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Abstract

Introduction: Time-of-flight (TOF) positron emission tomography (PET) scanners can
provide significant benefits by improving the noise properties of reconstructed images.
In order to achieve this, the timing response of the scanner needs to be modelled as
part of the reconstruction process. This is currently achieved using Gaussian TOF
kernels. However, the timing measurements do not necessarily follow a Gaussian
distribution. In ultra-fast timing resolutions, the depth of interaction of the γ -photon
and the photon travel spread (PTS) in the crystal volume become increasingly
significant factors for the timing performance. The PTS of a single photon can be
approximated better by a truncated exponential distribution. Therefore, we computed
the corresponding TOF kernel as a modified Laplace distribution for long crystals. The
obtained (CTR) kernels could be more appropriate to model the joint probability of the
two in-coincidence γ -photons. In this paper, we investigate the impact of using a CTR
kernel vs. Gaussian kernels in TOF reconstruction using Monte Carlo generated data.

Materials andmethods: The geometry and physics of a PET scanner with two timing
configurations, (a) idealised timing resolution, in which only the PTS contributed in the
CTR, and (b) with a range of ultra-fast timings, were simulated. In order to assess the
role of the crystal thickness, different crystal lengths were considered. The evaluation
took place in terms of Kullback–Leibler (K-L) distance between the proposed model
and the simulated timing response, contrast recovery (CRC) and spatial resolution. The
reconstructions were performed using STIR image reconstruction toolbox.

Results: Results for the idealised scanner showed that the CTR kernel was in excellent
agreement with the simulated time differences. In terms of K-L distance outperformed
the a fitted normal distribution for all tested crystal sizes. In the case of the ultra-fast
configurations, a convolution kernel between the CTR and a Gaussian showed the best
agreement with the simulated data below 40 ps timing resolution. In terms of CRC, the
CTR kernel demonstrated improvements, with values that ranged up to 3.8% better
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CRC for the thickest crystal. In terms of spatial resolution, evaluated at the 60th
iteration, the use of CTR kernel showed a modest improvement of the peek-to-valley
ratios up to 1% for the 10-mm crystal, while for larger crystals, a clear trend was not
observed. In addition, we showed that edge artefacts can appear in the reconstructed
images when the timing kernel used for the reconstruction is not carefully optimised.
Further iterations, can help improve the edge artefacts.

Keywords: Monte Carlo, Positron emission tomography, Photon travel spread, Depth
of interaction, Fast timing

Introduction
Time-of-flight (TOF) positron emission tomography (PET) takes advantage of the detec-
tion time difference between the two annihilation γ -photons to localise more precisely
the position of the annihilation. This additional information makes the tomographic
inverse problem less ill-posed [1].
The concept of TOF-PET was presented in the early 1980s [2, 3], when a reconstruc-

tion process using measurements from a scanner with TOF capabilities was formulated.
The underlying radioactivity distribution was estimated using histograms, derived up to
a scale to account for the speed of light [4–6]. However, early TOF-PET detectors suf-
fered from overall poor timing performance (470 to 750 ps), low stopping power and light
output which limited their spatial resolution and sensitivity.
Since the 2000s, substantial improvements of the timing resolution (from 600 to 310

ps) have been achieved thanks to major technological breakthroughs in the detector tech-
nology [7–13]. Most recently, a novel yet still currently premature technology capable of
about 60-ps coincidence timing resolution (CTR) was presented [14].
The detection time differences for a given annihilation location and detector pair are

usually considered to be normally distributed. Under this consideration, TOF reconstruc-
tion uses a Gaussian TOF kernel. However, Monte Carlo (MC) simulations suggest that
this assumption is not accurate at ultra-high timing resolutions, e.g. below 50 ps [15–20].
Lately, experiments with Cherenkov photons from BGO crystals pointed out that the

detection timing uncertainty could be more appropriately modelled with a mixture of
two normal distributions [21, 22] or Lorentzian distribution [23]. Therefore, the Gaussian
kernel might not be the most appropriate kernel under every configuration.
Several authors have presented experimental timing distributions which have a shape

similar to the CTR kernel that we investigate in this study (possibly in convolution with a
Gaussian) [24–26].
The effect of over- and underestimation of the width of the TOF kernel has been inves-

tigated at current timing resolutions [27]. However, to the best of our knowledge, the
impact on image reconstruction of a non-Gaussian timing kernel for systems with very
high timing resolution has not been studied yet. In a previous preliminary study [28],
we used Laplacian TOF kernels. The Laplace distribution describes the difference of
two independent exponential distributions; this is a reasonable approximation for the
γ -photon absorption in long crystals.
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In this paper, we investigate for the first time the use of TOF kernels for image recon-
struction that model the crystal length. The application of this type of distributions
is aimed at fitting data when the photon travel spread (PTS) in the crystals becomes
significant or even dominant in the CTR.
As no systems with ultra-high timing resolution are available, in this paper, MC simula-

tions were performed using the GATE simulation toolkit [29, 30] to model the geometry
and physics of a PET system with very fast timing performance. The simulated data are
then reconstructed with the proposed kernel and with a Gaussian kernel.

Materials andmethods
Statistics of photon travel spread and coincidence timing

Briefly, the detection of γ -photon within scintillation detectors is a two-stage pro-
cess. Firstly, the incident 511-keV photon is absorbed and optical photons are emitted
within the scintillation crystal. Consecutively, a photo-detector converts these photons to
electrical pulses [31].
When a narrow beam of 511-keV photons hits a scintillation crystal of thickness L, the

original beam intensity (I0) is primarily attenuated due to photoelectric absorption or
Compton scattering. In order to calculate the number of events absorbed in each depth
layer inside the crystal, the following exponential model can be used:

I(x) = I0 exp(−βx) , for 0 ≤ x ≤ L (1)

where β approximates the material absorption coefficient.
Formula (1) can also be expressed in terms of time:

I(t) = I0 exp(−λt) , for 0 ≤ t ≤ T (2)

Fig. 1 Illustration of the scanner’s geometry. The single crystals are grouped in modules with 24 crystals on
the z axis, repeated 666 times around the FOV
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where λ = βc, c ≈ 0.2998 mm/ps is the speed of light and T = L/c (ps) is the maximum
time duration of a γ -photon travelling perpendicularly to the entrance surface (Fig. 1).
The conditional probability density function (PDF) for events that are absorbed is

obtained by normalising the above Eq. 2:

g(t; λ) = λ exp(−λt)
1 − exp(−λT)

, for 0 ≤ t ≤ T (3)

Let two photons A and B from a single annihilation event be independently
detected. The continuous joint probability distribution is therefore gAB(tA, tB; λ) =
gA(tA; λ)gB(tB; λ). Making the substitutions d = tA − tB, which is the time difference
between the two photons, and s = tA + tB, we denote the joint distribution depending on
d and s as:

fDS(d, s; λ) = gAB(h1(d, s), h2(d, s); λ) |J| (4)

where h is the inverse transformation (h1(d, s) = (s + d)/2 and h2(d, s) = (s − d)/2) and
J is the Jacobian determinant of h. Then, the CTR kernel can be obtained by integrating
fDS over s:

fD(d; λ) =
(

λ sinh (λ(T − |d|)) csch
(
Tλ

2

)2
)/

4 , for − T ≤ d ≤ T (5)

where csch is the hyperbolic cosecant function.
The corresponding cumulative distribution function (CDF) is given by:

FD(d; λ) =
(
1 − sgn(d)

2
− sgn(d)(cosh (λ(T − |d|)) − 1) csch

(
Tλ

2

)2
)/

4 (6)

where sgn is the sign function.
When T → ∞, Eq. 5 becomes the Laplace distribution (fL) and FL its CDF, given by:

fL(d; λ) = λ

2
exp(−|dλ|) (7)

FL(d; λ) = 1
2

(
1 + sgn(d) (1 − exp(− |dλ|))) (8)

In practice, other system effects will decrease the timing resolution of the system. This
non-idealised case can be modelled by using a TOF kernel which is the convolution
between the fD(d, λ) and a normal distribution fadd(d, σ), with σ the standard deviation
of the normal distribution. See the Appendix A.

Scanner model

The geometry of a cylindrical PET scanner was simulated using the GATE simulation
toolkit (v.8.1) [29, 32]. The scanner was comprised of 24 rings with 666 detectors each.
No gaps between blocks were considered. The gap between the crystals was 0.2 mm. The
inner ring radius was 424.5 mm (with field of view (FOV) radius 297 mm), and the total
axial length was 110 mm. The crystals were made of Lu2Y2SiO5:Ce (LYSO) with den-
sity (ρ) equal to 7.105 g cm−3. This crystal configuration provided realistic performance
similar to the PreLude 420 by Saint Gobain [33]. The scanner’s geometry is illustrated at
Fig. 1.
The surface of each scintillation crystal was 4 × 4 mm2. Different crystal lengths

were used, which are defined in each section. The energy resolution was set to
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11.4%, and the applied energy window was 435–650 keV. The coincidence tim-
ing window was set to 4.1 ns. Each crystal measurement was read out individually
without summing up the energy from neighbouring crystals. The minimum allowed
radial detector difference (rsector difference in GATE) was 83 detectors. The
emstandardemstandard_opt3 physics list was used.

System’s timing resolution

Although various methods for the evaluation of the timing resolution of a PET scanner
have been proposed [34–37], in this study, a simpler approach was considered.
To investigate the effect of the PTS on the CTR, a thin (0.05mm radius) back-to-back γ -

photon rod source was simulated until approximately 70×106 total events were recorded.
In GATE, the “macro” command setTimeResolution applies an additional normal

blurring to the detection time for each detector, i.e. following the original detection time
defined as the time of occurrence of the photoelectric effect (PE) in the crystal.
Using the aforementioned “macro” command, two detector configurations were con-

sidered:

1 First case, the additional detector time resolution was set to 0 ps which simulated a
detector with idealised timing properties. In this case, the CTR kernel was tested
for three different crystal thicknesses, namely 10, 20 and 40 mm. For comparison, a
normal distribution was fitted to the simulated timing responses using maximum
likelihood estimate (MLE) (via the Distribution Fitter App in Mathworks Matlab).
With regard to the data boundaries, two cases were considered. In the first case,
data boundaries were placed such that we obtained the minimum Kullback–Leibler
(K-L) distance (optimum kernel) between the simulated distribution and the
timing kernel (fN ). On the other hand, on the second fitting (f ′

N ), no data
boundaries were placed.

2 Second case, a range of values were set to the setTimeResolution, simulating
a non-ideal detector. The crystal size was fixed to 20 mm, as this is the one of most
common thicknesses for 176Lu-based crystals [38–40]. Seven additional detector
timing resolutions were considered FWHMadd = 0, 5, 10, 20, 40, 60, 80 and
100 ps. This additional timestamp smearing represents other factors affecting the
timing spread, such as fluctuation in the detection of optical photons, pulse
integration and electronic noise. According to the central limit theorem, the
additional timing uncertainty due to all these effects can be described by the normal
distribution. The two kernels (i.e. the additional timing kernel and the CTR) are
then convolved. As such, the shape of the final kernel depends on both kernels.

In addition, the histograms of the timing differences corresponding to the non-idealised
scanners were compared with the convolution kernel given in the Appendix A (Eq. 11).

Image reconstruction

Average depth of interaction

STIR takes into account an average depth-of-interaction (DOI) effect in the crystal for
the calculation of the line of response (LOR)’s position. In order to find a good approxi-
mation for the average DOI, the detected γ -photons were binned into histograms based
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on the depth where they were absorbed. Then, the mean absorption depth was found by
summing the bin values until the mean value was found.
The average DOI values were found to be 3.6, 5.8 and 7.4 mm for the 10-, 20- and

40-mm crystals, respectively.

Calculation of the TOF projectionmatrix

The TOF kernel, as implemented in STIR, is applied on top of the non-TOF LOR (pij)
as [41]:

pit;j = pijKit;j,

Kit;j = cdf(kt+1 − v′
cj) − cdf(kt − v′

cj)
(9)

where Kit;j is the time response for the tth TOF position of the ith bin and jth image
element, cdf is the CDF corresponding to the timing kernel used, [ kt , kt+1) is the timing
interval for the tth TOF bin and v′

cj is the projection of the voxel’s centre on the TOF line.

Reconstruction algorithm

STIR [42, 43] supports a wide range of algorithms for the determination of the maximum
likelihood estimate (MLE), including ordered subset expectation maximization (OSEM),
median root prior (MRP) and quadratic prior (QP) Bayesian one step late methods
[44, 45], and the ordered subset separable paraboloidal surrogates algorithm [46].
In this paper, listmode (LM)-maximum likelihood-expectation maximisation (MLEM)

was used [47, 48] as it is the simplest option, and is guaranteed to converge (even slowly)
to a solution. The TOF version of LM-MLEM in the STIR library was previously presented
with simulated data [41] and recently validated using measured PET data [49]. The size
of the TOF bins was 1 ps (numbering 4101 in total). No TOF mashing, view mashing or
axial compression was used for the data.
The voxel size of the reconstructed images was 1×1×2.08mm3. In order to reduce the

reconstruction duration, the number of voxels was adjusted to fit the size of the phantom
in each case. No post-reconstruction smoothing filters were applied to the images.
Attenuation correction factors were calculated with an analytical simulation, of the

phantom, having the appropriate linear attenuation values for 511-keV γ -photons, as
found in NIST [50]. Normalisation factors were not used. The scattered and random
events were omitted from the reconstructions; all datasets had 40 × 106 true events.
The iterative process was performed for up to 105 iterations for the contrast recovery

coefficient (CRC) and 150 iterations for the spatial resolution. However, all results are dis-
cussed for the 60th iteration, as it ensures that region of interest (ROI) values have almost
converged, without introducing noise amplification and reduction in signal to noise
ratio [51].
Further, expansion of the software allowed us to parallelise the TOF LM-MLEM recon-

struction using OPEN-MP. STIR supported the options for OPEN-MP and MPI for
reconstruction of sinograms only. The new code reduced the amount of time needed for
a single iteration 10× running with 25 threads on 28 processor on the University’s cluster.
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Simulated phantoms

NEMA image quality: contrast recovery coefficients

A NEMA image quality phantom [52] was designed and simulated for all scanner
geometries under consideration.
The CRC of a hot sphere with inner diameter d was calculated as:

CRCr =
(

μH ,d

μB,d
− 1

)/
(α − 1) (10)

where α = 4.5 is the actual contrast ratio of the sphere, μH ,d is the mean value of the
ROI and μB,d is the mean value of the background in the reconstructed images. The inner
diameters of the hot spheres were 10, 13, 17 and 22 mm. In order to reduce the statistical
error, the simulations were repeated 7 times; μH ,d and μB,d values were averaged over all
datasets.

Spatial resolution

In order to evaluate the effect of the different kernels on the spatial resolution, a compu-
tational Derenzo-style phantom was simulated. The phantom material was set to plastic
(as defined in the GATE materials database) with a 5-cm radius and a 7-cm height. The
hot rods were subdivided into six sections, with diameters of (A) 7.0 mm, (B) 5.0 mm, (C)
4.0 mm, (D) 3.5 mm, (E) 3.0 mm and (F) 2.5 mm (the letters denote the name-ID of each
section). The separation distance between the rods was set to the double of their diameter
[53]. In total, 40 × 106 true events were used to reconstruct the images.
As previously discussed [54], the assessment of the actual image resolution with sta-

tistical image reconstruction is not trivial as spatial resolution depends on the iteration
number and activity distribution. In order to limit the effect of the non-negativity
constraint, a high activity background source was used.
Furthermore, in order to evaluate whether the reconstructed sources contain edge arte-

facts, the ratio between the pixel value on the centre of gravity (COG) of the source and
the average ROI value was recorded for the sources of the largest section.

Results
Comparison between the CTR kernel and simulated data

Figure 2 shows a comparison between the CTR kernel (fD) and the Laplace (fL) with ide-
alised simulated time differences for a crystal thickness of 20 mm. As shown, the fD is in
excellent agreement with the simulated data, while the tails of the Laplacian kernel extend
to infinity.

Timing response for different crystal lengths in the idealised case

The simulated timing PDFs for three different crystal lengths with the idealised timing
response in comparison with the corresponding CTR kernel, an unconstrained fitted nor-
mal distribution (f ′

N ) and a fitted normal distribution with boundaries which minimise
the K-L distance between the kernel and the data (fN ), are shown in Fig. 3. The system’s
timing resolution (FWHMT) of the f ′

N was found to be 192.2, 118.0 and 111.1 ps, for the
10-, 20- and 40-mm crystal size, respectively.
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Fig. 2 The CTR kernel (fD) compared to the histogram of simulated time differences for a crystal thickness of
20 mm. For comparison, the Laplace (fL) with the same lambda is shown, i.e. corresponding to an infinitely
thick crystal

The corresponding values for the fN were 31.2 ps, 60.5 ps and 106.6 ps. This difference
is attributed only to the effect of the crystal’s length. It should be noted that the difference
between the two Gaussian kernels is significant for the smaller crystals.
The K-L distances between the optimum normal (fN ) and measured PDF were found to

be equal to 0.020, 0.027 and 0.059 for the 10-, 20- and 40-mm crystal, respectively. For the
analytically calculated fD, the corresponding values were all below 8 × 10−4.

Fig. 3 Fits of a normal distribution and an analytically calculated CTR kernel, compared to the idealised
simulated timing responses for crystal lengths equal to 10, 20 and 40 mm
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Non-idealised timing response

When considering a scanner with non-idealised timing response, the CTR kernel fD might
no longer be appropriate. The absolute K-L distances of the optimised fitted normal dis-
tribution (fN ) and the CTR kernel (fD) with the measured histogram for a 20-mm crystal
can be found in Fig. 4.
As one may see, for the 20-mm LYSO crystal below FWHMadd = 20 ps, the CTR

kernel is in better agreement with the simulated data than the fitted normal distribution.
In addition, when the additional timing blur is below 60 ps, the timing response should
not be considered as following a pure normal distribution. In this case, a convolution
(Appendix A) between the two distributions should be considered as shown in Fig. 5.

Image reconstruction

Contrast recovery coefficient

Overall, the performance of both fD and fN was very good, as expected by such fast timing
resolutions. Contrast recovery reached close to 1 for the larger sphere and about 0.7 for
the smallest 10-mm sphere (Fig. 6). The results show that the better the agreement of the
kernel with the data, the better contrast is recovered.
The CTR kernel (fD) for all crystal sizes performed better than the Gaussian kernels.

Their performance gap was the smallest for the 20-mm crystal, which was the crystal that
the Gaussian kernel provided its best values. With respect to the crystal size, we saw that
the size of the crystal had a positive impact.
Use of the un-optimised normal kernel (f ′

N ) led to poor CRC accuracy as in many
cases the values were artificially increased above 1.0. This overshoot was more intense
for the smaller crystals, where the agreement of the kernel with the data was at its low-
est. However, on the 40 crystal, the performance was comparable to that of the optimised
kernel.

Fig. 4 Absolute K-L distances between the non-idealised simulated data of the 20-mm crystal, a fitted
normal distribution (fN) and the CTR kernel
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Fig. 5 Histograms of simulated time differences, with additional normal timing blurring with various FWHMs
ranging from 0 to 100 ps. In addition, the corresponding convolution kernels generated using the CTR kernel
for the 20-mm LYSO crystal and the respective additional normal

Spatial resolution (peak-to-valley ratio)

The PtV ratio for a wide range of iterations is presented on Fig. 7. Overall, the CTR kernel
performs better than the other kernels, for thinner crystals. In addition, the data shown
that for smaller crystals, the spatial resolution converges faster.
The ratio for section C (4.0 mm) and the 10-mm crystal, evaluated at the 60th iteration,

was 2.203 for the CTR kernel and 2.151 for fN . An improvement of 1%.
However, for the 40-mm crystal, not all sections followed similar trends. Sections A,

B and C provided higher peak-to-valley (PtV) ratios with the Gaussian kernel, while the
smaller sections D, E and F with the CTR.
As the iterative process progressed, growing presence of edge artefacts affecting the

spatial resolution in the reconstructed images was observed. These artefacts depended on
the size of the source, crystal size, type of kernel and iteration number. They looked like
an overshoot or ringing after sharp transitions of intensity in the images (Fig. 8).
Their appearance was spotted at earlier iterations for the larger sources (e.g. of section

A), hence the quick reduction of PtV observed in Fig. 7, and smaller crystals. Sources of
the section D and smaller did not exhibit this artefact up to the 150th iteration.
For instance, at Fig. 8 the 20-mm crystal, 60th iteration, the sources of the section A

present a ring-like shape. The reduction in the PtV ratios (Fig. 7) strongly correlates with
the presence of this artefact.
Figure 9 shows the ratio between the intensity of the voxel on the ROI’s COG and its

average value for section A, crystals 10 and 40 mm. This ratio provides an indication of
the magnitude of the edge artefact.
As it can be seen, the ratios peak at early iterations (4 and 16, respectively), followed by

a drop (due to the edge artefact). As the results show, the effect on the 10-mm crystal is
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Fig. 6 CRCs for all spheres and crystal sizes with an idealised scanner, using different kernels. CTR (fD),
Gaussian (with data boundaries) (fN) and Gaussian (no data boundaries) (f ′N)

more intense. However, there are indications that further iterations improve the ratios. In
addition, it is shown that the CTR kernel recovers the ratio faster than the Gaussian. This
further demonstrates the importance of accurate timing modelling.
Moreover, on the third column of Figs. 7 and 8, the results of the kernel (f ′

N ) are shown.
As it can be seen for the case of the 20-mm crystal, severe ring artefacts are present on
the background activity, which are not apparent for the 40-mm crystal. The poor fitting
of the f ′

N kernel with the simulated time differences, for the 20-mm crystal, is the driving
factor for these rings.

Discussion
In this paper, we compared images reconstructed using TOF kernels calculated using dif-
ferent methodologies. In the comparison, we included Gaussian kernels, which are the
standard kernels being used currently, and a modified Laplacian kernel which accurately
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Fig. 7 Peak-to-valley ratios of all combinations of crystals with an idealised scanner as function of the iteration
number. The six rod section had diameters of (A) 7.0 mm, (B) 5.0 mm, (C) 4.0 mm, (D) 3.5 mm, (E) 3.0 mm and
(F) 2.5 mm, for the CTR (fD), Gaussian with data boundaries (fN) and without data boundaries (f ′N) kernels

Fig. 8 Reconstructed images with TOF LM-MLEM on the 60th iteration. The images are the sum over all axial
slices. The images have been scaled to the global max value
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Fig. 9 Ratio between the value of the voxel on the centre of gravity of the ROI over the average value of the
ROI. Reduction on the ratio value happens due to edge artefacts

models the effect of the PTS in the crystal (and thereby timing differences due to DOI) on
the system’s timing response.
The data used in this manuscript were generated using GATE MC simulations of ide-

alised and ultra-fast PET scanners based on LYSO detectors. In particular, we focused
on systems where the CTR is very close to the ideal case, where the only time-degrading
effects are due to the uncertainty in location of the γ -photon absorption.
As was shown, when the size of the crystal is the only parameter affecting the timing

performance of the detector (idealised scanner), the PTS distribution shapes the timing
response. In good approximation, the PTS depends on the exponential absorption of the
γ -photons in two crystals. Therefore, the timing kernel can be approximated as the con-
volution between two truncated exponential functions. If the crystals were long enough to
absorb 100% of the annihilation photons, this function would be simplified to the Laplace
distribution.

In addition, our results illustrate that below FWHMadd = 40 ps, the PTS gradually
becomes a dominant factor in shaping the distribution of the timing measurements. As
such, in this range, the Gaussian function does not appear to be a good descriptor for the
timing differences, but the convolution kernel which considers the CTR is preferred.
In order to investigate the effect of the proposed, accurate, timing modelling in the

image reconstruction, contrast recovery and spatial resolution were used as figures of
merit. The evaluation included two computational phantoms: the NEMA IQ and a
Derenzo-style phantom.
In addition, for comparison, two Gaussian kernels were considered: the optimised (fN ),

for which data boundaries were placed when fitting, and the un-optimised (fN ), without
data boundaries (fN ).
The reconstructed images of the simulated NEMA IQ phantom showed in the case

of the idealised scanner that in terms of CRC, the CTR kernel performed up to 3.5%
better for the 22-mm sphere and 3.8% for the 10-mm sphere, compared to the optimised
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Gaussian kernel (fN ). This can be explained in Fig. 5 as the CTR kernel is the only one
able to capture accurately the peak of the simulated timing differences.
In addition, we demonstrated that when the agreement between the kernel with the

data is poor (f ′
N kernel with 10- and 20-mm crystals), there is a significant overshoot in

CRC, which can reach up to 20%, in our case. The magnitude of this overshoot depends
on the size of the crystal size.
The spatial resolution was evaluated using the PtV ratios, at the 60th iteration. It was

shown that the CTR kernel offered a relatively small advantage of about 1% for the
thinnest 10-mm crystal, while for the 20-mm crystal, the advantage of the CTR kernel
was significantly reduced. Finally, the 40 mm had mixed results as the Gaussian kernel
performed better for the largest sections and the CTR for the smaller.
However, it should be noted that the majority of 176Lu-based detectors have lengths

from 12 to 20 mm [38–40, 55].
Evaluation of the PtV for the not optimised Gaussian kernel (f ′

N ) was not possible, due
to the overshoot in contrast values, as demonstrated in the earlier paragraph.
Edge artefacts were observed in the images of the Derenzo-style phantom. In the

case of point spread function (PSF) modelling, edge artefacts are present due to the
ill-conditioned nature of the problem [56] and depend on the size of the source and
the iteration number [57]. Similar behaviour was observed here for the TOF recon-
structions. However, in our case, we applied only a basic PSF modelling. We note that
these types of artefacts are not apparent in the non-TOF reconstructed images (not
shown here).
A potential explanation of the edge artefacts is on the fact that there are some dis-

crepancies between the TOF kernel and the MC data. Good agreement of the timing
kernels with the simulation is not sufficient for very fast timing detectors, because small
spatial displacements can affect positioning the timing kernel accurately. For example,
spatial displacements can be caused by approximating the scanner as a continuous cylin-
der rather than a polygon-cylinder with gaps [58], due to consequent differences in the
DOI and parallax effect.
This hypothesis is supported by the fact that the artefacts were reduced when a more

accurate CTR kernel was used. In addition, when a kernel of poor agreement (f ′
N ) (crystals

10 and 20 mm) with the data was used, intense ring artefacts appeared in the background
activity of phantom and these rings disappeared when f ′

N fitted better the data (40-mm
crystal). This may also indicate that at high timing resolution, image quality becomes
more dependent on TOF kernel accuracy. However, this needs further investigation. It
should be pointed out that for ultra-fast timing resolution, and in particular when the
size of the TOF kernel becomes comparable to the voxel size, the detection probability
is no longer separable between the spatial and timing response and Eq. 9. The simplest
strategy to address this would be to use smaller voxels, but this would lead to increased
computational requirements and an increase of noise. Thus, regularised reconstruction
would therefore become essential.
In addition, currently, STIR does not model sufficiently the detector’s response [59] or

other effects such as inter-crystal scattering.
The major limitation of the current study is that the simulations for optical photons

inside the crystals [60–63] and their processing (i.e. pulse integration) [64] were not con-
sidered due to their substantially computational requirements. In addition, the details
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of the optical photon transport and further processing will depend on the actual detec-
tor design. We have presented results where such effects are modelled via an additional
normal distribution blurring. This would have to be tested for a particular detector.
Indeed, at the time of writing, it is not known whether future detectors will exhibit the

proposed timing distribution. However, as new technological advances progress towards
the 50-ps range, accuracy in timing detector modelling will become essential [65].

Conclusion
The use of TOF kernels, which take into account the effect of the PTS in the crystal,
matches the simulated timing differences better than the traditional Gaussian kernel,
when ultra-fast detectors are considered. In the presence of additional timing spread,
convolution between the proposed CTR kernel and a Gaussian provided a very accurate
model for the timing measurements.
However, even if the use of the CTR is in better agreement with the simulated data, the

observed improvements in the reconstructed images in terms of contrast recovery and
spatial resolution are modest on the range of 1 to 3.5%.

Appendix A: Convolution formula
The following formula calculates the convolution kernels between the fD(d; λ) for the
range [−T ,T] and fadd(d, σ):

fconv(d, λ,T , σ) =
A

(
(1 + exp (2Tλ))B − C + exp (2Tλ)D + H + J

)
2(1 + exp (2Tλ))(−1 + cosh (Tλ))

√
2π

(11)

where

A = exp
(
0.5λ

(−2d + λσ 2))√0.5πλ cosh (Tλ) (12)

B = erf
(
d − λσ 2

√
2σ

)
(13)

C = erf
(
T + d − λσ 2

√
2σ

)
(14)

D = erf
(
T − d + λσ 2

√
2σ

)
(15)

E = erf
(
d + λσ 2

√
2σ

)
(16)

F = erf
(−T + d + λσ 2

√
2σ

)
(17)

G = erf
(
T + d + λσ 2

√
2σ

)
(18)

H = exp (2dλ) (E + F) (19)

J = exp (2(T + d)λ) (−E + G) (20)
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