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Abstract. There is stunning rapid development of human brains in the
first year of life. Some studies have revealed the tight connection be-
tween cognition skills and cortical morphology in this period. Nonethe-
less, it is still a great challenge to predict cognitive scores using brain
morphological features, given issues like small sample size and missing
data in longitudinal studies. In this work, for the first time, we intro-
duce the path signature method to explore hidden analytical and geo-
metric properties of longitudinal cortical morphology features. A novel
BrainPSNet is proposed with a differentiable temporal path signature
layer to produce informative representations of different time points and
various temporal granules. Further, a two-stream neural network is in-
cluded to combine groups of raw features and path signature features for
predicting the cognitive score. More importantly, considering different
influences of each brain region on the cognitive function, we design a
learning-based attention mask generator to automatically weight regions
correspondingly. Experiments are conducted on an in-house longitudi-
nal dataset. By comparing with several recent algorithms, the proposed
method achieves the state-of-the-art performance. Additionally, the re-
lationship between morphological features and cognitive abilities is also
presented.

Keywords: Path signature feature · Infant brain development · Cogni-
tive ability.

1 Introduction

With the advancement of magnetic resonance imaging (MRI) and image process-
ing techniques, early structural development of the human brain is attracting
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Fig. 1. Illustration of BrainPSNet. Inputs are longitudinal MRI data (grey brains in-
dicating missing data) and output is the predicted cognitive scores.

more and more attention [10, 23]. However, only few of work related the infant
brain cognitive scores to the cortical morphology. In fact, in the first year of life,
the cortical structure is tightly connected to the acquisition and refinement of
information processing as well as visual and language skills [12]. Thus, under-
standing the quantitative relationship between cognitive skills and morphological
features of infant cerebral cortex is of immense importance .

To this end, in this paper, we aim to learn a representation for each infant by
using longitudinal brain MRI data to predict cognitive development. Specifically,
given longitudinal brain MR scans from infants, we can compute multiple bio-
logically meaningful cortical measurements [16]. Meanwhile, we have five Mullen
Scales of Early Learning (MSEL) [5] at 48 months of age to measure the cogni-
tion skills of each infant comprehensively. Hence, our goal is to build a machine
learning method to predict these cognition scales using longitudinal morpholog-
ical cortical features. However, there are three major challenges, including the
small sample size, high dimensionality of data and missing scans. Recently, sev-
eral methods are proposed to address these problems. The Bag-of-Words (BoW)
based method was employed to slash the overlarge dimensionality of neuroimag-
ing data [1]. In [28], authors generated a latent representation for each subject
leveraging the complementary information among different time-points and in-
troduced a set of indicator variant to eliminate the loss brought by incomplete
data. They both achieved encouraging performance, but their optimization strat-
egy is too complicated. Also, they can not analyze the correspondence between
cerebral regions and cognitive scores since their representations for each subject
did not preserve brain structural information. More importantly, the simple lin-
ear formulation they used cannot explore the temporal relationship sufficiently.

In this work, we introduce the path signature (PS) method for the first time
as descriptors of dynamic dependencies in longitudinal infant cortical structure.
The path signature originated from Chen’s study [7] as an essential characteristic
of piece-wise smooth paths in rough path theory. Lyons used it to make sense of
the solution to differential equations driven by very rough signals [9]. Recently,
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there is an emerging research area, which combines path signature feature with
machine learning and achieves state-of-the-art results [4, 13, 15, 19, 21, 27].

Based on above discussions, we conclude our contributions as follow. First,
we propose BrainPSNet with a temporal path signature (TPS) layer. To the best
of our knowledge, this is the first work to apply the path signature method into
longitudinal brain analysis and generate informative representations of multiple
time points and temporal granules. Second, considering different brain regions
have different influence on cognitive functions during infancy, we propose an
effective network to exploit information from raw features and PS features sepa-
rately and automatically generate learning-based attention masks for weighting
groups of data. Third, by testing on a longitudinal infant dataset, our method
achieves state-of-the-art performance and explores the quantitative relationship
between cognitive skills and morphological features.

2 Preliminaries of Path Signature

Suppose a path X : [a, b] → Rd is a continuous mapping of finite length
from interval [a, b] to a d-dimensional vector space. For any t ∈ [a, b], Xt =
(X1

t , X
2
t , · · · , Xd

t ), whereXi
t denotes the ith coordinate ofXt and i ∈ {1, 2, · · · , d}.

Before introducing the signature, let us introduce the kth fold iterated integral
of a path X, denoted by Sk(X)a,b

The 1th iterated integral of X along the ith coordinate, denoted by Sig(X)ia,b,

is Sig(X)ia,b =
∫
a<t1<b

dXi
t1 , which equals the increment of X at ith coordinates,

i.e. Xi
b − Xi

a. The 1st fold iterated integral is the collection of Sig(X)ia,b for
i ∈ {1, 2 · · · , d}, i.e.

S1(X)a,b =

∫
a<t1<b

dXt1 . (1)

Notably, t 7→ Sig(X)ia,t is still a real-valued path defined within t ∈ [a, b].

Then, the 2nd iterated integral indexed by (i1, i2) is denoted by Sig(X)i1,i2a,b and

defined as integral of Sig(X)i1a,. against X.i2 :

Sig(X)i1,i2a,b =

∫
a<t<b

Sig(X)i1a,tdX
i2
t =

∫
a<t1<t2<b

dXi1
t1 dX

i2
t2 . (2)

Similarly, the 2nd fold iterated integral of X is the collection of all 2nd iterated

integrals of X with possible index (i1, i2), i.e.
(
Sig(X)i1,i2a,b

)
i1,i2∈{1,··· ,d}

, which

can be written as the tensor form as follows:

S2(X)a,b =

∫
a<t1<t2<b

dXt1 ⊗ dXt2 . (3)

Sig(X)i1,i2a,b − Sig(X)i2,i1a,b is equal to the area enclosed by the curve (Xi1 , Xi2)
and a chord connecting the ending and the starting point of the path. In general,
the k-th fold iterated integral of X, Sk(X)a,b, is defined to be as follows:
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Sk(X)a,b =

∫
a<t1<···<tk<b

dXt1 ⊗ dXt2 · · · ⊗ dXtk . (4)

Here the dimension of the k-th fold iterated integrals of the path X is dk.
The signature of a path is a graded infinite series, which contains all the k

fold iterated integrals. In practice, we may truncated the signature up to the
finite degree. Let Sigk(X) denoted the truncated signature of X up to degree k
as follows:

Sigk(X)a,b =(1, S1(X)a,b, S2(X)a,b, · · · , Sk(X)a,b). (5)

By convention, the 0th iterated integral is equal to 1. The dimension of the
truncated signature in Equation (5) is (dk+1 − 1)/(d− 1).

If a pathX : [a, b]→ Rd is linear, then the signature ofX[a,b] can be computed
explicitly as follows:

Sig(X)i1,i2,··· ,ika,b =
1

k!

k∏
j=1

(X
ij
b −X

ij
a ). (6)

The signature of a piecewise path can be computed by Chen’s identity [7]. In
practice, we often observe the discrete time series, which can be embedded in
the path space by the linear interpolation. The corresponding signature of the
embedded path can be used as a non-linear feature of the time series data.

The signature of a path has many algebraic and analytic proprieties, which
make it an effective feature set of the streamed data. First of all, the signature
of path uniquely determines the path up to time re-parameterization [3, 9]. It
means that the signature captures the information on the path trajectory while
removing infinite-dimensional noise caused by the speed variation. Secondly, the
signature feature is an universal, which implies that any continuous functions on
the unparamertized path can be well approximated by the linear functional on
the signature [14]. Intuitively, the signature of a path plays a role as the non-
commutative polynomial on the path space. Further, in practice, the signature
feature set can be used to handle time series of variable length, and variation
caused by the time re-parameterization. It is a global descriptor of the sequential
data in terms of its effect, which can be often useful for dimension reduction.
Interested readers can refer to [14] and [8] for more details.

3 Dataset and Feature Extraction

In this study, 23 normal infants with their T1w and T2w MR images were col-
lected at 9 different time points (i.e., 0, 3, 6, 9, 12, 18, 24, 36 and 48 months
after birth). Since not all participants are able to show up at all scheduled time
points, there are missing scans, as illustrated in Fig. 1. For feature extraction,
we processed MR images by following an infant MRI computational pipeline [16]
and computed 7 different morphological cortical measurements at each vertex
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of the reconstructed cortical surfaces, including cortical thickness (THI), local
gyrification index (LGI), mean curvature (CUR), vertex area (ARE), vertex vol-
ume (VOL), sulcal depth in Euclidean distance (SDE) and sulcal depth in string
distance (SDS) [17, 20]. These cortical features are the most commonly used
measurements to quantify brain development [18]. Afterwards, we parcellated
the cerebral cortex into 70 anatomically meaningful regions of interest (ROIs)
with an infant cortical surface atlas [26] for reducing the feature dimensionality.
In each ROI, feature values of the same type of all vertices are averaged (for
THI, LGI, CUR, SDE, SDS) or summarized (for ARE, VOL), thus forming a 7-
dimension feature. Finally, for each available scan at a timepoint, we can extract
a feature map whose width and depth equal to the number of ROIs (N = 70) and
cortical measurements (d = 7) respectively. By concatenating these feature maps
along the time axis, we can get a cohort of dynamic feature maps as shown in
Fig. 1. Five Mullen cognitive scores are estimated at 48 months age for each par-
ticipant, i.e., Visual Receptive Scale (VRS), Fine Motor Scale (FMS), Receptive
Language Scale (RLS), Expressive Language Scale (ELS) and Early Learning
Composite (ELC) which are firmly correlated to the morphological attributes
mentioned above [5].

4 Network architecture

To accurately predict the cognitive scores according to the cortical measure-
ments, we propose a novel BrainPSNet consisting of three major components:
a temporal path signature layer, a two-stream network and an attention mask
generator as shown in Fig. 2. At the beginning, considering limited sample size, a
1× 1 convolutional layer is introduced to further decrease the feature dimension
of each ROI.

Temporal Path Signature Layer. A temporal path signature layer is then
proposed to extract dynamic information and generate discriminative represen-
tations, shown in Fig. 2(b) in detail. For the first step, 70 paths are defined
along the time axis and split by the overlapping sliding window with the size
W and a sliding stride s = 1. Consequently, for each path, T̃ = 9 − (W − 1)
sub-paths are obtained to further explore local temporal properties. For every
sub-path, we employ Equation (5) and (6) to compute its corresponding path
signature features with a receptive field of W and denote the output dimen-
sion as nPS = (dk+1 − 1)/(k − 1). Afterwards, an 1 × 1 convolutional layer is
introduced to conduct a feature transformation from nPS to d′ = 8.

Two-stream Network. Inspired by [15], a two-stream network is proposed
to process raw data and PS separately believing that each of them represents
a kind of temporal information aggregated to a certain level. Considering ROIs
influence cognition abilities differently along time, we introduce group fully con-
nected layers in both two streams (surrounded by blue and pink in Fig. 2(a))
regarding features from each time point as a group. Then, group-specific fully
connected layers are applied to encode cortical structures at corresponding stages
of brain development. At the bottom of BrainPSNet, we concatenate and fuse the



6 X. Zhang et al.

(a)

(b)

Fig. 2. The illustration of TPS layer and network structure of BrainPSNet. (a) presents
a two-stream network with an attention mask generator surrounded by blue, pink and
green areas separately; (b) shows the procedure of TPS layer implemented in (a).

informative vectors produced by these two streams and output a final cognitive
score y.

Attention Mask Generator. With the aim of emphasizing the most in-
fluential region in each stage, an attention mask generator is constructed in the
middle of Fig. 2(a). Group fully connected layers are applied sequentially to out-
put an intermediate cognitive score yi, i ∈ {1, 2, · · · , 9} for each group of input
data. Afterwards, we sum over parameters of fully connected layers which green
dash arrows depart from along input channels and generate nine 1× 70 vectors
corresponding to nine developmental stages and 70 ROIs. Element-wise multi-
plications are conducted between groups of features and corresponding attention
masks to weight ROIs differently along time. Notably, we calculate moving aver-
age on attention masks to fit in T̃ groups of features in PS stream. In this work,
the intermediate output ŷ = (y1, y2, · · · , y9) is just used to assist generating
attention masks with the loss function defined as:

Loss = λ||Ŷ − ŷ||l1 + |Y − y| (7)
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We denote the ground truth corresponds to y and ŷ as Y and Ŷ = (Y1, Y2, · · · , Y9)
respectively. It is noteworthy that Ŷ is a duplication of Y at nine time points.
λ is introduced to balance these two different losses.

5 Experiments

Table 1. Performance comparison between the TPS layer and sequence models (in
terms of RMSE). In the last column, we calculate the total time cost for 1200 epochs
of our method with different substitutes.

Methods VRS FMS RLS ELS ELC AVE Time

Transformer 0.076 0.090 0.134 0.066 0.075 0.088 578 s
LSTM 0.084 0.084 0.120 0.037 0.081 0.081 2147 s

TPS layer 0.046 0.075 0.095 0.063 0.057 0.067 405 s

Table 2. Performance comparison and the ablation study of BrainPSNet (in terms of
RMSE)

Methods VRS FMS RLS ELS ELC AVE

NN 0.219 0.259 0.165 0.196 0.182 0.204
MtJFS [2] 0.276 0.273 0.189 0.214 0.134 0.217
RMTL [6] 0.146 0.200 0.178 0.188 0.137 0.170

TrMTL [11] 0.279 0.276 0.192 0.217 0.136 0.220
LPMvRL [28] 0.162 0.189 0.139 0.165 0.138 0.158

BrainPSNet(w/o attention) 0.092 0.108 0.162 0.077 0.103 0.108
BrainPSNet(w/o PS) 0.059 0.100 0.103 0.066 0.089 0.084

BrainPSNet 0.046 0.075 0.095 0.063 0.057 0.067

Configuration. We conduct experiments on an acquired in-house dataset
which has been illustrated previously in section 3. Note that based on the avail-
able data, average interpolation has been applied to missing data in both training
and testing sets. Following [28], we perform leave-one-out validation and calcu-
late root mean squared error (RMSE) between the predict values and ground
truth for all five scores. Sliding window size W , truncated level k and lambda
are fixed at W = 4, k = 2, λ = 0.1 respectively. We tune learning rate in
{10−3, 10−4, 10−5} with Adam as optimizer. The non-linear activation for hid-
den neurons is ReLU. The number of epochs is at a maximum of 400 for all
experiments. Notably, we normalize five cognitive scores with their maximum
and minimum values separately with in a [0, 1] range to have a unified compar-
ison setting. Our code will be avalilable at ???.
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Comparison. We first run out method with different sequence models to
illustrate the effectiveness of PS feautres. LSTM and Transfomer [25] are selected
as our substitutes. In practice, we replace the TPS layer in our model (Fig. 1)
with single layer LSTM or Transformer encoder. In Table 1, AVE stands for the
average RMSE for five cognitive functions. We also calculate average R-squared
metric for these three methods, which are 0.803, 0.785 and 0.634 for TPS layer,
LSTM and Transformer separately. Thus, the proposed TPS layer-based method
shows clear advantages over the other two substitutes in various metrics.

To validate the performance of our method, several recent algorithms are
selected as baselines, including: 1) NN (nearest neighbour); 2) MtJFS (Multi-
Task Learning with Joint Feature Selection) [2]; 3) RMTL (Robust Multi-Task
Feature Learning) [6]; 4) TrMTL (Trace-Norm Regularized Multi-Task Learn-
ing) [11] and 5) LPMvRL (Latent Partial Multi-view Representation Learning)
[28]. To make these methods comparable, we applied the same preprocessing
method including normalization and interpolation. From Table 2, we find that
BrainPSNet outperforms the other algorithms under the same settings. Addi-
tionally, an ablation study is conducted to explore the ability of path signature
features and attention vectors respectively. It is observed that both of them bring
improvements to the final result which proves the effectiveness of our method.

Result analysis. In this section, we try to investigate which morphological
features or ROIs are more important in early postnatal period utilizing testing
data and the trained models. Motivated by [24], we compute the gradient of
testing data w.r.t. the loss by backpropagation and regard features with higher
gradient are paid more attention by the network.

First, we compare the importance of seven anatomical measurements w.r.t.
five cognitive scores. As Fig. 3(a) illustrates, curvature collects more attentions
for most tasks. In rest subfigures, the x-axis denotes indices of different ROIs,
which can be found in surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation.
In practice, we sum up the importance coefficient of corresponding ROIs in left
or right hemispheres. It can be seen that the postcentral gyrus (ROI 22) and
supramarginal gyrus (ROI 31) are more important for FMS and RLS respec-
tively, while VRS and ELS are both concentrated on pars triangularis (ROI
20). An interesting observation is that for VRS, FMS and ELC, the medial
orbitofrontal cortex (ROI 3) is relatively important.

6 Conclusion

In this paper, we propose a novel model, BrainPSNet, to predict cognitive scores
using longitudinal cortical structures during infancy. For the first time, the path
signature feature is introduced to explore hidden anatomical and geometric prop-
erties of the cortical developmental trajectories by a TPS layer. Based on path
signature features and raw features, a multi-stream model is constructed to com-
bine information of various granules and generate informative representation for
each participant. Furthermore, considering different ROIs’ influence on cognition
abilities along time, we propose an attention generator to produce learning-based
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(a) (b) (c)

(d) (e) (f)

Fig. 3. The illustration of influence of anatomical features and ROIs w.r.t. five Mullen
scores. (a) depicts the importance of seven anatomical features, while the rest show the
importance distribution among different regions w.r.t. five cognitive scores respectively.

attention masks to weight ROIs at different developmental stages. Experiments
and ablation study show that our method outperforms all baselines and achieves
the state-of-the-art performance. Both path signature features and attention
masks contribute to the final result.
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