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Abstract 
The very earliest stages of sensory processing have the potential to alter how we perceive and respond to our 

environment. These initial processing circuits can incorporate subcortical regions, such as the thalamus and 

brainstem nuclei, which mediate complex interactions with the brain’s cortical processing hierarchy. These 

subcortical pathways, many of which we share with other animals, are not merely vestigial but appear to function 

as ‘shortcuts’ that ensure processing efficiency and preservation of vital life-preserving functions, such as harm 

avoidance, adaptive social interactions and efficient decision-making. Here, we propose that functional interactions 

between these higher-order and lower-order brain areas contribute to atypical sensory and cognitive processing 

that characterizes numerous neuropsychiatric disorders. 

Introduction 
The human neocortex has undergone an evolutionary development beyond that of any other species, endowing 

us with a prodigious, albeit computationally demanding, facility for foresight, planning and abstract thinking. Even 

in situations of relative stability, there is often a need for immediate, rapid and adaptive responses. For example, 

when we accidentally touch a hot baking tray, our muscles will reflexively contract to protect our hand from danger 

even before we have felt an actual sensation of heat. This example of a biological shortcut enables us to perform 

time-precious actions, such as harm avoidance, by bypassing slower and more complex systems, such as those 

that involve strategic planning. 

Neural shortcuts that stem from subcortical areas (which are the first to receive sensory input about the outside 

world1) can dynamically exert influence over and, in turn, be influenced by higher-order brain networks, to produce 

unique and intricate functional interactions. Over the past two to three decades, researchers have uncovered the 

structural properties of numerous subcortical shortcuts and their functional interactions with other circuits. Despite 

the potentially pivotal contribution of these dynamics to whole-brain processing, these lower-level circuits are 

underemphasized in models of complex sensory or cognitive processing, including models of disrupted information 

processing in psychiatric disorders. Here, we review recent progress in human and animal neuroscience on the 

anatomical and functional characteristics of putative rapid subcortical circuits. We propose a model of sensory 

processing that emphasizes the explanatory power of early subcortical processing and reciprocal subcortical–

cortical interactions in generating and modifying behaviour and high-level cognition, and how this might contribute 

to aberrant processing in neuropsychiatric disorders. 

Rapid responses to threat 
The most intuitive example of recruitment of a neural shortcut is when we are faced with a potential threat. The 

faster we can perceptually discriminate between, say, a snake and a stick, the sooner we can initiate a potentially 

life-saving fight-or-flight response. Overexertion or underexertion of this ability can severely impact on quality of 
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life. For example, people with clinical anxiety, such as specific phobia, exhibit extreme fear and hastened detection 

of relatively innocuous stimuli (for example, a photograph of a spider)2. On the other end of the spectrum, people 

with psychopathy have diminished threat detection and responsivity, which may contribute to antisocial behaviour3. 

This raises a question of how sensory information first reaches neural regions that elicit crucial, expedited 

responses to threats, and how might this be changed in people with symptomatically altered threat processing. 

The subcortical route to the amygdala 
In the 1980s, researchers discovered that rodents possess a neural shortcut that connects early auditory 

processing regions within the brainstem to the amygdala via the thalamus. This so-called ‘subcortical route to the 

amygdala’ (or ‘innate alarm system’) effectively bypasses the auditory cortex, transmitting auditory information 

directly from the thalamus to the amygdala and triggering conditioned fear responses such as freezing and 

elevated heart rate4. An equivalent auditory or visual pathway in the human brain would suggest that the amygdala 

could more readily initiate behavioural responses to threat by using rapid, but crude, sensory input from the 

subcortical route, before receiving a more refined sensory input provided by cortical processing streams (see Fig. 

1). This proposition has been a subject of intense debate5,6,7,8. One source of this controversy has arisen out of 

the unique challenge posed by studying fast activity in human subcortical regions in vivo. Significant advances in 

computational modelling of neuroimaging data9, along with a growth of relevant animal research10, have helped 

enable investigation into these subcortical dynamics. 

[FIGURE 1] 

Figure 1. Analogous neural networks for threat responses across species. Diagrams of basic visual threat response 

networks for the rodent (left) and human (right) brain. The transmission of visual information from the retina to threat-related 

regions (for example, the amygdala (AMG) and striatum (ST)) is similar across species, although the dominance of vision in 

humans has meant an increase in the size of the pulvinar (PUL; rodent equivalent is the lateral posterior nucleus of the thalamus 

(LP)) and visual cortices39. a | The superior colliculus (SC) in rodents receives the majority of retinal input19 and projects to the 

parabigeminal nucleus (PBN), a small satellite nucleus15. b | In contrast, in humans, the majority of retinal input is received by 

the lateral geniculate nucleus (LGN)165. c | Looming visual stimuli pose an evolutionary threat to rodents, as they signify the 

presence of a flying predator. d | In humans, visual threat cues are distinguished by more complex information, such as animal 

categories (for example, snakes, spiders) and social cues (for example, fearful expression in conspecific). The cortical visual 

processing stream is indicated by blue arrows and subcortical processing streams are indicated by orange arrows. dlPFC, 

dorsolateral prefrontal cortex; ES, extrastriate cortex; IT, inferotemporal cortex; LES, lateral extrastriate cortex; mPFC, medial 

prefrontal cortex; PAG, periaqueductal gray; V1, primary visual cortex; vmPFC, ventromedial prefrontal cortex; VTA, ventral 

tegmental area. 

The amygdala and other subcortical structures, such as the thalamus, provide examples of structures that are 

highly conserved across evolution11, and this allows informative comparisons between the human brain and the 

more accessible and manipulable brains of other species. Although rodents rely strongly on auditory and tactile 

stimuli, they also demonstrate freezing and escape behaviour to looming visual stimuli12 (as do humans13). Using 

optogenetics and neuroanatomical tracing, a visual pathway from the superior colliculus (SC) to the lateral 

posterior nucleus of the thalamus (LP), and thence to the amygdala, has been identified in mice14 (see Fig. 1). 

Additional paths have also been identified between the SC and the amygdala that traverse the parabigeminal 

nucleus (a small satellite nucleus of the SC)15, the ventral tegmental area16, the ventral midline thalamus17 and the 

periaqueductal grey (PAG)18. 

Despite the fact that around 90% of retinal ganglion cells project to the SC in the rodent brain19, compared with 

about 10% in the primate brain20, researchers have recently traced an anatomical pathway from the SC to the 

amygdala in the macaque monkey brain10. This pathway has also been successfully reconstructed from diffusion 

imaging data in humans9,21 and non-human primates21,22. Thus, despite the considerable structural reorganization 

of the primate visual system compared with that of rodents, visual pathways from the SC to the amygdala appear 

to have been conserved through evolution across different species. In the following sections, we ask whether 

pathways emanating from the SC that bypass the visual cortex have a meaningful influence on behaviour. 
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Parallel paths for defensive behaviour 
In the rodent brain, SC-originating shortcuts have genetically identifiable cell types that causally and independently 

evoke distinct behavioural responses to visual signs of threat or prey. The SC‒LP‒amygdala pathway, which 

mediates freezing14 and prey detection23, receives input from retinal ganglion cells that prefer small, slow stimuli 

(for example, a distal flying predator), whereas the SC‒parabigeminal nucleus‒amygdala pathway, which triggers 

escape15 and prey pursuit behaviour23, receives input from retinal ganglion cells that prefer large, fast stimuli (for 

example, a proximal collision)24. A recent optogenetic study has demonstrated that silencing the mediating node 

of either pathway (that is, the LP or the parabigeminal nucleus) results in a dominance of the other path’s 

behavioural output25. Altogether, these results from rodent research suggest that differences in the neurobiological 

architecture of parallel subcortical pathways support optimal dimorphic defensive behaviours from the earliest 

stages of visual processing. 

Although the size and speed of a visual stimulus give some indication as to which defensive behaviour might be 

optimal, we also know that rapid decision-making under threat reflects a larger and more complicated parameter 

space. For example, in response to a looming visual stimulus, mice will switch from escape to freezing if they know 

that there is no accessible safe location to escape to26. If near a food source, crayfish will freeze instead of flee in 

response to a fast visual stimulus27. The exact mechanism by which contextual information is integrated with 

bottom-up subcortical processing has yet to be fully explored, although there are emerging hints in the literature 

that we discuss below28. 

One possible integration mechanism is that the SC itself is primed with contextual information from other neural 

sources, so that incoming sensory information is biased towards or away from freezing or fleeing from the very 

beginning of processing. This is encapsulated by hierarchical predictive processing frameworks29, which we 

discuss in more detail below. Another possibility, and one that is more commonly considered by the current 

literature30, is that contextual information is integrated at a later stage, such as at the PAG or the amygdala, at 

which point the trajectory towards different defensive behaviours is altered. Below, we present evidence that 

supports a framework that considers both possibilities. 

Defensive behavioural decisions 
Activity within the SC is subject to modulatory influences of other subcortical and cortical regions. For example, 

GABAergic projections from the substantia nigra pars reticulata can inhibit the SC, significantly reducing threat 

recognition and increasing approach (as opposed to avoidant) behaviour31. The behavioural specificity of this 

upregulation or downregulation is thought to arise from the point at which a modulatory connection synapses onto 

the SC, either its lateral division (associated with approach behaviour) or its medial division (associated with 

avoidant behaviour). Indeed, if projections from the visual cortex to the SC (which synapse exclusively in the 

medial SC32) are silenced, the magnitude of freezing behaviour is reduced by approximately one-third33. In 

contrast, projections from the locus coeruleus (which synapse to both the medial and the lateral SC) accelerate 

escape decisions when rodents are stressed but can also attenuate escaping when stress is reduced via gentle 

handling34. We can speculate that, after recently learning that a safe escape location is now inaccessible, afferent 

connections from the hippocampus to the medial SC32 might suppress escape behaviour by transmitting an 

inhibitory signal28. 

Like rodents, pharmacological activation of the SC in non-human primates evokes defensive behaviours, such as 

freezing, escape, cowering and alarm vocalizations35,36. However, if the amygdala is also inactivated, only 

cowering behaviour is disrupted36. In contrast, pharmacological activation of the PAG in macaques produces 

vocalizations but not motor-related defensive responses, such as escape or cowering37. Together, these results 

support the finding that, in the rodent brain, the SC triggers escape behaviour in the PAG after neural gain ramps 

up a particular decision threshold18, similar to the established role of the SC in issuing motor commands for eye 

and head movement, and reaching in both rodents and primates38. 

In comparison with rodents, the visual processing capabilities of the primate SC and pulvinar (which also receives 

retinal input39) have evolved to be considerably more sophisticated. For example, the SC and pulvinar in primates 



4 

respond preferentially to images of snakes and emotional facial expressions at latencies of 25 ms (SC) and 50–

60 ms (pulvinar)40,41,42 (see Box 1). Hence, when behavioural coordination regions, such as the amygdala, receive 

rapid subcortical input from areas such as the pulvinar, different visual representations are already selectively 

enhanced and may bias subsequent behavioural responses. Below, we explore further the computations made by 

subcortical visual areas and how these are influenced by, and/or exert influence over, cortical regions to influence 

perception, cognition and behaviour. From a starting point of threat processing, we expand the discussion to 

incorporate general perceptual decision-making and predictive processing, and draw key relationships to 

psychiatric pathology. 
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Box 1 | Functional response latencies in subcortical and cortical visual networks 

The implication of a subcortical ‘shortcut’ is that it enables some sort of functional processing or behaviour to occur more 

quickly than via canonical networks. Mapping out the precise temporal dynamics of human circuits is notoriously difficult, owing 

to variance caused by different stimuli, the size and morphology differences between animal (from which most direct latency 

information is acquired) and human brains, and the limited neural regions that can be simultaneously recorded. The visual 

system is one of the most thoroughly examined and below we summarize key latency findings to date. 

In the primate brain, visual information from the retina initially perturbs the lateral geniculate nucleus (~20–30 ms (ref.173)), 

followed by the primary visual cortex (V1; ~40 ms (refs169,174)) and then the superior colliculus (SC; ~50 ms (refs41,169)) and 

pulvinar (~60 ms (ref.55)). Activity then spreads along the rest of the cortical visual stream, including visual area 3 (V3), the 

middle temporal area (V5), V2 and V4 (ref.175). The exact mean and earliest latencies vary widely across studies, however, 

depending on multiple factors (for example, whether the animals are awake or anaesthetized, the type of stimuli used and so 

forth). 

The delayed firing of the SC, as compared with V1, might seem surprising given that it receives direct input from the retina20. 

However, there are some circumstances under which SC firing precedes that of V1. For example, the mean response latency 

of the SC shifts from 86 to 59 ms under higher stimulus intensity176. Even earlier shifts are seen in the SC to face-like patterns, 

which elicit neuronal responses in the SC after only ~30 ms on average41. Similarly, the pulvinar also responds earlier to snakes 

(~55 ms (ref.40)) and faces (~50 ms (ref.55)) than other stimulus categories. These early neuronal responses to biologically 

relevant stimuli can explain findings for early (~75 ms) innervation of the amygdala136 by the pulvinar138. In comparison, cortical 

processing routes to the amygdala have been computationally estimated to take about 145–170 ms (ref.177). 

The early responses to these stimulus categories in the SC and the pulvinar could relate to the computation of saliency maps. 

Visual properties (for example, luminance, contrast, edges, motion, colour and so forth) are converted into saliency maps (that 

is, the degree to which a point on a topographic map differs from its surroundings) and priority maps (that is, which region of a 

topographic map to allocate attention to, based on bottom-up saliency and top-down goals)170. Saliency maps are rapidly 

encoded by V1 neurons after receiving bottom-up input. Saliency maps in the SC, however, precede those in V1 by 

approximately 50 ms (ref.169). Hence, visual stimuli are filtered at very early stages for aspects such as saliency and biological 

relevance. 

Subcortical impact on cognition 
Given the finite processing capabilities of the human brain, sensory information is continuously filtered to 

strengthen representations of the most relevant stimuli. This can occur via innate neurobiological properties, such 

as the preferential firing of the SC and the pulvinar to biologically relevant stimuli (for example, snakes, 

faces)40,41,42, as well as via higher-order computations such as attentional allocation and predictive inference. 

Attentional biases 
Both the SC and the pulvinar are implicated in capturing and allocating attention. The SC directs eye movements 

and covert attention towards salient visual stimuli, and can do so independently of the visual cortex43. The pulvinar 

also plays a regulatory role in attention by synchronizing cortical activity according to attentional allocation44. Visual 

coding within the pulvinar itself reflects attentional allocation, with attention increasing the precision of a visual 

stimulus representation45. These computations allow the gain of different visual representations to be altered 

before being transmitted to higher-order regions, such as the amygdala or frontal cortices. 

Anxiety 
An attentional bias towards certain stimuli, and away from others, has implications for how an agent responds to, 

and learns from, their environment46. Anxiety disorders have generally been associated with a selective attentional 

bias towards threatening stimuli47. For example, people with spider phobia show heightened detection sensitivity, 

and lower decision thresholds, for spider images presented rapidly amongst a stream of other images2. Similarly, 

people with spider phobia overestimate the speed of spider stimuli moving towards them compared with away 

from them48 and also overestimate the size of real-life spiders49. Intriguingly, recent computational evidence 

suggests a bidirectional relationship between attention to threat and aversive learning, such that attentional biases 

towards threat coincide with enhanced learning about aversive stimuli46. 
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A recent influx of human neuroimaging studies suggests a functional role of SC and pulvinar paths in biasing 

attention towards threat. Diffusion imaging studies have shown that people with greater fractional anisotropy along 

the SC–pulvinar–amygdala path also have a stronger bias in orienting towards negative images50 and are also 

better at recognizing fearful facial expressions9. The structural connectivity of this pathway also correlates with 

forward-flowing effective connectivity, suggesting a directional, causal relationship9. While viewing spiders, 

effective connectivity from the pulvinar to the amygdala is greater in people with spider phobia than in those 

without51. Similarly, effective connectivity between the pulvinar and the visual and frontal cortices is greater in 

people with social anxiety disorder while viewing faces52. Women with post-traumatic stress disorder (PTSD) 

(which is characterized by a hypervigilant attentional bias to threat) exhibit a greater blood oxygen level-dependent 

(BOLD) signal in the SC, PAG and locus coeruleus53, as well as enhanced functional connectivity between the SC 

and the cingulate cortex, insula and amygdala, while viewing faces54. Overall, these studies support a bottom-up 

exaggeration of threatening stimuli in people with greater attentional bias to threat, such as those with clinical 

anxiety. 

Notably, the stimuli used in the studies discussed tend to be restricted to faces, spiders and snakes, to which the 

SC and pulvinar innately respond40,41,42,55. Further research is needed to elucidate whether there is a genetic 

explanation for a neural responsivity of SC and pulvinar pathways to evolutionary threats (indeed, animal and 

social phobias are 30–40% heritable56). Importantly, rodent research has shown that a build-up of firing activity in 

SC neurons (likely as a result of a loop between the SC, substantia nigra pars reticulata and basal ganglia57) is 

associated with successful avoidance of fear-conditioned stimuli, a finding that extends SC functions from innate 

threats to include learned threats58. 

Autism 
Autism is a highly diverse and heterogeneous spectrum of developmental disorders that are broadly characterized 

by impaired social interaction and communication. Numerous cognitive theories have been developed to explain 

the pathogenesis of autism, and these include low-level visual processing59 and mirror neurons60 through to 

predictive coding61. An SC theory of autism draws from the wealth of evidence for disrupted or altered SC 

functioning in attention and face processing, as well as parallels between neural visual development and the onset 

of autism. 

Autism is associated with atypical responses in the SC, pulvinar and amygdala in response to faces62,63,64 and 

looming stimuli65. More indirectly, there are strong similarities between many of the core pathologies of autism and 

key functional roles of the SC, such as the dominance of local over global visual processing66 (which also occurs 

as a result of SC deactivation67) and disrupted multisensory integration68 (which develops in neurons of the SC69). 

Similarly, the SC develops earlier than geniculostriate visual processing streams and thus dominates visual 

processing during the same period in which autism manifests (from 2 months to 3 years old)70. Overall, the 

similarities between SC development and function and the aetiology and current theoretical accounts of autism 

point to a prominent role of the SC, and perhaps also the pulvinar and lateral geniculate nucleus, in early visual 

computation59. 

Attention-deficit hyperactivity disorder 
The SC has long been implicated in sensory processing characteristics of attention-deficit hyperactivity disorder 

(ADHD)71. There are two primary drivers of this hypothesis. The first is that people with ADHD have difficulty 

making the types of saccades specifically related to SC functioning72 — for example, anti-saccades (looking away 

from a target73) and express or micro saccades (saccades with very short latency74). The second driver is that the 

SC is a target of therapeutic action by amphetamines and methylphenidate, which relieve people with ADHD from 

distractibility and increase sustained attention. Rodent models of ADHD have indicated that these drugs dampen 

overall hyperactivity75,76 and increase the signal-to-noise ratio in the SC77. Furthermore, inhibitory connections 

from the dorsolateral prefrontal cortex to the SC are thought to prevent distractibility78. 

These findings suggest that a pathology within the SC may result in it inaccurately computing saliency maps, such 

that more stimuli are perceived as maximally salient. This in turn might arise from the substantia nigra, which is 
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known to relay signals for the reward value of visual stimuli from the caudate tail to the SC to inhibit saccades to 

irrelevant, low-value stimuli and vice versa79. Indeed, reward-evoked activity in the striatum (which projects to the 

substantia nigra) is reduced in children with ADHD80. Interestingly, the pulvinar (which projects to the striatum81) 

has reduced volume82 and abnormal functional connectivity with areas, including the prefrontal cortex83,84 and 

striatum84, in people with ADHD. This dynamic subcortical circuit, consisting of the SC, pulvinar and basal ganglia, 

may play a crucial role in pathological distractibility. 

Pre-attentive and unconscious biases 

Blindsight and spatial neglect 
A powerful demonstration of subcortical influences on cognition is seen in the instance of blindsight. Blindsight 

describes a remarkable phenomenon whereby people who are cortically blind (that is, lesions to the primary visual 

cortex (V1) prevent conscious visual experience) can still respond to visual stimuli (see Box 2). Residual abilities 

include discrimination between stimulus categories (for example, lines versus no lines85, neutral versus fearful 

face86) as well as an ability to respond physiologically (for example, pupil dilation) to emotional stimuli87. Patients 

with blindsight can even navigate an obstacle course, despite being unable to report how they are able to do so88. 

Blindsight highlights two important features of the brain: first that V1 is an important neural substrate for visual 

consciousness89 (but note that visual experience can be realized if V1 lesions occur in very early-life stages90); 

and secondly, neural networks that bypass V1 support a range of residual visual capacities that aid preservation 

of critical behavioural responses to visual stimuli. 

Unconscious responses to affective stimuli are subserved by the SC–pulvinar–amygdala pathway, both in 

blindsight and in healthy people whose conscious visual perception is suppressed via experimental techniques 

(for example, backward masking, continuous flash suppression)7. In a particularly compelling case study of a 

patient with unilateral V1 damage, researchers found that fractional anisotropy increased along the SC–pulvinar–

amygdala path in the hemisphere with the V1 damage alone22. This indicates a possible neuroplastic, 

compensatory change along this neural pathway as a result of the patient’s reliance on unconscious visual 

processing. A similar strengthening is seen along the pulvinar’s projections to the motion-sensitive middle temporal 

area (V5) in marmosets who sustained early-life V1 lesions39. Indeed, both the SC and the pulvinar91 (as well as 

the lateral geniculate nucleus92) subserve residual motion processing in blindsight. In both affective and motion 

blindsight, there is likely a fundamental role of the SC in computing and transmitting saliency maps93. 

People may also be ‘blind’ to stimuli in the left or right side of space owing to cortical lesions (most commonly the 

right parietal cortex). This is known as spatial neglect (or visual extinction), a condition where patients unknowingly 

ignore the contralesional side of space. The deficits in saliency encoding and spatial attention arise from lesion-

induced disruptions to dorsal and ventral frontoparietal networks94. Included here are connections between the 

frontal eye fields and the SC, which are diminished in patients with spatial neglect and correlate with more impaired 

exploratory saccade behaviour95 (see Fig. 2). Despite this, patients with spatial neglect can retain residual, implicit, 

visual processing of unattended stimuli96, much as seen in patients with blindsight with V1 lesions. This observation 

demonstrates that residual visual processes are retained even after large-scale neural network disruptions, 

perhaps preserved by alternative pathways. 

[FIGURE 2] 

Figure 2. Interactions between cortical and subcortical networks during attentional allocation. The superior colliculus 

(SC) is a layered structure, consisting of superficial layers that receive retinal input and input from striate and extrastriate 

cortices166, intermediate layers that receive input from the frontal eye fields (FEF) and are involved in saccade generation167, 

and deep layers that combine multisensory input to produce motor commands168. Neurons within the SC encode saliency maps 

in retinotopic space (see top left) earlier than the primary visual cortex (V1)169. For example, in a display of three simple stimuli 

(a red triangle, blue circle and blue triangle, as depicted bottom left), red may be encoded as more salient than blue, creating 

a pop-out effect of the red triangle. These saliency maps are combined with priority maps (that is, to where attention should be 

allocated, according to an attentional set for certain visual stimuli), which are created by higher-order regions and transmitted 

to the SC via top-down connections from areas, such as the FEF170. For example, the pop-out effect of a prominent colour may 

be overridden by an attentional set for a certain shape, such as when searching for a circle amidst triangles (bottom left). 
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Saliency and priority maps are propagated throughout the brain but, in the case of blindsight, the absence of V1 places this 

ability solely with the SC and its connections to the pulvinar (PUL)7. The disruptions to FEF seen in spatial neglect could, in 

contrast, remove any early top-down influence on visual attention allocation94. The PUL reciprocally connects to multiple 

networks, some of which are displayed here (for example, the amygdala (AMG), orbital frontal cortex (OFC), dorsolateral 

prefrontal cortex (dlPFC), striatum (ST) and so forth)39. The PUL has been discovered to synchronize local field potentials 

across cortical networks, specifically visual area 4 (V4) and the inferotemporal cortex (IT), according to attention allocation44 

(see top right). V5, middle temporal area. 

Box 2 | Subcortical contributions to blindsight 

The neural circuitry enabling blindsight, particularly for motion, has been thoroughly explored. Research has revealed the 

lateral geniculate nucleus (LGN), superior colliculus (SC), pulvinar, amygdala and extrastriate cortex (notably, the motion-

sensitive visual middle temporal area (V5) that is the earliest cortical region to receive visual input178) as key components179. 

However, there are considerable discrepancies in relation to whether the LGN or, alternatively, the SC and/or pulvinar subserve 

blindsight via connections to V5. 

In support of a role for the LGN, there are reports of enhanced structural connectivity180 and functional connectivity181 between 

the LGN and V5 in patients who are cortically blind who have motion-related blindsight, whereas connectivity between the 

pulvinar and V5 is the same irrespective of whether or not a patient has blindsight181. Furthermore, residual neurons within the 

macaque LGN (which becomes profoundly degenerated after V1 lesions) transmit visual information to V5 that support 

preserved visual abilities92, regardless of in which life stage a V1 lesion is incurred165. 

In support of the SC and the pulvinar, macaques with early-life V1 lesions show strengthened structural connections between 

the pulvinar and V5 (ref.39). Patients with blindsight show a greater blood oxygen level-dependent signal response in the SC 

and pulvinar during unconscious motion detection182. In line with this, patients with pulvinar lesions also tend not to have 

blindsight183. Similarly, V1-lesioned macaques cannot make visually guided saccades in the blind visual field if the connection 

between the SC and the pulvinar is pharmacologically inhibited184. 

Without a direct test comparing the effects of LGN with SC/pulvinar inhibition on blindsight, we cannot definitively conclude 

whether one or both structures are critical to compensatory visual networks subserving blindsight. Nonetheless, it is thought 

that both play a role and that their relative contributions depend on multiple factors, such as the nature of the visual 

stimulus184,185 as well as the developmental stage in which a V1 lesion is acquired. Tectopulvinar pathways develop earlier 

than geniculostriate pathways and so pulvinar-dominant networks tend to subserve blindsight in cases where V1 lesions are 

acquired earlier in life22,90 (but note that the late patient T.N. acquired V1 lesions at the age of 52 years and yet had markedly 

enhanced neural activity in the superior colliculus and pulvinar86,88,137). 

Implicit neural processing 
Pre-attentive or unconscious processing in spatial neglect and blindsight impacts conscious perception and 

decision-making7. For example, patients with spatial neglect can more easily semantically categorize an image 

(that is, identifying and naming the stimulus as it becomes progressively less blurry) when, in a previous session, 

this same image had been implicitly presented to the blind field of view. Patients with blindsight with V1 lesions 

show significantly faster perceptual discrimination (for example, the orientation of Gabor patches) of consciously 

perceived stimuli when fearful faces are concurrently and unknowingly presented in the blind field97. Similarly, 

facial expression recognition is improved when congruent emotional expressions are simultaneously presented to 

the blind hemifield in patients with V1 lesions98 and in healthy people using conscious suppression techniques99 

(but note that studies have also found facilitation by incongruent emotion pairs100,101). These congruency effects 

coincide with a greater BOLD signal in the SC, amygdala and fusiform gyrus98. 

Studies in healthy populations using methods such as continuous flash suppression have also shown that 

perceptual evidence can still be accumulated from unconsciously presented moving stimuli (for example, the 

direction of motion). The rate of evidence accumulation enhances responses to subsequent consciously presented 

motion stimuli, such that accuracy for detecting the motion direction of the conscious stimulus is higher if the 

unconscious motion was congruent102. This has no effect on subjective confidence estimates and can even be 

trained103. Finally, fearful faces104 and fear-conditioned visual features105 that are initially suppressed from 

awareness using continuous flash suppression tend to ‘break through’ into perceptual awareness earlier than other 
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neutral stimuli. Altogether, these studies exemplify the influence of non-conscious processing on subsequent 

conscious processing. 

Implicit processing in psychiatry 
Evidence for residual visual processing in blindsight and spatial neglect begs the question of whether non-

conscious visual processing in subcortical networks contributes to disordered perception, memory formation or 

decision-making in psychiatric disorders. There is indeed evidence for exaggerated subcortical responses to 

consciously imperceptible stimuli in certain psychopathologies. For example, hyperactivity in the basolateral 

amygdala in response to subliminal fearful faces has been reported in people with higher trait anxiety106, with 

spider phobia107 and, to an even greater degree, with PTSD108. In contrast, people with autism have reduced 

amygdala activation in response to subliminally presented faces109 and also make significantly more saccades 

towards subliminal face stimuli with averted, rather than direct, gaze110,111. This suggests that neural circuits 

mediating unconscious visual responses may be hyper-responsive to direct gaze in autism, resulting in avoidance 

(for example, attentional disengagement). 

Predictive biases 
The content of our conscious experience reflects in, large part, our current model of the world112. In cases where 

sensory input is noisy or unreliable (due to either external factors, such as lighting conditions, or internal factors, 

such as impaired attentional filtering of incoming sensory information), our posterior estimate of the world becomes 

biased towards more precise prior expectations. Extremely precise priors (for example, over-expectancy of threat 

in anxiety disorders113) may exaggerate this even further. A reliance on prior expectations can profoundly shape 

perceptual experience, resulting in phenomena such as illusory percepts114 through to an accelerated entry of 

expected stimuli into conscious awareness115,116. Hence, the way that we consciously perceive ambiguous 

information can provide insight into our top-down predictions and a priori biases (see Fig. 3). 

[FIGURE 3] 

Figure 3. Updating of beliefs using sensory evidence and prior expectations. Within a hierarchical predictive processing 

framework, our beliefs are influenced by both the likelihood and prior expectations for a certain hypothesis29. In this example, 

the two competing hypotheses are that a visual stimulus is a neutral face or a fearful face (category evidence is represented 

by the x axis of each graph). a | The likelihood probability distribution (top; corresponding to the sensory evidence) favours a 

neutral face but is imprecise (for example, the room is dark and it is difficult to see). The prior probability distribution, however, 

is heavily biased towards a fearful face and is very precise, such as might be seen in clinical anxiety. Below this, the 

transmission of top-down predictions and bottom-up prediction errors is shown between neural regions. Aversive prediction 

errors are found in areas such as the amygdala130 and striatum (ST)132, and are thought to likely occur in the pulvinar (PUL)1. 

This suggests that early sensory processing at the level of the superior colliculus (SC) and lateral geniculate nucleus (the latter 

not shown) is not influenced by prior expectations. The rapid processing subserved by connections such as the SC–PUL–

amygdala pathway, however, suggests that aversive prediction errors (that is, from prefrontal cortex (PFC) to amygdala) may 

be generated more quickly, which could constitute a key function of this subcortical circuit. The red arrows represent enhanced 

prediction errors and the blue arrows represent top-down threat expectations. b | In contrast, this example depicts a situation 

whereby the observer may not know what to expect (that is, an imprecise prior midway between the two hypotheses) but 

sensory evidence is biased towards a fearful face, producing the same biased belief (that is, similar posterior distribution) as 

the first example. Here, the biasing of sensory evidence towards threat may be subserved by multiple processes. First, signs 

of stress or hyperarousal (for example, fast heart rate) signalled by the periaqueductal grey (PAG)171 may be incorporated as 

sensory evidence of threat142. Secondly, the innate responsivity of the SC and PUL to fearful faces41,139 may exaggerate any 

low-level visual features congruent with fearful faces. Thirdly, the imprecise prior expectations from areas such as the 

dorsomedial prefrontal cortex (dmPFC)172 enhance the influence of the likelihood over the posterior estimate (that is, the belief). 

Hence, this demonstrates two different examples by which top-down predictions interact with sensory processing in subcortical 

circuits to give rise to biased beliefs in disorders such as anxiety, autism and schizophrenia. The red arrows represent 

enhanced sensory evidence for threat and the blue arrows represent imprecise priors. OFC, orbital frontal cortex; SN, 

substantia nigra. 
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Prediction error in early visual areas 
The pulvinar, in addition to its role in attention and relevance modulation, is thought to influence the gain of visual 

information according to the precision of our prior expectations1 (see Box 3). Pulvinar neurons encode the certainty 

of perceptual decisions while also modulating the gain of prediction error units in a myriad of cortical sensory and 

associative areas1. This is an ongoing iterative process44 that, presumably, influences sensory information that 

inputs the pulvinar, such as that received from the SC or via direct retinal afferents. Crucially, the pulvinar 

modulates the confidence of perceptual decisions, which dictates whether we engage in a decision at all117. 

Pulvinar inhibition reduces confidence and results in more frequent decisions to ‘opt-out’. Confidence has been 

suggested to arise from a sharpening of prediction error signals (that is, increasing their precision and neural ‘gain’ 

of the signal)1, which, in turn, is modulated by attention118. Accordingly, the pulvinar is in a position to more 

precisely encode attended, compared with unattended, stimuli45 as well as modulate the impact of attention via 

cortico-pulvino-cortical loops44. 

Responses in the SC are also sensitive to prior expectation. Neurons within the SC respond to novel stimuli, 

evoking faster saccade latencies for more surprising stimuli119. These SC responses to unpredictable and salient 

events are transmitted rapidly and directly to dopaminergic neurons within the substantia nigra120. Crucially, these 

rapid stimulus responses, and the behaviours they elicit (for example, anticipatory licking in monkeys), occur even 

in the absence of V1 (ref.121). Hence, pathways from the SC to the dopaminergic reward system, via the midbrain, 

constitute a potential shortcut for predictive reward processing. Interestingly, a follow-up study has demonstrated 

that, if V1 remains intact and the SC is inactivated instead, dopaminergic neurons respond just as quickly (although 

saccades were slower)122, despite the path from V1 not being direct123. This calls into question whether these two 

seemingly redundant pathways to dopaminergic neurons are co-activated for the simple visual stimuli used in 

these experiments, or whether using more complex stimuli might result in differences in the human brain. 

Box 3 | The pulvinar and intolerance of uncertainty 

To quote horror fiction author H. P. Lovecraft: ‘The oldest and strongest emotion of mankind is fear, and the oldest and strongest 

kind of fear is fear of the unknown.’ Uncertainty is inherently anxiety-provoking, as it indicates that we cannot actively seek 

potential rewards or avoid losses or threats172. Intolerance of uncertainty is a core symptom of many psychiatric disorders, 

including depression186, anxiety187, eating disorders188 and autism189. People with higher intolerance of uncertainty may 

overestimate the likelihood or severity of negative outcomes190, worry about the future in an effort to reduce uncertainty191 and 

avoid risk172. 

The pulvinar is a likely candidate for how uncertainty increases anxiety. For example, activity in the pulvinar and in associated 

thalamocortical loops is especially magnified by threat in people with stronger attentional threat biases192, social anxiety52, 

specific phobia193 and depression194. There is also evidence that the pulvinar responds to cues pertaining to negative 

hypothetical future events195. Hence, an intolerance of uncertainty may be the result of the pulvinar ‘overfeeding’ the areas it 

connects to (including the amygdala). Specifically, the pulvinar may increase the gain of all incoming stimuli in uncertain 

conditions (owing to diminished top-down signals from areas such as the dorsomedial prefrontal cortex172, similar to how stress 

sharpens the precision of sensory prediction errors171), resulting in hypervigilance and reinforcement of negative expectations. 

There is wide scope for future research to acquire new evidence for or against this proposition. 

Threat anticipation 
An emerging pattern in the literature is the relationship between trait anxiety, threat predictability and conscious 

perception. For example, people with higher trait anxiety are faster to detect fearful faces in breaking continuous 

flash suppression124 and backward masking125. Furthermore, in an emotional expression recognition task, 

expecting to see an upcoming fearful face improved signal detection (that is, fearful faces versus neutral faces) 

and the response time126,127,128. This was especially the case when an anxious state had been induced via 

anticipation of an upcoming electric shock. These effects interact with participants’ trait anxiety, such that people 

with higher trait anxiety show improved perceptual sensitivity when expecting fearful faces, but not neutral faces, 

during shock anticipation127. Beyond faces, anxiety is also associated with more negative interpretations of 

ambiguous scenarios and interoceptive, bodily sensations (for a review, see ref.129). 
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At which points in a neural hierarchy does incoming visual information first impinge on a prior expectation for 

threat? Aversive prediction errors have been observed in the basolateral amygdala130, PAG131 and striatum132. 

These prediction errors are not generic ‘surprise’ signals but, rather, encode the specific features of 

representations that were unexpected, given prior experience133. For example, top-down predictions transmitted 

from the ventromedial prefrontal cortex to the PAG generate prediction errors regarding whether a nocioceptive 

input received from the body, via the PAG, was more or less painful than expected131. As another example, 

prediction errors generated in V1 after the unexpected absence of a visual stimulus are orientation-specific134. 

This ‘match-to-template’ method135 emphasizes the quality of sensory representations (and the specificity of the 

prediction) in dictating the information encoded by prediction errors. 

In the context of threat perception and expectations, this knowledge suggests that prediction errors generated by 

the amygdala are influenced by rapid visual input provided by the SC and the pulvinar in two ways (see Fig. 3). 

The first is via spatial frequency filtering. The SC and the pulvinar receive a predominantly magnocellular input, 

enabling fast136 and unconscious137 responses to the ‘coarse’ visual properties in stimuli that convey biologically 

relevant information138. Should the amygdala receive this coarser, perceptually ambiguous information earlier than 

a more refined and perceptually specific visual representation from the cortical visual stream, then the threat-

biased expectations seen in anxiety disorders could plausibly have a greater influence on perception. The second 

way is via selective attention. As discussed above, the SC boosts the gain of sensory signals according to their 

saliency43 (for example, facial expressions41,139). The pulvinar can then enhance the precision of prediction errors 

generated by the amygdala and visual cortical stream1, leading to exaggerated updating of aversive value seen in 

disorders, such as PTSD140. These two propositions are, of course, yet to be empirically tested, but each has 

crucial implications for when and how visual input interacts with prior expectations in subcortical–cortical 

hierarchies141. 

In addition to sensory information about the external world (such as, visual information, which has been the focus 

of this Review), the brain also incorporates internal information (that is, the body’s physiological state) into the 

generation and updating of beliefs142. This process is known as interoceptive (or embodied) inference. Internal 

states can significantly bias perception by enhancing the precision of sensory evidence for a particular hypothesis. 

For example, fearful stimuli are more easily and intensely perceived when presented during the systolic phase of 

a cardiac cycle (for a review, see ref.143). This effect co-varies with subjective feelings of anxiety, as well as with 

the BOLD signal in the amygdala144 and PAG145. Hence, subcortical visual shortcuts likely modulate fear 

perception in two interacting ways (see Fig. 3). First, the SC–pulvinar–amygdala pathway may evoke a heightened 

physiological state through non-conscious processing of fearful stimuli (as demonstrated in blindsight research146). 

Second, incoming visual input to the SC and pulvinar may be modulated by interoceptive signals about bodily 

state, such as those sent from the PAG and locus coeruleus to the SC and pulvinar147,148. Indeed, functional 

connectivity strength between the pulvinar and posterior parietal cortex co-varies with pupil-linked arousal149. 

Together, these form a shortcut loop by which negative bodily states are heightened and bias subsequent visual 

representations towards threat150. 

Prediction in schizophrenia and autism 
Perhaps the most extreme case of biased perception occurs in hallucinatory phenomena that characterize 

schizophrenia. Perceptual experiences of people in the early stages of schizophrenia are reported to be more 

intense (that is, brighter, louder and so forth), and eventually these lead to hallucinations151. Current models of 

schizophrenia pose both altered sensory processing and extremely distorted prior expectations as explanatory 

factors for psychosis152. 

Similar to autism, visual processing deficits in schizophrenia are most prominent in the domain of face and motion 

perception. The pulvinar has been strongly implicated in both cases, albeit in different ways. One study observed 

impaired facial expression recognition and signal detection for motion in both schizophrenia and autism153. In 

participants with schizophrenia, these impairments were explained by reduced sensory activation and a reduced 

pulvinar BOLD signal (the latter also correlated with reduced alpha activity measured with 

electroencephalography). In contrast, behavioural impairment in participants with autism was explained by 
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hypersensitive sensory processing and hyper-connectivity of the pulvinar with V1, V5 and the dorsal visual stream. 

These findings corroborate a multitude of evidence for a deterioration of the pulvinar and its connections in 

schizophrenia154,155, and an expansion of the pulvinar in autism156,157. 

A model of subcortical influence 

Concluding remarks 
In this Review, we present an amalgamation of recent research from humans and other animals that suggests an 

emerging mechanistic account of rapid sensory information processing that serves a range of adaptive behaviours. 

We focused on the visual domain, given its sensory dominance in humans. We also focused on threat responses 

owing to relevance for putative fast-acting neural circuits, and their relation to the broad functions of attention and 

prediction. The summarized research highlights the explanatory power of early subcortical sensory processing, 

including how processing ‘shortcuts’ might contribute to models of phenomena seen in psychiatric disorders. This 

account may complement cortico-centric models that provide a current dominant perspective158. 

In essence, subcortical circuits can have profound influences on perceptual experience and decision-making via 

two mechanisms. The first is via altered computations performed by subcortical areas themselves (for example, 

enhanced responses to threat in the pulvinar40, lower decision thresholds for escape in the SC18 and so forth). 

These alterations can influence the strength and quality of visual representations by filtering our perceptual 

experience and, ultimately, changing how and what we learn about the world159. The second mechanism is via 

top-down cortical control over regions that receive sensory input earlier (for example, inhibitory effects of V1 over 

the SC33,160), thus gating, or biasing, information processing by higher-order functions such as attention and 

prediction. 

Alterations to either of these mechanisms can have a subtle but cascading effect on multiple, parallel neural 

circuits, from physiological responses in the body (which may then influence the subsequent interpretation of 

stimuli) to the precision of visual representations. This latter effect forms a crucial component of predictive coding 

accounts of the brain, whereby the relative weighting of sensory evidence against prior expectations is thought to 

explain numerous psychiatric disorders. We encourage future research to consider these early, subcortical 

networks in models of predictive processing, as their explanatory power will likely make a significant difference to 

our understanding of neurological disorders. 

We speculate that these subcortical networks serve a combination of redundancy and efficiency mechanisms. For 

threat processing, redundancy is necessary to ensure intact defensive responses to innate signs of danger. Hence, 

having multiple pathways to key regions such as the amygdala and PAG is adaptive. This multiplicity, however, 

also likely optimizes defensive behaviour by streamlining different types of information transfer (for example, early 

coarse versus later detailed visual representations). Other circuits we have discussed, such as projections from 

the SC versus V1 to the dopaminergic substantia nigra122, appear to serve indistinguishable functions at 

comparable times. Hence, different subcortical circuits may be more or less redundant for different functions (for 

example, threat versus reward computations). 

Future directions 
There are substantial gaps in the literature on fast subcortical computation in health and psychiatric disorders, in 

part due to the challenge of measuring subcortical neural dynamics. For example, there is considerable evidence 

for a role of the SC in computing decision thresholds (where most of the evidence is from invasive animal 

recordings), yet the potential influence of this has not been explored in neurological disorders161. As another 

example, experimental evidence for how the pulvinar modulates neural responses to surprise1 is lacking, 

especially with regard to psychiatric disorders that feature intolerance of uncertainty162. Further investigation into 

this fundamental component of the predictive brain will clarify our understanding of maladaptive belief formation 

and the underpinning aberrant neural shortcuts in psychiatric conditions (Box 4). 

An ability to shed light on rapid sensory processing within human subcortical areas has been greatly facilitated by 

anatomical findings that encompass monkey research through to computational reconstructions of human diffusion 
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images9,21,22,50, as well as estimates of the latency of dynamic neural activity138,163. The growing use of 

magnetoencephalography has proved particularly impactful, given its high temporal resolution and improved ability 

to spatially resolve sources of neural activity. The recent development of optically pumped magnetometers, a new 

generation of wearable magnetoencephalography devices whose sensitivity markedly increases the acuity of 

source reconstruction164, is likely to facilitate additional insights into rapid subcortical–cortical interactions during 

sensory processing and decision-making. 

Box 4 | Outstanding questions and future directions 

 Subcortical shortcuts are thought to ensure efficiency by hastening information critical to survival, yet there is no clarity on 

whether these pathways are myelinated, a factor that can be more important for speed than the pathway length itself175. 

What are the myelination properties of subcortical pathways, such as the superior colliculus–pulvinar–amygdala path? Is 

their conduction speed quicker overall than the conduction speed of parallel cortical pathways? These questions have 

important implications for how this subcortical shortcut fits in temporally with other threat processing networks. 

 Therapies harnessing unconscious neural activation have promise for reducing attrition in treating psychological disorders, 

such as specific phobias196. What are the precise neural network dynamics (and their cognitive computations) that underlie 

effective unconscious therapies? Future research can answer this question by examining which neural networks engaged 

by unconscious therapies (for example, decoded neurofeedback techniques197) are predictive of successful treatment 

outcomes. 

 The pulvinar is positioned at the interface between incoming visual information and an array of subcortical and cortical 

networks that compute affective responses, prior expectations and updating of beliefs1. Given that many 

psychopathologies are defined by an intolerance of uncertainty (for example, anxiety)162 and aberrant belief formation198, 

does the pulvinar contribute to psychopathologies involving disordered predictive processing? We encourage a new 

avenue of research to investigate pulvinar activity and ascribed computations under different expectation conditions, in 

health and neurological disorders. 
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Glossary 
Neuroanatomical tracing 

An invasive neuroimaging technique that involves injecting dye into either the cell body of a neuron (that 

is, anterograde tracing) or a neural synapse (that is, retrograde tracing) to visualize anatomical 

projections. 

Diffusion imaging 

A variant of MRI that measures the diffusion of water molecules that, in the brain, is restricted by the 

structure of biological tissue (for example, white matter tracts). 

GABAergic 

A description of neurons that use the neurotransmitter GABA (that is, γ-aminobutryic acid, which 

reduces neuronal excitability). 

Fractional anisotropy 

A measure derived from diffusion-weighted images that describes how restricted the diffusion process 

was, from 0 (isotropic, unrestricted in all directions) to 1 (anisotropic, restricted to one axis). 

Tectopulvinar 

Anatomical features pertaining to the tectum (that is, uppermost part of the midbrain, including the 

superior colliculus) and the pulvinar. 

Geniculostriate 

Anatomical features pertaining to the lateral geniculate nucleus and the striate cortex (that is, the 

primary visual cortex (V1)). 

Saliency maps 

Topographically organized maps of the degree to which a stimulus differs in its sensory properties from 

its surroundings. 

Gabor patches 

Striped circular stimuli that have a particular spatial frequency and orientation, created by convolving a 

Gaussian kernel with a sinusoidal wave. 

Electroencephalography 

A non-invasive functional neuroimaging method that uses scalp electrodes to measure electric activity. 

Magnetoencephalography 

A non-invasive functional neuroimaging method that uses sensitive external sensors to measure the 

magnetic fields emitted by electrical currents within the brain. 
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