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Abstract

There has been an explosion of metagenomic data representing human, animal and environmental 

microbiomes. This provides an unprecedented opportunity for comparative and longitudinal studies 

of many functional aspects of the microbiome that go beyond taxonomic classification, such as 

profiling genetic determinants of antimicrobial resistance, interactions with the host, potentially 

clinically relevant functions and the role of mobile genetic elements (MGEs). One of the most 

important but least studied of these aspects are the MGEs, collectively referred to as the 

“mobilome”. Here we elaborate on the benefits and limitations of using different metagenomic 

protocols, discuss the relative merits of various sequencing technologies, and highlight relevant 

bioinformatics tools and pipelines to predict the presence of MGEs and their microbial hosts.

Introduction

The shift to high-throughput sequencing technologies in microbial genomics has radically changed 

our understanding of microbial communities in different habitats. The appreciation of the 
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complexity of these communities is now undergoing a further shift as more publicly available 

microbiome datasets based on shotgun metagenomic sequencing are becoming available. As well as

establishing the taxonomy and relative abundance of microbial populations, these datasets are 

allowing individual genes and their variants to be characterised, including antimicrobial resistance 

genes (ARGs). Mobile genetic elements (MGEs) are critical to our understanding of how genes 

(and their associate functions) move within a community via horizontal gene transfer (HGT) within 

a community1. These elements can have a lasting impact on the composition of microbial 

communities, affecting their diversity and density, as well as their interaction with the environment2.

The profile of these MGEs (mobilome) is thus likely to be a key player in influencing selection 

pressure-driven changes in the composition of microbial communities and their impact on the host 

organism or tissue. MGEs are also responsible for the movement of antimicrobial resistance 

determinants and virulence factors between microbes3. For example, the use of antimicrobials can 

increase the prevalence of MGEs carrying functioning ARGs that are integrated in microbial 

genomes4. Profiling the mobilome and its associated ARGs can provide insights into how ARGs 

move across multiple genomes within the microbiome. To characterise the mobilome in a microbial 

community, all MGEs sequences need to be identified from metagenomic data and ideally would be

assigned to a microbial host. Although detecting MGEs from single isolates using whole genome 

sequencing is a common approach that is significantly more straightforward, metagenomic 

sequencing is increasingly being used to detect and classify multiple MGEs from microbial 

communities. 

Mobilome composition

The microbial mobilome is defined as all MGEs within a given microbiome. MGEs themselves are 

segments of genetic material that are capable of moving within a genome or between genomes of 

different organisms. They include plasmids, transposable elements (both non-conjugative and 

conjugative transposons, the latter also called integrative conjugative elements [ICEs]) and 
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bacteriophages, which are covered primarily in this review (Box 1). Other MGEs include gene 

cassettes that are commonly part of integrons5,6. There are also mobilisable elements, both 

integrative and plasmid, that can utilise the conjugative functions of plasmids and/or ICEs but do 

not themselves encode a complete set of conjugative functions7,8. Finally, there are satellite viruses 

that can use phage machinery for induction and transfer9,10.

Plasmids are extrachromosomal replicons present in bacteria and archaea. They range in size from 

less than a kilobase to the megabase size range11, contain at least one replication origin, usually 

possess a gene expressing a replication initiation protein (Rep) and a series of direct, inverted and 

A-T rich repeats12. Some plasmids are cryptic, but many carry genes encoding important functions 

in the survival and fitness of their host. These include virulence traits and resistance to 

antimicrobials. In facilitating their transfer between microbes, conjugative plasmids include genes 

that encode proteins required for plasmid transfer. Furthermore, some plasmids can exploit the 

transfer of other conjugative elements without having to bear the large genetic load required to 

encode conjugation functions13.

Insertion sequences (ISs) are short transposable elements containing genes that code for proteins 

involved in their own transposition. Most ISs contain a gene encoding a transposase, the most 

ubiquitous gene in prokaryotic and eukaryotic sequences14, and are flanked by short inverted 

terminal repeat (ITR) sequences. Insertion of an IS leads to the duplication of the host-genome 

target site and formation of unique direct repeat (DR) sequences15. Two ISs can flank an accessory 

gene, such as an ARG, to form a composite transposon. More complex transposons, such as those of

the Tn3 family, transpose via the formation of a co-integrate. These still usually produce target site 

duplications. The most complex of transposons are the conjugative transposons, also known as 

integrative conjugative elements (ICEs)16. These genetic elements encode their own conjugation 

functions and can transfer between bacteria, usually using a similar mechanism as that employed by
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conjugative plasmids. Unlike plasmids, ICEs are usually integrated into the host chromosome. 

Another group of MGEs are the gene cassettes that are commonly part of integrons. The cassettes 

are typically between 0.5 and 1 kb and do not contain their own promotor.

Bacteriophages (phages) are viruses ranging in size from a few to hundreds of kilobases that 

replicate within bacteria and archaea17. They replicate rapidly, have huge genetic diversity and have 

genomes that can be comprised of single- or double-stranded DNA or RNA. Phages replicate 

through either the lytic or a lysogenic cycle. Virulent phages lyse their host at the completion of 

their replication cycle, whereas temperate phages integrate their genetic material into the host 

genome to become prophages as part of their replication cycle (lysogeny). Although temperate 

phages can sometimes carry virulence factors18, it is still unclear whether there is little evidence yet 

that phages significantly contribute to the transfer of ARGs. Although there has been mounting 

evidence that phages very rarely contain ARGs14, ARGs are very rarely found in genomes those 

phages that do contain them may be able to transfer these ARGs as frequently as plasmids20.but 

generalised or lateral transduction may act as a mode of ARG transfer. 

MGEs represent a highly heterogeneous group of elements, furthermore the difference between 

certain elements can be blurred. For example, there are phages that can transpose, plasmids that 

integrate like ICEs and ICEs that can replicate like plasmids. There are also MGEs that can 

mobilise a whole bacterial chromosome21,22. It is best to think of MGEs as a continuum rather than 

trying to place them in neat boxes. This continuum of MGEs within an individual bacterial species, 

never mind a community as a whole, is highly varied.  Although these elements can be inherited 

vertically, their central role in HGT means that even within an individual species there is great 

heterogeneity. 
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Targeted metagenomic approaches and challenges in 

extracting MGEs

Despite having to overcome significant hurdles, metagenomic sequencing of microbial samples is 

increasingly being used to identify novel MGEs. Both targeted and whole metagenomic methods 

are now being used to identify and discover novel as well as known MGEs (Fig. 1). In contrast to 

whole metagenomic methods where all DNA extracts are sequenced, targeted metagenomics 

include a step that specifically selects a type of MGE prior to sequencing.

Targeted metagenomic methods currently include purifying MGEs prior to shotgun sequencing. For 

example, free phage particles, along with other virus-like particles (VLPs), are purified in several 

stages of physical and/or enzymatic treatments23–25. Nucleic acids extracted from VLPs are then 

sequenced and assembled into contiguous sequences for further annotation25–27. Circular plasmids 

are isolated using high-throughput transposon-aided capture (TRACA) from metagenomic DNA, 

which are then typically transformed into Escherichia coli for cloning28, followed by shotgun 

sequencing and PCR-based approaches to close gaps in sequences29. However, these targeted 

approaches may misjudge the potential MGE load. Inefficiencies in the elution of VLPs from faecal

samples have been shown to result in an underestimation of the viral load, and inconsistencies 

between protocols have led to discrepancies in results between studies24. Size-fractionation is an 

alternative technique involving enrichment of extracted DNA for novel viral particles by filtering 

the samples through a size exclusion membranes that has been applied to the cow rumen virome30. 

Of 148 viral genera enriched from the cow rumen, 75% had no counterpart in existing viral 

databases, highlighting the power of this technique to recover phages.

For plasmids, TRACA enriches metagenomic DNA for circular plasmids by using a DNAse that 

selectively removes linear DNA. Plasmids are subsequently “captured” by inserting a transposon (in
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an in vitro transposition reaction) with an origin of replication and selection marker before 

transforming them into typically Escherichia coli for cloning28. This is followed by shotgun 

sequencing, with additional PCR to close gaps in sequences29. However, TRACA has a bias towards

capturing smaller plasmids between 3-10 kb, excludes linearised plasmids, and potentially 

inactivates plasmid genes as a result of transposon insertion31. Alternatively, inverse-PCR together 

with multiple displacement amplification (another DNA amplification technique) has also been 

applied to identify small circular plasmids in metagenomic samples32. 

Finally, a targeted metagenomic approach using PCR amplification can be used to identify 

transposable elements by targeting the repeat regions33. Metagenomic DNA is amplified by PCR 

primers targeting transposable elements, purified and ligated into plasmid vectors, then transformed 

into host strains. After clonal expansion, the plasmids are isolated, sequenced and annotated for 

transposable elements.

Targeted metagenomic approaches are highly specific and therefore useful for extracting MGEs 

with distinct features, such as sequence composition. Given non-targeted MGEs would be excluded,

these approaches would not be suitable for determining a more complete representation of MGEs 

within the whole metagenome. All these approaches have a bias to preferentially detecting 

particular MGEs that may be more suited for that particular purification extraction protocol or a 

particular PCR primer set, thereby underestimating or missing other MGEs present in the whole 

metagenome. However, recent advances in sequencing technology and data storage mean that 

whole metagenomic DNA sequencing is now a viable option for investigating the wider pool of 

MGEs, giving us a better representative picture of the mobilome34–37. 

Whole metagenomics
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Whole metagenomic DNA sequencing has great potential for both identifying known and unknown 

MGEs and also for predicting the MGE hosts. However, there are several limiting factors, 

specifically with current next-generation sequencing technologies and bioinformatic software tools, 

that need to be considered. 

Challenges in sequencing technologies

The current gold-standard for metagenome sequencing is using short-read sequencing 

methodologies, specifically Illumina and Ion Torrent technologies. Since short-read metagenomic 

sequencing produces reads that are too short to allow the identification of plasmids, phages and 

transposable elements, many bioinformatic pipelines involve assembling the metagenomic reads 

into longer contiguous sequences called contigs. However, assembling metagenomes is 

computationally intensive, and the choice of assembly tool has a significant impact on the accuracy 

of identifying MGEs38–40. Dealing with the microbial complexity of a metagenome with limited read

depth and repeated regions is a challenge for current assembly algorithms. These tools are prone to 

generate erroneous inter-species chimeric contigs when processing complex metagenomic sequence

datasets. Thus, plasmid and transposon contigs are often inaccurate or incomplete. Different 

plasmids often contain similar replication and conjugative elements41, whilst transposable elements 

contain repeated regions42. For phages, assembly of short reads has further challenges including a 

high incidence of repeat regions and/or hypervariable regions43, genetic diversity44, frequent 

modular structures45, and heterogeneity at strain level43,46. To circumvent these issues, many 

metagenomic assemblers attempt to produce shorter, less complete but more accurate contigs rather 

than longer, inaccurate ones. A direct consequence of this is that metagenomic contigs are often too 

short to accurately predict large MGEs.

Long-read sequencing technologies (such as Oxford Nanopore and PacBio’s single-molecule real-

time [SMRT] sequencing), produce longer sequence reads, meaning it is possible to more accurately
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assemble much longer scaffolds and even complete genomes. Nanopore technology, for example, 

has been used to successfully recapitulate complete viral genomes from metagenomes47,48. However,

the sequences generated contain more erroneous bases than short-read technology sequences due to 

technical defects in base calling49,50. PacBio has a higher accuracy rate in single-nucleotide and 

structural variants, but produces shorter reads than Nanopore and is more costly51,52. In addition, the 

limits in coverage depth from a run on a single Nanopore flowcell is a bottleneck for identifying 

lower abundant MGEs in metagenomes with high microbial diversity49. However, it is possible to 

improve and even complete the assembly of MGEs from complex whole metagenomes using an 

ensemble of short-read and long-read sequencing technologies53. 

Bioinformatic methods in MGE sequence annotation

When analysing microbiome composition, isolation and sequencing of DNA forms only part of the 

story – the subsequent computational analysis is every bit as important. This is also the case when 

mining sequencing data for MGEs and other genetic elements.  Although advances in technology 

have markedly improved the accuracy of whole metagenomic sequencing, accurate and efficient 

bioinformatics software is required to resolve MGEs from a complex pool of fragmented microbial 

genomes.

Typically, genomic sequence features are identified broadly either by reference-based or de novo 

methods, or a combination of both. Reference-based methods generally use alignment algorithms, 

such as BLAST54, to align query nucleotide or amino acid assemblies against a reference database 

or search tools against probability sequence models, such as HMMER for hidden Markov models 

(HMMs)55. Non-MGE-specific nucleotide sequence databases, such as RefSeq56, and protein 

sequence databases, like Pfam57 and UniProt58, have been applied to detect HGT events in 

metagenomes59,60. Virus-specific sequence databases have more recently been established, such as 

the Prokaryotic Virus Orthologous Groups (pVOGs)61, curated viral databases from RefSeq, 
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PATRIC62 and IMG/VR56 . databases. Databases suited for searching transposable elements in 

metagenomic assemblies include ISfinder for ISs64, and ICEberg for ICEs and integrative and 

mobilisable elements (IMEs)65. PlasmidFinder is a popular database for identifying plasmids that 

contains plasmid replicon sequences from Enterobacteriaceae and gram positive bacteria66. In all 

cases, MGE containing databases contain a very narrow representation of the mobilome with 

incomplete coverage of element types, and do not reflect the actual MGE diversity. For instance, 

transposable elements are one of the most ubiquitous and genetically diverse elements in the 

microbiome42,67, making cataloguing all of them an intractable task. Despite this obvious limitation, 

well-curated reference databases can be useful for discovering novel MGEs as they are often used 

in benchmarking new de novo bioinformatics tools68.

Despite their utility, MGE reference databases obviously do not include all MGEs in existence. 

Further, it is difficult to find novel MGEs that are dissimilar in their sequence and structure to the 

known MGEs. To fFinding these novel MGEs requires the use of de novo bioinformatics methods 

and tools to make predictions based on sequence data. There is a plethora of different algorithms 

used for discovering putative phages in assembled metagenomes, such as VirSorter69, VirFinder70, 

MARVEL71, VirMiner72 and ViraMiner73 (Table 1). Apart from VirSorter that uses primarily HMMs,

all these tools apply mMachine learning is applied in all these tools apart from VirSorter (which 

uses Hidden Markov Models [HMMs]) to identify viral-like domains. A handful of tools have been 

developed for identifying plasmid sequences from metagenomes, including cBar74, PlasFlow40, 

Recycler75 and metaplasmidSPAdes76 (Table 1). Similar to bioinformatic tools used for phage, 

mMachine learning approaches are also used in cBar and PlasFlow to predict linear and circular 

plasmids. Despite the popularity of machine learning, caution must be taken in using such tools for 

whole metagenomes. Similar to reference-based tools, machine learning models struggle to classify 

genome signatures that have not been used to train the model, meaning it would be difficult to 

predict mobile elements with unique sequences. In addition, the accuracy of machine learning 
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predictions relies heavily on the quality of the sequenced and assembled metagenomes. Instead, 

Other non-machine learning-based tools, Recycler and metaplasmidSPAdes, identify plasmids 

usingse Dde Bruijn graph assembly of k-mers (small sequences of length k)to identify circular 

plasmids only. mMetaplasmidSPAdes constructs assembly graphs from de Bruijn graphs andalso 

includes a naïvenaive Bayesian classifier on custom plasmid-specific profile-HMMs to improve its 

accuracy. For discovery of ISs, only two de novo pipelines have been developed using existing 

algorithms to identify direct repeats and palindromic inverted terminal repeats (Table 1)77.

When designing and building bioinformatic tools, it is valuable to benchmark them for specificity 

and sensitivity. For MGE identification tools applied to metagenomes, the ideal dataset for 

benchmarking predictions would include labels of known MGEs within real metagenomic 

sequences. Aside from VirMiner and metaplasmidSPAdes, these tools have not been adequately 

benchmarked using representative metagenomes. Since these ground truth datasets are difficult to 

obtain, many of these tools were benchmarked using simulated metagenomic sequences generated 

from a representative set of genomes from the most abundant species of a microbial community. 

Instead, most of these tools were benchmarked using simulated read fragments generated from a 

representative set of the most abundant single species genomes of a microbial community. 

Therefore, it is likely that when these tools are applied to complex whole metagenomic samples, 

they would not perform as well as their stated accuracy would suggest.

Technological challenges in host prediction of MGEs

Identifying the microbial hosts of different MGEs will be central to developing our understanding 

of how MGEs shape microbial communities and vice versa. However, this is problematic for a 

variety of reasons, not least of which is our limited ability to find the specific microbial origin of 

MGEs in metagenomic samples. As technologies move forward, additional approaches such as wet-
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lab protocols and bioinformatics tools are being applied with both short and long-read metagenomic

sequencing to link MGEs with their host microbe. 

Wet-lab technologies for microbial host prediction

Although associating genetic elements with individual organisms within a community initially 

seems insurmountable, there are promising laboratory-based techniques that can be exploited. Some

of these can make use of features of different sequencing technologies, whilst other methods require

pre-processing of samples prior to sequencing. Binning reads into groups prior to computational 

assembly is probably the simplest of these techniques. As SMRT sequencing can be applied to 

identify the methylation status of a nucleotide (Fig. 2a), metagenomic reads can be binned into 

species or subspecies based on methylation motifs78. SMRT sequencing can be applied to identify 

the methylation status of a nucleotide (Fig. 2a). Sequences are then clustered into groups based on 

the similarity of multiple methylation motifs. These motifs are usually shared by both chromosomes

and plasmids within a microbe but are often unique to a microbial strain. However, as microbial 

communities become more complex, the methylation motifs become less unique as it becomes more

likely that more than one strain or species contains the same motif. 

An alternative approach is the use of proximity ligation methodologies, specifically Hi-C (Fig. 

2b)79. DNA molecules in close proximity in the genome’s three-dimensional structure are covalently

bonded together. Thus MGEs that are in close proximity to their host genome are covalently bonded

to the host genome. These connected sequences are then digested around the bond and ligated to 

form a continuous strand with ligation junctions. After this proximity ligation, the DNA is 

fragmented and sequenced as usual. Sequence information regarding these ligation junctions is used

in downstream computational analysis pipelines to assign assembled metagenomic reads to their 

host microbe species. Hi-C has been used alongside short-read metagenomic sequencing to link 

plasmids to their hosts with strain-level resolution in synthetic metagenomes80 and species-level 
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resolution in real metagenomic communities81,82. However, Hi-C has limited resolution capabilities 

for closely related organisms due to their high sequence similarity and uneven Hi-C link densities83. 

Proximity ligation has also been used to link phages to species from cattle rumen metagenomes84. 

However, sSince proximity ligation relies on the three-dimensional structure of the host genome 

only, phages that do not integrate into the genome as prophages are largely undetected by this 

process. However, single-cell viral tagging with short-read metagenomic sequencing is an 

alternative approach specifically for predicting the hosts of both lytic and lysogenic phages85.

Bioinformatic methods in microbial host prediction

Metagenomic reads and contigs containing MGEs and host genomes can be binned into groups 

using computational as well as wet-lab methods, allowing for two levels of identification and 

discrimination. There are many different algorithms for metagenomic binning, including analysing 

sequence composition features and coverage, sequence signature properties, k-mer frequencies and 

gene co-abundance across samples37,86–92. However, these binning algorithms, particularly gene co-

abundance, can be computationally intensive. 

An approach that can link MGEs with their hosts relies on distinct MGE sequences also found in 

microbial genomes93–95. When an MGE enters a bacterium, the bacterium uses a defence mechanism

of Clustered Regularly Interspaced Palindromic Repeats (CRISPR). Fragments of the MGE 

sequence, known as spacers, are integrated between CRISPR loci in the bacterial genome. These 

spacers are transcribed into small RNA molecules and processed into a ribo-protein complex which 

targets and destroys invading genomes. The hosts of these MGEs can then be predicted by aligning 

the predicted MGE contigs against a reference database of candidate host genomes containing 

CRISPR spacers. This method has been previously used to identify phage and plasmid hosts in 

human gut metagenomes96,97. However, since many of these reference databases are incomplete, it 

may only be possible to assign a small proportion of MGE contigs to a host93. 
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Conclusions and Further Perspectives

In general, there is currently no single sequencing, wet-lab or bioinformatics technique for whole 

metagenomes that can efficiently profile the entire mobilome and its microbial context. As we have 

shown here, employing a combination of approaches is the best solution to classifying novel MGEs 

and assigning these and known MGEs to their host microbes. In order to resolve longer MGEs such 

as plasmids and phages whilst maintaining accuracy, the ideal approach is to use a combination of 

short-read and long-read sequencing. Highly accurate short metagenomic reads can be assembled 

and scaffolded against more complete but less accurate contiguous sequences from long-read 

sequencing (see Outstanding Questions). Identifying the microbial hosts of the MGEs presents 

further problems. However, SMRT long-read sequencing used in combination with proximity 

ligation on short-read sequencing is a complementary approach that can be applied to all MGE 

types and will allow for association of these elements to host genomes with a reasonably high 

degree of certainty. 

Having generated these sequences, many different bioinformatic methods can be highly effective at 

identifying and classifying MGEs in these sequences accurately, or binning MGEs with host 

sequences from the acquired metagenomic data. The bioinformatic tools listed are not evaluated 

computationally in this review, but cited reviews and papers have done so for tools identifying 

phages and plasmids72,98. Due to a rapid software developments, it is likely some tools outlined here 

will already be superseded by the time of publication, with one or a few tools that have been 

iterated and become standard. Popular approaches, such as machine learning, will still be important 

tools. However, a tool that has a high accuracy on simulated metagenomes may not perform well on

real metagenomes and could be computationally expensive (see Outstanding Questions). Therefore, 

researchers will need to critically evaluate which tool is most suitable for their particular 

requirements. 
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There is no single correct solution for characterising the mobilome. The performance of 

bioinformatics tools for de novo discovery is limited by the data quality which is dependent on the 

sequencing platform (see Outstanding Questions). Current sequencing technologies for whole 

metagenomes fall short of the levels required for a truly accurate and fully representative analysis of

the mobilome. However, there is cause for optimism. The recent development of new 

methodologies, such as proximity ligation and SMRT sequencing technologies, means that we are 

rapidly evolving our ability to not only identify potential MGEs, but also to associate them with 

their host genomes.  As these technologies improve, so too will bioinformatic tools be developed to 

make full use of these new datasets, and thus provide us with a more complete picture of the 

mobilome and how it spreads genetic elements through microbial communities.
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Figure Legends

Figure 1: Targeted and whole metagenomic technologies for extracting MGEs

Figure 2: Wet-lab protocols for microbial host identification of MGEs (applicable to plasmids and 
prophages) using a) SMRT sequencing and b) Hi-C
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Definition of types of MGEs
Plasmids are replicons that are distinct from chromosomal DNA found in bacteria and archaea. 
Length: less than a kilobase to megabases
Main function: They are highly heterogeneous elements and the simplest just encode their own replication 
functions. Some also encode conjugation functions. They commonly contain cargo DNA that encode 
functions for survival in different environments e.g. antibiotic resistance genes and virulence factors.  
HGT mechanism: conjugation, transduction and transformation. 

Insertion sequences are short transposable elements containing genes that code for proteins involved in 
transposition
Length: kilobases
Main function: The simplest code for proteins involved in transposition only. They often have cargo genes 
that encode functions for survival in different environments e.g. antibiotic resistance genes and virulence 
factors
HGT mechanism: They can be spread by transposing to conjugative elements and by transformation and 
transduction. 

Integrative conjugative elements (ICE) also called conjugative transposons
Length: 18 kilobases and upwards
Main function: They are highly heterogeneous elements that have the capability of inserting into bacterial 
genomes and transferring by conjugation between bacteria. They commonly contain cargo DNA that encode
functions for survival in different environments e.g. antibiotic resistance genes and virulence factors.  
HGT mechanism: conjugation

Mobilisable genetic elements
Length: less than a kilobase to megabases
Main function: They are highly heterogeneous elements that do not contain enough genetic information for 
independent conjugative transfer but can utilise the transfer functions of conjugative plasmids or ICEs. 
They can exist as plasmids or as integrative elements; the latter are sometimes called integrative and 
mobilisable elements (IMEs). They commonly contain cargo DNA that encode functions for survival in 
different environments e.g. antibiotic resistance genes and virulence factors.
HGT mechanism: conjugation

Integrons and gGene cassettes
Length: 0.5 to hundreds of– 1 kilobases99

Main function: Mobilise integronsgene cassettes that are associated with a variety of functions (including 
antimicrobial resistance genes and virulence factors)100

HGT mechanism: Site specific recombination. Gene cassettes can be moved between integrons (through an 
intermediate form of circular DNA molecule) and assembled in large arrays. Present as circular DNA 
molecules which can be captured and integrated into iIntegrons themselves can in turn be mobilised via 
action of composite and transferred by transposons, ing to conjugative elements, plasmids and or by 
transformation

Bacteriophages (phages) are viruses that replicate within bacteria and archaea
Length: few to hundreds of kilobases 
Main function: Replicate and destroy (lytic phages) or integrate DNA into host genome (lysogenic phages)
HGT mechanism: transduction

Box 1: Mobile Genetic Elements Definitions
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MGE Tool Authors and Year Data Type Search algorithm Advantages Disadvantages

Insertion sequence Pipelines: Two de novo 
and one profile HMM 
search

Kamoun et al., 
201377

Raw fragments De novo “Repeat search”: RepeatScout 
algorithm 101

De novo “IR search”: palindrome software 
of the EMBOSS package102

Profile HMM: MUSCLE103 and HMMER2 
package104

De novo methods do not rely on incomplete ISfinder database
Profile HMM search performsed significantly better than BLAST 
on simulated and real metagenomic datasets

Repeat search had high false positive rate
IR search has lower true positive rate
Repeat search and IR search not tested on metagenomic datasets

Bacteriophage MARVEL Amgarten et al., 
201871

Raw fragments in 
metagenomic bins

Random forest machine learning Better sensitivity and similar specificity to VirSorter and VirFinder No option in software to retrain on alternative training data
Only testsed algorithm on simulated metagenomic bins
Does not consider prophages

VirSorter Roux et al., 201569 Contigs Prediction of circular sequences105

Gene predicting using 
MetaGeneAnnotator106

HMMER3 for pHMMs and
BLASTP for unclustered proteins

Prediction of novel prophages from reference-independent 
prediction of viral domains 

Not tested on metagenomics of whole microbial communities, only viral 
metagenomes
Does not have complete prophage prediction, as optimised for assemblies 
of fragments

VirFinder Ren et al., 201770 Raw fragments k-mer-based
Logistic regression model with lasso 
regularisation machine learning

Outperforms VirSorter
Do not need to assemble metagenomes before using tool

Model limited to learning from training data before 1st January 2014 so may
not be appropriate for recently discovered viral sequences, and no option in
software to retrain on alternative training data,
Only testsed algorithm on simulated metagenomes
Need to filter out eukaryotic host sequences, as may mis-classify as viral

VirMiner Zheng et al., 201972 Raw fragments Random forest machine learning on phage 
contigs

Validatesd algorithm and comparesd with VirSorter and VirFinder 
using metagenomic data from human gut samples. 
Better sensitivity than and similar specificity to VirSorter and 
VirFinder
Also extends the pipeline to include raw read processing and 
assembly, sequence and functional annotation of phage contigs, 
and phage-host prediction using CRISPR-spacer recognition, and 
two-group comparison (e.g. case and control)
User-friendly website

Does not have a command-line or API tool, making it difficult to analyse 
multiple metagenomes
No option in software to use alternative tools in pipeline or retrain random 
forest on alternative training data

ViraMiner Tampuu et al., 
201973

Contigs Deep Learning using Convolutional Neural
Networks

Model can be retrained on alternative data unlike MARVEL or 
VirFinder

Does not directly compare performance against other tools
The accuracy of the model on human metagenomic contigs is likely to be 
an overestimate because reference-based alignment is used to benchmark 
these contigs that would likely contain many false negatives

Plasmid Recycler Rozov et al., 201675 Raw fragments Circular de Bruijn graphs with coverage 
filters

Even though lack of metagenome benchmark, tool comparesd 
plasmid prediction from cow rumen metagenomic data107 with 
plasmids extracted usingfrom PCR validation from a previous 
study32

Ignores linear plasmids, and those integrated in chromosomes
Performance metrics, i.e. precision and recall, only calculated from 
applying to a Recycler simulated plasmidome, not whole metagenomes
Only 35% of plasmid predictions from metagenomes matched plasmids 
reported in PCR validation

cBar Zhou and Xu, 201074 Contigs Sequential minimal optimization-based 
model on pentamer frequencies

First tool that attempts to distinguish plasmids from chromosomal 
DNA from whole metagenomes

Achieves 88.29% accuracy with independent test set.
but dDoes not describe how the independent test set was generated.
Does not attempt to bin plasmids.

PlasFlow Krawczyk et al., 
201840

Contigs Machine learning model trained using a 
deep neural network on genome signatures

Outperforms cBar on plasmidome data Applied and Ccomparesd PlasFlow to cBar, Recycler and PlasmidFinder on
whole metagenomes, but could not evaluate performance 
Assemblies required to be longer than 1 kb

metaplasmidSPAdes Antipov et al., 
201976

Raw fragments Circular assembly graphs with coverage 
filters.
Includes a verification tool, plasmidVerifty,
which uses a naive Bayesian classifier on 
plasmid-specific profile-HMMs

plasmidVerify outperforms cBar and PlasFlow annotation of 
custom a plasmid and non-plasmid sequences from RefSeq
Generally identifiesd more plasmids than Recycler using 
metagenomic data, mock data, multiple genomic isolates and 
plasmidome data

Ignores linear plasmids

Table 1: Published tools for de novo MGE discovery intended for whole metagenomes401


