis, we obtain the 11 

spatial representation of ranking as in the following Figure. 96. The mapping of results allows 12 

decision-makers to identify the elements of a complexthe network where interventions should be 13 

primarily oriented either in emergency conditions or in ordinary management, to reduce the risk levels 14 

for the whole system. With respect to the results of the vulnerability assessment, proposed in Figure 15 

5 according to the methodology by Pagano et al. (2014a, 2014b), the present approach provides an 16 

added value for decision-making processes, since the final ranking takes into account the uncertainty 17 

of modeling results, and the magnitude of impacts. 18 

FIG 96 19 

Figure 96. Ranking of the network elements of the network. Priority decreases from elements 20 

belonging to 𝑟3 to those belonging to 𝑟20.  21 

6. Conclusions 22 



27 
 

This work describes the development of a Decision Support ToolDSS for decision-makers making 1 

involved in the emergency management of drinking water supply systems, in case of extreme events. 2 

The Modelling methodology activities were carried out in tight cooperation with both the Italian 3 

Department of Civil Protection and the tool was implemented in L’Aquila earthquake case study. The 4 

model is composed of: i) a BBN-based vulnerability assessment tool for drinking water supply 5 

infrastructures, with the related ; ii) an uncertainty analysis tool; iii) and a BBN-based model to 6 

estimate impacts magnitude, in terms of both economic consequences and service limitationwith the 7 

related uncertainty analysis. The tools are integrated in a comprehensive methodology, based on 8 

preferences orders, capable to jointly take into account all the previous information, and to define a 9 

ranking order among the elements of the infrastructural system. This ranking simply suggests a 10 

priority of action for decision-makers. Overcoming one of the main limitations of BBNs -i.e. the 11 

difficulties in performing spatial analyses- the development of a GIS interface (G-Net), used for data 12 

structuring and results analysis, revealed highly useful to improve the effectiveness of the tool, 13 

helping in visualizing the outcomes, understanding the related quantifying uncertainty, and 14 

identifying the final ranking. Future activities will be oriented mainly to the analysis of temporal 15 

aspects related to the dynamic evolution of system behavior (see e.g. Pagano et al. 2017) and to the 16 

implementation of models based on complexity theory to support the analysis of interconnected 17 

systems. 18 
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