

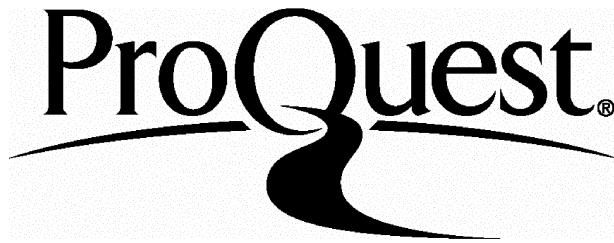
**New Methodology
For The Synthesis
of
Homochiral Unsaturated Amines**

Alastair Rae

Submitted in partial fulfilment
of the requirements for the degree of
Doctor of Philosophy

University College London

February 1998


ProQuest Number: U641846

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest U641846

Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, MI 48106-1346

“Abandon all hope ye who enter here...”

Dante *“The Inferno”*

Declaration

I, Alastair Rae, hereby state that the following is entirely my own work and has not been submitted for any other degree or examination.

A handwritten signature in black ink, appearing to read "Alastair Rae".

Alastair Rae

February 1998

Acknowledgements

I would like to thank my supervisor Dr. Alethea Tabor for allowing me to attempt this work and for all her advice and support in making it a successful and fulfilling three years.

I must also thank Dr. Luis Castro of Merck Sharp and Dohme, Terlings Park, for many helpful discussions in the last three years and for putting up with me whilst I was at Terlings Park.

To all members of the ABT group, past and present, I must also pay back a debt of gratitude for keeping me on my toes and for much humour during the "Dark Times" when nothing seemed to work. This is especially true of Drs. Norman and Sid Nae-Mates (you know who you are) who made the first couple of years such a riot! Thanks also to James for the preliminary work.

I must also thank Dr. Simon Parsons of the University of Edinburgh for the all of the crystallography, Steve Thomas of MSD for the "tricky" NMR work and for not running away every time he saw me (it must have been tempting), the UCL analytical and technical staff (saints, everyone of them) and all of those in Med. Chem. 1 for their helpful discussions and for making me feel welcome whilst I was at MSD.

I gratefully acknowledge the EPSRC and Merck Sharp and Dohme Research Laboratories for the financial support of this work.

I also acknowledge the use of the ULIRS mass spectrometry servive at the University of London School of Pharmacy and the ULIRS optical spectroscopy service at Kings College London School of Pharmacy.

Finally I have to thank the other people who given me vast amounts of love and support through all of the good times and the not-so-good times; my family.

To Mum, Dad and Glenda for always being there when I needed them (usually when my grant ran out!) and to my dearest Catherine for keeping me going when things weren't so great for her and for giving me a good, hard kick when I needed it; "Thanks Darl!".

Abbreviations

The following abbreviations have been used in this thesis:

Ac	Acetyl
APCI	Atmospheric pressure chemical ionisation
Boc	<i>tert</i> -Butoxycarbonyl
BTMSA	(Bis)trimethylsilylacetylene
Cbz	Benzoyloxycarbonyl
COSY	Correlation spectroscopy
Cyhex	Cyclohexyl
DCM	Dichloromethane
d.e.	Diastereomeric excess
DEAD	Diethylazodicarboxylate
DIBALH	Diisobutyl aluminium hydride
DIEA	Diisopropylethylamine
DMAP	Dimethylaminopyridine
DMF	Dimethylformamide
DMSO	Dimethylsulfoxide
DQF	Digitally quantum filtered
e.e.	Enantiomeric excess
EI	Electron impact
eq.	Equivalents
FAB	Fast atom bombardment
GABA-T	γ -Amino butyric acid transaminase
HPLC	High performance liquid chromatography
I.R.	Infra-red

LDA	Lithium diisopropylamide
Moc	Methoxycarbonyl
MTPA	Methoxytrifluoromethylphenylacetyl
Ms	Methanesulfonyl
NMR	Nuclear magnetic resonance
NOE	Nuclear Overhauser enhancement
NOESY	Nuclear Overhauser enhancement spectroscopy
PCC	Pyridinium chloro chromate
Pht	Phthalimido
PPTS	Pyridinium para-toluenesulfonate
py.	Pyridine
TBAF	Tetrabutylammonium fluoride
TEA	Triethylamine
TFA	Trifluoroacetic acid
THF	Tetrahydrofuran
TIPS	Triisopropylsilyl
TLC	Thin layer chromatography
TMS	Trimethylsilyl
Ts	Toluenesulfonyl

Abstract

New methodology for the synthesis of chiral propargyl amines is described. A chiral (*N*)-Boc-1,3-amino alcohol, derived by the homologation of (*L*)-alanine with diazomethane, has been synthesised and this was then used, *via* reaction with a series of diethyl acetals, in the synthesis of chiral 1,3-tetrahydrooxazines (aminals).

The structure of the aminals was determined, by both solution NMR and X-ray crystallographic methods, to exist as a twist chair structure with unusual conformational properties.

The aminals were then functionalised with the Grignard reagent of (trimethylsilyl)acetylene, in the presence of boron trifluoride diethyl etherate, to give novel, ring opened, unsaturated amino alcohols.

The subsequent unmasking of the required amines was then carried out by oxidation and subsequent retro-Michael elimination. The degree of chiral induction was determined *via* the Mosher amide method, and ranged from moderate to excellent.

Table of Contents

CHAPTER 1: INTRODUCTION	13
1.1 AIM	13
1.2 METHODOLOGY FOR THE PRODUCTION OF PROPARGYL AMINES	14
1.2.1 <i>The Gilbert Method</i>	15
1.2.2 <i>The Corey-Fuchs Method</i>	16
1.2.3 <i>The Conversion of Chiral Propargyl Alcohols to their Amine Analogues</i>	17
1.2.4 <i>Other Methods</i>	19
1.3 THE USE OF CHIRAL 1,3-OXAZINES AND 1,3-OXAZOLIDINES AS TEMPLATES FOR CHIRAL AMINE SYNTHESIS	21
1.3.1 CHIRAL 1,3-OXAZOLIDINES.....	21
1.3.2 <i>Chiral 1,3-Oxazines</i>	33
1.3.3 <i>Summary</i>	35
1.4 THE SYNTHESIS OF CHIRAL β -AMINO ACIDS	36
1.4.1 <i>Synthetic Methods</i>	36
1.4.2 <i>Enzymatic Methods</i>	38
CHAPTER 2: RESULTS AND DISCUSSION.....	39
2.1 SYNTHESIS OF THE CHIRAL AUXILIARY	39
2.1.1 <i>Enzymatic Resolution of Rac-12 or Rac-13</i>	40
2.1.2 <i>Synthetic Routes to the Chiral Auxiliary</i>	42
2.2 SYNTHESIS OF CHIRAL 1,3-TETRAHYDROOXAZINES	45
2.3 RING OPENING OF 1,3-TETRAHYDROOXAZINES WITH ACETYLENIC NUCLEOPHILES.....	50
2.5 REMOVAL OF THE CHIRAL AUXILIARY TO GIVE CHIRAL PROPARGYL AMINES.....	56
2.5.1 <i>Oxidation of the Alcohols to Aldehydes</i>	57
2.5.2 <i>Attempted Removal of the Auxiliary under Basic conditions</i>	58
2.5.3 <i>Attempted Removal of the Auxiliary under Acidic conditions</i>	60
CHAPTER 3: CONFORMATIONAL STUDIES ON 1,3- TETRAHYDROOXAZINES.....	65

Table of Contents

3.1 CONFORMATIONAL ANALYSIS OF 1,3-OXAZINE SYSTEMS	65
3.1.1 <i>NMR Studies on 1,3-Oxazines</i>	65
3.1.2 <i>X-Ray Crystallographic Studies</i>	66
3.2 STRUCTURAL STUDIES ON TETRAHYDROOXAZINES 25G AND 25A	69
3.2.1 <i>Absolute Ring Conformation</i>	69
3.2.1.1 <i>NMR studies</i>	69
3.2.1.2 <i>X-Ray Crystallographic studies</i>	71
3.2.2 <i>Ring Configuration at Position 2</i>	72
3.2.2.1 <i>NMR studies</i>	73
3.3 CONCLUSION	74
CHAPTER 4: DETERMINATION OF THE MECHANISM OF AMINAL RING OPENING	76
4.1 ATTEMPTS TO PRODUCE CRYSTALLINE DERIVATIVES	76
4.1.1 <i>Synthesis of Crystalline Derivatives of Alcohols 29a-f</i>	76
4.1.2 <i>Synthesis of Chiral Derivatives of Amines 36a-f</i>	79
4.2 CORRELATION OF AMINES 36A-E TO LITERATURE COMPOUNDS	79
4.2.1 <i>Attempted Correlation of the Amine 36d to (N)-Boc-Valine</i>	80
4.2.2 <i>Attempted Correlation of Amino Alcohol 36f to an Inhibitor of Ornithine Decarboxylase</i>	81
4.2.3 <i>Correlation of 36d to Compound 56</i>	83
4.3 MECHANISM OF RING OPENING	83
CHAPTER 5: EXPERIMENTAL	86
APPENDIX 1: NMR DATA	148
A.1.1 SOLUTION CONFORMATION OF 25G BY NMR SPECTROSCOPY	148
<i>Summary</i>	148
<i>NMR</i>	148
<i>Methodology</i>	148
<i>Results</i>	149

Table of Contents

<i>Spectrum 1</i>	150
<i>Spectrum 2</i>	151
<i>Spectrum 3</i>	152
<i>Spectrum 4</i>	153
<i>Spectrum 5</i>	154
A.1.2 SOLUTION CONFORMATION OF 25A BY NMR SPECTROSCOPY	155
<i>Summary</i>	155
<i>NMR</i>	155
<i>Methodology</i>	155
<i>Results</i>	156
<i>Spectrum 6</i>	157
<i>Spectrum 7</i>	158
<i>Spectrum 8</i>	159
<i>Spectrum 9</i>	160
<i>Spectrum 10</i>	161
APPENDIX 2: X-RAY CRYSTALLOGRAPHY DATA.....	162
CRYSTAL DATA AND STRUCTURE REFINEMENT FOR 25G AT 220(2) K.	163
ORTEP PLOT OF 25G.....	169
CRYSTAL DATA AND STRUCTURE REFINEMENT FOR 25A AT 220(2) K.	170
ORTEP PLOT OF 25A.....	176
REFERENCES.....	177

Table of Figures

FIGURE 1.....	13
FIGURE 2.....	15
FIGURE 3.....	15
FIGURE 4.....	16
FIGURE 5.....	17
FIGURE 6.....	18
FIGURE 7.....	19
FIGURE 8.....	19
FIGURE 9.....	20
FIGURE 10.....	20
FIGURE 11.....	21
FIGURE 12.....	22
FIGURE 13.....	22
FIGURE 14.....	23
FIGURE 15.....	23
FIGURE 16.....	23
FIGURE 17.....	24
FIGURE 18.....	24
FIGURE 19.....	25
FIGURE 20.....	25
FIGURE 21.....	26
FIGURE 22.....	27
FIGURE 23.....	28
FIGURE 24.....	28
FIGURE 25.....	29
FIGURE 26.....	29
FIGURE 27.....	30

Table of Figures

FIGURE 28.....	30
FIGURE 29.....	31
FIGURE 30.....	31
FIGURE 31.....	32
FIGURE 32.....	32
FIGURE 33.....	33
FIGURE 34.....	33
FIGURE 35.....	34
FIGURE 36.....	34
FIGURE 37.....	35
FIGURE 38.....	37
FIGURE 39.....	37
FIGURE 40.....	39
FIGURE 41.....	40
FIGURE 42.....	41
FIGURE 43.....	41
FIGURE 44.....	42
FIGURE 45.....	43
FIGURE 47.....	46
FIGURE 48.....	47
FIGURE 49.....	47
FIGURE 51.....	48
FIGURE 52.....	48
FIGURE 53.....	49
FIGURE 54.....	50
FIGURE 55.....	51
FIGURE 56.....	51
FIGURE 57.....	52
FIGURE 58.....	55

Table of Figures

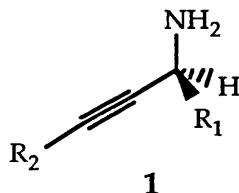
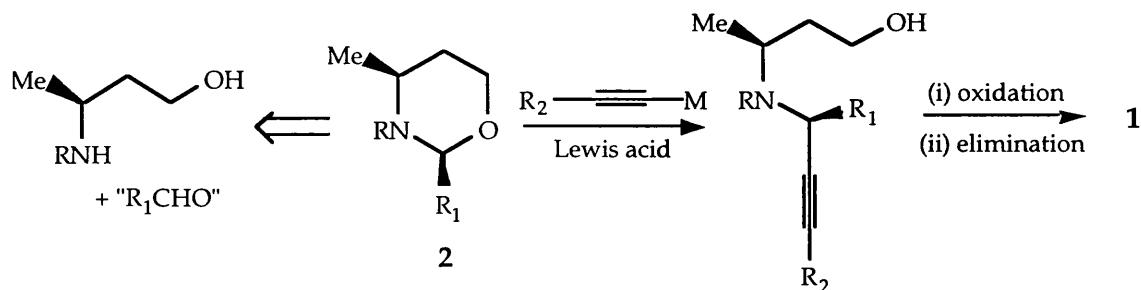


FIGURE 59.....	56
FIGURE 60.....	56
FIGURE 61.....	59
FIGURE 62.....	59
FIGURE 63.....	61
FIGURE 64.....	61
FIGURE 65.....	62
FIGURE 66.....	63
FIGURE 67.....	65
FIGURE 68.....	65
FIGURE 69.....	67
FIGURE 70.....	70
FIGURE 71.....	70
FIGURE 72.....	71
FIGURE 73.....	72
FIGURE 74.....	73
FIGURE 75.....	73
FIGURE 76.....	74
FIGURE 77.....	77
FIGURE 78.....	80
FIGURE 79.....	80
FIGURE 80.....	81
FIGURE 81.....	82
FIGURE 82.....	83
FIGURE 83.....	84
FIGURE 84.....	85

Chapter 1: Introduction

1.1 Aim


The aim of this work is the development of a new methodology for the synthesis of unsaturated homochiral amines, particularly propargyl amines (1).

These compounds are of vital importance, both as therapeutic agents¹ and as chiral building blocks in synthesis.²

This work is centred around the synthesis and functionalisation of chiral 1,3 tetrahydroooxazines (aminals) (2). These are recognised to come from the condensation of a chiral 1,3-amino alcohol with an aldehyde or equivalent. If functionalised with unsaturated nucleophiles, e.g. an acetylide, under the direction of a Lewis acid, a new chiral centre should be created as part of a fully protected (tertiary) amine. Removal of the protecting groups and the chiral auxiliary will reveal the required amine (Figure 1).

Figure 1

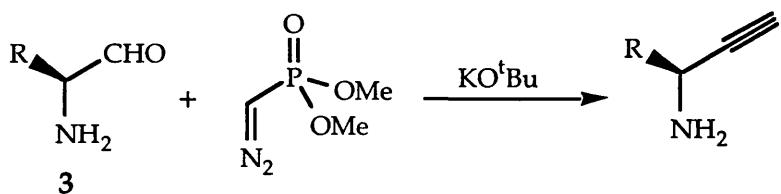
The 4-methyl, along with the nitrogen protecting group and the 2-(R₁) substituent should be sufficient to provide a conformational “lock” on the aminal ring. This should hold all of the ring substituents in a defined relationship to each other.

The nature of the nitrogen protecting group is important, as it must be removable under conditions which will not damage the acetylene, but must also be stable under all the reaction conditions employed. For these reasons, the *tert*-butoxycarbonyl (Boc) group is considered to be the most favoured, as it is stable to mild acidic conditions required for aminal synthesis and to the Lewis acidic conditions for ring opening.³

In truth the “chiral auxiliary” does not strictly meet the criteria to be an auxiliary, i.e. it is not recovered after the synthesis. However, as it fulfils the other function of an auxiliary, i.e. it imparts chirality to the final product, it will be referred to as such for the purposes of this work.

1.2 Methodology for the Production of Propargyl Amines

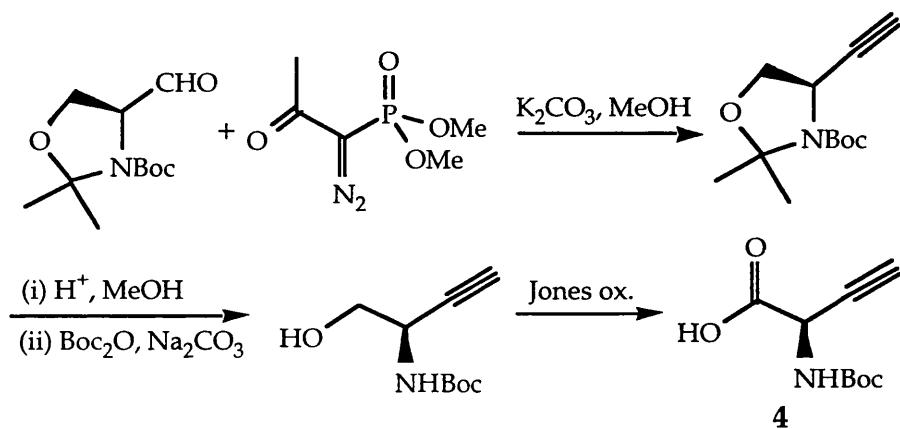
There is little existing methodology for the production of chiral propargyl amines, especially those containing non-proteinogenic or sensitive side chains.


There are four main categories;

- (1) the Gilbert method,
- (2) the Corey-Fuchs method,
- (3) conversion of chiral propargyl alcohols to their amine analogues,
- (4) other methods.

1.2.1 The Gilbert Method

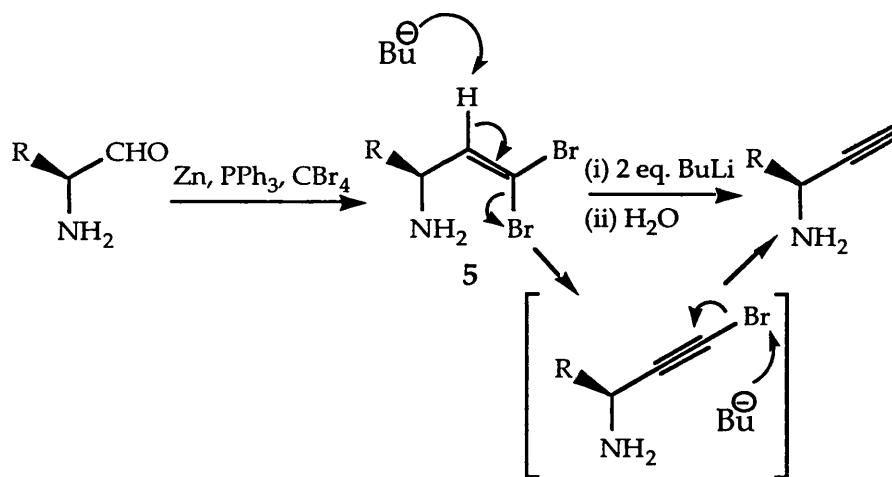
This is a relatively mild method of producing chiral propargyl amines and involves the reaction of a chiral α -amino aldehyde (3) with diazomethyl phosphonates (Figure 2).⁴


Figure 2

This method has been shown to proceed with no loss of stereochemical integrity from the chiral aldehyde.^{5, 6}

The mild conditions associated with it make the Gilbert method useful in the production of sensitive substrates. An example of this is Meffre's synthesis of the easily racemised (D)-(N)-Boc-ethynyl glycine (4) (Figure 3).⁷

Figure 3



The main drawback of this method, however, is its reliance on a chiral α -amino aldehyde as a starting material. As these are most readily available from the corresponding amino acid, economic syntheses are limited to using only starting materials from the chiral pool.

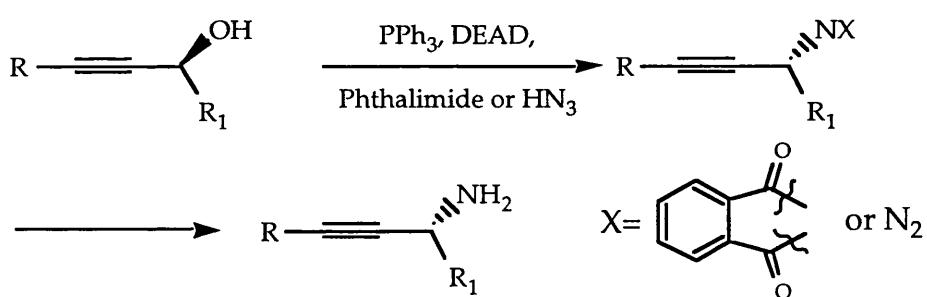
1.2.2 The Corey-Fuchs Method

The use of the $\text{PPh}_3/\text{CBr}_4$ system for the synthesis of 1,1-dibromoalkenes was originally developed by McKelvie.⁸ This was then further developed by Corey to allow the conversion of the bromoalkene to the terminal alkyne.⁹ As with the Gilbert method it utilises chiral α -amino aldehydes, which are converted to their γ -dibromoalkene derivatives (5) with zinc, triphenylphosphine and carbon tetrabromide. The dibromoalkenes are then treated with butyllithium which gives, *via* an elimination/lithiation mechanism, the required propargyl amine (Figure 4).

Figure 4

This procedure has been used in the synthesis of functionalised (*E*)-allylic amines and is shown to proceed with retention of stereochemistry.²

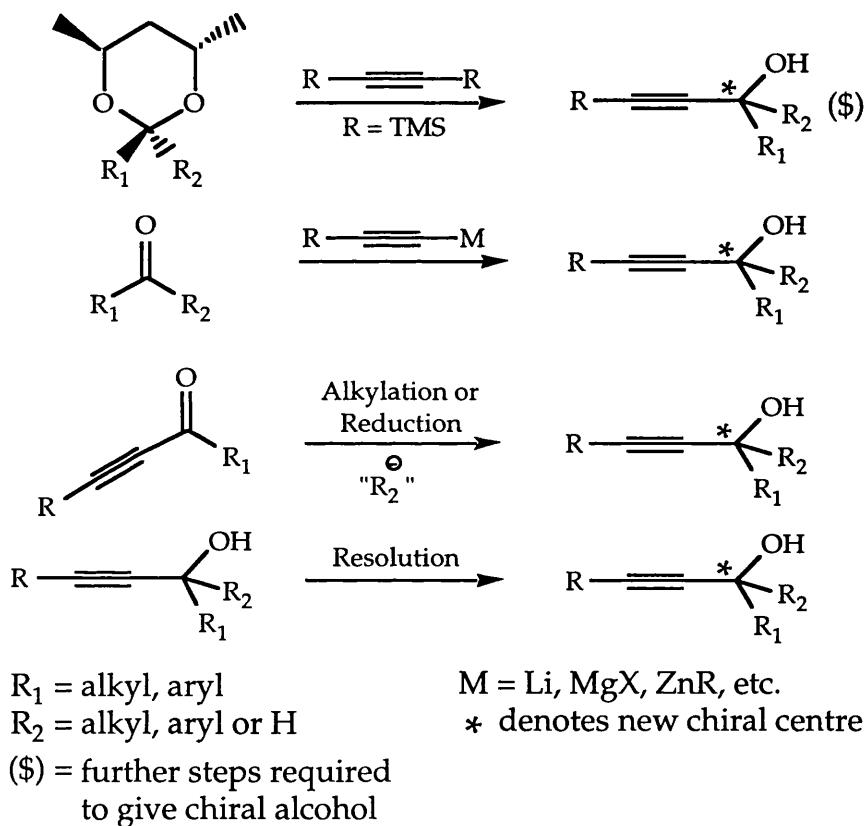
This method again is limited to the use of proteinogenic α -amino acids as readily available starting materials. It can also be problematic, with numerous by-products and low yields being reported,⁷ especially when using sensitive or highly functionalised substrates. Some of these problems can be avoided using the modified method of Chuche,¹⁰ which employs


triethylamine during the conversion of the aldehyde to the alkene, presumably complexing out the known reactive dibromotriphenylphosphine impurity. A less nucleophilic base such as sodium hexamethyldisilazane can be employed in the elimination stage to give the bromoalkyne in high yield.

1.2.3 The Conversion of Chiral Propargyl Alcohols to their Amine Analogues

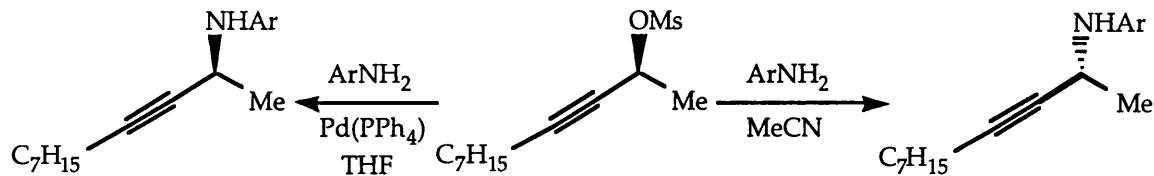
There are two things which make this method attractive to the synthetic chemist; (1) the large number of methods available for the synthesis of optically pure propargyl alcohols, and (2) the Mitsunobu reaction.¹¹

The Mitsunobu reaction is important as it allows facile introduction of the amino functionality, with high confidence in the stereochemical integrity of the chiral centre. In the vast majority of cases exclusive S_N2 displacement of the alcohol is observed, causing inversion of the stereocentre (Figure 5).


Figure 5

The amino functionality may, of course, be introduced in other ways, e.g. by mesylation of the alcohol followed by displacement with sodium azide. It has been observed that both methods can lead to elimination, instead of phthalimide/azide insertion, to give ene-yne products^{1, 12}

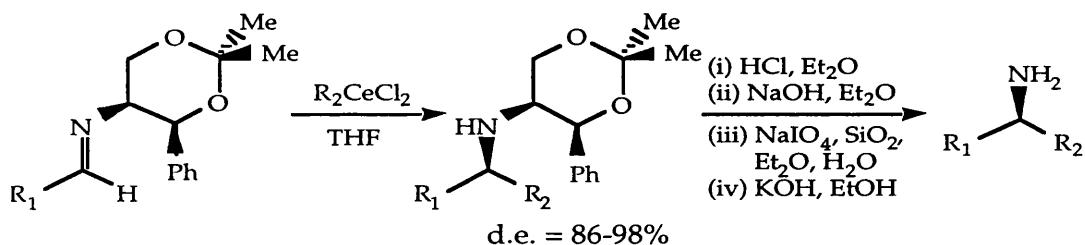
There are many ways of producing optically active alcohols described in the literature, many of which are applicable to propargyl alcohols. This may be *via* the ring opening of chiral acetals,¹³ asymmetric nucleophilic addition to an aldehyde or ketone,¹⁴ asymmetric reduction of an acetylenic ketone (by enzymatic or chemical methods)^{1, 15, 16} or by resolution of a racemic alcohol by enzymatic means.¹⁷ This is demonstrated in Figure 6.


Figure 6

In a similar vein, Marshall has shown that both enantiomers of a range of aromatic propargyl amines can be accessed from a single enantiomer of a propargyl alcohol.¹⁸ The alcohol is converted to the mesylate derivative, and reaction with various anilines, in the presence of palladium(*tetrakis*-triphenylphosphine), gives the amine product with retention of

stereochemistry. Reaction in the absence of palladium, gives the more conventional product with inversion of stereochemistry (Figure 7).

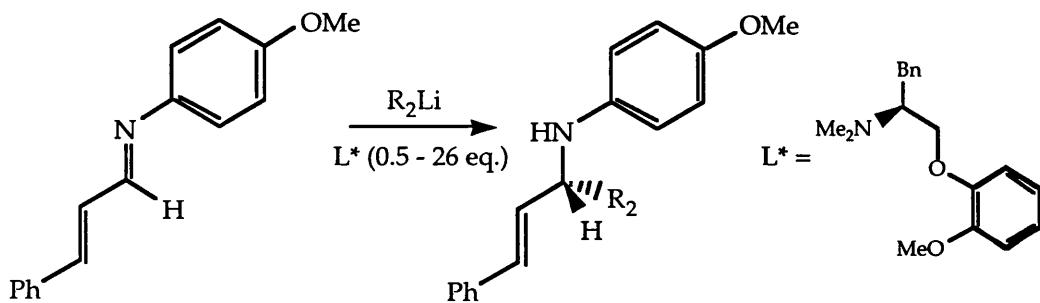
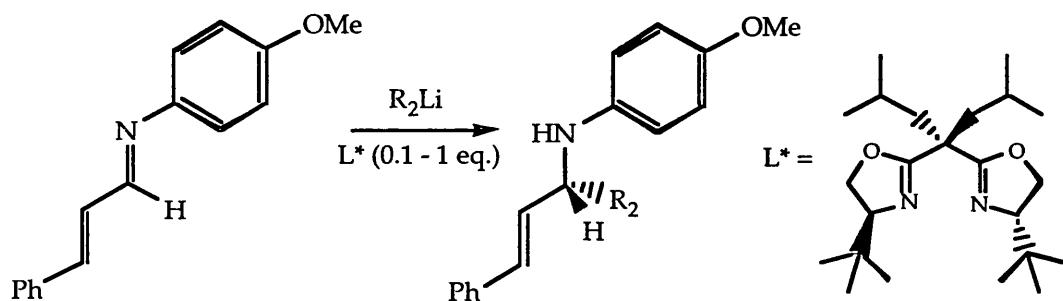
Figure 7



The main disadvantage of the above method is that it is not generally applicable as the aryl group cannot be easily removed without damaging the acetylene.

1.2.4 Other Methods

Enders has described the addition of alkylcerium reagents to chiral alkynyl- and alkenyl-imines in high diastereoselectivity.¹⁹ The amines are then freed from the chiral auxiliary *via* a complex series of steps (Figure 8).



Figure 8

$R_1 = \text{PhCH}=\text{CH, PhC}\equiv\text{C, }^3\text{BuC}\equiv\text{C}$; $R_2 = \text{Me, Et, Bu, Allyl, TBDMSO}(\text{CH}_2)_3$

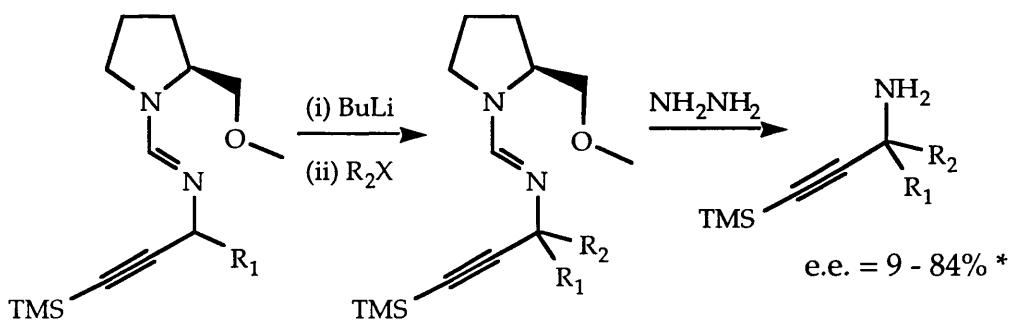
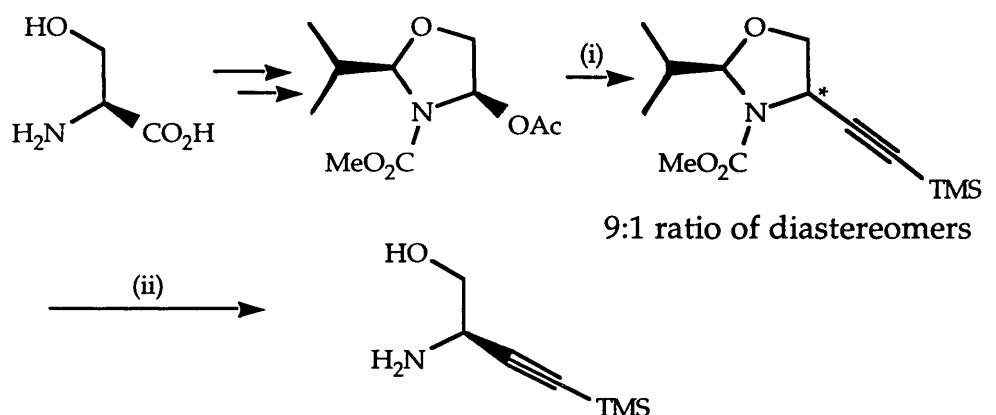

Tomioka showed that alkyl lithiums could add stereoselectively to vinyl imines, in the presence of a chiral ligand, to produce chiral allyl amines in good e.e. (up to 90 %).²⁰ Similarly, Denmark has carried out essentially the same transformation using a different chiral ligand (also in good e.e. (up to 85 %)).²¹ Both transformations are shown in Figure 9.

Figure 9

TomiokaDenmark

Also available is the methodology of Kolb and Barth which allows the stereoselective alkylation of chiral α -imino propargylic anions to give chiral propargyl amines in good yield and moderate stereoselectivity (Figure 10).²²

Figure 10



* measured after conversion to the corresponding amino acid

The final example in this miscellaneous list is the work of Seebach.²³ In work not dissimilar to that of this thesis, he describes the addition of bistrimethylsilylacetylene to 4-acetoxy-1,3-oxazolidines derived from (L)-

serine. Chromatography followed by treatment of the product of this with concentrated HCl gives the required amine, essentially optically pure (Figure 11).

Figure 11

(i) TMS-C≡C-TMS, TiCl_4 , (ii) (a) Column Chromatography, (b) 6M HCl

1.3 The Use of Chiral 1,3-Oxazines and 1,3-Oxazolidines as Templates for Chiral Amine Synthesis

The use of chiral 1,3-oxazines (6) and 1,3-oxazolidines (7) as precursors to chiral *saturated* amines is well documented in the literature and it is therefore crucial that these be discussed in detail.

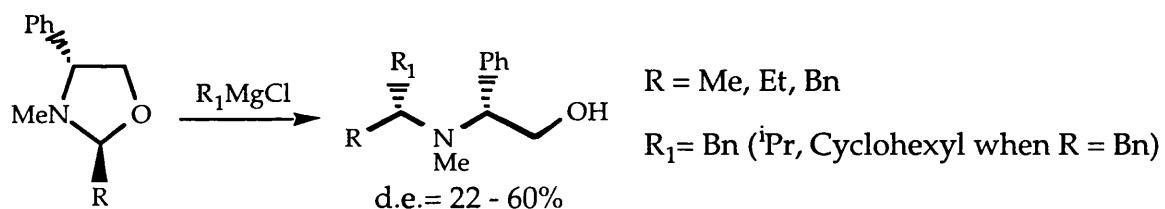


1.3.1 Chiral 1,3-Oxazolidines

The work of Takahashi and Higashiyama has provided the most in-depth study of the reactions of 1,3-oxazolidines with organometallics, in particular Grignard reagents. They demonstrated that chiral 2-substituted 1,3-oxazolidines, derived by the condensation of (*S*)-valinol and an aryl

aldehyde, undergo stereoselective ring opening at the 2-position upon treatment with Grignard reagents to give 1, 3-amino alcohols (Figure 12).²⁴

Figure 12

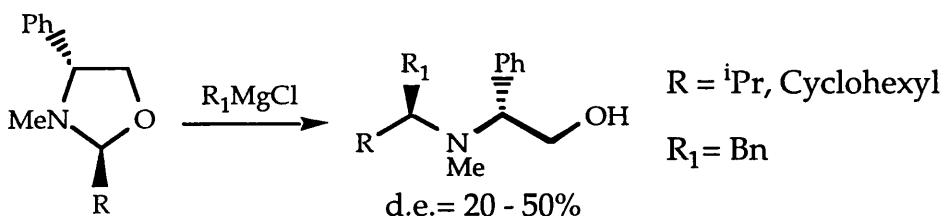


The absolute stereochemistries of the products were assigned by circular dichroism.

They went on to explore the further use of 1,3-oxazolidines derived from (*R*)-phenylglycinol, again in reactions with benzyl magnesium chloride.²⁵

Here they reported that the Grignard reagent adds in a *syn*-fashion with respect to the phenyl group of the chiral auxiliary in moderate to good diastereoselectivity (Figure 13).

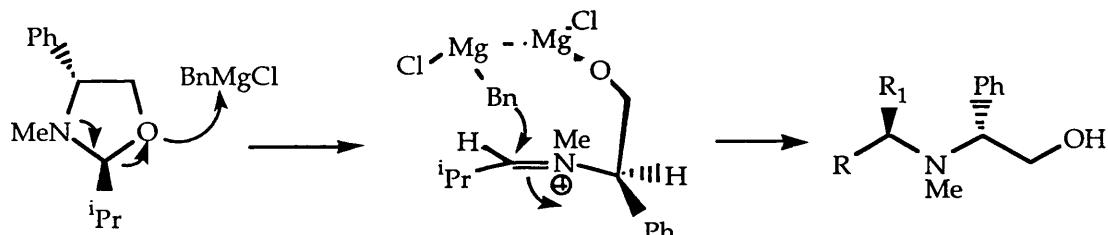
Figure 13



The configuration of the methyl derivative was determined by removal of the chiral auxiliary by hydrogenolysis followed by conversion of the amine to its hydrochloride salt. The optical rotation of this was then compared to that of an authentic sample.

Two conflicting results were reported, however, for the reactions of the isopropyl and cyclohexyl derivatives. These were shown to proceed in an *anti*- addition fashion producing the opposite diastereomer at the "ring

opening" stage (Figure 14). The configuration of the cyclohexyl derivative was determined by X-ray crystallography.


Figure 14

While the majority of derivatives required only one equivalent of Grignard reagent to proceed to completion, the isopropyl and cyclohexyl derivatives required at least 2 equivalents.

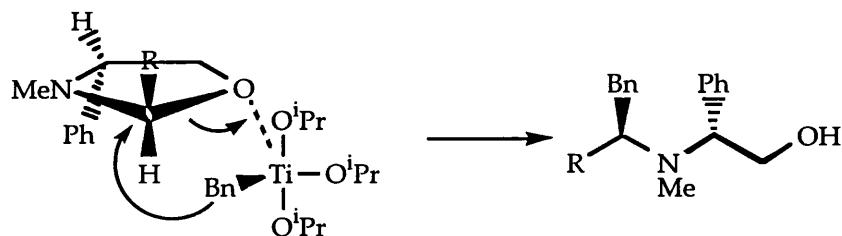

This led to the postulation of an open chain mechanism (in the case of the isopropyl and cyclohexyl derivatives) involving attack of the nucleophile on an iminium tautomer of the oxazolidine (Figure 15).

Figure 15

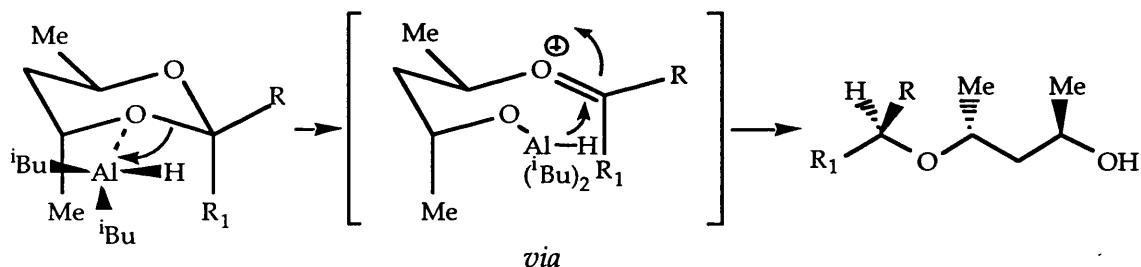
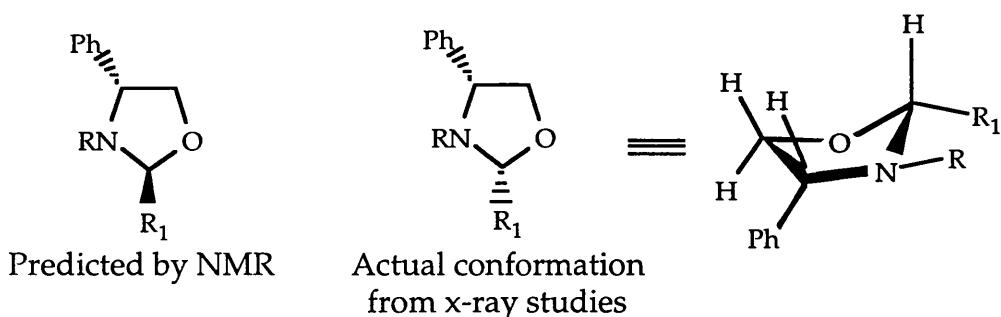

The methodology was extended to encompass titanium nucleophiles, which were shown to produce ring opened oxazolidines of an opposite stereochemistry to that of the corresponding Grignard addition.²⁶ The proposed mechanism is shown in Figure 16 and postulates that oxygen/titanium co-ordination first occurs, followed by delivery of the nucleophile to the N-face of the ring.

Figure 16

Analogy was drawn to the aluminium hydride cleavage of chiral 1,3-dioxane acetals described by Yamamoto.²⁷ Here the aluminium reagent co-ordinates to one of the ring oxygens, weakening the C-O bond, and relieves the 1,3-diaxial ring strain between R_1 and the axial methyl. Hydride is then delivered from the *same* face (Figure 17).


Figure 17

This apparent disparity in the face of attack brought into question the assignment of the structure of the 1,3-oxazolidines, which had been assigned as *trans* by NMR studies.²⁵ X-Ray crystallography later showed that the conformation was in fact *cis* (Figure 18).²⁸

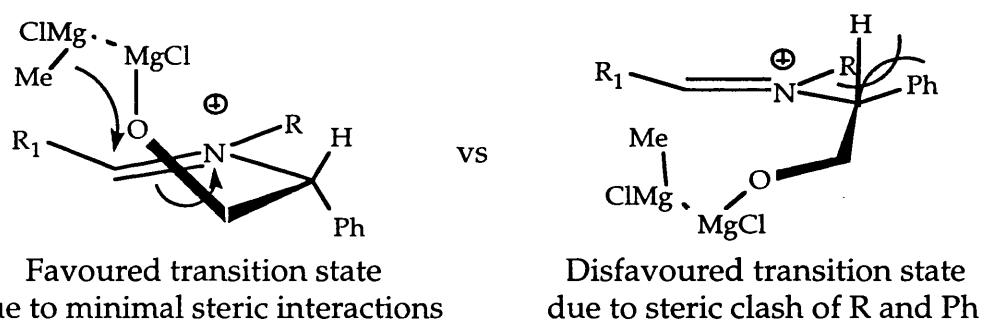

This clears up the disparity between the Takahashi and Yamamoto work. A more detailed study of structure, and its effect on mechanism, will be discussed later.

Figure 18

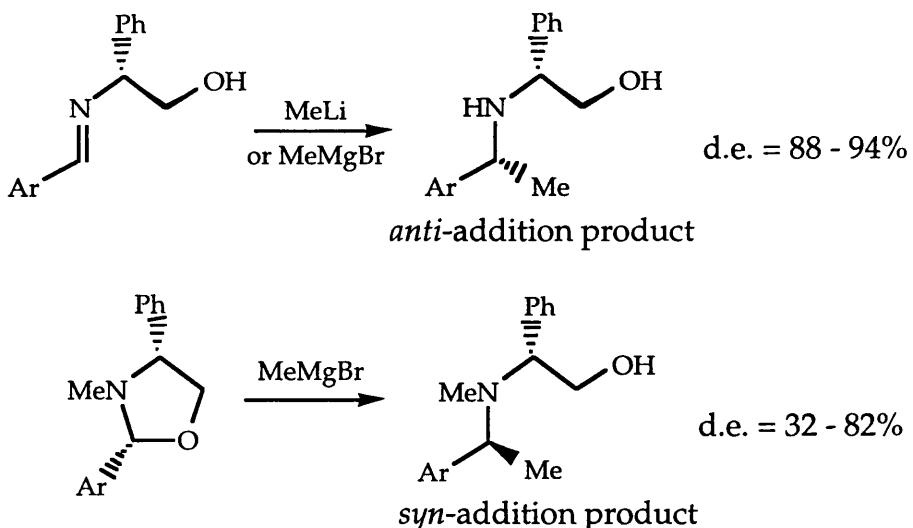
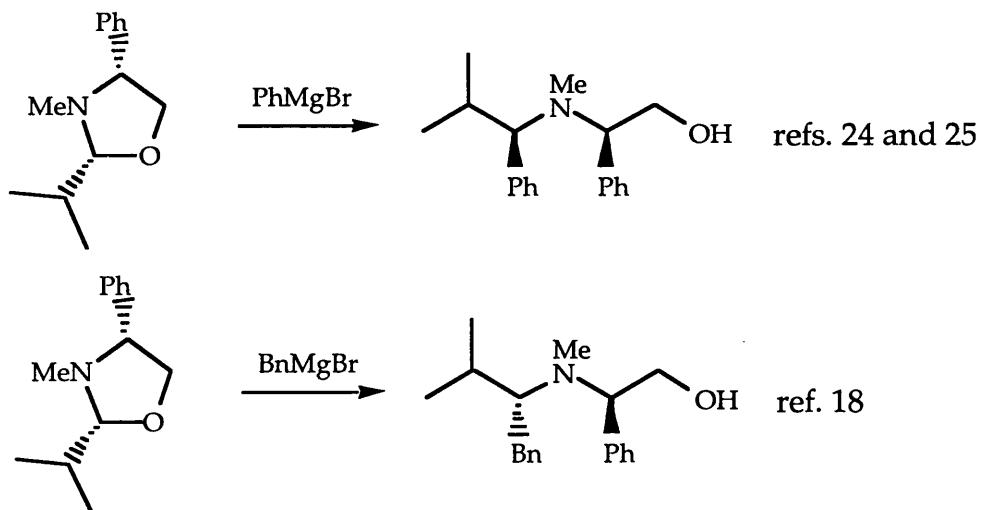
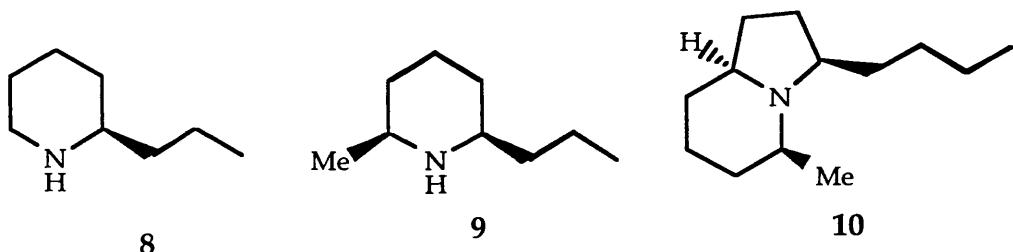

A marked increase in diastereoselectivity for addition of Grignard reagents was noticed when the bulkiness of the nitrogen protecting group was increased in the order $\text{Me} < \text{Bn} < {}^i\text{Pr}$.²⁸ This gave further credence to the proposed mechanism of attack, whereby the phenyl of the auxiliary and N-protecting group are orientated to minimise steric interactions (Figure 19).

Figure 19

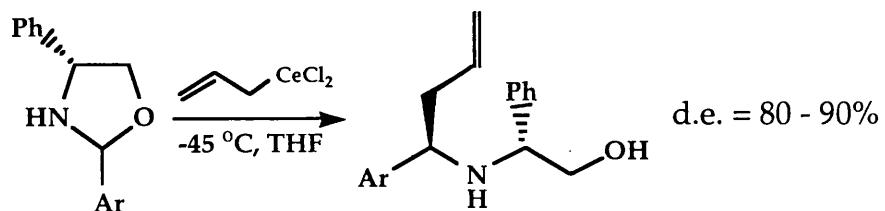
Further investigation of the mechanism of substitution was attempted by comparison of the alkylation of chiral aromatic imines with the alkylation of chiral 1,3-oxazolidines.²⁹ It was shown that (R)-phenylglycinol derived imines can be alkylated with MeLi or MeMgBr³⁰ to give major products of an opposite stereochemistry from that of the reaction of the (R)-(N)-methylphenylglycinol derived oxazolidines with MeMgBr (Figure 20).


Figure 20


This methodology can be extended to the analogous aliphatic imines and oxazolidines, which can also be alkylated with organometallics to yield opposite stereochemistries from a single enantiomer of an auxiliary.³¹ To avoid potential side reactions in the imine series, alkyl cerium (RCeCl_2) reagents were used in preference to the more basic lithium and Grignard reagents.

Interestingly, the conflicting result of the earlier oxazolidine work is not repeated here,²⁵ with the isopropyl derivative being functionalised in the expected manner with PhMgBr whereas when BnMgBr was used (in the earlier work) the opposite stereochemistry was observed (Figure 21). This new result was also observed in other Grignard reagent additions to oxazolidines.³² No explanation of the disparity was given.

Figure 21



The methodology described has been utilised in the synthesis of a number of heterocyclic natural products. The piperidine containing compounds (-)-coniine (8) and (-)-dihydropinidine (9) were obtained in high d.e.,³³ as was the indolizidine (+)-monomorine (10).³⁴

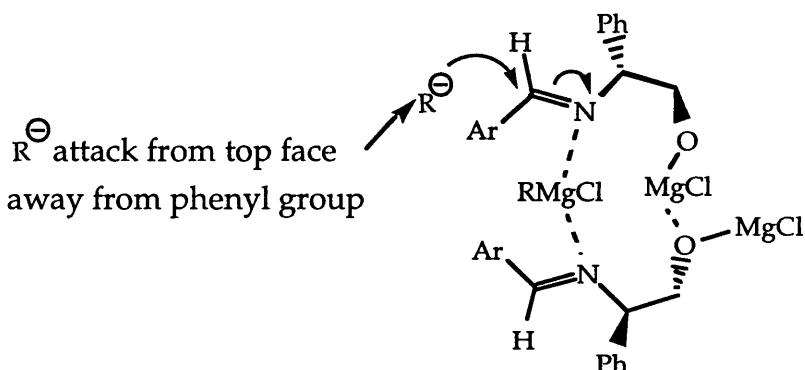
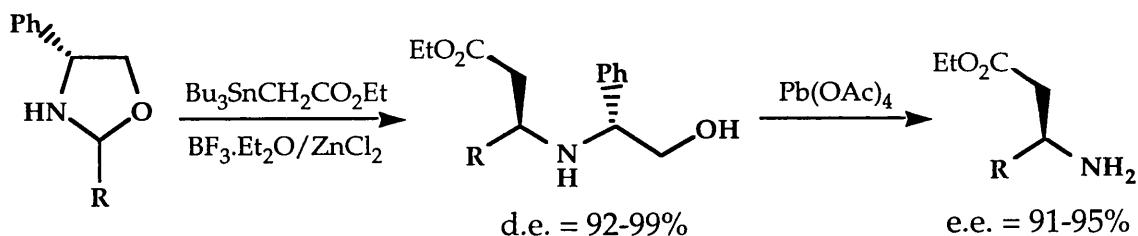

Another, smaller, but no less significant contribution to this methodology has come from Pridgen. He was the first to describe the synthesis of homoallyl amines *via* the reaction of aryl 1,3-oxazolidines with allylcerium chloride in good to excellent yields (70 - 90%) (Figure 22).³⁵

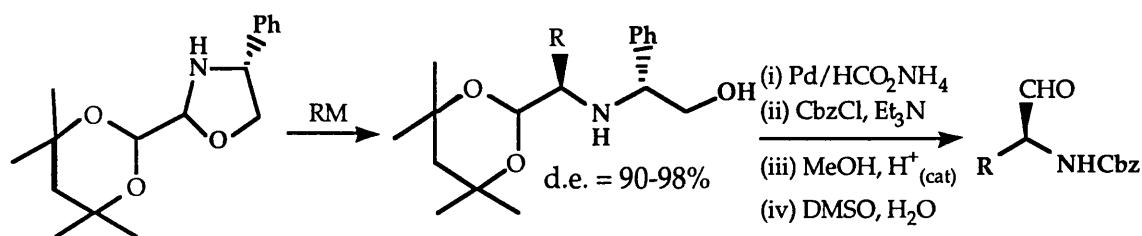
Figure 22

The mechanism of addition was presumed to be *via* the imine tautomer due to its predominance in solution state equilibria of non-(N)-alkylated 1,3-oxazolidines.³⁶ The high order of the transition state was assumed because of the excess (2.5 to 3 equivalents) of alkylating reagent required to effect clean addition (Figure 23).³⁷


Figure 23

The greatest diastereoselectivity was observed for cerium mediated additions.

Other organometallics have been utilised to similar effect. The addition of ethyl tributylstannylacetate, under Lewis acidic conditions, to a range of alkyl and aryl 1,3-oxazolidines leads to β -amino esters (after oxidative removal of the auxiliary side chain) (Figure 24).³⁸


Figure 24

Two other interesting reactions were also observed by Pridgen. One was the addition of Grignard reagents, alkyl lithiums and alkyl cerium reagents to

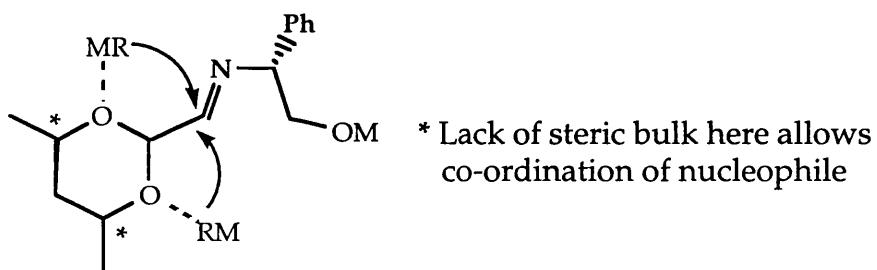
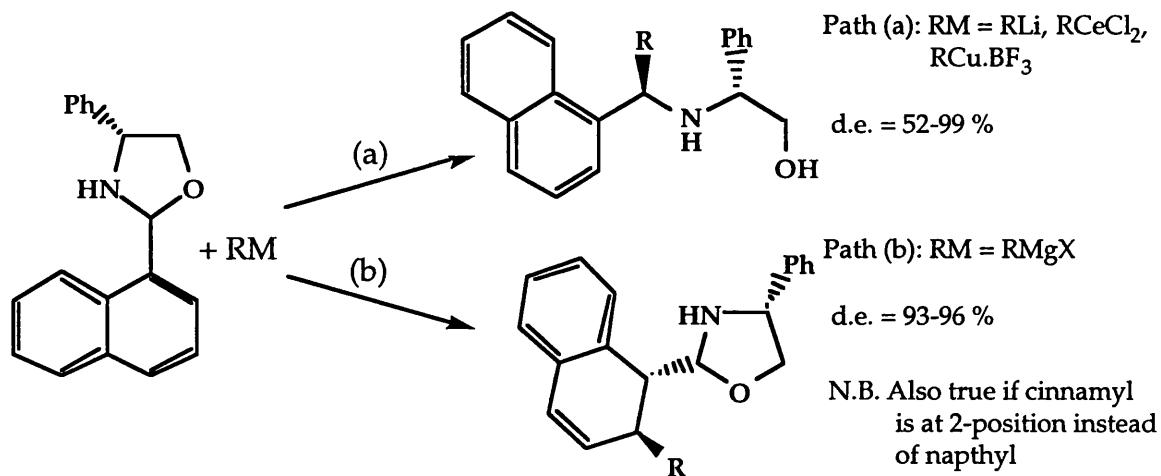

1,3-oxazolidines with side chains containing acetals.³⁹ The auxiliary was then removed and the acetal hydrolysed to give a range of α -amino aldehydes (Figure 25).

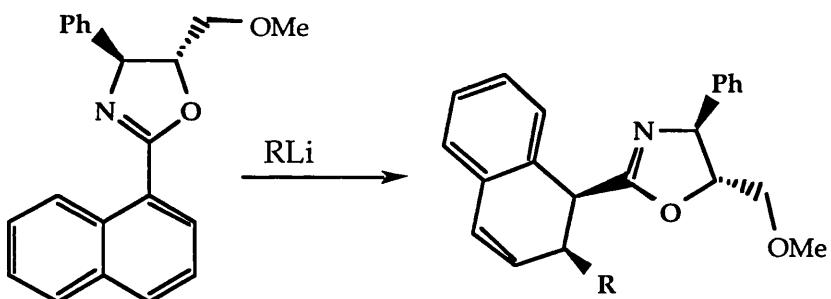
Figure 25

Low diastereoselectivity was observed with less hindered acetals, presumably due to competing chelation of the organometallic to the acetal oxygens followed by nucleophilic attack, which could occur from either face (Figure 26).


Figure 26

This is an important result as very little has been published about additions to oxazolidines with functionalised side chains and opens up the possibility of further elaboration to synthetically useful products.

Also interesting is the report of the selectivity of Grignard reagents over other organometallics (including organocopper reagents) to add to 2-naphthyl- and 2-cinnamyl-1,3-oxazolidines in a 1,4-manner, instead of the expected 1,2-addition (Figure 27).⁴⁰


Figure 27

This is unusual as copper is known to promote the 1,4-addition of Grignard reagents to α,β -unsaturated systems, whereas Grignard reagents alone usually give a mixture of 1,2- and 1,4-addition products.^{41a}

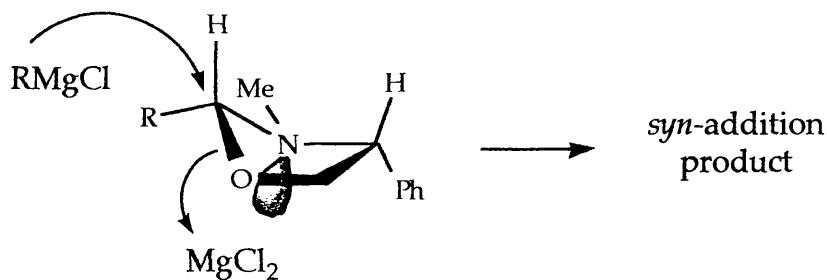

The preference of 1,4-addition over 1,2- has also been described by Meyers in the addition of organolithiums to 1,3-oxazolines (Figure 28).⁴²

Figure 28

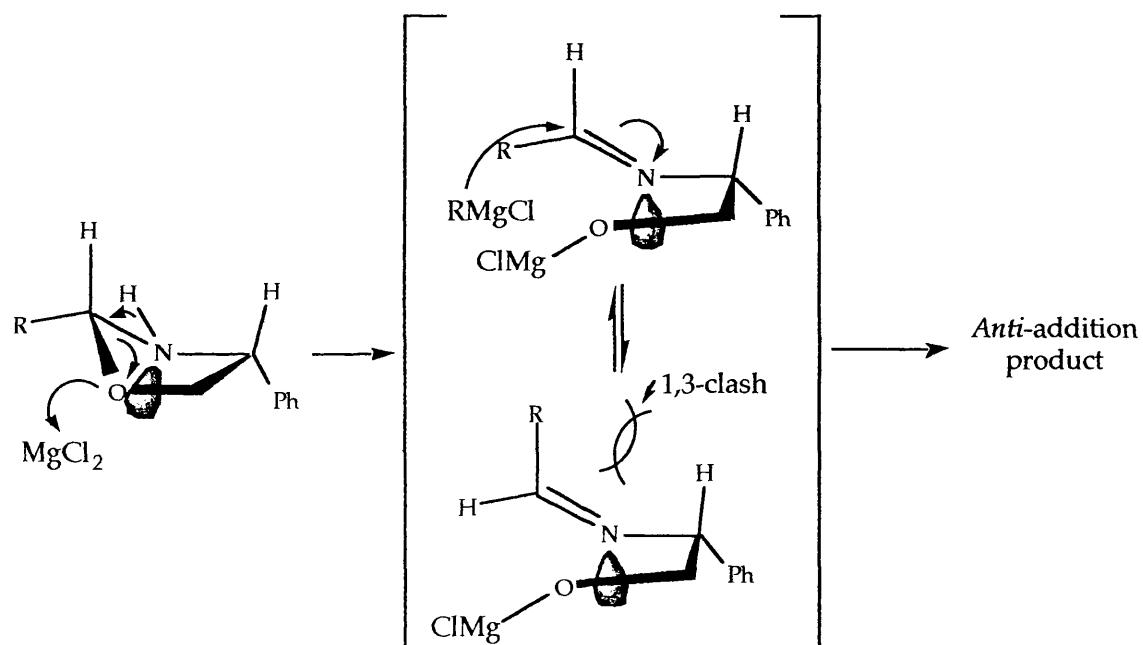
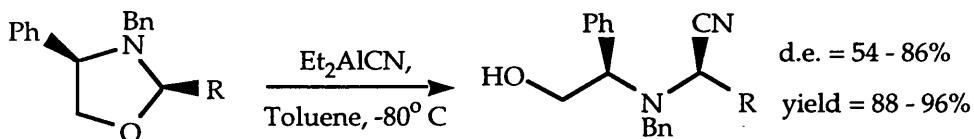

All of the research of Pridgen exhibits *anti*-addition to 1,3-oxazolidines, whereas the earlier work of Takahashi shows only *syn*-addition. The only difference between the two is Takahashi's use of an alkyl group on the oxazolidine nitrogen. This will stabilise the oxazolidine in solution with nucleophilic attack taking place in an S_N2 - like fashion (Figure 29).

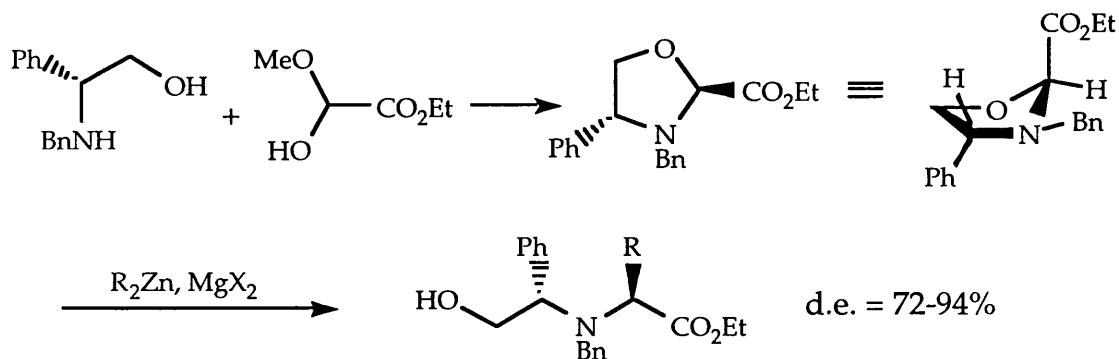
Figure 29

The lack of an nitrogen protecting group favours the imine tautomer (especially in polar media) and can, because of 1,3-allylic strain, allow the formation of a transition state similar to Figure 30.


Figure 30

A contribution to the study of 1,3-oxazolidine ring opening has also been made by the group of Pedrosa. They have described the reaction of (N)-benzyl-2-(R)-1,3-oxazolidines with diethylaluminium cyanide.⁴³ This proceeds to give the *syn*-addition product (Figure 31), an unexpected result when considering the analogous chiral acetal work.²⁷ The resulting nitriles were hydrolysed with ethanolic hydrogen chloride and the auxiliary

removed by hydrogenation to give α -amino esters in good e.e.. The enantiomeric products were obtained from the (S)-oxazolidines.


Figure 31

The homologous β -amino esters were obtained by reaction of the same chiral 1,3-oxazolidines with Reformatsky reagents. Again the *syn*-adduct was formed with high diastereoselectivity.⁴⁴

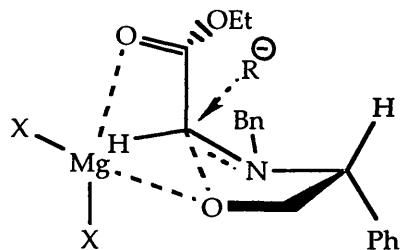
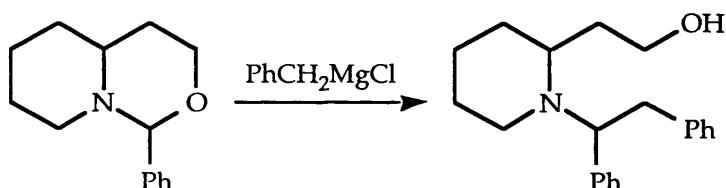

Pedrosa has also described a chiral glycine synthon based on a chiral oxazolidine derived from (N)-benzyl-(R)-phenylglycinol and (methyl)ethyl glyoxalate.⁴⁵ The oxazolidine adopts the unusual 2,4-*trans* conformation, as confirmed by X-ray crystallography (presumably due to steric crowding). Reaction of the synthon with dialkylzincs in the presence of magnesium halides gives the *syn*-adduct with excellent diastereoselectivity (Figure 32). The diastereomeric excess is further improved by chromatography.

Figure 32

The mechanism is presumed to be *via* Lewis acid chelation to the O-face followed by $\text{S}_{\text{N}}2$ attack at the N-face (Figure 33).

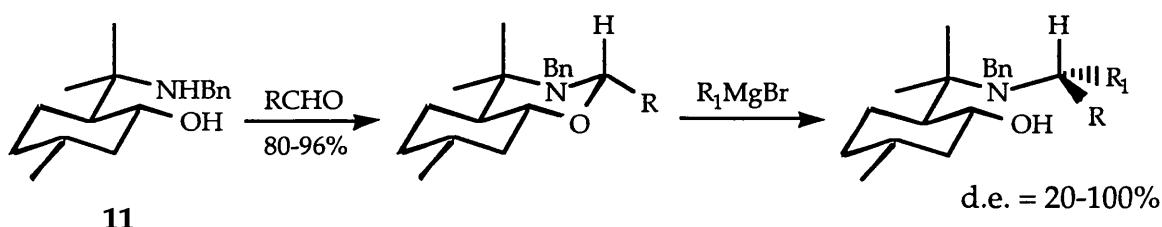
Figure 33



1.3.2 Chiral 1,3-Oxazines

In contrast to the 1,3-oxazolidines, there has been little work on their 6 membered relations, the 1,3-oxazines. As a more specific sub-set of this there is even less work on the reactions of chiral 1,3-oxazines.

The first use of 1,3-oxazines in synthesis was reported by Goodson and Christopher in the synthesis of racemic tertiary propanolamines (Figure 34).⁴⁶


Figure 34

Pedrosa has described the synthesis of racemic *tert*-aminopropanol derivatives by the face-selective ring opening of achiral 1,3-tetrahydrooxazines by Grignard reagents in excellent yields.⁴⁷ The reductive cleavage with LiAlH₄ and the ring opening by Reformatsky reagents of these achiral 1,3-oxazines has also been reported in high yield.⁴⁸ Racemic propargyl propanolamines have been synthesised by the ring opening of 1,3-oxazines with alkynylboron reagents.⁴⁹

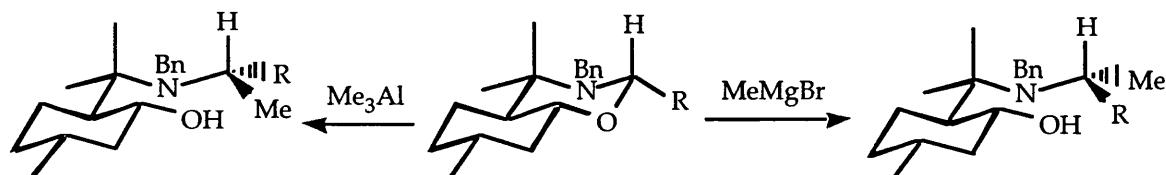

Ring opening of chiral 1,3-oxazines has been limited to the reactions of Grignard and organoaluminium reagents. Highly conformationally stable perhydro-1,3-oxazines derived from (+)-pulegone (**11**) were shown to react with Grignard reagents in good yields and high e.e. (Figure 35).⁵⁰

Figure 35

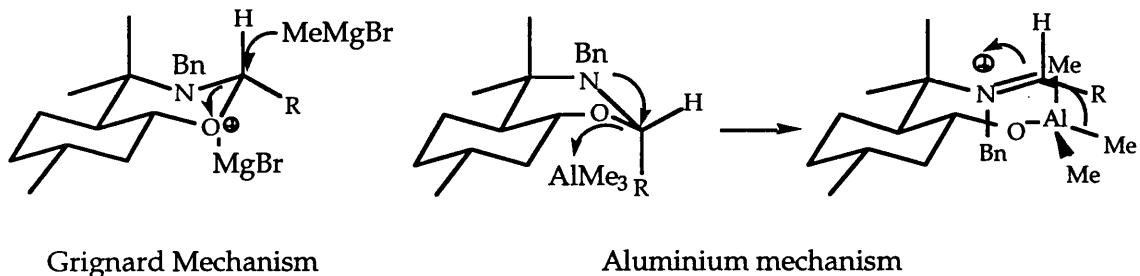

In a comparative study, the reactions of similar 1,3-oxazines with both Grignard and aluminium reagents have been observed.⁵¹ These are shown to give diastereomeric ring opened products (Figure 36).

Figure 36

It was found that aluminium reagents gave the best d.e.'s and yields, although the majority of the Grignard reagents used in the study were hindered, cycloalkyl derivatives. As would be expected by analogy with acetal chemistry²⁷ the sense of the ring opening with aluminium reagents is reversed from that of Grignard reagents. This again indicates the type of mechanism shown in Figure 37.

Figure 37

1.3.3 Summary

In summary it is observed that (N)-alkylation of chiral 1,3-oxazolidines produces different results (in ring opening with Grignard reagents) to the un-alkylated derivatives, i.e. a *syn*- versus *anti*-addition with respect to the 4-position of the oxazolidine ring.

The analogous chiral imines also produce *anti*-adducts which, along with the predominance of the imine tautomer in polar solvents, strengthens the case for an imine intermediate to be involved in the ring opening of the unprotected oxazolidines.

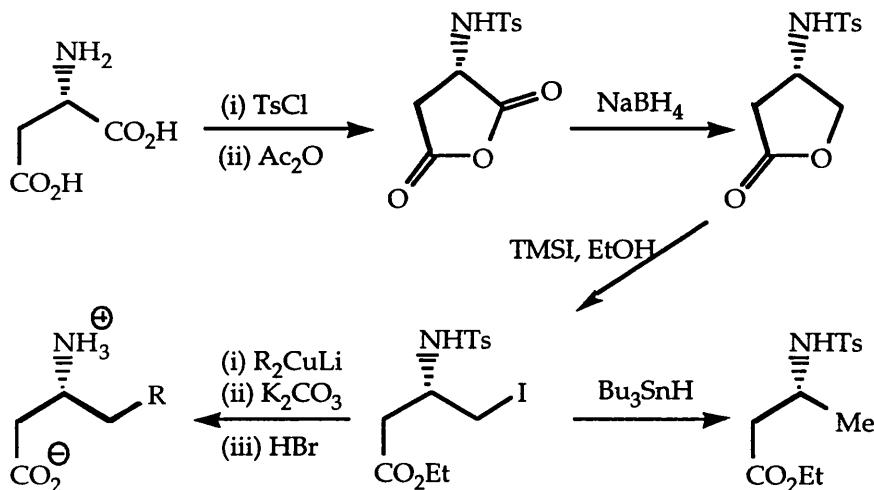
The requirement for a minimum of two equivalents of Grignard reagent to be involved for ring opening to proceed to completion (in the majority of cases) suggests that MgBr_2 is formed (*via* the Schlenk equilibrium) which then co-ordinates to the ring oxygen. The nucleophile can then be delivered onto the most favoured face of the intermediate imine/iminium ion.

In theory, 1,3-oxazine ring opening would appear to be much simpler. The sense of ring opening and the diastereoselectivity are dependent upon the type and steric bulk of the nucleophile. Grignard reagents attack from the “N-face” to give the *syn*-adduct, whereas organoaluminium reagents attack from the “O-face” to give the *anti*-adduct. The greater diastereoselectivity of

the aluminium reagents may be explained by a closed ring transition state where the face selectivity is chelation controlled. Grignard reagents, however can be seen to proceed *via* a more open iminium ion transition state in which the face selectivity is less specific due to the lack of both chelation and rigidity in the transition state.

1.4 The Synthesis of Chiral β -Amino Acids

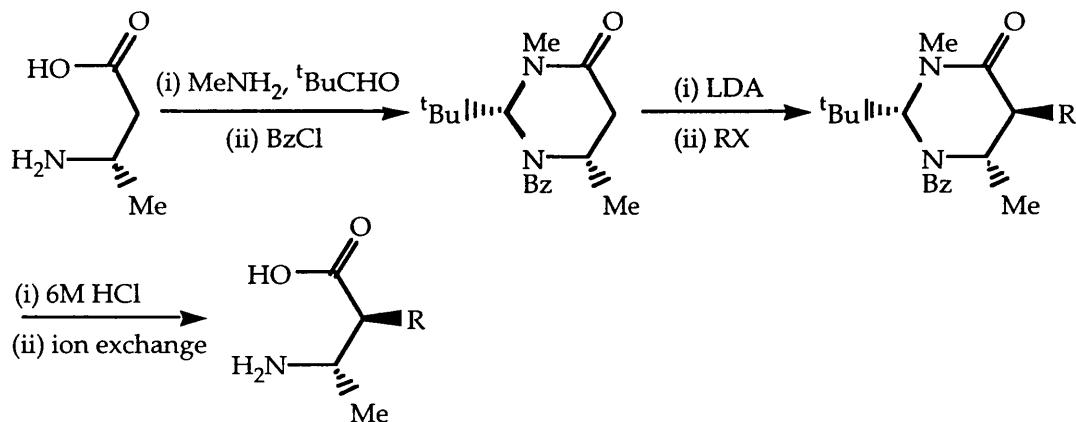
The use of a chiral β -amino alcohol, derived from the corresponding acid, as a chiral auxiliary in this work prompts the need to briefly review the synthesis of these compounds.

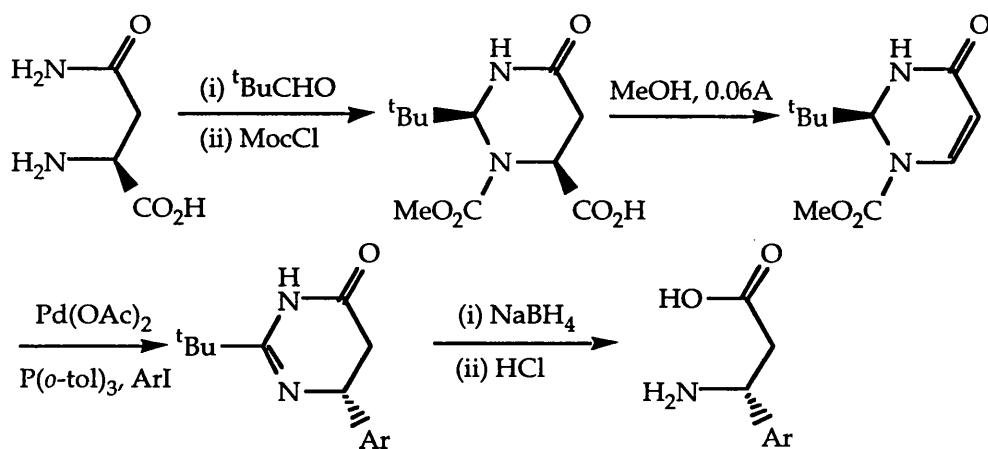

The pharmacological properties of β -amino acids and the related β -lactams has prompted much interest in the development of novel synthetic methodologies for this class of compound. The field was recently reviewed by Cole⁵² and Cardillo.⁵³ To comprehensively review this area would be to repeat the existing literature. Therefore, only a brief overview of the available methodologies will be given.

1.4.1 Synthetic Methods

The Arndt-Eistert synthesis can be used in the synthesis of β -amino acids *via* the synthesis and rearrangement of chiral diazoketones derived from α -amino acids. This process has been shown to proceed with retention of chirality.⁵⁴ The reduction of an α -amino acid followed by tosylation of the resulting alcohol and displacement with sodium cyanide leads to α -amino nitriles. Hydrolysis of the nitrile leads to the required acid.⁵⁵ Aziridines can also be functionalised in a similar manner, both with cyanide and with

dithiane.⁵⁶ Jefford has developed a synthesis of alkyl β -amino acids from aspartic acid (Figure 38).⁵⁷


Figure 38



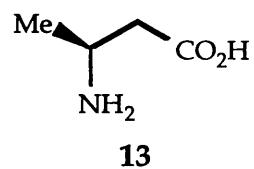
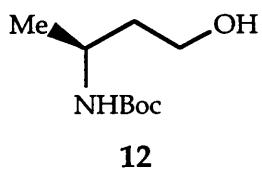
Seebach⁵⁸ and Konopelski⁵⁹ have used 2-*tert*-butylperhydropyrimidin-4-ones derived from β -aminobutyric acid and asparagine to produce almost enantiopure α - β -alkyl and β -alkyl amino acids (Figure 39).

Figure 39

Seebach

Konopelsky

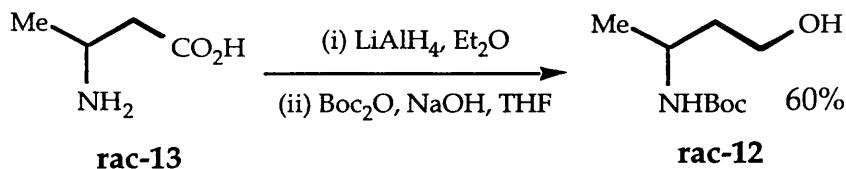
Michael additions of chiral amine bases to acrylates has also been studied in great detail,⁶⁰ as have nucleophilic additions to imines⁶¹ and, as already mentioned, chiral 1,3-oxazolidines.^{38, 44}



1.4.2 Enzymatic Methods

Very little work has been published on the area of asymmetric synthesis of β -amino acids by enzymatic means. Initial studies in the area were carried out in 1964, with the resolution of β -aminohydrocinnamic acid and β -aminobutanoic acid by chymotrypsin⁶² and in 1977 with penicillin G acylase.⁶³ Further work with the latter enzyme was carried out in 1995 by Soloshonok *et. al.* to produce virtually enantiopure β -aryl amino acids.⁶⁴ Gotor has described the resolution of ethyl-(\pm)-3-aminobutyrate with *Candida antarctica* lipase in good e.e.⁶⁵

Chapter 2: Results and Discussion

2.1 Synthesis of the Chiral Auxiliary


The auxiliary that was intended for use in this work was (N)-Boc-3-(S)-aminobutan-1-ol (**12**). This can be envisaged to come from the corresponding butyric acid (**13**) *via* a simple reduction.

As there is no readily available supply of the material, a synthetic methodology towards this had to be devised.

It is necessary to note that all preliminary work on this project was carried out on racemic material. Racemic **12** (rac-**12**) was initially obtained by reduction of racemic **13** (rac-**13**) with LiAlH_4 , then Boc protection in a rather low yielding procedure (Figure 40).⁶⁶

Figure 40

It was later found that the Meyers procedure for the reduction and (N)-protection of amino acids was more effective.⁶⁷ This involves the direct reduction of the amino acid with NaBH_4 in the presence of iodine, followed by Boc protection of the crude amino alcohol in excellent yield.

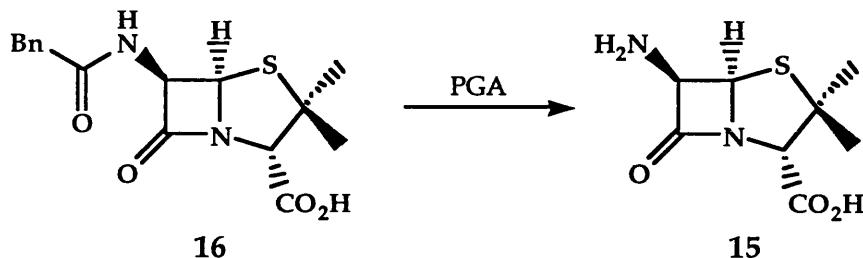
Whilst attempting to find a simple route to chiral **12**, rac-**12** was used to carry out further investigations into oxazine synthesis.

2.1.1 Enzymatic Resolution of Rac-12 or Rac-13

It was thought that an enzymatic resolution of either **rac-12** or **rac-13** would prove to be the most convenient and cost effective method of producing **12**, mainly due to the relatively low cost of the acid and the catalytic nature of all such procedures.

Initial enzyme work centred around the resolution of **rac-12** *via* conversion to the O-acyl compound (**14**) and then treating this with *Candida cylindracea* lipase (CCL) (Figure 41). HPLC of the (*R*)-Moshers ester derivative⁶⁸ of the racemic alcohol gave a reliable baseline separation of the two diastereomers and hence allowed an estimate of the e.e. of the resolution. Initial results indicated that some resolution had taken place (1.7:1 ratio of enantiomers). Unfortunately subsequent attempts to repeat this result failed.

Figure 41


14 was also treated with porcine liver esterase (PLE). This resulted in very small quantities of **12** being produced with assay of the product indicating that this was a 2:1 mixture of diastereomers. The enzyme *Subtilisin Carlsberg* was also used but failed to give any of **12** whatsoever.

The failure of CCL, PLE and *Subtilisin Carlsberg* to resolve **14** to an appreciable amount is possibly due to the site of enzyme action being situated 3 atoms away from the chiral centre leading to poor stereocontrol.

With this in mind it was decided to examine transformations at the nitrogen, i.e. one atom away from the chiral centre, in the hope that better control could be exercised.

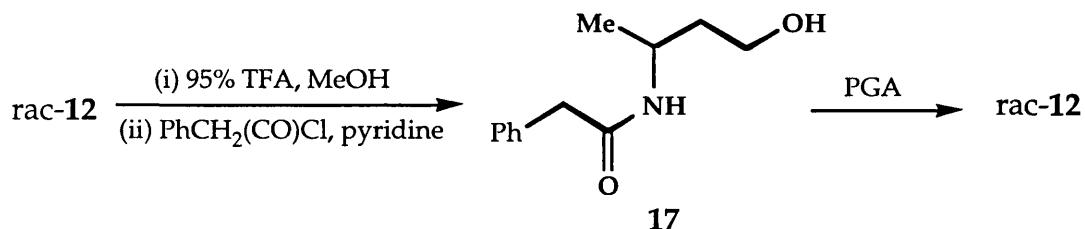
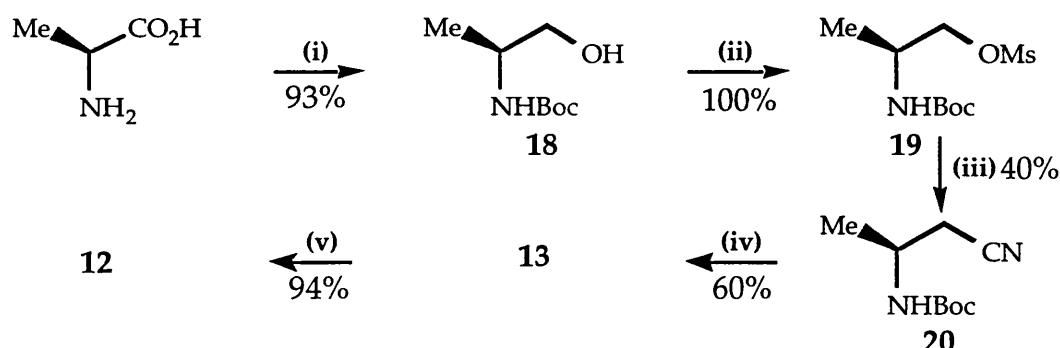

Penicillin-G-amidase (PGA) is used in the industrial production of 7-aminopenicillanic acid (**15**) from penicillin-G (**16**) (Figure 42)⁶⁹ and has been used in the resolution of aryl β -amino acids *via* their phenylacetamides.⁶⁴

Figure 42

(N)-Phenylacetyl-3-aminobutan-1-ol (**17**) was synthesised and was treated with PGA-450⁷⁰ at 30°C overnight (Figure 43). This led to complete cleavage of the amide and no resolution was observed. It was hoped that a shorter reaction time and/or lower temperature would have given a more selective reaction and further investigation of this route was attempted. However, difficulty arose in the quantitative analysis of this and the route was abandoned.

Figure 43


It was becoming increasingly clear that an enzymatic resolution to give **12** was not going to be an easy task. Due to the constraints of time and the need

for chiral material, synthetic methods for the production of **12** were investigated.

2.1.2 Synthetic Routes to the Chiral Auxiliary

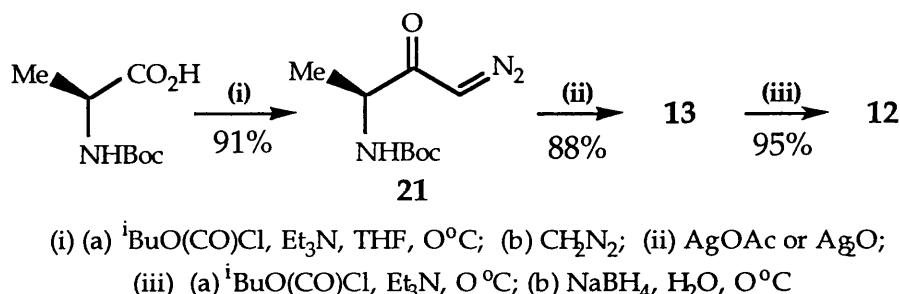
Work which had already been carried out in the group⁶⁶ allowed the synthesis of **12** from (*L*)-alanine *via* a 1 carbon homologation with NaCN (Figure 44). Alanine was firstly reduced and Boc protected, using the method of Meyers, to give **18**. The alaninol was then mesylated (**19**) and this was displaced with cyanide in hot DMF to give nitrile **20** in moderate yield. Most attempts to hydrolyse/reduce the nitrile, whilst maintaining Boc protection of the nitrogen, failed. These included aqueous base and DIBAL. Finally, heating the nitrile in concentrated hydrochloric acid at reflux, provided the required acid. Nitrogen reprotection gave **13**. Reduction of the isobutyl mixed anhydride of **13** furnished **12** in overall disappointing yield.

Figure 44

(i) (a)NaBH₄/Iodine, Δ , THF; (b) Boc₂O, NaOH; (ii) MsCl, Et₃N, O °C; (iii) NaCN, DMF, 60 °C;
 (iv) (a) 10M HCl, Δ ; (b) Boc₂O, NaOH; (v) (a) ⁱBuO(CO)Cl, Et₃N, THF, O °C; (b) NaBH₄, H₂O, O °C

This sequence was relatively simple and was used to provide initial supplies of the auxiliary. There are however two main disadvantages in using this route:

(i) there are seven synthetic steps and the overall yield is low (ca. 25%),

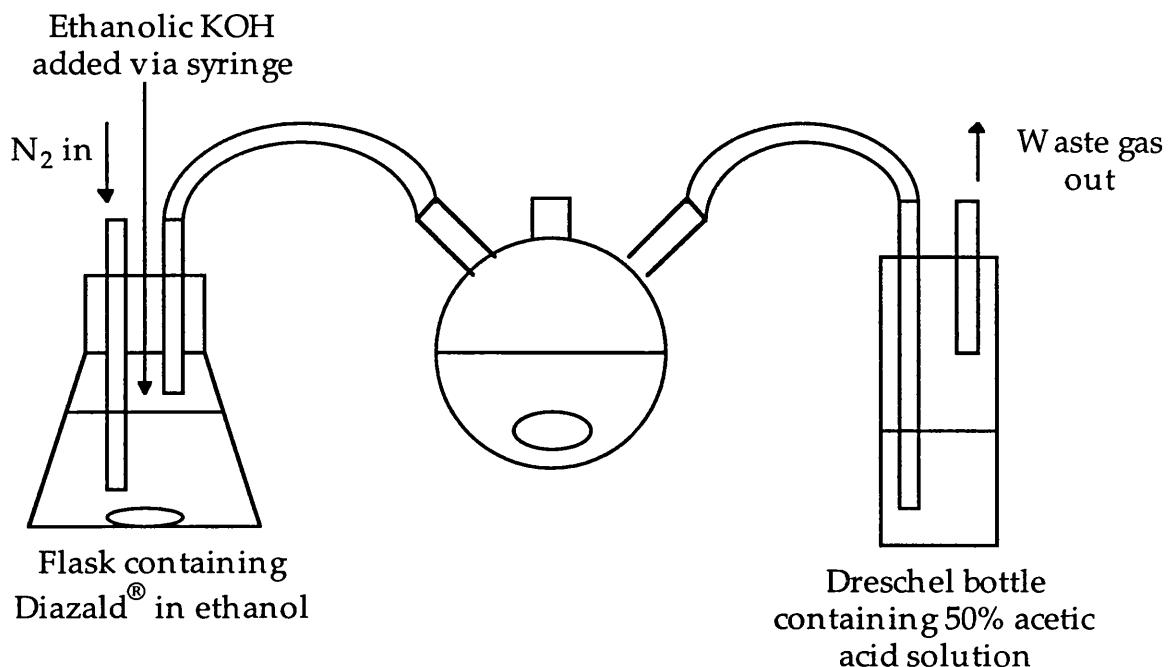

(ii) the route uses 7.5 equivalents of the highly dangerous cyanide.

The low yield of the cyanide insertion may be attributed to side reactions including of the neighbouring group effect of carbamate nitrogen which can cause displacement of the mesylate to give the aziridine. Some evidence for the formation of this was found.⁶⁶ The fact that the substitution is taking place in a β -branched substrate will also deactivate C-1 towards nucleophilic attack. Given these problems an alternative route was sought.

The Arndt-Eistert homologation of amino acids with diazomethane followed by Wolff rearrangement had been attempted previously in the group, though with little success.⁷¹

Treatment of the isobutyl mixed anhydride of (L)-N-(Boc)-alanine with diazomethane gave the diazoketone **21** in excellent yield. Subsequent treatment of this with either silver (I) oxide or silver (I) acetate in water, gave **13** in good yield. Mixed anhydride reduction with NaBH_4 gave **12** in excellent overall yield (76 %) (Figure 45).

Figure 45



This proved to be a much more effective method of producing **12**, with each step being high yielding giving a good overall yield. Having fewer steps meant that the synthesis could be carried out quickly giving rapid access to the chiral auxiliary.

One problem in the synthesis of **21** is the reaction must be performed under anhydrous conditions, or significant quantities of (N)-Boc-(*L*)-alanine methyl ester are isolated. The normal method of diazomethane production, where the diazomethane is distilled in an ethereal solution does not combat this problem (obviously conventional methods of drying the highly unstable solution are unacceptable). An alternative method was found which generates diazomethane as a gas which is passed through the solution on a stream of nitrogen.⁷² This method ensures that the diazomethane is dry and is much safer than the original method with the overall concentration of this highly toxic and explosive substance kept low at all times during the reaction by virtue of its consumption being synchronous with its generation. An acetic acid scrubber connected to the gas outlet ensures that all waste gas is neutralised (Figure 46).

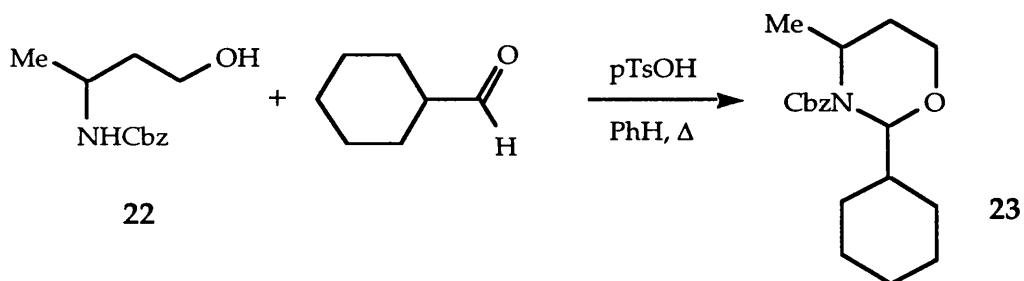
Attempts to effect Wolff rearrangement of **21** with light proved to be unsuccessful, probably due to the use of the wrong wavelength of light (a study of the literature indicated that 700 Watt quartz lamp should be used⁷³). However this would be a far more economic and environmentally friendly solution than the use of silver salts if the appropriate equipment were available.

Figure 46

All tubing *must* be either fire polished glass or 2mm bore Portex® plastic tube. Stirrer bars should have rough edges smoothed with a knife before use.

Having made sufficient quantities of **12** it was possible to continue with the synthetic sequence.

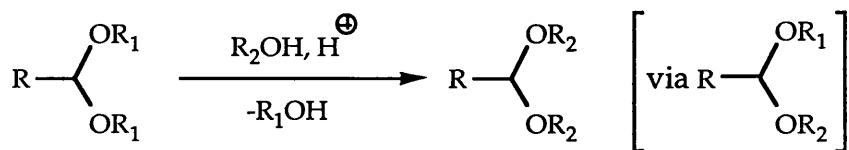
2.2 Synthesis of Chiral 1,3-Tetrahydrooxazines


In parallel to the development of a route to **12**, preliminary work on the synthesis of the aminal rings was carried out using the readily available rac-**12**.⁶⁶ This allowed for the rapid development of the methodology.

Attempts to synthesise aminals in a manner analogous to that for acetals, i.e. direct condensation of an aldehyde with rac-**12** under acid catalysis, failed. Simple refluxing of the two compounds with PPTS in benzene, under Dean Stark conditions to remove any water formed in the reaction, gave only starting material. Similarly the use of other methods of dehydration, e.g. 4Å molecular sieves or magnesium sulphate, the use of stronger acid, e.g.

pTsOH, or the use of a solvent of higher boiling point such as toluene, all failed to give significant amounts of product.⁵⁰ When stronger acid or toluene as solvent were used, significant quantities of 3-amino butanol were recovered due to the lability of the Boc group under these extreme conditions.

A small quantity of (N)-Cbz-3-aminobutanol (**22**) was synthesised by substituting CbzCl for Boc₂O in step (ii) of Figure 35. When **22** and cyclohexanecarboxaldehyde were subjected to reflux in benzene with pTsOH, under Dean Stark conditions, a good yield of the corresponding aminal (**23**) was obtained (Figure 47).


Figure 47

This was proof that, in principle, aminals could be synthesised in this manner although **23** would be of little use as the Cbz group could not be removed without damage to an acetylene moiety introduced in a future ring opening step.

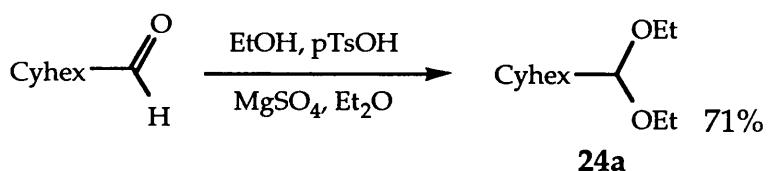

It was then decided to investigate the possible utility of a “transacetalisation” reaction to see if this would allow access to a range of aminals.⁷⁴ This has been shown to allow the preparation of mixed acetals from symmetric acetals (Figure 48).

Figure 48

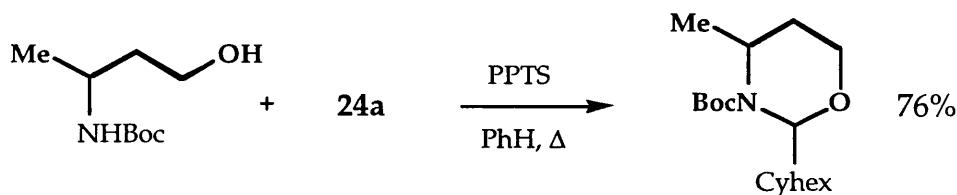

To this end the diethyl acetal of cyclohexanecarboxaldehyde (**24a**) was prepared by stirring it in the presence of catalytic pTsOH with an excess of dry ethanol, using MgSO_4 as a dehydrating agent. 4\AA molecular sieves can also be used but are less convenient from an experimental viewpoint (Figure 49).

Figure 49

Rac-12 and **24a** were then heated at reflux in benzene, under Dean Stark conditions, with catalytic PPTS and gave a good yield of the racemic aminal (rac-**25a**) (Figure 50).

Figure 50

The success of the “transacetalisation” in the face of the failure of the direct method may be rooted in the fact that there are differing mechanisms of formation of aminals from the different substrates.

In the case of attack on the carbonyl, it has been shown that protonation of the carbonyl oxygen is the first step, generating a hydroxy carbocation.^{41b}

This would then be attacked by either the oxygen or the nitrogen of the amino alcohol, losing water to generate a hemi acetal/aminal. The process would then repeat itself to give the aminal (Figure 51).

In the acetal case, the first step will be protonation of oxygen followed by elimination of a molecule of ethanol, in a step analogous to the acid catalysed hydrolysis of acetals.⁷⁵ This will give the ethereal carbocation which is more stable than the hydroxy carbocation in Figure 45 by virtue of resonance effects.^{41c} After addition of the amino alcohol the process would be repeated to give the required aminal (Figure 52).

Figure 51

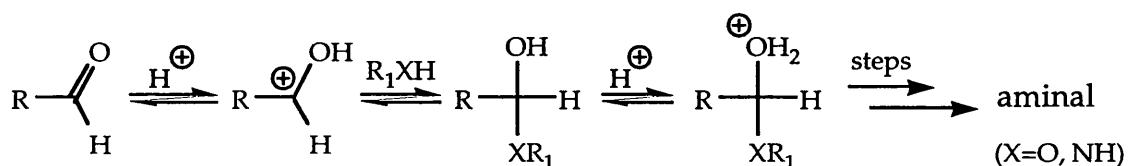
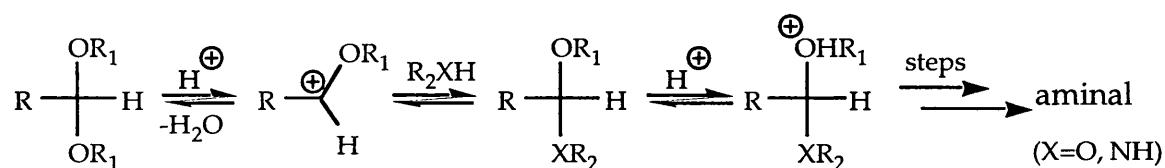
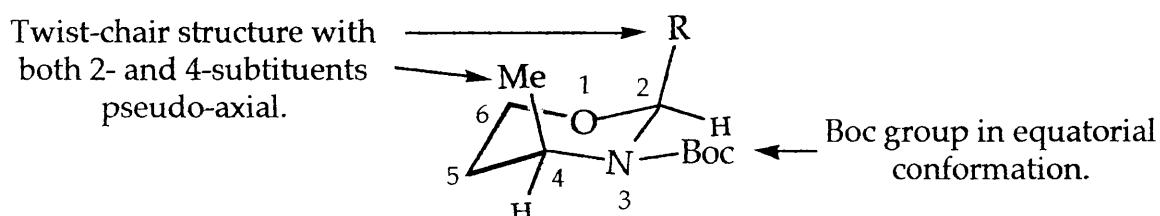



Figure 52

An acetal oxygen is approximately three to four times more basic than that of a carbonyl oxygen making its protonation under mild acid conditions more favourable.^{41d} This could explain why the transacetalisation process is facile compared to the reaction with the aldehyde.

At this time a supply of non-racemic **12** was available, so a range of diethyl acetals were synthesised as described above (**24b-g**) and were converted to their chiral aminal derivatives (**25a-g**) (Table 1).

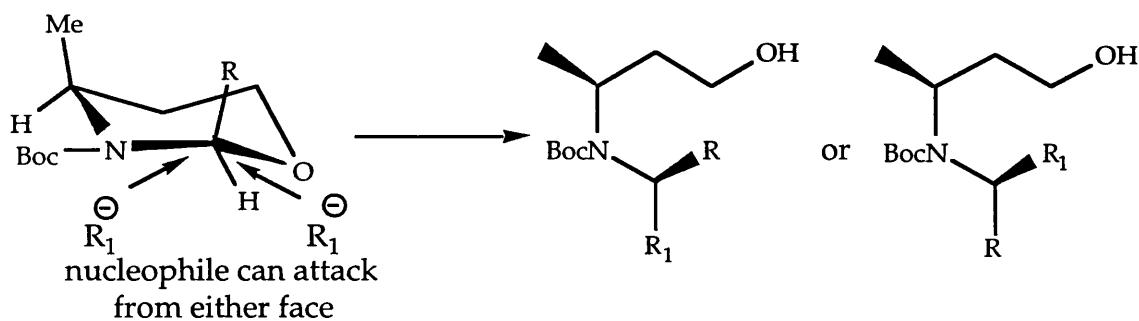

Table 1

R	acetal	aminal	Aminal Yield (%)
cyclohexyl	24a	25a	76
hexyl	24b	25b	83
propyl	24c	25c	69
ⁱ propyl	24d	25d	55
5-(TIPSoxy)-pentyl	24e	25e	63
3-(TIPSoxy)-propyl	24f	25f	74
benzyl	24g	25g	51

The exceptions were **24e** and **24f** which was synthesised by refluxing in dry ethanol with catalytic PPTS, under Dean Stark conditions, to give an excellent yield of the acetal.

¹H NMR of the aminals appeared to suggest a mixture of diastereoisomers at the 2-position, but further investigation by both X-ray crystallography and further NMR studies did not support this assumption. This will be discussed in greater detail in Chapter 3. At this point it is sufficient to say that the 2,4-diaxial configuration was assigned to **25a-g** (Figure 53).

Figure 53

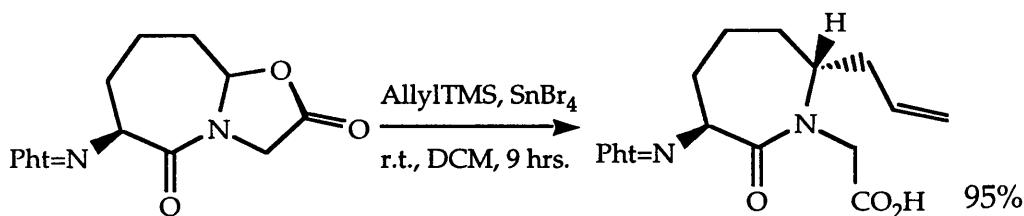


2.3 Ring Opening of 1,3-tetrahydrooxazines with Acetylenic Nucleophiles

This is the key step in the methodology; the one in which the new chiral centre will be established. Although a new chiral centre is set up at the 2-position during the synthesis of the aminals, the mechanism of attack at this position will be the deciding factor in the overall stereoselectivity.

For example, the nucleophile may attack from either the N- or O- face (in the absence of any control from the Lewis acid or steric effects) to give either diastereomer of the ring opened compound (Figure 54).

Figure 54


As with the synthesis of the aminals, the ring opening reactions were first carried out on racemic material.

Ring opening reactions of aminal **rac-25a** were attempted with bis(trimethylsilyl)acetylene (which has been used as a nucleophile in the ring opening of acetals by Johnson¹³). The Lewis acid in this case was $TiCl_4$, which was also thought to be useful in the ring opening of aminals.⁶⁶

Initial experiments indicated that **rac-25a** was being consumed in a very short time (< 5 minutes by TLC), but even after 1 hour of reaction none of the required product could be isolated. Work up gave a high recovery of

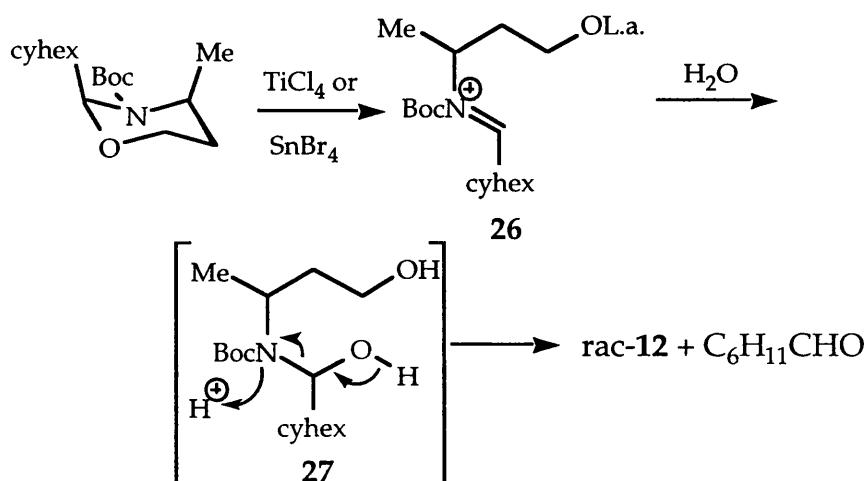
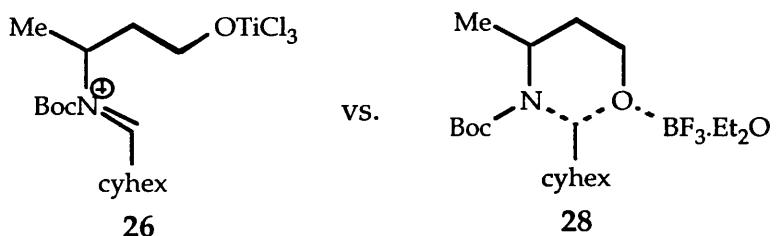

starting aldehyde and **rac-12**. A similar result was observed when the reaction was carried out with SnBr_4 . This Lewis acid had been used by Robl in his synthesis of azepinone analogues, where allylsilane addition to bicyclic oxazolidinones gave the desired homoallyl amines (Figure 55).⁷⁶

Figure 55

Both results can be rationalised by envisaging complexation of the aminal to the Lewis acid giving iminium ion **26**. If the nucleophile used was not strong enough to react with **26** the no further reaction would be observed until the aqueous work up, whereupon **26** would react with the added water. This would give the “hemi-aminal” **27** which would then collapse to give the observed products (Figure 56).

Figure 56



It was obvious from this that bis(trimethylsilyl)acetylene was not nucleophilic enough to attack the Lewis acid complexed aminal. It was then

decided to employ a softer Lewis acid perhaps coupled with a more reactive nucleophile.

In subsequent reactions $\text{BF}_3\text{Et}_2\text{O}$ was used along with (trimethylsilyl)acetylene, the rationale being that the aminal would not be so tightly bound to the Lewis acid, perhaps promoting an $\text{S}_{\text{N}}2$ -type attack on an oxazine system still bearing chair-like characteristics (28) as opposed to the more open chain iminium system which is more likely from the stronger TiCl_4 or SnBr_4 (26) (Figure 57).

Figure 57

Initially this produced a small amount of a product which, by crude NMR, could have been the required compound. This proved very difficult to isolate however and no proof as to its identity could be found. Subsequent reactions gave no indication of any reaction whatsoever.

Many other nucleophile / Lewis acid combinations (most of which had been used in similar reactions of aminals or acetals) were tried in an attempt to prepare some ring opened material. However, these had little or no success and are detailed in Table 2, with references where appropriate.

Table 2

Aminal	Nucleophile	Lewis acid	Yield /%	Reference
rac-25a	TMSC≡CLi	TiCl ₄	5	–
rac-25a	TMSC≡CLi	BF ₃ .Et ₂ O	0 [#]	49
rac-25a	TMSC≡CH	SnCl ₄	0 [#]	77
rac-25a	(TMSC≡C) [−] (AlMe ₃ Li) ⁺	–	0 [*]	78
rac-25a	TMSC≡CSnMe ₃	BF ₃ .Et ₂ O	0 [*]	79

* starting material was recovered

starting material was consumed

The failure of entry 2 to provide some of the ring opened product was surprising when considering the work of Wu, who suggests that alkynyl lithiums, in the presence of BF₃.Et₂O, will give a moderate yield of the ring opened material.⁴⁹

Grignard reagents were then turned to as nucleophiles, as these have been shown by Pedrosa to ring open aminals in this manner.^{50, 51} This reaction has been shown to require a second equivalent of Grignard reagent presumably acting as a Lewis acid.

The Grignard reagent derived from (trimethylsilyl)acetylene was used but initially proved to be unsuccessful with no ring opened product observed, even at elevated temperatures (in the previous work by Pedrosa only room temperature was needed). A more detailed examination of the literature indicated that Grignard reagent cleavage of both acetals and aminals were

assisted by the addition of a Lewis acid catalyst.⁸⁰ Further experiments were then carried out using a variety of Lewis acids as detailed in Table 3.

Table 3

Aminal	Nucleophile	Lewis acid	Yield/%	Reference
rac-25a	TMSC≡CMgBr	TiCl ₄	10	–
rac-25a	“	MgBr ₂ .Et ₂ O	0*	–
rac-25a	“	Ti(O ⁱ Pr) ₄	0*	–
rac-25a	“	TiCl ₂ (O ⁱ Pr) ₂	0*	81

* starting material was recovered

However, when BF₃.Et₂O was used (in THF at elevated temperature), the racemic ring opened compound rac-29a was isolated in good yield. Attempts to optimise this reaction gave no overall improvement to the original yield (Table 4).

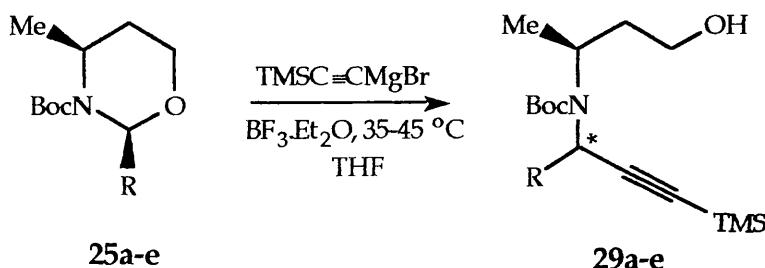
Table 4

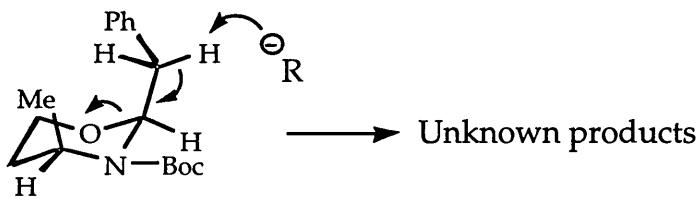
rac-25a	RMgX ^(a)	BF ₃ .Et ₂ O	Vol. of THF	Time/mins	Yield/%
0.5 mmol	2.00 mmol	1.25 mmol	2.5 ml	60	(63)
0.5 mmol	2.52 mmol	0.9 mmol	3 ml	120	(47)
0.5 mmol	2.25 mmol	1 mmol	3 ml	60	(47)
0.5 mmol	1.53 mmol	1.5 mmol	2 ml	45	(39)
0.5 mmol	2.00 mmol	0.9 mmol	2.5 ml	60	(36)

(a) R = TMSC≡C.

For the reaction to proceed, it was necessary for the temperature to be between 35 - 45°C. Below 35°C no reaction could be observed. However, above 45°C significant amounts of unidentifiable by-products were isolated. Having established conditions under which alkynylation would occur satisfactorily, aminals **25a-f** were carried forward to the corresponding ring opened derivatives **29a-f** (Figure 58). The results of these transformations are summarised in Table 5.

Figure 58



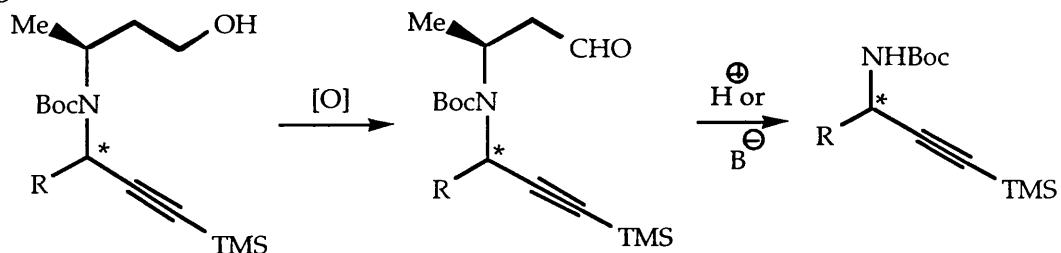

Table 5

R	Aminal	Alcohol	Yield / %
cyclohexyl	25a	29a	65
hexyl	25b	29b	63
propyl	25c	29c	63
ⁱ propyl	25d	29d	48
5-(TIPSoxy)-pentyl	25e	29e	55
3-(TIPSoxy)-propyl	25f	29f	46
benzyl	25g	29g	0

Surprisingly the 2-benzyl aminal (**25g**) failed to give any of the required product, despite TLC indicating its consumption during the course of the

reaction. This may be due to the basic Grignard reagent removing one of the acidic benzylic protons of **25f**, leading to elimination to give unknown by-products (Figure 59). This problem is probably enhanced by the relatively high temperatures required for the reaction.

Figure 59



It was also impossible to make any estimate of the diastereoselectivity at this stage as the ^1H NMR of all the ring opened compounds were unresolved. HPLC would probably have allowed this to be estimated but this was not considered at the time. Additionally, there would have been a necessity to make the corresponding racemic mixture of ring opened compounds for comparison.

2.5 Removal of the Chiral Auxiliary to give Chiral Propargyl Amines

It was envisaged that removal of the chiral auxiliary could be effected by oxidation of the ring opened alcohol to the aldehyde followed by an acid or base driven “retro-Michael” type β -elimination to reveal the required amine (Figure 60).

Figure 60

This, although seemingly trivial, was one of the most difficult steps in the synthesis. Having already introduced the acetylenic moiety, it is now important that the chiral auxiliary can be removed without damaging both it and the new chiral centre. Admittedly it will be difficult to judge whether the conditions employed here have any effect on the chiral centre as there is no accurate assessment of the optical purity of the ring opening step.

It would also be beneficial if the Boc protecting group could be retained, as unprotected propargyl amines have been shown to be unstable and prone to decomposition.⁷

Taking all the above criteria into account, it was desirable that strongly oxidising, basic or acidic conditions should be avoided if possible.

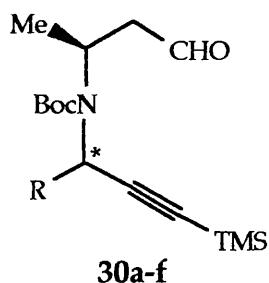
2.5.1 Oxidation of the Alcohols to Aldehydes

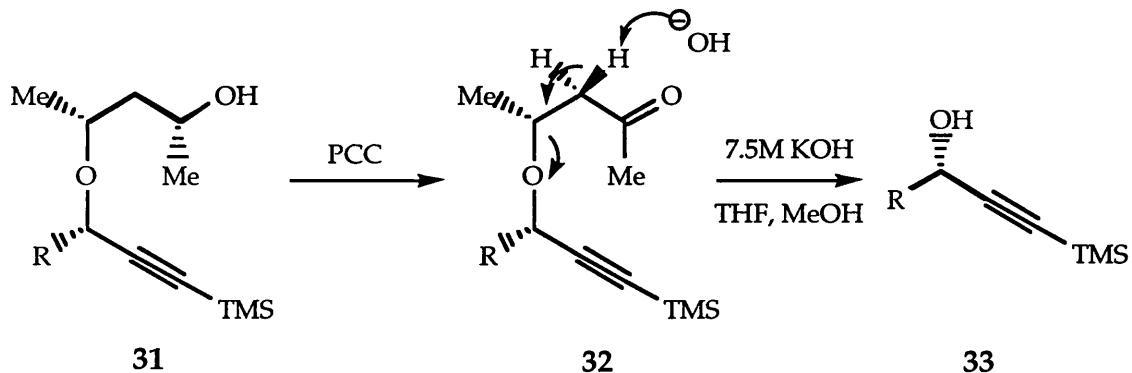
PCC oxidation⁸² of the alcohol **rac-29a** was attempted and was seen to be partially successful by ¹H NMR of the crude reaction mixture. Purification of the aldehyde proved to be difficult however so other methods were investigated which might provide a higher degree of conversion.

Swern oxidation⁸³ failed to give any of the aldehyde, indeed significant decomposition of the alcohol was observed. It is thought that reaction of the alcohol with oxalyl chloride may have occurred leading to the breakdown that was observed.

The little used Parikh/Doering variant of the Swern,⁸⁴ using sulphur trioxide/pyridine complex, as an activator of the DMSO, instead of oxalyl chloride, was next attempted but only starting material was recovered. However, using the modified procedure of Baker and Castro⁸⁵ smooth

conversion of the alcohol to the aldehyde **rac-30a** was observed. The aldehyde was obtained in high yield and purity (based on TLC and NMR analysis of the crude). This procedure was subsequently used to convert the chiral alcohols **29a-f** to the corresponding aldehydes **30a-f** (Table 6). The aldehydes were used without further purification, indeed attempting to do so led to vastly reduced yields with no improvement in purity.




Table 6

R	Alcohol	Aldehyde	Yield / %
cyclohexyl	29a	30a	99
hexyl	29b	30b	95
propyl	29c	30c	71
ⁱ propyl	29d	30d	84
5-(TIPSoxy)-pentyl	29e	30e	89
3-(TIPSoxy)-propyl	29f	30f	100

2.5.2 Attempted Removal of the Auxiliary under Basic conditions

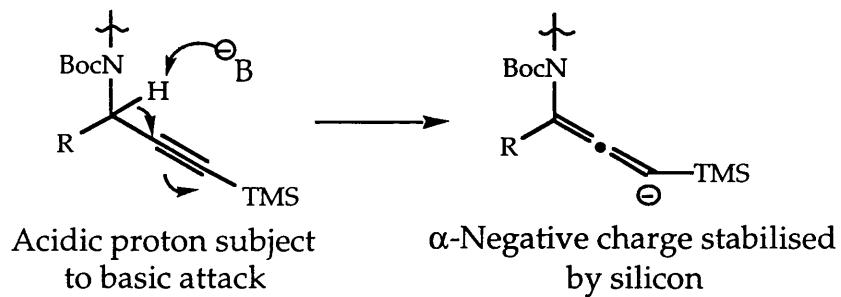

The pioneering work by Johnson into chiral acetal chemistry indicated that the analogous propargyl alcohols may be accessed from propargyl ether **31** *via* oxidation of the alcohol to the ketone **32** followed by a base driven retro-Michael reaction to give the required alcohol **33** (Figure 61).¹³

Figure 61

If this method could be applied to the work in hand then it would have the real advantage of leaving both the Boc group and the acetylene intact. The strongly basic conditions gave some cause for concern, however, given the highly acidic nature of the proton at the new chiral centre. The reactivity of this site would be enhanced by the ability of the TMS group on the acetylene to stabilise any intermediate negative charge (Figure 62).

Figure 62

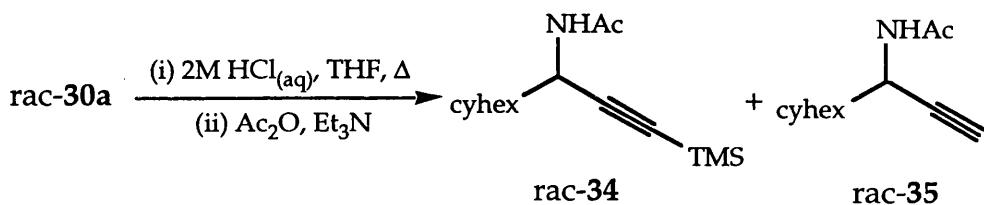
With this in mind, it was decided that a less basic medium would be employed in an attempt to prepare the chiral amines.

Triethylamine and rac-30a were stirred together for twenty four hours but no reaction was observed.

Further work was carried out using basic ion-exchange resin but it too failed to yield any product with only *rac*-30a being recovered.

It was obvious that stronger base was required so the rac-30a was stirred in dilute aqueous NaOH and THF. TLC indicated that the aldehyde had been consumed after 1 hour but subsequent work up and NMR gave only starting material in quantitative yield. This result was been reproduced a number of times and could possibly be rationalised by Figure 62 (above).

Upon work-up the “allenium” ion would rearrange back to the acetylene.


2.5.3 Attempted Removal of the Auxiliary under Acidic conditions

Given the failure of base to produce the required product it was decided to attempt the cleavage under acidic conditions. This had the disadvantage that the acid labile Boc group may be removed but it was hoped that a mild enough method would be found allowing retention of the protecting groups.

Treatment of rac-30a with piperidium acetate in refluxing benzene⁸⁶ gave no reaction, even after 24 hours. A similar result was observed with acidic ion exchange resin.

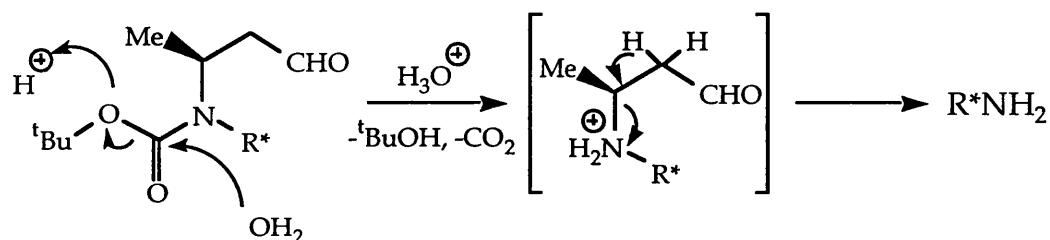

The reaction of rac-30a with aqueous 2M HCl in THF at reflux for 3 hours allowed smooth cleavage of the auxiliary. Initial identification of the product was difficult, with both the NMR and mass spectrum giving inconclusive results. However, in situ acylation of the product with acetic anhydride gave rise to the required N-acyl-amine rac-34 in 60% yield with a small quantity of the de-silylated product rac-35 also being isolated (12%) (Figure 63). The isolation of rac-35 was unexpected as the cleavage of silicon-carbon bonds is usually achieved with either fluoride ion or non-aqueous basic conditions.

Figure 63

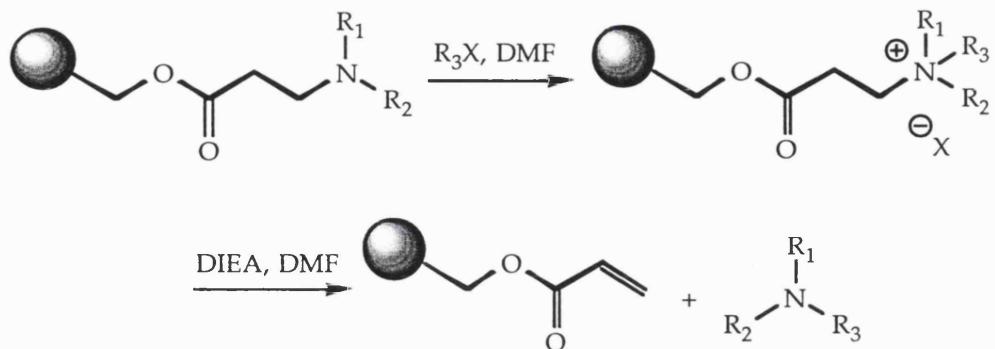

Removal of the Boc group to give the protonated, quaternised secondary amine may be the first step in the removal of the auxiliary under these conditions. Subsequent β -elimination would then follow (Figure 64).

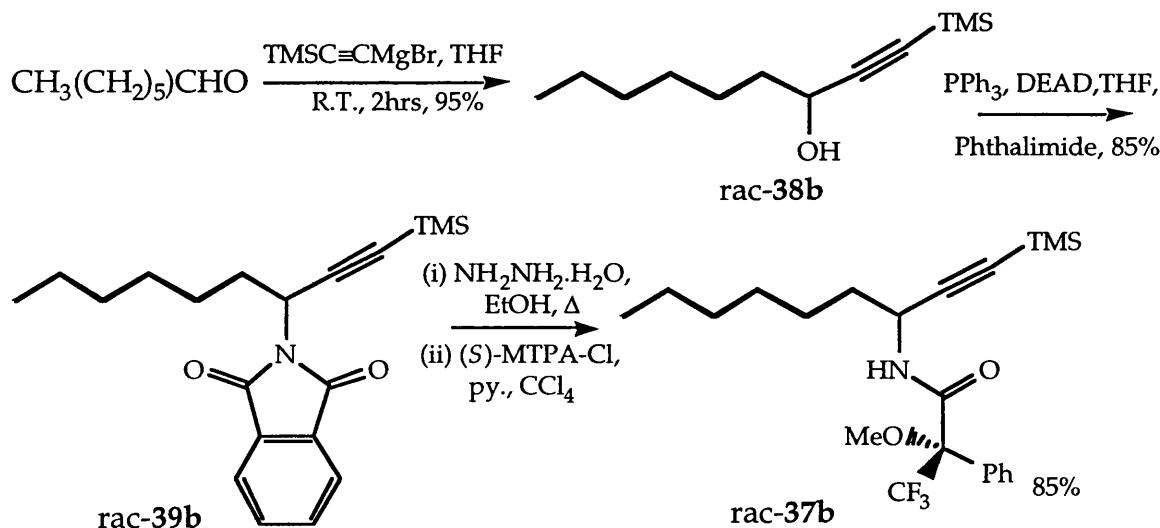
Figure 64

This is a variant of the Hoffman elimination which can be more generally applied to elimination in systems containing quaternary ammonium salts. This has been demonstrated in a recent paper by Brown *et al.* who describe a solid-phase synthesis of tertiary amines.⁸⁷ Resin-bound β -amino esters were quaternised and then underwent facile β -elimination under basic conditions to remove the amine from the resin (Figure 65).

Figure 65

The chiral aldehydes **30a-f** were then subjected to the same conditions, substituting Boc_2O for Ac_2O , to provide the required (N)-Boc chiral amines **36a-f**. Fortunately none of the de-silylated material has been observed in these reactions.

The e.e.'s of **36a-f** were measured by removal of the Boc group and conversion to the (*S*)-Moshers amides **37a-f**. The ^{19}F NMR of these were taken and the e.e.'s measured from the respective integrals of the major and minor CF_3 peaks.


For comparison, the racemic amide **rac-37b** was synthesised from heptanal by ethynylation with $\text{TMSC}\equiv\text{CMgBr}$ to give the propargyl alcohol **rac-38**. Mitsunobu displacement of the alcohol with phthalimide gave **rac-39**. Treatment of this with hydrazine hydrate in refluxing ethanol affording the propargyl amine which was immediately converted to its Moshers amide derivative with (*S*)-MTPA-Cl (Figure 66).

The chemical shift and integrals of the racemic CF_3 peaks were compared to those of the chiral compound to confirm assignment of the e.e.. The results of the auxiliary removal with the e.e. of the products are given in Table 7.

Table 7

R	aldehyde	Boc amine	Yield/%	Moshers amide	e.e./%
cyclohexyl	30a	36a	70	37a	40
hexyl	30b	36b	68	37b	60
propyl	30c	36c	65	37c	64
ⁱ propyl	30d	36d	71	37d	86
5-(TIPSoxy)pentyl	30e	36e	35	37e	95
3-(TIPSoxy)propyl	30f	36f	77	37f	52

Figure 66

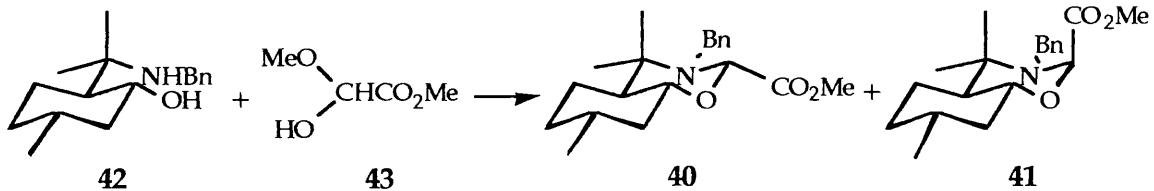
It is reasonable to assume that, in some cases at least, there are different mechanisms operating at the ring opening stage. This would explain the lower diastereoselectivity in some cases.

In order to establish a possible mechanism of ring opening then two things must be investigated in greater detail. These are;

- (a) to firmly establish the overall conformation of the aminal ring and the substituents,
- (b) determination of the absolute stereochemistry of the new chiral centre and hence the major diastereomer of ring opening. This will best be done by either X-ray crystallographic studies or correlation by synthesis of amines **36a-f** to a known compound or compounds.

Both of these points will be addressed in Chapters 3 and 4 respectively.

Chapter 3: Conformational Studies on 1,3-Tetrahydrooxazines


3.1 Conformational Analysis of 1,3-Oxazine Systems

There have been a number of conformational studies carried out on 1,3-oxazine systems (both by NMR and X-ray crystallography). These provide an insight as to some of the factors which may control the conformation of the aminal systems synthesised in this work. In the light of this, it will be necessary to review this area.

3.1.1 NMR Studies on 1,3-Oxazines

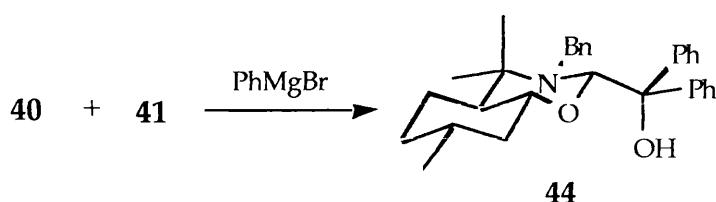

Eliel⁸⁸ has synthesised the oxazine esters **40** and **41** by the condensation of amino alcohol **42** and the methyl hemi-acetal of methyl glyoxalate **43** (Figure 67).

Figure 67

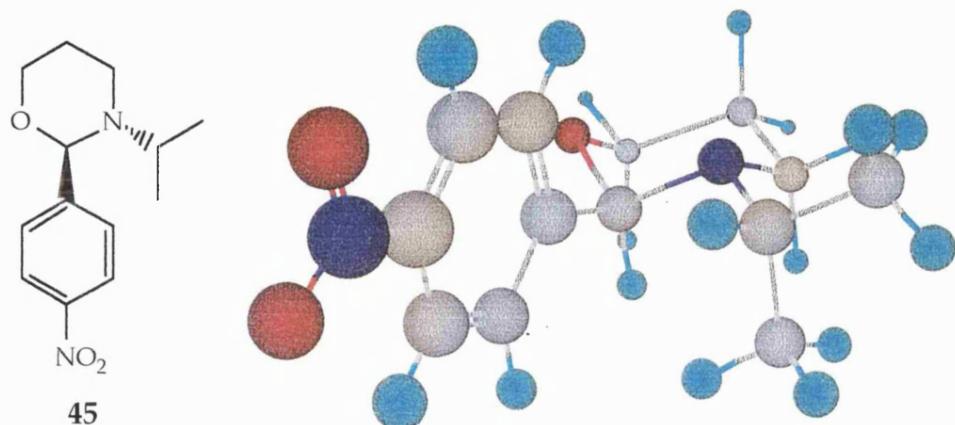
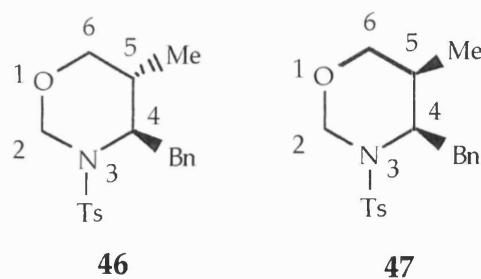
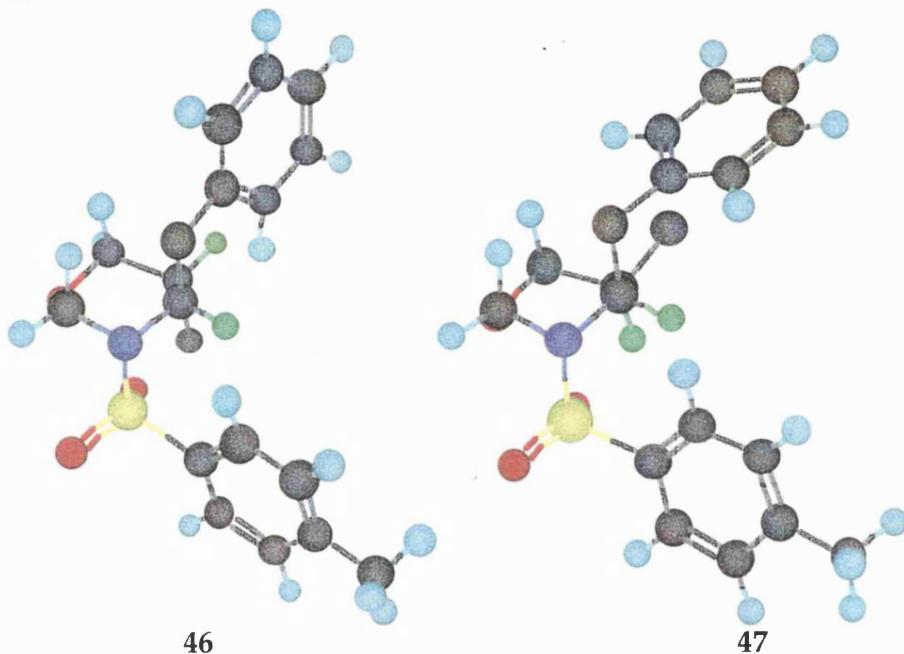

Oxazines **40** and **41** are obtained from the reaction as a mixture of diastereomers but can be separated by column chromatography. Compound **41** appears to be unstable however as when a mixture of **40** and **41** are treated with excess PhMgBr only the *equatorial* product **44** is isolated (Figure 68).

Figure 68



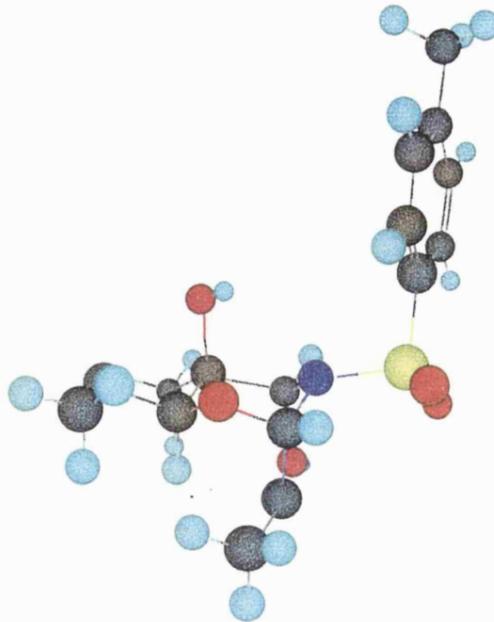
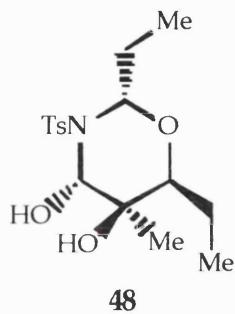
3.1.2 X-Ray Crystallographic Studies

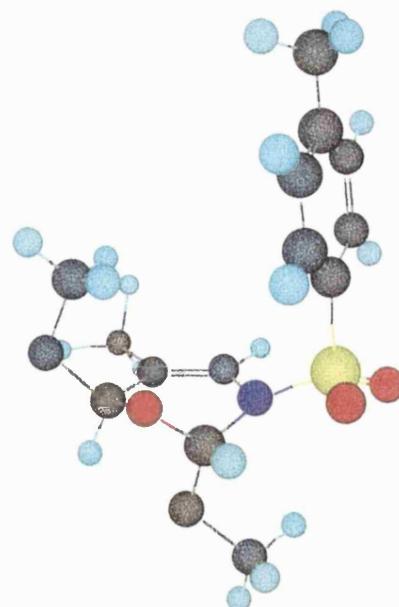
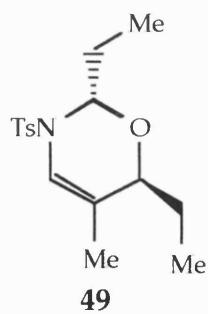
Shoja and Saba⁸⁹ synthesised oxazine **45** and established that the preferred structure was that of a chair with the adjacent substituents in a *trans* di-equatorial conformation.


As a reminder that often NMR data alone cannot be entirely reliable, Burgess showed that the *trans* and *cis* oxazines **46** and **47** adopt very different conformations than would otherwise have been assigned from the NMR data.⁹⁰ The H^4/H^5 1H coupling constants were measured as <0.5 Hz and 4.6 Hz respectively. Normally this would suggest that **47** should have the *trans* relationship with a smaller than expected di-axial coupling constant being observed.

Crystallography reveals however that the strain imposed by the 1,2 relationship of the benzyl and tosyl groups causes them to adopt a di-axial arrangement, forcing the methyl group of **46** also to adopt an axial

conformation. This explains the very small H^4/H^5 1H coupling constant which was observed for this compound. The measured dihedral angle was 80° which corresponds to a coupling constant of 0 Hz, as predicted by the Karplus equation. The equivalent angle in **47** was 50° , which corresponds to 3.2 Hz. Representations of the structures are shown in Figure 69 with H^4 and H^5 indicated in green. The protons of the methyl group and the benzylic carbon have been removed for clarity.



Figure 69



Perhaps the most interesting piece of work, from the point of view of the this discussion, was the work carried out by Weinreb.⁹¹

Crystallography showed that oxazine **48** has a 2,4-di-axial arrangement with the tosyl group on the nitrogen in an equatorial conformation. Admittedly, this structure is somewhat complicated by the presence of additional substitution at the 5- and 6-positions. However, as **48** was synthesised from **49** by epoxidation then ring opening, it is clear that all the substituents prefer to orientate themselves in a manner which is contrary to the expected

thermodynamically preferred all-equatorial conformation but which allows a minimal number of steric clashes.

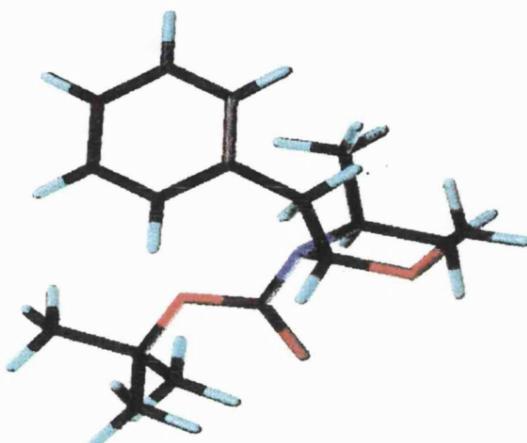
The structure of **49** is also interesting and shows a single stereoisomer with a 2,6-*trans* configuration with the steric clashes of the C² and N-tosyl groups minimised. The structure is described by Wienreb as having a "flattened sofa" configuration!

There are many factors which control the configuration of 1,3-oxazine systems. Substituent size is obviously important as in the case of **46** and **47**, where the desire to minimise steric interactions would appear to be the controlling factor. The conformation of the nitrogen substituent is controlled by electronic effects as well as steric effects. If the nitrogen lone pair can be delocalised into the substituent, e.g. **46** and **48**, then the nitrogen will be almost planar. Steric effects will determine the overall conformation, i.e. whether the substituent will be axial or equatorial. If there is only one adjacent substituent then a 1,2 di-axial arrangement will probably be observed (**46**). However if the nitrogen has three adjacent substituents, as in **48**, then an axial-equatorial-axial conformation will be observed.

3.2 Structural Studies on Tetrahydrooxazines 25g and 25a

3.2.1 Absolute Ring Conformation

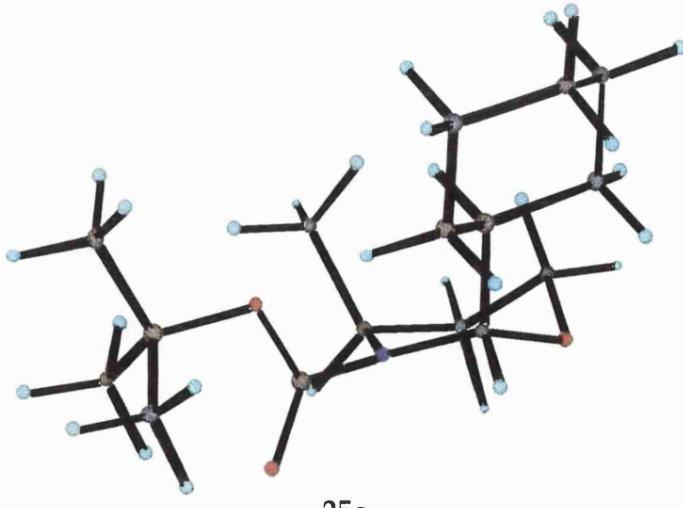
The absolute configuration of position 2 and the absolute conformation of the tetrahydrooxazines described in this thesis is inherently interesting due to the 2-, 3-, 4-substitution pattern these compounds possess. The most simple method of determining the absolute structure is via X-ray crystallography which will allow the solid state structure to be defined. Additionally, NMR studies can give a great deal of information about the solution phase structure of the aminal ring. This should provide a more realistic view of the conformation of the aminal ring during a reaction.


3.2.1.1 NMR studies

Oxazine **25g** (where R = benzyl) was studied extensively using both 1-dimensional and 2-dimensional NMR techniques. 2-D COSY experiments allowed the overall chemical structure to be accurately assigned and these

were followed by NOESY experiments which, after modelling and minimisation using SYBYL®, gave the solution phase conformation.

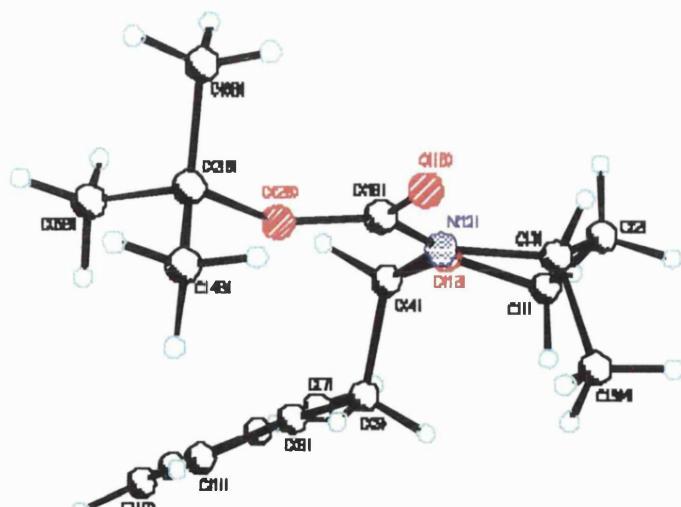
This was shown to have a flattened and twisted chair structure with the benzyl and methyl groups in pseudo-axial conformations. The Boc group adopts an equatorial conformation (Figure 70).

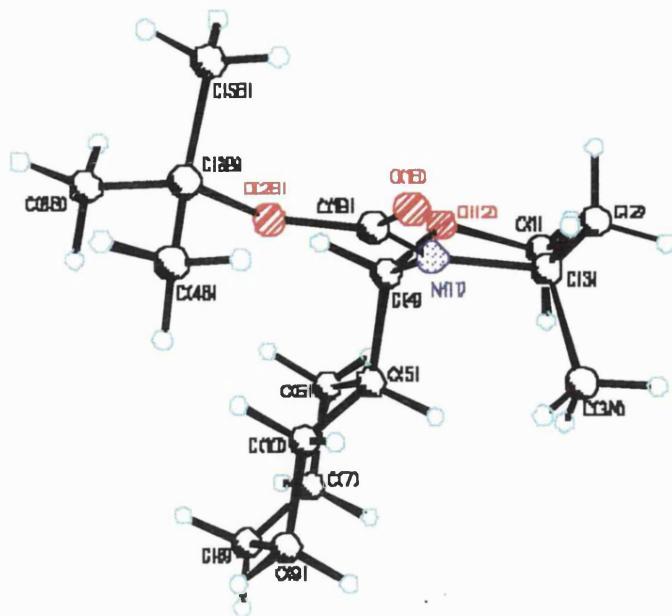

Figure 70

25g

Analysis of 25a indicated a similar structure, which is shown in Figure 71 as a three dimensional model based on the NMR results. The data for both these structures is presented in Appendix 1.

Figure 71




25a

3.2.1.2 X-Ray Crystallographic studies

Crystals of both **25g** and **25a** were grown and then studied by X-ray crystallography. As in the NMR studies, a 2,4-diaxial arrangement is shown between the benzyl/cyclohexyl groups and the methyl group. The Boc group again adopts an equatorial conformation. The X-ray structures are shown in Figure 72. The data for both of these structures is shown in Appendix 2. The absolute configuration given by these experiments is quite logical from a steric point of view. All three ring substituents adopt conformations which allow a minimal number of steric interactions, certainly fewer than would be observed from the theoretically expected all-equatorial conformation. These results are consistent with the pattern indicated in section 3.1.2 where three neighbouring substituents give rise to an aminal with an axial-equatorial-axial conformation with an essentially planar nitrogen.

Figure 72

25a

3.2.2 Ring Configuration at Position 2

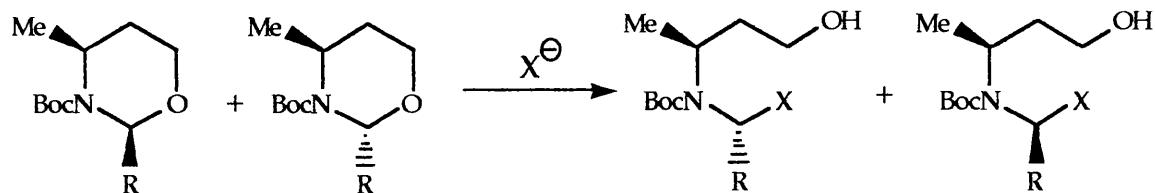
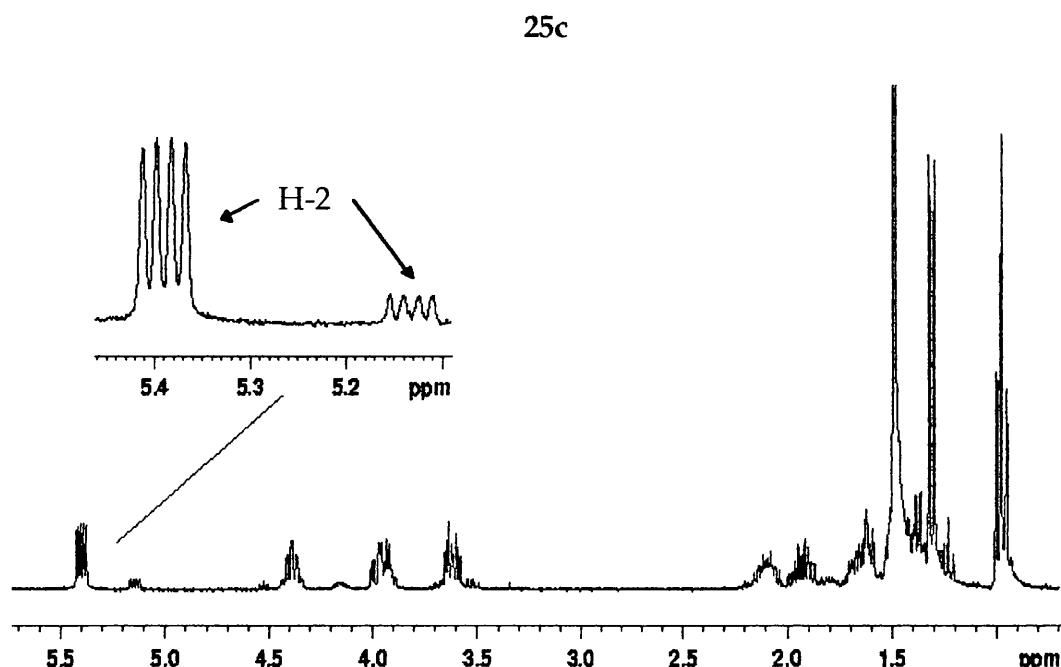

More important than the absolute structure however, is that the configuration at position 2 of the aminal ring be known accurately, along with the ratio of any diastereomers which may occur at this position (Figure 73).

Figure 73

As has already been stated in chapter two, this stereochemistry at position 2 will have a pronounced effect upon the diastereoselectivity of the ring opening reaction. Consider for example, an aminal with a 1 : 1 ratio of axial : equatorial conformers. If attack occurs from one face only, e.g. the N-face (as was hoped) then the ring opened product will be a 1 : 1 mixture of diastereomers (Figure 74).

Figure 74

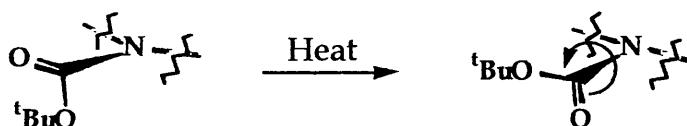


It is also critical that the configuration of the major and minor isomers be known (i.e. whether the axial or equatorial isomer is prevalent) if any meaningful discussion is to be had on the mechanism of ring opening.

3.2.2.1 NMR studies

One dimensional ^1H NMR studies of amines 25a-f indicated clearly that there are two distinct signals observable for H-2. These are observed in varying ratios. The ^1H NMR of the n-propyl derivative 25c is shown in Figure 75, with the H-2 signal shown as the expanded area.

Figure 75



Initially it was assumed that this indicated a mixture of diastereomers at the 2-position. However, irradiation of both the major and minor peaks gave

similar NOE's indicating that they are for the *same* diastereoisomer (see Appendix 1, Spectra 9 and 10).

It was suggested⁹² that the two observed signals may be due to rotamers of the Boc group (Figure 76) where one configuration is separated from the other by some form of energy barrier.

Figure 76

This phenomenon should be detectable *via* variable temperature ^1H NMR whereby heating should cause either an increase in the population of one form or a coalescence of the two signals as free rotation of the Boc group occurs at a higher energy. The later phenomenon is observable in the variable temperature ^1H NMR of DMF where a coalescence of the two methyl signals is observed at higher temperatures.⁹³

Experiments were conducted both in d-6 DMSO and in d-8 toluene with heating up to 105°C. Even after 20 minutes at this temperature however, no coalescence could be observed. It was impossible to increase the temperature due to the thermal lability of the Boc group.³

3.3 Conclusion

Having established that the aminal ring probably has only one diastereomer, and taking in to account the reduced diastereoselectivity after the ring opening step, it is logical that there must be at least two different

mechanisms for ring opening. This is necessary to explain the variable isomer ratios of the final amine products.

At this stage it was desirable that some form of correlation must be found to allow the dominant mechanism to be determined.

Chapter 4: Determination of the Mechanism of Aminal Ring Opening

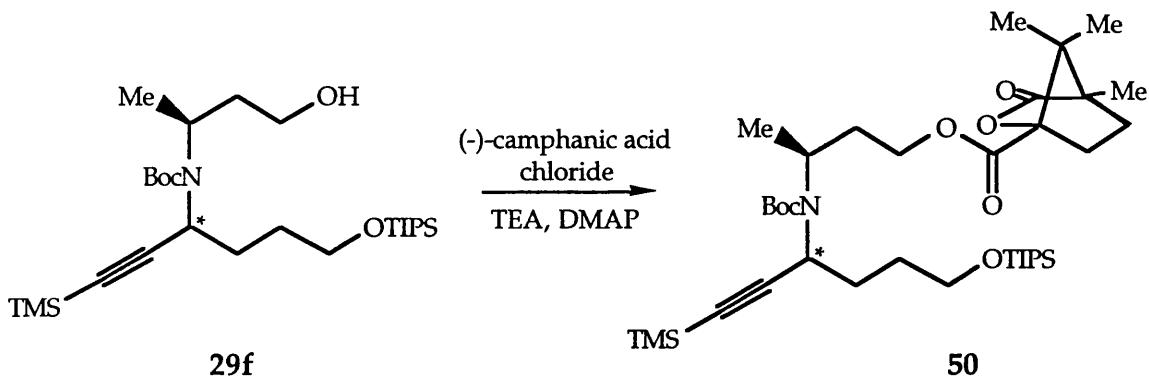
In order to establish possible mechanisms by which ring opening could have occurred, it was necessary to assign the dominant absolute stereochemistry in the amines **36a-f**.

Two possible methods were envisaged for this purpose;

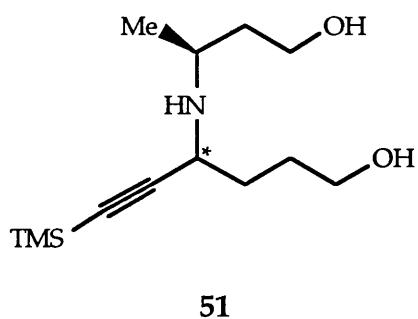
- (i) preparation of a chiral crystalline derivative,
- (ii) correlation of one or more of the amines to a chiral literature compound of known optical rotation.

4.1 Attempts to Produce Crystalline Derivatives

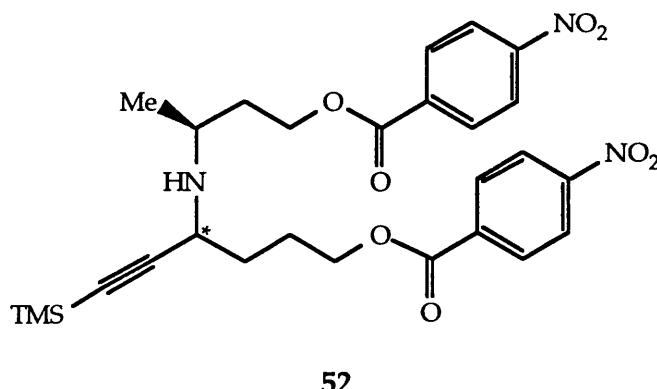
This was the preferred option to determine the dominant stereochemistry of the **36a-f** and was thought to be accessible at either of two points;

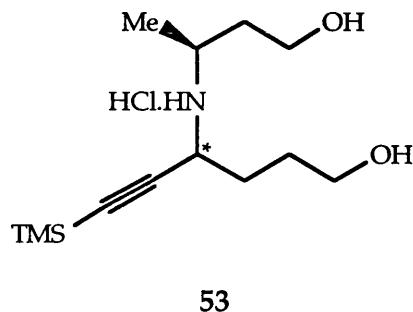

- (i) produce a crystalline derivative of one of the ring opened compounds **29a-f**. These already have a defined chiral centre and should allow facile determination of the absolute stereochemistry.
- (ii) produce a crystalline derivative of one of **36a-f** with a pre-defined chiral centre,

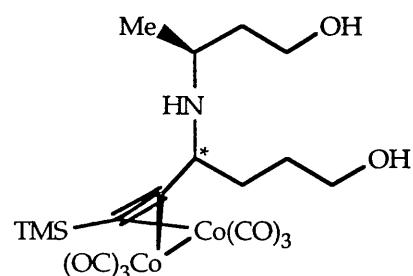
4.1.1 Synthesis of Crystalline Derivatives of Alcohols **29a-f**


It was thought that the synthesis of a bulky ester of one of the ring opened alcohols **29a-f** would lead to a crystalline compound. To this end the (-)-camphanate ester (50) of **29f** was synthesised by coupling with (-)-camphanic acid chloride in the presence of Et_3N and DMAP (Figure 77). This unfortunately did not provide a crystalline material. The lack of crystallinity

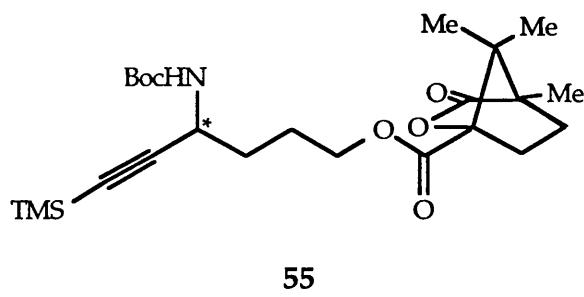
was probably due to the bulky silyl protecting groups and attempts were made to remove these using HF:pyridine complex in THF. This merely led to decomposition of **50**.


Figure 77


Following the same rationale that the TIPS ether (and possibly the Boc group) were the cause of the crystallinity problem, these groups were removed by treating **29f** with dilute hydrochloric acid. The resulting diol (**51**) was indeed a solid but gave only fine needles of a quality not high enough for diffraction studies. Many attempts were made to produce higher quality crystals but these were unsuccessful.


Treatment of **51** with p-nitrobenzoyl chloride in pyridine gave **52**, which was shown to be the diester by NMR. This gave a brown solid which failed to produce crystalline material.

Compound 51 was treated with HCl in dry ether to produce the hydrochloride salt 53. Again fine needles were formed which were of insufficient quality for diffraction.


It was suggested that the cobalt (0) carbonyl/acetylene complex of 51 (54) might be a more crystalline solid.⁹⁴ This complex was synthesised but was, rather surprisingly, found to be an oil.

Similarly, the Co(CO)₆ complex of 29a was prepared but failed to give crystals of sufficient quality to merit further study.

4.1.2 Synthesis of Chiral Derivatives of Amines 36a-f

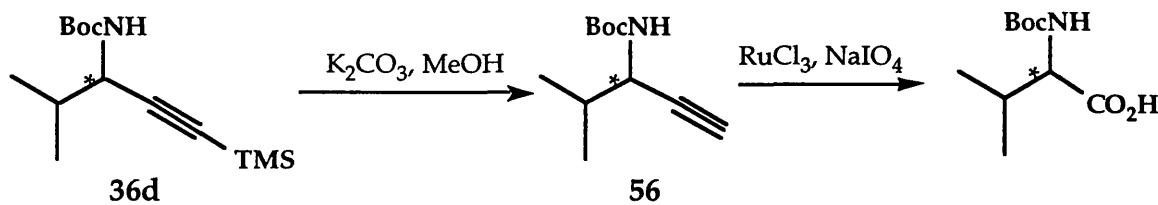
This area was not explored in great detail due to constraints in the amount of available material. However the (-)-camphanate ester of 36f was synthesised (55) but did not yield any solid material.

4.2 Correlation of Amines 36a-e to Literature Compounds

Due to the lack of success in finding a crystalline derivative it was decided to explore the possibility of correlating one or two of the amines 36a-f to a known literature compound. Comparison of the optical rotation of the synthetic material with that of the literature compound will then give an indication of which diastereomer was formed preferentially during the ring opening reaction.

This correlation study would also provide an extended use for the methodology by showing its application in synthesis.

The synthetic strategy was split into two parts;


- (i) the correlation of the alkyl amines, i.e. 36a-d,
- (ii) the correlation of the amino alcohols 36e-f.

The choice of two different correlation strategies is due to the possibility that a separate mechanism may be in operation for the different type of substrate.

4.2.1 Attempted Correlation of the Amine 36d to (N)-Boc-Valine

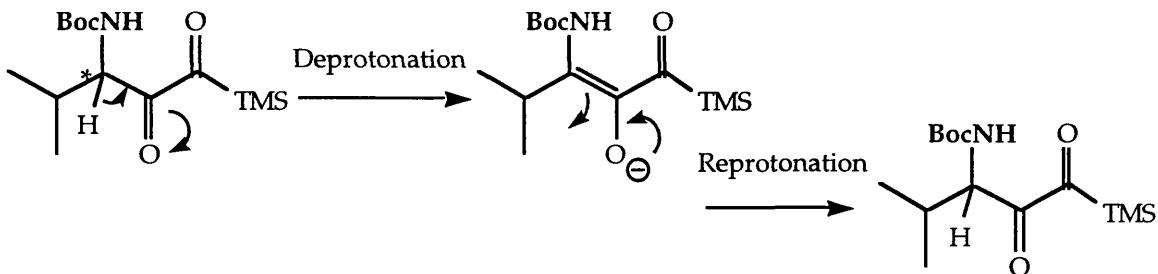
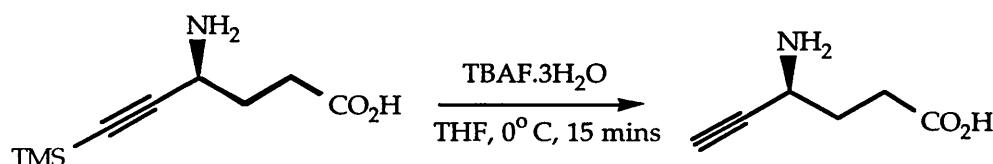

It was decided that the best correlation of one of the alkyl amines would be to a known amino acid derivative due to their wide availability and high stability. To this end a two step scheme was devised for the conversion of 36d to (N)-Boc-valine. This is shown in Figure 78.

Figure 78

The scheme involves the removal of the TMS group with K_2CO_3 in anhydrous methanol⁹⁵ to give 56 then oxidative cleavage of the acetylene with RuO_4 ⁹⁶ to give the required acid. It is possible to cleave TMS protected acetylenes to acids directly⁹⁷ but the intermediate diketone is rather long lived (ca. 1 hour) and this could lead to racemisation of the chiral centre (Figure 79).

Figure 79



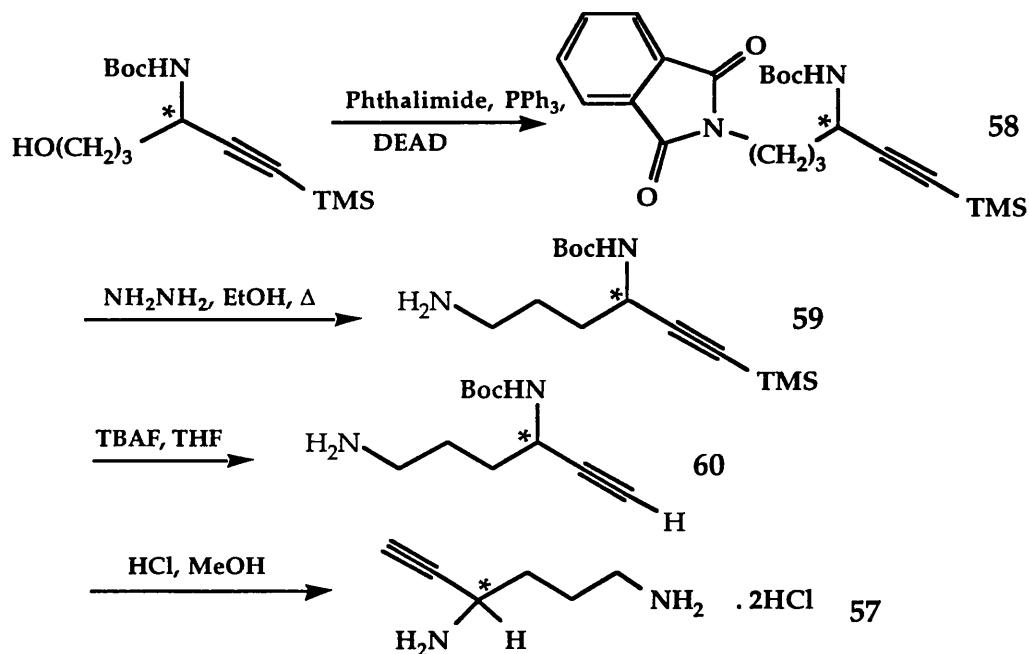
Initially the scheme was shown to work reasonably well, but difficulty ensued when trying to measure the optical rotation of the synthesised Boc-valine. The literature value for this compound is measured in glacial acetic acid. These conditions, in this case at least, proved to give irreproducible

and inaccurate optical data. The strongly acidic conditions caused significant cleavage of the Boc group and some decomposition of the sample.

Another cause for concern was that the strongly basic conditions for the synthesis of **56** could be scrambling the chiral centre so it was decided to carry out this step with TBAF instead. TBAF had been shown previously to affect a similar transformation in the production of GABA-T inhibitors with no sign of racemisation (Figure 80).⁹⁸

Figure 80

In this case, however, significant racemisation was seen to have taken place as the resulting Boc-valine had very little optical rotatory power.[#] This route was discontinued until a reliable synthesis of **56** could be found.


4.2.2 Attempted Correlation of Amino Alcohol **36f** to an Inhibitor of Ornithine Decarboxylase

A synthetic sequence whereby **36f** could be converted to the ornithine decarboxylase inhibitor **57** (Figure 81) was devised. Both enantiomers of **57** had previously been synthesised by Casara.⁹⁹

This was run concurrently with the valine correlation described above and hence the problems associated with the removal of the TMS group from the acetylene were unknown for most of this time.

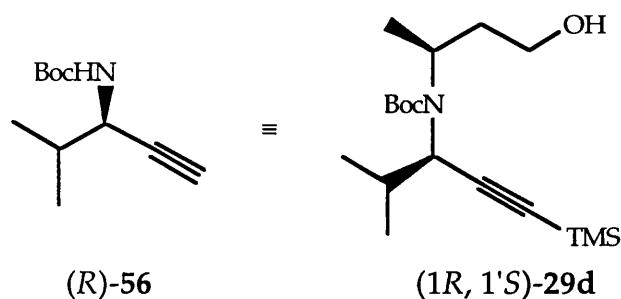
[#] The measurement was taken in methanol and compared to that of an authentic sample.

Figure 81

The steps for introduction and deprotection of the second amino group were both facile and reasonably high yielding (*via* Mitsunobu displacement of the alcohol with phthalimide followed by cleavage of the phthalimide group with hydrazine hydrate). However, the removal of the TMS and Boc groups were both very low yielding, giving insufficient quantities of the highly unstable 57 to measure an accurate optical rotation.

Unsurprisingly the value eventually obtained was very low when compared with that of the literature and merely confirmed the, by now apparent, problems with the silyl deprotection.

The route was abandoned due to the problems associated with it and the limited time available to produce the necessary result.

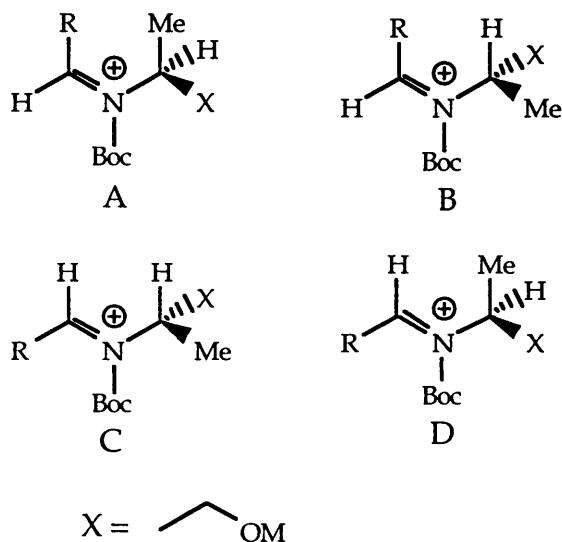

4.2.3 Correlation of 36d to Compound 56

After the disappointing results from the initial attempts at correlation, a literature value for the optical rotation of (S)-56 was found.² This value was for the enantiomer derived from natural (L)-valine. Further investigation revealed work by Seebach²³ that stated TMS groups could be removed from chiral propargyl amines with concentrated HCl giving no loss of stereochemical integrity.

Heating **36d** to 100°C in 6M HCl for two hours, followed by reprotection with Boc gave **56** in low yield. Although the quantity of **56** obtained was small, there was sufficient material to provide an optical rotation ($\alpha_D = 24.00^\circ$, $c = 0.25$; CHCl_3 , Lit.: $\alpha_D = -45.3^\circ$ ($c = 1.04$),² -57.9° ($c = 1.026$);¹⁰⁰ both CHCl_3).

This indicated that the predominant enantiomer was the (*R*)- form and corresponds to diastereomer (1*R*, 1'S)-29d at the ring opened stage (Figure 82).

Figure 82

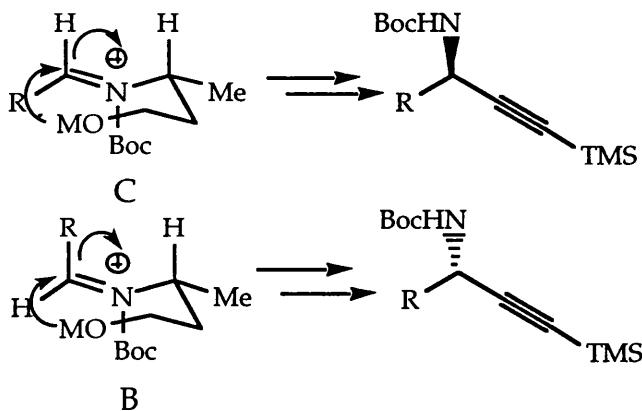

4.3 Mechanism of Ring Opening

As a reliable determination of the major isomer obtained from the ring opening stage has been established it is now valid that a mechanism for this

should be proposed. This is probably best done by considering the transition state of the ring opening reaction (ROR).

If the transition state is considered to exist in an iminium form (as proposed by Pedrosa; see Chapter 2)⁵¹ then clearly 1,3-allylic strain will play a part in deciding the most stable conformation of the reaction intermediate.¹⁰¹ Using these principles, there are a number of possible conformers; the four most probable are shown in Figure 83.

Figure 83



In each pair of conformers, B and C will be the most favoured (due to minimised 1,3-strain), with C likely to have the lowest energy of all.

In addition, as the presence of one equivalent of $\text{BF}_3 \cdot \text{Et}_2\text{O}$ is essential for ring opening to occur, it is likely that the reacting species is either an alkynyl boron, e.g. $\text{M} = \text{TMSC}\equiv\text{CBF}_2$, or an alkynyl boronate, e.g. $\text{M} = \text{TMSC}\equiv\text{CBF}_3^- \text{MgBr}^+$. This would therefore lead us to consider some form of chelation mechanism, where the incoming nucleophile would be delivered by the oxygen to the iminium ion.

If this were the case then conformer C would furnish the observed major diastereomer, whilst B would give the minor diastereomer (Figure 84).

Figure 84

The other two conformers, A and D, would also give us the major and minor products respectively, though D is likely to be the most stable of the two, possibly leading to the observed reduction in diastereoselectivity.

A mechanism where $\text{BF}_3\text{Et}_2\text{O}$ alone is acting as the Lewis acid and then directing the nucleophile by chelation is unlikely due to saturation of borons' co-ordination sphere, making co-ordination by it difficult.

Chapter 5: Experimental

Unless otherwise indicated, reagents were obtained from commercial suppliers and were used without further purification. THF and Et₂O were distilled from sodium/benzophenone. Benzene was distilled from sodium. DCM was distilled from P₂O₅ and stored over 4 Å molecular sieves. DMSO, DMF, TEA and pyridine were distilled from CaH₂ and stored over 4 Å molecular sieves. Methanol and ethanol were distilled from magnesium and iodine. Hexane is described as the fraction boiling between 67 - 70 °C unless otherwise stated. Diazald® is the commercial name for N-methyl-N-nitroso-p-toluenesulphonamide supplied by the Aldrich Chemical company.

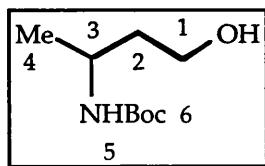
CCL was a gift from Biocatalysts Limited. PLE was obtained from Sigma where 1 unit will hydrolyse 10 µmole of ethyl butyrate to ethanol and butyric acid per minute at pH8.0 at 25 °C. *Subtilisin* Carlsberg was obtained from Sigma. PGA-450 is a commercial form of the enzyme penicillin G amidase and was a gift from Boehringer Mannheim (Industrial Division).

NMR spectra were recorded on Varian XL-200, Varian VX-400, Bruker AC 250, Bruker AC 300, Bruker AM 360 and Bruker AMX 500 spectrometers operating at 200, 250, 300, 400 and 500 MHz for ¹H; 100, 75 and 90 MHz for ¹³C and at 392 and 325.8 MHz for ¹⁹F. Chemical shift (δ) values are measured in parts per million relative to the residual (undeuterated) solvent peak as an internal standard for ¹H and ¹³C and relative to CFCl₃ for ¹⁹F. J (coupling) values are measured in Hertz. Multiplicities (for ¹H) are

shown as; s = singlet, d = doublet, t = triplet, q = quartet, sept. = septet, dd = doublet of doublets, m = complex multiplet, bs = broad singlet, bm = broad multiplet.

Nominal and high resolution mass spectra were taken on VG ZAB-SE spectrometer with sources for FAB and EI^+ . Some nominal mass spectra were also measured on a VG Quattro mass spectrometer with sources for EI^+ and APCI. These are indicated in the text.

I.R. spectra were recorded on a Perkin-Elmer 1600 FT-I.R. spectrometer and are for solutions in CHCl_3 unless otherwise stated.


Optical rotations of chiral compounds were measured on a JASCO 600 spectrophotometer and an Optical Activity POLAAR 2000 polarimeter using sucrose as a standard. All rotations were taken as solutions in CHCl_3 unless otherwise stated. All literature rotations should be assumed to be in CHCl_3 unless otherwise stated.

Melting points were taken on an Electrothermal 9100 instrument and are uncorrected.

CHN analysis were carried out on a Perkin Elmer 2400 CHN Elemental Analyzer.

Column chromatography refers to flash chromatography as described by Still¹⁰², and was carried out with distilled solvents. Silica gel was purchased from BDH (particle size 40 -> 63 μm). Aluminium oxide (neutral, Brockman grade 1, 100 - 125 mesh) was purchased from Fluka.

The names of all new compounds are indicated in italics. Literature compound names are given in normal text.

(\pm)-3-N-(*tert*-Butoxycarbonyl)-aminobutan-1-ol (rac-12)¹⁰³(a) Reduction of rac-13 using LiAlH₄

To a suspension of LiAlH₄ (1.46 eq.; 30 mmol ; 1.194 g) in dry THF, (50 ml) was added 3-aminobutanoic acid (20.6 mmol; 2.134 g). The mixture was heated under reflux for 2 hours and then allowed to cool, followed by an alkaline quench (NaOH, 0.57 M, 14 ml). The mixture was then made basic (NaOH, 2 M, 20 ml). Water (10 ml) and Boc₂O (1.25 eq.; 25 mmol; 5.450 g) added and mixture was stirred for 24 hours. It was then poured into water (50 ml) and extracted with DCM (3 x 75 ml). The combined organic layers were dried over Na₂SO₄ and the solvents removed *in vacuo* to give a viscous yellow oil. Column chromatography (silica gel; 1:1 EtOAc : hexane; R_F = 0.25) yielded rac-12 (2.339 g; 60 %) as a white solid (m.pt.= 44.5 - 45.7 °C) Lit. = 59 - 60°C.

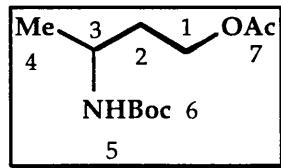
¹H NMR (200 MHz) (CDCl₃); δ 1.18 (d, J = 7.2, H-4, 3H), 1.41 (s, H-6, 9H), 1.72-1.79 (m, H-2, 2H), 3.59 (dd, J = 7.2, 3.6, H-1, 2H), 3.73-3.80 (bs, H-3, 1H), 4.52 (bs, H-5, 1H), OH missing.

¹³C NMR (100 MHz) (CDCl₃); δ 21.47, 28.32, 40.75, 43.03, 58.92, 79.72, C=O missing.

mass spectrum (FAB); m/z 212 (81%), 190 (9%), 134 (100%).

C₉H₁₉O₃NNa : requires 212.1263 found 212.1260.

I.R. (nujol mull); ν_{max} (cm⁻¹) 3400, 3175, 1700.


CHN; requires C=57.15, H=10.12, N=7.01; found C=57.14, H=10.23, N=7.15.

(b) Reduction of rac-13 using NaBH₄⁶⁷

To a suspension of 3-aminobutanoic acid (20.6 mmol; 2.134 g) in dry THF (60 ml) was added NaBH₄ (2.4 eq.; 49.4 mmol; 1.860 g), followed by a solution of iodine (2.1eq.; 42.8 mmol; 5.43 g) in THF (14.2 ml). The mixture was heated under reflux for 18 hours and then allowed to cool, followed by the dropwise addition of methanol (50 ml). The solvent was removed *in vacuo* and the resultant residue was dissolved in aqueous NaOH (2 M; 20 ml), water (30 ml) and ethanol (5 ml). Boc₂O (1.46 eq.; 30 mmol; 6.540 g) was then added and the mixture stirred for 24 hours. It was then poured into water (50 ml) and extracted with DCM (3 x 100 ml). The combined organic layers were dried over Na₂SO₄ and the solvents removed *in vacuo* to give a viscous yellow oil. Column chromatography (silica gel; 1:1 EtOAc : hexane; R_F = 0.25) yielded rac-12 (3.572 g; 95 %) as a white solid (m.pt. = 44.5 - 45.7 °C).

All analytical data were identical to those produced by method (a).

3-N-(tert-Butoxycarbonyl)-aminobutylethanoate (14)

To a solution of rac-12 (3.3 mmol; 0.638 g) in dry DCM (15 ml), under N₂ was added acetic anhydride (0.59 ml) and Et₃N (0.92 ml). After two days the

reaction mixture was washed with water (3×10 ml) and dried over Na_2SO_4 . The solvents were removed *in vacuo* to give a clear oil. Column chromatography (silica gel, 50 % EtOAc in hexane; $R_F = 0.5$) gave the title compound as a viscous oil (0.736 g; 97 %).

^1H NMR (200 MHz) (CDCl_3); δ 1.15 (d, $J = 7.2$, H-4, 3H), 1.41 (s, H-6, 9H), 1.72-1.79 (q, $J = 6.8$, H-2, 2H), 2.04 (s, H-7, 3H), 3.73-3.80 (m, H-3, 1H), 4.10 (t, $J = 7.0$, H-1, 2H), 4.30-4.40 (bs, H-5, 1H).

^{13}C NMR (90 MHz) (CDCl_3); δ 20.90, 21.16, 28.31, 35.73, 45.71, 61.56, 79.14, 155.16, 171.54.

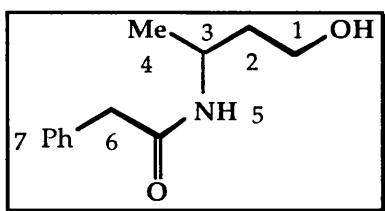
mass spectrum (FAB); m/z 232 (M+1), 190 (M-Ac).

Attempted enzymatic resolution of 14 to give optically pure 12

(a) using CCL

14 (0.52 mmol; 0.120 g) was dissolved in 1 : 1 acetone : pH7 buffer¹⁰⁴ (3 ml) and a catalytic amount of CCL was added. After 3 days the mixture was poured into water (5 ml) and extracted with DCM (3×5 ml). The combined organic layers were dried over Na_2SO_4 and the solvents removed *in vacuo* to give a viscous oil. Column chromatography (silica gel, 50 % EtOAc in hexane, $R_F = 0.25$) gave 12 as a crystalline solid (0.035 g; 71 % based on 50 % conversion).

$[\alpha]_D$ ($c = 17.5 \text{ mg ml}^{-1}$) = + 2.74° (lit. + 10.2° $c = 5 \text{ mg ml}^{-1}$).¹⁰⁵


(b) using PLE

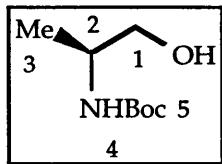
To a solution of **14** (1 mmol; 0.231 g) in THF (0.1 ml) and buffer¹⁰⁴ (pH=7.6; 0.4 ml) was added PLE (10 units; 2.5 μ l) and the mixture was stirred for 17 hours. Attempts were made to follow the reaction by normal phase HPLC but this proved inconsistent. The mixture was extracted with DCM (3 x 2 ml) and the organics were dried over Na_2SO_4 . The solvent was removed *in vacuo* to give a yellow oil. Column chromatography (silica gel, 50 % EtOAc in hexane) gave **12** (0.179 g) and **14** (0.010 g).

$$[\alpha]_D (c = 51 \text{ mg ml}^{-1}) = + 2.88^\circ.$$

(c) using *Subtilisin Carlsberg*

14 (0.52 mmol; 0.120 g) was dissolved in 1 : 1 acetone : pH7 buffer¹⁰⁴ (3 ml) and a catalytic amount of *Subtilisin Carlsberg* was added. After 3 days the mixture was poured into water (5 ml) and extracted with DCM (3 x 5 ml). The combined organic layers were dried over Na_2SO_4 and the solvents removed *in vacuo* to give a viscous oil which was shown to be identical to **14**.

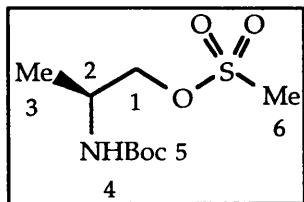
(\pm)-3-N-(Phenylacetamido)-butan-1-ol (17)


To a solution of rac-**12** (5 mmol; 0.945 g) in MeOH (2 ml) at 0 °C was added trifluoroacetic acid (15 ml). After TLC indicated the consumption of rac-**12** (1

hour), Et_2O was added (50 ml) and the solvents were removed *in vacuo*. The addition of ether/evaporation was repeated twice and the residue was then taken up in CHCl_3 (5 ml) and cooled to 0 °C. Pyridine (2 eq.; 10 mmol; 0.8 ml) and then phenylacetyl chloride (1.2 eq.; 6 mmol; 0.8 ml) were added dropwise. The mixture was stirred for 1 hour after which the mixture was poured into saturated NaHCO_3 solution (10 ml) and washed with water (5 ml) and brine (5 ml). The organics were dried over Na_2SO_4 and the solvent removed *in vacuo* to give a yellow oil. Column chromatography (silica gel, 50 % EtOAc in hexane, $R_F = 0.25$) gave **17** as a clear oil (0.404 g, 39 %).

^1H NMR (200 MHz) (CDCl_3); δ 1.05 (d, $J = 6.5$, H-4, 3H), 1.55-1.82 (m, H-2, 2H), 3.52 (d, $J = 8.2$, H-6, 2H), 4.97-5.23 (m, H-1,-3, 4H), 5.45-5.53 (bs, H-5, 1H), 7.23-7.41 (m, H-7, 5H), OH missing.

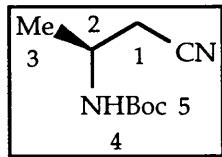
Attempted resolution of **17** with PGA-450 to give optically pure 3-amino butan-1-ol


To a solution of **17** (0.5 mmol; 0.104 g) in methanol (2 ml) and buffer¹⁰⁴ (pH7.6; 6.6 ml) was added PGA-450 (10 units; 0.075 g). The mixture was stirred at 30 °C for 17 hours after which the enzyme was filtered and washed with methanol (5 ml). The solvents were removed *in vacuo* to give only rac-3-amino butan-1-ol (0.04 g).

2-(S)-N-(tert-Butoxycarbonyl)-alaninol (18)⁶⁶

To a suspension of (S)-alanine (100 mmol; 8.91 g) in dry THF (250 ml), was added NaBH₄ (2.45 eq.; 245 mmol; 9.3 g), followed by a solution of iodine (2 eq.; 200 mmol; 25.3 g) in THF (75 ml). The mixture was heated under reflux for 18 hours and then allowed to cool, followed by a methanol quench (100 ml). The solvent was removed *in vacuo* and the resultant residue was dissolved in aqueous NaOH (2 M : 100 ml), water (50 ml) and THF (50 ml). Boc₂O (1 eq.; 100 mmol; 21.8 g) was then added and the mixture stirred for 24 hours. It was then poured into water (100 ml) and extracted with DCM (3 x 200 ml). The combined organic layers were dried over Na₂SO₄ and the solvents removed *in vacuo* to give **18** as a white solid (15.15 g, 87 %) (m. pt. = 57 - 58°C, Lit. = 59 - 60°C).

¹H NMR (200 MHz) (CDCl₃); δ 1.14 (d, J = 7.1, H-3, 3H), 1.42 (s, H-5, 9H), 3.50 (dd, J = 11.5, 4.5, H-1, 2H), 3.67-3.83 (m, H-2, 1H), 4.55 (bs, H-4, 1H).


The analytical data were identical to the literature.

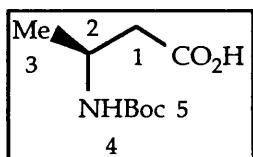
2-(S)-N-(tert-Butoxycarbonyl)-1-(O)-(methane sulfonyl)-alaninol (19)⁶⁶

To a solution of **18** (87 mmol; 15.15 g) in DCM (150 ml) was added TEA (3eq.; 261 mmol; 36.4 ml) at 0 °C. Mesyl chloride (2 eq.; 174 mmol; 13.5 ml) was added over 10 minutes and the mixture was stirred for 1 hour, during which time a yellow precipitate was seen to form. The mixture was poured into saturated NH₄Cl solution (200 ml) and washed with saturated NaHCO₃ solution (200 ml). The solvents were removed *in vacuo* to give **19** as a yellow-orange solid which was used without further purification (21.8 g, 99%).

¹H NMR (200 MHz) (CDCl₃); δ 1.21 (d, J = 7.2, H-3, 3H), 1.43 (s, H-5, 9H), 3.02 (s, H-6, 3H), 3.92-4.05 (bs, H-2, 1H), 4.15 (d, J = 7.0, H-2, 2H), 4.55 (bs, H-4, 1H).

The analytical data were identical to the literature.

2-(S)-N-(tert-Butoxycarbonyl)-aminopropionitrile (20)⁶⁶

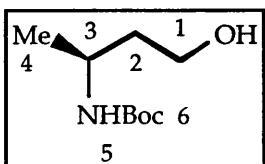

NaCN (7.5 eq.; 650 mmol; 31.98 g) was suspended in a solution of **19** (87 mmol; 21.8 g) in DMF (200 ml), under mechanical stirring. This was heated to 55 °C for 75 minutes. The mixture was cooled to room temperature and

diluted with Et_2O (150 ml). The resultant slurry was filtered under suction through an alumina plug, which was washed with Et_2O (700 ml). The solvents were removed *in vacuo* to give a viscous oil (13.87 g). Column chromatography (silica gel; 30 % EtOAc in hexane) gave a solid (10 g), which was recrystallised from an ether/hexane mixture to give **20** as a white solid (6 g; 38 %) (m. pt. = 67 - 68°C, Lit. = 67 - 69°C).

^1H NMR (200 MHz) (CDCl_3); δ 1.30 (d, J = 7.2, H-3, 3H), 1.43 (s, H-5, 9H), 2.54 (d, J = 7.0, H-1, 2H), 3.92-4.05 (bs, H-2, 1H), 4.55 (bs, H-4, 1H).

The analytical data were identical to the literature.

3-(S)-N-(*tert*-Butoxycarbonyl)-aminobutyric acid (**13**)¹⁰⁶

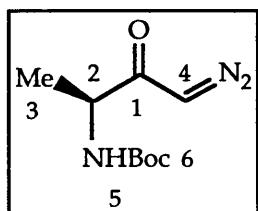


Nitrile **20** (32 mmol; 6 g) was dissolved in concentrated HCl (50 ml) and heated at reflux for 5 hours. The solution was made basic with NaOH solution (5 M; 120 ml) and the water was removed *in vacuo*. The residue was dissolved in NaOH solution (2 M; 30 ml), water (15 ml) and $^t\text{BuOH}$ (5 ml). Boc_2O (1.5 eq.; 48 mmol; 10.46 g) was added and the mixture was stirred overnight. The solution was then cooled to 0 °C and acidified with HCl solution to ca. pH=5. The mixture was extracted with CHCl_3 (3 x 100 ml). The combined organic layers were dried over Na_2SO_4 and the solvents removed *in vacuo* to give the title compound as a white solid (2.01 g; 32 %) (m. pt. = 70 - 71°C, Lit. 76 - 78°C).

¹H NMR (200 MHz) (CDCl₃) δ 1.24 (d, J = 6.8, H-3, 3H), 1.43 (s, H-5, 9H), 2.55 (t, J = 5.1, H-1, 2H), 4.05 (bs, H-2, 1H), 4.93 (bs, H-4, 1H), CO₂H missing.

The analytical data were identical to the literature.

3-(S)-N-(tert-Butoxycarbonyl)-aminobutan-1-ol (12)¹⁰⁶



To a solution of acid (10 mmol; 2.01g) in THF (30 ml) at 0 °C was added TEA (1 eq.; 10 mmol; 1.39 ml) and isobutyl chloroformate (1.1 eq.; 11 mmol; 1.42 ml) dropwise. The mixture was stirred for 1 hour and the cold solution was filtered into an ice cooled flask with the solid being washed with dry THF (20 ml). The filtered solution was then added slowly, by cannula, to an ice cooled solution of NaBH₄ (3 eq.; 30 mmol; 1.13 g) in water (5 ml). the mixture was stirred for 1 hour and was then concentrated *in vacuo*. EtOAc (15 ml) was added and then organics were washed with saturated NaHCO₃ solution (10 ml), brine (10 ml) and then dried over Na₂SO₄. The solvent was removed *in vacuo* to give **12** as a white crystalline solid (1.137 g; 60 %).

¹H NMR (200 MHz) (CDCl₃) δ 1.18 (d, J = 7.20, H-4, 3H), 1.41 (s, H-6, 9H), 1.72-1.79 (m, H-2, 2H), 3.59 (dd, J = 7.2, 3.6, H-1, 2H), 3.73-3.80 (bs, H-3, 1H), 4.52 (bs, H-5, 1H), OH missing.

The analytical data were identical to the literature.

2-(S)-N-(tert-Butoxycarbonyl)-amino-4-diazomethylpropanone (21)¹⁰⁷

The following procedure was modified from the literature.¹⁰⁸

To a solution of (S)-N-(Boc) alanine (10 mmol; 1.87 g) in THF (30 ml) at 0°C, was added TEA (1 eq.; 10 mmol; 1.39 ml) and isobutyl chloroformate (1 eq.; 10 mmol; 1.29 ml) dropwise. The white suspension was left to stir for 30 minutes. Diazomethane (2 eq.; 20 mmol; 0.84 g) was generated and added in the manner described in Chapter 2 by adding ethanolic KOH solution (3.6 g in ethanol (95 %; 8.5 ml)) to Diazald® (mmol; 6.42 g) in ethanol (99 %, 40 ml) dropwise over 10 minutes. The resulting yellow suspension was stirred for a further 3 hours allowing it to come to room temperature. The solution was concentrated *in vacuo* and then diluted with Et₂O (20 ml). The ethereal mixture was washed with water (20 ml), NaHCO₃ solution (20 ml) and brine (20 ml). The organics were then dried over Na₂SO₄ and the solvent was removed *in vacuo* to give the crude product as a yellow solid. This was recrystallised from hexane/ethyl acetate to give 21 as a yellow crystalline solid (1.92 g; 91 %) (m. pt. = 96.5 - 98 °C).

¹H NMR (360 MHz) (CDCl₃); δ 1.32 (d, J = 7.2, H-3, 3H), 1.43 (s, H-6, 9H), 4.11-4.32 (m, H-2, 1H), 5.05 (bs, H-5, 1H), 5.40 (bs, H-4, 1H).

¹³C NMR (90 MHz) (CDCl₃); δ 18.31, 28.25, 53.17, 79.88, 155.10, 194.41, CH=N₂ missing.

mass spectrum (FAB); m/z 236 (45%), 214 (74%), 158 (100%).

$C_9H_{16}N_3O_3$ requires 214.1192, found 214.1180.

I.R.; ν_{max} (cm^{-1}) 3148, 2974, 2246, 1707, 1641.

$[\alpha]_D$ ($c = 9.55 \text{ mg ml}^{-1}$) = - 71.73°.

3-(S)-N-(tert-Butoxycarbonyl)-aminobutyric acid(13)¹⁰⁷

Procedure (a)⁵⁴

Ag_2O (0.4 eq.; 0.8 mmol; 0.2 g), Na_2CO_3 (0.45 eq.; 0.9 mmol; 0.2 g) and $Na_2S_2O_3$ (0.4 eq.; 0.8 mmol; 0.2 g) was dissolved in water (20 ml) and heated to 80 °C. 21 (2 mmol; 0.440 g) in dioxane (10 ml) was added at a rate sufficient to maintain a constant temperature. During this time further Ag_2O (3 x 0.1 g) was added. After all nitrogen evolution had ceased (ca. 20 minutes). the mixture was left to stir for 30 minutes after which it was diluted with water (10 ml), filtered, cooled to 0 °C and extracted with Et_2O (40 ml). The aqueous layer was again cooled in ice, acidified with ice cold HCl solution (1 M; ca. pH = 4) and then extracted with $EtOAc$ (3 x 25 ml). The organics were then dried over Na_2SO_4 and the solvent was removed *in vacuo* to give the title compound as a white solid (0.338 g; 84 %) (m. pt. = 70 - 71 °C).

1H NMR (360 MHz) ($CDCl_3$); δ 1.24 (d, $J = 6.8$, 3H), 1.43 (s, 9H), 2.55 (t, $J = 5.1$, 2H), 4.05 (bs, 1H), 4.93 (bs, 1H).

^{13}C NMR (90 MHz) ($CDCl_3$); δ 20.30, 28.24, 40.52, 79.49, 155.15, 176.53.

mass spectrum (FAB), m/z 226 (M+Na), 204 (M+1), 104 (M-Boc).

$C_9H_{17}NO_4Na$ requires 226.1055, found 226.2050.

I.R.(CHCl₃); ν_{max} (cm⁻¹) 3610, 3435, 3015, 1812, 1707.

$[\alpha]_D$ (c = 20.0 mg ml⁻¹) = -12.70°.

CHN; requires C = 53.19, H = 8.43, N = 6.89; found C = 53.23, H = 8.42, N = 6.85.

Procedure (b)¹⁰⁹

21 (15 mmol; 3.15 g) was dissolved in THF : water solution (1:1; 150 ml) and AgOAc (0.4 eq.; 6 mmol; 1 g) was added. Nitrogen was given off and the mixture turned black. After 1 hour saturated NaHCO₃ solution was added (50 ml) and the mixture was extracted with Et₂O (100 ml). The aqueous layer was cooled to 0 °C, acidified with HCl (1 M; ca. pH = 4) and extracted with CHCl₃ (3 x 100 ml). The organics were then dried over Na₂SO₄ and the solvent was removed *in vacuo* to give the title compound as a white solid (2.306 g; 88 %).

The analytical data were identical to the literature and to those obtained from procedure (a).

3-(S)-N-(*tert*-Butoxycarbonyl)-aminobutan-1-ol (12)

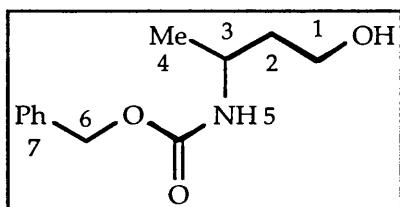
13 was reduced to **12** by conversion to its mixed anhydride with isobutyl chloroformate followed by reduction with sodium borohydride as detailed above (95 %). The optical purity of the **12** was found to be greater than 99 % by HPLC of its *O*-(*S*)-Mosher's ester (silica column, 10 % ethyl acetate in

hexane, RT = 7.15 minutes (100 %), (S)-Moshers ester of **rac-12**, RT₁ = 6.64 minutes (52 %), RT₂ = 7.16 minutes (48 %), 260 nm).

¹H NMR (360 MHz) (CDCl₃); δ 1.18 (d, J = 7.2, 3H), 1.21-1.37 (m, 2H), 1.41 (s, 9H), 1.72-1.79 (m, 2H), 3.59 (dd, J = 7.2, 3.6, 2H), 3.73-3.80 (bs, 1H), 4.52 (bs, 1H), OH missing.

¹³C NMR (90 MHz) (CDCl₃); δ 21.47, 28.32, 40.75, 43.03, 58.92, 79.72, C=O missing.

mass spectrum (FAB); m/z 212 (81%), 190 (9%), 134 (100%).

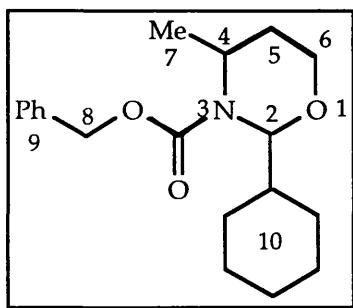

C₉H₁₉O₃NNa : requires 212.1263 found 212.1260.

I.R. (nujol mull); ν_{max} (cm⁻¹) 3400, 3175, 1700.

[α]_D (c=17mg ml⁻¹) = + 9.00°.

CHN; requires C=57.15, H=10.12, N=7.01; found C=57.17, H=10.35, N=7.23.

(±)-3-N-(Benzylloxycarbonyl)amino butan-1-ol (22)⁶⁶


To a suspension of 3-amino butanoic acid (5 mmol; 0.533 g) in dry THF (10 ml), NaBH₄ (2.5 eq.; 12.5 mmol; 0.465 g) was added, followed by a solution of iodine (2.1 eq.; 10.5 mmol; 1.357 g) in THF (5 ml). The mixture was heated under reflux for 18 hours and then allowed to cool, followed by a methanol quench (20 ml). The solvent was removed *in vacuo* and the resultant

residue was dissolved in aqueous NaOH (2 M; 10 ml) and THF (5 ml). The mixture was cooled to 0 °C and benzyl chloroformate (1.3 eq.; 6.5 mmol; 1.11 g) was added over 30 minutes whilst the pH was kept at ~10. After a further 30 minutes the mixture was neutralised and extracted with EtOAc (3 x 60 ml). The combined organic layers were dried over Na₂SO₄ and the solvents removed *in vacuo* to give a viscous brown oil. Column chromatography (silica gel; 1:1 EtOAc : hexane; R_F = 0.25) yielded a viscous clear oil which crystallised on standing (0.574 g; 52 %).

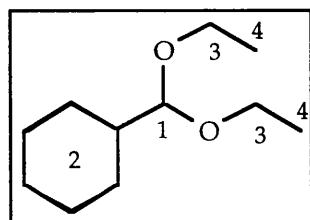
¹H NMR (200 MHz) (CDCl₃); δ 1.22 (d, J = 6.6, H-4, 3H), 1.36-1.43 (m, H-2, 1H), 1.79-1.86 (m, H-2, 1H), 3.03 (dd, J = 11.2, 5.8, O-H, 1H), 3.64 (t, J = 7.0, H-1, 2H), 3.94-3.98 (m, H-3, 1H), 4.71 (bs, H-5, 1H), 5.11 (s, H-6, 2H), 7.31-7.40 (m, H-7, 5H).

The analytical data obtained were identical to the literature.

N-(Benzylloxycarbonyl)-2(S⁺)-cyclohexyl-4(S⁺)-methyl-1,3-tetrahydrooxazine (23)⁶⁶

22 (2.05 mmol; 0.46 g), cyclohexanecarboxaldehyde (1 eq.; 2.05 mmol; 0.25 ml) and a trace of pTsOH were heated in dry benzene (10 ml) under reflux for 1 hour. The mixture was poured into NaHCO₃ (30 ml) and extracted with

EtOAc (3 x 25 ml). The combined organic layers were dried over Na_2SO_4 and the solvent removed *in vacuo* to give a pale yellow oil. Column chromatography (silica gel, 15 % EtOAc in hexane; $R_F = 0.28$) gave **23** as a clear viscous oil (0.303 g; 50 %)

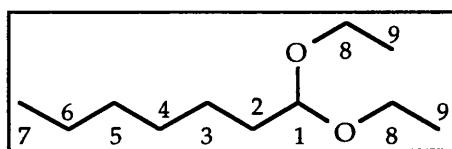

^1H NMR (200 MHz) (CDCl_3); δ 1.31 (d, $J = 7.2$, H-7, 3H), 1.50-1.82 (m, H-10, 11H), 1.92-2.13 (m, H-5, 2H), 3.61 (m, $J = 11.9, 4.3$, H-6, 1H), 3.91 (m, $J = 11.2, 3.24$, H-6, 1H), 4.42 (m, $J = 7.20, 3.00$, H-4, 1H), 5.12 (s, H-8, 2H), 5.23 (d, $J = 10.80$, H-2, 1H), 7.30-7.40 (m, H-9, 5H).

All other data were identical to the literature.

General procedure for the synthesis of diethyl acetals (**24a-f**)

To a stirred solution of aldehyde (10 mmol) in dry Et_2O (20 ml) was added MgSO_4 , pTsOH (cat.) and dry ethanol (4 eq.; 40 mmol; 3.4 ml). The solution stirred overnight, filtered (the filtrate being washed with Et_2O (3 x 10 ml)) and then poured into saturated aqueous NaHCO_3 solution (30 ml). The organic layer was washed with water (3 x 30 ml) and dried over Na_2SO_4 . The solvents were removed *in vacuo* to give the required acetal.

Cyclohexanecarboxaldehyde diethyl acetal (**24a**)¹¹⁰

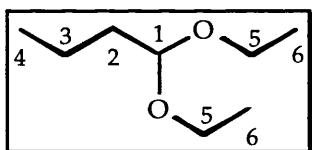


Yield = 71 % (clear oil).

¹H NMR (200 MHz) (CDCl₃); δ 1.20 (t, J = 7.0, H-4, 6H), 1.35-1.80 (m, H-2, 11H), 3.42-3.74 (m, H-3, 4H), 4.12 (d, J = 7.2, H-1, 1H).

The analytical data were identical to the literature.

Heptaldehyde diethyl acetal (24b)¹¹¹

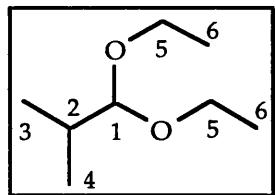


yield = 67 % (clear oil).

¹H NMR (200 MHz) (CDCl₃); δ 0.88 (t, J = 6.8, H-7, 3H), 1.20 (t, J = 7.0, H-9, 6H), 1.30 (m, H-3,-4,-5,-6, 8H), 1.59 (m, H-2, 2H), 3.43-3.71 (m, H-8, 4H), 4.48 (t, J = 5.8, H-1, 1H).

The analytical data were identical to the literature.

Butyraldehyde diethyl acetal (24c)¹¹²

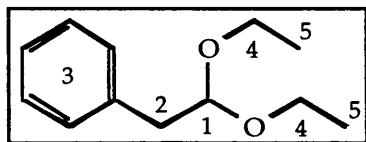

The procedure used was identical to the general procedure except that the solvents were removed by fractional distillation due to the volatility of the product.

yield = 66 % (clear oil).

¹H NMR (200 MHz) (CDCl₃); δ 0.93 (t, J = 7.2, H-4, 3H), 1.20 (t, J = 7.0, H-6, 6H), 1.31-1.46 (m, H-3, 2H), 1.55-1.64 (m, H-2, 2H), 3.43-3.70 (m, H-5, 4H), 4.49 (t, J = 5.0, H-1, 1H).

The analytical data were identical to the literature.

^{iso}Butyraldehyde diethyl acetal (24d)¹¹³



yield = 71 % (clear oil).

¹H NMR (200 MHz) (CDCl₃); δ 0.93 (d, J = 6.7, H-3,-4, 6H), 1.22 (t, J = 7.0, H-6, 6H), 1.89 (sep, J = 6.7, H-2, 1H), 3.46-3.74 (m, H-5, 4H), 4.11 (d, J = 6.8, H-1, 1H).

The analytical data were identical to the literature.

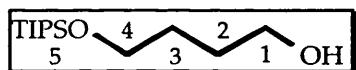
Phenylacetaldehyde diethyl acetal (24g)¹¹⁴

yield = 86 % (clear oil.)

¹H NMR (200 MHz) (CDCl₃); δ 1.17 (t, J = 7.0, H-5, 6H), 2.92 (d, J = 5.8, H-2, 2H), 3.38-3.73 (m, H-4, 4H), 4.64 (t, J = 5.8, H-1, 1H), 7.21-7.40 (m, H-3, 5H).

The analytical data were identical to the literature.

6-(Triisopropylsilyloxy)hexan-1-ol

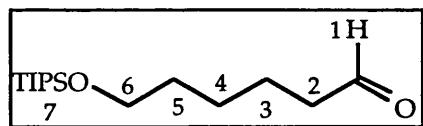


To a solution of hexan-1,6-diol (18.3 mmol; 2.16 g) in THF (33 ml) was added NaH (18.3 mmol; 0.729 g). After 1 hour triisopropylchlorosilane (18.3 mmol;

3.9 ml) was added and the mixture was stirred for a further hour. The mixture was poured into Et₂O (30 ml) and washed with washed with NaHCO₃ solution (30 ml) and brine (30 ml). The organics were then dried over Na₂SO₄ and the solvent was removed *in vacuo* to give a clear oil. Column chromatography (silica gel; 20 % EtOAc in hexane; R_F = 0.24) gave the title compound as a clear viscous oil (1.98 g; 42 %).

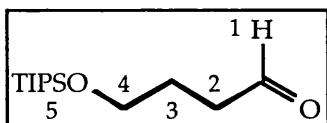
¹H NMR (300 MHz) (CDCl₃); δ 1.04 (s, H-7, 21H), 1.34-1.42 (m, H-3,-4, 4H), 1.51-1.62 (m, H-2,-5, 4H), 3.64 (q, J = 7.2, H-1,-6, 4H). mass spectrum (APCI⁺); m/z 275 (M+1).

4-(Triisopropylsilyloxy)butan-1-ol¹¹⁵



The above procedure was applied to butan-1,4-diol to give the title compound.

Yield = 88 % (clear viscous oil).


¹H NMR (300 MHz) (CDCl₃); δ 1.13 (s, H-5, 21H); 1.70-1.81 (m, H-2,-3, 4H); 3.72 (t, J = 5.8, H-4, 2H); 3.81 (t, J = 5.5, H-1, 2H).

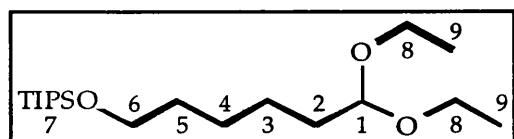
The analytical data were identical to the literature.

6-(Triisopropylsilyloxy)hexanal

To a solution of 6-triisopropylsilyloxyhexan-1-ol (1.94 mmol; 0.5 g) in THF (1.5 ml), DMSO (13 ml) and TEA (1.94 ml) were added. $\text{SO}_3\text{.pyridine}$ complex (5.82 mmol; 0.77 g) was added over 10 minutes. The reaction was stirred for 45 minutes after which it was cooled to 0 °C, acidified with HCl (1 M; ca. pH = 4) and extracted with EtOAc : hexane (1: 1; 3 x 20 ml). The organics were washed with water (40 ml) and dried over Na_2SO_4 . The solvents were removed *in vacuo* to give a clear oil. Column chromatography (alumina; 15 % EtOAc in hexane; R_F = 0.6) gave the title compound as a clear viscous oil (0.454 g; 91 %).

^1H NMR (300 MHz) (CDCl_3); δ 1.04 (s, H-7, 21H), 1.31-1.62 (m, H-3,-4,-5, 6H), 2.44 (m, J = 7.2, 1.8, H-2, 2H), 3.68 (t, J = 6.2, H-6, 2H), 9.76 (t, J = 1.8, H-1, 1H). mass spectrum (APCI $^+$); m/z 273 (M+1).

4-(Triisopropylsilyloxy)butanal¹¹⁵

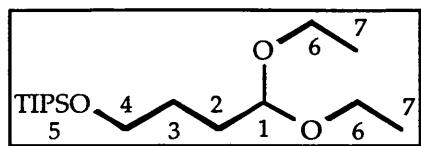

The above procedure was applied to 4-triisopropylsilyloxybutan-1-ol to give the title compound.

Yield = 100 % (clear viscous oil).

¹H NMR (300 MHz) (CDCl₃); δ 1.04 (s, H-5, 21H); 1.88 (pent., J = 7.0, H-3, 2H); 2.55 (m, J = 7.2, 1.8, H-2, 2H); 3.74 (t, J = 6.0, H-4, 2H); 9.81 (t, J = 1.7, H-1, 1H).

The analytical data were identical to the literature.

6-(Triisopropylsilyloxy)hexanal diethyl acetal (24e)



To a solution of 6-triisopropylsilyloxyhexanal (1.5 mmol; 0.385 g) in dry ethanol (30 ml) was added a trace amount of PPTS. The mixture was heated under Dean-Stark conditions for 1 hour. The solution was then cooled and poured into saturated NaHCO₃ solution (20 ml) and then concentrated *in vacuo*. The residue was taken up in water and extracted with DCM (2 x 30 ml). The organics were dried over Na₂SO₄ and the solvent removed *in vacuo* to give the title compound as a clear oil (0.264 g; 53 %) (b. pt. = 42°C @ 10 mm Hg).

¹H NMR (300 MHz) (CDCl₃); δ 1.07 (s, H-7, 21H), 1.22 (t, J = 7.1, H-9, 6H), 1.36-1.42 (m, H-3,-4, 4H), 1.55-1.65 (m, H-2,-5, 4H), 3.45-3.56 (m, H-8, 2H), 3.60-3.79 (m, H-6,-8, 4H), 4.45 (t, J = 5.8, H-1, 1H).

¹³C NMR (90 MHz) (CDCl₃); δ 11.94, 15.25, 17.93, 24.53, 25.66, 32.88, 33.58, 60.77, 63.26, 102.86.

mass spectrum (ES⁺); m/z 301 (M-OEt, 80%), 273 (M-73, 100%).

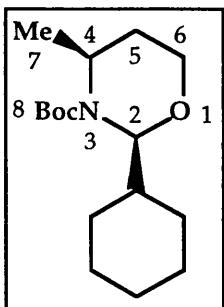
4-(Triisopropylsilyloxy)butanal diethyl acetal (24f)

The above procedure was applied to 4-triisopropylsilyloxybutanal to give the title compound.

Yield = 72 % (clear oil).

B. pt. = 69 °C @ 7 mm Hg.

¹H NMR (300 MHz) (CDCl₃); δ 1.05 (s, H-5, 21H); 1.20 (t, J = 7.1, H-7, 6H); 1.57-1.62 (m, H-3, 2H); 1.66-1.80 (m, H-2, 2H), 3.44-3.52 (m, H-6, 2H); 3.60-3.66 (m, H-6, 2H); 3.69 (t, J = 6.2, H-4, 2H), 4.51 (t, J = 5.8, H-1, 1H).


¹³C NMR (90 MHz) (CDCl₃); δ 11.92, 15.25, 17.93, 28.15, 29.92, 60.75, 63.03, 102.81.

mass spectrum (APCI⁺); m/z 318 (M), 317 (M-1), 316 (M-2).

General procedure for the synthesis of N-(*tert*-butoxycarbonyl)-2-(S)-alkyl-4-(S)-methyl-1,3-tetrahydrooxazines (25a-f)

12 (1.247 g : 6.6 mmol), diethyl acetal (24a-f) (1 equivalent) and a trace of PPTS were heated in dry benzene (50 ml) under reflux for 2 hours. The mixture was cooled to room temperature, washed with NaHCO₃ (50 ml), water (2 × 20 ml) and brine (20 ml). The combined organic layers were dried over Na₂SO₄ and the solvent removed *in vacuo* to give a pale yellow oil. Column chromatography gave the required compound (for the eluent and stationary phase, see the R_F value for each compound).

N-(tert-Butoxycarbonyl)-2-(S)-cyclohexyl-4-(S)-methyl-1,3-tetrahydrooxazine
(25a)

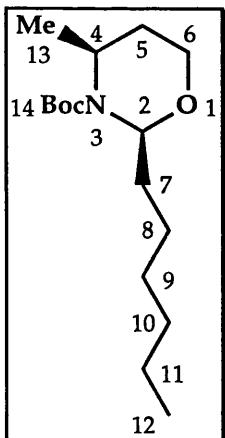
yield = 76 % (white crystalline solid).

R_F = 0.50 (silica gel, 20 % EtOAc in hexane).

M.pt. = 47.1 - 48.5 °C.

1H NMR (360 MHz) ($CDCl_3$); δ 1.31 (d, J = 7.2, H-8, 3H), 1.45 (s, H-9, 9H), 1.50-1.82 (m, cyhex, 11H), 1.92-2.13 (m, H-5, 2H), 3.61 (m, H-6, 1H), 3.91 (m, H-6, 1H), 4.42 (m, H-4, 1H), 5.18 (d, J = 10.8, H-2, 1H).

^{13}C NMR (90 MHz) ($CDCl_3$); δ 20.78, 25.82, 26.25, 28.29, 28.36, 29.63, 40.90, 43.83, 56.20, 79.67, 85.43, 154.29.


mass spectrum (FAB); m/z 284 (22%), 200 (21%), 184 (100%).

$C_{16}H_{30}NO_3$ requires 284.2226 found 284.2220.

I.R.; ν_{max} (cm^{-1}) 2985, 1695, 1177.

$[\alpha]_D$ (c = 45 mg ml $^{-1}$) = + 2.71°.

CHN requires C=68.05, H=9.99, N=4.96; found C=67.76, H=10.23, N=4.98.

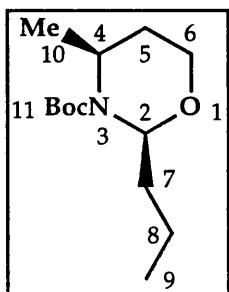
N-(tert-Butoxycarbonyl)-2-(S)-hexyl-4-(S)-methyl-tetrahydro-1,3-oxazine (25b)

Yield = 83 % (viscous oil).

R_F = 0.48 (alumina, 10 % EtOAc in hexane).

1H NMR (360 MHz) ($CDCl_3$); δ 0.87 (t, J = 6.9, H-12, 3H), 1.28 (d, J = 7.0, H-13, 3H), 1.30-1.38 (m, H-8,-9,-10,-11, 8H), 1.44 (s, H-14, 9H), 1.62-1.70 (m, H-7, 2H), 1.82-1.92 (m, H-5, 1H), 2.00-2.13 (m, H-5, 1H), 3.58 (m, H-6, 1H), 3.92 (m, H-6, 1H), 4.35 (m, H-4, 1H), 5.34 (dd, J = 9.0, 4.7, H-2, 1H).

^{13}C NMR (90 MHz) ($CDCl_3$); δ 13.93, 21.49, 22.52, 25.68, 28.41, 28.91, 29.46, 31.76, 33.76, 43.58, 56.37, 79.62, 82.75, 153.59.


mass spectrum (FAB); m/z 286 (21%), 200 (20%), 186 (100%).

$C_{16}H_{32}NO_3$ requires 286.2382, found 286.2370.

I.R.; ν_{max} (cm^{-1}) 2929, 2865, 1695, 1177.

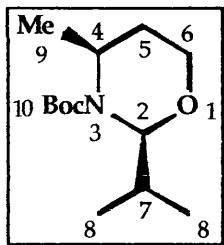
$[\alpha]_D$ (c = 15.4 mg ml^{-1}) = + 7.53°.

N-(tert-Butoxycarbonyl)-2-(S)-propyl-4-(S)-methyl-1,3-tetrahydrooxazine
(25c)

Yield = 69 % (viscous oil).

R_F = 0.48 (alumina, 10 % EtOAc in hexane).

1H NMR (360 MHz) ($CDCl_3$); δ 0.95 (t, J = 7.2, H-9, 3H), 1.28 (d, J = 6.8, H-10, 3H), 1.32-1.41 (m, H-8, 2H), 1.46 (s, H-11, 9H), 1.58-1.68 (m, H-7, 2H), 1.85-1.92 (m, H-5, 1H), 2.00-2.08 (m, H-5, 1H), 3.58 (m, H-6, 1H), 3.92 (m, H-6, 1H), 4.35 (m, H-4, 1H), 5.36 (dd, J = 9.0, 4.3, H-2, 1H).


^{13}C NMR (90 MHz) ($CDCl_3$); δ 13.77, 18.96, 21.52, 28.45, 29.50, 35.99, 43.62, 56.40, 79.68, 82.52, 153.63.

mass spectrum (FAB); m/z 244 (15%), 144 (100%).

$C_{13}H_{25}NO_3$ requires 244.1913 found 244.1920.

I.R.; ν_{max} (cm^{-1}) 2966, 2873, 1695, 1177.

$[\alpha]_D$ (c = 100 mg ml^{-1}) = + 7.77°.

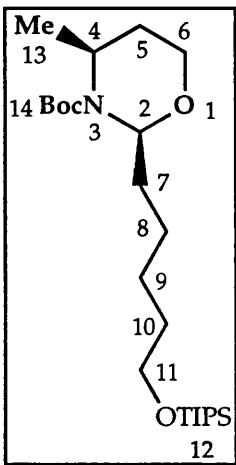
N-(tert-Butoxycarbonyl)-2-(S)-isopropyl-4-(S)-methyl-1,3-tetrahydrooxazine(25d)

Yield = 55 % (viscous oil).

R_F = 0.35 (alumina, 10 % EtOAc in hexane).

^1H NMR (300 MHz) (CDCl_3); δ 0.90 (d, J = 6.7, H-8, 3H), 1.00 (d, J = 6.5, H-8, 3H), 1.32 (d, J = 7.0, H-9, 3H), 1.48 (s, H-10, 9H), 1.60-1.62 (m, H-7, 1H), 2.03-2.12 (m, H-5, 1H), 2.29-2.39 (m, H-5, 1H), 3.62 (m, H-6, 1H), 3.93 (m, H-6, 1H), 4.45 (m, H-4, 1H), 5.11 (d, J = 10.2, H-2, 1H).

^{13}C NMR (75 MHz) (CDCl_3); δ 18.45, 19.20, 20.75, 28.28, 29.50, 31.26, 43.76, 56.10, 79.69, 86.11, C=O missing.


mass spectrum (FAB); m/z 244 (9%), 144 (15%), 116 (100%).

$\text{C}_{13}\text{H}_{26}\text{NO}_3$ requires 244.1913, found 244.1900.

I.R.; ν_{max} (cm^{-1}) 2972, 2874, 1694, 1176.

$[\alpha]_D$ (c = 6.85 mg mL^{-1}) = + 31.82°.

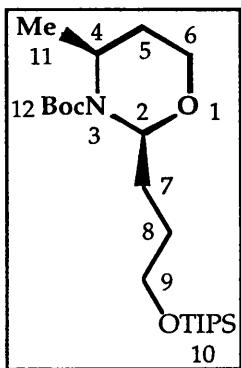
N-(tert-Butoxycarbonyl)-2-(S)-(11-triisopropylxyloxy)pentyl-4-(S)-methyl-tetrahydro-1,3-oxazine (25e)

Yield = 63 % (viscous oil).

R_F = 0.52 (alumina, 10 % EtOAc in hexane).

^1H NMR (300 MHz) (CDCl_3); δ 1.04 (s, H-12, 21H), 1.24 (d, J = 7.2, H-13, 3H), 1.35-1.43 (m, H-8,-9, 4H), 1.42 (s, H-14, 9H), 1.52-1.57 (m, H-10, 2H), 1.62-1.70 (m, H-7, 2H), 1.86-1.95 (m, H-5, 1H), 2.01-2.16 (m, H-5, 1H), 3.60 (m, H-6, 1H), 3.64 (t, J = 6.5, H-11, 2H), 3.91 (m, H-6, 1H), 4.31 (m, H-4, 1H), 5.34 (dd, J = 9.0, 4.3, H-2, 1H).

^{13}C NMR (75 MHz) (CDCl_3); δ 11.96, 17.99, 21.49, 25.50, 25.62, 28.42, 29.43, 32.97, 33.90, 43.57, 56.36, 63.26, 82.74, 153.59, $\text{SiCH}(\text{CH}_3)_2$ missing.


mass spectrum (FAB); m/z 444 (4%), 344 (100%).

$\text{C}_{24}\text{H}_{50}\text{NO}_4\text{Si}$ requires 444.3509 found 444.3500.

I.R.; ν_{max} (cm^{-1}) 2939, 2866, 1695, 1176, 1105.

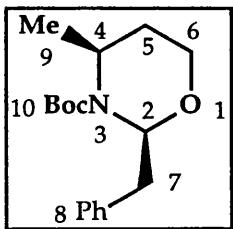
$[\alpha]_D$ (c = 76 mg ml^{-1}) = + 1.37°.

N-(tert-Butoxycarbonyl)-2-(S)-(9-triisopropylxyloxy)propyl-4-(S)-methyl-tetrahydro-1,3-oxazine (25f)

Yield = 74 % (viscous oil).

R_F = 0.65 (alumina, 10 % EtOAc in hexane).

1H NMR (300 MHz) ($CDCl_3$); δ 1.08 (s, H-10, 21H); 1.30 (d, J = 7.0, H-11, 3H); 1.48 (s, H-12, 9H); 1.59 -1.84 (m, H-5,-7,-8, 5H); 2.00-2.15 (m, H-5, 1H); 3.61 (m, H-6, 1H); 3.74 (t, J = 6.1, H-9, 2H); 3.96 (m, H-6, 1H); 4.38 (m, H-4, 1H) 5.40 (dd, J = 9.0, 4.8, H-2, 1H)


^{13}C NMR (75 MHz) ($CDCl_3$); δ 11.86, 17.90, 21.26, 28.30, 29.30, 30.22, 43.50, 53.30, 56.06, 62.89, 79.62, 82.58, 153.48.

mass spectrum (FAB); m/z 416 (7%), 316 (100%).

$C_{22}H_{46}NO_4Si$ requires 416.3196; found 416.3180.

I.R.; ν_{max} (cm^{-1}) 2942, 2866, 1695, 1175, 1105.

$[\alpha]_D$ ($c = 5 \text{ mg ml}^{-1}$) = - 0.78°.

N-(tert-Butoxycarbonyl)-2(S)-benzyl-4(S)-methyl-1,3-tetrahydrooxazine (25g)

Yield = 51 % (white crystalline solid)

R_F = 0.33 (alumina, 4 % EtOAc in Toluene)

m.pt. = 62.8 - 64.0 °C

1H NMR (250 MHz) ($CDCl_3$); δ 1.37 (d, J = 7.0, H-9, 3H), 1.44 (s, H-10, 9H), 1.48-1.56 (m, H-5, 1H), 2.07-2.17 (m, H-5, 1H), 2.96 (dd, J = 13.7, 3.8, H-7, 1H), 3.17 (dd, J = 13.7, 9.0, H-7, 1H), 3.62 (m, H-6, 1H), 4.07 (m, H-6, 1H), 4.43 (m, H-4, 1H), 5.51 (dd, J = 9.0, 3.8, H-2, 1H), 7.20-7.35 (m, H-8, 5H).

^{13}C NMR (75 MHz) ($CDCl_3$); δ 21.80, 28.33, 29.30, 40.30, 43.50, 56.86, 57.50, 79.89, 84.17, 126.31, 128.26, 129.22, 137.75, C=O missing.

mass spectrum (FAB); m/z 292 (6%), 200 (10%), 192 (100%).

I.R.; ν_{max} (cm^{-1}) 2995, 1694, 1176.

$[\alpha]_D$ (c = 2.1 mg ml $^{-1}$) = + 35.71°.

CHN requires C = 70.07, H = 8.65, N = 4.81; found C = 69.95, H = 8.44, N = 4.79.

Attempted ring opening of rac-25a with BTMSA in the presence of $TiCl_4$

To a stirred solution of 25a (0.5 mmol; 0.141 g) and bis(trimethylsilyl)acetylene (6 eq.; 3 mmol; 0.511 g) in dry DCM (10 ml), under N_2 , at -78 °C, was added $TiCl_4$ in DCM (1.75 eq.; 0.875 mmol; 0.875 ml).

After 20 minutes the reaction was quenched (1:1 MeOH : DCM, 10 ml) and

the clear solution was warmed to room temperature. The mixture was washed with HCl (1 M; 10 ml) and water (2 x 15 ml). The organic layer was dried over Na_2SO_4 and the solvent removed *in vacuo* to give a clear oil. Column chromatography (silica gel, 2 % EtOAc in toluene) gave **rac-12** (70 mg; 74 % recovery). This was repeated a further two times.

Attempted ring opening of **25a** with BTMSA in the presence of SnBr_4

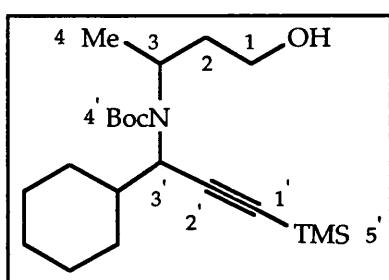
To a stirred solution of **25a** (0.5 mmol; 0.141 g) and bistrimethylsilylacetylene (6 eq.; 3 mmol; 0.511 g) in dry DCM (10 ml), under N_2 , at -78 °C, was added SnBr_4 in DCM (1.75 eq.; 0.875 mmol; 0.875 ml). After 20 minutes the reaction was quenched (1:1 MeOH : DCM, 10 ml) and the clear solution was warmed to room temperature. The mixture was washed with HCl (1M; 10 ml) and water (2 x 15 ml). The organic layer was dried over Na_2SO_4 and the solvent removed *in vacuo* to give a clear oil. Column chromatography (silica gel, 2 % EtOAc in toluene) gave **rac-12** (63 mg; 69 % recovery). This was repeated a further two times.

Attempted ring opening of **25a** with (trimethylsilyl)acetylene in the presence of $\text{BF}_3\text{Et}_2\text{O}$

To a stirred solution of **25a** (0.25 mmol; 65 mg) and trimethylsilylacetylene (8 eq.; 2 mmol; 0.196 g) in dry DCM (10 ml), under N_2 , at -78 °C, was added boron trifluoride etherate (2 eq.; 0.5 mmol; 0.071 ml). After 1 hour no reaction was evident, although ^1H NMR of the crude reaction mixture

indicated the formation of some of the required compound. An attempt was made to isolate this but this proved unsuccessful. This reaction was repeated at -20 °C, 0 °C and 20 °C, but no reaction was observed.

Attempted ring opening of 25a with the Grignard reagent of (trimethylsilyl)acetylene


To a stirred suspension of EtMgBr (3M in THF; 1.6 mmol; 0.53 ml) in dry THF (1 ml) at 0 °C, under N₂, was added trimethylsilylacetylene (4.1 eq.; 1.6 mmol; 0.22 ml) over 2 -3 minutes. A brown precipitate was formed which dissolved on heating to 30 °C. After 15 minutes a solution of 25a (0.39 mmol; 0.111 g) in dry THF (3 ml) was added and the mixture was refluxed overnight. The reaction was quenched with saturated NH₄Cl solution (5 ml) and extracted with Et₂O (3 x 10 ml). The combined organic layers were dried over Na₂SO₄ and the solvents removed *in vacuo* to give a pale yellow oil. Column chromatography gave unreacted 25a and a white crystalline solid (20 mg). Analysis by NMR and mass spectrometry failed to reveal the identify the solid. This reaction was repeated a further two times.

Attempted ring opening of 25a with the Grignard reagent of (trimethylsilyl)acetylene in the presence of TiCl₄

To a stirred solution of 25a (0.5 mmol; 130 mg) and TiCl₄ (1M in DCM; 2 eq.; 1 mmol; 1 ml) in dry THF (2 ml) at 0 °C, under N₂, was added a pre-prepared solution of the Grignard reagent of (trimethylsilyl)acetylene (3.04 eq.; 1.52 mmol) in THF (1.5 ml) over 10 minutes. The resulting brown solution turned black over 10 minutes. After 3 hours the reaction was quenched with

saturated NH₄Cl solution (5 ml) and extracted with EtOAc (3x25 ml). The combined organic layers were dried over Na₂SO₄ and the solvents removed *in vacuo* to give a black gum. This proved to be unidentifiable by ¹H NMR.

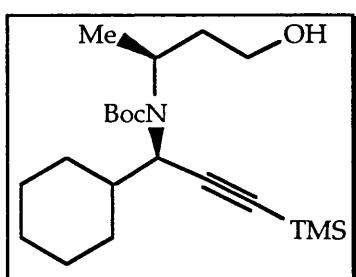
N-(tert-Butoxycarbonyl)-N-(1(R^{*)})-3-trimethylsilyl-1-cyclohexyl-prop-2-ynyl)-3-(S^{*})-amino butan-1-ol (rac-29a)

To a stirred solution of EtMgBr (3 M in THF; 4 eq., 2.4 mmol; 0.79 ml) in dry THF (2.5 ml) at 0 °C, under N₂ was added trimethylsilylacetylene (4.03 eq.; 2.42 mmol; 0.237 g; 0.33 ml). A brown precipitate was formed which dissolved on heating to 30 °C. After fifteen minutes a solution of 25a (0.6 mmol; 0.155 g) in THF (0.5 ml) was added, followed by BF₃.Et₂O (1.17 eq.; 0.7 mmol; 0.1 ml). After 45 minutes the reaction was quenched with saturated NH₄Cl solution (5 ml) and extracted with EtOAc (3 x 25 ml). The combined organic layers were dried over Na₂SO₄ and the solvents removed *in vacuo* to give a viscous brown oil. This was purified by column chromatography (silica gel, 20 % EtOAc in hexane; R_F = 0.20) to give rac-29a as a viscous brown oil (0.121 g; 63 %).

¹H NMR (200 MHz) (CDCl₃); δ 0.18 (s, H-5', 9H), 1.10-1.20 (m, cyhex, 3H), 1.21-1.30 (m, cyhex, 2H), 1.38 (d, J = 6.8, H-4, 3H), 1.47 (s, H-4', 9H), 1.61-1.81 (m, cyhex, 6H), 1.98-2.12 (m, H-2,-3, 3H), 3.52-3.74 (m, H-1,-3', 3H), OH missing.

¹³C NMR (75 MHz) (CDCl₃); δ 0.40, 20.25, 26.98, 29.20, 30.76, 42.36, 50.16, 55.53, 59.53, 60.37, 61.29, 80.74, 81.35, 104.54, 156.28.

mass spectrum (FAB); m/z 404 (50%), 382 (35%), 326 (97%), 282 (100%).


C₂₁H₄₀NO₃Si requires 382.2777, found 382.2760.

I.R.; ν_{max} (cm⁻¹) 3620, 3020, 2153, 1677, 1271.

General procedure for chiral ring opened alcohols (29a-f)

The procedure was the same as for rac-29a.

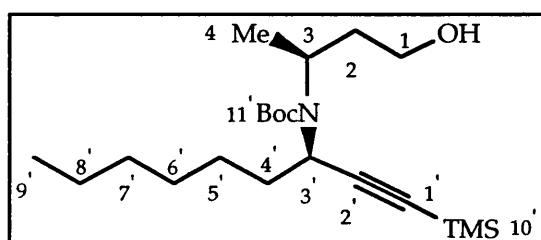
N-(tert-Butoxycarbonyl)-N-(1(R)-3-trimethylsilyl-1-cyclohexyl-prop-2-ynyl)-3(S)-amino butan-1-ol (29a)

Yield = 65 % (viscous yellow oil).

R_F = 0.20 (silica gel, 20 % EtOAc in hexane).

¹H NMR (200 MHz) (CDCl₃); δ 0.18 (s, 9H), 1.10-1.20 (m, 3H), 1.21-1.30 (m, 2H), 1.38 (d, J = 6.8, 3H), 1.47 (s, 9H), 1.61-1.81 (m, 6H), 1.98-2.12 (m, 3H), 3.52-3.74 (m, 3H), OH missing.

^{13}C NMR (75 MHz) (CDCl_3); δ 0.40, 20.25, 26.98, 29.20, 30.76, 42.36, 50.16, 55.53, 59.53, 60.37, 61.29, 80.74, 81.35, 104.54, 156.28.


mass spectrum (FAB); m/z 404 (54%), 382 (33%), 326 (94%), 282 (100%).

$\text{C}_{21}\text{H}_{40}\text{NO}_3\text{Si}$ requires 382.2777, found 382.2760.

I.R.; ν_{max} (cm^{-1}) 3620, 3020, 2153, 1677, 1271.

$[\alpha]_D$ ($c = 4.89 \text{ mg ml}^{-1}$) = + 28.20°.

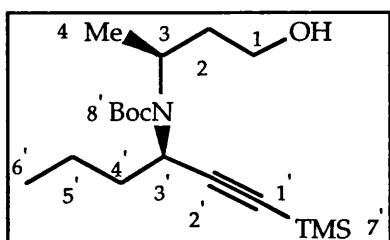
$\text{N-(tert-Butoxycarbonyl)-3'-N-(1(R)-3-trimethylsilyl-1-hexyl-prop-2-ynyl)-3(S)-amino butan-1-ol (29b)}$

Yield = 63 % (viscous yellow oil).

$R_F = 0.23$ (silica gel, 20 % EtOAc in hexane).

^1H NMR (300 MHz) (CDCl_3); δ 0.13 (s, H-10', 9H), 0.87 (m, H-9', 3H), 1.19-1.30 (m, H-4' -> H-8', 10H), 1.28 (d, $J = 6.8$, H-4, 3H), 1.45 (s, H-11', 9H), 1.48-1.95 (m, H-2,-3, 3H), 3.59-3.76 (m, H-1,-3', 3H), OH missing.

^{13}C NMR (90 MHz) (CDCl_3); δ -0.22, 13.92, 19.05, 22.39, 26.40, 28.39, 31.58, 35.13, 37.02, 47.39, 48.29, 58.63, 59.41, 80.13, 80.65, 105.16, 155.39.


mass spectrum (ES^+); m/z 384 (10%), 328 (100%), 284 (16%).

$\text{C}_{21}\text{H}_{42}\text{NO}_3\text{Si}$ requires 384.2934, found 384.2950 (FAB).

I.R.; ν_{\max} (cm⁻¹) 3456, 2960, 2930, 2172, 1682, 1250.

$[\alpha]_D$ (c = 3.98 mg ml⁻¹) = + 23.40°.

N-(tert-Butoxycarbonyl)-3'-N-(1(R)-3-trimethylsilyl-1-propyl-prop-2-ynyl)-3(S)-amino butan-1-ol (29c)

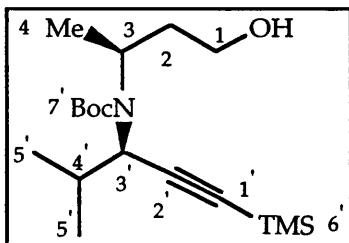
Yield = 63 % (viscous yellow oil).

R_F = 0.21 (silica gel, 20 % EtOAc in hexane).

¹H NMR (250 MHz) (CDCl₃); δ 0.10 (s, H-7', 9H), 0.89 (t, J = 7.2, H-6', 3H), 1.25-1.67 (m, H-4',-5', 4H), 1.28 (d, J = 6.8, H-4, 3H), 1.70-1.95 (m, H-2,-3, 3H), 3.49-3.65 (m, H-1,-3', 3H), OH missing.

¹³C NMR (75 MHz) (CDCl₃); δ 0, 13.79, 19.27, 19.91, 28.31, 28.61, 32.51, 37.60, 48.53, 60.50, 80.37, 105.33, 155.67, 1 × C≡C missing.

mass spectrum (ES⁺); m/z 342 (9%), 286(100%), 242 (94%).


C₁₈H₃₆NO₃Si requires 342.2464, found 342.2450 (FAB).

I.R.; ν_{\max} (cm⁻¹) 3456, 2963, 2934, 2171, 1682, 1251.

$[\alpha]_D$ (c = 4.55 mg ml⁻¹) = + 37.40°.

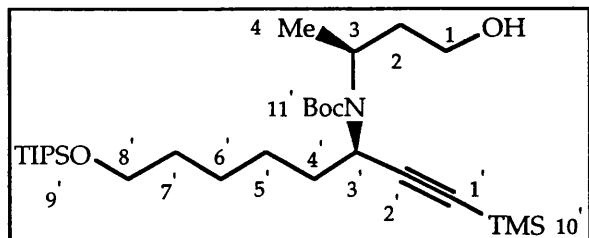
N-(tert-Butoxycarbonyl)-3'-N-(1(R)-3-trimethylsilyl-1-(1-methylethyl)-prop-2-ynyl)-3(S)-amino butan-1-ol (29d)

Yield = 48% (viscous yellow oil).

R_F = 0.23 (silica gel, 20 % EtOAc in hexane).

1H NMR (300 MHz) ($CDCl_3$); δ 0.09 (s, H-6', 9H), 0.84 (d, J = 6.6, H-5', 3H), 0.98-1.01 (m, H-5', 3H), 1.28 (d, J = 6.7, H-4, 3H), 1.42 (s, H-7', 9H), 1.81-2.18 (m, H-4',-2, 3H), 3.41-3.85 (m, H-3',-1,-3, 4H), OH missing.

^{13}C NMR (75 MHz) ($CDCl_3$); δ -0.30, 19.44, 19.69, 20.74, 28.32, 32.21, 37.13, 47.55, 55.73, 58.61, 79.80, 84.84, 105.64, 155.56.


mass spectrum (FAB); m/z 364 (25%), 342 (40%), 241 (70%), 198 (100%).

$C_{18}H_{35}NO_3Si$ requires 342.2464, found 342.2450.

I.R.; ν_{max} (cm^{-1}) 3456, 2967, 2172, 1682, 1250.

$[\alpha]_D$ (c = 5.5 mg ml $^{-1}$) = + 16.85°.

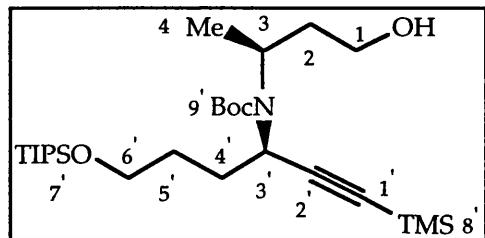
N-(tert-Butoxycarbonyl)-3'-N-(1(R)-3-trimethylsilyl-1-(5-triisopropylsilyloxy pentyl)-prop-2-ynyl)-3(S)-amino butan-1-ol (29e)

Yield = 55% (viscous yellow oil).

R_F = 0.23 (silica gel, 20% EtOAc in hexane).

^1H NMR (300 MHz) (CDCl_3); δ 0.12 (s, H-10', 9H), 1.03 (s, H-9', 21H), 1.10-1.59 (m, H-4' -> -7', 8H), 1.30 (d, J = 6.8, H-4, 3H), 1.44 (s, H-11', 9H), 1.60-2.05 (m, H-2,-3, 3H), 3.52-3.74 (m, H-1,-3', 3H), 3.64 (t, H-8', 2H), 4.12 (bs, OH, 1H).

^{13}C NMR (75 MHz) (CDCl_3); δ -0.18, 11.92, 17.94, 19.05, 25.27, 25.33, 26.40, 28.44, 32.82, 35.28, 47.44, 48.34, 63.16, 80.20, 105.15, 155.43, either 1 x $\text{C}\equiv\text{C}$ or $^t\text{BuCO}$ missing.


mass spectrum (FAB); m/z 564 (12%), 442 (100%).

$\text{C}_{29}\text{H}_{59}\text{NO}_4\text{Si}_2\text{Na}$ requires 564.3880, found 564.3860.

I.R.; ν_{max} (cm^{-1}) 3457, 2940, 2866, 2172, 1682, 1250, 1113.

$[\alpha]_D$ (c = 3.89 mg ml $^{-1}$) = + 15.70°.

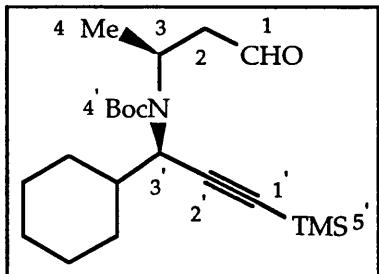
N-(tert-Butoxycarbonyl)-3'-N-(1(R)-3-trimethylsilyl-1-(3-triisopropylsilyloxypropyl)-prop-2-ynyl)-3(S)-amino butan-1-ol (29f)

Yield = 46 % (yellow oil).

R_F = 0.27 (silica gel; 20 % EtOAc in hexane).

1H NMR (300 MHz) ($CDCl_3$); δ 0.19 (s, H-8', 9H); 1.14 (s, H-7', 2H); 1.28-1.35 (m, H-5', 2H); 1.33 (d, J = 6.8, H-4, 3H); 1.52 (s, H-9', 9H); 1.57-1.81 (m, H-4', 2H); 1.98-2.01 (m, H-2,-3, 3H); 3.57-3.67 (m, H-1, 2H); 3.70-3.81 (m, H-6',-3', 3H), OH missing.

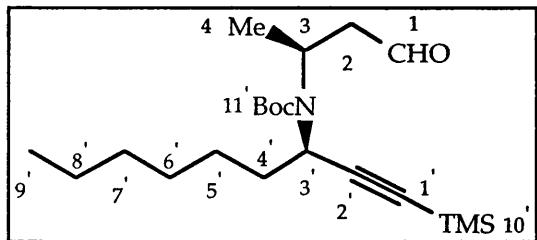
^{13}C NMR (75 MHz) ($CDCl_3$); δ -0.18, 11.92, 17.94, 19.05, 26.40, 28.44, 32.82, 35.28, 47.44, 48.34, 62.77, 80.15, 104.95, 155.48, either 1 x $C\equiv C$ or tBuCO missing. mass spectrum (FAB); m/z 536 (11%), 414 (100%).


$C_{27}H_{55}NO_4Si_2Na$ requires 536.3567; found 536.3580.

I.R.; ν_{max} (cm^{-1}) 3471, 2943, 2867, 2172, 1693, 1250, 1114.

$[\alpha]_D$ (c = 7.5 mg ml^{-1}) = + 16.9°.

General procedure for aldehydes 30a-f

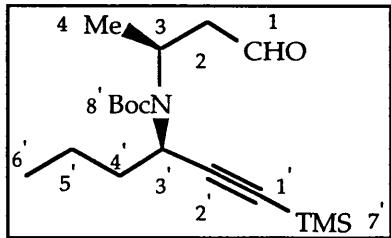

Alcohols **29a-e** were converted to their aldehyde derivatives by activated DMSO oxidation using the procedure of Baker and Castro⁸⁵ already described for 6-Triisopropylsilyloxyhexanal.

N-(tert-Butoxycarbonyl)-N-(1(R)-3-trimethylsilyl-1-cyclohexyl-prop-2-ynyl)-3(S)-amino butan-1-al (30a)

Yield = 99 % (viscous yellow oil).

R_F = 0.49 (silica gel, 20 % EtOAc in hexane).

1H NMR (300 MHz) ($CDCl_3$); δ 0.18 (s, H-5', 9H), 1.10-1.20 (m, cyhex, 3H), 1.21-1.30 (m, cyhex, 2H), 1.38 (d, J = 7.2, H-4, 3H), 1.47 (s, H-4', 9H), 1.61-1.81 (m, cyhex, 6H), 1.98-2.12 (m, H-2,-3, 3H), 3.52-3.74 (m, H-3', 1H), 9.70 (s, H-1, 1H)

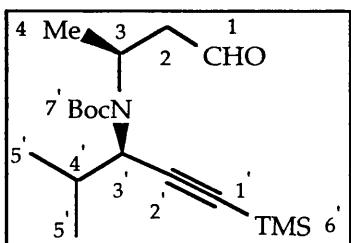

N-(tert-Butoxycarbonyl)-N-(1(R)-3-trimethylsilyl-1-hexyl-prop-2-ynyl)-3(S)-amino butan-1-al (30b)

Yield = 95 % (viscous yellow oil).

R_F = 0.48 (silica gel, 20 % EtOAc in hexane).

1H NMR (300 MHz) ($CDCl_3$); δ 0.13 (s, H-10', 9H), 0.87 (m, H-9', 3H), 1.16-1.32 (m, H-4' -> -8', 10H), 1.37 (d, J = 6.5, H-4, 3H), 1.46 (s, H-11', 9H), 1.48-1.95 (m, H-2,-3, 3H), 3.59-3.76 (m, H-3', 1H), 9.74 (s, H-1, 1H)

N-(tert-Butoxycarbonyl)-3'-N-(1(R)-3-trimethylsilyl-1-propyl-prop-2-ynyl)-3(S)-amino butan-1-al (30c)

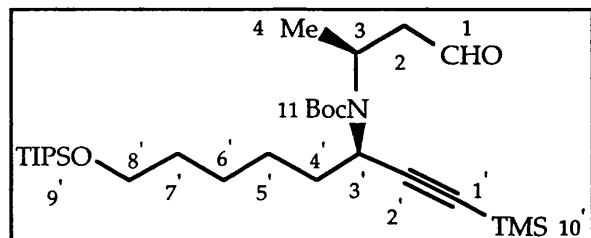


Yield = 71 % (viscous yellow oil).

R_F = 0.49 (silica gel, 20 % EtOAc in hexane).

1H NMR (300 MHz) ($CDCl_3$); δ 0.17 (s, H-7', 9H), 0.92 (t, J = 7.0, H-6', 3H), 1.25-1.35 (m, H-5', 2H), 1.39 (d, J = 6.0, H-4, 3H), 1.48 (s, H-8', 9H), 1.57-1.62 (m, H-4',-2,-3, 5H), 4.04-4.17 (m, H-3', 1H), 9.75 (s, H-1, 1H).

N-(tert-Butoxycarbonyl)-3'-N-(1(R)-3-trimethylsilyl-1-(1-methylethyl)-prop-2-ynyl)-3(S)-amino butan-1-al (30d)

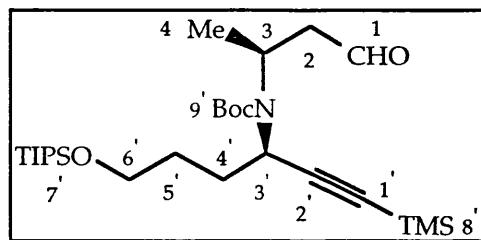


Yield = 84 % (viscous yellow oil).

R_F = 0.50 (silica gel, 20 % EtOAc in hexane).

1H NMR (300 MHz) ($CDCl_3$); δ 0.19 (s, H-6', 9H), 0.87-0.99 (m, H-5', 3H), 1.01-1.08 (m, H-5', 3H), 1.42 (d, J = 7.3, H-4, 3H), 1.47 (s, H-7', 9H), 1.49-1.62 (m, H-2,-4', 3H), 1.79-1.95 (m, H-3, 1H), 4.07-4.15 (m, H-3', 1H), 9.79 (t, J = 1.4, H-1, 1H).

N-(tert-Butoxycarbonyl)-3'-N-(1(R)-3-trimethylsilyl-1-(5-triisopropylsilyloxy pentyl)-prop-2-ynyl)-3(S)-amino butan-1-al (30e)



Yield = 89 % (viscous yellow oil).

R_F = 0.52 (silica gel, 20 % EtOAc in hexane).

1H NMR (300 MHz) ($CDCl_3$); δ 0.10 (s, H-10', 9H), 0.89 (s, H-9', 21H), 1.24-1.28 (m, H-5' -> -7', 6H), 1.30 (d, J = 6.8, H-4, 3H), 1.41 (s, H-11', 9H), 1.45-1.58 (m, H-4',-2,-3, 5H), 3.59 (t, J = 6.5, H-8', 2H), 3.99-4.04 (m, H-3', 1H), 9.67 (t, J = 1.7, H-1, 1H).

N-(tert-Butoxycarbonyl)-3'-N-(1(R)-3-trimethylsilyl-1-(3-triisopropylsilyloxy propyl)-prop-2-ynyl)-3(S)-amino butan-1-ol (30f)

Yield = 100 % (yellow oil).

R_F = 0.50 (silica gel; 20 % EtOAc in hexane).

1H NMR (300 MHz) ($CDCl_3$); δ 0.21 (s, H-8', 9H), 1.14 (s, H-7', 21H), 1.25-1.30 (m, H-5', 2H), 1.39 (d, J = 7.0, H-4, 3H), 1.52 (s, H-9', 9H), 1.57-1.81 (m, H-4', 2H), 1.98-2.01 (m, H-2,-3, 3H), 3.68 (t, J = 6.6, H-6', 2H), 4.08-4.20 (m, H-3', 1H), 9.72 (s, H-1, 1H).

Attempted synthesis of N-(tert-butoxycarbonyl)-3-(trimethylsilyl)-1-cyclohexyl-prop-2-yn-1-amine

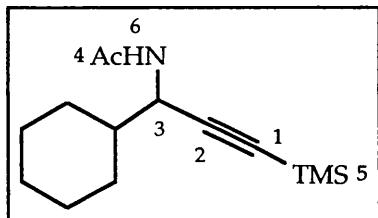
To a solution of **rac-30a** (0.5 mmol; 0.190 g) in THF (0.1 ml) was added NaOH (2 M; 0.4 ml). The mixture was stirred for 1.5 hours, by which time the aldehyde appeared to be consumed by TLC. The mixture was then extracted with CHCl₃ (3x4 ml), the organics dried over Na₂SO₄ and the solvents removed *in vacuo* to give a yellow oil (0.180 g). This was shown to be starting material by ¹H NMR.

Attempted synthesis of N-(tert-butoxycarbonyl)-3-(trimethylsilyl)-1-cyclohexyl-prop-2-yn-1-amine

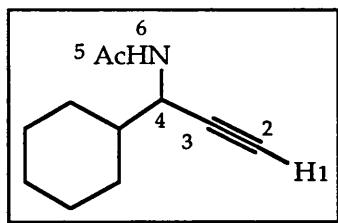
A solution of **rac-30a** (0.079 mmol; 0.030 g) in MeOH (0.3 ml) was stirred over basic resin (Amberlite IRA 904) for 2 days. No reaction was observed and the starting material was recovered.

Attempted synthesis of N-(tert-butoxycarbonyl)-3-(trimethylsilyl)-1-cyclohexyl-prop-2-yn-1-amine

Rac-30a (0.079 mmol; 0.030 g) and piperidium acetate (0.01 mmol, 0.0015 g) were dissolved in benzene (1 ml) and the mixture was heated to reflux for 24 hours. No reaction was observed and the starting material was recovered.



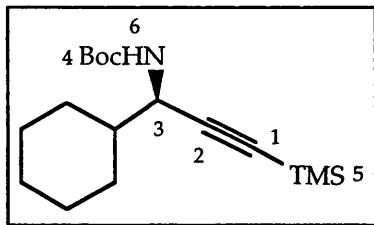
N-(Acetimido)-3-(trimethylsilyl)-3-cyclohexyl-prop-2-yn-1-amine (rac-34)


To a solution of **rac-30a** (0.079 mmol; 0.030 g) in THF (0.5 ml) was added HCl (2 M; 1.5 ml) and the solution was heated at reflux for 3 hours whereupon a

brown precipitate was seen to form and TLC indicated the complete consumption of starting material. The solvents were removed *in vacuo* to give a white solid. This was dissolved in CHCl₃ (1 ml) and Et₃N (2.53 eq.; 0.2 mmol; 0.028 ml). Ac₂O (3.09 eq.; 0.24 mmol; 0.022 ml) was added and the mixture stirred for 2 hours. The mixture was poured into water (2 ml) and extracted with CHCl₃ (3 x 2 ml). The organics were dried over Na₂SO₄ and the solvent removed *in vacuo* to give a yellow oil. Column chromatography (silica gel, 45 % EtOAc in hexane) gave two spots; a yellow oil (rac-34, 0.012 g, 60 %, R_F = 0.37) and a white solid (N-(acetimido)-3-cyclohexyl-prop-1-yneamine, rac-35, 0.002 g, 12 %, R_F = 0.23).

Rac-34

¹H NMR (200 MHz) (CDCl₃); δ 0.05 (s, H-5, 9H), 1.40-1.78 (m, cyhex, 11H), 1.95 (s, H-4, 3H), 4.60 (dd, J = 9.2, 6.3, H-3, 1H), 5.60 (bd, J = 8.2, H-7, 1H). mass spectrum (FAB); m/z 252 (M+1).


Rac-35

¹H NMR (200 MHz) (CDCl₃); δ 1.40-1.78 (m, cyhex, 11H), 1.95 (s, H-5, 3H), 2.20 (d, J = 2.8, H-1, 1H), 4.60 (m, H-4, 1H), 5.6 (m, H-6, 1H).
 mass spectrum (FAB); m/z 180 (M+1).

General procedure for the conversion of aldehydes 30a-e into (R)-N-(tert-butoxycarbonyl)-amines 36a-f

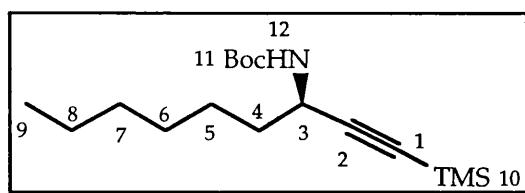
To a solution of aldehyde (0.079 mmol) in THF (0.5 ml) was added HCl (2 M; 1.5 ml) and the solution was heated at reflux for 3 hours whereupon a brown precipitate was seen to form and TLC indicated the complete consumption of starting material. The solvents were removed *in vacuo* to give an off-white solid. This was dissolved in DCM (1 ml) and cooled to 0°C. Et₃N (2.53 eq.; 0.2 mmol; 0.028 ml) was added followed by a solution of Boc₂O (3.01 eq.; 0.24 mmol; 0.022 ml) in DCM (0.5 ml). The mixture was stirred overnight whereupon it was poured into water (2 ml) and extracted with CHCl₃ (3 x 2 ml). The organics were dried over Na₂SO₄ and the solvent removed *in vacuo* to give a yellow oil. Column chromatography gave the required product.

(R)-N-(tert-Butoxycarbonyl)-3-(trimethylsilyl)-1-cyclohexyl-prop-2-yn-1-amine (36a)

Yield = 70 %.

R_F = 0.52 (silica gel; 20 % EtOAc in hexane)

1H NMR (300 MHz) ($CDCl_3$); δ 0.17 (s, H-5, 9H); 1.00-1.41 (m, cyhex, 6H); 1.46 (s, H-4, 9H); 1.62-1.93 (m, cyhex, 5H); 4.35 (bs, H-3, 1H); 4.72 (bs, H-6, 1H).
mass spectrum (FAB); m/z 332, 308.


$C_{17}H_{30}NO_2Si$ requires 308.2046, found 308.2030.

$C_{17}H_{31}NO_2SiNa$ requires 332.2022, found 332.2010.

I.R.; ν_{max} (cm^{-1}) 3619, 3020, 2931, 2171, 1679, 1215.

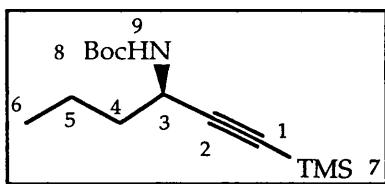
$[\alpha]_D$ ($c = 2.9 \text{ mg ml}^{-1}$) = + 35.86°.

(R)-N-(tert-Butoxycarbonyl)-1-(trimethylsilyl)-non-1-yn-3-amine (36b)

Yield = 68 %.

R_F = 0.53 (silica gel; 20 % EtOAc in hexane)

¹H NMR (300 MHz) (CDCl₃); δ 0.18 (s, H-10, 9H), 0.92 (t, J = 7.0, H-9, 3H), 1.23-1.40 (m, H-7,-8, 4H), 1.49 (s, H-11, 9H), 1.58-1.62 (m, H-4 → -6, 6H), 4.41 (bs, H-3, 1H), 4.70 (bs, H-12, 1H).


¹³C NMR (75 MHz) (CDCl₃); δ 0, 13.70, 14.11, 18.93, 22.58, 25.55, 28.43, 28.20, 29.76, 31.74, 36.47, 80.05, 87.50, 105.82, 154.70
mass spectrum (FAB); m/z 312 (10%), 256 (100%).

C₁₇H₃₄NO₂Si requires 312.2359, found 312.2370.

I.R.; ν_{max} (cm⁻¹) 3448, 2961, 2929, 2254, 1708, 1250.

$[\alpha]_D$ (c = 5 mg ml⁻¹) = + 23.00°.

(R)-N-(tert-Butoxycarbonyl)-1-(trimethylsilyl)-hex-1-yn-3-amine (36c)

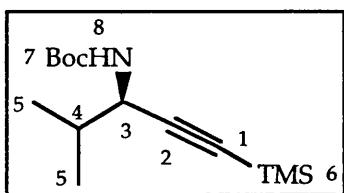
Yield = 65 %.

R_F = 0.50 (silica gel; 20%EtOAc in hexane)

¹H NMR (300 MHz) (CDCl₃); δ 0.18 (s, H-7, 9H), 0.97 (t, J = 7.0, H-6, 3H), 1.23-1.36 (m, H-5, 2H), 1.45 (s, H-8, 9H), 1.58-1.65 (m, H-4, 2H), 4.40 (bs, H-3, 1H), 4.70 (bs, H-9, 1H).

¹³C NMR (75 MHz) (CDCl₃); δ 0, 13.70, 18.93, 28.43, 31.75, 67.16, 105.76, 154.68

^tBuCO and 1x C≡C missing.


mass spectrum (FAB); m/z 270 (9%), 256 (80%), 214 (100%).

$C_{14}H_{28}NO_2Si$ requires 270.1889, found 270.1870.

I.R.; ν_{\max} (cm^{-1}) 3448, 2963, 2931, 2254, 1708, 1250.

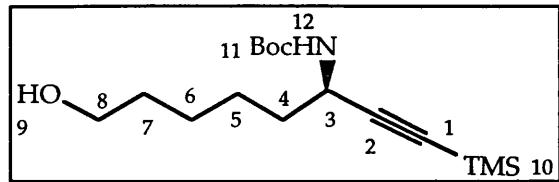
$[\alpha]_D$ ($c = 4.7 \text{ mg ml}^{-1}$) = + 25.20°.

(R)-N-(tert-Butoxycarbonyl)-1-(trimethylsilyl)-1-(4-methyl)-pent-1-yn-3-amine (36d)

Yield = 71 %.

$R_F = 0.50$ (silica gel; 20 %EtOAc in hexane)

^1H NMR (300 MHz) (CDCl_3); δ 0.14 (s, H-6, 9H), 0.95 (d, $J = 6.9$, H-5, 6H), 1.44 (s, H-7, 9H), 1.87 (m, $J = 6.6$, H-4, 1H), 4.29 (bs, H-3, 1H), 4.77 (bs, H-8, 1H).


^{13}C NMR (75 MHz) (CDCl_3); δ -0.19, 17.31, 18.60, 28.23, 33.03, 49.24, 80.05, 88.14, 103.81, 154.80.

mass spectrum (FAB); m/z 270 (14%), 214 (100%), 170 (75%).

$C_{14}H_{28}NO_2Si$ requires 270.1889, found 270.1880.

I.R.; ν_{\max} (cm^{-1}) 3448, 2963, 2930, 2254, 1708, 1250.

$[\alpha]_D$ ($c = 5.15 \text{ mg ml}^{-1}$) = + 18.60°.

(R)-N-(tert-Butoxycarbonyl)-6-amino-8-trimethylsilyl-oct-7-yn-ol (36e)

Yield = 35 %.

R_F = 0.27 (silica gel; 20 %EtOAc in hexane).

1H NMR (300 MHz) ($CDCl_3$); δ 0.16 (s, H-10, 9H), 1.41 (s, H-11, 9H), 1.49-1.70 (m, H-5,-6,-7, 6H), 1.78-1.82 (m, H-4, 2H), 3.50 (bs, H-9, 1H), 3.58 (t, J = 6.5, H-8, 2H), 4.34 (bs, H-3, 1H), 4.92 (bd, J = 8.2, H-12, 1H).

^{13}C NMR (75 MHz) ($CDCl_3$); δ 0.16, 25.10, 28.28, 32.45, 36.04, 36.36, 43.32, 62.56, 70.89, 105.32, 154.82, t BuCO missing.

mass spectrum (FAB); m/z 336 (16%), 314 (15%), 258 (100%), 214 (30%).

$C_{16}H_{32}NO_3Si$ requires 314.2151, found 314.2140.

I.R.; ν_{max} (cm^{-1}) 3620, 3450, 2961, 2929, 2254, 1708, 1250.

$[\alpha]_D$ (c = 1.2 mg ml $^{-1}$) = + 36.70°.

(R)-N-(tert-Butoxycarbonyl)-4-amino-6-trimethylsilyl-hex-5-yn-ol (36f)

Yield = 77 %.

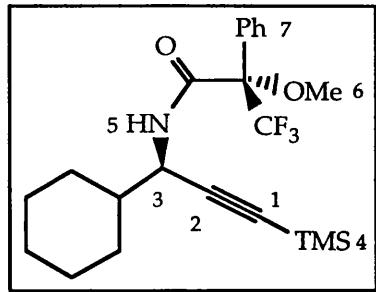
R_F = 0.25 (silica gel; 20%EtOAc in hexane)

¹H NMR (300 MHz) (CDCl₃); δ 0.14 (s, H-8, 9H), 1.44 (s, H-9, 9H), 1.60-1.80 (m, H-5,-4, 4H), 2.10 (bs, H-7, 1H), 3.61-3.78 (m, H-6, 2H), 4.43 (bs, H-3, 1H), 4.88 (bd, J = 6.2, H-10, 1H).

¹³C NMR (75 MHz) (CDCl₃); δ -0.40, 27.64, 32.44, 47.50, 64.33, 66.38, 81.70, 104.57, 154.58, ^tBuCO missing.

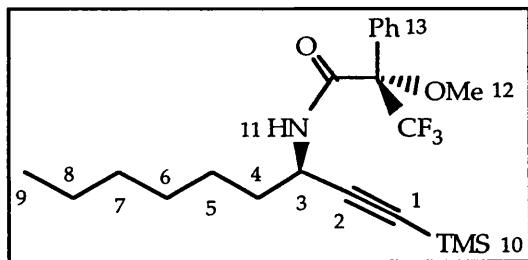
mass spectrum (FAB); m/z 308 (20%), 286 (25%), 230 (100%), 186 (30%).

C₁₄H₂₈NO₃Si requires 286.1838; found 286.1850.


I.R.; ν_{max} (cm⁻¹) 3621, 3448, 2961, 2929, 2254, 1708, 1250.

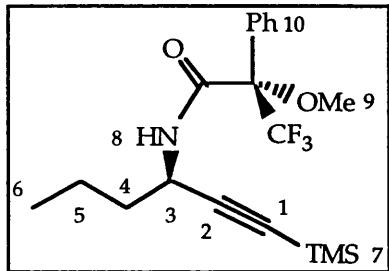
$[\alpha]_D$ (c = 62 mg ml⁻¹) = + 11.70°.

General procedure for the conversion of 36a-e to Mosher's amides 37a-e


To a solution of (N)-Boc-amine (36a-e) (1 mmol) in wet methanol (0.7 ml) was added trifluoroacetic acid (7 ml). The mixture was stirred until no starting material was detectable by TLC. Et₂O (10 ml) was added and the solvents were removed *in vacuo* to give an off-white solid. The solid was dissolved in DCM (3 ml) and the solution was cooled to 0°C. Pyridine (6 ml) was added followed by (S)-methoxytrifluoromethylphenylacetyl chloride (1.4 eq; 1.4 mmol; 0.240 ml). The mixture was stirred for 1 hour, poured into saturated Na₂HCO₃ solution (5 ml) and then extracted with DCM (3 x 5 ml).

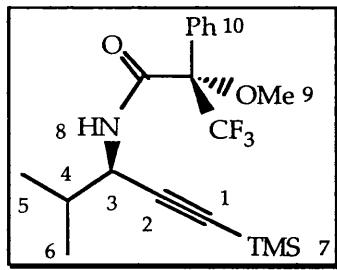
The organics were dried over Na₂SO₄ and the solvents removed to give the crude products 37a-e.

N-((S)-MTPA)-3-(Trimethylsilyl)-1(R)-cyclohexyl-prop-2-yn-amine (37a)


¹H NMR (300 MHz) (CDCl₃); δ 0.14 (s, H-4, 9H), 1.40-1.78 (m, cyhex, 11H), 3.56 (s, H-6, 3H), 4.78 (m, H-3, 1H), 7.38-7.48 (m, H-7, 5H).

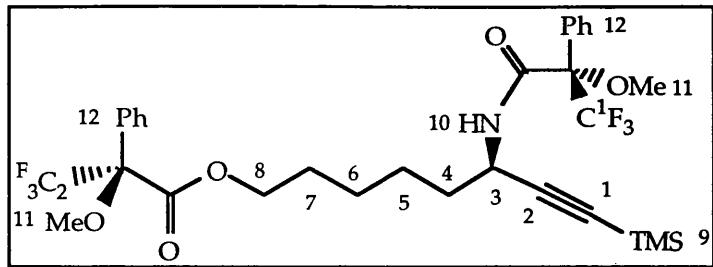
¹⁹F NMR (325.8 MHz) (CDCl₃); δ -69.13 (60 %), -69.19 (40 %).

N-((S)-MTPA)-1-(Trimethylsilyl)-non-1-yn-3(R)-amine (37b)


¹H NMR (300 MHz) (CDCl₃); δ 0.14 (s, H-10, 9H), 0.84-0.94 (m, H-9, 3H), 1.20-1.38 (m, H-6,-7,-8, 6H), 1.53-1.72 (m, H-4,-5, 4H), 3.56 (s, H-12, 3H), 4.80 (m, H-3, 1H), 7.41-7.52 (m, H-13, 5H).

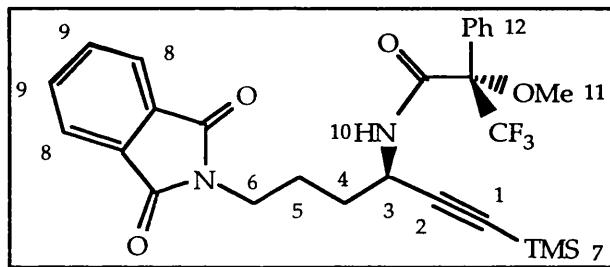
¹⁹F NMR (325.8 MHz) (CDCl₃); δ -69.07 (80 %), -69.22 (20 %).

N-((S)-MTPA)-1-(Trimethylsilyl)-hex-1-yn-3(R)-amine (37c)


¹H NMR (300 MHz) (CDCl₃); δ 0.15 (s, H-7, 9H), 0.89-0.98 (m, H-6, 3H), 1.44-1.65 (m, H-4,-5, 4H), 3.56 (s, H-9, 3H), 4.80 (m, H-3, 1H), 7.31-7.44 (m, H-10, 5H).

¹⁹F NMR (325.8 MHz) (CDCl₃); δ -69.07 (82 %), -69.22 (18 %).

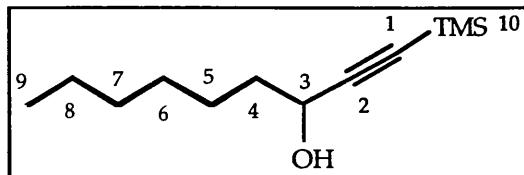
N-((S)-MTPA)-1-(Trimethylsilyl)-4-methyl-pent-1-yn-3(R)-amine (37d)


¹H NMR (300 MHz) (CDCl₃); δ 0.21 (s, H-6, 9H), 1.01 (d, J = 7.0, H-5, 6H), 2.01 (m, H-4, 1H), 3.62 (bs, H-8, 3H), 4.66 (dd, J = 10.5, 8.0, H-3, 1H), 7.35-7.69 (m, H-9, 5H).

¹⁹F NMR (392 MHz) (CDCl₃); δ -76.29 (93 %), -76.32 (7 %).

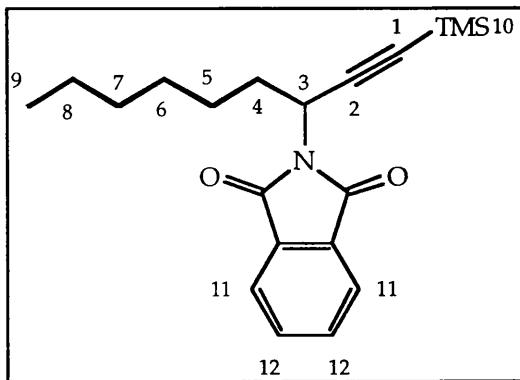
(N, O)-(Bis-(S)-MTPA)-6-amino-8-(trimethylsilyl)-oct-7-yn-1-ol (37e)

¹H NMR (300 MHz) (CDCl₃); δ 0.18 (s, H-9, 9H), 1.47-1.53 (m, H-4,-5,-6, 6H), 1.65-1.82 (m, H-7, 2H), 3.66 (bs, H-11, 6H), 4.35 (t, J = 8.0, H-8, 2H), 4.76 (m, H-3, 1H), 7.30-7.67 (m, H-12, 10H).


¹⁹F NMR (392 MHz) (CDCl₃); δ {-75.20 (95 %), -75.26 (5 %)} (C¹F₃), -75.88 (100%) (C²F₃).

N-((S)-MTPA)-1-(Trimethylsilyl)-6-phthalimido-hex-1-yn-3-amine (37f)

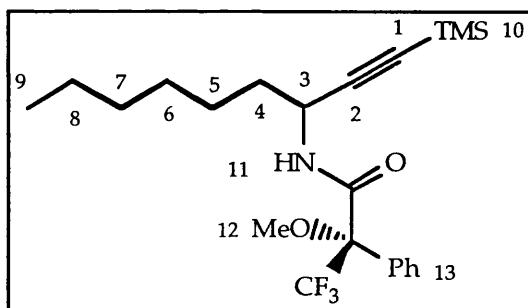
The same procedure as was used for 36a-e was applied to 58 (*vide infra*) to give the required amide.


¹H NMR (300 MHz) (CDCl₃); δ 0.18 (s, H-7, 9H), 1.65-1.97 (m, H-4,-5, 4H), 3.10-3.15 (m, H-6, 2H), 3.74 (bs, H-11, 3H), 4.18 (m, H-3, 1H), 7.30-7.47 (m, H-12, 5H), 7.50-7.60 (m, H-9, 2H), 7.81-7.90 (m, H-8, 2H).

¹⁹F NMR (392 MHz) (CDCl₃); δ -69.33 (76 %), -69.45 (24 %).

1-Trimethylsilyl-non-1-yn-3-ol (rac-38b)

To a stirred solution of EtMgBr (1M in THF; 12 mmol; 12 ml) at 0 °C, was added trimethylsilylacetylene (2 eq.; 12 mmol; 1.96 ml). A brown precipitate was formed which dissolved on heating to 30 °C. A solution of heptanal (6 mmol; 0.84 ml) in THF (6 ml) was then added dropwise. After 1 hour the reaction was quenched with saturated NH₄Cl solution (15 ml) and extracted with EtOAc (3 x 25 ml). The combined organic layers were dried over Na₂SO₄ and the solvents removed *in vacuo* to give a viscous brown oil. This was purified by column chromatography (silica gel, 50 % EtOAc in hexane; R_F = 0.43) to give rac-38b as a viscous brown oil (1.25 g : 98 %).


¹H NMR (360 MHz) (CDCl₃); δ 0.20 (s, H-10, 9H), 0.72 (t, J = 6.5, H-9, 3H), 1.10-1.18 (m, H-6,-7,-8, 6H), 1.21-1.32 (m, H-5, 2H), 1.45-1.55 (m, H-4, 2H), 4.18 (t, J = 6.5, H-3, 1H).

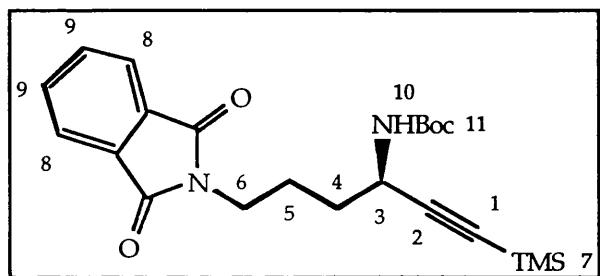
1-Trimethylsilyl-3-phthalimido-non-1-yne (rac-39b)

To a solution of **rac-38b** (5 mmol; 1.06 g), triphenylphosphine (1.1 eq.; 5.5 mmol; 1.44 g) and phthalimide (1.1 eq.; 5.5 mmol; 0.82 g) in THF (25 ml) was added diethylazodicarboxylate (1.12 eq.; 5.6 mmol; 0.87 ml) dropwise over 5 minutes. The mixture was stirred overnight (16 hours) and then the solvents were removed *in vacuo*. Column chromatography (silica gel; 50 % EtOAc in hexane; R_F = 0.49) gave the title compound as a pale yellow oil (1.45 g; 85 %).

^1H NMR (360 MHz) (CDCl_3); δ 0.15 (s, H-10, 9H), 0.71 (t, J = 6.8, H-9, 3H), 1.03-1.34 (m, H-5 \rightarrow H-8, 8H), 1.80-2.01 (m, H-4, 2H), 4.86 (t, J = 7.9, H-3, 1H), 7.41-7.62 (m, H-12, 2H), 7.67-7.72 (m, H-11, 2H).

N-((S)-MTPA)-1-(Trimethylsilyl)-non-1-yn-3-amine (rac-37b)

A solution of **rac-39b** (0.1 mmol; 0.0247 g) in ethanol (1.6 ml) and hydrazine hydrate (25 eq.; 2.5 mmol; 0.072 ml) was heated at reflux for 3 hours after which time the solvent was removed *in vacuo*. The residue was dissolved in DCM (0.3 ml) and the solution was cooled to 0 °C. Pyridine (0.6 ml) was added followed by (S)-methoxytrifluoromethylphenylacetyl chloride (1.1 eq.; 0.11 mmol; 0.020 ml). The mixture was stirred for 1 hour, poured into saturated Na_2HCO_3 solution (1 ml) and then extracted with DCM (3 x 2 ml).


The organics were dried over Na_2SO_4 and the solvents removed to give the crude **rac-37b**.

^1H NMR (250 MHz) (CDCl_3); δ 0.14 (s, H-10, 9H), 0.84-0.94 (m, H-9, 3H), 1.20-1.38 (m, H-6,-7,-8, 6H), 1.53-1.72 (m, H-4,-5, 4H), 3.56 (s, H-12, 3H), 4.80 (m, H-3, 1H), 7.41-7.52 (m, H-13, 5H).

^{19}F NMR (325.8 MHz) (CDCl_3); δ -69.06 (50 %), -69.22 (50 %).

N-(tert-Butoxycarbonyl)-1-(trimethylsilyl)-6-phthalimido-hex-1-yn-3-amine

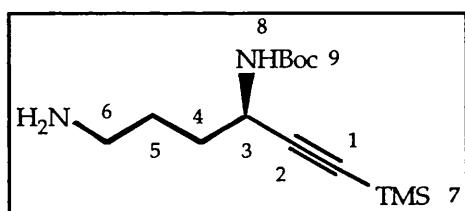
(58)

To a solution of **36f** (0.5 mmol; 0.135 g), triphenylphosphine (1.1 eq.; 0.55 mmol; 0.150 g) and phthalimide (1.1 eq.; 0.55 mmol; 0.082 g) in THF (5 ml) was added diethylazodicarboxylate (1.32 eq.; 0.66 mmol; 0.11 ml) dropwise over 5 minutes. The mixture was stirred overnight (16 hours) and then the solvents were removed *in vacuo*. Column chromatography (silica gel; 50 % EtOAc in hexane; R_F = 0.68) gave the title compound as a pale yellow solid (0.122 g; 60 %).

^1H NMR (300 MHz) (CDCl_3); δ 0.14 (s, H-7, 9H); 1.43 (s, H-11, 9H); 1.63-1.75 (m, H-4, 2H); 1.78-1.87 (m, H-5, 2H); 3.73 (t, J = 7.0, H-6, 2H); 4.10 (m, H-3, 1H); 4.49 (bs, H-10, 1H); 7.72 (m, H-9, 2H); 7.84 (m, H-8, 2H).

^{13}C NMR (75 MHz) (CDCl_3); δ -0.20, 24.86, 28.28, 33.62, 37.51, 43.28, 79.83,

87.93, 104.69, 123.15, 132.10, 133.83, 154.63, 168.24.


mass spectrum (FAB); m/z 437 (25%), 415 (21%), 359 (71%), 315 (83%), 307 (100%).

$\text{C}_{22}\text{H}_{30}\text{N}_2\text{O}_4\text{SiNa}$ requires 437.1873; found 437.1860.

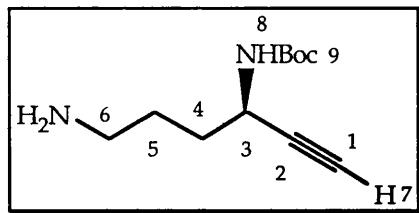
I.R.; ν_{max} (cm^{-1}) 3619, 3020, 2400, 1711, 1216.

$[\alpha]_D$ ($c = 39 \text{ mg ml}^{-1}$) = + 12.69°.

3-N-(tert-Butoxycarbonyl)-6-diamino-1-(trimethylsilyl)-hex-1-yne (59)

A solution of 58 (0.3 mmol; 0.122 g) in ethanol (2 ml) and hydrazine hydrate (26.7 eq; 8 mmol; 0.23 ml) was heated at reflux for 4 hours after which time the solvent was removed *in vacuo*. The residue was triturated with CHCl_3 and filtered. The triturant was concentrated *in vacuo* and the residue was purified by column chromatography (silica gel; 50 % MeOH in CHCl_3 ; R_F = 0.44) to give the title compound as a yellow viscous oil (0.070 g; 83 %).

^1H NMR (300 MHz) (CDCl_3); δ 0.15 (s, H-7, 9H); 1.44 (s, H-9, 9H); 1.50-1.73 (m, H-4,-5, 4H); 2.73 (t, $J = 6.5$, H-6, 2H); 4.41 (bs, H-3, 1H); 4.92 (bs, H-8, 1H).


^{13}C NMR (75 MHz) (CDCl_3); δ -0.22, 28.23, 29.48, 33.66, 41.54, 43.28, 79.65, 82.25, 87.75, 154.69.

mass spectrum (FAB); m/z 285 (M+1).

I.R.; ν_{max} (cm⁻¹) 3671, 3624, 3448, 2961, 2929, 2254, 1708, 1250.

$[\alpha]_D$ (c = 18.5 mg ml⁻¹) = + 21.24°.

3-N-(tert-Butoxycarbonyl)-6-diamino-hex-1-yne (60)

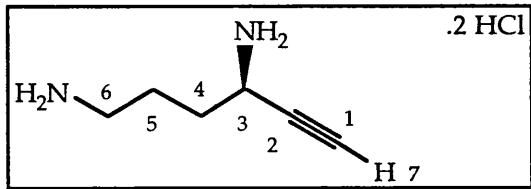
To a solution of **59** (0.13 mmol; 0.037 g) in wet THF (1 ml) at 0°C, was added dropwise TBAF (1M in THF; 1.5 eq.; 0.195 mmol; 0.195 ml). After 30 minutes the mixture was poured into water and was extracted with Et₂O (3 x 2 ml).

The organics were dried over Na₂SO₄ and the solvents removed *in vacuo* to give the title compound as a pale yellow oil (0.0093 g; 34 %).

R_F = 0.61 (25% MeOH in CHCl₃).

¹H NMR (300 MHz) (CDCl₃); δ 1.47 (s, H-9, 9H), 1.51-1.80 (m, H-4,-5, 4H), 2.29 (d, J = 2.3, H-7, 1H), 2.65-2.75 (m, H-6, 2H), 4.45 (bs, H-3, 1H), 4.98 (bs, H-8, 1H).

¹³C NMR (75 MHz) (CDCl₃); δ 19.61, 23.95, 28.23, 33.38, 42.49, 58.73, 70.97, 83.32, 147.51.


mass spectrum (FAB); m/z 213 (24%), 154 (29%), 133 (100%).

C₁₁H₂₁N₂O₂ requires 213.1603; found 213.1620

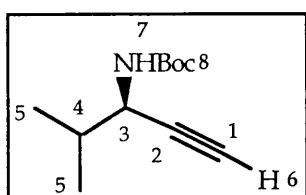
I.R.; ν_{max} (cm⁻¹) 3671, 3624, 3448, 3302, 3019, 2976, 2254, 1708.

$[\alpha]_D$ ($c = 4.65 \text{ mg ml}^{-1}$) = + 8.17°.

Hex-1-yn-3,6-diamine dihydrochloride (57)⁹⁹

60 (0.044mmol; 0.0093g) was dissolved in MeOH (0.5ml) and aqueous HCl (2M, 0.5 ml) was added. The mixture was heated at reflux until no starting material was observed by TLC. The solvents were removed *in vacuo* to give crude product as a yellow solid which was purified by recrystallisation from ether/ethanol to give a (d) as a white solid (0.003 g; 37 %).

¹H NMR (300 MHz) (MeOH); δ 1.91-2.01 (m, H-4,-5, 4H); 3.01-3.15 (m, H-6, 2H); 3.21 (d, $J = 1.99$, H-7, 1H); 4.12-4.27 (m, H-3, 1H).

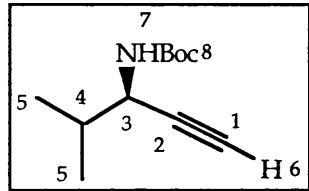

¹³C NMR (75 MHz) (MeOH); δ 24.64, 31.48, 39.91, 63.48, 78.43, 1 carbon missing (either C-4 or C-5).

mass spectrum (FAB); m/z 113 (M+H).

$C_6H_{13}N_2$ requires 113.1079; found 113.1083.

$[\alpha]_D$ ($c = 1.5 \text{ mg ml}^{-1}$; H₂O) = -2.67° (lit. = -20.2°; $c = 0.41$).⁹⁹

(R)-N-(tert-Butoxycarbonyl)-4-methyl-pent-1-yn-3-amine (56)²

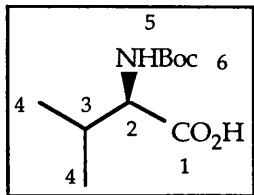


36d (0.63 mmol; 0.170) was treated with TBAF (1M in THF; 2 eq.; 1.26 mmol; 1.26 ml) in wet THF (5ml) as for **60** to give **56** as a clear oil (0.109 g; 88 %). R_F = 0.45 (20% EtOAc in hexane).

^1H NMR (300 MHz) (CDCl_3); δ 0.98 (d, J = 6.8, H-5, 1H); 1.44 (s, H-8, 9H); 1.89 (m, H-4, 1H); 2.25 (d, J = 2.4, H-6, 1H); 4.31 (bs, H-3, 1H); 4.78 (bs, H-7, 1H).

All other data were identical to that of the literature.

(R)-N-(tert-Butoxycarbonyl)-4-methyl-pent-1-yn-3-amine (56)²

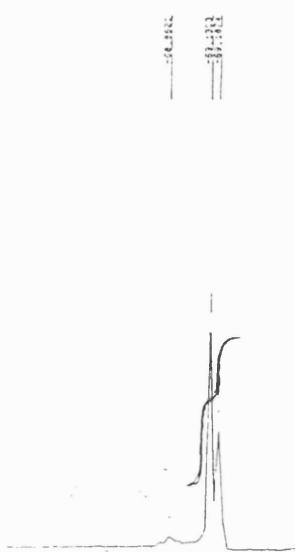


36d (0.011 mmol; 0.0029 g) was suspended in aqueous HCl (6 N; 1 ml) and heated at 100 °C for 2 hours. The solvent was removed *in vacuo* and the white residue was dissolved in DCM (0.4 ml). TEA (0.5 ml) was added followed by a solution of Boc_2O (3 eq.; 0.033 mmol; 0.0072g) in DCM (0.1 ml). The mixture was stirred for 24 hours after which the solvents were removed *in vacuo*. The residue was purified by column chromatography (silica gel; 20 % EtOAc in Hexane; R_F = 0.45) to give the title compound as a clear oil (0.005 g, 23 %).

^1H NMR (300 MHz) (CDCl_3); δ 0.98 (d, J = 6.8, H-5, 1H); 1.44 (s, H-8, 9H); 1.89 (m, H-4, 1H); 2.25 (d, J = 2.4, H-6, 1H); 4.31 (bs, H-3, 1H); 4.78 (bs, H-7, 1H).

$[\alpha]_D$ (c = 0.25 mg ml⁻¹) = + 24.00° (lit. = - 45.3°; c = 1.04).²

All other data were identical to that of the literature.

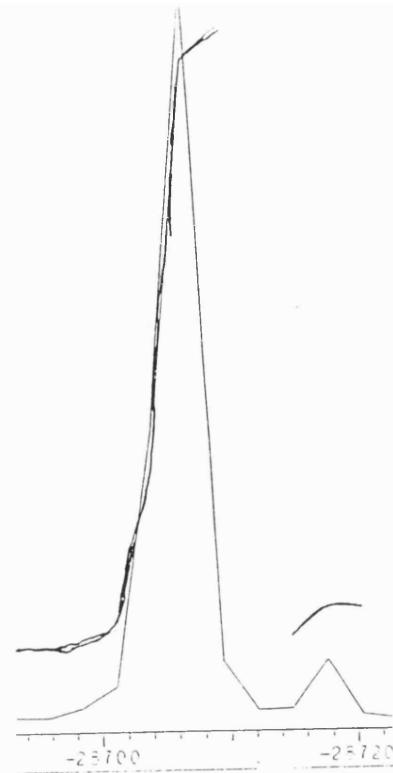

N-(*tert*-butoxycarbonyl)-valine¹¹⁶

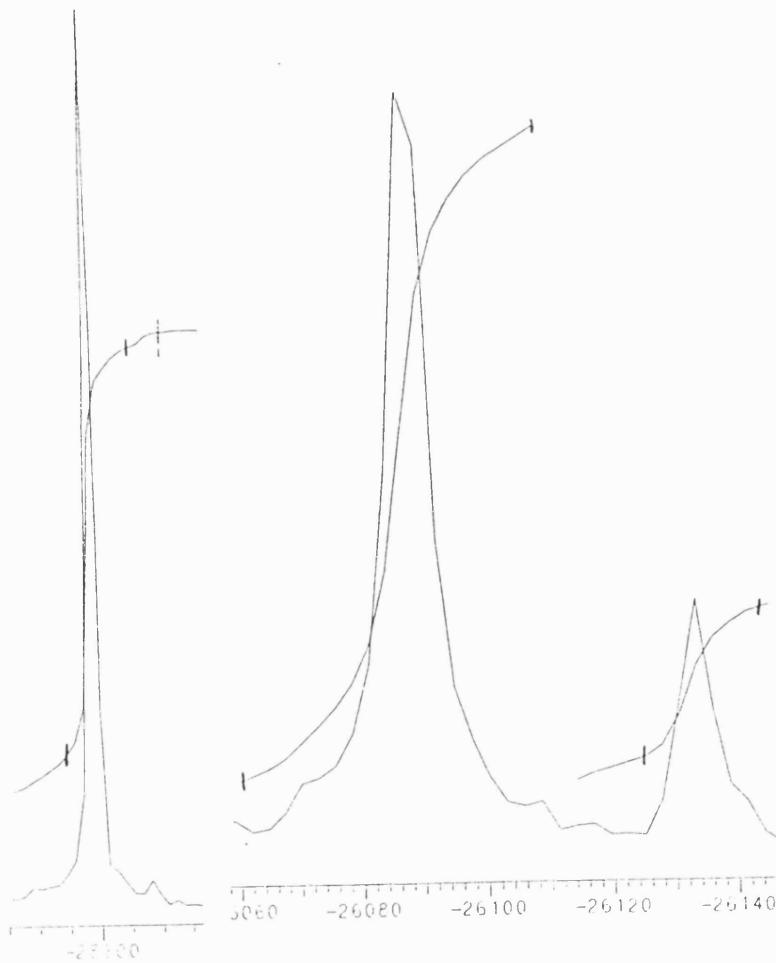
To a solution of **56** (0.28 mmol; 0.055 g) in CCl_4 : CH_3CN : H_2O (1 : 1 : 1.4) (1.15 ml: 1.15 ml: 1.64 ml) was added NaIO_4 (4.1 eq.; 1.15 mmol; 0.247 g) and RuCl_3 (0.23 eq.; 0.0066 mmol; 0.00137 g). The mixture was stirred for 45 minutes and then filtered through Celite®. The filtrate was made basic with aqueous saturated NaHCO_3 solution (4 ml) and extracted with ether (3 x 3 ml). The basic aqueous layers were cooled in an ice/water bath and then carefully acidified (pH3) with 1M aqueous HCl solution (3 ml). The acidic layer was extracted with CHCl_3 (3 x 3 ml), dried over Na_2SO_4 and then solvents were removed *in vacuo* to give the title compound as a clear oil (0.048 g; 79 %).

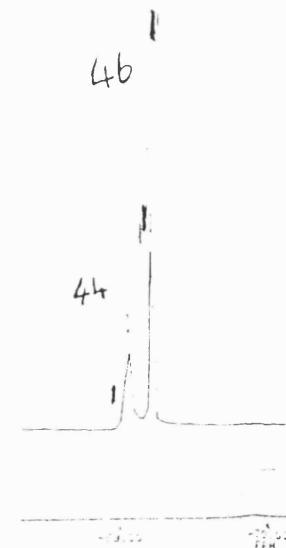
^1H NMR (300 MHz) (CDCl_3); δ 0.94 (d, J = 6.8, H-4, 3H); 1.01 (d, J = 6.8, H-4, 3H); 1.46 (s, H-6, 9H); 2.19-2.26 (m, H-3, 1H); 4.26 (dd, J = 8.8, 4.3, H-2, 1H); 5.09 (bd, J = 8.9, H-5, 1H); 8.34 (bs, 1H, CO_2H).

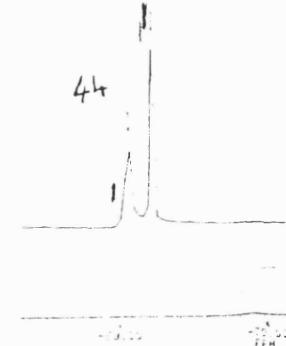
All other data were identical to that of the literature.

¹⁹F NMR spectra of 37a-e and rac-37b


37a


37b

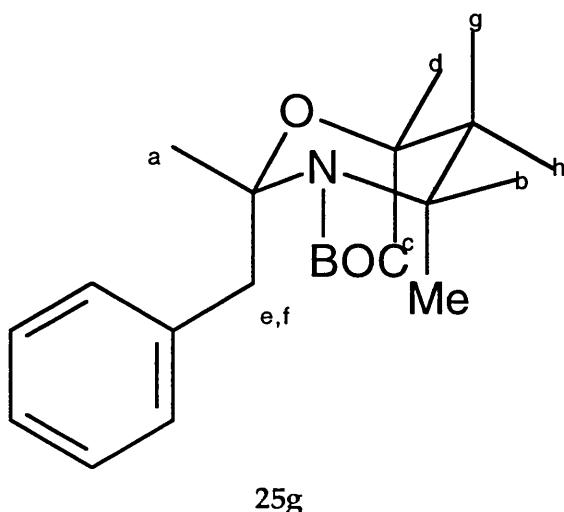

37c


37d

37e

4b

4t


rac-37b

Appendix 1: NMR Data

A.1.1 Solution Conformation of 25g by NMR Spectroscopy

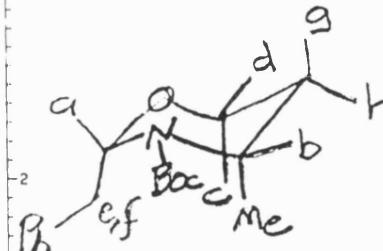
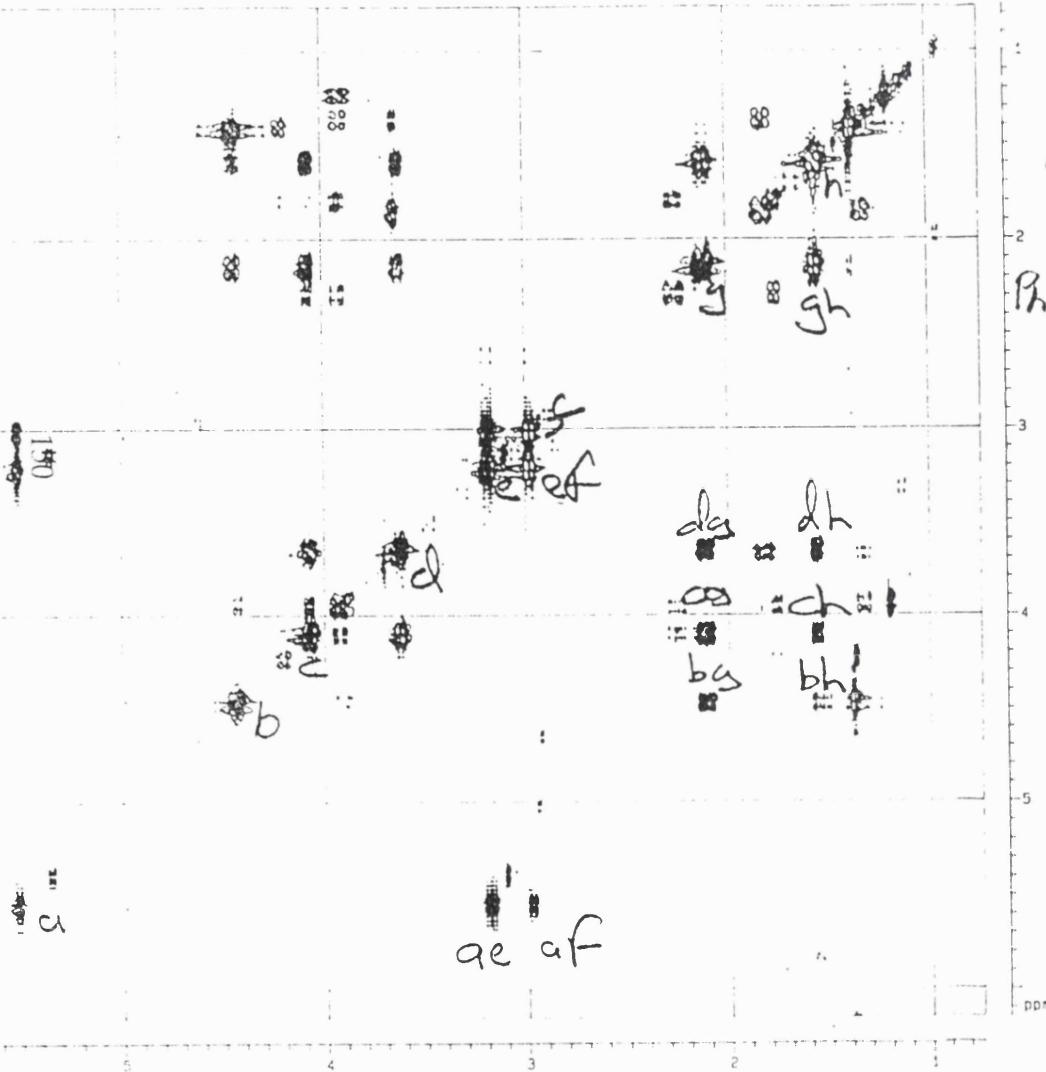
Summary

The solution conformation for 25g was derived from COSY/NOESY data and found to be that of a twist chair.

NMR

^1H NMR (500 MHz) (CDCl_3) δ 1.37 (d, Me, 3H), 1.48 (s, BOC, 9H), 1.55 (m, Hh, 1H), 2.18 (m, Hg, 1H), 3.02 (dd, He or Hf, 1H), 3.21 (dd, He or Hf, 1H), 3.60 (dt, Hd, 1H), 4.05 (td, Hc, 1H), 4.42 (qd, Hb, 1H), 5.53 (dd, Ha, 1H), 7.28-7.19 (m, Ph, 5H).

Methodology



All experiments were performed on a Bruker AMX500 spectrometer. The ^1H 1D spectrum was assigned by analysis of a 2D-DQF-COSY. A NOESY experiment was then performed, and processed using SYBYL / TRIAD on a

Silicon Graphics "Indigo" workstation to generate distance constraints for a unique solution conformation.

Results

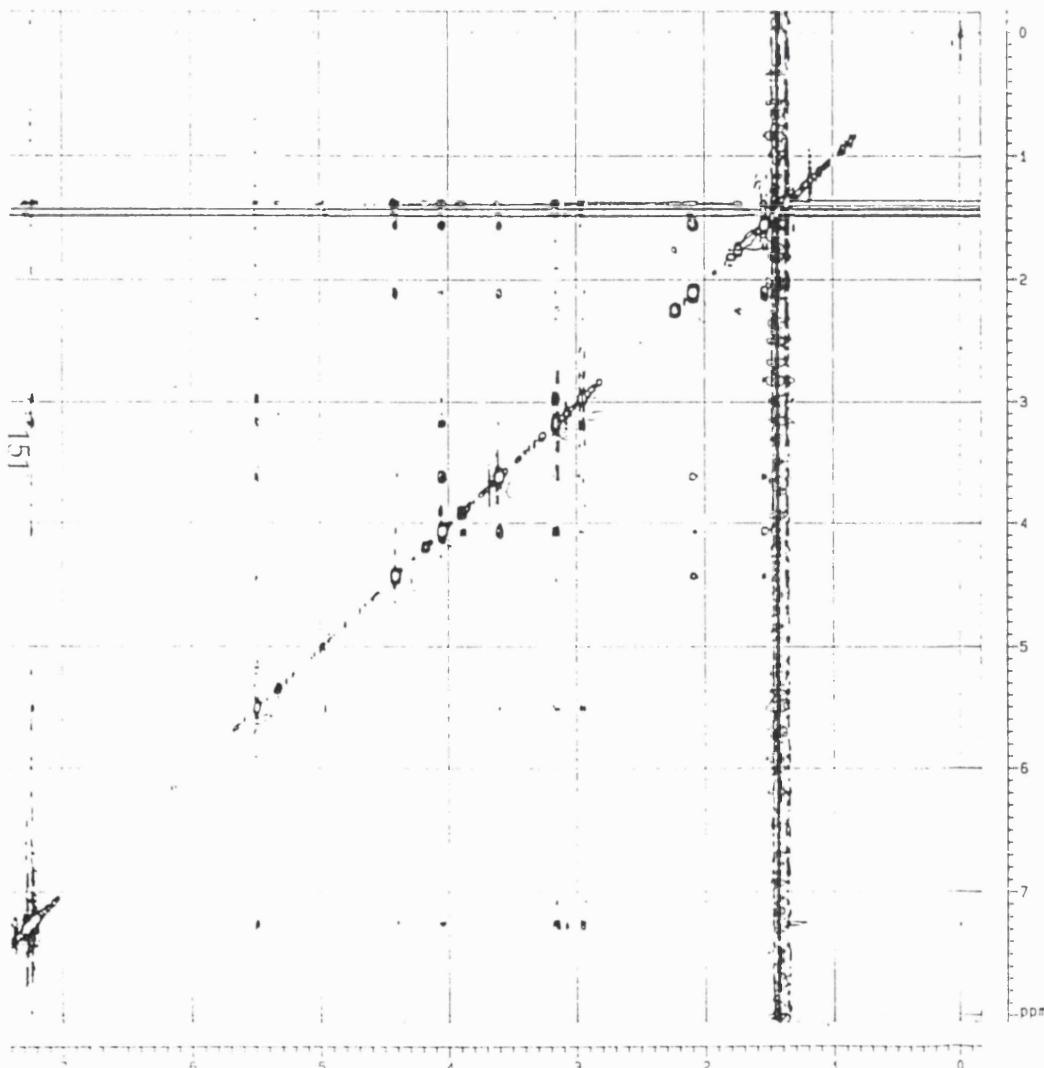
COSY gave the following consistent spin system:- e/f - a, Me - b - g/h - c/d (Spectrum 1). Most NOEs observed could be satisfied by a chair conformation with both benzyl and methyl groups axial (Boc equatorial) (Spectra 2, 3 and 4). However, coupling constants and a small NOE (a - d), i.e. C2 to C4, gave evidence of distortion (Spectrum 5). NOE data was processed using SYBYL and TRIAD to generate 26 unique distance constraints. The result of molecular modelling with energy minimisation under these constraints was that 25g existed as a twist chair in solution.

J. A. Rao
CCDC13 300K
7/8/96

Current Data Parameters
NAME 88412_26
EXPNO 13
PROCNO 1

F2 - Acquisition Parameters
Data_ 960827
Time 14.01
INSTRUM spect
PROBID 5 mm Multinu
PULPROG cosygsmftp
TD 4096
SOLVENT CDCl3
NS 2
DS 8
SWH 6024.096 Hz
FIDRES 1.470727 Hz
AQ 0.340018 sec
RG 16384
DW 83.000 usec
DE 118.57 usec
TE 300.0 K
P1 1000.00 usec
L21 100
P1 7.50 usec
D16 0.0001000 sec
H1 1 dB
D1 1.2999995 sec
D0 0.0000030 sec
D20 0.0001000 sec
P2 0.0 usec
D13 0.0000040 sec
D27 0.0000000 sec
DE 118.57 usec
SF01 500.1325006 MHz
NUCLEUS 1H
IN0 0.00008300 sec

F1 - Acquisition parameters
ND0 2
TD 512
SF01 500.1333 MHz
FIDRES 11.765830 Hz
SW 12.045 ppm


F2 - Processing parameters
SI 2048
SF 500.1300073 MHz
WM GSINE
SSB 2.2
LB 0.00 Hz
GB 0
PC 1.40

F1 - Processing parameters
SI 512
MC2 TPII
SF 500.1307479 MHz
WM SINE
SSB 2
LB 0.00 Hz
GB 0

2D NMR plot parameters
CX2 20.00 cm
CX1 20.00 cm
F2P_D 5.944 ppm
F2_D 2972.81 Hz
F2PHI 0.733 ppm
F2HI 366.68 Hz
F1P_D 6.147 ppm
F1D 3074.35 Hz
F1PHI 0.764 ppm
F1HI 379.97 Hz
F2PPHM 0.26055 ppm/cm
F2HZCM 130.30638 Hz/cm
F1PPHM 0.26937 ppm/cm
F1HZCM 134.71875 Hz/cm

Spectrum 1

A. Rae
CDC13 BOOK
7/6/96

- a \rightarrow e, F, (d), Ph
- b \rightarrow g, h, Me
- c \rightarrow d, e, h, Ph
- d \rightarrow e, g, h
- e \rightarrow S, Me
- g \rightarrow h
- Me \rightarrow Ph

```

Current Data Parameters
NAME          BB412_26
EXPNO         12
PROCN0        1

F2 - Acquisition Parameters
Date_         950822
Time          16.21
INSTRUM       spect
PROBHD        5 mm Multinu
PULPROB       noesytp2
TD             4096
SOLVENT        CDCl3
NS              48
DS              8
SWH            6250.000 Hz
FIDRES        1.525879 Hz
AQ            0.3277300 sec
RG             256
DW             80.000 usec
DE             114.29 usec
TE             300.0 K
T1              1 dB
D1            1.29999995 sec
P1             7.50 usec
D0            0.0000030 sec
D9            0.50000000 sec
DE            114.29 usec
SF01          500.1325000 MHz
NUCLEUS       1H
INO            0.00000000 sec

```

```

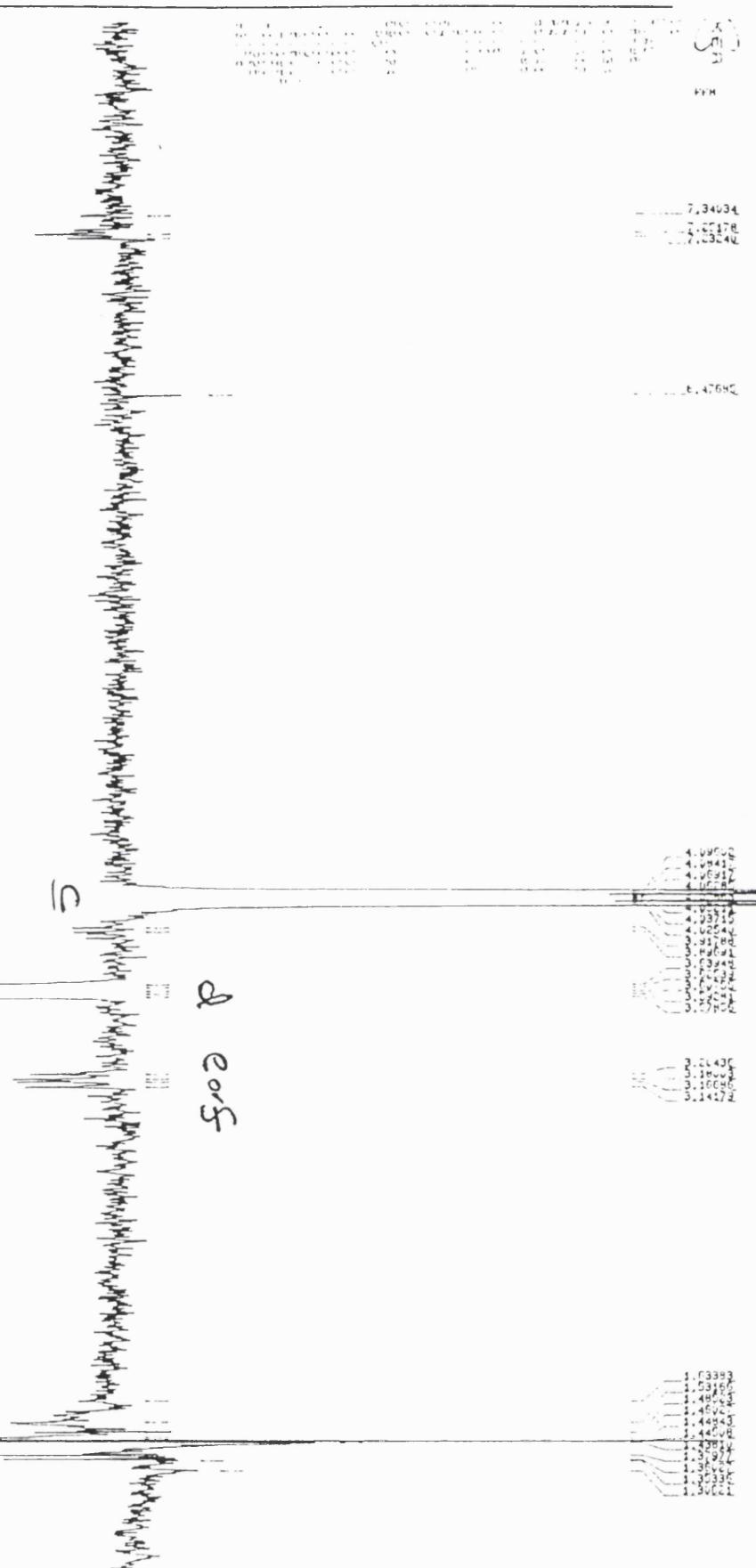
F1 - Acquisition parameters
NDO          2
TD           512
SFC1        500.1333 MHz
FIDRES     12.207061 Hz
SW          12.497 ppb

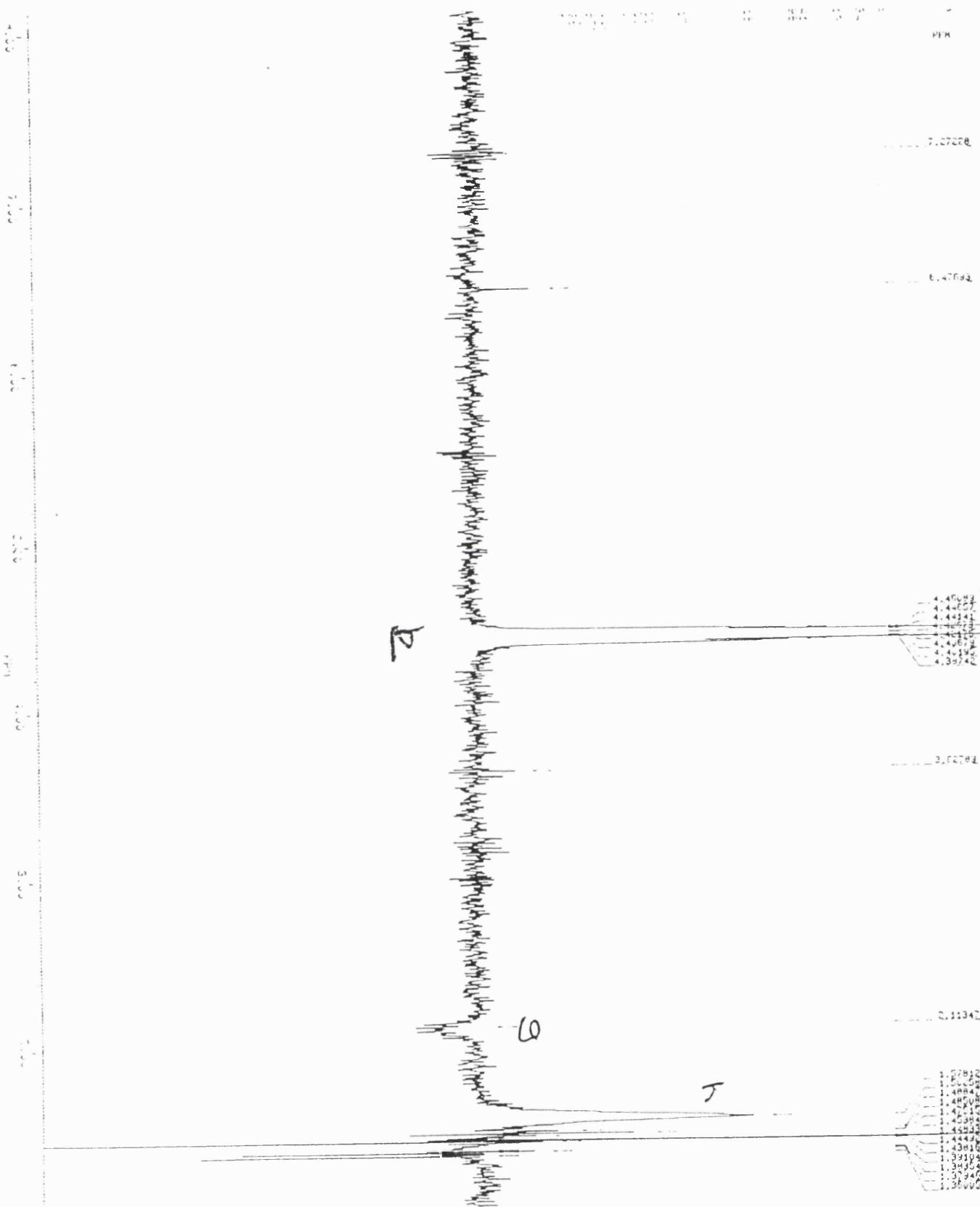
```

```

F2 - Processing parameters
SI      2048
SF      500.1300217 MHz
WDM     QSINE
SSB     2.2
LB      0.00 Hz
EB      0
RS      2.00

```

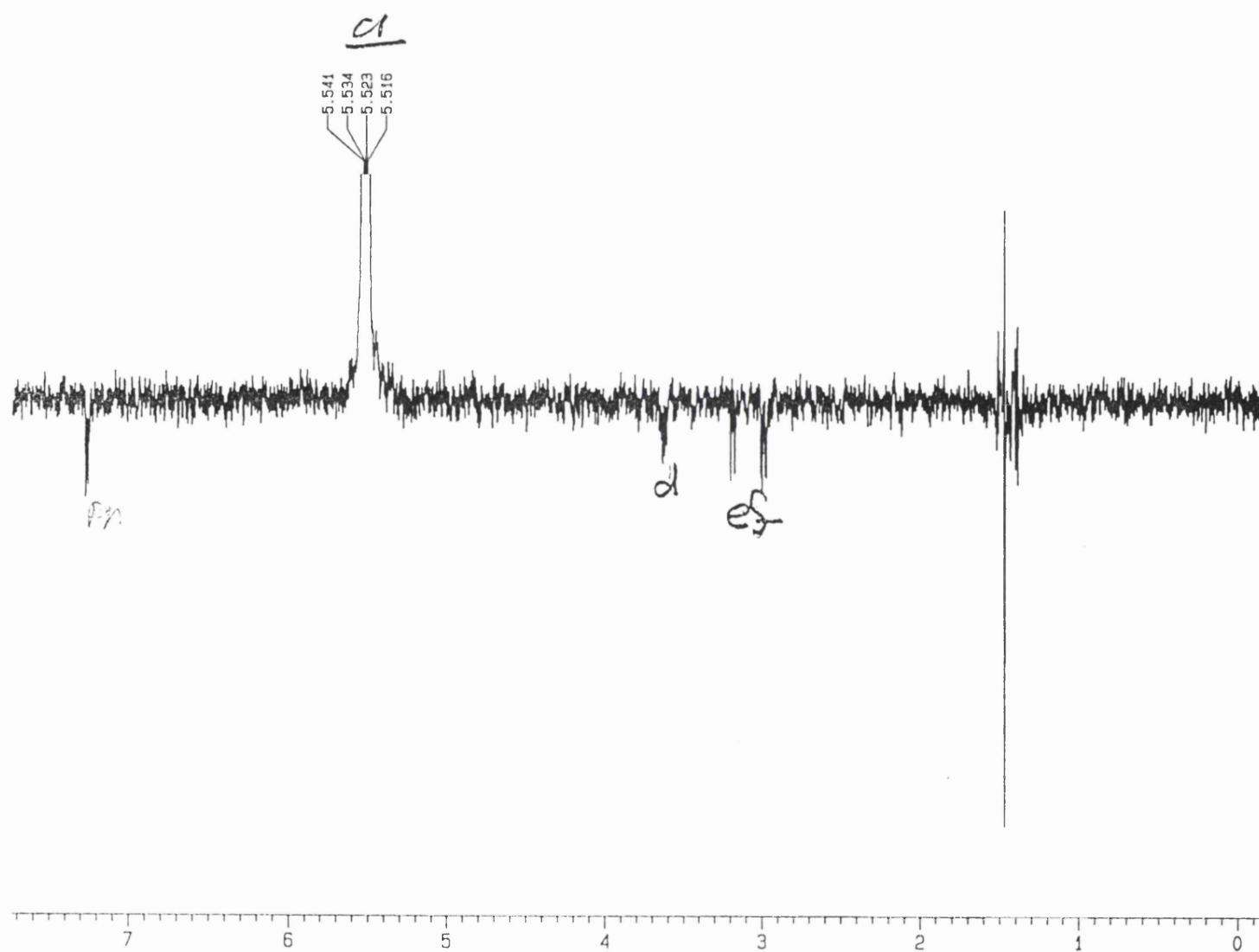

```


F1 - Processing parameters
SI          512
MC2         TPPI
SF          500.1307700 MHz
WDW        SINE
SSB          2
LB          0.00 Hz
SF          0

```

```
2D NMR plot parameters
C12          20.00 cm
C13          20.00 cm
F2P_0         8.050 ppm
F2C_0         4026.22 Hz
F2P_1         -0.175 ppm
F2C_1         -87.55 Hz
F1P_0         8.049 ppm
F1C_0         4025.56 Hz
F1P_1         -0.176 ppm
F1C_1         -88.21 Hz
F2P0PCM      0.41127 ppm/ce
F2C0PCM      205.68855 Hz/ce
F1P0PCM      0.41127 ppm/ce
F1C0PCM      205.68875 Hz/ce
```

Spectrum 2

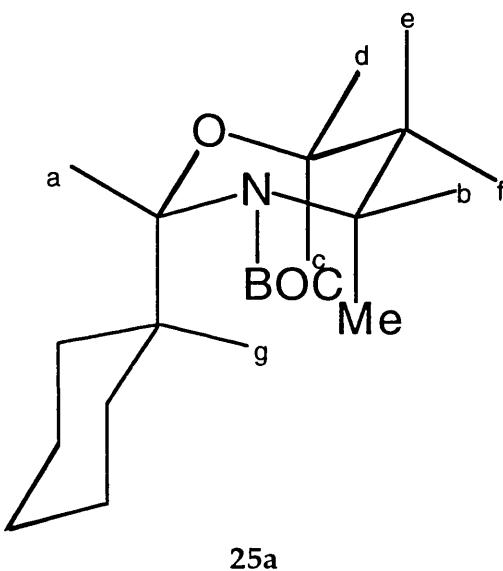

Spectrum 3

Spectrum 4

Spectrum 5

Current Data Params
 NAME: B84
 EXPNO: 1
 PROBNO: 1
 PULPROG: 1
 TD: 65536
 SOLVENT: H2O
 NS: 1
 DW: 125.0
 FIDRES: 0.1
 AQ: 1.3
 RG: 100
 DW: 100
 DE: 6
 TE: 300
 P1: 11
 L1: 11
 P17: 11
 H1: 2.00
 P1: 0.01
 Q27: 0.01
 Q18: 0.001
 TLO: 30
 P11: 30
 TP1: 0.01
 TPOFFB1: 0.0
 TPNAME1: 0.0
 Q28: 0.40
 Q3: 0.40
 DE: 500.1
 SF01: 500.1
 NUCLEUS: H
 F2 - Processing para
 SI: 500.1
 SF: 500.1
 MDW: 0
 B98: 0
 LB: 0
 BB: 0
 PC: 0

1D NMR plot params
 CX: 4
 F1P: 4
 F1: 4
 F2P: -
 F2: -
 PPNCH: 0
 HZCH: 204



A.1.2 Solution Conformation of 25a by NMR Spectroscopy

In order to establish if the major/minor peaks at position (a) were due to either rotamers of the Boc group or a ratio of diastereoisomers, **25a** also underwent structural analysis by COSY/NOESY spectroscopy.

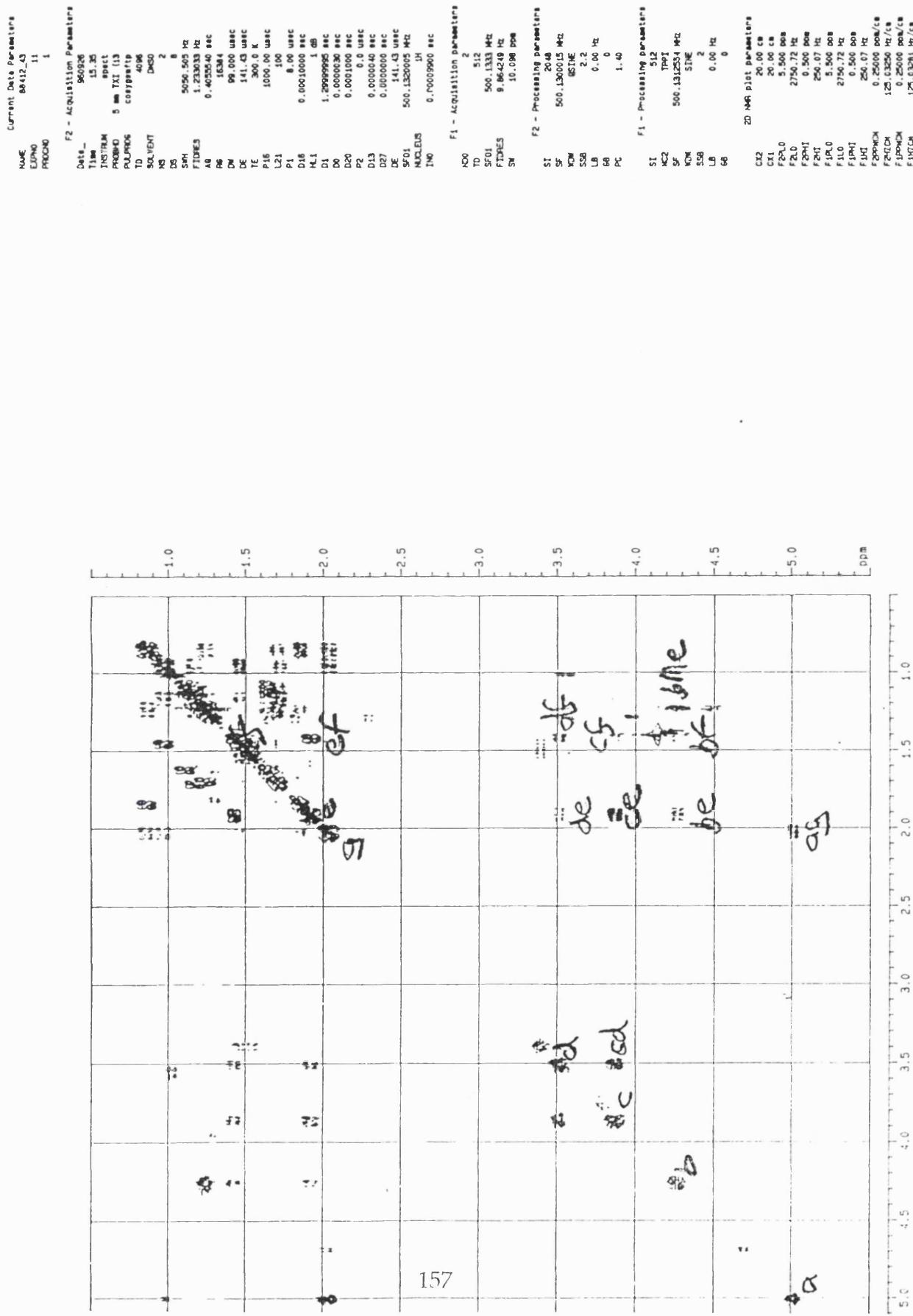
Summary

The solution conformation of **25a** was also found to be that of a twist chair, with both peaks corresponding to (a) giving identical NOE data.

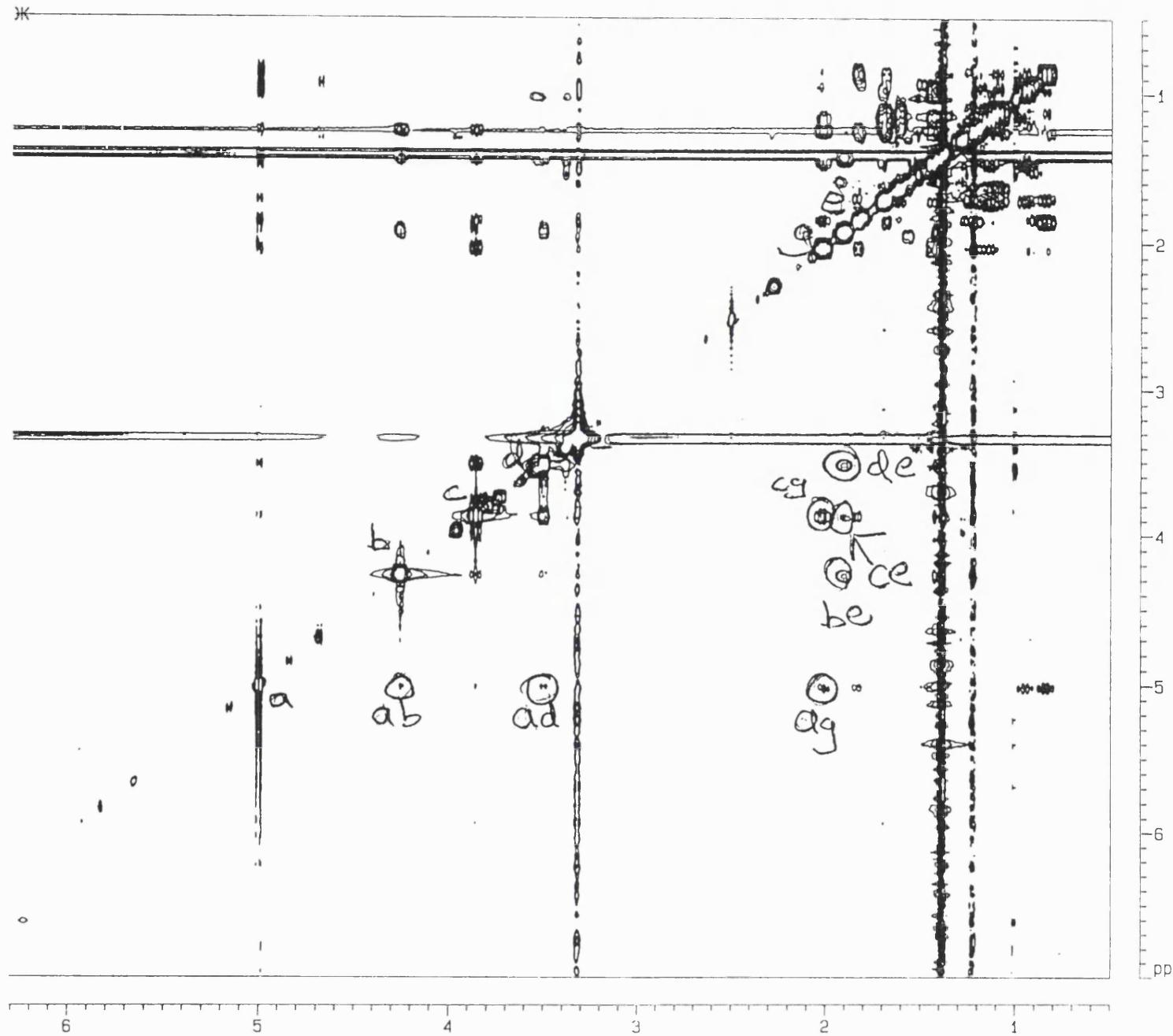
NMR

¹H NMR (500 MHz) (CDCl₃); δ 1.31 (d, Me, 3H), 1.45 (s, BOC, 9H), 1.50-1.82 (m, Cyclohexyl, 11H), 1.92-2.13 (m, H_e and H_f, 2H), 3.61 (dt, H_d, 1H), 3.91 (td, H_c, 1H), 4.42 (qd, H_b, 1H), 4.79 (d, H_a-minor, 0.05H), 5.18 (d, H_a-major, 0.95H).

Methodology

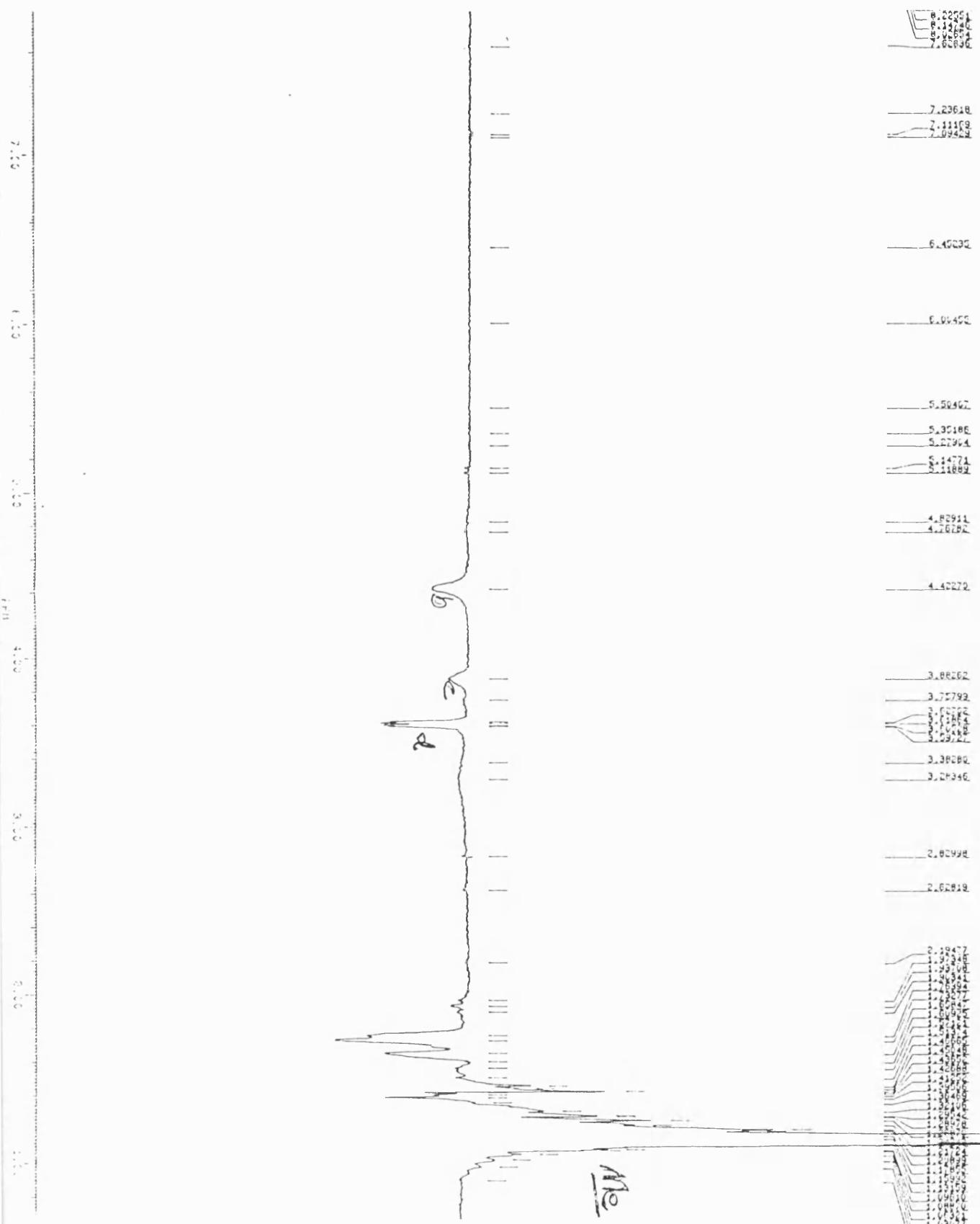

All experiments were performed on a Bruker AMX500 spectrometer. The ¹H 1D spectrum was assigned by analysis of a 2D-DQF-COSY. A NOESY experiment was then performed to establish the overall conformation.

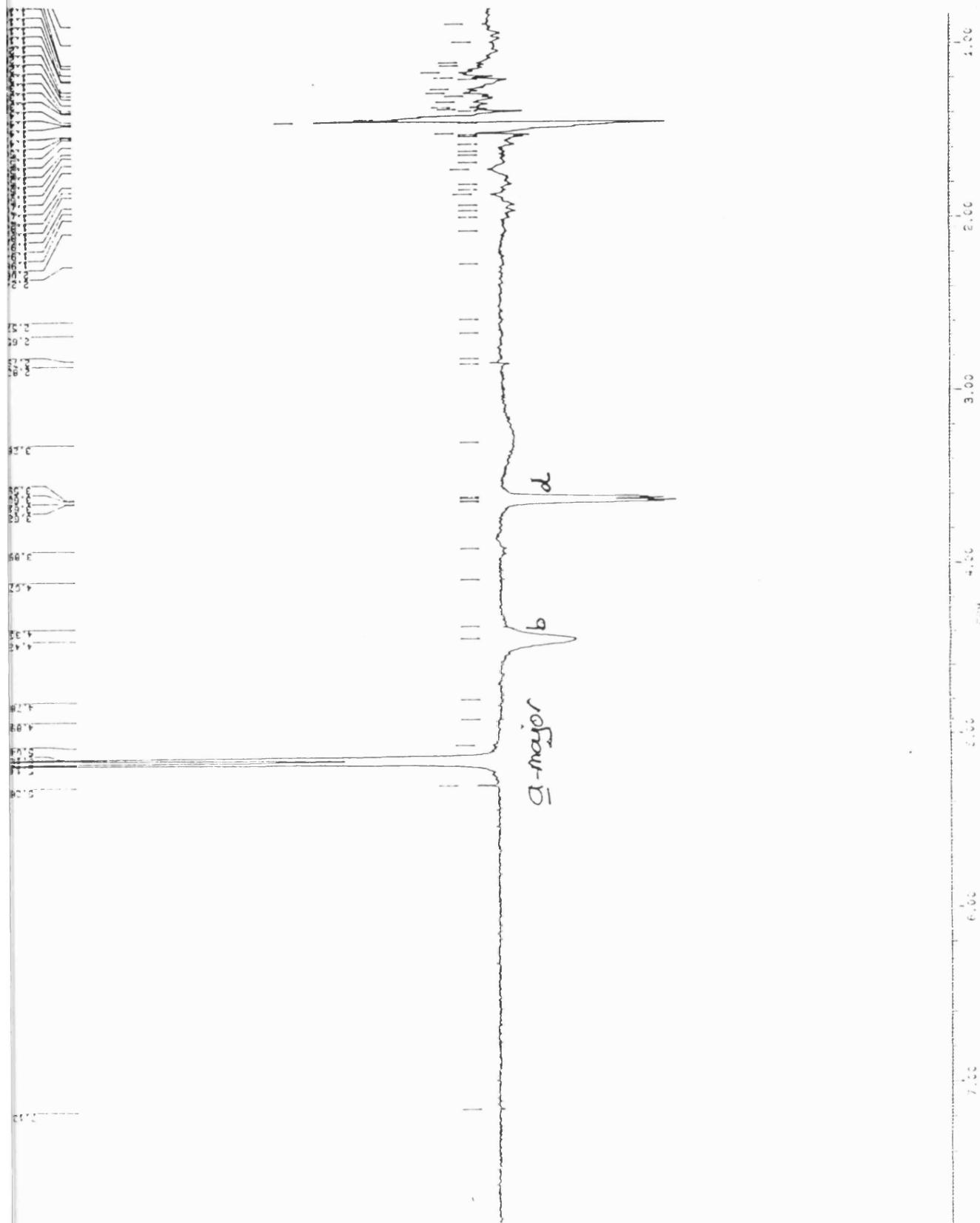
Results

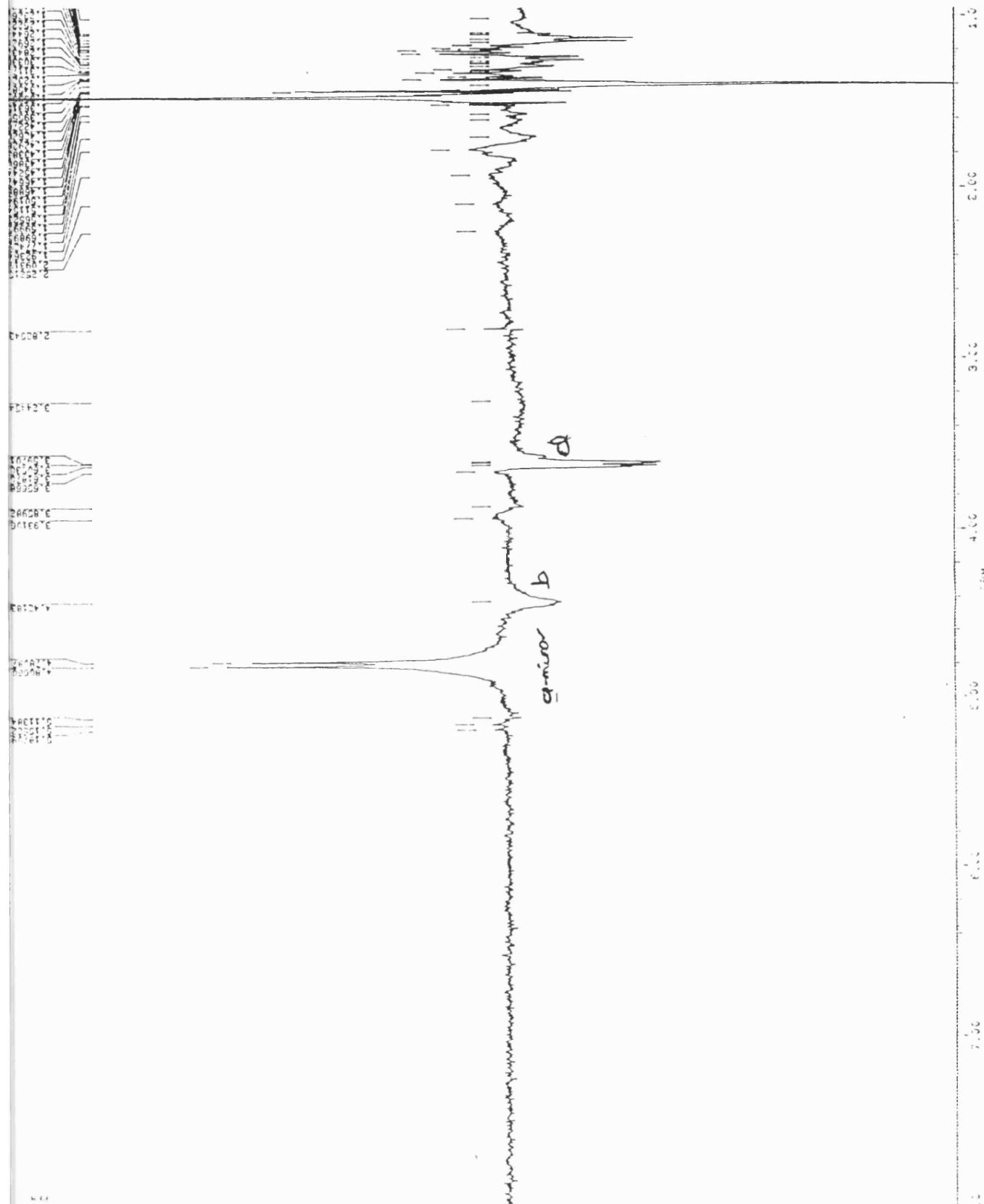

COSY gave the following consistent spin system:- g - a, Me - b - e/f - c/d (Spectrum 6). As in 25g NOEs observed could be satisfied by a twist-chair conformation with both cyclohexyl and methyl groups axial (Boc equatorial) (Spectra 7 and 8).

NOE experiments on (a)-minor gave identical results to those for (a)-major (Spectrum 8) therefore it can be deduced that these peaks correspond to the same diastereoisomer (compare Spectra 9 and 10).

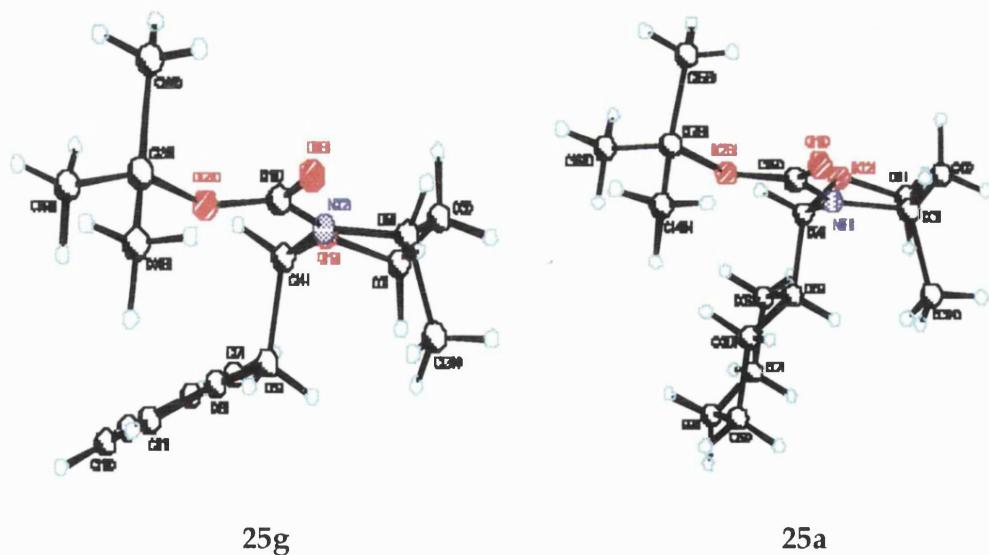
Spectrum 6




Spectrum 7


Current C
B
NAME
EXPNO
PROCNO
F2 - Acquis
Data_
Time
INSTRUM
PROBHD
PULPROG
TD
SOLVENT
NS
DS
SWH
FIDRES
AQ
RG
DW
DE
TE
HL1
D1
P1
DD
DS
SF01
NUCLEUS
INO
F1 - Acquis
N00
TD
SF01
FIDRES
SW
F2 - Process
SI
SF
W0W
SSB
LB
GB
PC
F1 - Process
SI
W0Z
SF
W0W
SSB
LB
GB
PC
2D NMR p
CX2
CX1
F2PL0
F2L0
F2PHI
F2HI
F1PL0
F1L0
F1PHI
F1HI
F2PPH0K
F2H2K
F1PPH0K
F1H2K

Spectrum 8


Spectrum 9

Spectrum 10

Appendix 2: X-ray Crystallography Data

Crystals of **25g** and **25a** were grown by evaporation from ethyl acetate/hexane mixtures. Data was collected in the range of $5 \leq 2\theta \leq 120^\circ$ on a Stoe Stadi4 x-ray diffractometer equipped with an Oxford Cryosystems low temperature device¹¹⁷ using ω - θ scans and on-line profile fitting.¹¹⁸ The structure of both molecules was solved by direct methods (Shelxtl)¹¹⁹ and refined against F^2 with anisotropic displacement parameters for all non-H atoms, and H atoms placed in calculated positions. The structures were revealed to be a twist-chair with the methyl group from the auxiliary and the benzyl (**25g**) or cyclohexyl (**25a**) groups in pseudo-axial conformations.

Crystal data and structure refinement for 25g at 220(2) K.

Empirical formula	C ₁₇ H ₂₅ NO ₃
Formula weight	291.38
Wavelength	1.54184 Å
Crystal system	Orthorhombic
Space group	P 21 21 21
Unit cell dimensions	a = 6.0668(10) Å alpha = 90 deg. b = 11.952(3) Å beta = 90 deg. c = 23.096(9) Å gamma = 90 deg.
Volume	1674.7(8) Å ³
Z	4
Density (calculated)	1.156 Mg/m ³
Absorption coefficient	0.628 mm ⁻¹
F(000)	632
Crystal description	Colourless column
Crystal size	0.43 x 0.12 x 0.08 mm
Theta range for data collection	3.83 to 60.09 deg.
Index ranges	-6<=h<=6, -9<=k<=13, -12<=l<=25
Reflections collected	1488
Independent reflections	1447 [R(int) = 0.0358]
Scan type	omega-theta
Data/restraints/parameters	1441/185/190 (Full-matrix least-squares on F ²)
Goodness-of-fit on F ²	1.012
Conventional R [F>4sigma(F)]	R1 = 0.0997 [552 data]
R indices (all data)	R1 = 0.2362, wR2 = 0.2847
Absolute structure parameter	0.7(18)
Final maximum delta/sigma	0.001
Weighting scheme	
calc w=1/[s^2^(Fo^2^)+(0.1101P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3	
Largest diff. peak and hole	0.257 and -0.341 e.Å ⁻³

Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\text{\AA}^2 \times 10^3$) for 25g. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	U(eq)
C(1)	5309(25)	1301(11)	2360(6)	49(4)
C(2)	5241(23)	2390(12)	2648(6)	53(4)
C(3)	2986(23)	2989(11)	2565(6)	43(3)
C(3M)	1270(22)	2506(12)	2988(5)	48(4)
C(4)	2746(24)	1881(10)	1606(6)	44(3)
C(5)	984(22)	962(11)	1706(6)	46(3)
C(6)	1063(23)	90(10)	1241(5)	30(3)
C(7)	2836(24)	-668(11)	1193(6)	44(3)
C(8)	2790(27)	-1475(12)	784(5)	50(4)
C(6)	1084(29)	-1639(13)	398(6)	62(4)
C(10)	-736(28)	-894(13)	455(6)	57(4)
C(11)	-687(28)	-69(13)	861(6)	57(4)
N(12)	2292(18)	2883(9)	1966(5)	40(2)
O(13)	4898(14)	1447(7)	1753(4)	44(2)
C(1B)	945(22)	3704(11)	1732(6)	37(3)
O(1B)	403(16)	4524(7)	2023(4)	52(3)
O(2B)	321(15)	3444(7)	1207(4)	46(2)
C(3B)	-1036(25)	4205(13)	864(6)	49(3)
C(4B)	-3328(23)	4384(16)	1161(7)	79(6)
C(5B)	-1235(33)	3616(16)	286(6)	104(7)
C(6B)	63(28)	5302(12)	789(7)	84(6)

Bond lengths [\AA] and angles [deg] for 25g.

C(1)-O(13)	1.434(14)
C(1)-C(2)	1.46(2)
C(2)-C(3)	1.56(2)
C(3)-N(12)	1.452(15)
C(3)-C(3M)	1.54(2)
C(4)-O(13)	1.45(2)
C(4)-N(12)	1.483(15)
C(4)-C(5)	1.55(2)
C(5)-C(6)	0.50(2)
C(6)-C(11)	1.39(2)
C(6)-C(7)	1.41(2)
C(7)-C(8)	1.35(2)
C(8)-C(9)	1.38(2)
C(9)-C(10)	1.42(2)
C(10)-C(11)	1.36(2)
N(12)-C(1B)	1.39(2)
C(1B)-O(1B)	1.233(14)
C(1B)-O(2B)	1.307(14)
O(2B)-C(3B)	1.46(2)
C(3B)-C(6B)	1.48(2)
C(3B)-C(5B)	1.51(2)
C(3B)-C(4B)	1.57(2)
O(13)-C(1)-C(2)	109.4(11)
C(1)-C(2)-C(3)	112.2(12)
N(12)-C(3)-C(3M)	112.0(11)
N(12)-C(3)-C(2)	109.4(12)
C(3M)-C(3)-C(2)	110.1(11)
O(13)-C(4)-N(12)	109.0(11)
O(13)-C(4)-C(5)	109.4(10)
N(12)-C(4)-C(5)	111.2(11)
C(6)-C(5)-C(4)	111.4(11)
C(11)-C(6)-C(7)	116.4(12)
C(11)-C(6)-C(5)	121.6(13)
C(7)-C(6)-C(5)	121.8(13)
C(8)-C(7)-C(6)	119.8(14)
C(7)-C(8)-C(9)	124.7(15)
C(8)-C(9)-C(10)	115.7(14)
C(11)-C(10)-C(9)	119.9(15)
C(10)-C(11)-C(6)	123.4(15)
C(1B)-N(12)-C(3)	118.7(11)
C(1B)-N(12)-C(4)	117.5(10)
C(3)-N(12)-C(4)	123.5(11)
C(1)-O(13)-C(4)	115.5(11)
O(1B)-C(1B)-O(2B)	128.1(13)
O(1B)-C(1B)-N(12)	120.5(12)
O(2B)-C(1B)-N(12)	111.4(12)

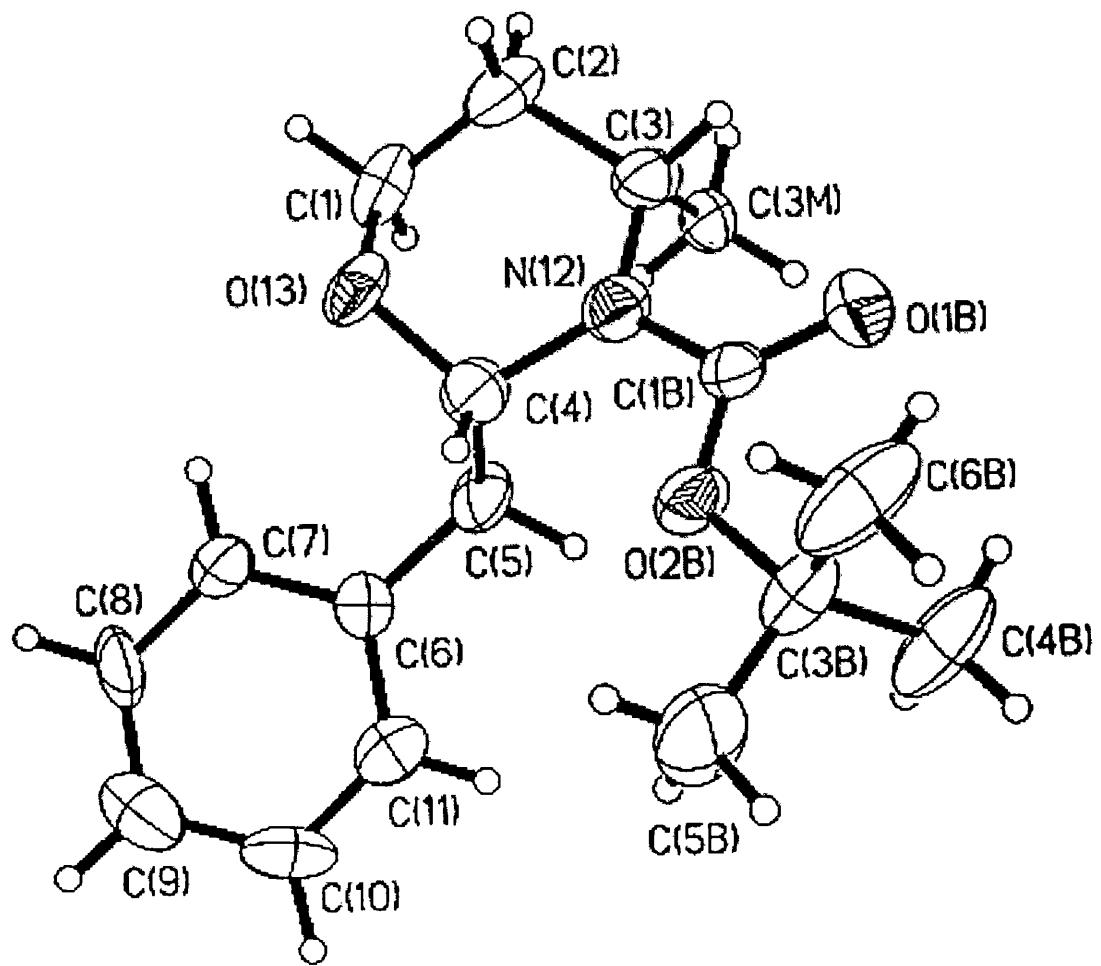
C(1B)-O(2B)-C(3B)	121.2(11)
O(2B)-C(3B)-C(6B)	111.2(12)
O(2B)-C(3B)-C(5B)	103.5(12)
C(6B)-C(3B)-C(5B)	110.1(15)
O(2B)-C(3B)-C(4B)	110.4(11)
C(6B)-C(3B)-C(4B)	109.3(14)
C(5B)-C(3B)-C(4B)	112.3(14)

Anisotropic displacement parameters ($\text{\AA}^2 \times 10^3$) for 25g.

The anisotropic displacement factor exponent takes the form:

$$-2 \pi^2 [h^2 a^{*2} U_{11} + \dots + 2 h k a^* b^* U_{12}]$$

	U11	U22	U33	U23	U13	U12
C(1)	30(8)	50(8)	66(7)	14(7)	9(7)	12(7)
C(2)	28(7)	60(8)	71(8)	8(7)	-6(7)	-2(8)
C(3)	40(7)	34(8)	56(7)	0(6)	-15(6)	2(6)
C(3M)	40(8)	66(10)	37(6)	-23(8)	-3(7)	15(8)
C(4)	39(7)	30(6)	62(8)	-3(6)	-6(7)	-1(5)
C(5)	22(6)	43(7)	73(9)	-9(6)	8(8)	-4(6)
C(6)	38(7)	19(6)	34(6)	9(5)	3(6)	-2(5)
C(7)	35(7)	42(8)	55(8)	-7(6)	-11(7)	8(6)
C(8)	57(9)	57(9)	37(8)	-13(7)	16(7)	21(8)
C(9)	76(10)	59(9)	52(9)	-18(8)	5(8)	-14(8)
C(10)	66(9)	65(10)	40(8)	3(7)	-26(8)	-11(8)
C(11)	50(9)	64(9)	56(9)	-2(7)	-16(7)	15(8)
N(12)	35(6)	35(5)	48(5)	2(5)	-3(5)	-1(5)
O(13)	19(4)	41(5)	71(5)	6(5)	4(5)	-2(4)
C(1B)	28(7)	33(7)	50(7)	-5(6)	-9(6)	-1(6)
O(1B)	56(7)	40(5)	59(6)	-9(5)	-8(6)	8(5)
O(2B)	42(5)	41(5)	55(5)	4(4)	-16(5)	8(5)
C(3B)	32(7)	62(8)	53(8)	13(7)	-2(7)	11(7)
C(4B)	30(7)	124(15)	84(12)	37(12)	13(8)	18(8)
C(5B)	113(16)	132(14)	67(9)	-19(10)	-41(10)	71(14)
C(6B)	46(9)	80(9)	127(14)	61(10)	-19(12)	-5(9)



Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters ($\text{\AA}^2 \times 10^3$) for **25g**.

	x	y	z	U(eq)
H(1A)	6758(25)	956(11)	2417(6)	58
H(1B)	4192(25)	805(11)	2527(6)	58
H(2A)	6418(23)	2865(12)	2493(6)	64
H(2B)	5517(23)	2287(12)	3063(6)	64
H(3)	3183(23)	3794(11)	2653(6)	52
H(3M1)	-128(22)	2885(12)	2933(5)	72
H(3M2)	1771(22)	2617(12)	3383(5)	72
H(3M3)	1087(22)	1713(12)	2915(5)	72
H(4)	2737(24)	2100(10)	1193(6)	52
H(5A)	1235(22)	607(11)	2083(6)	55
H(5B)	-483(22)	1305(11)	1712(6)	55
H(7)	4046(24)	-612(11)	1446(6)	53
H(8)	4007(27)	-1959(12)	760(5)	60
H(9)	1120(29)	-2206(13)	116(6)	75
H(10)	-1969(28)	-972(13)	212(6)	68
H(11)	-1900(28)	418(13)	886(6)	68
H(4B1)	-4051(23)	3666(16)	1211(7)	119
H(4B2)	-4235(23)	4863(16)	920(7)	119
H(4B3)	-3118(23)	4732(16)	1537(7)	119
H(5B1)	-1956(33)	2899(16)	340(6)	156
H(5B2)	223(33)	3498(16)	125(6)	156
H(5B3)	-2098(33)	4072(16)	23(6)	156
H(6B1)	182(28)	5672(12)	1161(7)	126
H(6B2)	-798(28)	5763(12)	528(7)	126
H(6B3)	1524(28)	5189(12)	629(7)	126

Ortep Plot of 25g

Crystal data and structure refinement for 25a at 220(2) K.

Empirical formula	C ₁₆ H ₂₉ NO ₃
Formula weight	283.40
Wavelength	1.54184 Å
Crystal system	Orthorhombic
Space group	P 21 21 21
Unit cell dimensions	a = 10.1919(12) Å alpha = 90 deg. b = 11.4054(9) Å beta = 90 deg. c = 14.4730(14) Å gamma = 90 deg.
Volume	1682.4(3) Å ³
Z	4
Density (calculated)	1.119 Mg/m ³
Absorption coefficient	0.604 mm ⁻¹
F(000)	624
Crystal description	Colourless column
Crystal size	0.39 x 0.20 x 0.12 mm
Theta range for data collection	4.94 to 60.04 deg.
Index ranges	-11<=h<=11, -11<=k<=12, -11<=l<=16
Reflections collected	3744
Independent reflections	2336 [R(int) = 0.0321]
Scan type	omega-theta with learnt profile
Data / restraints / parameters	2330/0/186 (Full-matrix least-squares on F ²)
Goodness-of-fit on F ²	1.054
Conventional R [F>4sigma(F)]	R1 = 0.0374 [2018 data]
R indices (all data)	R1 = 0.0466, wR2 = 0.0888
Absolute structure parameter	-0.1(3)
Extinction coefficient	0.0179(7)
Final maximum delta/sigma	0.000
Weighting scheme	calc w=1/[s ² (Fo ²)+(0.0320P) ² +0.2754P] where P=(Fo ² +2Fc ²)/3
Largest diff. peak and hole	0.095 and -0.123 e.Å ⁻³

Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\text{\AA}^2 \times 10^3$) for 25a. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

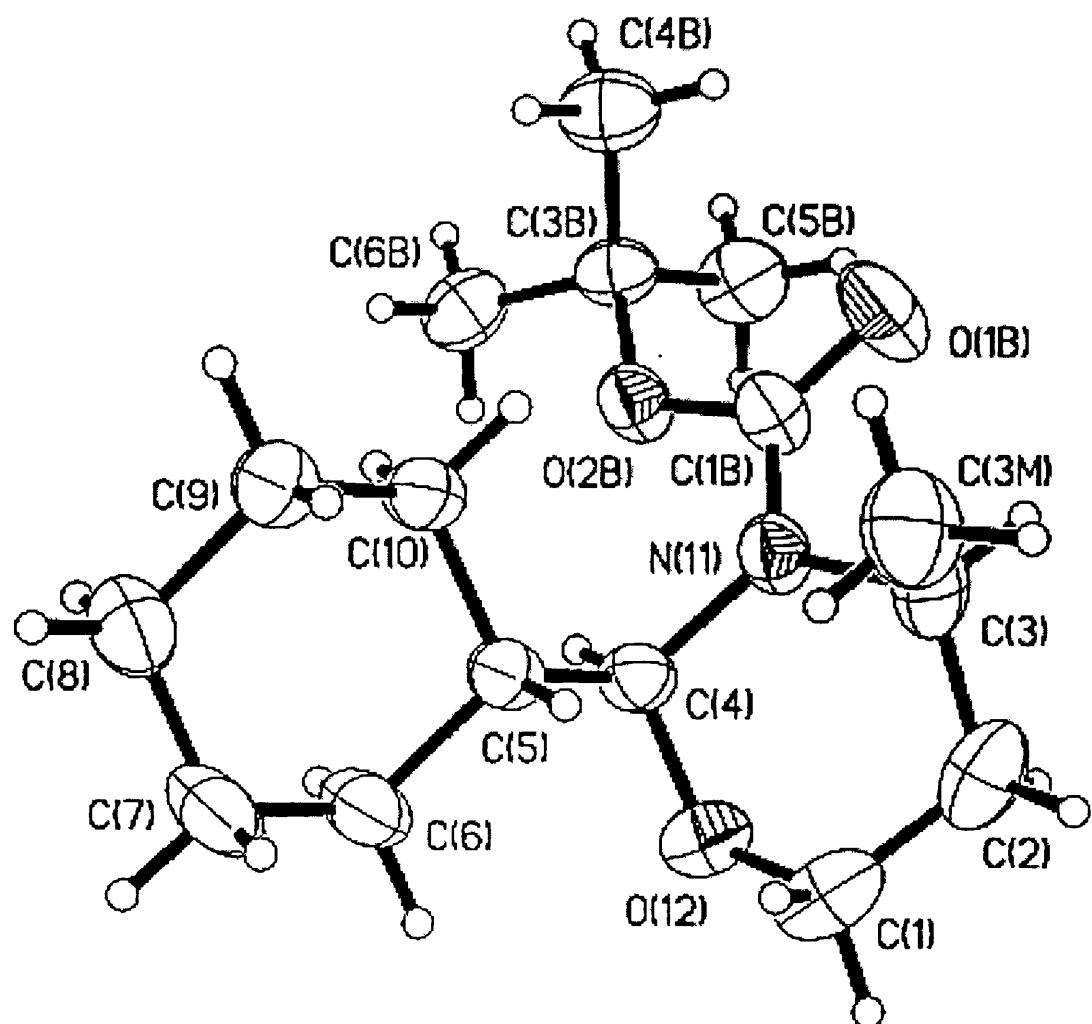
	x	y	z	U(eq)
C(1)	3791(2)	2028(3)	3416(2)	60(1)
C (2)	4568(3)	2026(3)	4298(2)	62(1)
C(3)	6019(3)	2281(2)	4133(2)	50(1)
C(4)	5636(2)	1479(2)	2513(2)	38(1)
C(5)	5695(2)	2533(2)	1858(1)	36(1)
C(6)	4816(2)	2321(2)	1020(2)	52(1)
C(7)	4873(3)	3345(3)	344(2)	60(1)
C(8)	6261(3)	3608(2)	42(2)	53(1)
C(9)	7151(2)	3811(2)	873(2)	46(1)
C(10)	7093(2)	2781(2)	1543(2)	41(1)
N(11)	6475(2)	1588(2)	3334(1)	40(1)
O(12)	4332(2)	1204(1)	2779(1)	48(1)
C(1B)	7654(2)	1053(2)	3405(2)	42(1)
O(1B)	8357(2)	1120(2)	4080(1)	64(1)
O(2B)	7959(1)	439(1)	2635(1)	43(1)
C(3B)	9183(2)	-238(2)	2584(2)	41(1)
C(4B)	10367(2)	551(2)	2670(2)	60(1)
C(5B)	9159(3)	-1195(2)	3310(2)	57(1)
C(6B)	9117(3)	-757(2)	1624(2)	53(1)

Bond lengths [Å] and angles [deg] for 25a.

C(1)-O(12)	1.427(3)
C(1)-C(2)	1.502(4)
C(2)-C(3)	1.526(4)
C(3)-N(11)	1.476(3)
C(3)-C(3M)	1.526(4)
C(4)-O(12)	1.419(2)
C(4)-N(11)	1.469(3)
C(4)-C(5)	1.532(3)
C(5)-C(10)	1.523(3)
C(5)-C(6)	1.528(3)
C(6)-C(7)	1.524(3)
C(7)-C(8)	1.512(4)
C(8)-C(9)	1.524(3)
C(9)-C(10)	1.525(3)
N(11)-C(1B)	1.352(3)
C(1B)-O(1B)	1.214(3)
C(1B)-O(2B)	1.353(3)
O(2B)-C(3B)	1.468(3)
C(3B)-C(4B)	1.511(3)
C(3B)-C(6B)	1.512(3)
C(3B)-C(5B)	1.515(3)
O(12)-C(1)-C(2)	110.2(2)
C(1)-C(2)-C(3)	112.2(2)
N(11)-C(3)-C(3M)	112.9(2)
N(11)-C(3)-C(2)	109.0(2)
C(3M)-C(3)-C(2)	113.7(2)
O(12)-C(4)-N(11)	110.1(2)
O(12)-C(4)-C(5)	112.2(2)
N(11)-C(4)-C(5)	114.3(2)
C(10)-C(5)-C(6)	109.9(2)
C(10)-C(5)-C(4)	111.6(2)
C(6)-C(5)-C(4)	110.1(2)
C(7)-C(6)-C(5)	111.5(2)
C(8)-C(7)-C(6)	111.9(2)
C(7)-C(8)-C(9)	111.0(2)
C(8)-C(9)-C(10)	111.2(2)
C(5)-C(10)-C(9)	111.7(2)
C(1B)-N(11)-C(4)	122.7(2)
C(1B)-N(11)-C(3)	117.6(2)
C(4)-N(11)-C(3)	119.7(2)
C(4)-O(12)-C(1)	113.0(2)
O(1B)-C(1B)-N(11)	123.8(2)
O(1B)-C(1B)-O(2B)	124.1(2)
N(11)-C(1B)-O(2B)	112.1(2)
C(1B)-O(2B)-C(3B)	120.5(2)
O(2B)-C(3B)-C(4B)	111.2(2)

O(2B)-C(3B)-C(6B)	102.3(2)
C(4B)-C(3B)-C(6B)	110.1(2)
O(2B)-C(3B)-C(5B)	109.3(2)
C(4B)-C(3B)-C(5B)	112.6(2)
C(6B)-C(3B)-C(5B)	110.8(2)

Anisotropic displacement parameters ($\text{\AA}^2 \times 10^3$) for 25a. The anisotropic displacement factor exponent takes the form: $-2 \pi^2 [h^2 a^{*2} U_{11} + \dots + 2 h k a^* b^* U_{12}]$


	U11	U22	U33	U23	U13	U12
C(1)	46(2)	55(2)	77(2)	5(2)	20(1)	3(1)
C(2)	70(2)	58(2)	56(2)	-4(1)	24(1)	10(2)
C(3)	65(2)	49(2)	36(1)	-9(1)	5(1)	9(1)
C(3M)	82(2)	58(2)	57(2)	-20(2)	2(2)	0(2)
C(4)	31(1)	41(1)	40(1)	-2(1)	-1(1)	4(1)
C(5)	32(1)	38(1)	37(1)	-2(1)	-4(1)	1(1)
C(6)	43(1)	60(2)	52(1)	9(1)	-16(1)	-9(1)
C(7)	57(2)	68(2)	53(2)	12(1)	-27(1)	-10(1)
C(8)	63(2)	52(2)	45(1)	5(1)	-8(1)	-4(1)
C(9)	45(1)	49(2)	45(1)	4(1)	-1(1)	-3(1)
C(10)	33(1)	46(1)	44(1)	4(1)	-3(1)	0(1)
N(11)	43(1)	44(1)	32(1)	-4(1)	-2(1)	9(1)
O(12)	38(1)	48(1)	57(1)	2(1)	6(1)	-2(1)
C(1B)	48(1)	45(1)	35(1)	-2(1)	-7(1)	4(1)
O(1B)	68(1)	77(1)	49(1)	-16(1)	-25(1)	20(1)
O(2B)	43(1)	48(1)	38(1)	-7(1)	-6(1)	14(1)
C(3B)	34(1)	35(1)	54(1)	3(1)	-1(1)	3(1)
C(4B)	51(2)	50(2)	79(2)	4(2)	-2(1)	-6(1)
C(5B)	56(2)	47(2)	67(2)	14(1)	1(1)	9(1)
C(6B)	50(2)	50(2)	60(2)	-4(1)	12(1)	4(1)

Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters ($\text{\AA}^2 \times 10^3$) for 25a.

	x	y	z	U(eq)
H(1A)	2876(2)	1824(3)	3548(2)	71
H(1B)	3807(2)	2814(3)	3143(2)	71
H(2A)	4479(3)	1259(3)	4597(2)	74
H(2B)	4208(3)	2619(3)	4718(2)	74
H(3)	6500(3)	1988(2)	4681(2)	60
H(3M1)	5820(14)	3919(4)	3546(9)	98
H(3M2)	7261(5)	3681(3)	3912(13)	98
H(3M3)	6122(18)	3978(4)	4619(5)	98
H(4)	5967(2)	797(2)	2160(2)	45
H(5)	5364(2)	3231(2)	2192(1)	43
H(6A)	5096(2)	1603(2)	705(2)	62
H(6B)	3909(2)	2209(2)	1226(2)	62
H(7A)	4339(3)	3159(3)	-200(2)	71
H(7B)	4498(3)	4042(3)	638(2)	71
H(8A)	6264(3)	4308(2)	-351(2)	64
H(8B)	6599(3)	2950(2)	-323(2)	64
H(9A)	6880(2)	4529(2)	1193(2)	55
H(9B)	8056(2)	3918(2)	661(2)	55
H(10A)	7450(2)	2081(2)	1241(2)	49
H(10B)	7640(2)	2954(2)	2083(2)	49
H(4B1)	10405(10)	872(12)	3290(4)	90
H(4B2)	10300(9)	1185(9)	2226(9)	90
H(4B3)	11157(3)	101(4)	2550(12)	90
H(5B1)	9927(9)	-1689(9)	3240(8)	85
H(5B2)	8373(9)	-1665(9)	3234(8)	85
H(5B3)	9162(17)	-844(2)	3920(2)	85
H(6B1)	9883(9)	-1244(12)	1518(5)	80
H(6B2)	9097(17)	-130(2)	1171(2)	80
H(6B3)	8330(9)	-1229(12)	1566(4)	80

Ortep Plot of 25a

References

1. Cossy, J.; Schmitt, A.; Cinquin, C.; Buisson, D.; Belotti, D. *Bioorg. Med. Chem. Lett.*, **1997**, 7, 1699.
2. Reginato, G.; Mordini, A.; Messina, F.; Degl'Innocenti, A.; Poli, G. *Tetrahedron*, **1996**, 52, 10985.
3. Greene, T. W.; Wuts, P. G. *Protective Groups in Organic Synthesis*, 2nd Ed., Wiley-Interscience, New York, 1992.
4. Gilbert, J.C.; Weerasooniga, U. *J. Org. Chem.*, **1979**, 44, 4997.
5. McAlonan, H.; Stevenson, P.J. *Tetrahedron: Asymmetry*, **1995**, 6, 239.
6. Nakatsuka, M.; Ragan, J.A.; Sammakia, T.; Smith, D.B.; Uehling, D.E.; Schreiber, S.L. *J. Am. Chem. Soc.*, **1990**, 112, 5583.
7. Meffre, P.; Gauzy, L.; Branquet, E.; Durand, P.; Le Goffic, F. *Tetrahedron*, **1996**, 52, 11215.
8. Ramirez, F.; Desai, N.B.; McKelvie, N. *J. Am. Chem. Soc.*, **1962**, 84, 1745.
9. Corey, E.J.; Fuchs, P.L. *Tetrahedron Lett.*, **1972**, 13, 3769.
10. Grandjean, D.; Pale, P.; Chuche, J. *Tetrahedron Lett.*, **1994**, 35, 3529.
11. Mitsunobu, O. *Synthesis*, **1981**, 1.
12. Tabor, A. B. Ph.D. Thesis, University of Cambridge, 1989.
13. Johnson, W.S.; Elliot, R.; Elliot, J.D. *J. Am. Chem. Soc.*, **1983**, 105, 2904.
14. Niwa, S.; Soai, K. *J. Chem. Soc. Perkin Trans. I*, **1990**, 937.
15. Midland, M. M. *Chem. Rev.*, **1989**, 89, 1553.
16. Noyori, R. *Science*, **1990**, 248, 1194.
17. Davies, H.G.; *Biotransformations in Preparative Organic Chemistry*, Academic Press, 1989, Chapter 2, p64 and references cited therein.
18. Marshall, J.A.; Wolf, M.A. *J. Org. Chem.*, **1996**, 61, 3238.
19. Enders, D.; Schankat, J. *Helv. Chim. Acta*, **1995**, 75, 970.
20. Inoue, I.; Shindo, M.; Koga, K.; Kanai, M.; Tomioka, K. *Tetrahedron: Asymmetry*, **1995**, 6, 2527.
21. Denmark, S.E.; Nakajima, M.; Nicaise, O.J.-C. *J. Am. Chem. Soc.*, **1994**, 116, 8797.
22. Kolb, M.; Barth, J. *Liebigs Ann. Chem.*, **1983**, 1668.

23. Renaud, P.; Seebach, D. *Angew. Chem. Int. Ed. Engl.*, **1986**, *25*, 843.
24. Takahashi, H.; Suzuki, Y.; Kametani, T. *Heterocycles*, **1983**, *20*, 607.
25. Takahashi H. ; Chida, Y.; Higashiyama, K.; Onishi, H. *Chem. Pharm. Bull.*, **1985**, *33*, 4662.
26. Takahashi, T.; Niwa, H.; Higashiyama, H. *Heterocycles*, **1988**, *27*, 2099.
27. Mori, A.; Ishihara, K.; Arai, I; Yamamoto, H. *Tetrahedron*, **1987**, *43*, 755.
28. Takahashi, H.; Hsieh, B.C.; Higashiyama, K. *Chem. Pharm. Bull.*, **1990**, *38*, 2429.
29. Higashiyama, K.; Inoue, H.; Takahashi, H. *Tetrahedron Lett.*, **1992**, *33*, 235.
30. Higashiyama, K.; Inoue, H.; Takahashi, H. *Tetrahedron Lett.*, **1994**, *50*, 1083.
31. Higashiyama, K.; Inoue, H.; Takahashi, H. *Chem. Pharm. Bull.*, **1995**, *43*, 722.
32. Higashiyama, K.; Nakagawa, K.; Takahashi, H. *Heterocycles*, **1995**, *41*, 2007.
33. Higashiyama, K.; Nakahata, K.; Takahashi, H. *Heterocycles*, **1992**, *33*, 17.
34. Higashiyama, K.; Nakahata, K.; Takahashi, H. *J. Chem. Soc. Perkin Trans. I*, **1994**, 351.
35. Wu, M-J.; Pridgen, L.N. *Synlett*, **1990**, 636.
36. Fülop, F.; Bernath, G.; Mattinen, J.; Pihlaja, K. *Tetrahedron*, **1989**, *45*, 4317.
37. Wu, M-J.; Pridgen, L.N. *J. Org. Chem.*, **1991**, *56*, 1341.
38. Mokhallaati, M.K.; Wu, M-J.; Pridgen, L.N. *Tetrahedron Lett.*, **1993**, *34*, 47.
39. Muralidharan, K.R.; Mokhallaati, M.K.; Pridgen, L.N. *Tetrahedron Lett.*, **1994**, *35*, 7489.
40. Pridgen, L.N.; Mokhallaati, M.K.; Wu, M-J. *J. Org. Chem.*, **1992**, *57*, 1237.
41. (a) March, J.; *Advanced Organic Chemistry*, 4th Ed., Wiley-Interscience, New York, 1992, p799. (b) p889. (c) p170 and references contained therein. (d) p250.
42. Meyers, A.I.; Barner, B.A. *J. Am. Chem. Soc.*, **1984**, *106*, 1865.

43. Andrés, C.; Maestro, A.; Pedrosa, R.; Pérez-Encabo, A.; Vicente, M. *Synlett*, **1992**, 45.
44. Andrés, C.; González, A.; Pedrosa, R.; Pérez-Encabo, A. *Tetrahedron Lett.*, **1992**, 33, 2895.
45. Andrés, C.; González, A.; Pedrosa, R.; Pérez-Encabo, A.; Garcia-Granda, S.; Salvado, M.A.; Gomez-Beltran, F. *Tetrahedron Lett.*, **1992**, 33, 4743.
46. Goodson, L.H.; Christopher, H. *J. Am. Chem. Soc.*, **1950**, 72, 358.
47. Alberola, A.; Alvarez, M.A.; Andrés, C.; González, A.; Pedrosa, R. *Synth. Comm.*, **1990**, 20, 1149.
48. (a) Alberola, A.; Alvarez, M.A.; Andrés, C.; González, A.; Pedrosa, R. *Synthesis*, **1990**, 153; (b) Alberola, A.; Alvarez, M.A.; Andrés, C.; González, A.; Pedrosa, R. *Synthesis*, **1990**, 1057.
49. Wu, M-J.; Yan, D-S.; Tsai, H-W.; Chen, S-H. *Tetrahedron Lett.*, **1994**, 35, 5003.
50. Alberola, A.; Andrés, C.; Pedrosa, R. *Synlett*, **1990**, 763.
51. Andrés, C.; Nieto, J.; Pedrosa, R.; Villamañán, N. *J. Org. Chem.*, **1996**, 4130.
52. Cole, D.C. *Tetrahedron*, **1994**, 50, 9517.
53. Cardillo, G.; Tomasini, C. *Chem. Soc. Rev.*, **1996**, 117.
54. Plucinska, K.; Liberek, B. *Tetrahedron*, **1987**, 43, 3509.
55. Kaseda, T.; Kikuchi, T.; Kibayashi, C. *Tetrahedron Lett.*, **1989**, 30, 4539.
56. (a) Matsubara, S.; Kodama, T.; Utimoto, K. *Tetrahedron Lett.*, **1990**, 31, 6379; (b) Osborn, H.M.I.; Sweeney, J.B.; Howson, B. *Synlett*, **1993**, 675.
57. Jefford, C.W.; Wang, J. *Tetrahedron Lett.*, **1993**, 34, 1111.
58. Jauristi, E.; Escalante, J.; Lamatsch, B.; Seebach, D. *J. Org. Chem.*, **1992**, 57, 2396.
59. Chu, K.S.; Negrete, J.R.; Konopelski, J.P.; Lakner, F.J.; Woo, N-T.; Olmstead, M.M. *J. Am. Chem. Soc.*, **1992**, 114, 1800.
60. (a) Davies, S.G.; Ichihara, O. *Tetrahedron: Asymmetry*, **1991**, 2, 183; (b) Davies, S.G.; Garrido, N.M.; Ichihara, O.; Walters, I.A.S. *Chem. Comm.*, **1993**, 1153; (c) Hawkins, J.M.; Lewis, T.A. *J. Org. Chem.*, **1992**, 57, 2114.
61. (a) Kunz, H.; Schanzenbach, D. *Angew. Chem. Int. Ed. Engl.*, **1989**, 28, 1068; (b) Davis, F.A.; Reddy, R.T.; Reddy, R.E. *J. Org. Chem.*, **1992**, 57,

6387; (c) Hattori, K.; Miyata, M.; Yamamoto, H. *J. Am. Chem. Soc.*, **1993**, 115, 1151.

62. Cohen, S.G.; Weinstein, S.Y. *J. Am. Chem. Soc.*, **1964**, 86, 725.

63. Rossi, D.; Lucente, G.; Romeo, A. *Experientia*, **1977**, 33, 1557.

64. Soloshonok, V.A.; Fokina, N.A.; Rybakova, A.V.; Shishkina, I.P.; Galushko, S.V.; Sorochinsky, A.E.; Kukhar, V.P.; Savchenko, M.V.; Svedas, V.K. *Tetrahedron: Asymmetry*, **1995**, 6, 1601.

65. Sánchez, V.M.; Rebolledo, F.; Gotor, V. *Tetrahedron: Asymmetry*, **1997**, 8, 37.

66. Ker, J. Ph.D. Thesis, University of London, 1998.

67. McKennon, M.J.; Meyers, A.I.; Drauz, K.; Schwarm, M. *J. Am. Chem. Soc.*, **1993**, 115, 3568.

68. Dale, J.A.; Mosher, H.S. *J. Am. Chem. Soc.*, **1973**, 95, 512.

69. Boehringer Mannheim Biocatalysts, 1994.

70. PGA immobilised on a solid support, donated by Boehringer Mannheim.

71. Morton, G.A. 3rd. Year Project, University of Edinburgh, 1993.

72. Lombardi, P. *Chem. Ind.*, **1990**, 21, 708.

73. Horner, L.; Kirmse, W.; Muth, K. *Chem. Ber.*, **1958**, 91, 430.

74. Meskens, F.A.J. *Synthesis*, **1981**, 501.

75. Satchell, D.P.N.; Satchell, R.S. *Chem. Soc. Rev.*, **1990**, 19, 55.

76. Robl, J.A.; Cimarusti, M.P.; Simpkins, L.M.; Weller, H.N.; Pan, Y.Y.; Malley, M.; DiMarco, J.D. *J. Am. Chem. Soc.*, **1994**, 116, 2348.

77. Yamaguchi, M.; Hayashi, A.; Hirama, M. *Chem. Lett.*, **1992**, 2479.

78. Lipshutz, B.H.; Tirado, R. *J. Org. Chem.*, **1994**, 59, 8307.

79. Yamaguchi, R.; Hata, E.; Utimoto, K. *Tetrahedron Lett.*, **1988**, 29, 1785.

80. (a) Mukaiyama, T.; Ishikawa, H. *Chem. Lett.*, **1975**, 305; (b) Ishikawa, H.; Mukaiyama, T.; Ikeda, S. *Bull. Chem. Soc. Jpn.*, **1981**, 23, 776.

81. Schlosser, M. "Organometallics in Synthesis - A Manual", Wiley, **1994**.

82. Corey, E.J.; Suggs, J.W. *Tetrahedron Lett.*, **1975**, 31, 2647.

83. Omura, K.; Swern, D. *Tetrahedron*, **1978**, 34, 1651.

84. Parikh, J.R.; von Doering, W. *J. Am. Chem. Soc.*, **1967**, 89, 5505.

85. Baker, R.; Castro, J.L. *J. Chem. Soc. Perkin Trans. I*, **1990**, 47.

86. Johnson, W.S.; Edington, C.; Elliott, J.D.; Silverman, I.R. *J. Am. Chem. Soc.*, **1984**, *106*, 7588.
87. Brown, A. R.; Rees, D. C.; Rankovic, Z.; Morphy, J. R. *J. Am. Chem. Soc.*, **1997**, *119*, 3288.
88. Eliel, E.I.; He, X-C. *J. Org. Chem.*, **1990**, *55*, 2114.
89. Shoja, M.; Saba, S. *Acta. Cryst.*, **1991**, *1994*.
90. Burgess, K.; Ohlmeyer, M.J.; Whitmire, K.H. *J. Org. Chem.*, **1990**, *55*, 1359.
91. Cherkauskas, J.P.; Klos, A.M.; Borzelleri, R.M.; Sisko, J.; Weinreb, S.M. *Tetrahedron*, **1996**, *52*, 3135.
92. Anderson, J.E. Personal communication.
93. Williams, D. H.; Fleming, I.; *Spectroscopic Methods in Organic Chemistry*, 4th Ed. (revised), McGraw-Hill, Maidenhead, 1989, p102-103.
94. Motherwell, W.B. Personal Communication.
95. Austin, W.B.; Bilow, N.; Kelleghan, W.J.; Kreisler, S.Y.L. *J. Org. Chem.*, **1981**, *46*, 2280.
96. Gopal, H.; Gordon, A.J. *Tetrahedron Lett.*, **1971**, *31*, 2941.
97. Adam, G. Personal Communication.
98. Holmes, A.B.; Tabor, A.B.; Baker, R. *J. Chem. Soc. Perkin Trans. I*, **1991**, 301.
99. Casara, P.; Danzin, C.; Metcalf, B.W.; Jung, M.J. *J. Chem. Soc., Chem. Commun.* **1982**, 1190.
100. Hauske, J. R.; Dorff, P.; Julin, S.; DiBrino, J.; Spencer, R.; Williams, R. *J. Med. Chem.*, **1992**, *35*, 4284.
101. Hoffman, R.W. *Chem. Rev.*, **1989**, *89*, 1841.
102. Still, W.C.; Kahn, M.; Mitra, A. *J. Org. Chem.*, **1978**, *43*, 2923.
103. Beak, P.; Yum, E.K. *J. Org. Chem.*, **1993**, *58*, 823.
104. Sambrook, J.; Fritsch, E.F.; Maniatis, T. *Molecular Cloning: A Laboratory Manual* (Vol. 3), 2nd Ed., Cold Harbour Spring Laboratory Press, 1989, pB.21.
105. Casara, P.; Danzin, C.; Metcalf, B.W.; Jung, M.J. *J. Chem. Soc. Perkin Trans. I*, **1985**, 2201.

106. Alcon, M.; Canas, M.; Poch, M.; Moyano, A.; Pericas, M.A.; Riera, A. *Tetrahedron Lett.*, **1994**, *35*, 1589.
107. Seebach, D., Ciceri, P.E.; Overhand, M.; Jaun, B.; Rigo, D.; Oberer, L.; Hommel, U.; Amstutz, R.; Widmer, H. *Helv. Chim. Acta*, **1996**, *79*, 2043.
108. Ye, T.; McKervey, M.A. *Tetrahedron*, **1992**, *41*, 8007.
109. Jefford, C.W.; Tang, Q.; Zaslona, A. *J. Am. Chem. Soc.*, **1991**, *113*, 3513.
110. Barbot, F.; Miginiac, P. *Helv. Chim. Acta*, **1979**, *6*, 1451.
111. Mori, I.; Ishihara, K.; Flippin, L.A.; Nozaki, K.; Yamamoto, H.; Bartlett, P.A.; Heathcock, C.H. *J. Org. Chem.*, **1990**, *55*, 6107.
112. Callot, H.J.; Louati, A.; Gross, M. *Bull. Soc. Chim. Fra. (II)*, **1983**, *2*, 317.
113. Gosselin, P.; Rouessai, F.; Zemarlik, H. *Bull. Soc. Chim. Fra. (II)*, **1981**, *2*, 192.
114. Silverman, R.B.; Ding, C.Z. *J. Am. Chem. Soc.*, **1993**, *115*, 4571.
115. Wilson, N.S., Keay, B.A. *J. Org. Chem.* **1996**, *61*, 2918.
116. Keller, O.; Keller, W.E.; van-Look, G.; Wersin, G. *Org. Synth.*, **1984**, *63*, 160.
117. Cosier, J.; Glazer, A.M. *J. Appl. Cryst.*, **1986**, *19*, 105.
118. Clegg, W. *Acta Cryst.*, **1981**, *A37*, 22.
119. Sheldrick, G.M. *Shelxtl v. 5*, Siemens Analytical X-ray Instruments, Madison, Wisconsin, 1995.