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ABSTRACT



Abstract

The current methodology for scientific progress in clinical medicine is reviewed. 

Special attention is given to the randomised controlled trial, with particular emphasis 

on statistical considerations, especially the analysis of survival and response duration 

data.

The principles commonly employed in designing and improving treatments for 

cancer are reviewed, discussed, and demonstrated in practice by reference to 

progress made in the treatment of, among others, breast cancer and testicular 

teratoma. Improvements are shown to have concentrated on ways to circumvent 

resistance to therapy, and on exploiting the growth kinetics of tumours. However, 

quantitative information on either of these factors has been difficult to obtain, with 

the result that new trials are often designed on largely theoretical grounds, using 

principles that are un validated, and understood in a qualitative fashion only.

Two new mathematical models which seek to derive this quantitative information are 

presented, developed, and validated, and their assumptions discussed in detail. One 

population based model seeks to derive distributions of resistance and growth rate 

parameters for groups of patients from their durations of response to treatment. 

Applications are presented in acute leukaemia, breast cancer, Hodgkin’s disease and 

multiple myeloma. A multivariate version of this model is presented and applied to 

help in the understanding and use of prognostic factors in breast cancer.



The second model, for individuals, uses sequential tumour volume measurements 

before each treatment. An application is given in lung cancer, where the volumes 

were measured by CT scan. Results from the model appear to indicate when 

changing or stopping treatment may be beneficial.

Application of these mathematical models often seems to generate new ideas for 

treatment, and leads to a better understanding of how the treatment may be working. 

They should enhance the conventional approaches, and hopefully enable research to 

proceed more rapidly and successfully.
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Introduction

The purpose of the work reported in this thesis was to develop and apply 

mathematical models that would be useful to clinicians treating cancer patients. As 

a result of working with cancer doctors for many years, it became clear to me that 

the analytic methods they employed, largely statistical in nature, while useful, did 

not answer all the questions they might. The observed results of clinical trials were 

often difficult to explain, and though the statistical tests employed might show that 

a particular treatment was better in terms of some particular endpoint such as patient 

survival (see chapter 2), they did not indicate why. The intention of using 

mathematical models was to generate useful hypotheses to help in explaining the 

results, and thus quicken the pace of research.

The usual outcome of a clinical trial is to conclude that one treatment is either the 

same or better than another treatment in some particular respect, e.g. patient 

survival, for the disease under study. The trial would usually be set up to answer the 

specific question as to whether one treatment was superior, and this question only. 

Often no attempt would be made to discover, in the trial design or the statistical 

analysis, why one treatment was superior. This difficult interpretive task would be 

left to the clinicians involved, who would then have to decide upon which treatments 

to use and evaluate next.

In parallel with this rather pragmatic approach to the development of more 

efficacious treatments, laboratory scientists were performing very detailed and
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rational experiments designed to promote understanding of the basic biology of the 

diseases, sind to model the manner of action of the different modes of treatment. 

However, the principles discovered in the laboratory often failed to produce useful 

results when applied to patients. It seemed that there were so many additional factors 

to be taken into account when treating a real patient, that the doctor was reduced to 

relying more on his clinical experience and intuition when deciding upon the 

treatment, rather than the desired logical and scientific explanations.

The mathematical modelling approach to problem solving appeared to provide a 

method for unravelling this complexity, and for deriving some of the fundamental 

assumptions upon which treatment strategies should be based. The essence of the 

modelling approach is the mathematical abstraction of the key elements of a complex 

process, with the aim of understanding the said process, predicting the results of 

altering certain features of the process, and therefore assisting with decisions 

concerning the process. It is worth noting that these models form the basis of 

Operational Research, which started in the 1940s and has met with success in areas 

where trials were infeasible, such as industrial and commercial environments. This 

philosophy appeared to have already met with dramatic, though limited, success in 

the clinical field through the models of Skipper et al (1964; 1967) and Goldie and 

Goldman (1979; 1982). Their models have had enormous influence on the design of 

clinical trials in cancer. However, these models embody principles, rather than 

having direct application to clinical trials and clinical data. There appeared to be 

enormous scope for more direct applications.

20



These models of Skipper (based on many experiments on animals in the 1960’s) and 

Goldie and Goldman had been developed to try to explain observed trial results. 

However, the clinicians had little means of exploring the consequences of these 

hypotheses, and often relied merely on an intuitive feel for the results. It seemed that 

these various models needed to be quantified, and explored more thoroughly. The 

models needed to be tested, validated, and developed with the clinicians. The aim 

was to help explain their results more in terms of basic biology, to complement the 

more basic statistical outcome measures. Thus the clinician could perhaps be brought 

closer to the laboratory scientist, and the road to new and better treatments 

straightened.

The thesis thus begins with a brief history of the development of the clinical trial 

methodology, followed by a description of the current methods of analysing clinical 

research data. This latter review concentrates on the analysis of survival and 

response duration data, since most of the mathematical modelling applications are 

in this area. Some of the principles upon which treatment strategies have been 

developed are then described and discussed along with associated mathematical 

models. The thesis then proceeds to the new mathematical models that were designed 

and applied. These are described, along with their assumptions, and applications are 

given. A summary of the consequences of the modelling work in clinical applications 

is presented.
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Chapter 1 

CLINICAL TRIALS

1.1 Definition

The essence of a clinical trial is the employment of a treatment on a sample of 

patients, to identify how best to treat patients in the future (Pocock, 1984). Clinical 

trials have thus been in existence for many centuries. However, in the last 40 years 

or so three new elements have been added to diminish or avoid bias, both in patient 

selection for studies, in allocation of patients to treatments, and in the use of 

historical data.

1.2 The Randomised Controlled Trial

Controlled studies, i.e. those in which a standard therapy is given to a group of 

patients similar to those being treated with the new approach, are generally 

considered necessary to avoid bias favouring a new treatment. This bias could arise 

because investigators may, perhaps subconsciously, select patients with a better 

prognosis for a new treatment, may not apply rigorous standards of assessment, may 

exclude patients who fail to benefit from the new treatment, or may prematurely 

abandon negative trials (Simes, 1986; Furberg & Morgan, 1987; Chalmers et ah, 

1987; Green et al., 1987). Furthermore, a positive psychological outlook to a new 

treatment may influence the patient, and the outcome.
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Trials may also involve "blind" or "double blind" allocation of patients to treatments 

to avoid subjective bias in the approach of the clinician or the attitude of the patient.

As a result of investigation into agricultural experiments Fisher (1935) pioneered the 

method of random allocation. The intention was both to remove bias from the 

allocation procedures, and to avoid errors caused by some unknown factor being 

unevenly distributed between the groups.

Randomisation does not, of course, guarantee balance in other factors between the 

groups. However, the larger the trial, the less will be the chances of imbalance. To 

avoid imbalances in factors known to be important, trials can be stratified for these 

factors, with separate randomisations within the different strata. Despite this 

safeguard, imbalances can still occur, and even minor, non-significant imbalances 

in highly significant factors can confound the treatment comparison (Altman, 1985). 

Such factors should be adjusted for in the analysis even when stratification has been 

applied (Altman, 1985).

By employing concurrent controls, confounding time-related variables, such as 

changes in patient management and new supportive care techniques, can be avoided. 

Historical controls may bias the treatment comparison, and are best avoided. For 

example, consider the apparent improvements shown by early (phase II) trials of 

combination chemotherapy in multiple myeloma (Lee et a l ,  1982). After some 18 

randomised trials, spanning approximately 20 years, comparing combination 

chemotherapy with the previous standard therapy, namely melphalan and
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prednisolone, it is still unclear whether the new treatments are an improvement 

(Gregory et al. , 1992). A study by Murphy et al (1986) provides an example of the 

unexpected influence of supportive care on survival in patients with acute 

myeloblastic leukaemia. Patients were randomised to receive leukocyte-poor blood 

components to prevent alloimmunisation or to receive normal blood components. On 

subsequent analysis several years later, those receiving the leukocyte-poor 

components appear to have an increased risk of relapse (Tucker et ah, 1989). 

Analysis of trials undertaken during these periods of changes in supportive care 

would be likely to exhibit major differences from current studies, due merely to the 

supportive care measures employed.

Trials may also require specification of the methods of analysis, rules for premature 

stopping of the trial (Pocock, 1984), an estimate of the numbers required to be 

treated, and rules for producing the final result of the trial. The latter often includes 

the specification of an end-date for the analysis, either after the entry of a specified 

number of patients, or at a particular time. These aspects are discussed more fully 

in chapter 2.

The Randomised Controlled Trial (RCT) methodology that resulted, combining these 

various elements and brought to clinical experiments largely due to the efforts of Sir 

Austin Bradford Hill (1952; 1962), now has a preeminent role in clinical science. 

In many circumstances RCTs are thought to provide the only definitive evidence of 

different treatment effects, and all but major breakthroughs require RCTs to establish 

the treatments involved as worthy. (An example given by Sir Austin Bradford Hill
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where no trial was needed, was the use of streptomycin for tuberculous meningitis, 

where the disease was previously universally fatal (BMJ Editor, 1991)). A 

comprehensive outline of the philosophy and methodology can be found in Peto et 

al (1977a; 1977b). For critical reviews see Jackson (1985) and Birkhead and Jackson 

(1986). Using breast cancer as an exemplar, some of the benefits that have been 

derived from RCTs include the demonstration of the efficacy of adjuvant therapy 

(Bonadonna et al. , 1985; Bonadonna & Valagussa, 1987; Richards et al. , 1990) and 

the important negative finding that breast conservation gives similar survival results 

to mastectomy (Fisher et al., 1985; Findlay et al., 1985; VanderSchueren & 

VanDongen, 1988; Sarrazin et a l ,  1989; Veronesi et al., 1990). Over the past 20 

years the RCT has come to be regarded as the only scientifically sound method of 

evaluating new treatments (Altman, 1984).

1.3 Ethics of the RCT

The aforementioned view should be treated with a degree of caution. Scientific 

developments can be so clear cut that it would be unethical to treat patients using 

older therapies which were known to be ineffective or greatly inferior (Armitage, 

1975; Byar et ah, 1976). An example would be the treatment of diabetes with 

insulin (Black, 1979). Other ethical considerations may inhibit a clinician from 

performing an RCT (Armitage, 1984). It may be pointed out that there have been 

many instances in the past where clinicians have had strong beliefs that have 

subsequently turned out to be false. However, this can be guarded against by
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alternative methods which do not involve subjecting patients to treatments which are 

very likely to be inferior. For instance, if a new treatment is expected to produce 

a dramatic improvement in survival, all new patients can be entered onto this 

treatment, with the intention of evaluating survival, with appropriate confidence 

limits, after the entry of some specified number of patients. If this survival rate is 

indeed a great improvement on the older methods, with confidence limits which 

easily exclude the previous survival figures, the use of inferior treatments will have 

been avoided. If the confidence limits include the previous survival figures, or leave 

some room for doubt, an RCT can still be performed.

Ethical dilemmas appear to be inherent in the RCT methodology. After all, the 

ultimate aim is to increase knowledge for the benefit of future patients, in an 

experiment which involves the treatment of individuals now. This may conflict with 

the clinician’s responsibility to treat each patient in a way he or she considers 

optimum. There is a danger that the rules of the RCT become too rigid and 

uncompromising. There must come a point where the responsibility to the individual 

outweighs the possible future benefits to others.

Clinicians are not expected to undertake RCT’s where they are confident that one 

treatment is better than the other(s). To undertake an RCT they must be in a state 

of uncertainty about the relative efficacy of the treatments. They are clearly expected 

to take all possible steps to avoid treating patients with inferior treatments. To this 

end, guidelines have been established for testing new treatments. Phase I studies 

constitute the first stage of such testing. Outside the field of cancer these are usually
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conducted on healthy volunteers. For cancer drugs, which are likely to have 

considerable toxicity, they are usually conducted in patients for whom no treatment 

of proven benefit is available, largely with a view to establishing toxicity and safe 

dosages. Phase II studies examine activity of the drug/treatment, for drugs which 

have been through phase I testing. They are usually undertaken on patients who have 

failed primary therapy, and for whom no clearly beneficial alternative is available. 

It is usually only after encouraging phase II results that an RCT (phase III trial) is 

undertaken.

Looking at this problem from a different perspective, doctors must believe that two 

treatments give similar results, or at least be unsure of the outcome, in order to 

undertake an RCT. They have a duty to explain this to the patients, when giving 

them the choice of entry to an RCT. This ’informed consent’ has gradually become 

an integral part of the RCT, and is probably a salutary exercise for the doctor, as 

well as being important for the patient. It ensures that doctors participating in the 

trial have given careful consideration to the subject.

Perhaps one additional ethical guideline should concern studies where a new 

treatment could not reasonably be imagined to fare worse, and is expected to be a 

considerable improvement on the current standard. If retrospective data is available 

concerning this treatment, this should be explored before an RCT is considered. 

New patients could all be entered onto the new treatment, while awaiting the results 

of retrospective analyses, including those from other institutions. As an example, 

consider the finding that the time of operation in premenopausal breast cancer
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patients, in relation to phase of the menstrual cycle, affects their survival (Hrushesky 

et ah, 1989; Senie et ah, 1990; Badwe et ah, 1991). It would be possible to 

randomise patients to being operated on at supposedly "good" times in the cycle, 

versus random allocation as at present. However, doctors who were involved in the 

original retrospective data analysis and accept the results (a 30% survival difference 

at 10 years) would surely find this unethical. They felt that the policy needed to be 

changed immediately (M. Richards and I. Fentiman, personal communication); the 

only possible adverse consequences being a minor delay before surgery for some 

patients, which is thought highly unlikely to affect survival (Badwe et a l ,  1991)). 

Meanwhile others who remain uncertain about the results can check the findings on 

their own retrospective data, where possible, and either confirm the findings, or cast 

sufficient doubt that a randomised trial would become a reasonable proposition.

1.4 History of the RCT

The first RCT to have a properly randomised control group was the Medical 

Research Council’s pulmonary tuberculosis trial of 1948. At this stage, the tools for 

analysing clinical trials were imperfectly developed. Tests for comparing results 

where the outcome variable was a simple numerical value, such as blood pressure 

or weight, were straightforward (the t-test, or, for data not normally distributed, the 

Mann-Whitney non-parametric test (Armitage & Berry, 1987) could be used). 

However, the most common outcomes to be compared were survival times, or times 

to occurrence of some event, such as heart attack or relapse of disease. Since deaths 

(or events) would not have occurred in many patients, though information on the
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length of follow-up would be available, the above tests could not be used. The data 

was always likely to be "incomplete" or censored in this way. A major 

breakthrough, therefore, in this field was the derivation of tests for comparing 

censored survival data, developed by Mantel (1966), and discussed more fully by 

Peto and Peto (1972).

In the design stage of an RCT, the clinician must decide what size of difference he 

is looking for, and thus how many patients are required to have a reasonable chance 

of detecting such a difference. Statistical methods have been derived for generating 

such numbers (see, for example, Freedman (1982)), and are discussed more fully 

in the next chapter. However, practical considerations have meant that trials have 

frequently been conducted with insufficient numbers to detect likely differences. 

Clinicians have tended to be over optimistic in their expectations of new treatments, 

and it is often felt that having some trial underway, even if it only has a slight 

chance of detecting a difference, is better than not running a trial at all. One 

additional, often neglected, reason for the multiplicity of small studies is the 

perceived need for (first) authorship on papers. Research institutions are measured 

and evaluated to a large extent on their publications, and clinicians are likely to 

enhance their future employment prospects considerably by publishing research 

papers. Multi-centre studies decrease the likelihood of such authorship, and in this 

way discourage participation.

There are two possible approaches to this problem of insufficient numbers of patients 

being recruited to trials. Statisticians have appealed for large multi-centre trials to
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be undertaken answering some of these key questions (Yusuf et a l ,  1984). 

However, such trials are difficult to organise, and have had only limited, though 

sometimes unequivocal, success (for example, ISIS-2 (Second International Study of 

Infarct Survival, 1988)). Large organisations appear to be necessary to run such 

trials, and several have been formed, particularly in the USA. Examples include the 

South West Oncology Group (SWOG), the Eastern Co-operative Oncology Group 

(ECOG), the European Organisation for Research on Treatment of Cancer 

(EORTC), The Ludwig group, the National Surgical Adjuvant Breast and Bowel 

Project (NSABP) and the ’Nolvadex’ Adjuvant Trial Organisation (NATO). An 

alternative approach, which will now be discussed, has been the development of 

meta-analyses or "overviews".

1.5 The Overview Methodology

As a result of the above considerations, in many cancers many slightly different 

trials have been undertaken addressing the same, or very similar, questions. 

Examples include the evaluation of tamoxifen and adjuvant chemotherapy in early 

breast cancer (Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), 

1992), the role of multi-drug combination chemotherapy in breast (A’Hern et al., 

1988) and ovarian cancer (Slevin, 1986), whether combination chemotherapy is 

superior to melphalan plus prednisolone in multiple myeloma (Gregory et al. , 1992), 

and whether the addition of primary chemotherapy to radiotherapy improves the 

survival of early stage Hodgkin’s disease (see the reviews and the internationd 

workshop results in Somers et al (1990)).
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The clinical trial methodology has therefore recently been extended to include the 

combined analysis of trials addressing similar questions; so called "overviews" (for 

examples, see Yusuf et al (1985), and Canner (1987)). The overview methodology 

combines information from different trials, in a similar way to that in which the 

RCT itself combines the results for individuals treated in the same manner. A 

weighting is attached to each trial’s result based on the number of patients entered, 

and an overall, weight adjusted, mean expected difference is produced, with 

associated p-value based on the summed log-rank test statistics of the individual 

trials (see chapter 2 for details of the log-rank test, and Peto (1987) for the 

"overview" methodology).

This departure from the more strict rules described earlier is to be welcomed. It is 

similar to the stratification methods outlined above, but recognises that trials with 

marginal differences, but addressing similar general questions, can produce useful 

results. Differences between the trials can be quite marked when their data is 

pooled. For example, breast cancer overviews have combined all single agent 

chemotherapy versus combination chemotherapy trials (Early Breast Cancer Trialists’ 

Collaborative Group, 1992).

1.6 Difficulties with the RCT philosophy

Ethical dilemmas and analytical problems with the RCT philosophy have already 

been discussed. The RCT philosophy raises other difficulties. The degree of 

generalisation possible from an RCT is problematic. Since the RCT rules are
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designed to ensure that the same conditions exist for patients in each arm of the trial, 

other trials at different centres may address the same questions under slightly 

different conditions, and produce different answers. As an example, consider the 

many trials comparing intensive combination chemotherapy with melphalan and 

prednisolone in multiple myeloma (Gregory et al., 1992). Two of the 18 published 

randomised trials showed highly significant differences (p=0.004, and p <  .02), in 

opposite directions! When analysed using the overview methodology there was no 

overall difference between the treatments, but these two trials had 99% confidence 

limits which did not include a ’no difference’ result, and thus conflicted with this 

finding (Gregory et al. , 1992). These results have caused considerable controversy, 

with proponents of both viewpoints arguing vehemently for their beliefs (for 

example, see Bergsagel (1989) and Lee (1984)).

The "overview" analyses have to make some assumptions to deal with this problem. 

Two approaches have been suggested. The most common is to assume that all trials 

are estimating the same true fixed effect of treatment (Yusuf et al. , 1985). The trials 

are then handled as strata, as discussed above. The other approach is to recognise 

that trials may be heterogeneous in the sense of having differing true effects. These 

unknown effects are then represented by a random effects model (DerSimonian & 

Laird, 1986; Armitage & Parmar, 1986). The former method seems particularly 

open to question if there is significant heterogeneity between centres, sufficient to 

cast doubt on the results, while the latter has distinct problems in handling the 

distribution of the random effects (Pocock & Hughes, 1990). A pragmatic solution 

would seem to be only to trust the overview results when there isn’t a significant
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heterogeneity effect, in which case the two methods are likely to give similar results 

(Pocock & Hughes, 1990). This has much in common with the mathematical 

modelling approach, in that common patterns in the different centres are being 

sought. The modelling approach would suggest further analysis or modelling where 

there was significant heterogeneity, to discover the reasons for this heterogeneity.

Similar problems may also arise in the standards of measurement, and thus 

classification. For instance, when comparing results in Hodgkin’s disease from St. 

Bartholomew’s hospital, in London, with the Christie hospital, Manchester, different 

proportions of patients appeared to present with the various histological subtypes in 

the two centres (Wagstaff et ah, 1988). A recent review of the classification of 

Hodgkin’s and non-Hodgkin’s disease patients by a panel of pathologists, who 

examined the slides separately without prior knowledge or consultation, showed 

interrater agreements which fell as low as 60% for some pathological subgroups 

(Hanby et ah, 1992). Trials where stratification by such factors has been employed 

would therefore be open to question.

Another philosophical dilemma concerns the general mechanisms by which medical 

science advances. Would advances be more likely as a result of many small different 

trials being undertaken, looking for large differences; or a few large RCT’s looking 

for small differences? There is probably room for both, with highly specialised 

research hospitals undertaking small innovative studies, while more widely based 

large multi-centre groups address questions perhaps raised by the smaller centres.
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There is a view that large treatment differences are hardly ever found, particularly 

as time goes on and more possibilities have been exhausted (Yusuf et al. , 1984). The 

appeal for large multi centre studies as the only reasonable method of advancement 

derives from this belief. However, it is difficult to justify this latter stance. Consider 

as a counter example the recent study by Slevin et al (1989) on only 39 patients in 

small cell lung cancer, where an improvement in response rate of 74% (from 10% 

to 84%), and a consequent improvement in survival, was found merely by altering 

the scheduling of one drug. This study was also randomised, implying that small 

randomised studies can be viable and worthwhile.

A further example can be found in the treatment of testicular teratoma. Cure rates 

for patients with stage IV metastatic disease rose dramatically from < 10% in the 

1960’s (Mackenzie, 1966; McElwain & Peckham, 1974) to 80-90% in the late 

1970’s and 1980’s, when high doses of new and more effective platinum based 

regimens became available (Newlands et a l ,  1983; Peckham et al., 1983; Vugrin 

et al., 1983; Oliver, 1986). RCTs were not necessary for these studies; large 

obvious improvements were found in single centres. Having made this leap in 

response rate and survival, many subsequent studies in teratoma have been 

randomised, in an attempt to find the best drugs and schedules to combine with the 

platinum based drugs. The variety and type of study undertaken is clearly related to 

the size of the expected (or hoped for) differences. Thus it seems that there is a role 

for both the large multi-centre study, and the small, innovative, single research 

institute trial.
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Although the RCT is a powerful tool for deciding which of several treatments is 

better (in terms of some outcome measure), it is not, of course, of any help in 

understanding, per se, the mechanisms by which the treatments work. Previous 

RCTs may provide information which the clinician may use in trying to understand 

these mechanisms, but these are likely to be only one part of a design process 

involving many facets. An understanding of the biology of the disease, the 

pharmacokinetic action of the drugs, the resistance and cross resistance profiles of 

the drugs, the immunology of the host, the toxicities of the treatments, and a 

multitude of other factors all play a role in the design.

Because of the plenitude of such factors, and the difficulties in understanding their 

actions and interactions, mathematical models have been developed to try to enhance 

the understanding of these processes, and to provide some principles to guide in the 

design of new treatments. Indeed, these have sometimes become embodied as 

clinical dogma, being used repeatedly over many years as a fundamental aspect of 

the design of new regimens. Consider, for example, the hypothesis developed by 

Skipper, that a treatment will kill a constant fraction of the disease on each 

administration (Skipper et a l ,  1964; 1967), or the hypothesis of Goldie and 

Goldman that two equally effective drug combinations which have some degree of 

non-cross-resistance will be most effective administered in an alternating fashion 

(Goldie et al. , 1982). To put the RCT in perspective therefore, it is a tool to be used 

towards the end of the research process to test or verify previously derived 

hypotheses. This role is, of course, vital; many, if not most, new treatments do not 

improve on existing standards and therefore fail the RCT test.
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Recently, an alternative methodology for arriving at the optimum dosages and 

scheduling of drugs in combination has been suggested. It was observed that with 

the number and variety of drugs and doses available in many cancers, the 

possibilities for treatment were so great that the chances of nearly optimum doses 

and combinations being found by the use of RCTs was remote. The essence of the 

new approach is to treat small cohorts of patients with different doses and schedules, 

with a rule based on mathematical hill climbing algorithms to determine the next 

dose and schedule (Berenbaum, 1990). This process is continued until an optimum 

result is reached, with response or survival no longer improving. This is almost the 

antithesis of the RCT approach; indeed it is explicitly stated that treating too many 

patients with the same doses will reduce the effectiveness of the procedure. This 

methodology has, to date, only been used in animal studies. However, it yielded 

survival improvements never previously observed, despite employing conventional 

doses of drugs which have been tested extensively over many years.

1.7 Conclusions

The randomised controlled trial methodology has clearly been a great step forward 

in bringing more scientific rigour to the field of clinical research. However, there 

has to some extent been a swing away from the old extreme of too much subjective 

interpretation, to a new, opposite, extreme of too many rules, and an inflexible 

approach. This is being relaxed somewhat with the "overview" approach, and other 

valuable methods of analysis such as that described by Berenbaum (1990). The

37



mathematical modelling approach used in this thesis should continue this trend, while 

maintaining the necessary scientific rigour.
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Chapter 2

OUTCOME MEASURES AND CONVENTIONAL METHODS OF 

ANALYSING SURVIVAL DATA

2.1 Introduction

To complement the principles outlined in the previous chapter for designing a 

clinical trial, a clear and unambiguous protocol is important. The rules should 

include eligibility criteria, instructions as to what operations, drugs, and other 

clinical measures to use at particular times during the patient’s treatment, and what 

supportive care measures are to be employed. The outcome measure should also be 

defined. This is related to the desired size of the cohort of patients to be treated - 

which should also be specified - and will now be examined in greater detail.

2.2 Outcome measures

2.2.1 Definition

A RCT will be designed to compare some particular outcome(s). This can be the 

survival time of the patient, the patient’s response to treatment, or any of a large 

number of other measured endpoints such as the patient’s blood sugar level, the 

quality of the patient’s vision, their haemoglobin level or their quality of life.
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The statistician becomes involved in the clinical trial process at several stages. This 

involvement is fundamentally concerned with this outcome measure. To determine 

how many patients should be entered into the trial, it is necessary to have some 

a priori knowledge of the outcome measure. This is because the distribution and 

variability of this measure will limit the usefulness of the results. For example, 

suppose the aim of a particular trial was to increase the patient’s weight. If it was 

thought that every patient would gain 1 stone in weight as a result of the treatment, 

and the first few patients all gained 1 stone, as predicted, the trial could be 

completed rapidly, with a small number of patients. However, a more likely scenario 

would be that some patients would gain a lot of weight, others gain some weight, 

others lose weight or remain the same weight, with the average weight gain being 

1 stone. If this variability were considerable, it would clearly be very difficult to 

evaluate the results from only a few patients. Thus determination of the number of 

patients needed to be entered into the trial requires an estimate (or, in the lack of 

any available data, a guess) of the trial’s results in terms both of the outcome 

measure and it’s variability, before the trial has started.

2.2.2 Testing for differences

To evaluate the trial’s results, outcome measures need to be assessed, quantified, and 

compared. Appropriate statistical methods for comparing different outcome measures 

between two or more treatments have been determined for all the outcome measures 

mentioned above. However, this has only been done for a simple comparison of the 

treatments, i.e. an answer to the question is the outcome of one treatment different
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from that of another. Alternative, more structured outcome measures will be 

described later.

For a simple numerical outcome measure, such as haemoglobin, where the outcome 

measure, or a simple transformation of the outcome measure, might be expected to 

be normally distributed, the trial results can be compared using either the t-test when 

comparing two groups, or using analysis of variance methods (Armitage & Berry, 

1987) for more than two groups. Some factors measurable before the start of the 

trial may also be related to the outcome measure (they are sometimes called 

prognostic factors), and may be imbalanced in the different arms of the trial (for 

example, one arm may contain more older patients). These factors, often called 

nuisance factors, can usually be adjusted for using linear regression methods 

(Armitage & Berry, 1987). Similar non-parametric methods are available for 

outcome measures which are not normally distributed, for example, the Mann 

Whitney U test, and Kruskal Wallis analysis of variance.

For a simple categorical outcome measure (i.e. when the outcome is one alternative 

from a set of possibilities, e.g. response to treatment, failure, or death) the trial 

results can be evaluated using the chi-squared test (Mantel & Haenszel, 1959). 

Multivariate logistic regression can be used to adjust for nuisance factors (Engelman, 

1985).
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2.2.3 Power calculations and trial size

Before describing methods for determining how many patients need to be entered 

into such trials, it is necessary to describe and define two concepts. There will 

usually be two possible outcomes for a trial comparing two treatments, namely that 

one treatment produces better results or that the treatments produce the same results. 

Whichever of these conclusions is reached, there remains a chance that the 

conclusion is false. Thus it is possible to have a false positive result, or a false 

negative result (these are often called type I and type II errors respectively). The aim 

of determining the numbers required to be entered into the trial, is to limit the 

chances of false positives and false negatives to some prescribed probabilities. The 

relevant computations are often called power calculations, since they evaluate how 

powerful the trial will be in detecting or excluding differences, given the numbers 

of patients entered. The most commonly chosen false positive and false negative 

probabilities are .05 and . 1 respectively, but can depend heavily on the aims of the 

trial. Thus the researcher often has to accept that although the trial may have a 

positive outcome, there will still be a 5 % chance that this outcome is false, or that, 

although the trial has a negative outcome, there will still be a 10% chance that this 

outcome is false, and that there is really a difference between the treatments.

The numbers required for simple numerical or categorical outcome measures as 

described above, have been determined and are described in Pocock (1984). The 

situation is more complicated for the analysis of trials where the outcome measure 

is the survival or some other event time for the patient. To compare two groups of
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survival times, the most commonly used statistical test is the log-rank test (Mantel, 

1966; Peto et al. , 1977b). Power calculations for determining trial size based on the 

log-rank test are described by Freedman (1982). These are based on examination of 

the distribution of the log-rank test statistic, which can be shown to be approximately 

normally distributed. Since one major thrust of the new mathematical modelling 

methods involves alternative methods of analysing survival and duration of response 

data, the conventional methods for such analysis will now be described and discussed 

in more detail.

2.3 Conventional methods of analysing survival or event time data

2.3.1 Survival times

If the patient has died, the survival time is the time from their entry into the trial 

(usually the start of treatment) until death. If the patient is still alive, the survival 

time is the time from entry into the trial until the time the patient was last seen. In 

this latter case the patient’s survival time is said to be ’censored’ at this point. This 

censoring aspect of survival data complicates the analysis, and has entailed the 

development of new statistical methods and tests.

Analyses are commonly performed on time intervals other than survival, e.g. for 

patients whose disease is no longer discernible after treatment, the time taken for the 

disease to reappear (this is usually called relapse) is frequently analysed. This time
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is referred to as the duration of response or the duration of remission. The methods 

of analysis which will be described in the remainder of this chapter apply equally 

to both survival data and other time intervals, though survival time will be used as 

the exemplar.

2.3.2 Actuarial survival curves

The accepted method of presenting survival data is to plot the percentage of patients 

alive as time increases from entry into the trial. This cannot be evaluated simply as 

a proportion of the number of patients left at each time because of the patients who 

are censored.

Kaplan and Meier (1958) therefore produced the following estimate of this survival 

percentage, (often called the actuarial survival method, since it is commonly 

employed by actuaries):

Consider any time t, after the start of treatment. Suppose n patients are still at risk 

of dying at this time (the others have already died, or are censored before this time). 

Suppose dt patients died on day t. Then the probability, P(t+1), of surviving to the 

next day, given that the patient is alive at t, is

P(t+1) = md, 
n

P(0) = 1 so the % surviving up to time t is:
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t
n p(i)

i =  l

This method can be considered intuitively as representing the chances of the patient 

leaving an interval that they have entered.

This definition means that the censored data is used to the full, i.e. probabilities 

before a particular censored time depend on that censored time; probabilities after 

this time do not. This makes intuitive sense, since the fact that a patient has survived 

20 days without dying provides information about the chances at 10 days though it 

does not give comparable information about the patients’ chances at 30 days.

In practice it is not necessary to evaluate the survival percentage on every day. It 

will only fall on days when there are deaths, so only those days need to be 

considered.

As an example, consider the following survival times (in days):

12 27 53 61* 69 75 113* 159

where *’s indicate censored times.

The survival %’s are:

time 12 27 53 61* 69 75 113* 159

% 87.5 75 62.5 62.5 46.9 31.3 31.3 0
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and the actuarial curve therefore looks like

K A P L A N - M E I E R  S U R V I V A L  C U R V E  F O R  S A M P L E  T I M E S
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T I M E  C W O N T H S )

Figure 2.1 Actuarial survival curve for the sample times shown above.

The blips (upwards pointing marks) on the curve represent the censored times, and 

display the patient’s follow-up times at a glance. This is useful for evaluating the 

precision of the survival estimates (confidence limits could also be used to this end, 

and will be described shortly). To see this more clearly consider the following two 

curves, taken from the same trial analysed during entry to the trial, and analysed 

again several years later.
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Figure 2.2 Analysis of survival during a trial
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Figure 2.3 Analysis of survival well after the end of a trial
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The censored points on the latter curve occur after the vast majority of the deaths. 

Thus it can be confidently asserted that this curve will not alter greatly. In 

particular, it cannot alter in the period before 18 months, since there are no patients 

at risk of dying during this period. In contrast, the earlier curve contained patients 

at risk throughout the whole time interval, and indeed the curve changed 

considerably after longer follow-up.

Two or more survival curves can be plotted together to compare the survival of 

different groups of patients. A statistical comparison between the curves is necessary 

to test whether the differences observed could have occurred by chance, or whether 

there is likely to be a real difference in survival between the two treatments.

To test for such differences some assumptions must be made about the distributions 

of the survival times. The most commonly adopted assumption concerns the hazard 

rates in the two or more groups. The hazard rate is the instantaneous risk of death 

at any given time. For many trials and treatments this will change over time, often 

diminishing as the period from initiation of treatment increases. The hazard rate can 

be thought of as the slope of the survival curve. Most of the statistical methods for 

analysing survival data assume that the hazards of the groups to be compared are 

proportional, i.e. the hazard in one group is the same linear function of that in any 

of the others, at all times.

Given the proportional hazards assumption a statistical test known as the log-rank 

test (Mantel, 1966; Peto et al., 1977b) is the most efficient test for comparing
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differences in survival times between groups of patients (Peto & Peto, 1972). This 

will now be described.

2.3.3 The Log-Rank Test

The principle of the test is as follows: if there is no difference in survival between 

two groups of patients, then it would be expected that, at any time, a patient would 

have the same chance of dying in one group as in the other. We would therefore 

expect the number of deaths at any time to be distributed between the two groups 

in proportion to the numbers at risk.

Suppose that at time t, n, patients are still at risk in group 1, and r\2 patients are still 

at risk in group 2, and that d̂  patients die on day t. Then (Armitage & Berry, 1987)

E(dit) = dt . _ Q i _  E(d2t) = dt . _n2_
n, 4-n2 n|+n2

var(dit) = var(d2t) = dJni±H2zâ)lîin2
(ni+n2)^(ni+n2-l)

where E(djJ and var(d j = expected number and variance of deaths in group i on 

day t ( i= l,2 ).

The expected deaths can be compared with the observed deaths as follows:

Let El =  X E(diJ, E2 =  E E(d2i) V = E var(dn)
k k k
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where the sum is over all k deaths. Let

01 = number of deaths in group 1

0 2 =  number of deaths in group 2

Peto et al (1977b) assume that Oi-Ej (and O2-E2) approximates to a normal 

distribution. Then a test statistic for equivalence of the death rates in the two groups 

is

Xi =
V

An alternative and simpler approximation (Peto et al, 1977b) to the variance, V, of 

this normal distribution is 

1
i  + 1
El E2

and the statistic (Oi-EJ^/V is then compared to a xî distribution. The more familiar 

formula is then easily derived, since

(Q rB £  = _(Q,zE,)i = {Q,zE,}!E,E2
V 1 + 1 (E1+E2)

E, E2

=  4. { Q 2 Z E 2 )!

E, E2

This can be easily extended to n groups:

n
xl =  I  (OrEy/E; 

i = l
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It should be remembered that this is a heterogeneity test - i.e. it merely tests to see 

if all n curves could have arisen from the same underlying distribution. It does not 

test for individual differences between curves.

A variant of the log-rank test can be applied where there may be a trend for 

improving (or worsening) prognosis. The trend test is defined as follows:

Let each subgroup be given a number, n, starting at 1, and increasing by 1 for each 

group.

Calculate O’s and E ’s for all n groups. For each group let 

A = n(O-E)

B = nE 

C = n^E 

Then the trend statistic, T,

= (mf
V

where V = EC - (EB)VEE 

Then T »  %i

2.3.4 Standard errors and confidence limits on survival curves:

If the value on a survival curve at a particular time is P, then an approximate 

standard error for P at that time is
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P V (  ( 1 - P )  /N )

where N is the number of patients still at risk at that time (Peto et al., 1977b).

For example, if P=0.5 at 1 year, and there are 80 patients still at risk at this time, 

then SE(P) at 1 year = 0.04. Suppose that the curve has dropped to 0.2 at 3 years, 

and there are now only 10 patients at risk, then SE(P) at 3 years =  0.06.

These estimates can be used to derive confidence intervals for a survival curve at 

any desired time. More accurate confidence interval estimates are provided by Simon 

(1986). His method involves deriving an ’effective sample size’, n, at the desired 

time, accounting for the censored times. The confidence interval is then derived 

from the actuarial percentage, p, at the time in question (using the formula for 

calculating confidence intervals for a response rate), and equals

{ p +  A/2 ±  Z V p ( l  - p ) + A / 4 n  }/(l-A)

where A=ZVn, Z being a standardised normal deviate, (so Z=1.96 for a 95%

confidence interval, 1.645 for a 90% confidence interval etc.). The effective sample

size, n, is given by

n =  (l-p)/{ p £  d|/(rrdi)r, } 
t,<T

where p, as mentioned, is the actuarial probability of survival beyond time T, tj 

denotes the i*’’ smallest distinct time of death, is the number of patients at risk just 

before tj, and dj denotes the number who die at tj.
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Chapter 3

THE PRINCIPLES OF CANCER THERAPY

3.1 Evolution of the principles

The guiding principles on which much of modern cancer therapy is based originate 

with experiments undertaken by Skipper and colleagues in the 1960’s (Skipper et al. , 

1964; 1967). As a result of his investigations of experimental tumour systems, 

Skipper concluded that a given dose or course of (chemo)therapy will kill a constant 

fraction of the cell population, rather than a constant number of cells. He went on 

to consider the consequences of tumours having different growth rates, and 

concluded that chemotherapy gave a greater fractional cell-kill to more rapidly 

growing tumours, and was more likely to be curative in such cases (Skipper & 

Perry, 1970). It also appeared that larger tumours generally grew more slowly, and 

that the lack of responsiveness of such tumours was related to this slower rate of 

proliferation (Shackney, 1970; Steel et a l ,  1976).

These results apply to radiotherapy as well as chemotherapy (see for instance, 

Okumura et al (1977)), and have now been explored in considerable detail. Larger 

tumours are generally considered to grow more slowly because, although early 

(sub-clinical) tumour growth follows an exponential pattern, tumour growth slows 

down as the tumour increases in size, presumably due to problems of nutrient 

supply, approaching a maximum volume. Laird (1964) proposed a Gompertzian
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function to describe this growth, where the (exponential) growth rate also declines 

exponentially, resulting in such a maximum volume. The Gompertzian model 

appears to fit the experimental data well for a variety of tumours and growth rates 

(Sullivan & Salmon, 1972; Demicheli, 1980; Akanuma, 1983; Pearlman, 1983). 

Thus the unresponsiveness of a tumour may be highly dependent on the point in its 

growth curve at which therapy is initiated.

It is interesting to note that with a Gompertzian growth curve, effective treatment 

of large indolent tumours can result in smaller, more rapidly dividing tumours, with 

new possibilities for treatment. Norton and Simon (1977; 1986) suggested that initial 

induction treatments, at modest doses, could be used merely as a method of reducing 

the tumour to a size where it grew more rapidly. At this point, intensive therapy 

could be initiated in an attempt at cure.

Following on from these early principles, Goldie and Goldman (1979) examined the 

success or failure of therapy from a different point of view, namely the presence or 

the acquisition of resistance. They demonstrated that if there was a constant rate of 

mutation towards resistance (i.e. if every time a cell divided it had the same chance 

of mutating to become resistant), then there would be a critical and short period in 

the tumour’s history when the chances of cure dropped from 1 to zero. (Essentially 

there would be a critical ’mass’ of tumour cells beyond which the chances of a 

mutation occurring would be very high). Examples were given where this occurred 

in a 1-log range, e.g. from 10̂  cells to 10* cells. Thus it would be vital to treat 

during, or preferably before, this period. Of course, the more rapidly the tumour
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grew, the more important it would be to treat early, since the tumour would be 

quickly progressing to the point where resistant mutants would inevitably arise.

To summarise these results, these hypotheses related to tumour growth and 

resistance suggest that the intensity, frequency and duration of therapy should be 

matched to the tumour’s growth rate and to the point reached in the tumour’s growth 

curve (essentially the tumour size). The more rapid the growth rate, the more 

intensive, frequent and short lived should be the therapy. For slowly growing 

tumours, longer durations of therapy are likely to be necessary, probably at reduced 

doses. The aim, in these latter cases, should be to eliminate the dividing cells, which 

may be a small fraction of the tumour. Higher doses are likely to be unproductive, 

killing few extra cells, and possibly compromising later therapy due to factors such 

as toxicity and acquisition of resistance.In addition, therapy should be given as early 

as possible, to maximise the chances of cure, by treating before resistant mutants 

have arisen. This will be especially critical in rapidly growing tumours, where a 

short delay could allow a large increase in tumour size, and a consequent severe 

reduction in the chances of cure.

3.2 The principles in practice

These principles can be applied not only to the choice of treatments for different 

cancer types, but to the choice of treatment for different individuals with the same
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type of cancer based on the growth rates of their tumours. A number of examples 

will be given to demonstrate these points.

3.2.1. Application to particular cancers

Consider firstly, a very rapidly growing malignancy like testicular teratoma, where 

the therapist should aim to administer the maximum dose in the minimum time. Cure 

rates for patients with stage IV metastatic disease have increased dramatically, rising 

from < 10% in the 1960’s when treatment was spread over 2 or more years 

(Mackenzie, 1966; McElwain & Peckham, 1974) to 80-90% in the late 1970’s and 

1980’s, when high doses of new and more effective platinum based regimens, 

typically administered for only two or three courses, were introduced (Newlands et 

al., 1983; Peckham et a l ,  1983; Vugrin et a l ,  1983; Oliver, 1986).

In contrast, consider the treatment of gastric cancer. Initial adjuvant studies 

conducted in Japan comprised moderate doses of Mitomycin C spread over a period 

of 5 weeks, and achieved modest but definite success (Imanaga & Nakazato, 1977; 

Nakajima et a l , 1978). With the popularity of intensive scheduling, subsequent trials 

administered larger doses over shorter time periods, including treatment concurrent 

with surgery (Imanaga & Nakazato, 1977). These trials not only failed to improve 

on the earlier results, but any beneficial effect appeared to have been lost. 

Examination of times taken for early untreated gastric cancer patients to progress to 

late stage (Tsukuma et a l , 1983) demonstrate that gastric cancer has a slow growth 

rate, and thus longer, sustained therapy may be necessary. It may be that five weeks
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of therapy is inadequate, and that further benefit would be gained by even more 

prolonged therapy.

In many cancers, trials addressing questions of duration of treatment are now being 

undertaken. For instance, in Wilms tumour as a result of a series of trials over the 

last 21 years, the standard duration of therapy has been reduced from 15 months to 

10 weeks (D’Angio et al., 1976; 1981; 1989). Similar trials and comparisons have 

also been undertaken in Hodgkin’s disease (Young et a.L, 1973; Medical Research 

Council’s Working Party on Lymphomas, 1979; De Vita et al., 1980), 

non-Hodgkin’s lymphomas (Connors & Klimo, 1988) and Leukaemia (Bell et ah, 

1982; Vaughan et al., 1984) among others, supporting the use of short intensive 

induction regimes without maintenance therapy in these diseases.

In early trials of adjuvant therapy for patients with breast cancer, the typical duration 

of treatment was 12 months (Bonadonna et al., 1985; Bonadonna & Valagussa, 

1987; Richards et al., 1990). It has subsequently been shown that equivalent results 

can be achieved with only 6 months treatment (Bonadonna, 1985). However, trials 

in which prolonged (6 months or more) treatment was compared with single course 

(perioperative) treatment have demonstrated that prolonged treatment is more 

effective (EBCTCG, 1992). It is still unclear whether, for example, 3 months 

treatment would be as effective as 6 months treatment. Again it is apparent that 

breast cancer is a relatively slowly growing tumour. For instance, using the 

monoclonal antibody Ki67, which is reported to stain cells not in the GO phase of 

the cell-cycle and to give reliable estimates for the growth rates of a number of
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tumours, less than 20% of breast cancer cells are stained on average (Gerdes et a l ,  

1986; Barnard et al. , 1987). This compares with an average of greater than 50% in, 

for example, high grade non-Hodgkins lymphomas (Gerdes et a l ,  1984). Again, 

moderate dose, longer duration treatment seems to be required.

Minimising the duration of therapy may, on the surface, appear relatively 

unimportant, and indeed dangerous, since some of the efficacy may be lost. Once 

a successful therapy has been introduced, and perhaps shown to be effective in a 

randomised trial, it often survives largely unaltered for many years, since clinicians 

fear that tampering may abrogate the effect. The administration of long term 

maintenance therapy in acute lymphoblastic leukaemia based on a trial reported in 

1963 (Freireich et a l ,  1963) is one example among many. This conservatism, 

particularly regarding treatment duration, should be resisted. In the laboratory, 

long-term low dose therapy is a classical method for developing resistant cell lines. 

It also seems likely that the effectiveness of therapy given at relapse will be impaired 

by longer initial durations of treatment. Furthermore, the additional toxicity 

produced by more therapy may not merely be undesirable, it may also have 

implications for the patients’ psychological outlook, their immune response, and thus 

possibly their chances of relapse (Greer & Watson, 1987).
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3.2.2. Application to choice of treatment for individuals

There are two distinct approaches to application of the above principles to the choice 

of treatment for individuals. One is to use growth rate related prognostic factors to 

delineate ever smaller groups of patients with different growth rates. For instance, 

by choosing patients based on grade of tumour or S-phase fraction measurements in 

breast cancer, it is possible to target a group of early stage high risk patients with 

aggressive tumours, for whom intensive therapy may be appropriate (O’Reilly & 

Richards, 1992). Of course, within these subgroups, there will still be a wide range 

of different growth rates (see for example, the distribution of Ki67 values for 

different histological subtypes of NHL and breast cancer (Gerdes et al. , 1984; Gatter 

et a l ,  1986; Barnard et a l ,  1987)). If possible, a better approach would be to 

estimate the growth rates of individual tumours before treatment, choose dose and 

duration appropriately, and, ideally, monitor response, to determine when treatment 

was no longer effective or necessary.

Diseases where choice of treatment based on proliferation values of individual 

tumours might be especially appropriate and effective, are those with a wide range 

of growth rates, and an average growth rate which is relatively high. One such 

malignancy is non-Hodgkin’s lymphoma. Prospective studies are unfortunately 

lacking, but analysis of response and duration of response in patients studied with 

the Ki67 antibody and labelling-index techniques suggests that, if treated early and 

intensively, response rates might be higher in the more rapidly proliferating tumours, 

and durations of response might be different (Hall et al. , 1987). Relapses in rapidly
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growing tumours occur early, and those surviving this phase tend to be cured (or 

remain disease-free much longer). Relapses in slowly growing tumours may occur 

late, and be spread over a long time interval.

Various models have been proposed to monitor tumour response, by repeated tumour 

volume estimates (Birkhead & Gregory, 1984; Gregory et al., 1988) or tumour 

marker levels (Price et al. , 1990a; 1990b) and to infer resistance and growth rate 

parameters during treatment. One such model will be described in detail in chapter 

7. It is possible that such models could be used to determine when to stop treatment 

for an individual, following elimination of all but resistant disease, and possibly 

switch to an (hopefully non-cross-resistant) alternative (Gregory et al. , 1988; 1990).

3.3 New approaches to estimating resistance and growth rates.

Although the principles outlined above have been useful in designing treatment 

regimes and strategies, their application has often proved slow and laborious. It may 

take many trials to establish the optimum number of courses of treatment to 

administer, as demonstrated by, for instance, the trials already mentioned in Wilms 

tumour (D’Angio et al., 1976; 1981; 1989), or to establish what doses are required 

to achieve optimum cell-kill, quite apart from the problem of which drugs to 

combine in the first place. This is partly because clinical trials are designed merely 

to discover whether one treatment is better than another, and not why it is better, 

and to what degree (see chapter 1). The models described in this thesis have been
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designed to provide hypotheses to explain trial results in terms of some of the 

fundamental biological processes involved. It is hoped that by so doing, they may 

add to the understanding of these processes, and how therapy affects them, and so 

lead to more rapid development in this area. These mathematical models will now 

be described, and applications given.

63



Chapter 4

THE REMISSION DURATION MODEL Page

4.1 Introduction 66

4.2 Basic description of the model 69

4.3 Description and justification of model assumptions 72

4.3.1 Tumour growth 72

4.3.2 Composition of the residual tumour population 73 

and treatment duration

4.3.3 Distribution of resistant tumour volume prior to 74 

treatment

4.3.4 Starting time for measurement of response 77 

duration

4.3.5 Independence of parameters 79

4.3.6 Stem cells 79

4.3.7 Variability in tumour volume on relapse 80

4.3.8 Tumour doubling times 81

4.4 Mathematical description of the model 82

4.4.1 Likelihood derivation 82

4.4.2 First partial derivatives 88

4.4.3 Second partial derivatives 92

64



4.4.4 Newton’s method for fitting the model 102

4.4.5 Parametric relevance of the "cure" threshold 103

4.5 Application Methodology 104

4.5.1 Likelihood contours 105

4.5.2 Testing for differences in the model’s estimates 108

4.5.3 Goodness-of-fit tests 109

4.5.4 Standard errors of model estimates 109

4.6 Computational methods 110

4.6.1 Numerical integration methods 110

4.6.2 An example application 113

4.7 Summary 115

65



Chapter 4

THE REMISSION DURATION MODEL

4.1 Introduction

For many cancers, treatment will eradicate some or all of the measurable tumour. 

An apparent disease-free period ensues, often followed by relapse. There is at 

present, however, no way of determining how close the patient came to being cured: 

were there just a few cancer cells remaining when the treatment finished, or were 

there many cancer cells left? The length of the disease-free period does not in itself 

determine this, since tumours are known to grow at different rates. A late relapse 

could equally well be a result of rapid re-growth following near extinction of the 

tumour, or slow re-growth of a sizable (but not clinically detectable) residual 

tumour.

It is thought that treatment can influence both the amount of tumour killed and the 

rapidity with which this occurs, and that where treatment fails to cure the patient, 

this is usually because the tumour has become resistant. These ideas, originally 

explored by Skipper et al (1964), provide possible explanations for observed 

differences between treatments, and often form part of the rationale for design of 

new trials. However, as discussed in the previous chapter, there is currently no way 

of quantifying these effects, with the result that many trials are designed using a 

mixture of experience and guesswork. If it were possible to explain why one
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treatment proved better than another then future trials could be designed more 

rationally. For example, treatment could be targeted to groups more likely to benefit 

from intensification, or reduced in groups seen to need little further treatment. The 

hypotheses raised to explain why one treatment proved better, might suggest that 

some choices for the next trial would be unlikely to prove beneficial, while others 

would be worth pursuing. Trials could be expected to lead on logically one from 

another, and progress might be more rapid.
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Figure 4.1 Idealised response duration curve, showing a shoulder, followed by 
a slope as relapses occur, and ending with a plateau

The mathematical model which has been developed seeks to derive this information 

from the durations of response to treatment for a group of patients. The actuarial
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methods described in chapter 2 are used in the analysis of many clinical trials and 

treatments to plot curves showing the proportion of patients still in response over 

time. It was observed that the shapes of such response duration curves exhibited 

certain patterns. Firstly it was observed that such curves exhibited plateaus, i.e. the 

curves seemed to be asymptotically approaching some final percentage greater than 

zero. Secondly the curves seemed to have a steep slope before flattening out to the 

plateau, and the approximate period over which they flattened out consistently began 

at the same time post treatment for a particular cancer. Thirdly, response duration 

curves with a higher plateau also showed more of an initial shoulder. Fourthly, the 

remission duration curves for tumours which were thought to be faster growing had 

steeper slopes than those for which the tumour was thought to grow slowly. These 

concepts are shown diagrammatically in figure 4.1.

I thought that it might be possible to explain these observations in terms of the 

distribution and re-growth of the residual tumour post treatment. The curves would 

approach a plateau because if there was a limited range of re-growth rates, the 

smallest residual tumour would determine the longest relapse time. If, for a 

particular cancer, the ranges of growth rates were similar this would also explain 

why the plateaus began at approximately the same time in all the different trials and 

treatments for the particular cancer under study. The steep slopes on the curve 

would result from a clustering of volumes of residual tumour about the mean or 

median of the distribution of residual tumour volumes for the patient population. If 

the distribution of residual tumour was sufficiently constricted, a shoulder would 

appear on the curve when every patient in the population had their residual tumour
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volume reduced well below the level where it could be detected clinically. This 

would be true since even for the patient with the greatest residual volume it would 

take some time for the tumour to re-grow to the point where it could be detected 

clinically, and thus a shoulder would be evident. To have caused this degree of 

cell-kill for the patient with the largest residual volume, the treatment would be 

more likely to cure the most susceptible patients, thus producing a higher plateau. 

Finally, a rapid re-growth would shorten the part of the curve with the steep slope, 

and thus make the slope still steeper. A mathematical model was therefore developed 

to try to quantify these ideas.

4.2 Basic description of the model

When evaluating a patient’s response to therapy, clinicians often try to measure any 

reduction in volume of disease following treatment. A reduction of >50% in 

volume (or the product of two tumour diameters) is conventionally referred to as a 

partial response (Hayward et aL, 1978). When the tumour is reduced to a volume 

which can no longer be detected clinically, a ’complete’ response (or remission) is 

documented. Other definitions are sometimes necessary, when perhaps the 

parameter or marker which is being used to assess the tumour, would be expected 

to be present in small quantities anyway. For instance, in acute myelogenous 

leukaemia, complete remission is defined as occurring when the bone marrow 

contains less than 5% of ’blast’ cells (Birkhead et oL, 1987).

69



P A R T I A L  C O R  N O N E )  R E S P O N D E R S

C L I N I C A L L Y  D E T E C T A B L E  D I S E A S E

T O  R E L A P S E

C U R E  ■ T H R E S H O L D

C U R E D  ■

Figure 4.2 Assumed distribution of resistant disease at the start of treatment for 
the whole patient population.

(  R E S P O N S E  D U R A T I O N  ^

D E T E C T A B L E  D I S E A S E

D O U B L I N G  T I  ME

R E S I D U A L  D I S E A S E  F O R

A N  I N D I V I D U A L  P A T I E N T

• C U R E  • T H R E S H O L D
D

T I M E

ugure 4.3 Assumed regrowth rates of resistant disease.

7 0



The first model assumption is that there exists some volume of disease V̂ , below 

which the tumour cannot be detected clinically (or distinguished from normal tissue) 

for the disease being examined. (The quantification and variability in is discussed 

later). It is further assumed that a ’complete response’ occurs when the tumour 

volume is reduced below V̂ , and that clinical relapse (re-emergence of the disease 

after a period of apparent disease absence) occurs when the tumour grows back to 

this volume or greater. It is further assumed that some volume of disease is resistant 

to treatment at the initiation of treatment, and that this volume of disease is 

log-normally distributed over the population of patients under consideration. The 

reasons for this assumption will be given in detail shortly. The mean and standard 

deviation of the log of this volume of resistant tumour will be denoted by ^  and 

respectively (figure 4.2). In the event of the volume of resistant tumour being less 

than a given log volume, Vg, the patient is assumed to be cured (it is of course 

possible to assume = 1 cell, ie that all tumour cells need to be eliminated for the 

patient to be cured). Otherwise the resistant tumour is assumed to grow 

exponentially during and after treatment until relapse occurs. The rate of this 

re-growth is assumed to be taken from a log-normal distribution of doubling times, 

the mean and standard deviation of the log of the doubling times being denoted by 

and cTg respectively (figure 4.3). The reasons for assuming that these two 

distributions, of resistant tumour volumes and of doubling times, are log normal will 

now be discussed.
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4.3 Description and justification of model assumptions

4.3.1 Tumour growth

Tumour growth is assumed to be exponential. For tumours in remission this is 

likely to be a good approximation (Laird, 1964; Sullivan & Salmon, 1972). The 

exponential assumption may be less accurate for large tumours when a Gompertzian 

rule may be more appropriate (see chapter 3). Thus care should be taken when 

applying the model to survival data, since the end-point of 10*̂  cells (a likely 

estimate for a ’fatal’ tumour volume) is thought to involve Gompertzian kinetics 

(Norton & Simon, 1977). For durations of response, where relapse is often 

considered to result from tumour volumes of approximately 10̂  cells, an exponential 

assumption is likely to be adequate.

Turning to the distribution of the growth parameter, a wide variety of tumours 

reported by Shackney et al (1978) and Pearlman (1983) showed a log-normal 

distribution of doubling times (for exponential tumour growth, the time taken for the 

tumour to double in volume is constant, and so this measure can be used to describe 

the growth rate). The exponential parameter (say a) is related to the doubling time 

(DT) by the simple formula:

a = log.2 
DT

and where doubling times are reported, exponential growth is assumed. Shackney 

reported measurements of growth rates showing log-normal distributions of doubling 

times within particular cancers. This finding held for a wide range of cancers
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including breast cancer, lymphomas, adenocarcinomas of the lung and colon, and 

testicular carcinoma. Norton (1988) developed a mathematical model to show how 

different sized tumours with this growth pattern would produce systematically 

different response duration curves. His assumption of a log-normal distribution of 

doubling times (Norton, 1988), was based on analysis of breast cancer data from an 

untreated series of patients (Bloom et al. , 1962) and from patients detected after 

breast screening (Heuser et aL, 1979).

4.3.2 Composition of the residual tumour population and treatment duration

The model assumptions described to this point could apply equally well to residual 

or resistant tumour. In a mathematical sense, the model assumptions about volume 

of disease after treatment are open-ended as to what constitutes this disease. 

However, the assumption of log-normality for the volume of residual/resistant 

tumour is based on work suggesting that resistance arises as a result of mutations, 

which occur in a stochastic fashion at a constant rate (Goldie & Goldman, 1979). 

This being the case, it should apply to the resistant component of the residual tumour 

volume only, and not to the residual tumour volume in total.

The duration of treatment can therefore be important when interpreting both the 

model fits and differences between parameters (to be described shortly). 

Interpretation should be straightforward in cases where sufficient treatment has been 

given to eradicate all sensitive disease. It is of course difficult to be certain that this 

has happened, though in the main, treatments are probably overlong in duration,
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since clinicians tend not to stop treatment early in case further benefit is still possible 

(see previous chapter). Indeed, sometimes treatment is given continuously until 

relapse. Where short durations of treatment have been given, or the ideal duration 

of treatment is problematic, interpretation may be difficult.

4.3.3 Distribution of resistant tumour volume prior to treatment

The distribution of volumes of tumour resistant to treatment is difficult to determine. 

However Goldie and Goldman (1979) examined the consequences of random 

spontaneous mutations to resistance occurring during the tumour’s lifetime. This was 

suggested as a likely process for the development of tumour heterogeneity, and thus 

resistance to therapy. It will be assumed from this point onwards that resistant 

tumour is composed of resistant cells. Goldie and Goldman simulated the growth of 

a large number of tumours whose cells had constant probabilities of birth, death, and 

mutation, and plotted the distribution of resistant cells when the tumour had reached 

a given size (they in fact chose 3.2 x 10̂  cells). My examination (for details see 

below) of the Goldie and Goldman curve suggested that this distribution could be 

reasonably approximated by a log-normal distribution. I have thus repeated the 

simulation, using various different values for the birth, death and mutation 

parameters, to confirm this log-normality.

The simulation starts with a given number of sensitive and resistant cells, and uses 

random numbers to decide, for each generation of growth, whether each cell 

undergoes birth (with or without mutation), death or neither birth nor death(i.e. the
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cell remains dormant). That is to say, all cells are assumed to act independently in 

such a way that each has probabilities b.At and d.At of dividing into 2 cells (birth) 

or being lost to the population (differentiation/death) in any small time interval At. 

Given a "birth", the new cell is assumed to have probability a.b  of mutating to 

resistance, b and d are assumed time-independent constants with b >  d (a "birth" 

advantage).

90

75

60

45

30

15

1 3 52 4

L OG  OF  NUMBE f l  O F  R E S I S T A N T  C E L L S

Figure 4.4 Distribution of resistant disease after growth up to 10̂  cells starting 
from a single sensitive cell, with parameters: a  = 10' ,̂ b = .505, d = .495.

These growth assumptions are of course somewhat artificial since they smooth out 

the probability of division over time (the cell cycle in fact has periods where cell 

division may take place, and periods where this will not happen (Rubinow & 

Lebowitz, 1976)). However, for the growth of large numbers of cells (involving 

large numbers of divisions), this makes little difference to the patterns of growth,
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Figure 4.5 Distribution of resistant disease after growth up to 10̂  cells starting 
from a single sensitive cell, with parameters: a  =  10^, b = .505, d = .495.

and, for well-established populations, growth becomes approximately exponential 

under these rules (this was verified by examining population sizes at different points 

throughout the simulations). There is assumed to be no back mutation, since any 

effects were demonstrated to be negligible (see Goldie and Goldman (1979)). The 

progeny of resistant cells are therefore assumed to be also resistant. The distributions 

of resistant cells were plotted when the tumour had reached various sizes, from 10̂  

cells upwards. The starting numbers of sensitive and resistant cells were taken to be 

1 and 0 respectively. From these starting values many of the simulated tumours will 

die out (the probability of extinction is in fact (d/b)" for a population of n cells), thus 

only those that reached the specified final tumour size were examined for the 

numbers of resistant cells present.
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The results for a variety of different values of a , b and d are shown in table 4.1. 

Histograms showing the distribution of the numbers of resistant cells for the set of 

simulated tumour growths can be produced, as shown in figure 4.4. These can be 

tested for normality using the Shapiro-Francia test, which correlates the values 

themselves with their normal scores, and examines the resulting r  ̂ value (Altman, 

1991). Values close to 1 indicate normality. The Shapiro-Francia statistics and 

p-values are also given in table 4.1. Although these are, in the main, significant, the 

deviation from log-normality is slight, as can be seen in figure 4,5, which shows one 

of the worst cases. Furthermore, with the lower mutation rates (10̂  ̂ and less) the 

distributions are very close to normal, with non-significant or barely significant 

Shapiro-Francia statistics. Mutation rates of this magnitude and lower probably 

correspond to the clinical setting (Goldie & Goldman, 1979), but are difficult to test 

because of limitations in the speed of calculation on the available computers. The 

higher mutation rates (10  ̂ and greater) would lead to very large resistant volumes 

on presentation, and does not therefore match the cases and tumours used in the 

applications.

4.3.4 Starting time for measurement of response duration

If it is assumed, in view of all the points just mentioned, that the model is estimating 

resistant tumour volume just prior to treatment, said resistance having been acquired 

during the tumour’s growth prior to presentation, then the response durations should 

be measured from this time. However, response durations are often reported from 

the time of response.
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Figure 4.6 The expected distribution of resistant disease for MRC AML trial 8 
(see chapter 5) after 60 days. See text for assumptions.

Fortunately, times from treatment to response are usually sufficiently short that a 

distribution of resistant tumour volume which was log normal at the start of 

treatment, will still be approximately log-normal at the time of response, if the 

distribution of doubling times is log normal. This is demonstrated in figure 4.6 

which shows the expected distribution of the volume of resistant tumour for the first 

example, presented in chapter 5, after 60 days, assuming an initially log normal 

distribution, and that re-growth is taken from a log normal distribution of doubling 

times. (The parameter values for this plot are taken from table 5.1 (see next 

chapter), and a log normal distribution is also shown for comparison). Thus, 

although the model should ideally use times from the start of treatment, using times 

measured from the achievement of response is likely to provide a reasonable
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approximation. Wherever possible, of course, times have been measured from the 

start of treatment, rather than from the time of response.

4.3.5 Independence of parameters

If the resistant component of a tumour is caused by mutations to resistance, then the 

volume of this resistance is determined by the mutation rate (which is per 

generation), and a random factor depending upon when the first resistant mutant 

arose. Thus the volume of resistance at presentation is related to the number of 

generations to presentation, which is independent of the doubling time. The model 

thus assumes that the regrowth rate is independent of the volume of resistant tumour.

4.3.6 Stem cells

It may appear that the assumptions of the model take no account of clonogenic or 

stem cells. However, the model merely assumes that the whole tumour is growing 

exponentially. This leaves room for hypotheses about the growth of clonogenic cells. 

For example, suppose that 1 in 1000 cells were really clonogenic, and causing 

repopulation of the tumour. Mackillop et al (1986) demonstrated that the growth of 

such a clonogenic compartment would parallel the growth of the whole tumour when 

the relative proportions (1:1000) were equal. Otherwise, the system would try to 

return to this balance, i.e. if the treatment had a greater cell-killing effect on the 

clonogenic population, this population would re-grow faster than the whole 

population until equilibrium was re-established (at 1:1000 cells). The model would
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thus be reflecting growth of the clonogenic compartment, with perhaps 10̂  cells 

being required for relapse, rather than 10̂ . The growth parameter could then be 

re-estimated under this assumption. Thus it is possible to apply the model under the 

assumption that the resistant tumour volume is composed entirely of clonogenic 

cells.

4.3.7 Variability in tumour volume on relapse

There is inevitably some variability in volumes of disease at relapse, since patients 

may wait different lengths of time before reporting their symptoms, or may notice 

new lumps, for instance, at different sizes. The model, as outlined, assumes that 

patients relapse at a particular volume of disease (V )̂. However, the variability in 

volumes of disease at relapse is likely to be very small compared with the total 

re-growth time of the disease. For example, to progress from 1 to 10̂  cells takes 30 

doublings, whereas 1 doubling from say 2cm^ to 4cm^ is unlikely to escape the 

patient’s attention.

There is no reason to suppose that patients with a smaller volume of resistant tumour 

following initial treatment would present with larger or smaller volumes of disease 

on relapse. Therefore, the variability in volume of tumour at relapse seems likely 

to be random for a series of patients. Thus, even if there were significant differences 

between individual patients, this would not introduce bias into the model’s estimates.
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There may be some slight correlation of relapse volume with growth rate in slowly 

growing tumours, since it is possible that patients are more likely to detect rapid 

changes in size of lumps than slow increases. However, even in the most likely 

candidate for such a correlation, namely breast cancer, when such a correlation was 

looked for, only a very slight correlation (r=0.29) was observed (Brown et ah, 

1987). It is worth noting that an r-value of 0.29 corresponds to an r  ̂ of .08, and 

thus less than 10% of the variability in relapse volumes can be attributable to 

differences in tumour growth rate. For all these reasons, the assumption of a 

constant tumour volume on relapse seems adequate.

4.3.8 Tumour doubling times

If the model is to be used to estimate tumour doubling times an assumption must be 

made about the volume of resistant tumour below which a "cure" is achieved. It is 

simplest to assume that this is one cell, i.e. that all tumour cells need to be 

eliminated in order to cure the patient. However, it may be that small tumours can 

die out naturally, or that host defence mechanisms can destroy some tumour cells. 

An alternative approach, therefore, is to assume a range of values of doubling times 

from published estimates. By using these values to fix the mean log of the doubling 

time, the model can be used to assess the "cure" threshold. Both these methods are 

considered in the examples to be given in the next chapter.

Before going on to the mathematical description of the model, it is worth repeating 

that the model assumptions are:
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1). That there is a log-normal distribution of resistant disease after treatment,

and that for a given individual having any such resistant disease remaining 

(some patients may have all their disease eliminated by the treatment), 

subsequent growth of this disease occurs until it can be detected clinically, 

and relapse is documented.

2) That (exponential) growth of resistant disease is taken from a log-normal

distribution of doubling times.

3) That resistant disease and growth rates are independent.

The mathematics necessary to estimate the parameters of these two log-normal 

distributions, and thus to fit the model to real response duration times, will now be 

described.

4.4 Mathematical description of the model

4.4.1 Likelihood derivation

Consider the following representation of the assumptions just described.

Let the random variables V and G be normally distributed, and represent the log of 

the resistant tumour volume (composed of resistant cells), with mean ^  and standard
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deviation cr̂ , and the log of the tumour doubling time, with mean /Xg and standard 

deviation (jg, i.e. V — and G — N(^g,ffg). Consider an individual tumour,i,

with a log resistant volume v below the log relapse threshold, V̂ , and having a log 

tumour doubling time g. For notational simplicity let Ng denote the normal 

distribution function value at g when the mean is /Xg and the standard deviation is Og, 

i.e.

Ng = (l/agVTr) exp(-(g-^g)V2o-g )̂

Then the probability, Pg say, of relapse before a given time t for this patient, is 

given by integrating over all values of g which result in relapse before t, i.e.

I0ge(t/(V,-V)) +  log, (l0g,(2))

P g =  Ngdg {4.1}

The upper limit of integration in the preceding equation is found by considering the 

growth of the log resistant tumour volume v, with a doubling time (say DT) such 

that relapse occurs at time t. Thus 

a t = Vj-v,

where a  is the exponential growth parameter; a  is thus related to the doubling time 

by the following equation: 

a  =  loge(2)/DT 

and therefore DT = (t/(V,-v)}loge(2) and thus 

lOge(DT) =  g = l0ge(t/(Vr-V))+l0ge(l0ge(2)) {4.2}

Having thus described the probability of relapse for a patient with some particular 

resistant volume v, we can extend the analysis to the whole population by noting that
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the resistant tumour volume is assumed to be log-normally distributed. With this 

log-normality assumption, some patients may have resistant tumours whose volumes 

are not below the relapse threshold, V,, as shown by the upper shaded section of 

figure 4.2. The proportion of those patients which are, usually termed the remitters 

or responders, will be denoted P(CR). Again let denote the normal distribution 

function value at v when the mean is fiy, and the standard deviation is i.e.

Nv =  ( l /a y T ir )  exp(-(v-/Liv)V20

Then the probability, P of relapse before a given time t for the whole population 

(of remitters) is

P =

I0ge(t/(V,-V)) +  l0g^(l0g^(2))

Nv

-O O

Ng dg dv {4.3}

P(CR)

P ( t , ^ v j ^ g ) > say.

The integral of a normal distribution cannot be evaluated analytically. However, 

numerical integration methods can be applied (see section 4.6), and thus it is 

possible to proceed with the normal distributions suggested on both theoretical and 

experimental grounds, as discussed in section 4.3.
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P(CR) is the probability that the resistant tumour volume was lower than the relapse

threshold V̂ , i.e.

Vr

P(CR) = N„ dv {4.4}

This normal distribution integral can also be evaluated by numerical methods.

The probability density function (pdf) = P̂(t,jLig,Og,/Ltv»<̂ v) can be

derived from equation {4.3} by differentiating under the double integral sign. The 

terms and P(CR) do not involve t, and so it is merely necessary to differentiate 

Pg with respect to t. From equation {4.2}

g =  loge(t) - l0ge(V,-V) +  l0ge(l0ge(2))

Hence

dg =  dt 
t

and thus

I0ge(t/(V,-V)) +  log, (l0g,(2))

N, dg N, (1/t) dt
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whence

^  =  N, (l/t) 

and therefore

Y r

dP
dt

= P ' = NyNg (1/t) dv {4.5}

P(CR)

(Note Ng = { l l a y i i r )  exp(-(g-/ig)V2ag^)

=  ( l / d g V ^ )  e x p (-( lo g ,(t /(V ,-v ))+ lo g e (lo g e (2 ))-)U g )2 /2 (7 g 2 )

and Ng is therefore a function of t, ^g, ffg and v).

Let the upper limit of integration in equation {4.3} be Û , i.e.

Ui = loge(t/(Vr-v))+logc(logc(2)). Then P can be written as

P =

Y r U,

N. Ng dg dv {4.6}

P(CR)

Having derived the pdf, the likelihood, L, of the data under this distribution can be 

evaluated. The likelihood is the product of the pdf probabilities for each completed 

time to relapse, and the probability of remaining in remission longer than the time 

under consideration for the censored times (which includes the probability of being 

cured, as well as the probability of relapse occurring after this time), i.e.

m

^ ( M v j^ v s /^ g j^ g )  n  P (li» /^ g 5 ^ g » /^ v )^ v )  n  (  1 " P ( l i  ) /^g ) ) (^v))
i =  1 i =  m + l
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where i = 1 , . . . . ,m sire the completed times to relapse, and tj, i= m  + l ,  ,n are

the censored times to relapse.

The likelihood can be used to estimate the parameters of the model, by altering the 

parameters so as to maximise the likelihood. Being a product of many individual 

pdfs, the likelihood of a large data set is virtually certain to be very small, hence for 

computational reasons, it is easier to work with the log likelihood. This has the 

additional advantage of being more analytically tractable. Thus

m n
Log L =  X log(p(ti,/Xg,(Tg,/iv,a'v)) +  E log(l-P(ti,^g,Og,/x^,aJ) {4.7}

i =  l i =  m + l

To maximise a function, it is necessary to show that the first derivative is zero, that 

the second derivative is not zero (ie it is not a point of inflection) and that no other 

points obeying the first two rules have a greater value. For a function of 3 

variables, this is analogous to looking for the highest mountain peak in a given 

terrain. If a random starting point is taken, the derivatives can be used to climb to 

the top of the nearest peak using Newton’s method (Beale, 1988) or variants thereof.

Second derivatives make the convergence routines much more rapid, though 

convergence using semi-Newton methods can be obtained using first derivatives only 

(Beale, 1988). These two possibilities are compared in section 4.6.
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4.4.2 First partial derivatives

It is therefore necessary to derive the first partial derivatives, 

3Log L . 8 Log L . 8 Log L . 6 Log L .
dix. d(T„

From {4.7} it is clear that the complete and incomplete times can be taken 

separately. Then

&  log(l-P) =  -  4% and30.

where î=/Ltv, ^2 =®’v, 0^=ag. It is therefore necessary to differentiate P and

P' with respect to each of the four parameters ix ,̂a ,̂ix ,̂a .̂ Starting with ii  ̂ and 

differentiating under the integral given in equation {4.6}

3P
dii^

V, Ft

Ng dg dv

P(CR)

a(P(CR))
dfi^

y r  F t

R, Ng dg dv

(P(CR))'

{4.8}

where, from equation {4.4} differentiating under the integral.

a(P(CR)) =
Vr

{4.9}
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Similarly, from equation {4.5} differentiating under the integral

P(CR)

Vr

m c m Nv Ng ( 1 /t) dv

(P(CR))^

Similarly differentiating P with respect to from equation {4.6}

{4.10}

Vr

[{(V-^)V(T,^}-1/(7J N,

Vi

N dg dv

P(CR)

8(P(CR))
da^

Vr y,

N.

T

N dg dv

(P(CR))

{4.11}

where, from equation {4.4} differentiating under the integral, 

Vr
a(P(CR)) =

d(j^ [{(V-^)V(T,^}-l/(Tj N, dv {4.12}
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Differentiating P ' with respect to from equation {4.5}

ap ' _  
da. ~

Vr

N, Ng ( 1 /t) dv

Yo_______________________________
P(CR)

a(P(CR))
da.

N, Ng ( 1 /t) dv

2 L  _
iP(CR))^

{4.13}

Differentiating P with respect to }jl̂ from equation {4.6}

dfi.

Pt

N.

P(CR)

d m c m
dfi^

V r U,

N dg dv

(P(CR))^

which reduces to

Vr

Nv Ng dv

P(CR)

since 3fP(CRl^ is zero.

{4.14}
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Differentiating P ' with respect to fi^ from equation {4.5}, noting that 3(P(CR)) is

zero gives

d r  _
5/Xg

V r

{(g-/Xg)/cTg2} N , Ng (1/t) dv {4.15}

P(CR)

For the last of the four first derivatives, differentiating P with respect to jg from 

equation {4.6} gives

Vr U,

N.

P(CR)

Vr Ft
Ng dg dv

(P(CR))^

Since 3(P(CR1) is zero, the second term is eliminated, hence

Vr

ap
da„

Vi

Nv (l/(Tg)

P(CR)

which reduces to 

Vr

{(g-/ig)/(Tg} N , Ng dv

P(c(0

{4.16}
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Finally, differentiating P ' with respect to Og from equation {4.5}, again noting that

8(PfCR^) is zero gives

V r

(l/cTg)[{(g-/ig)/c7j2-l] N , Ng (1/t) dv (4 .17}

P(CR)

4.4.3 Second partial derivatives

For the second partial derivatives note initially that

where ^i=/Xv, ^2 =<̂ v» ^4 =Jg, which for i= j simplifies to

| , io g ( P ')  = ( i= i,4 )

It is therefore necessary to form the 16 second partial derivatives of P and P ' with 

respect to the four parameters However, because of the symmetry where

necessary to derive 1 0  second partial derivatives.
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Taking the second partial derivatives in turn, and differentiating under the integrals 

in equations {4.8} to {4.17}

Vi

N dg dv

P(CR)

u.

2  arprcR ii N„ dg dv

(P(CR))'

£ f P ( C R ) ) 
a k  J

Ft

Ng dg dv

(P(CR))^

i l d m c m Y  
+  \ '

N. N dg dv

 y .
7p (c r F

{4.18}

where, from equation {4.9} differentiating under the integral, 

V,
a p j C R)) -  

d k  -
{4.19}
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Similarly for P'

d^P'_

y,
(l/o^[{(v-,i.y /(r,2}-l] N . K  (1/t) dv

P(CR)

2 3(P(CR))
d/tv

{(v-Mv)/o^} N , N , (1/t) dv

"V 
(P(CR)?

y.
d!ff(CR})

dpi
N , N , (1/t) dv

V,
(P(CR))'

y.
2 ( arp(CR))]̂

+  ' dfi, / ,
N . N . (1/t) dv

 y .
Tp (c r 5 7

{4.20}

where d^tPtCR'O is given in equation {4.19}, 
djZ
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Turning to

d^P

Ft

N dg dv

P(CR)

2 d m c m
da^

N dg dv

(P(CR))^

a^(P(CR))
8 od

Vr Ft

N. Ng dg dv

(P(CR))^

2 1 a(P(CR))ĵ
+  \ 5cr„ I

Vr Ft

N. N dg dv

____
Tp (c r F

{4.21}

where, from equation {4.9} differentiating under the integral, 

d^fPfCRll _
Yr

dai {4.22}
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d^P'

y.
(l/aJ)[{(v-Mv)/<Tv}"-{(v-ftv)/<rJ"+2] N, N, (1/t) dv

P(CR)

y,
2 9(P(CR)) 

3(7„

(P(CR))'

y.
£ ( p (c r ))

dai
N, N, (1/t) dv

(P(CR))'

V.

213(P(CR))\̂
+  \ 9 (t„ I

N. Ng (1/t) dv

m c w

{4.23}

where 3^(P(CR')) is given in equation {4.22}. 
do^
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Yr

d. dP ^
6 (Tv dfly,

F t

(l/(j^){(v-/Xv)/av}[{(v-/.v)/av}^-3] Nv N dg dv

P(CR)

Y r

a(P(CR))

Ft

N dg dv

(P(CR))^

a(P(CR))
Ft

{(v-/iv)/oJ} Nv N dg dv

(P(CR))^

a a(P(CR))
— acTv â Uv

Y r y ,

R

jy.o.
(P(CR))'

N dg dv

V. Ft

i d m c m  am rcR n
+ Ô/̂ v a (Tv

_______________________V
(P(CR))'

N. N dg dv {4.24}

where, from equation {4.9} differentiating under the integral,

Y r
a a(P(CR)) _  a (Tv a/Zv (l/(7^{(v-)i.v)/(rv}[{(v-Mv)/crv}'-3] Nv dv {4.25}
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y,

3. 9P1
da„ dfi^

(l/oe){(v-Mv)/(T,}[{(v-/x,)/a,}^-3] N, N, ( 1 /t) dv

P(CR)

a(P(CR))
dfi^

(P(CR))^

8 (P(CR))
da^

{(v-/x,)/a^} N, N, ( 1 /t) dv

(P(CR))^

Vr

a 8 (P(CR))
aa^ a^v

Ny Ng ( 1 /t) dv

(P(CR))^

2 aœ æ R ii atprcR ii 
+  ajLtv acTv

N, Ng ( 1 /t) dv

(P(CR))'

where ^  afPfCRll is given in equation {4.25}. 
da  ̂ dfi^

{4.26}
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The other second partial derivatives are simpler, since P(CR) does not vary with 

respect to or and thus the extra terms related to P(CR) are all zero. Thus, 

differentiating under the integral with respect to /x̂  from equation {4.14} gives:

Vr

d/Xv d/Xg

P(CR)

and from equation {4.15}:

Vr

d_ d r
0 /Xv 3/Xg

{(v-fij/o^) {(g-Mg)/a^} Nv Ng ( 1 /t) dv

P(CR)

From equation {4.16}:

Vr

â_ dE
dfXv 6 (Tg

{(v-/X v)/o^} {(g-/X g)/ag} Nv Ng dv

P(CR)

and from equation {4.17}:

{4.27}

{4.28}

{4.29}

V r

d_ dEL
d/Xv d(Tg

{(v-Mv)/c^} (l/cTg)[{(g-/Xg)/(rg}2-l] Nv Ng (1/t) dv {4.30}

V.
P(CR)
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Similarly for differentiating under the integral from equation {4.14} gives:

Y r

d_ dR 
5 (Tv

[{(v-;iv)/(Tv^}-l/(Tv] Nv Ng dv

P(CR)

and from equation {4.15}:

d_ dRL
5(Tv 5/ig

P(CR)

From equation {4.16}:

Y r

a_ ^
d (T v  6 (T g

[{(V-/Xv)/(Tv̂ }-l/(Tv] {(g-/̂ g)/(Tg} Nv Ng dv

P(CR)

and from equation {4.17}:

d_ d r
8  (Tv 8 (T g

{4.31}

{4.32}

{4.33}

[{(V -/X v)/(Tv'}-l/(Tv] (l/(T g )[{ (g -/X g)/(T g} ^-l] Nv Ng (1/t) dv {4.34}

P(CR)
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Similarly for differentiating under the integral from equation {4.14} gives:

N. N, dv

P(CR)

and from equation {4.15}:

y,
ôpp"

i r  —

P(CR)

From equation {4.16}:

Y r

{(g-ftg)/of} [{(g-ftg)/<Tg}^-2] N. N, dv

P(CR)

and from equation {4.17}:

{4.35}

{4.36}

{4.37}

y-
a^p'
â ô f

(l/o |) [{(g-Aig)/(Tg}'-5{(g-A(g)/(Tj'+2] K  Ng (1/t) dv {4.38}

V.
P(CR)
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Finally, differentiating under the integral from equation {4.14} gives:

y ,

d_ SP 
da, dn.

(l/u,)[{(g-At,)/<7j ' - l ]  N. N, dv {4.39}

V„
P(CR)

and from equation {4.15}:

d_ 3£L
0 (Tg dfi^

{(g-^g)/cr/} [{(g-/Xg)/cTg}2-3] N, Ng (1/t) dv {4.40}

 _____________
P(CR)

4.4.4 Newton’s method for fitting the model

Given a general likelihood function L(0) for a column vector 6, Newton’s method 

of obtaining the maximum likelihood is based on the first order Taylor series 

expansion of G(0) =  d\ogL{6)/d$. Given a trial value for the maximum, say Bq, the 

first partial derivative vector at ê can be written 

G(ê) = G(0o)-I(0')(g-W 

where !(#) is the Information matrix (the matrix of second partial derivatives) at 0, 

and where 9* lies "between" Bq and ê. For Bq in the vicinity of §, !(#') can be 

approximated by I ( 0 q ) .  Thus setting G(^)=0 and solving gives

ê = Bq + I«9o)-‘G(W {4.41}

The right side of equation {4.41} gives a new trial value for B with which the 

process is repeated until successive B estimates agree to a specified extent, and of 

course G(0) should equal 0 at convergence. Note that the procedure produces, as a
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by-product, the observed information matrix evaluated at the maximum likelihood 

estimate, I(ê) (see section 4.5.5).

Thus, given the likelihood derivation, and the first and second partial derivatives 

described in the previous 3 sections, Newton’s method can be used to maximise the 

likelihood, and thus fit the model.

4.4.5 Parametric relevance of the "cure" threshold

The distribution of P has been portrayed as depending on just the four parameters 

Mg» and not on the volume of disease needed to be eradicated to cure the 

patient, V -̂Vo. This is because it is the shape of the distributions that determines the 

relapse pattern, and this is independent of V.-V^ (the distribution of the resistant 

tumour volume can be "stretched" or "squashed" by changing V,-Vo, but it is easily 

seen that a corresponding change in the tumour doubling time will produce an 

identical response duration curve). Some particular choices for and are 

necessary in order to fill in the whole picture and provide numerical values for the 

log mean doubling time, the log mean volume of resistant tumour etc. However, 

this is not necessary for plotting the model fit to the actuarial curve. Parameters csin 

be estimated as a function of V -̂Vo. For instance, for the model fit given in figures 

5.3 and 5.4 (see chapter 5), where was assumed to be 1 cell, and was assumed 

to be 1 0  ̂ cells, the model parameters were given as:

Mv = 2.3, jLtg =  1.8, = 14, = .29

they could instead have been given as:
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Mv = 0.256(V,-VJ, ff, = 0.2(V,-VJ, = 126/(V,-VJ, =.29

with, in this case, (V ,-VJ=9.

If, for example, we were to consider that resistant tumour stem cells were the cause 

of relapse, and that only 1 0  ̂ tumour stem cells were required for relapse rather than 

10̂  resistant tumour cells (see section 4.3.6), then the parameters (as applied to the 

stem cell population) would be 

Vf-Vo =  6 , and thus ^  = 1.536^ <^=1.2,/t^ = 21, cTg =.29

4.5 Application Methodology

The model is calibrated for a particular data set using the methodology described 

above. The data set simply comprises the response duration times for the group of 

patients of interest. A starting estimate (or guess) is made for the four model 

parameters, and an iterative computer procedure using Newton’s method, as just 

described, then hopefully converges on the best fit. An example will be given 

shortly (see section 4.6.2).

It is difficult to be certain that the final ’maximum’ found is indeed a unique 

maximum likelihood (and ’best fit’) curve. There are several approaches to 

verifying the uniqueness of the fit.

Contour plots can be drawn to examine further the shape of the likelihood terrain 

(see section 4.5.1). A further validation is obtained by choosing widely differing 

starting estimates for the parameters and checking that they converge on the same
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maximum. This latter method has been tried for many of the plots and estimates 

shown in this thesis. Only one alternative maximum was ever found, and in this 

case the likelihood was very much worse for one fit than for the other, and this 

could be easily seen by inspection of the model fit graphs. The methodology for 

drawing likelihood contours will now be described.

4.5.1 Likelihood contours

By fixing two of the model parameters, and varying the other two in such a way as 

to keep the log likelihood at a constant value, likelihood contour plots can be 

produced. These provide a useful tool for examining the convergence of the log 

likelihood function to its maximum, and ensuring that the maximum is unique.

To produce the contour plots two parameters are first fixed. One of the two 

remaining parameters is then also fixed at each of a series of values covering a range 

over which the log likelihood contour plot is to be produced. A value of the fourth 

parameter that gives the desired log likelihood can then be found by the following 

method.

Some starting value is first chosen for the fourth parameter. The first partial 

derivative of the log likelihood function with respect to this parameter is calculated. 

The position where a tangent from this point intersects the desired log likelihood will 

give a new value for the fourth parameter closer to the desired log likelihood (see
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METHOD FOR CONVERGENCE ON DESIRED L IK E L IH O O D

I
.CURRENT L I K E L I H O O D ,  L_ i

LUV
—I

8
—I TJEW ESTIMATE

DES I RED L I K E L I  HOOD

TANGENT

X, X .
FOURTH PARAMETER

Figure 4.7 Methodology for obtaining a value of the fourth model parameter to 
produce a given likelihood, when the other 3 parameters are fixed.

figure 4.7). Specifically, if the current estimate is X,, the log likelihood at this value 

is Lj, the first partial derivative is di and the desired log likelihood is L ,̂ then 

a value X2 which is closer to L̂ , will be found at 

X2 = X, +  (L,-L,)/6 ,

By repeating this process rapid convergence to the desired log likelihood is obtained 

(this consistently occurs in at most six steps, even for very inaccurate starting 

guesses). If there is no value for the fourth parameter which produces the desired 

log likelihood, this will be apparent when the series of log likelihoods which is 

supposed to be converging on the desired log likelihood overshoots, and starts rising 

again.
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L I K E L I H O O D  CONTOURS SHOW ING  U N I Q U E N E S S  
OF THE M A X I M U M  L I K E L I H O O D  F I T

8
_ l

1 . 5

Figure 4.8 Likelihood contour plot of the SD of residual disease against the 
tumour doubling time for the MRC group having 1st remission between 1.5 and 
2.5 years.

Likelihood contours plotted in this way show a single peak, suggesting that the 

maximum is unique. This seems to hold for any of the four parameters plotted 

against any other. The general shape of these plots also supports the independence 

of the parameters, since there are no long narrow peaks where pairs of values for 

the two parameters would give equivalent likelihoods. Some examples are given in 

figures 4.8 and 4.9. These are taken from the MRC AML data used as the example 

application in section 4.5. The negative of the log likelihood has been plotted, since 

this is easier to represent in three dimensions. Thus the plots show valleys or troughs 

rather than peaks.
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L I K E L I H O O D  CONTOURS SHOW ING  U N I Q U E N E S S  
OF THE M AX IM U M  L I K E L I H O O D  F I T

- 384 

-38C. 

-371;.

Figure 4.9 Likelihood contour plot of the residual disease against the tumour
doubling time for the MRC group having 1st remission between 1.5 and 2.5 
years.

4.5.2 Testing for differences in the model’s estimates

When comparing different patient groups it is possible to test the significance of 

differences between each of the parameters of the model (i.e. the mean and standard 

deviation (SD) of the log of the volume of resistant tumour, and the mean and SD 

of the log of the doubling times). This is done by comparing the log-likelihood value 

for the fit of both curves with all the parameters unrestricted in value, with a similar 

log-likelihood value where the fit has the restriction that the parameter of interest 

must have the same value in both curves. This is the Likelihood Ratio Test (Silvey, 

1970), and produces a chi-square statistic and p-value, which indicates the degree 

to which the difference between the two curves depends on that particular parameter.
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4.5.3 Goodness-of-fit tests

To test whether the model provides a good fit to the observed durations of response, 

the latter can be divided into intervals, and a goodness-of-fit test performed 

between the observed and expected numbers in each interval (Lee, 1980). Intervals 

are chosen to ensure at least 5 expected events in each. P values of > 0.05 suggest 

an adequate fit.

4.5.4 Standard errors of model estimates

Once the parameters have been estimated the second partial derivatives at the 

maximum likelihood parameter values can be used to estimate standard errors for 

each of the model’s parameters. Thus, confidence intervals can be provided for the 

model estimates. The variance for each of the four parameters is found from the 

diagonal elements of the inverted Information matrix 1(0), where

where 0  =  (^1 ,^2 ,^3 ,^4 ) &re the model parameters, i.e. 4̂ =trg.
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4.6 Computational methods

4.6.1 Numerical integration methods

Equations {4.5} to {4.40} present a large number of integrals and double integrals 

to be evaluated. Fortunately, for all the double integrals the inner integral is identical
Ut

namely Ng dg. This integral has therefore only to be evaluated once for each timeg

to enable the calculation of both the function value and all the first and second 

partial derivatives.

The general method of integration used was Gaussian quadrature (Davis & Polonsky,

1965). This divides the region of integration into a number of unequal intervals,

where the abscissas are zeros of Legendre polynomials. The general formula is as 
follows:

/(x )  dx = W i/ ( X i )
a ^  i=l

where n can be chosen to give a desired level of accuracy. The associated abscissas 

and weights (Xj’s and w/s) have been calculated for various values of n (Davis & 

Polonsky, 1965). A value for n of 32 was used in all the programs; this was found 

to give results accurate to 15 decimal places (this is the common accuracy of double 

precision variables in Fortran compilers).

Since the integrals all have the same limits, they can all be evaluated within one 

program loop. Furthermore, many of the integrals are similar, and require only an
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additional multiplication or division, thus making the evaluation surprisingly quick 

(see section 4.6.2).

With the number of equations presented, it would be quite likely that an algebraic 

mistake would have occurred somewhere. To check that all the derivatives were 

correct, numerical analysis versions of the derivatives were calculated, and checked 

against the results from the equations given. In this way, all algebraic errors were 

eliminated. The technique of Richardson extrapolation (Kincaid & Cheney, 1991) 

was used for the numerical analysis calculations of derivatives. Two steps proved 

to be adequate. Thus in calculating the first derivative of P with respect to fjî  for 

example, P is calculated at four values of fjî  either side of, and very close to, 

itself; say and and The following formula then

gives the first partial derivative:

It is necessary to take a value for which maintains as many significant figures 

as possible in the difference between the four function values (at 

Atv+ÔAtv, Â v+2ÔAtv) while being small enough to provide an accurate derivative. It 

proved possible to get results accurate to approximately 1 0  significant figures, this 

being the correspondence observed between the numerical analysis derivatives and 

the derivatives obtained from equations {4.5} to {4.40}.
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Figure 4.10 Example of the probability density function to be integrated to derive 
the probability of relapse before a time t. Parameters are ^ = 1 ,  â  = 1.5, ^ig=30, 
(Tg = .25. Probability density is scaled to 1 for the doubling times density function.

The function P i s a  product of a normal distribution parameter (the resistant tumour) 

and a normal distribution integral (from the doubling times). As such P is generally 

a skewed normal distribution (see figures 4.10 and 4.11) although sometimes the 

shape is more complex (see figure 4.12). Since the doubling time integral is always 

by definition less than unity, a reasonable integration range is obtained by 

considering a range of values either side of the mean resistant tumour volume. With 

the accuracy of the integration approximation being of the order of lO"*̂  a value of 

8  SD’s either side of the mean resistant tumour volume is satisfactory. (For a 

standard normal deviate, this range covers all normal distribution values greater than
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10'* )̂. Some examples showing the integration method are given in figures 

4.10-4.12. The two components which when multiplied produce the final function 

to be integrated are also shown for comparison. An example where the function 

becomes more complex, for small time values, is shown in figure 4.12.

I N T E G R A L  F OR  C A L C U L A T I N G  R E L A P S E  B E F O R E  1 0 0  DAYS  
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Figure 4.11 Example of the probability density function to be integrated to derive 
the probability of relapse before a time t (in this case 100 days). Parameters are 
/Ltv=5, 0 -̂ =  1, /ig=20, ffg=.3. Probability densities are scaled to .4 & 1 for the 
resistant disease and doubling time density functions.

4.6.2 An example application

To demonstrate the application methodology consider one of the examples given in 

the next chapter, e.g. the second remission AML curve from the MRC8  trial (Rees
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et al., 1986), for patients with first remissions having lasted between 1.5 and 2.5 

years.
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Figure 4.12 Example of the probability density function to be integrated to derive 
the probability of relapse before a time t (in this case 22 days). Parameters are 
fjL^=5, (Jy = l, /Xg=20, o'g=.3. Probability densities are scaled to .4 & 1 for the 
resistant disease and doubling time density functions.

Initially, a rough guess was made for values of the four parameters which might 

produce a model curve similar to the actuarial curve. In this case these guesses were 

as follows: ^ = 2 , <7^= 2 , /ig=2 0 , jg=0.3. (the method is relatively insensitive to 

these starting guesses, unless they are very wide of the mark). The log-likelihood 

was evaluated for these estimates. This effectively compares the model fit (based 

on the four estimated parameters) to the actuarial response duration curve. The 

log-likelihood for this initial guess was -366.89. The first and second partial
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derivatives were derived for the four parameters at these values. The first partial 

derivatives were -7.71, 1.74, -76.8, 27.5 for and respectively. The

first step of Newton’s method produced a new estimate based on these derivatives 

of /^=1.92 , (T^=1.71, ^g = 13.5, and cTg=0.249. This procedure continued until the 

incremental change required in each parameter at the next step was very small 

(<  .000001 of the parameter value itself). At this point the log likelihood no longer 

increased, and the derivatives were all close to 0  (they were in fact all <  .0 0 0 0 0 0 1 ). 

The final log-likelihood was -359.40. The fit of the model to the actuarial curve is 

given in figure 5.3 and the final parameter values are given in Table 5.1 (see chapter 

5). Running on a 20 MHz 80386 IBM compatible PC with a maths co-processor, the 

whole fitting procedure took just 14 seconds. Nine steps of the Newton algorithm 

were required.

The log-likelihoods for some of the 63 times, both censored and complete, given the 

initial guesses for the parameters, and then the final ’best’ parameters, are shown 

in table 4.2.

4.7 Summary

Assuming that sufficient treatment is given to eradicate sensitive tumour cells, any 

residual tumour remaining will be resistant. Taking into account the assumptions 

previously described in this chapter, the volume of that resistant tumour will be 

log-normally distributed within a population. Where very short durations of 

treatment have been used as to make it doubtful that all anti-tumour effect has been
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achieved, the model results may have to be interpreted with caution. Interpretation 

may also prove difficult where complicated regimens are given over long periods of 

time, since if long delays occur between different sections of the regimen, resistance 

may have been acquired in the intervening periods.

The estimates of resistant tumour volume for two different treatments given to 

similar patient groups (e.g. those treated in the two arms of a RCT) can be 

compared. The difference in tumour volume can be considered as the extra ’cell-kill’ 

achieved with the more effective treatment.
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Table 4.1

Tests of non-normality (the Shapiro-Francia statistic) for distributions resulting from 

simulations of the acquisition of resistance by random spontaneous mutation. 

Simulations were started at 1 sensitive cell, and stopped when the total population 

had reached the indicated number of cells. 500 separate simulations were performed 

at each set of parameter values.

mutation proportion 
rate showing 

resistance

birth & death 
rate parameters® 

b d

Number of cells 
a t  w h i c h  
simulation was 
halted

Shapiro-
Francia
statistic

P-value

1(M 1.00 0.505 0.495 10̂ 0.946 <.001
10^ 0.98 0.505 0.495 10" 0.995 .1
10^ 0.29 0.505 0.495 10" N/A*
10-̂ 1.00 0.510 0.490 10" 0.935 <.001
10-̂ 0.95 0.510 0.490 10" 0.992 .01
10^ 0.26 0.510 0.490 10" N/A*
10* 1.00 0.520 0.480 5x10* 0.983 <.01

" the probability of replicating (birth) or dying for each cell generation.

** with such a small proportion showing resistance, the distribution would no longer 

be expected to be log-normal, and the test statistic is therefore inappropriate.
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Table 4.2

A comparison of initial versus final log-likelihoods for some san

worked example.

Time (days) Initial log-likelihood Final log-like
(* = censored) (parameters guessed) (parameters e 

by model)

50 -8.43 -7.45
59 -8.10 -7.13
70* -0.01 -0.03

103 -7.16 -6.34
120 -6.97 -6.22
124* -0.05 -0.12
155* -0.09 -0.20
164 -6.69 -6.09
168 -6.68 -6.09
172 -6.66 -6.09
198 -6.60 -6.11
217 -6.58 -6.14
233 -6.57 -6.18
236 -6.57 -6.18
242 -6.57 -6.20
267 -6.58 -6.27
284 -6.59 -6.33
295 -6.60 -6.37
325 -6.64 -6.48
363 -6.71 -6.63
386 -6.76 -6.72
450 -6.91 -7.00
461 -6.94 -7.04
504 -7.05 -7.23
557 -7.19 -7.45
629 -7.39 -7.76
700 -7.58 -8.05
810 -7.89 -8.49

1001* -1.36 -2.01
1250* -1.54 -2.15
1460* -1.63 -2.20
2198* -1.78 -2.27
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Chapter 5

APPLICATIONS OF THE REMISSION DURATION MODEL

5.1 Acute myelogenous leukaemia (AMLl

The first application is taken from a medical research council (MRC) trial in acute 

myelogenous leukaemia (MRC8) (Rees et a l ,  1986). This large trial afforded an 

exceptional opportunity to verify some of the predictions and assumptions of the 

model. A total of 1127 patients were treated in this trial, of whom 757 achieved a 

complete remission (CR). Of these, 559 subsequently relapsed, and 155 then 

achieved a second CR. The numbers given in this paper show some differences from 

those given in the paper by Rees et al (1986), since data updated to February 1987, 

kindly supplied by the authors, has been used in this analysis. In addition, the 

patients achieving second CR after relapse from bone marrow transplants have been 

excluded, since it was intended to relate durations of first and second response by 

their quantities of resistant disease, and these patients are likely to have had different 

quantities of resistant disease from the others.

The large number of patients in this trial allows a detailed examination of the 

durations of second CR as they relate to the duration of first CR. Application of the 

model (as described in chapter 4) to the duration of first CR for the whole trial 

produced the fit shown in figure 5.1. The corresponding model estimate for the
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Figure 5.1 MRC AML trial 8: duration of first remission with model fit. 

shape of the distribution of volumes of resistant disease is shown in figure 5.2, and 

the parameter values are shown in table 5.1. The lower broken line in figure 5.2 

represents the "cure" threshold, as described in chapter 4. The shape can be plotted 

in this way without making any assumptions about the actual position of the "cure" 

threshold (see section 4.4.5). The whole picture can be completed by either 

assuming a particular doubling time, or by fixing the "cure" threshold at some 

particular number of cells, and the Y-axis can then be labelled appropriately (see, 

for example, figure 5.2). The parameter estimates in table 5.1 are given under the 

assumption that the "cure" threshold is one cell. The mean resistant tumour volume 

under this assumption is thus 10*  ̂ =  80 cells, and the estimated mean of the log of 

the doubling time corresponds to a doubling time of 17 days (Table 5.1). (Table 5.1 

also provides standard errors (SB’s) for the estimates, as described in chapter 4).

121



C L I N I C A L L Y  D E T E C T A B L E  D I S E A S E
10

7
10

5
10

3
10

1 □

< 1
C E L L

C U R E D

0 . 20 . 20 . 1 0 . 1 50 . 0 5
P R O B A B I L I T Y  D E N S I T Y

Figure 5.2 MRC AML trial 8: estimated distribution of resistant disease for first 
remitters.

For an individual with the mean log of the doubling time as estimated, and the 

lowest possible tumour volume not commensurate with cure, the response duration 

would be approximately 1.5 years. Thus, under the model assumptions, any patient 

relapsing beyond 1.5 years, would have a slower growing tumour than average. 

Furthermore, since the model predicts that these patients had nearly all their tumour 

eliminated with the first treatment, they might well have disease which is very 

sensitive to therapy, and thus it might be expected that they would have a better 

response and response duration on the second treatment (always assuming that, for 

an individual patient, the sensitivity and growth rate of the tumour after relapse is 

related to the initial sensitivity and growth rate). These effects should be accentuated 

for patients with even longer relapse times, for example after 2.5 years.
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Figure 5.3 MRC AML trial 8: durations of second remission as they relate to the 
duration of first remission, with model fits.

The durations of second CR, as they relate to the duration of first CR (divided at 1.5 

years and 2.5 years to accord with the predictions mentioned above) are given in 

figure 5.3 with the model fits. Very few patients with a first CR of less than 6 

months achieved a second CR, and this group has therefore been excluded. The 

model estimates for resistant tumour and doubling times, calculated from the second 

remission duration curves, are given in table 5.1 and the resistant tumour estimates 

are shown graphically in figure 5.4. The Y-axes are fixed using the assumption that 

the "cure" threshold is one cell. The estimated doubling time for the patients whose 

first relapse occurred after more than 1.5 years is greater than the doubling time for 

those relapsing earlier. For patients relapsing initially after 2.5 years this trend is 

even more pronounced, and these patients clearly have a better second remission 

duration. Furthermore, the estimated resistant disease after second treatment for this
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latter group is very low (mean = 10° ‘ i.e. 1 cell) and narrowly spread close to the 

"cure” threshold. Since the choice of this group from their first remission duration 

was on the basis that they should, given the model estimates, have a very low 

volume of resistant disease, this result shows a degree of internal consistency in the 

model estimates. Use of the model has thus provided and confirmed tenable 

hypotheses regarding relationships between lengths of first and second remissions. 

The curves in figures 5.1 and 5.3 also demonstrate clearly the hypothesised patterns 

in the shapes of response duration curves discussed in chapter 4. They flatten out to 

plateaus, which occur at the same time post treatment (approximately 3-4 years), and 

the curves with steeper slopes appear to represent faster growing tumours.
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O C E L L

Figure 5.4 MRC AML trial 8: estimated distribution of resistant disease for the 
three second remission subgroups obtained from the model fits.
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The four model parameter estimates for the different second CR groups were 

compared as described in chapter 4. The differences between individual parameters 

for patients whose first relapse occurred before or after 2.5 years did not achieve 

statistical significance, although there was a trend for the mean resistant disease to 

be lower in the latter group (P=0.15). The reason for the lack of statistical 

significance in the resistant disease estimate is interesting. Although the best fit 

curve for the group relapsing beyond 2.5 years is based on 40% of patients being 

cured, the follow-up of these patients is not sufficient to exclude the possibility that 

this curve will continue falling, and that most patients will subsequently relapse. 

(The model is still capable of producing a reasonably good fit under this 

assumption). If, however, the long remitters in this curve were to continue without 

relapsing for another year, this would no longer be the case, and the mean resistant 

disease estimate would be statistically significantly different from the patients whose 

first relapse was less than 2.5 years. This indicates the need for ’mature’ actuarial 

data for application of the model to support these types of hypotheses. The 

difference in doubling time estimates was not sufficiently large to reach statistical 

significance, given the smallish numbers in the two groups.

For all the curves given the model fits look to be excellent. This was confirmed by 

performing goodness-of-fit tests as described in chapter 4. P-values of >  0.3 were 

produced on all four occasions.

As mentioned, different assumptions can be made for the value of the "cure" 

threshold without affecting either the shape of the estimated resistant disease or the
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Figure 5.5 Hypothesised effect on the duration of 1st CR of systematic reductions 
in the log of resistant disease (in 1 log increments)

likelihood. The "cure" threshold can therefore only be gauged indirectly by

examining published doubling time estimates, and seeing if they concur with those

produced by the model under a particular assumed "cure" threshold value. Published

estimates of doubling times in AML are rare, but in a series of 69 patients an

approximate median of 10 days has been reported, (Ellison & Murphy, 1964) based

on differential counts from successive bone marrow smears prior to relapse.

Comparable estimates of approximately 5 days have been made in acute lymphocytic

leukaemia. (Frei III & Freireich, 1965; Holland, 1968) The published estimates for

AML are thus similar to the model estimates from the second remission data in

MRC8, under the assumption that the "cure" threshold is one cell. This assumption

for the "cure threshold" is thus supported, and lends support to the hypothesis that

all leukaemia cells need to be eliminated to cure the patient.
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Figure 5.6 Hypothesised effect on the duration of 1st CR of systematic 5-day 
increases in the doubling time parameter (from 16.6 days to 36.6 days)

By making systematic changes to the parameters for the AML duration of first

remission curve it is possible to demonstrate the effects that treatments with different

actions should have on the curves, and thus help in the interpretation of these

curves. For instance, a treatment whose sole effect was on the volume of resistant

disease (effectively a treatment with different levels of cell-kill) would be expected

to produce curves as shown in figure 5.5, where the main effect is on the height of

the plateau, and thus on the proportion of patients whose disease is eradicated. In

contrast, a treatment whose effect was to delay tumour re-growth would be expected

to produce curves as shown in figure 5.6, where the effect is to cause different

degrees of ’bulge’ in the curve, but with no overall effect on the height of the

plateau. The AML second remission duration curves show the first of these effects,

and this is reflected in the parameter estimates given in table 5.1. These two

127



different effects should be borne in mind when interpreting curves from the 

applications to follow in this chapter.

5.3 Hodgkin’s disease.
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Figure 5.7 Stage I Hodgkin’s disease: duration of first remission with model fit 

The second application was to 89 patients with stage I Hodgkin’s Disease treated at

St. Bartholomew’s hospital (Ganesan et al, 1990). All patients were treated with

radiotherapy alone, and the 15 year disease-free rate, taken from the actuarial curve,

was 74%. The actuarial curve, with the model fit, is given in figure 5.7, and the

model estimate for the distribution of resistant disease is given in figure 5.8. It can

be seen that, if the model estimates are correct, patients destined to relapse had a
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Figure 5.8 Stage I Hodgkin’s disease: estimated distribution of resistant disease 
for first remitters

very small volume of malignant cells remaining after treatment. Six courses of 

combination chemotherapy (e.g. MVPP) cures the majority of later stage patients 

with Hodgkin’s disease. If the presentation tumour volume is of the order of 10̂ ® 

cells, a single course is likely to eradicate approximately 2 logs of disease. Thus a 

single course of such chemotherapy following conventional radiotherapy may well 

be capable of curing virtually all patients with stage I disease. Currently 

chemotherapy is rarely used in stage I Hodgkin’s disease because of the resulting 

toxicity, particularly that of sterility (Waxman et al, 1987). However, one course of 

chemotherapy would be likely to cause very little toxicity (Waxman et al, 1987), 

whereas the benefits of a single course, assuming the above analysis is correct, 

would seem to be considerable.
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To again investigate the sensitivity of the model’s estimates in this case, further 

model fits were produced, fixing the resistant disease estimate at particular levels, 

and examining the resulting model fits. For example, fixing the resistant disease 

estimate at 3 logs the model still produced an approximate fit, as shown in figure 

5.9. The fit was worse (xî=3.9, p= .05 . Likelihood Ratio Test - see chapter 4),

MODE L  F I T  T O  S T A G E  I H O D G K I N ' S  D I S E A S E  DAT A

W I T H  T H E  R E S I D U A L  D I S E A S E  P A R A M E T E R  F I X E D  AT 3 L O G S
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Figure 5.9 Stage I Hodgkin’s disease: poor model fit with resistant disease fixer 
which demonstrates sensitivity to resistant disease estimate

though this only just reached statistical significance, essentially because of the few 

events in the curve. However, in order to obtain this fit, the plateau on the curve 

was lost. Although it is not absolutely certain from mere inspection that this curve 

will have a high plateau, other data with more patients and longer follow-up, for 

example the International Hodgkin’s disease database (Somers et al. , 1990) suggests 

that this is extremely likely, and thus the fit is inappropriate. Under the model
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assumptions it can therefore be asserted with some confidence that very little 

resistant disease remains after radiotherapy.

5.4 Operable breast cancer - the effect of tumour grade.
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Figure 5.10 Time to relapse by tumour grade in operable breast cancer, with 
model fits.

As another partial validation of the model assumptions, the model was applied to a 

series of operable breast cancer patients with invasive ductal carcinomas from Guy’s 

hospital for whom the patient’s tumours had been graded histologically (the ductal 

group comprises about 80% of patients, and is the only group that can be 

consistently graded). Grading consists of an examination of excised tumour under 

the microscope to assess mitotic activity, nuclear pleomorphism and tubule formation 

(Bloom & Richardson, 1957). Three categories are finally produced: grade 1 (well
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differentiated), grade 2 (moderately differentiated) or grade 3 (poorly differentiated). 

Essentially tumour grade is thought to measure the aggressiveness of the disease, 

with grade 3 being the most aggressive. At Guy’s hospital tumour grade correlates 

very strongly with subsequent prognosis, both following initial curative therapy, and 

after relapse, and is independent of other known prognostic factors (Badwe et al. , 

1991). Thus grading should be correlated with tumour growth rate, and the model 

should be able to detect and quantify this correlation.

The patients were those obtained from a computerised database at Guy’s hospital 

between the years 1975 and 1985 (this was to ensure adequate follow-up on all 

patients). They were both pre and post-menopausal, with an age range of 20-70. The 

three actuarial curves for time to recurrence, with their associated model fits, are 

given in figure 5.10, and the associated parameter values are shown in table 5.2. It 

can be seen that the model estimates show large differences in doubling times 

between the three groups.

There are very few relapses in the group of patients having grade I tumours, and 

these model estimates should therefore be treated with some degree of caution. 

However, the model estimate was for a very long doubling time in these patients. 

Furthermore, this was not just a result of the two late relapses (see figure 5.10), 

since the model gave very similar estimates when these two patients were censored 

at their dates of relapse. These model estimates suggest that it is possible that 

relapses will continue to occur in this group, even if at a very slow rate.
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For the patients with grade II and III tumours the model estimates showed 

differences in other parameters, as well as a large difference in doubling time. 

However, in the grade III group the standard error for the SD of resistant disease 

was very large (see table 5.2), and in fact an almost identically good fit could also 

be obtained when the SD of resistant disease was fixed to that of the grade II group 

(the same was not true of the doubling time estimate). A method for performing 

more direct comparisons of particular parameter values between groups is given in 

chapter 6, where this particular data set is re-examined from a slightly different 

perspective.

It should be noted that for operable breast cancer, treated with surgery only, the 

rationale described in chapter 4 for a log-normal distribution of resistant disease is 

lacking. However, it is not difficult to provide an alternative rationale in this case. 

Some authorities consider that tumour is disseminated through the lymph nodes in 

breast cancer (Tubiana et a l ,  1989), hence the relevance of number of involved 

lymph nodes to subsequent prognosis. There is also a clear relationship between 

number of involved nodes and tumour size, with, in particular, small tumours (I cm 

or less in size) being much more likely to be node negative than larger tumours (for 

instance, in the series of 966 patients just reported, 67% of tumours measuring 1cm 

or less were node negative, compared with 40% of tumours greater than 2 cm in 

clinical size). The situation is thus likely to be analogous to the random mutation 

rate to resistance cases already described. As the tumour increases in size, the lymph 

nodes become more likely to be involved, and the chances of cells becoming 

established in distant organs increases. Thus there may well be a random
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spontaneous chance of cells becoming disseminated, which increases as the tumour 

grows throughout its life, resulting in a log-normal distribution of residual disease 

at presentation.

Local relapse can be considered in a similar fashion, with cells being more likely to 

reach any local tissue as the tumour increases in size, and thus be missed by 

surgery. In any case, there are few local recurrences without distant recurrence (6% 

in this series) and distant recurrence usually occurs quite rapidly after local 

recurrence, so local recurrence is of less importance than distant recurrence in this 

argument.

This application again shows the correspondence of the model results with 

independent methods of measuring factors related to those used in the model. This 

provides further confirmation that the model assumptions relate to what is happening 

to the patients.

5.4 Multiple myeloma

A fourth application concerns administration of very intensive chemotherapy in 

multiple myeloma. Complete responses were rarely seen in this disease until the 

recent administration of high dose melphalan. The model was applied to the 

complete response duration curves for 41 patients from St. Bartholomew’s and the 

Royal Marsden hospitals treated in this way (Selby et al, 1987), at the request of the
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Figure 5.11 Multiple myeloma: duration of response with model fit 

clinicians involved. They faced a dilemma in that although they were now seeing 

complete responses for the first time, it was not clear whether they should proceed 

by making relatively minor alterations to the current regimen, or whether more 

drastic changes were still required to effect cure. The model fit to the data is shown 

in figure 5.11, and the estimated picture of resistant disease is shown in figure 5.12. 

The model estimates implied that although high dose melphalan achieves a mean 

cell-kill of about 2-3 logs, a further 6-7 logs would be necessary, on average, to 

cure these patients. Thus minor alterations to the regime, such as further slight 

increases in melphalan dose would be unlikely to achieve cure. Additional more 

drastic alterations appeared to be necessary. Subsequent regimes have employed 

combination chemotherapy for a median of 5 courses before (late) administration of 

high-dose melphalan (Gore et al, 1989). Early results from these trials appear
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encouraging, although longer follow-up is required to discover whether cures have 

been achieved. Alternative strategies involving administration of interferon after 

administration of the chemotherapy are also being tried, and again show considerable 

promise.
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Figure 5.12 Multiple myeloma: estimated distribution of resistant disease

Since the number of patients in this group was very small, the results must be 

treated with caution, and the standard errors of the estimates are inevitably very 

wide. The sensitivity of the mean log resistant disease estimate was investigated by 

fixing the resistant disease at different values, and comparing the fit at these values 

with the unrestricted maximum likelihood fit (using the likelihood ratio test as 

described in chapter 4). For instance, although fixing the resistant disease at 3 logs 

produced a worse fit, this was not significantly worse (p=0.36). This again is 

largely a result of the small number of patients in this study.
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However, the lack of a shoulder on the curve, and the fact that virtually all the 

patients appear to be relapsing, tends to support the inferences from the model 

results. The lack of a shoulder on the curve suggests that patients have not attained 

cell-kills much below the level of clinical detection, and the lack of long remitters 

(or ’cures’) suggests that few if any patients had all their disease eliminated by the 

treatment. Thus the conclusion that more drastic measures are necessary in this 

situation appears to be strongly suggested by the foregoing analysis, although it is 

by no means proven.

5.5 Locally advanced breast cancer

The fifth application is taken from an EORTC trial for locally advanced breast 

cancer, and will be covered in more detail because of the variety of treatments and 

possible implications for therapy.

A number of different outcomes are possible for patients with breast cancer who 

achieve a complete remission with primary treatment. Firstly, they may remain in 

long term remission. Secondly, they may relapse at the site of primary disease. 

Thirdly, they may relapse at a site distant from their original disease. If this occurs 

without evidence of local recurrence it is usually assumed that micrometastatic 

disease was present at the time of diagnosis. Finally, both metastatic disease and 

local recurrence may develop.
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The multicentre EORTC trial was designed to assess the contribution of cytotoxic 

chemotherapy and/or endocrine therapy to the primary treatment of locally advanced 

breast cancer by radiotherapy (Rubens et al., 1989). The trial had a 2x2 design 

where all patients initially received radiotherapy. Patients were then randomised to 

receive in addition chemotherapy, hormone therapy, or both chemotherapy and 

hormone therapy. Although the trial can be evaluated, as explained, both in terms 

of local and distant recurrence, the latter is of fundamentally greater importance, 

since it determines subsequent survival. The model was applied to both these 

end-points. Application of the model to both data sets also provides an opportunity 

to assess possible differences in the efficacy of treatments against local and 

metastatic disease.

5.5.1 Patient data and treatment details

The actuarial curves analysed in this study were those from 276 patients treated 

according to EORTC protocol 10792. Eligibility criteria are given in Rubens et al 

(1989). A subgroup of patients who were entered into the study because of 

involvement of apical axillary lymph node but who did not meet the other criteria 

for locally advanced breast cancer has been excluded from the present analysis. All 

patients received radiotherapy to the breast and gland fields as their primary 

treatment. Patients with clinical evidence of disease progression (local and/or distant) 

at the end of radiotherapy were taken off study and have been excluded from this 

analysis. The details of the four treatments were as follows:
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1. Radiotherapy (RT)

Radiotherapy was given to the breast and the axillary, supraclavicular, 

infraclavicular and ipsilateral internal mammary nodes. A dose of 4600 cGy 

in 23 fractions was given over a period of 5 weeks to the whole area, 

followed by 1400 cGy in 7 fractions to the sites of initial palpable disease.

2. Radiotherapy and chemotherapy (RT + CT)

After completion of radiotherapy 12 cycles of Cyclophosphamide, 

Methotrexate and 5 Fluorouracil (CMF) chemotherapy were given at 4 

weekly intervals.

3. Radiotherapy and hormonal therapy (RT + HT)

Premenopausal patients received ovarian ablation (1500 cGy over 5 days) 

plus prednisolone 2.5 mgs three times daily for 5 years. Postmenopausal 

patients received tamoxifen 10 mgs twice daily for 5 years. In each case 

treatment was commenced within 4 weeks after the completion of 

radiotherapy.

4. Radiotherapy plus chemotherapy plus hormonal therapy (RT 4- CT +

HT)

Radiotherapy was followed by chemotherapy and hormonal therapy as above. 

Hormonal therapy and chemotherapy were given concomitantly.
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Time to local recurrence (or time to local progression of disease for patients with 

residual abnormalities in the breast following treatment) and time to development of 

distant métastasés was recorded for each patient. In each case the response duration 

was measured from the time of randomisation (ie preceding the commencement of 

radiotherapy).

Note that none of the patients received surgery as a primary treatment, and thus the 

usual hypotheses concerning the distribution of resistant disease apply, in contrast 

to the example given earlier in operable breast cancer. For patients treated with 

more than one modality it will be assumed that the model estimates are of disease 

resistant to all the forms of treatment.

5.5.2 Model application

A. Time to Local Progression

The four actuarial curves for time to local progression are shown in figure 5.13. The 

model-derived curves fitted the actuarial curves very well for the groups treated 

either with RT only or with RT -I- CT (figure 5.14). The estimates of the mean and 

standard deviation of the number of resistant tumour cells are shown in Table 5.3, 

together with the estimated mean and range of doubling times and the results of 

goodness of fit tests.
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Figure 5.13 Actuarial curve of time to Local progression for the different 
treatment groups.

For the remaining discussion, it will be assumed that the "cure" threshold is again 

one cell, i.e. that all tumour cells need to be eliminated in order for the patient to 

be cured. This produced doubling time estimates consistent with those recorded from 

measurement of macroscopic disease (Shackney et a l ,  1978).

The addition of CT showed essentially a cell-kill effect (see figure 5.5), and reduced 

the mean number of resistant tumour cells in the primary tumour by approximately 

3 extra logs, when compared with the effect of RT alone. This corresponds with a 

rise in the plateau level on the actuarial response duration curves from less than 30% 

for the RT only group to more than 50% for RT -I- CT. Chemotherapy did not 

significantly alter the growth rate of tumours in those who relapsed (mean doubling 

times 25 days for RT and 24 days for RT 4- CT).
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Figure 5.14 Model fits to the RT alone group and the RT+CT group for time 
to local progression

An alternative method of quantifying the difference in resistant disease between the 

two groups is given in the next chapter. Results were produced which correspond 

quite closely with the result obtained here.

The model failed to fit the actuarial curve for time to local progression for the 64 

patients who received RT +  HT (Table 5.3), Newton’s method failing to converge 

to a maximum. An approximate fit (a range of values all gave equally good - or 

poor - fits) is given in figure 5.15, which demonstrates the lack of correspondence 

between the model fit and the actuarial curve. Further examination of the actuarial 

curve showed a shoulder which was not seen on the RT curve. This was followed 

by a slope very similar to that on the RT curve. Thirteen recurrences occurred
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Figure 5.15 Approximate model fit to the RT+HT group for time to loca 
progression, showing an inadequate model fit

within a 7 month period. This slope ended at approximately 15 months after which 

there was only a single local recurrence over a period of 14 months. This apparent 

plateau was followed by a second slope. By censoring times beyond 15 months, and 

applying the model to this censored data, a good fit was produced (figure 5.16). The 

prominent initial shoulder followed by a steep slope could be explained (by reference 

to the model) by a cell killing effect of hormonal therapy but not by an effect on 

growth rate. The cell kill effect of HT derived in this way was similar or slightly 

greater in magnitude to that of CMF chemotherapy (Table 5.3). The plateau on the 

curve, which relates to the cell-kill of the treatment, is of course somewhat 

speculative, since no events are available to fit this latter part of the curve. The 

pattern of recurrences in succeeding months did not, however, fit the
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model-predicted curve based on this initial period of 15 months. Discussion with the 

clinicians involved in this study suggested that there may be a subpopulation of 

patients who experienced a period of growth arrest due to HT in addition to a 

cytotoxic effect, though this is of course impossible to prove. The secondary slope 

on the actuarial curve would then be explained by escape from this growth arrest and 

resumption of growth at the same rate as for tumours treated with RT alone. These 

suggestions are of course speculative in nature, particularly as the numbers of 

patients are small.

8 0

LO
LU

Figure 5.16 Model fit to the RT+HT group where times after 15 months have
been censored, so that the model fits the early part of the curve

The model failed to fit a significant plateau to the group treated with RT+CT+H T, 

possibly because of two late events beyond 4 years and the relatively few numbers 

of relapses in this group. A number of very different model fits to this data are
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therefore possible, and any model estimates produced would probably not be 

reliable.

B. Time to Distant Métastasés

The four actuarial curves for time to distant métastasés are shown in figure 5.17. 

There are no statistically significant differences between the curves, although the RT 

alone curve lies just below the other curves (p=0.1, log-rank test for RT alone v 

rest).
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Figure 5.17 Actuarial curve of time to occurrence of distant métastasés for the 
different treatment groups.
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Figure 5.18 Model fit to the RT alone group for time to distant métastasés 

The model-derived curves fitted the actuarial curves adequately for all but the 

RT-I-HT treatment group (as an example, see figure 5.18 which gives the model fit 

to the RT only group). Again the Newton algorithm failed to converge to a 

maximum in the RT-I-HT group. There was a stepwise nature to the curve for this 

group, although this was not as pronounced as for local recurrence. The parameters 

for resistant tumour cell number and doubling time for the different groups are 

shown in Table 5.4. The resistant disease estimates are similar for the different 

treatment groups. Any minor differences are not statistically significant (using the 

Likelihood Ratio Test), i.e. similarly good fits could be obtained for each of the four 

curves with the assumption that they all had the same volume of resistant disease. 

Longer follow-up may be required however to be sure of the true height of the 

plateau on the curves, and thus of the resistant disease estimates. In view of the
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Figure 5.19 Model fit to all four treatment groups combined for time to distant 
métastasés

similar nature of the curves for distant métastasés the four groups were combined, 

and the model was fitted to the whole data set. This enabled more reliable estimates 

to be produced for the model parameters for metastatic disease. These estimates are 

given in table 5.4, and the model fit is given in figure 5.18. A value of under 2 logs 

of resistant metastatic disease was produced, with a doubling time of 24 days.

As patients who were treated with RT alone received no systemic therapy, the 

resistant tumour cell number for this group provides an estimate of the 

micrometastatic tumour volume in untreated patients. Thus, following the preceding 

comments, it appears that neither CT, nor HT, nor CT +  HT significantly reduced
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the micrometastatic tumour burden. This is in keeping with the disappointing results 

observed in this trial in terms of prevention of the development of métastasés.

The subclinical metastatic growth rate estimate for the whole patient population (24 

days) was similar to the estimates for local recurrence in the RT and RT+CT groups 

(24-25 days). However, RT+CT+H T resulted in a slight lengthening of the 

estimated mean doubling time for both local and micrometastatic disease (88 and 47 

days respectively).

5.5.3 Interpretation of the results of the model application to locally advanced 

breast cancer

This application was encouraging in that the mathematical model also gave good fits 

to most of the remission duration curves for a second group of patients with breast 

cancer, but using different treatment modalities. The exception was in the use of 

hormone therapy. This suggests that the model assumptions of log-normal 

distribution of resistant disease, exponential growth rate of subclinical resistant 

disease and log-normal distribution of growth rates may have widespread 

applicability, although alternative assumptions may be necessary for modelling the 

effects of hormone therapy.

Breast cancer is usually considered to be a more slowly growing tumour than acute 

leukaemia. It is perhaps surprising, therefore, that the mean doubling times for
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breast cancers estimated in the current study for patients receiving RT + /- CT 

(approximately 24 days) were only slightly longer than those previously estimated 

for AML (see table 5.1). However, the median duration of remission in the AML 

study (16 months) was similar to the median response durations for patients treated 

with RT in the current study. Two factors should be remembered. Firstly, the 

current study only concerns patients with locally advanced breast cancer and it is 

possible that the growth rates of tumours in such patients may not be the same as 

those for patients who present with operable disease (see the growth rate estimates 

in table 5.2). Secondly, the estimates for doubling time assume exponential growth. 

While this may be justified for subclinical growth, tumour growth after clinical 

relapse almost certainly follows Gompertzian kinetics (Norton & Simon, 1986). 

Most estimates of growth rate in breast cancer have been made from serial 

measurements of volume in clinically detectable métastasés. If a single viable cell 

remains after treatment, approximately 30 doubling times are required before relapse 

from this single initiating call becomes detectable. From the results of this study, it 

can be calculated that, for a patient who has only a single resistant cell and has a 

tumour with a doubling time at the upper limit of the 2 standard deviation range 

(100 days), relapse would occur approximately 8 years after treatment. This is 

consistent with the relapse pattern observed.

Both chemotherapy and hormone therapy had a marked effect on local tumour cell 

kill in addition to that given by radiotherapy. Neither treatment, however, had a 

significant effect on the micrometastatic tumour burden (which would not, of course, 

be affected by the radiotherapy, being outside the radiotherapy field). Can these
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findings be explained on the basis of existing knowledge of tumour kinetics? One 

possibility is a synergistic effect between RT and either CT or HT on loco-regional 

cell-kill. Tubiana et al have shown that the thymidine labelling index of tumours 

temporarily falls in response to RT (Tubiana et al., 1989). This is followed by a 

period in which the labelling index increases above pretreatment levels. As CT has 

a greater effect on dividing than on resting cells, the period immediately after RT 

may be the optimal time for giving cytotoxic agents to improve local control. This 

recruitment effect of RT would not be expected to apply to micrometastatic cells, 

since they may well be outside the radiotherapy field, which may explain the lack 

of a significant effect of CT in these sites.

The model estimates for mean micrometastatic tumour burden were on average just 

less than 2 logs, or 100 cells. Upon discussion with clinicians involved in this study, 

this was found to be considerably lower than expected. They subsequently raised the 

possibility of giving moderate doses of total body radiotherapy (TBI) to these 

patients, with a view to eradicating this micrometastatic tumour burden, and perhaps 

curing more patients. Previously they had considered that the micrometastatic tumour 

burden would be too large to make this treatment feasible. The rationale for the 

approach is that TBI may be non-cross-resistant with CT or HT. The evidence, 

albeit tenuous, that the doses of RT given in TBI could be effective against 

micrometastatic disease comes from studies of spinal métastasés in patients who had 

received internal mammary chain RT. A scatter dose of approximately 1000 Rads 

was given to the T3-T7 vertebrae. It was observed that patients developed less
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thoracic spine métastasés than had been expected (Grimard et al., 1988). Thus the 

model generated hypotheses that resulted in suggestions for new treatments.

The poor fit of the model-derived curve to the actuarial curve for local disease 

progression in patients treated with RT + HT may paradoxically have led to other 

interesting findings. The model assumption of a log normal distribution of growth 

rates may well be invalid for this group. In the context of advanced breast cancer, 

it is widely recognised that patients with oestrogen receptor (ER) positive tumours 

are more likely to respond to hormonal manipulation than those who are ER 

negative. The number of cases in the present study for whom such measurements 

were available precluded application of the model to the separate subgroups. 

However, application of the model to separate intervals on the HT actuarial response 

duration curve and discussion with the clinicians involved in the study suggested that 

hormonal therapy had two distinct effects: first a ’cytotoxic’ effect, and second a 

’bimodal’ effect on tumour growth. One subgroup apparently had growth 

characteristics similar to those treated with RT alone. The other subgroup apparently 

experienced a period of growth arrest followed by exponential growth, also at a 

similar rate to those who received RT alone.

The distribution of local resistant tumour volumes for the different groups indicate 

that even a small increase in tumour cell kill (perhaps with the use of different drug 

regimens) should have a marked effect on the long term control of local disease. 

Further discussion with the clinicians involved in this study suggested that the failure 

of CT and HT to act synergistically either in the control of local disease or in the
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eradication of micrometastases could possibly have been due to the scheduling used 

in this study. HT could potentially have caused growth arrest and thereby reduced 

the effect of CT.

In conclusion, application of the mathematical model to breast cancer has led to 

hypotheses concerning the mechanisms of action of the different treatment modalities 

which would not otherwise have been considered. This has given a different 

viewpoint on the results of the trial, suggesting possibilities for the reorganisation 

of the treatment required, for instance rescheduling of the treatments, and raising 

hypotheses which should be considered in the design of subsequent studies.

It is noteworthy that RCTs provide very good data sets for model applications, as 

can be seen from this application.

A further application to this data is given in the next chapter, which examines 

multivariate methodologies for the remission duration model.
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Table 5.1

Parameter estimates for MRC AML trial 8, assuming 10̂  cells are clinically 

detectable, and all these cells need to be eliminated to cure the patient.

log of remaining
Group No. resistant tumour doubling times 95%

in mean SD DT in days' SD” range
group (Mv) W (<Tg) of DT

1st CR 751 1.9 (.39) 2.1 (.42) 17 (.05) 0.40 (.02) 3-100
2nd CR'(l) 48 3.6 (1.5) 2.1 (.87) 10 (.17) 0.36 (.10) 2-52
2nd CR'(2) 63 2.3 (1.4) 1.8 (1.1) 14 (.14) 0.29 (.07) 4-50
2nd CR%3) 27 0.1 (4.1) 0.9 (24) 19 (1.7) 0.29 (.11) 5-69

“ converted from mean log DT, i.e. =  %o(mean log oTi 

 ̂ standard deviation of logio(DT) 

the three 2nd CR groups are determined by the duration of 1st CR : group 1 =  1st 

CR 0.5-1.5 years, group 2 = 1st CR 1.5-2.5 years, group 3 = 1st CR > 2.5 years

(figures in parentheses are standard errors of estimates, and thus indicate the 

precision of the parameter estimates. The doubling time (/Hg) value is the standard 

error of logio(DT))
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Table 5.2

Parameter estimates for recurrence by tumour grade in operable breast cancer, 

assuming 10  ̂cells are clinically detectable, and all these cells need to be eliminated 

to cure the patient.

Group No.
log of remaining 
resistant tumour doubling times 95%

GOF'
Test

in mean SD DT in days' SD^ range P-
group (Mv) (O (f̂ g) (^g) of DT value

Grade I 95 7.1 (6.5) 3.6 (8.6) 1971 (1.2) .47 (.35)
233-

17000 .53
Grade II 512 0.7 (0.6) 5.0 (1.3) 71 (.08) .43 (.06) 10-493 .33
Grade III 359 0.1 (3.6) 0.6 (18) 26 (.8) .47 (.05) 3-215 .64

“ converted from mean log DT, i.e. =

** standard deviation of logio(DT) 

goodness-of-fit

times beyond 15 months were censored to produce this model fit

(figures in parentheses are standard errors of estimates, and thus indicate the 

precision of the parameter estimates. The doubling time (/Xg) value is the standard 

error of logio(DT))
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Table 5.3

Parameter estimates for local recurrence/progression in the EORTC locally advanced 

breast cancer trial, assuming 10̂  cells are clinically detectable, and all these cells 

need to be eliminated to eradicate the local disease.

log of remaining GOF"
Group No. resistant tumour doubling times 95% Test

in mean SD DT in days" SD*’ range P-
group ( M v )  ( o ^ v ) ( / ^ g )  ( ^ g ) of DT value

RT alone 72 3.1 (1.6) 4.0 (1.5) 25 (.12) 0.29 (.09) 7-94 .31
RT -1- CT 69 0.1 (.44) 1.8 (4.2) 24 (.23) 0.28 (.10) 7-85 .15
RT -H HT" 64
RT-HCT-HHT 64 5.6 (7.4) 7.8 (6.2) 88 (.07) 0.14 (.05) 48-164 .57
RT 4- H r 64 -1.1 (1.5) 2.8 (1.2) 14 (.11) 0.13 (.10) 8-25 .62

“ converted from mean log DT, i.e. = dt)

 ̂ standard deviation of logio(DT)

 ̂ goodness-of-fit

‘‘ the model failed to fit this group 

times beyond 15 months were censored to produce this model fit

(figures in parentheses are standard errors of estimates, and thus indicate the 

precision of the parameter estimates. The doubling time (^g) value is the standard 

error of log,o(DT))
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Table 5.4

Parameter estimates for distant metastatic disease in the EORTC locally advanced 

breast cancer trial, assuming 10̂  metastatic cells are clinically detectable, and all 

these cells need to be eliminated to eradicate the distant metastatic disease.

log of remaining GOF"
Group No. resistant tumour doubling times 95% Test

in mean SD DT in days® SD’’ range P-
group ( M v )  ( ( T v ) ( / ^ g )  ( ( T g ) of DT value

RT alone 72 1.6 (.77) 2.8 (1.0) 17 (.12) 0.39 (.09) 3-100 .62
RT -h CT 69 1.9 (1.2) 3.8 (2.0) 30 (.14) 0.31 (.16) 7-124 .28
RT -h HT̂ *
RT+CT+HT 64 2.8 (5.2) 1.6 (3.4) 47 (.53) 0.53 (.21) 4-504 .43
All 4 groups 269 1.5 (1.3) 2.1 (2.1) 24 (.16) 0.49 (.11) 3-218 .16

“ converted from mean log DT, i.e. = log o-n

 ̂ standard deviation of log,o(DT) 

goodness-of-fit

the model failed to fit this group

(figures in parentheses are standard errors of estimates, and thus indicate the 

precision of the parameter estimates. The doubling time (^g) value is the standard 

error of logio(DT))
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Chapter 6

MULTIVARIATE REMISSION DURATION MODEL

6.1 Introduction

The remission duration model, as described in chapter 4, attempts to relate response 

durations to both sub-clinical residual (or more properly resistant) tumour, and to 

tumour growth rates. It seems likely that prognostic factors may affect either or both 

of these parameters. Some obvious examples would be presenting tumour size, 

which is very likely to be related to the volume of resistant tumour (see for instance, 

Goldie & Goldman (1979)), and putative markers of proliferation such as Ki67 (see 

chapter 3), which might be expected to correlate with tumour growth rates. It is 

therefore a fairly simple and logical extension of the model to allow putative 

prognostic factors to affect these parameters.

Prognostic factors have three main uses. Firstly, by defining risk groups, it is 

possible to give appropriate information to patients. Secondly, prognostic factors 

allow comparisons to be made between different centres (see for example, Wagstaff 

et al (1988)). Thirdly, it is sometimes possible to find high risk groups who need a 

new or better form of treatment, or low risk groups who may not need to be treated 

so intensively, or for so long. However, the definition of risk in itself does not 

indicate whether a patient will benefit from treatment (for example breast cancer
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patients who are oestrogen receptor negative, may have a poorer prognosis than 

those who are oestrogen receptor positive, but they are less likely to benefit from 

endocrine therapy (McGuire et al. , 1982)). The principles of cancer therapy outlined 

in chapter 3 may, however, enable a good treatment strategy to be found for groups 

of patients at different degrees of risk. For example, chemotherapy may be most 

effective in tumours with a fast growth rate, or a novel treatment such as 

immunotherapy may be most effective in cases where the tumour burden is low. 

However, this information is not easily obtained, and the current statistical analysis 

techniques are of little help in this area.

The potential advantages of a multivariate version of the remission duration model 

are therefore considerable. Since the model provides information on two of the 

factors which are most important in deriving an appropriate strategy, namely 

resistance and growth rates, it should be possible to suggest suitable groups for a 

new treatment, and help in understanding the outcomes of existing treatments in 

particular prognostic subgroups.

A great deal of effort has been invested in discovering prognostic factors, 

particularly in the field of cancer (see for example the International Hodgkin’s 

Disease Database Project (Somers et al. , 1990)). Although attempts have been made 

to target treatments to particular groups of patients, this has often merely entailed 

delineating groups of patients who perform badly, and giving these patients more 

intensive treatment. This is partly, as already suggested, because the current methods 

of prognostic factor analysis (mainly the proportional hazards model described by
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Cox (1972)) only give significance levels and relative risks for the relevant factors. 

Thus there is little in the results themselves to indicate the appropriate treatment 

strategy. By relating prognostic factors to tumour growth rates and resistance, the 

multivariate methods based on the remission duration model presented in this thesis 

should be more useful in this area, and help in the choice of treatment strategies for 

prognostic subgroups, thus making good use of the vast amount of available 

prognostic information.

6.2 Mathematical description

The simplest method of applying prognostic factor analysis to the remission duration 

model is to allow factors to influence the mean resistant tumour and the mean 

growth rate in a linear fashion. Thus let the log of the resistant tumour be normally 

distributed, with log mean where is a linear function of n prognostic variables, 

as follows:

= ^0 +  +  ^2^2 + . . . . +  /3„x„

where Xi,...,x^ are the values of the n prognostic variables for a given individual, 

j8 i,...,i8 n are a set of regression coefficients, and jSo is a baseline resistant tumour 

value (potentially for a patient having values of 0  for all the prognostic factors). 

Similarly let the log tumour doubling time, /Ug, also be a linear function of n 

prognostic variables:

Mg =  7 0  +  7 1 ^ 1  +  7 2 ^ 2  +  . . . . +  7 n X n
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where are a second set of regression coefficients, and 7 0  is a baseline log

tumour doubling time (again potentially for a patient having values of 0  for all the 

prognostic factors).

Then the mathematics derived in chapter 4 apply, including the first and second 

partial derivatives, with jSo+jSiXj+ 1 8 2X2 + . • . .+/3„x„ replacing and

7 0 + 7 1 X1 + 7 2 X2 + . . . . + 7 nXn replacing /Xg. The maximum likelihood routine needs 

to include the j8 ’s and 7 ’s, and thus maximise on 2n+4 parameters, rather than just 

4. Therefore the first and second partial derivatives involving the j8 s and 7 s must be 

derived. For and 7 0  these are identical to the values derived for and /Xg in 

chapter 4. The first partial derivatives for the remaining j8 s and 7 s are as follows 

(derived from differentiating under the integral given in equations {4.5} and {4.6} 

from chapter 4):

ap
3A

Xi{(V-j8o-j8,Xi-j82X2-...-j8nXn)/(Tv̂ } N,

P(CR)

Vi

Ng dg dv

m m )
aft

Xr U,

V
l P ( c W

N dg dv

where

Nv = (l/a y T ir)  exp(-(v-i8o-j8iXi-i82X2-...-i8„x„)V2 0  

and

Ng =  (1 /a g A /T ï) exp(-(g-7o-7iXi-72X2-...-7nXjV2ffg2)
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and where, from equation {4.4} (with Ng and Ng modified as in equations {6.2} and

{6.3}) differentiating under the integral,

Vr
a(P(CR)) _ Xi{(v-/3 o-i8 iXj-Ax2-...-i8 ^J/av^} Nv dv {6.4}

The Xj can be taken outside the integral in equations {6.1} and {6.4} and the first 

derivative therefore reduces to:

ap _ X ap

i.e. as in equation {4.8}, but with N  ̂ and Ng defined as in equations {6.2} and 

{6.3}. Note generally that the form of all the first and second partial derivatives of 

the /3’s and 7 ’s is identical to that of and /Xg respectively but with the additional 

multiplication by Xj, and that the Xj’s can be taken outside the integrals. Thus the 

remaining partial derivatives are simply as follows:

The second partial derivatives follow the same pattern:

where 0 2 =(fv, a3 =/Xg, 0 4 =ffg, as before.
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and for the -y/s

à . S£  _  ,  L  SP and a . m i  _  ,  L  921 4 .
a-y, a@j -  dy^de^ ~ dn^de^ u - 1 ,4 )

The (/8 i, 7 j), (jSi, i8 j), (7 ,, 7 j) terms are:

f e , i  =  i f ,  - < 1  i f  =  i f  (f =  ^ o r 7 )

and the and y-  ̂ terms are:

Thus Newton’s method (see chapter 4) can again be used to fit the model, and derive 

maximum likelihood estimates for the /?’s and 7 s.

6.3 Applications

6.3.1 Operable breast cancer

The first application is taken from a retrospective series of 966 patients aged less 

than 70 years with operable breast cancer. This cohort of patients, dating back to 

1975, was selected to analyse the effect of menopausal status on patient survival in 

breast cancer, and is being reported separately. An application from this cohort was 

given in chapter 5.3 relating to the histological grade of the tumour. Four factors 

were considered in the multivariate model, namely the number of involved lymph
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nodes, tumour size, histological grade, and the effect of the menopause (ultimately 

coded as those patients who were 1-5 years after the occurrence of the menopause 

versus all others). This study has the benefit, for modelling purposes of including 

prognostic factors almost certainly related to both growth rates and residual disease 

(see the application in chapter 5.3 for an explanation of why the model results in this 

case apply to residual rather than resistant disease and why this residual disease 

should be log-normally distributed). Tumour grade falls into the former category 

(see chapter 5.3). Tumour size certainly falls into the latter category, and the 

number of lymph nodes is probably also related to the volume of residual disease 

after surgery. It was not known whether any effect of the menopause would be 

related to tumour growth rate or to residual disease.

Note that for both the applications in this chapter, as for those given in chapter 5, 

it is assumed that 1 0  ̂ cells are clinically detectable, and all these cells need to be 

eliminated to eradicate the disease. The model estimates for doubling times under 

this assumption are not inconsistent with those reported in breast cancer (Shackney 

et ah, 1978).

The multivariate model was applied in a stepwise fashion, with each factor being 

considered for inclusion both for its effect on residual disease and for its effect on 

growth rates at each step. Thus initially the model was applied with just the four 

baseline parameters (/?o»̂ v̂>7 o and i.e. the model as in chapter 4 - /Xv=/?o and 

Mg=7 o) giving a baseline likelihood. Then, for the first step, the model was applied 

for each factor in turn both for residual disease effect and growth rate effect,
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estimating a single jSj or 7 j, and giving a series of new likelihoods. The differences 

from the baseline likelihood were doubled to give a statistic which is distributed as 

approximately chi-square with one degree of freedom (Silvey, 1970). This enables 

a p-value to be calculated for inclusion of the factor in the model. The factor giving 

the largest chi-square was then included, giving a new baseline likelihood, and the 

process repeated (see table 6.1 for a detailed worked example). Stepping was halted 

when no factors had significance levels less than 0.05. Factors were excluded from 

the model in a similar fashion if their significance levels were greater than . 1 0 .

It should be noted that if a factor’s effect on doubling time was included at one step, 

that factor’s effect on residual disease would still be considered in subsequent steps 

(and vice-versa). Thus factors may be related to both residual disease and growth 

rates.

The model results were compared with a similar analysis using the conventional 

multivariate approach, namely the proportional hazards model of Cox (1972). This 

produces a similar series of likelihoods and likelihood-ratio-test based chi-square 

statistics, based on a partial likelihood derived from the proportional hazards 

assumption (Cox, 1972).

The factors were coded as follows. The number of lymph nodes were categorised 

into 4 groups (coded as 0,1,2,3), the groups being 0, 1-3, 4-9 and > 10 involved 

nodes. These groupings produce relapse-free curves that are roughly equally 

separated, and have in the past been commonly used to analyse the Guy’s breast
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cancer data (for examples, see Richards et al (1990), Bad we et al (1991)). Tumour 

size was coded as <  2  cm and > 2  cm, as this size appears to divide the curves 

with maximum separation (the log of the tumour size is ideally a better way to 

analyse its effect, but has the practical difficulty of how to code the tumours of size 

zero, and in any case gives nearly equivalent results to the method chosen). 

Histological grade was included as two variables, namely grade 1 versus grades 2 

and 3, and grade 3 versus grades 1 and 2. This is necessary since the differences 

between the grades are not uniform (it would be inappropriate to enter the variable 

simply coded as 1, 2 or 3 since this would assume that the differences between 

grades 1 and 2 were the same as the differences between grades 2 and 3, which they 

clearly are not). Menopausal status was coded as 0 or 1, corresponding to the two 

groups described above.

The complete stepwise results for the application of the model are given in table 6.1, 

and the equivalent proportional hazards (Cox) model results are given in table 6.2.

Both histological grade variables exhibited a large and highly significant effect on 

doubling time, with quite large additional %̂ s compared to their possible effect on 

residual disease. In addition, after being entered into the model their subsequent 

effect on residual disease was not significant. This confirms the results from chapter

4.3 and provides a further validation of the model’s assumptions. Furthermore, the 

significance of the histological grade variables was considerably greater than that 

derived from the Cox model, suggesting a better fit. The proportional hazards 

assumption is almost certainly violated by these variables, making the Cox model
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Figure 6 .1 Log minus log plot for tumour size demonstrating approximately equa 
separation of the curves and thus proportionality of the hazards.

inappropriate. In contrast, the remission duration model incorporates such effects

explicitly. Testing for goodness of fit of the proportional hazards model is not a

straightforward task (Kalbfleisch & Prentice, 1980; Anderson, 1982). One approach

is to plot log(-log(S(t,z))) where S(t,z) is the survivorship function for a set of

covariate values, z. If the proportional hazards assumption is valid, the resulting

plots should have a similar separation at all time points (Kalbfleisch & Prentice,

1980). An example where this is true is shown in figure 6.1, which plots tumour

size above and below 2cm in this fashion. The log minus log plots for histological

grade are shown in figure 6 .2 , and do not show a constant separation, the early parts

of the curves being closer together than the later parts. This suggests that the hazards

are not proportional, thus confirming that the proportional hazards model is

inappropriate for this variable.
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Figure 6.2 Log minus log plot for the histological grade groups, demonstrating 
the lack of proportionality of the hazards.

The effect of menstrual status is seen very clearly to be a residual disease effect.

The contrast between its effect on residual disease compared to its effect on growth

rates is the most clear of all the variables (in step 4, when it is entered into the

model, the for residual disease is 14.96, compared to only 5.5 for the growth rate

effect). Following their findings of large differences in survival related to the timing

of surgery within the menstrual cycle, the clinicians at Guy’s hospital have been

considering whether the poor outcome for patients who have recently become

menopausal might result from an effect related to the timing of surgery effect,

possibly hormonal in nature. It is important to know that the effect in this group is

probably a residual disease effect, since this may have consequences for evaluating

any new therapy given to these patients. It also suggests that an effective new

treatment (simply putting the patients on a combination oestrogen/progesterone pill
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has been suggested as a possible treatment) may well result in more patients being 

cured, not just in a prolongation of survival.

The overall fit of the remission duration model can be compared with that of the 

Cox model using the likelihood ratio test (Silvey, 1970). The overall x^s for 

improvement are 277.8 and 264.1 respectively for the two models. There are five 

extra parameters in the final step of the remission duration model compared with the 

final step of the Cox model, thus a of 13.7 with 5 degrees of freedom is the 

appropriate test statistic, which yields a p-value of < .02. Thus the remission 

duration model produces a significantly better fit.

Before this analysis, it was thought by the clinicians involved in this study that the 

poor outcome for the menopausal patients might be a result of these patients having 

a worse than average mix of conventional prognostic factors (histological grade, 

nodes and tumour size). This is clearly seen, from the results of both multivariate 

models, not to be the explanation. However, the remission duration model results 

are more convincing in this respect since they incorporate the 

non-proportional-hazard effects of histological grade.

The consistency in the estimates of the four basic remission duration model 

parameters as additional variables are entered into the model is encouraging (see 

table 6.1). The SD estimates (d  ̂ and cTg) fell slightly with the introduction of each 

additional variable, as might be expected since each additional variable explains 

some of the variability in the data, but were remarkably consistent. The mean
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estimates (^q and 7 0 ) changed when a factor was entered which related to that mean, 

but were otherwise extremely consistent. These parameter values are listed 

separately for ease of comparison in table 6.3.

6.3.2 Locally advanced breast cancer

The second application is taken from the EORTC trial in locally advanced breast 

cancer reported in chapter 5.5. The comparison of radiotherapy (RT) with 

radiotherapy plus chemotherapy (RT+CT) for local recurrence suggested that the 

addition of CT produced an extra 3 logs of cell-kill on local disease. In this simple 

model comparison the other 3 parameters are also allowed to vary, and thus the 

estimate of 3 logs is not a direct comparison of the difference in mean log resistant 

disease (although it is possible that CT could influence the SD of the log of resistant 

disease and the SD of the log of doubling times, it seems nevertheless unlikely). 

Thus by putting treatment as a variable in the multivariate model, this possibility is 

eliminated and a more direct measure of cell-kill can be obtained. In addition a 

measure of any effect of CT on doubling time can be evaluated.

The multivariate results for this analysis are given in table 6.4. The treatment 

variable (i.e. the addition of CT) is seen to have an effect on resistant disease only, 

with the p-value for any additional effect on doubling time being only 0.39. The ft 

value is 3.53 thus quantifying the cell-kill effect at about 3 V2  logs, close to the value 

of 3 logs obtained in the original fits. The difference between the original fits and 

the new multivariate model fit can be compared using the likelihood ratio test (see
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Figure 6.3 Multivariate model fits to the RT alone group and the RT+CT group 
for time to local progression.

chapter 4). The likelihoods for the two separate fits for RT and RT+CT were 

-340.36 and -204.36 respectively, giving an overall likelihood of -544.72. This 

compares with the combined likelihood for the multivariate model of -545.94, giving 

a of 2.45, and a p-value of 0.12. Thus the fit for the multivariate model is not 

significantly worse than for the individual fits. The parameter values can be used to 

draw expected model curves for the two groups, and these are shown in figure 6.3. 

It can be seen that the model fits are still good. It is also encouraging that the 

estimated parameter values for the other three parameters are almost unchanged from 

their baseline estimates after the addition of the treatment variable into the model 

(see table 6.4). This confirms that these estimates are reliable and robust.

The remission duration model can again be compared with the proportional hazards 

model. The latter produced a of 11-3 (p = .0008), which is again a worse fit,
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although not significantly worse. There is some slight deviation away from 

proportional hazards in the early part of the curve, since the RT+CT curve starts 

with a short shoulder, whereas the RT alone curve falls almost immediately. This 

is however difficult to prove, given the difficulties in testing goodness-of-fit of the 

proportional hazards model already mentioned. It should be noted that in view of 

these restrictions in the proportional hazards model there are likely to be occasions 

where the remission duration model will detect differences that are not apparent with 

the proportional hazards model. The opposite is of course also possible for cases 

where the remission duration model provides a poor fit. Thus both models should 

have a role in the analysis of cancer trials data.

6.4 Discussion of the multivariate remission duration model results

The multivariate remission duration model has given consistent and comprehensible 

results for the two applications given. This is encouraging for its more widespread 

use in the analysis of response and remission duration data. The coefficients are easy 

to understand and interpret since they relate directly to measures of clinical efficacy. 

For instance from the estimated parameter values, the menopausal patients from the 

first example can be seen to have an additional residual disease volume of just over 

two logs compared to other patients (allowing for any imbalances in the other three 

factors). Although the doubling time coefficients are slightly more difficult to 

interpret, this is still a relatively easy task. A 7  coefficient of 1 would imply a 1-log 

increase in doubling time, for example from 10 to 100 days. The values found in the
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first example (see the final summary of coefficients table in table 6 . 1 ) are 

considerably less than this ranging from .08 to .61, which would correspond to 

increases in doubling time from, for example, 50 days to 6 8  days and 50 days to 544 

days respectively.

As with the Cox proportional hazards model, estimated model curves can be easily 

constructed for any values of the parameters (see for example figure 6.3), providing 

a simple graphical representation of the nature and magnitude of the effects.

It is interesting to note that with as many as 6  variables included in the multivariate 

model, as in the operable breast cancer case, Newton’s method still rapidly 

converged on the maximum likelihood. This method is relatively insensitive to the 

number of parameters to be estimated when the likelihood function has a clear 

maximum, as seems to be the case in the examples given.

In conclusion, this model should provide an additional and useful method of 

analysing multivariate response duration data, and will provide additional 

information to help in understanding the nature of the effects of different prognostic 

factors.
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Table 6 .1 Multivariate remission duration model results for the operable breast 

cancer application.

(The following abbreviations are used in this table to indicate whether the variables 

effect on mean residual disease or on mean log doubling time is being considered: 

RD = Residual disease DT = doubling time. In addition menopausal status is 

abbreviated MENOP S. The values given for bave been converted to doubling 

times for ease of comprehension; thus 1 0 ^° is shown rather than 7 0  itself).

Descriptive statistics for variables (after recoding - see text)

VARIABLE 
NO. NAME MINIMUM MAXIMUM MEAN

STANDARD
DEVIATION

1 NODES 0 3 .8271 .9658
2 GRADE lv2&3 0 1 .9017 .2980
3 GRADE l&2v3 0 1 .3716 .4835
4 TUMOUR SIZE 0 1 .6429 .4794
5 MENOP S. 0 1 .0963 .2951

Initial likelihood (4 basic parameters only in the model) = -3987.8591 

Parameter values at maximum likelihood: /?o=0.26, a^=4.03, 10"^o=54.0, <r^=0A6 

STEP NUMBER 0 (NO TERMS IN THE MODEL)

STATISTICS TO ENTER OR REMOVE VARIABLES ARE AS FOLLOWS:

VARIABLE APPROX APPROX
NO. NAME CHI-SQ. CHI-SQ. P-VALUE LOG

ENTER REMOVE LIKELIHOOD

1 RD:NODES 186.03 < 0 . 0 0 0 1 -3894.8430
2 RD:GRADE lv2&3 46.06 < 0 . 0 0 0 1 -3964.8308
3 RD:GRADE l&2v3 20.40 < 0 . 0 0 0 1 -3977.6587
4 RD:TUMOUR SIZE 45.71 < 0 . 0 0 0 1 -3965.0034
5 RD:MENOP S. 18.23 < 0 . 0 0 0 1 -3978.7456
6 DT: NODES 149.75 < 0 . 0 0 0 1 -3912.9834
7 DT:GRADE lv2&3 52.39 < 0 . 0 0 0 1 -3961.6650
8 DT:GRADE l&2v3 23.21 < 0 . 0 0 0 1 -3976.2524
9 DT:TUMOUR SIZE 37.64 < 0 . 0 0 0 1 -3969.0410

1 0 DT:MENOP S. 6.83 0.0089 -3984.4426
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STEP NUMBER 1 VARIABLE NUMBER 1 (RDiNODES) IS ENTERED

log likelihood = -3894.8430 
Improvement in (= 2  * (log (improv. in likelihood)) ) =  186.03 P < 0.0001

Parameter values at maximum likelihood: jSo=-1.83, ^^=3.75, 10^®=56.9, (7g=0.41

SUMMARY OF VARIABLES CURRENTLY ENTERED

VARIABLE COEFF.

1 RDiNODES 2.61

STATISTICS TO ENTER OR REMOVE VARIABLES ARE AS FOLLOWS: 

VARIABLE APPROX APPROX
NO. NAME CHI-SQ. CHI-SQ. P-VALUE LOG

ENTER REMOVE LIKELIHOOD

1 RD iNODES 186.03 <0.0001 -3987.8591
2 RDiGRADE lv2&3 31.13 < 0 . 0 0 0 1 -3879.2803
3 RDiGRADE l&2v3 17.08 < 0 . 0 0 0 1 -3886.3025
4 RDiTUMOUR SIZE 20.08 < 0 . 0 0 0 1 -3884.8015
5 RDiMENOP S. 18.88 < 0 . 0 0 0 1 -3885.4026
6 DTiNODES 7.09 0.0077 -3891.2974
7 DTiGRADE lv2&3 37.88 < 0 . 0 0 0 1 -3875.9031
8 DTiGRADE l&2v3 19.79 < 0 . 0 0 0 1 -3884.9460
9 DTiTUMOUR SIZE 17.26 < 0 . 0 0 0 1 -3886.2126

1 0 DTiMENOP S. 7.39 0.0066 -3891.1494

STEP NUMBER 2 VARIABLE NUMBER 7 (DT:GRADE lv2&3) IS ENTERED

log likelihood = -3875.9031
Improvement in (=2*(log(improv. in likelihood)) ) = 37.88 P < 0.0001

Parameter values at maximum likelihood: j8o=-1.53, (7^=3.69, 10^°=299, a, =0.41

SUMMARY OF VARIABLES CURRENTLY ENTERED

VARIABLE____________ COEFF.

1 RD iNODES 2.52
7 DTiGRADE lv2&3 -0.74
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STATISTICS TO ENTER OR REMOVE VARIABLES ARE AS FOLLOWS:

VARIABLE APPROX APPROX
NO. NAME CHI-SQ. CHI-SQ. P-VALUE LOG

ENTER REMOVE LIKELIHOOD

1 RD iNODES 171.52 < 0 . 0 0 0 1 -3961.6650
2 RD iGRADE lv2&3 0.39 0.5333 -3875.7090
3 RD iGRADE l&2v3 8.39 0.0038 -3871.7102
4 RD iTUMOUR SIZE 19.49 < 0 . 0 0 0 1 -3866.1560
5 RD iMENOP S. 17.74 < 0 . 0 0 0 1 -3867.0327
6 DTiNODES 5.82 0.0158 -3872.9917
7 DT iGRADE lv2&3 37.88 < 0 . 0 0 0 1 -3894.8430
8 DTiGRADE l&2v3 12.72 0.0004 -3869.5417
9 DTiTUMOUR SIZE 14.50 0 . 0 0 0 1 -3868.6553

1 0 DTiMENOP S. 6.24 0.0125 -3872.7827

STEP NUMBER 3 VARIABLE NUMBER 4 (RD:TUMOUR SIZE) IS ENTERED

log likelihood = -3866.1560
Improvement in (=2*(log(improv. in likelihood)) ) = 19.49 P < 0.0001

Parameter values at maximum likelihood: j8o=-2.41, a^=3.59, 10^°=291, jg=0.41

SUMMARY OF VARIABLES CURRENTLY ENTERED

VARIABLE COEFF.

1 RD iNODES 2.31
7 DTiGRADE lv2&3 -0.73
4 RD iTUMOUR SIZE 1.61

STATISTICS TO ENTER OR REMOVE VARIABLES ARE AS FOLLOWS:

VARIABLE APPROX APPROX
NO. NAME CHI-SQ. CHI-SQ. P-VALUE LOG

ENTER REMOVE LIKELIHOOD

1 RD iNODES 148.24 < 0 . 0 0 0 1 -3940.2737
2 RD iGRADE lv2&3 2 . 1 2 0.1458 -3865.0984
3 RD iGRADE l&2v3 7.93 0.0049 -3862.1912
4 RD iTUMOUR SIZE 19.49 < 0 . 0 0 0 1 -3875.9028
5 RD iMENOP S. 14.96 0 . 0 0 0 1 -3858.6777
6 DT iNODES 6 . 2 1 0.0127 -3863.0508
7 DT iGRADE lv2&3 37.29 < 0 . 0 0 0 1 -3884.8015
8 DT iGRADE l&2v3 13.11 0.0003 -3859.5994
9 DT iTUMOUR SIZE 1.49 0 . 2 2 2 1 -3865.4106

1 0 DT iMENOP S. 5.50 0.0190 -3863.4043
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STEP NUMBER 4 VARIABLE NUMBER 5 (RDiMENOP S. ) IS ENTERED

log likelihood = -3858.6777
Improvement in (=2*(log(improv. in likelihood)) ) = 14.96 P =  0.0001

Parameter values at maximum likelihood: /3o=-2.57, <7^=3.58, 10^^=282, (jg=0.40

SUMMARY OF VARIABLES CURRENTLY ENTERED

VARIABLE____________ COEFF.

1 RD iNODES 2.32
7 DTiGRADE lv2&3 -0.71
4 RD iTUMOUR SIZE 1.49
5 RD iMENOP S. 2.26

STATISTICS TO ENTER OR REMOVE VARIABLES ARE AS FOLLOWS:

VARIABLE APPROX APPROX
NO. NAME CHI-SQ. CHI-SQ. P-VALUE LOG

ENTER REMOVE LIKELIHOOD

1 RD iNODES 150.07 < 0 . 0 0 0 1 -3933.7129
2 RD iGRADE lv2&3 1.72 0.1892 -3857.8157
3 RD iGRADE l&2v3 6.84 0.0089 -3855.2585
4 RD iTUMOUR SIZE 16.71 < 0 . 0 0 0 1 -3867.0327
5 RD iMENOP S. 14.96 0 . 0 0 0 1 -3866.1560
6 DTiNODES 5.74 0.0166 -3855.8064
7 DT iGRADE lv2&3 36.19 < 0 . 0 0 0 1 -3876.7705
8 DT iGRADE l&2v3 13.22 0.0003 -3852.0693
9 DT iTUMOUR SIZE 1.37 0.2422 -3857.9939

1 0 DT iMENOP S. 0.03 0.8554 -3858.6611

STEP NUMBER 5 VARIABLE NUMBER 8  (DTiGRADE l&2v3) IS ENTERED

log likelihood = -3852.0693
Improvement in (=2*(log(improv. in likelihood)) ) = 13.22 P =  0.0003

Parameter values at maximum likelihood: ^ q=-2.55, cr^=3.59, 10^°=281, a = 039

177 Table continued on following page



SUMMARY OF VARIABLES CURRENTLY ENTERED

VARIABLE COEFF.

1 RDiNODES -2.32
7 DT iGRADE 1v2&3 -0.62
4 RD iTUMOUR SIZE 1.51
5 RD iMENOP S. 2.27
8  DTiGRADE 1&2v3 -0.19

STATISTICS TO ENTER OR REMOVE VARIABLES ARE AS FOLLOWS

VARIABLE APPROX APPROX
NO. NAME CHI-SQ. CHI-SQ. P-VALUE LOG

ENTER REMOVE LIKELIHOOD

1 RD iNODES 149.29 < 0 . 0 0 0 1 -3926.7119
2 RD iGRADE 1v2&3 1.96 0.1616 -3851.0898
3 RD iGRADE l&2v3 0.39 0.5317 -3851.8738
4 RD iTUMOUR SIZE 17.05 < 0 . 0 0 0 1 -3860.5928
5 RD iMENOP S. 15.06 0 . 0 0 0 1 -3859.5994
6 DTiNODES 6.24 0.0125 -3848.9480
7 DT iGRADE lv2&3 29.18 < 0 . 0 0 0 1 -3866.6577
8 DTiGRADE l&2v3 13.22 0.0003 -3858.6777
9 DT iTUMOUR SIZE 1.31 0.2515 -3851.4119

1 0 DT iMENOP S. 0.06 0.8041 -3852.0386

STEP NUMBER 6  VARIABLE NUMBER 6  (DTiNODES) IS ENTERED

log likelihood =  -3848.9480 
Improvement in (=2*(log(improv. in likelihood)) ) =  6.24 P =  0.0125

Parameter values at maximum likelihoodi j8o=-2.14, a^=3A6, 10^°=320, <7. =0.40

SUMMARY OF VARIABLES CURRENTLY ENTERED

VARIABLE COEFF.

1 RD iNODES 1.78
7 DT iGRADE lv2&3 -0.61
4 RD iTUMOUR SIZE 1.46
5 RDiMENOP S. 2.13
8  DTiGRADE l&2v3 -0.19
6  DTiNODES -0.08
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STATISTICS TO ENTER OR REMOVE VARIABLES ARE AS FOLLOWS

VARIABLE APPROX APPROX
NO. NAME CHI-SQ. CHI-SQ. P-VALUE LOG

ENTER REMOVE LIKELIHOOD

1 RD iNODES 40.29 < 0 . 0 0 0 1 -3869.0935
2 RD iGRADE 1v2&3 2.82 0.0931 -3847.5381
3 RD iGRADE l&2v3 0.23 0.6312 -3848.8328
4 RD iTUMOUR SIZE 17.22 < 0 . 0 0 0 1 -3857.5562
5 RD iMENOP S. 14.45 0 . 0 0 0 1 -3856.1716
6 DTiNODES 6.24 0.0125 -3852.0693
7 DT iGRADE lv2&3 27.96 < 0 . 0 0 0 1 -3862.9302
8 DT iGRADE l&2v3 13.72 0 . 0 0 0 2 -3855.8064
9 DTiTUMOUR SIZE 0.60 0.4372 -3848.6462

1 0 DTiMENOP S. 0 . 2 0 0.6565 -3848.8491

No term passes the remove or enter levels ( 0.1000 0.0500). 
Stepwise procedure complete.

SUMMARY OF STEPWISE PROCEDURE

CHI-SQ. FOR
ENTERED/ INCLUSION/ P- LOG

TEP VARIABLE REMOVED EXCLUSION VALUE LIKELIHOOD

0 -3987.8591
1 RD iNODES ENTERED 186.03 < 0 . 0 0 0 1 -3894.8430
2 DT iGRADE 1v2&3 ENTERED 37.88 < 0 . 0 0 0 1 -3875.9031
3 RD iTUMOUR SIZE ENTERED 19.49 < 0 . 0 0 0 1 -3866.1560
4 RD iMENOP S. ENTERED 14.96 0 . 0 0 0 1 -3858.6777
5 DT iGRADE l&2v3 ENTERED 13.22 0.0003 -3852.0693
6 DT iNODES ENTERED 6.24 0.0125 -3848.9480
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Table 6.2 Multivariate proportional hazards model results for the first application.

(Menstrual status is abbreviated MENOP S. in this table. Note also that the 

proportional hazards model is based on partial likelihoods, but for simplicity in this 

table this word has been dropped and they will simply be referred to as likelihoods).

For a table of descriptive statistics for the 5 variables included in the model see table 

6 . 1.

Initial likelihood (no terms in the model) = -2758.9720 

STEP NUMBER 0 (NO TERMS IN THE MODEL)

STATISTICS TO ENTER OR REMOVE VARIABLES ARE AS FOLLOWS:

VARIABLE APPROX APPROX
NO. NAME CHI-SQ. CHI-SQ. P-VALUE LOG

ENTER REMOVE LIKELIHOOD

1 NODES 183.79 < . 0 0 0 1 -2667.0780
2 GRADE lv2&3 45.80 < . 0 0 0 1 -2736.0730
3 GRADE l&2v3 22.08 < . 0 0 0 1 -2747.9330
4 TUMOUR SIZE 43.84 < . 0 0 0 1 -2737.0510
5 MENOP S. 20.14 < . 0 0 0 1 -2748.9020

STEP NUMBER 1 VARIABLE NUMBER 1 (NODES) IS ENTERED

log likelihood = -2667.0780
Improvement in (=2*(log(improv. in likelihood)) ) = 183.79 P <  0.0001

SUMMARY OF VARIABLES CURRENTLY ENTERED

VARIABLE____________ COEFF.

1 NODES 0.658
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STATISTICS TO ENTER OR REMOVE VARIABLES ARE AS FOLLOWS:

VARIABLE APPROX APPROX
NO. NAME CHI-SQ. CHI-SQ. P-VALUE LOG

ENTER REMOVE LIKELIHOOD

1 NODES 183.79 <  . 0 0 0 1 -2758.9720
2 GRADE lv2&3 34.43 < . 0 0 0 1 -2649.8630
3 GRADE l&2v3 15.89 . 0 0 0 1 -2659.1320
4 TUMOUR SIZE 23.05 < . 0 0 0 1 -2655.5510
5 MENOP S. 22.99 < . 0 0 0 1 -2655.5810

STEP NUMBER 2 VARIABLE NUMBER 2 (GRADE lv2&3) IS ENTERED

log likelihood =  -2649.8630 
Improvement in (=2*(log(improv. in likelihood)) ) = 34.43 P < 0.0001

SUMMARY OF VARIABLES CURRENTLY ENTERED

VARIABLE COEFF.

1 NODES
2 GRADE lv2&3

0.638
1.294

STATISTICS TO ENTER OR REMOVE VARIABLES ARE AS FOLLOWS:

VARIABLE APPROX APPROX
NO. NAME CHI-SQ. CHI-SQ. P-VALUE LOG

ENTER REMOVE LIKELIHOOD

1 NODES 172.42 < . 0 0 0 1 -2736.0730
2 GRADE lv2&3 34.43 < . 0 0 0 1 -2667,0780
3 GRADE l&2v3 7.52 .0061 -2646.1010
4 TUMOUR SIZE 21.67 < . 0 0 0 1 -2639.0290
5 MENOP S. 20.43 < . 0 0 0 1 -2639.6470
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STEP NUMBER 3 VARIABLE NUMBER 4 (TUMOUR SIZE) IS ENTERED

log likelihood = -2639.0290
Improvement in (=2*(log(improv. in likelihood)) ) = 21.67 P < 0.0001

SUMMARY OF VARIABLES CURRENTLY ENTERED

VARIABLE COEFF.

1 NODES
2 GRADE lv2&3 
4 TUMOUR SIZE

0.610
1.272
0.508

STATISTICS TO ENTER OR REMOVE VARIABLES ARE AS FOLLOWS:

VARIABLE APPROX APPROX
NO. NAME CHI-SQ. CHI-SQ. P-VALUE LOG

ENTER REMOVE LIKELIHOOD

1 NODES 154.00 < . 0 0 0 1 -2716.0310
2 GRADE lv2&3 33.04 < . 0 0 0 1 -2655.5510
3 GRADE l&2v3 7.68 .0056 -2635.1900
4 TUMOUR SIZE 21.67 < . 0 0 0 1 -2649.8630
5 MENOP S. 17.64 < . 0 0 0 1 -2630.2080

STEP NUMBER 4 VARIABLE NUMBER 5 (MENOP S. ) IS ENTERED

log likelihood = -2630.2080
Improvement in (=2*(log(improv. in likelihood)) ) = 17.64 P < 0.0001

SUMMARY OF VARIABLES CURRENTLY ENTERED

VARIABLE COEFF.

1 NODES
2 GRADE lv2&3
4 TUMOUR SIZE
5 MENOP S.

0.616
1.235
0.477
0.635
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STATISTICS TO ENTER OR REMOVE VARIABLES ARE AS FOLLOWS:

VARIABLE APPROX APPROX
NO. NAME CHI-SQ. CHI-SQ. P-VALUE LOG

ENTER REMOVE LIKELIHOOD

1 NODES 155.87 < . 0 0 0 1 -2708.1450
2 GRADE lv2&3 30.62 < . 0 0 0 1 -2645.5160
3 GRADE l&2v3 6.58 .0103 -2626.9180
4 TUMOUR SIZE 18.88 < . 0 0 0 1 -2639.6470
5 MENOP S. 17.64 < . 0 0 0 1 -2639.0290

STEP NUMBER 5 VARIABLE NUMBER 3 (GRADE l&2v3) IS ENTERED

log likelihood = -2626.9180
Improvement in (=2*(log(improv. in likelihood)) ) = 6.58 P = 0.0103

SUMMARY OF VARIABLES CURRENTLY ENTERED

VARIABLE COEFF.

1 NODES 0.613
2 GRADE lv2&3 1.129
4 TUMOUR SIZE 0.478
5 MENOP S. 0.615
3 GRADE l&2v3 0.257

STATISTICS TO ENTER OR REMOVE VARIABLES ARE AS FOLLOWS:

VARIABLE APPROX APPROX
NO. NAME CHI-SQ. CHI-SQ. P-VALUE LOG

ENTER REMOVE LIKELIHOOD

1 NODES 155.88 < . 0 0 0 1 -2704.8560
2 GRADE lv2&3 23.39 < . 0 0 0 1 -2638.6120
3 GRADE l&2v3 6.58 .0103 -2630.2080
4 TUMOUR SIZE 18.96 < . 0 0 0 1 -2636.3970
5 MENOP S. 16.54 < . 0 0 0 1 -2635.1900

All variables entered into the model. Stepwise procedure complete.
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SUMMARY OF STEPWISE PROCEDURE

STEP VARIABLE

CHI-SQ. FOR 
ENTERED/ INCLUSION/ 
REMOVED EXCLUSION

P- LOG 
VALUE LIKELIHOOD

0 -2758.9720
1 NODES ENTERED 183.79 < 0 . 0 0 0 1 -2667.0780
2 GRADE lv2&3 ENTERED 34.43 < 0 . 0 0 0 1 -2649.8630
3 TUMOUR SIZE ENTERED 21.67 < 0 . 0 0 0 1 -2639.0290
4 MENOP S. ENTERED 17.64 0 . 0 0 0 1 -2630.2080
5 GRADE l&2v3 ENTERED 6.58 0.0103 -2626.9180
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Table 6.3 Values for the four remission duration model basic parameters at each 

step of the first multivariate model application.

STEP ^ 0 OTv lO'^o

0 0.26 4.03 54.0 0.46
1 -1.83 3.75 56.9 0.41
2 -1.53 3.69 298.9 0.41
3 -2.41 3.59 290.9 0.41
4 -2.57 3.58 281.9 0.40
5 -2.55 3.59 281.1 0.39
6 -2.14 3.46 320.1 0.40
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Table 6.4 Multivariate remission duration model results for the locally advanced 

breast cancer application.

Descriptive statistics for variable (coded as 0 for RT and 1 for RT+CT)

VARIABLE STANDARD
NO. NAME MINIMUM MAXIMUM MEAN DEVIATION

1 RTvRT+CT 0 1 .4894 .5017

Initial likelihood (4 basic parameters only in the model) = -553.4655 

Parameter values at maximum likelihood: ^ q= \.60, a^=4.06, 10^®=26.5, ffg=G.28

STEP NUMBER 0 (NO TERMS IN THE MODEL)

STATISTICS TO ENTER OR REMOVE VARIABLES ARE AS FOLLOWS:

VARIABLE APPROX APPROX
NO. NAME CHI-SQ. CHI-SQ. P-VALUE LOG

ENTER REMOVE LIKELIHOOD

1 RD:RTvRT-hCT 15.05 0.0001 -545.9411
2 DT:RTvRT-hCT 12.27 0.0005 -547.3318

STEP NUMBER 1 VARIABLE NUMBER 1 (RD:RTvRT-kCT) IS ENTERED

log likelihood =  -545.9411
Improvement in (= 2 *(log(improv. in likelihood)) ) =  15.05 P =  0.0001

Parameter values at maximum likelihood: Pq=3.35, (7^= 3 .6 6 , 10"^®=27.3, a =0.27

SUMMARY OF VARIABLES CURRENTLY ENTERED

VARIABLE____________ COEFF.

1 RD:RTvRT-kCT -3.53
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STATISTICS TO ENTER OR REMOVE VARIABLES ARE AS FOLLOWS:

VARIABLE 
NO. NAME

APPROX APPROX 
CHI-SQ. CHI-SQ. P-VALUE 
ENTER REMOVE

LOG
LIKELIHOOD

1 RD:RTvRT+CT
2 DT:RTvRT+CT 0.73

15.05 0.0001
0.3934

-553.4655
-545.5770

No term passes the remove or enter levels ( 0.1000 0.0500). 
Stepwise procedure complete.

SUMMARY OF STEPWISE PROCEDURE

STEP VARIABLE

CHI-SQ. FOR 
ENTERED/ INCLUSION/ P- LOG 
REMOVED EXCLUSION VALUE LIKELIHOOD

0
1 RD:RTvRT+CT ENTERED 15.05 0.0001

-553.4655
-545.9411
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Chapter 7

RESISTANCE MODEL FOR INDIVIDUAL PATIENTS

7.1 Introduction

The previous three chapters have presented a population based model designed to 

make inferences about resistance and growth rates based on the relapse patterns for 

populations of patients. Such a population-based model should aid in the design of 

future trials and in the interpretation of current and previous trials, but is less likely 

to help in the treatment of individual patients. A complementary model has been 

developed to try to obtain information about resistance and growth rates for 

individual patients, using some measure of the tumour volume.

The models of Goldie and Cold man (1979; 1982) and Skipper (Skipper & Perry, 

1970) espouse general principles, such as the alternating of non-cross-resistant drug 

combinations. A theoretical model was also developed for individual patients 

(Birkhead & Gregory, 1984; Birkhead et ah, 1986). The consequences of particular 

assumptions about the values of this model’s parameters could be explored, but the 

model could not be fitted to real data. A very restricted fitting method was employed 

when applying the model to small cell lung cancer (SCLC) data from a University 

College Hospital trial of high dose therapy, in collaboration with Professor Souhami 

(Gregory et a l ,  1988). This was only applicable where just three tumour volumes 

were measured, and involved estimating the doubling time independently from other
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published reports. This chapter describes an extension of this model to enable the 

fitting of real tumour volume data, with all its inherent variability. Such a model has 

the potential for suggesting times at which to change or abandon treatment for 

individual patients, as well as providing estimates for resistance and tumour-kill 

which may provide additional useful outcome measures for clinical trials, and help 

in the design of future studies. It is also possible that, once validated, such a model 

might enable results to be achieved on smaller numbers of patients, since the 

additional interpretative information ought to improve the power of any tests used.

7.2 Basic model description and assumptions

Figure 7.1 Diagrammatic representation of the model
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The model seeks to relate changing tumour volumes to proportions of sensitive and 

resistant tumour, and to tumour growth rate. This is represented diagrammatically 

in Figure 7.1. Resistant tumour is assumed to be tumour which can never be killed 

with the given drug dose due to inherent (cellular) resistance. The remaining tumour 

is considered sensitive, although it is assumed that only a proportion of it will be 

killed by a single administration of the drug. This is based on the fractional cell-kill 

hypotheses of Skipper and colleagues (Skipper et a/., 1964; 1967) discussed in 

chapter 3. Various reasons for cells not being killed can be hypothesised, for 

example cells not being in cycle, uneven drug distribution, problems of blood 

supply, and the likely stochastic nature of cell-killing by cytotoxic agents. The 

tumour growth rate is empirically assumed to be exponential for the period of 

therapy, and it is assumed that throughout the treatment period the mutation rate of 

cells from sensitivity to resistance or vice versa is negligible in comparison to the 

other effects (i.e. the two populations of sensitive and resistant cells are independent: 

cells do not change from being sensitive to being resistant or vice versa).

The proportion of sensitive tumour killed by each cycle of the treatment is thus 

assumed to be the same (Skipper & Perry, 1970), and is represented by k. The 

proportion of tumour initially resistant is represented by Rq. The tumour doubling 

time is denoted by d. The model predicts, for particular values of these three 

independent variables, k, Rq and d, given the above assumptions, the sequence of 

tumour volumes before each treatment cycle (Birkhead & Gregory, 1984).
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An assumption must also be made about the distribution of errors in volume 

measurements, in order to fit the model to real data. Supposing k, Ro and d were 

known, some slight differences would still be expected between the model 

predictions and the actual tumour volumes, due to inaccuracies in measurement. For 

example when measuring disease volume in the lung, variations in marking out the 

area of tumour, or delineating the tumour from other structures, as well as collapse 

and consolidation of lung tissue around the tumour could all contribute to this error. 

Following discussion with the clinicians involved, two likely assumptions were 

suggested for this distribution of errors in measurement, for use in two different 

circumstances. For some tumours, like breast cancer, where clinical volume 

measurements were being made, it was suggested that errors in volume 

measurements were likely to be normally distributed. For other tumours, like SCLC, 

where added accuracy was obtained by use of instruments such as computerised 

tomography (CT) scans, it was thought that a log-normal distribution of errors would 

be more appropriate, especially for small tumours, where the CT scanner would be 

more sensitive (this assumption is equivalent to the assumption that the same 

percentage error can be expected at each volume). Models have therefore been 

constructed for both assumptions. The application to SCLC described in this chapter 

used CT scans to measure tumour volumes and therefore uses the log-normal 

assumption. An application currently underway in breast cancer, where clinical 

volume measurements are being employed, uses the straight normality assumption.

The relevant mathematics (incorporating both error distribution assumptions) will 

now be described.
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7.3 Mathematical description of the model

The model predicts that sequential tumour volumes before treatment (Xq, X^, X2 , 

X J will be described by the equation:

Xi =  l-a-(l-aUn Xoexp(ati) (i = 1, 2 ,......., n) {7.1}
1 -a

where a = (1-^), /:q = X:(l-Ro), k is the proportion of the sensitive tumour killed 

with each course of therapy, Rq is the proportion of the tumour initially resistant, 

a is the (exponential growth rate), t; is the time between first treatment and 

treatment cycle i + 1 , and i is the treatment cycle number itself.

From equation {7.1}

log Xi = log rl-a-(l-ahX:n l +  log Xq + at, {7.2}
L 1 -a -I

The preceding theory is that described in Birkhead and Gregory (1984). The new

developments to enable the model to be fitted to real clinical data will now be

described. Firstly some assumption must be made about errors in the tumour volume 

measurements.

Let the actual tumour volumes be Vq, V ,,......., V„.
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Under the assumption of a log normal distribution of errors in measurement, the 

likelihood, L, of the (log of) the volumes under the model is:

L(log Vo, log Vi, ........ , log V J = N(log Vo, log Xo, a).

N(log Vj, log Xi, a) .... N(log V„, log X„, a)

= n  N(log Vi, log Xi, a) 
i = 0

where N(x, u, a) is the value of a normal distribution with mean u and variance a 

at X.

Hence

log L = Y. log N(log Vi, log Xi, a) 
i = 0

Now N(x, u, a) = 1 exp -fu-x')^
(SV'l'K ^  -I

So log L = X) log 
i = 0

which simplifies to

1 exp 
(f/2ir

{7.3}

log L = j; log _ L  - E -dog Xj - log Vj)̂
i = 0  (A^27t i = 0  2o^

The maximum likelihood estimates (MLEs) for logXo, k, Ro, a , and a (i.e. the

values of these parameters which produce the closest fit between the model’s

predictions and the data) can then be obtained by maximising log L from {7.3}.

This can be achieved by differentiating log L with respect to each of the parameters
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logXo, k, Ro, a, and u and maximising log L based on the values of these derivatives 

using a semi-Newton algorithm in a similar fashion as described in chapter 4 for the 

Newton algorithm on the population based model (the semi-Newton algorithm uses 

the first derivatives to approximate the matrix of second partial derivatives, as 

described by Beale (1988)). The first derivatives are as follows:

8 Log L =  Yi 
dk i = 0

(log X; - log V;) ___
{l-a-(l-a')A:o}

3Log L =  Y 
dRo i=0

-(log Xj - log Vj) _ ü -^ )ü :â ) ■ 
(T̂ {l-a-(l-a')^o}

3Log L = Y 
da i = 0

i(|og Xi - log Vj) tj
(P"

3Log L 
dlogXo

n
E

i = 0

-(log Xj - log Vj)
cP

3Log L 
da

n
(n+1) +  E

a i = 0

(log Xj - log Vif
(T

Under the alternative assumption that errors of the same magnitude occur at any 

volume, the likelihood, L , of the (log of) the volumes under the model is

L(Vo, V „  .......... , VJ =  N(Vo, Xo, a ) .N (V „  X „  a) . . . .  N (V „, X„, a)

= n  N(Vi, X;, a)
i = 0

195



where, as before, N(x, u, a) is the value of a normal distribution with mean u and 

variance cr at x.

Hence

log L =  D log N(Vi, Xj, a) 
i = 0

So log L =  Yé log 
i = 0

1 exp
(A^2t

which simplifies to

log L = M)
uv 2x

E
i = 0  2 ô

{7.4}

The maximum MLEs for Xq, Rq, a , and a can again be obtained by maximising 

log L from {7.4}, using the first derivatives of log L with respect to each of the 

parameters Xq, k, Rq, a , and cr and maximising log L using the semi-Newton 

algorithm. The first derivatives in this case are as follows:

^Log L = Y 
dk i = 0

(Xj - Vj) ka i a'-' Xoexp(c t̂i)
0  ̂ ( 1 -a)

aL ogL  = Y 
aRo i = 0

(1-a') Xoexp(cKtj)
or

aLog L = Y
da i = 0

-{XuJLVi) { l-a-^(l-a')} Xotiexp(o;ti) 
0  ̂ ( 1 -a)
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aLogL = E
axo i = o

aLog L = -{n±i} + E 
da a i = 0 (T

7.4 Application Methodology

An attempt is made to validate this model, assuming a log-normal distribution of 

errors in tumour volume measurements, on patients with small cell lung cancer. The 

model requires an accurate method of measuring tumour volumes to minimise these 

errors, and CT scans of the chest have been employed to this end. This method 

gives an accurate measurement of the tumour volume, although errors of some 

magnitude will obviously still be made. Having estimated the resistance to, and 

efficacy of chemotherapy, and the tumour growth rate, the model predicts the 

sequence of tumour volumes before each course of chemotherapy. The validity and 

accuracy of these predictions were tested on a series of up to 7 scans on each of 9 

patients with SCLC.

7.4.1 Theoretical considerations

In order to estimate the model’s parameters, i.e. the proportion of sensitive tumour 

killed with each cycle of therapy, k, the resistance at presentation Ro, and the tumour
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doubling time d, at least four tumour volumes are required (under either error 

assumption).

With exactly four volumes, all of these volumes will be needed to estimate the 

parameters. If the model is not a reasonable representation of the actual disease 

processes, it may be expected that no values of the parameters would be capable of 

predicting the observed volumes. For instance, if the percentage tumour reduction 

on the first cycle of treatment was less than that seen on the second cycle (assuming 

a similar interval between cycles) the model would be invalid. With more than four 

tumour volumes the accuracy of the model can be evaluated, assuming the model fits 

at all, as just explained, since its consistency in predicting the sequential tumour 

volumes can be examined. In such cases all the tumour volumes can be used to 

estimate the model’s parameters. The model can then be validated by a chi-square 

test comparing the observed tumour volumes with those expected under the model 

assumptions. Furthermore, in the patients with more than four volumes, since Rq 

and d can be estimated from just four volumes, these estimates can be used to 

predict the remaining volumes, providing a further substantive test of the model’s 

validity.

The standard deviation (SD) of the log-normal distribution of errors will reflect 

differences between the observed tumour volumes and the model’s predictions, and 

will thus provide a measure of the accuracy of the model. Where the SD is small, 

the predictions and actuals will match closely. Where the SD is large, one or more 

predicted volumes will show large differences from the corresponding measured
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value. This can be seen in the application which follows in section 7.4.2; for 

instance when comparing patient number 2 with patient number 8  (see table 7.3 for 

the SDs of errors about model predictions, and figures 7.2 and 7.3 for a graphical 

representation).

A computer program, written in Microsoft FORTRAN 77 for IBM compatible 

microcomputers, has been written to produce the estimates. The estimation 

procedure takes only a few seconds to run. A worked example is provided in table 

7.4.

7.4.2 Application to Small Cell Lung Cancer

A. Patients

Nine patients with SCLC had tumour volumes measured. They were taken from two 

separate trials, one comparing Etoposide (VP 16) and Doxorubicin (Adriamycin) 

(VA) with Oncovin (Vincristine), Etoposide and Adriamycin (OVA) in limited 

disease patients, the other comparing two different schedules of Etoposide given as 

a single agent in extensive disease (Slevin et a l , 1989) the same dose of Etoposide 

being given as a continuous infusion for 1 day, or as separate 2  hour continuous 

infusions over 5 days.

The observed tumour volumes along with the times (in days) since the start of 

treatment, at which the scans were taken, are given in table 1 , and shown
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diagrammatically in figures 7.2 and 7.3. Patients with peripheral masses on chest 

X-ray were chosen for the study since it was possible to separate tumour from 

mediastinal structures on the scans in these patients. Tumour volume measurements 

were made by an experienced CT radiologist, Dr. Rodney Reznek. The patients 

were sc<mned on a GE 9800 Whole Body Scanner. Scans were performed at 1cm 

intervals throughout the region of the tumour. Where necessary, a bolus of 

intravenous contrast medium was administered to delineate vascular structures. The 

area of the lesion was then calculated on each image using a tracing device. As the 

scan thickness was 1cm in each image the volume could be easily estimated. Care 

was taken to avoid measuring areas of lung consolidation or collapse, though this 

was not always possible. Where such discrimination was difficult in a series of scans 

a special effort was made to measure the same structures on each scan in the series. 

However the initial measurements in this series were often made as the scans became 

available, several weeks apart.

One patient died during therapy and consequently has only three tumour volumes 

recorded; the rest have at least four, generally five, and in one case seven tumour 

volumes measured.

Because of the requirement for having at least four volumes in order to estimate the 

model’s parameters, the model could only be applied to eight of the nine patients.
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B. Results

Reproducibility o f volume estimates

To test the reproducibility and accuracy of the CT volume estimates, four of the nine 

patients’ volumes were independently re-measured by the same radiologist, but 

without reference to the original scans, and some considerable time later 

(approximately 1 year). The pairs of volumes for these four patients are given in 

table 7.2. Considerable variability was found in these estimates, with the mean error 

being 17%. It appeared that in some cases adjacent normal structures were included 

in the measurement on one occasion but not on the other. When exactly the same 

structures were included in the measurements, the results were consistent, and the 

measurements were in close agreement (see for example the measurements for 

patient 3 in table 7.2).

Model estimates

The estimates of sensitive tumour kill, resistance and tumour volume doubling time 

for each of the 8  patients are shown in table 7.3. A detailed worked example 

showing how the estimates were derived for patient 9 is shown in table 7.4. Initially, 

a guess is made for the values of the parameters (see table 7.4). The model’s 

predictions, based on these guesses, are then compared with the actual results (by 

evaluating the log-likelihood as described in section 7.3). A new estimate of the four 

parameters is produced based on the differences between the predicted and actual
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(i.e. measured) volumes (this involves using the semi-Newton algorithm described 

in section 7.3). This new estimate should be closer to the actual volume (and thus 

have a greater likelihood). This procedure is repeated until the predictions come no 

closer to the actual volumes (i.e. the likelihood no longer increases significantly). 

The likelihood for each of the volumes, given the final ’best’ parameters, is given 

in table 7.4, along with a comparison of the predictions with the actual volumes.

In three patients the estimates for tumour volume doubling time were very long, 

implying a very slow growth rate. In such cases, with the tumour growing so 

slowly, very small volume changes would need to be detectable in order to estimate 

the doubling time over the short time intervals considered. Inaccuracies in the 

volumes measurements themselves, as previously calculated, are at least as great as 

these changes, making estimates of the doubling time unreliable in such cases. The 

doubling time in these patients has thus been assumed to be approximately 150 days, 

based on the estimates of others for the extremes in doubling time in SCLC 

(Brigham et al., 1978; Tubiana & Malaise, 1979; Pearlman, 1983). This problem 

does not significantly affect the estimates for resistance and tumour-kill which are 

less sensitive to small volume differences.

The accuracy of the model’s predictions (see section 7.3), measured by SDs of 

errors about the model’s predictions (given as percentages of the tumour volumes), 

are also shown in table 7.3. The mean percentage SD of these errors in prediction, 

given as a percentage, was 6.5%, excluding the patients with only four volumes
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Figure 7.2 Observed tumour volumes (solid lines) and model predictions ±  1 SD
(dashed lines) for patients 1-5 (observations were co-incident with predictions for 
patients 3 & 4).

measured, where the predictions matched the observed volumes. This percentage 

error is within the likely errors resulting from inaccuracies in the measurements, as 

described previously, and confirms that the model provides a good fit to the data. 

This can be seen in figures 7.2 and 7.3 which plot the observed volumes against the 

predictions. The chi-square goodness-of-fit tests supported this finding. There was 

no correlation between the percentage error and the starting tumour volume 

(Spearman’s rank correlation coefficient = . 16, P= .36). This provides some support 

for the assumption of a log-normal distribution of errors, since if this assumption 

was incorrect, some trend towards increasing or decreasing percentage errors might 

be expected in relation to the starting tumour volume.

The tumour volumes for the patients with more than four volumes were used to 

investigate the consistency of the model’s predictions, and to see whether the model
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Figure 7.3 Observed tumour volumes (solid lines) and model predictions ±  1 SD 
(dashed lines) for patients 7-9 (patient 6  had too few observations to enable fitting 
of the model).

could be used in a predictive sense, for instance in deciding when to change, or to 

abandon a particular treatment. In these patients, the first four volumes alone were 

used to estimate the sensitive tumour kill, resistance and doubling time. These 

estimates were then used to try and predict the later volumes. These predictions, 

along with the actual, measured volumes are given in table 7.5. For patient 9, the 

predicted volumes for courses 5 and 6 , using the first four volumes, bore no 

resemblance to the actual volumes. A further prediction of the course 6  volume, 

using the first 5 volumes, was also made for this patient, and this prediction is 

included in table 5. For the other patients the predictions are close to the actual 

volumes.
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7.4.3 Discussion of results in Small Cell Lung Cancer

This mathematical model has two important potential uses. First, it may provide an 

important short-cut to obtaining information about resistance to and efficacy of 

chemotherapy. At present, as previously discussed, such information is only obtained 

from randomised trials addressing these questions, and then only by interpretation 

from the gross outcome measures of response duration and survival. The method 

described in this chapter enables these factors to be estimated for individual patients, 

and thus the effects of the treatments can be more easily evaluated. The patient 

numbers in the studies reported were insufficient to enable general conclusions to be 

drawn about differences in tumour kill and resistance between the different 

treatments. This information should, however, be obtainable from relatively small 

trials, although this depends on the magnitude of any differences which may occur.

The second use of this model is in predicting when to alter or stop treatment. 

Predictions of later volumes using earlier ones were fairly accurate, as shown by 

table 7.5. For patient 9, there was a clear alteration in the pattern of continued 

tumour reduction at the fifth volume. The reduction at this volume did not match the 

large reductions seen with earlier volumes. (Using the first four volumes, the fifth 

was predicted to be only 23cm^, compared with the observed value of 43cm^ - see 

table 7.5). The model detected that this lessening of the tumour-kill presaged rapid 

re-growth. This would have been the moment to stop treatment, or switch to a 

possibly non-cross-resistant alternative.

205



Alternative models (e.g. Birkhead et al, (1987)) can be considered where a 

proportion of the tumour is non-dividing, due, for example, to lack of 

vascularisation. However, this assumption was considered unnecessary, and was 

thought to add needless complexity in SCLC. In this tumour the monoclonal 

antibody Ki67, which stains cells not in the GO phase of the cell-cycle, suggests that 

60% or more of the cells are in cycle at any one time (Gatter et at., 1986).

The reproducibility of the tumour volumes, especially where identical structures can 

be measured on each occasion, appears in this group of SCLC patients to be good, 

and certainly sufficient to enable estimation of the model parameters. The model 

appears to predict the data fairly accurately, with the average SD of errors in volume 

being approximately 9%.

It is interesting to note that, with the exception of patient 7, there appears to be a 

relationship between k, the tumour-kill, and d, the doubling time (r=-0.89, 

p=.004). This seems intuitively reasonable, with therapy being more effective on 

rapidly dividing tumours. It may be that the course 5 and 6  volumes for patient 7 

represent non-dividing cells, as described.

It is likely that the doubling time of a tumour reflects a balance between the rate at 

which cells are proliferating and the rate of cell loss. This would not significantly 

affect the model’s estimates or validity, since it makes assumptions only about the 

gross tumour volume. It may however help to reconcile the relatively slow doubling 

time estimated by the model with the large proportion of dividing cells found with
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the monoclonal antibody K167, and with the relatively high cell-kills estimated and 

presented in table 7.3.

It is interesting that a wide variability in proportions of initially resistant tumour was 

seen, as suggested by Goldie and Goldman, using a model where resistance is 

acquired by spontaneous mutation (Goldie et aL, 1982).

SCLC is a highly chemo-sensitive tumour, where alterations in dose and schedule 

provide hope of significant, and sorely needed, improvements. A previous 

application of this model (Gregory et a i ,  1988) was undertaken before this current 

derivation which has incorporated error distributions. Although inferences were more 

difficult to make, and only three volumes per patient were available, the model 

results helped to explain why high-dose cyclophosphamide failed to cure more 

patients with SCLC (Gregory et a l ,  1988). Such explanations are needed to 

understand the reasons for treatment failure in SCLC, and, hopefully, may aid in the 

design of new and better protocols.
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Table 7.1

Tumour volumes (cm^) and times (in days since start of treatment) at which scans 

were performed.

Pre course:

Patient 1 2 3 4 5 6 7

1 Volume 15.2 7.65 4.96 3.84 2.41 2.53 1 . 6 6

Time 0 23 44 65 8 6 107 135

2 Volume 46.7 29.7 27.1 23.0 23.2
Time 0 2 0 50 78 103

3 Volume 231.7 176.8 100.9 1 1 1 . 0

Time 0 25 46 6 8

4 Volume 84.2 56.3 37.3 30.9
Time 0 24 39 71

5 Volume 12.9 4.66 1.43 0.56 0.49
Time 0 28 42 6 8 8 8

6 Volume 27.1 13.3 12.4
Time 0 31 55

7 Volume 98.4 4.1 1 . 0 7 0.79 0.80
Time 0 24 42 6 8 94 115

8 Volume 111.7 70.6 24.0 17.5 9.7
Time 0 2 1 42 63 84

9 Volume 745.0 380.5 197.2 52.6 43.4 1 2 0 . 8

Time 0 27 48 72 91 118

? = scan not done
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Table 7.2

Pairs of repeated tumour volume measurements.

Volumes before course (cc)

Patient 1 2 3 4 5 6

3 231.70 176.80 100.90 1 1 1 . 0 0

230.70 143.70 100.80 110.50

7 1 . 0 0 0.79 0.80
1.35 0.96 0.61

8 111.70 70.60 24.00 17.50 9.70
93.19 61.01 28.03 24.27 16.04

9 745.00 380.50 197.20 52.60 43.36 120.80
711.67 432.22 176.60 55.20 39.00 166.00
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Table 7.3

Estimates of sensitive tumour-kill (k), resistance (Ro) and doubling time (d) for the 

9 patients.

lent number
of

scans

Regime* ^(%) Ro(%) d (days) likely ' 
error*

1 7 OVA 46 1 1 >150 1 1

2 5 VP5 6 6 0.85 23 2

3 4 VPl 92 0.06 8 0

4 4 VPl 49 9 8 8 0

5 5 VP5 81 0.36 30 7

6 3 VPl 7 7 7

7 5 VA 97 0.84 >150 4

8 5 OVA 59 2 92 15

9 6 VP5 90 . 0 1 1 2 19

OVA - Oncovin, VP 16, Adriamycin 
VA - VP 16, Adriamycin 

VPl - VP 16 given over 1 day 
VP5 - VP 16 given over 5 days

 ̂ one standard deviation of errors about model predictions (see text)

? = insufficient scans to apply model
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Table 7.4

A worked example for patient 9, including a comparison of model predictions with 

actual volumes.

Initial guesses for the parameters for patient 9 were:

^=0.8 , Ro=0.0005, d=14 days, SD (cr)=0.2, Xq= 745 cm^

(The initial log-likelihood was -48.263)

The semi-Newton maximisation routine produced the ’best’ (or maximum likelihood) 
estimates at the following parameter values:

k=0.90, Ro=0.0001, d = 11.7 days, SD (a) =0.169, Xq=793 cc

(the maximum log-likelihood was 2.163)

The actual values and predictions were as follows

ACTUALS PREDICTIONS LIKELIHOOD
)urse"
(i)

Time
(days)

Xi Log(Xi) u Log(u) L Log(L)

0 0 745.00 6.61 793.07 6 . 6 8 2 . 2 1 0.79
1 27 380.50 5.94 400.91 5.99 2.25 0.81
2 48 197.25 5.28 143.62 4.97 0.40 -0.91
3 72 52.60 3.96 67.36 4.21 0.81 -0 . 2 1

4 91 43.60 3.78 41.54 3.73 2.27 0.82
5 118 120.80 4.79 1 2 1 . 2 1 4.80 2.36 0 . 8 6

( “ course 0  is the pre-treatment value)
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Table 7.5

Model predictions of later tumour volumes from earlier tumour volumes

Patient Number of 
volumes used 
in prediction

1

actuals/
predictions

actuals
predictions

actuals
predictions

actuals
predictions

actuals
predictions

actuals
predictions

actuals
predictions

actuals
predictions

2.41
2.50

23.2
17.6

0.49
0.26

9.7
11.3

43.4
23.0

Course
6

2.53
2.11

0.80
0.83

120.8
11.0

120.8
174.3

1.66
1.88
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Chapter 8

CONCLUSIONS

8.1 Summary

Two mathematical models have been described and validated in this thesis, and 

examples of their use have been given.

The first model, the remission duration model, assumes that the progression of 

disease in cancer patients after a period of remission is related to the volume of 

residual tumour, usually resistant to therapy, remaining after treatment. It is assumed 

that patients are prescribed treatments which reduce the tumour volume to levels not 

discernable by current technology. Subsequent relapse from this state of remission 

is assumed to be related to the unknown resistant volume, and to the tumour growth 

rate. It is assumed that the distribution of resistant volumes for a population of 

patients given the same treatment is log-normal, and that re-growth rates are derived 

from a log-normal distribution of doubling times. The mathematics for estimating 

the parameters of these two distributions for a particular cohort of patients is 

presented, and applications are given.

The second model also relates to the re-growth of resis t#  tumour, and assumes that, 

during therapy, successive changes in the tumour volume can be used to estimate the

214



proportion of the tumour which is resistant to therapy, and the re-growth rate of the 

tumour. The model assumes that each course of treatment kills a constant fraction 

of the tumour which is sensitive to that therapy. An exponential tumour growth rate 

is also assumed. An application is given from a clinical trial, and it is shown how 

the method has the potential for choosing an appropriate time to stop the current 

treatment or switch to a new therapy.

These models are one way to represent the patients’ progress during and following 

treatment and have been demonstratably successful in their validation and application 

to clinical trials and clinical data. No doubt other models, or modifications of those 

presented here, may be suggested as experience increases. However, in the case 

studies given in chapters 5 to 7 the inferences obtained have gained clinical 

credibility and have been used to help in the design of new trials.

8.2 Conclusions

It has been demonstrated that the mathematical models described in this thesis can 

generate new hypotheses to explain the results of clinical data, and suggest new 

approaches to treatment. This is shown clearly in chapter 5 with particular reference 

to Hodgkin’s disease and locally advanced breast cancer. Clinicians have shown 

great interest in these models and many other applications are in progress.
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The models provide the potential for matching the treatment to suit the patient, both 

in terms of the patient’s presenting factors (as described in chapter 6 ), and on an 

individual basis in terms of their response to therapy as it progresses (as described 

in chapter 7). Analysis with clinicians of the feasibility of implementing this latter 

individualistic approach in breast cancer is in progress with Dr. R. Leonard in 

Edinburgh.

8.3 Discussion

Clinicians have been struggling for some 45 years with the problems of how best to 

use the (chemo)therapeutic agents at their disposal. Many drugs are dramatically 

effective at killing tumour cells, and inducing complete disease remissions. 

However, relapse is still the norm in many cancers. This is a very frustrating 

picture, since it is often felt by the clinicians designing and implementing the 

treatments, that relatively minor changes in dose and/or scheduling might produce 

striking improvements, yet such improvements rarely occur. However, evenly 

recently, alterations in dose and scheduling of drugs which have been in use for 

many years have led to great improvements in efficacy (Slevin et al., 1989). One 

possible key to these improvements appears to lie in the exploitation of the growth 

kinetics of tumours, by timing the administration to hit cycling cells, and matching 

dose and schedule to different cancers, and ultimately to the individual patient. The 

principles outlined for the use of cancer therapy by Skipper and colleagues, and 

since built upon by many others, would enable more appropriate choice of treatment
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if more information was available about tumour growth rates, acquisition of 

resistance, and cell-kill.

The advent of multi-drug chemotherapy, further exacerbated this situation. The 

choice of drug combinations and schedules is often bewilderingly large; consider for 

example some of the trials employed for Hodgkin’s and non-Hodgkin’s lymphomas 

(Fisher et al. , 1983; Skarin et al. , 1983; Bonadonna et al. , 1986; Connors & Klimo, 

1988). It has taken some 15 years or more to show that the more intensive, 

aggressive regimes are not superior to the standard CHOP regimen for 

non-Hodgkin’s lymphomas (Fisher et al. , 1992). With clinical trials only addressing 

the simple question of whether one regime is better than another (and this often 

ineffectively), progress is slow, and the literature confusing, with many puzzling and 

apparently contradictory results (see for example Slevin & Staquet, 1986).

A step forward in this situation can be gained from recently developed mathematical 

models, such as those described in this thesis. These models attempt to provide the 

kind of information from a trial which can lead to hypotheses to help in 

understanding why differences occurred. This information, used constructively, will 

contribute to better trials, and lead to new directions for research. Thus, trials 

should be able to progress in a more structured and rational manner.
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