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The exact solutions of spherically symmetric space-times are explored by using Noether symme-
tries in f(R,φ,X) gravity with R the scalar curvature, φ a scalar field and X the kinetic term of φ.
Some of these solutions can represent new black holes solutions in this extended theory of gravity.
The classical Noether approach is particularly applied to acquire the Noether symmetry in f(R, φ,X)
gravity. Under the classical Noether theorem, it is shown that the Noether symmetry in f(R, φ,X)
gravity yields the solvable first integral of motion. With the conservation relation obtained from
the Noether symmetry, the exact solutions for the field equations can be found. The most impor-
tant result in this paper is that, without assuming R = constant, we have found new spherically
symmetric solutions in different theories such as: power-law f(R) = f0R

n gravity, non-minimally
coupling models between the scalar field and the Ricci scalar f(R,φ,X) = f0R

nφm + f1X
q
− V (φ),

non-minimally couplings between the scalar field and a kinetic term f(R,φ,X) = f0R
n + f1φ

mXq ,
and also in extended Brans-Dicke gravity f(R,φ,X) = U(φ,X)R. It is also demonstrated that the
approach with Noether symmetries can be regarded as a selection rule to determine the potential
V (φ) for φ, included in some class of the theories of f(R,φ,X) gravity.

I. INTRODUCTION

Through the current observations such as Type Ia Supernovae [1], cosmic microwave background (CMB) radia-
tion [2], large scale structure [3], baryon acoustic oscillations (BAO) [4] and weak lensing [5], it has been revealed that
the cosmic expansion is accelerating at the present time as well as in the early universe at the inflationary stage [6].
Two main approaches have been proposed in order to account for the late-time accelerated expansion of the universe.
The first is the way of assuming the existence of dark energy in the framework of general relativity. The second is
that of modifying the theories of gravitation at the large-scales (for recent reviews on the theories of modified gravity
and the issue of dark energy, see, for instance, [7]).
In addition, more recently, LIGO has detected that in the coalescence phase, strong gravitational waves are emitted

by the system of two black holes [8]. The first event was the emission from black holes whose masses are about 30 solar
ones and the following ones are those from some-black-holes mergers [9–12]. Furthermore, strong gravitational waves
have been discovered from the two-neutron-stars collision [13], and this fact led to the multi messenger astronomy.
For f(R) gravity and the scalar-tensor theories [14], with the Neutron Star Merger GW170817 [13], the cosmological

bounds have been studied. Also, by using GW150914 and GW151226 [9, 15, 16], the observational constraints on
modified gravity theories have been examined [17]. Gravitational waves in the context of modified gravity theories have
been analyzed [18–24]. Under such current situations, it is very significant to investigate the solutions of spherically
symmetric solutions that could describe black holes, which are the sources emitting gravitational waves, in modified
gravity theories in detail so that we can find some clues to deduce information of fundamental physics in strong gravity
regions.
The various laws of conservation such that energy conservation, momentum conservation, angular momentum

conservation, etc., are directly related with symmetries of a given dynamical system and provide the integrals of
motion which are indeed the result of existence of some kinds of symmetry in that system. Using the Noether
Symmetry Approach, it is possible to obtain conserved quantities asking for the symmetries of the Lagrangian. The
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existence of some kinds of symmetry for the Euler-Lagrange equations of motion possessing a Lagrangian would
immediately be connected with the Noether symmetry. Even if there is no any specific theory favored by the Noether
symmetry approach, the discussions from the literature [25] point out that the existence of Noether symmetries is
capable of selecting suitable gravity theory and then to integrate dynamics by using the first integrals corresponding to
the Noether symmetries. A consequent process with regard to the first integrals due to the Noether symmetries allows
to achieve exact solutions of the dynamical equations for the gravity theory. Furthermore, it should be noted that
the Noether symmetries are not only a mathematical tool to solve or reduce dynamics but also their existence allows
to select observable universes/black holes/wormholes etc. and to select analytical models related to observations
[26]. The existence of a black hole (or any astrophysical object) is due to the solution of field equations for the
selected theory of gravity, which provides a non-trivial structured linkage of disappeared points in the space-time.
In particular, it is possible to classify singularity behaviors of any gravity theory which may be related to Noether
symmetries, and then decide which one is physical or unphysical solution.
In this paper, with Noether symmetries, we investigate the exact solutions of spherically symmetric spacetimes in

f(R, φ,X) gravity, where R is the scalar curvature, φ is a scalar field, X is the kinetic term of φ, and f(R, φ,X) is
a function of R, φ and X [27, 28]. This theory can describe various modified gravity theories including the scalar-
tensor gravity and f(R) gravity. In particular, we adopt the classical Noether approach in order to find the Noether
symmetry in f(R, φ,X) gravity. See [25] for some studies related to Noether symmetry approach in modified gravity.
As a result, from the classical Noether theorem, it is shown that the Noether symmetry in f(R, φ,X) gravity leads
to a kind of the first integral of motion, which are able to be solved, so that we need not to analyze the cyclic
coordinate, as explored in detail in Ref. [29]. Thus, we derive exact solutions for the field equations by using the
conservation relation coming from the Noether symmetry acquired. Moreover, it is demonstrated that the approach
with Noether symmetries can be regarded as a selection rule to determine the potential form V (φ) of φ, which exists
in some class of theories described as f(R, φ,X) gravity. One important approach in this paper will be to obtain
new spherically symmetric solutions in this extended theory of gravity without assuming R = constant, as in other
papers. If one assumes R = constant, one looses the higher order terms coming from f(R) gravity, making the theory
not so interesting. The organization of the present paper is as follows. In Sec. II, we explain f(R, φ,X) gravity in
spherically symmetric space-time. In Sec. III, we explore the symmetry reduced Lagrangian in f(R, φ,X) gravity. In
Sec. IV, we investigate the approach with the Noether symmetry. In Sec. V, conclusions are finally presented.

II. f(R,φ,X) GRAVITY IN SPHERICALLY SYMMETRIC SPACE-TIME

The action that we will consider reads [27]

S =

∫

d4x
√−g

[

1

2κ2
f(R, φ,X) + Lm

]

, (1)

where κ2 = 8πG, Lm is any matter Lagrangian and f is a function which depends on the scalar curvature R, a scalar
field φ and a kinetic term being equal to

X = − ǫ

2
∂µφ∂µφ , (2)

where ǫ is a parameter that if is equal to 1 represents canonical scalar field and equal to −1 represents a phantom scalar
field. Clearly, the above action has many different scalar tensor theories such as Brans-Dicke types (f(R, φ,X) =
γ(φ,X)R) or minimally coupled scalar tensor theories (f(R, φ,X) = α(R) + γ(φ,X)). Variations of the action (1)
with respect to the metric yields

fRGµν =
1

2
(f −RfR) gµν +∇ν∇µfR − gµν∇α∇αfR +

ǫ

2
fX (∇µφ)(∇νφ) , (3)

whereas variations with respect to the scalar field φ gives

∇µ (fX ∇µφ) + ǫfφ = 0 . (4)

Here, we have assumed the vacuum case where Lm = 0 and fR = ∂f/∂R, fX = ∂f/∂X and fφ = ∂f/∂φ. It should
be noted that the Schwarzschild solution is the unique spherically symmetric vacuum solution in GR, but we will see
that this no longer holds in f(R, φ,X) theory of gravity. We also mention here that the vacuum solutions do not
necessarily imply a null curvature R = 0 or R = const., which lead to maximally symmetric solutions, to the contrary
in GR. The trace of Eq.(3) yields

RfR +XfX − 2f(R, φ,X) + 3�fR = 0, (5)
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where � = ∇µ∇µ. The latter equation will be useful in studying various aspects of f(R, φ,X) gravity.
Let us now consider that the space-time is spherically symmetric such as the metric is

ds2 = −A(r)dt2 +B(r)dr2 +M(r)(dθ2 + sin θ2dϕ2), (6)

where A(r), B(r) and M(r) are functions of the radial coordinate r. It is easy to see that in this space-time, the scalar
curvature is

R = − 1

B

[

A′′

A
+

2M ′′

M
− A′B′

2AB
+

M ′A′

MA
− M ′B′

MB
− A′2

2A2
− M ′2

2M2
− 2B

M

]

. (7)

For the metric (6), the field equations (3) become

fR

(

2
A′′

A
− A′B′

AB
− A′2

A2
+ 2

M ′A′

MA

)

= −2Bf + 4

[

f ′′

R + f ′

R

(

M ′

M
− B′

2B

)]

, (8)

fR

(

2
A′′

A
+ 4

M ′′

M
− A′B′

AB
− 2

M ′B′

MB
− A′2

A2
− 2

M ′2

M2

)

= −2Bf + 2f ′

R

(

A′

A
+ 2

M ′

M

)

− 2ǫfXφ′2, (9)

fR

(

2
M ′′

M
− B′M ′

BM
+

M ′A′

MA
− 4B

M

)

= −2Bf + 4

[

f ′′

R +
1

2
f ′

R

(

A′

A
− B′

B
+

M ′

M

)]

, (10)

whereas the modified Klein-Gordon equation (4) yields

fX

[

φ′′ +
1

2
φ′

(

A′

A
− B′

B
+ 2

M ′

M

)]

+ f ′

Xφ′ + ǫBfφ = 0. (11)

In above equations, primes denote differentiation with respect to r, therefore, the terms f ′
R = fRRR

′+fRφφ
′+fRXX ′

and f ′
X = fRXR′ + fXφφ

′ + fXXX ′.

III. SYMMETRY REDUCE LAGRANGIAN IN f(R,φ,X) GRAVITY

For simplicity let us express the scalar curvature as follows

R̄ = R∗ − A′′

AB
− 2M ′′

BM
, (12)

where

R∗ =
A′B′

2AB2
− A′M ′

ABM
+

A′2

2A2B
+

B′M ′

B2M
+

M ′2

2BM2
+

2

M
(13)

contains only first derivatives terms. One can rewrite the action into its canonical form in such a way that we can
reduce the number of degrees of freedom. In our case, we have

Sf(R,φ,X) =

∫

drL(A,A′, B,B′,M,M ′, R,R′, φ, φ′) , (14)

Recall that X depends on φ′. Then, the action (1) in spherically symmetric space-time (6) becomes

Sf(R,φ,X) =

∫

dr
{

f(R, φ,X)− λ1

(

R− R̄
)

− λ2

(

X − X̄
)}

M
√
AB (15)

where X̄ = − ǫ
2B φ′2. Here λ1 and λ2 are the Lagrangian multipliers that can be directly found by varying with respect

to R and X , giving λ1 = fR and λ2 = fX respectively. Then, the above canonical action can be rewritten as

Sf(R,φ,X) =

∫

dr

{

f(R, φ,X)− fR

[

R−
(

R∗ − A′′

AB
− 2M ′′

BM

)

]

− fX

(

X +
ǫ

2B
φ′2
)

}

M
√
AB , (16)

=

∫

dr
{

M
√
AB
[

f(R, φ,X)− fR(R−R∗)
]

+ 2M ′

(

√

A

B
fR

)′

+A′

(MfR√
AB

)′

−M
√
ABfX

(

X +
ǫ

2B
φ′2
)}

, (17)
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where we have integrated by parts and ignored boundary terms. Then, the symmetry reduced Lagrangian becomes

Lf =
√
AB [M(f −XfX) + (2−MR)fR] +

fRM
′A′

√
AB

+
1

2
fR

√

A

B

M ′2

M
+

MA′f ′
R√

AB
+ 2

√

A

B
f ′

RM
′ − ǫ

2
fXM

√

A

B
φ′2 . (18)

Note again that f ′
R = fRRR

′ + fRφφ
′ + fRXX ′. Varying the symmetry reduced Lagrangian (18) with respect to the

metric coefficients A,B,M , and the scalar field φ we obtain, respectively

fR

[

2M ′′

M
− M ′B′

MB
− M ′2

2M2
−B

(

2

M
−R

)]

+ f ′

R

(

2M ′

M
− B′

B

)

+ 2f ′′

R −Bf = 0, (19)

fR

(

M ′A′

MA
+

M ′2

2M2

)

+ f ′

R

(

2M ′

M
+

A′

A

)

− ǫ

2
fXφ′2 −B

[

f +

(

2

M
−R

)

fR −XfX

]

= 0, (20)

fR

(

A′′

A
+

M ′′

M
− A′B′

2AB
+

M ′A′

2MA
− M ′B′

2MB
− A′2

2A2
− M ′2

2M2

)

+ f ′

R

(

A′

A
− B′

B
+

M ′

M

)

+ 2f ′′

R −B (f −RfR) = 0, (21)

[

MfX

√

A

B
φ′

]′

+ ǫM
√
ABfφ = 0. (22)

The latter equation is the modified Klein-Gordon equation given in (11). Since the equation of motion (20) describing
the evolution of the metric potential B does not depend on its derivative, it can be explicitly solved in terms of B as
a function of other coordinates such that

B =
fR

(

M ′A′

MA + M ′2

2M2

)

+ f ′
R

(

A′

A + 2M ′

M

)

− ǫ
2fXφ′2

f +
(

2
M −R

)

fR −XfX
. (23)

By inserting the Ricci scalar R given by (7) into the equations (19) and (21), one get

fR

(

2M ′′

M
− M ′A′

MA
− M ′B′

MB
− M ′2

M2

)

− f ′

R

(

A′

A
+

B′

B

)

+ 2f ′′

R + ǫfXφ′2 = 0, (24)

and

fR

(

M ′′

M
+

M ′A′

2MA
− M ′B′

2MB
− 2B

M

)

− f ′

R

(

A′

A
− B′

B
+

M ′

M

)

− 2f ′′

R +Bf = 0, (25)

in which the Eq.(24) comes from the field equations (8) and (9), and the Eq. (25) is equivalent to the field equation
(10). The energy functional EL or the Hamiltonian of the Lagrangian L is defined by

EL = q′i
∂L
∂q′i

− L. (26)

Now, we calculate the energy functional ELf
for the Lagrangian density Lf which has the form

ELf
= M

√

A

B

{

fR

(

M ′A′

MA
+

M ′2

2M2

)

+ f ′

R

(

A′

A
+ 2

M ′

M

)

− ǫ

2
fXφ′2 − B

M
[M(f −XfX) + (2 −MR)fR]

}

. (27)

It is explicitly seen that the energy function ELf
vanishes due to the field equation (20) which is obtained by varying

the Lagrangian (18) according to the metric variable B. Therefore, the solution of equation ELf
= 0 in terms of B is

given by (23).

We note that the Hessian determinant of the Lagrangian (18), which is defined by ‖ ∂2
Lf

∂q′i∂q′j ‖, is zero. This is because
of the absence of the generalized velocity B in the symmetry reduced Lagrangian (18). It is known that the metric
variable B does not contribute to the dynamics due to the symmetry reduced Lagrangian approach, but the equation
of motion for B has to be considered as a further constraint equation. Thus, the new Lagrangian reads L∗

f = L1/2

with

L = [M(f −XfX) + (2−MR)fR]

[

fR

(

M ′A′ +
AM ′2

2M

)

+ f ′

R (MA′ + 2AM ′)− ǫ

2
fXMAφ′2

]

, (28)
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which is not explicitly dependent on r, so it is a canonical Lagrangian, and the quadratic form of generalized velocities
A′,M ′, R′, φ′ and X ′ and thus coincides with the Hamiltonian. Therefore, we can consider L as the new Lagrangian
with five degrees of freedom. The Hessian determinant of L is still vanishing, which comes from the selection of X
as a coordinate of the configuration space. This new Lagrangian has a property that if f(R, φ,X) = F (R), then the
Hessian determinant of the Lagrangian is now non-vanishing as it is expected. Therefore it has to be supposed that
M(f −XfX) + (2 −MR)fR 6= 0, which is necessary since the above definitions of B, the Eq. (23), and L, the Eq.
(28), lose significance. Furthermore, using the Eq. (26) we calculate the energy function for the new Lagrangian (28)
and find that

EL = AB [M(f −XfX) + (2−MR)fR]
2
, (29)

which is explicitly non-vanishing. The new Lagrangian (28) is useful to compare the Noether symmetries obtained in
this study with the results of Ref. [29], where they have been selected families of f(R) models in which the spherical
symmetry has been imposed, and searched for exact spherically symmetric solutions in f(R) gravity by requiring the
existence of Noether symmetries. In order to facilitate the comparison with the results of Ref. [29] for the power-law
form f(R, φ,X) = f0R

n we use the Lagrangian (28) to compute the Noether symmetries.

IV. NOETHER SYMMETRY APPROACH

In this section, we seek for the condition in order that the Lagrangian density (18) or (28) would admit any Noether
symmetry which has a generator of the form

Y = ξ
∂

∂r
+ ηi

∂

∂qi
, (30)

where qi are the generalized coordinates in the d-dimensional configuration space Q ≡ {qi, i = 1, . . . , d} of the
Lagrangian, whose tangent space is T Q ≡ {qi, q′i}. The components ξ and ηi of the Noether symmetry generator Y
are functions of r and qi. The existence of a Noether symmetry implies the existence of a vector field Y given in (30)
if the Lagrangian L(r, qi, q′i) satisfies

Y
[1]L+ L(Drξ) = DrK , (31)

where Y
[1] is the first prolongation of the generator (30) in such a form

Y
[1] = Y + η′i

∂

∂q′i
, (32)

and K(r, qi) is a gauge function, Dr is the total derivative operator with respect to r, Dr = ∂/∂r+ q′i∂/∂qi, and η′i is
defined as η′i = Drη

i−q′iDrξ. The significance of Noether symmetry comes from the following first integral of motion
that if Y is the Noether symmetry generator corresponding to the Lagrangian L(r, qi, q′i), then the Hamiltonian or a
conserved quantity associated with the generator Y is

I = −ξEL + ηi
∂L
∂q′i

−K, (33)

where I is a constant of motion or Noether constant.
Let us start with the Lagrangian (28), where qi = {A,M,R, φ,X}, i = 1, . . . , 5. Then the Noether symmetry

condition (31) for this Lagrangian yields 26 partial differential equations as follows

ξ,A = 0, ξ,M = 0, ξ,R = 0, ξ,φ = 0, ξ,X = 0, K,r = 0,

fRη
2
,r +M

(

fRRη
3
,r + fRφη

4
,r + fRXη5,r

)

− 1

F
K,A = 0, fRX

(

Mη1,r +Aη2,r
)

− 1

F
K,X = 0,

fR

(

η1,r +
A

M
η2,r

)

+ 2A
(

fRRη
3
,r + fRφη

4
,r + fRXη5,r

)

− 1

F
K,M = 0,

fRR

(

Mη1,r +Aη2,r
)

− 1

F
K,R = 0, fRR

(

Mη1,r +Aη2,r
)

− ǫMAfXη4,r −
1

F
K,φ = 0,

fRR

(

Mη1,R + 2Aη2,R
)

= 0, fRR

(

Mη1,φ + 2Aη2,φ
)

+ fRφ

(

Mη1,R + 2Aη2,R
)

= 0,

fRR

(

Mη1,X + 2Aη2,X
)

+ fRX

(

Mη1,R + 2Aη2,R
)

= 0, fRX

(

Mη1,X + 2Aη2,X
)

= 0,

fRφ

(

Mη1,X + 2Aη2,X
)

+ fRX

(

Mη1,φ + 2Aη2,φ
)

− ǫMAfXη4,X = 0, fRη
2
,A +M

(

fRRη
3
,A + fRφη

4
,A + fRXη5,A

)

= 0,
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fR

(

η1,A +
A

M
η2,A + η2,M − ξ,r

)

+M
(

fRRη
3
,M + fRφη

4
,M + fRXη5,M

)

+ 2A
(

fRRη
3
,A + fRφη

4
,A + fRXη5,A

)

+
1

F

[

fRF,Mη2 + (FfR),R η3 + (FfR),φ η
4 + (FfR),X η5

]

= 0,

fR
M

η2,R + fRR

(

η1,A +
2A

M
η2,A + η3,R − ξ,r

)

+ fRφη
4
,R + fRXη5,R

+
1

F

[

fRR(FM),M
η2

M
+ (FfRR),R η3 + (FfRR),φ η

4 + (FfRR),X η5
]

= 0,

fR
M

η2,φ + fRφ

(

η1,A +
2A

M
η2,A + η4,φ − ξ,r

)

+ fRRη
3
,φ + fRXη5,φ

+
1

F

[

fRφ(FM),M
η2

M
+ (FfRφ),R η3 + (FfRφ),φ η

4 + (FfRφ),X η5
]

= 0, (34)

fR
M

η2,X + fRX

(

η1,A +
2A

M
η2,A + η5,X − ξ,r

)

+ fRRη
3
,X + fRφη

4
,X

+
1

F

[

fRX(FM),M
η2

M
+ (FfRX),R η3 + (FfRX),φ η

4 + (FfRX),X η5
]

= 0,

fR

[

η1

A
+

M

F

(

F

M

)

,M

η2 +
2M

A
η1,M + 2η2,M − ξ,r

]

+ 4M
(

fRRη
3
,M + fRφη

4
,M + fRXη5,M

)

+
1

F

[

(FfR),R η3 + (FfR),φ η
4 + (FfR),X η5

]

= 0,

fR
2A

(

η1,R +
A

M
η2,R

)

+ fRR

[

η1

A
+

F,M

F
η2 +

M

2A
η1,M + η2,M + η3,R − ξ,r

]

+ fRφη
4
,R + fRXη5,R

+
1

F

[

(FfRR),R η3 + (FfRR),φ η
4 + (FfRR),X η5

]

= 0,

fR
2A

(

η1,φ +
A

M
η2,φ

)

+ fRφ

[

η1

A
+

F,M

F
η2 +

M

2A
η1,M + η2,M + η4,φ − ξ,r

]

+ fRRη
3
,φ + fRXη5,φ

+
1

F

[

(FfRφ),R η3 + (FfRφ),φ η
4 + (FfRφ),X η5

]

= 0,

fR
2A

(

η1,X +
A

M
η2,X

)

+ fRX

[

η1

A
+

F,M

F
η2 +

M

2A
η1,M + η2,M + η5,X − ξ,r

]

+ fRRη
3
,X + fRφη

4
,X

+
1

F

[

(FfRX),R η3 + (FfRX),φ η
4 + (FfRX),X η5

]

= 0,

fX

[

η1

A
+

(MF ),M
MF

η2 + 2η4φ − ξ,r

]

− 2ǫ

MA
fRφ

(

Mη1,φ + 2Aη2,φ
)

+

+
1

F

[

(FfX),R η3 + (FfR),φ η
4 + (FfX),X η5

]

= 0,

where F = [M(f −XfX) + (2−MR)fR] 6= 0. Then we solve the above system of differential equations to get the
Noether symmetry Y = ξ∂r + η1∂A + η2∂M + η3∂R + η4∂φ + η5∂X . The above system implicitly depends on the form
of the function f(R, φ,X) and so, by solving it, we also get a wide class of gravity theories related to the form of
f(R, φ,X) which are compatible with spherical symmetry. We point out here that the Noether symmetries for any
form of the function f(R, φ,X) are

Y1 = ∂r, Y2 = r∂r +A∂A, (35)

which are trivial solutions of the above system in any case. In the following we will consider some forms of f(R, φ,X)
to search the Noether symmetries. To do this, we will split the study in five different types of f(R, φ,X):
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1. f(R, φ,X) = f0R
n, where f0 and n are constants (see IVA).

2. f(R, φ,X) = f0R+ f1X
q − V (φ), where f0, f1 and q are constants and V (φ) is a potential (see IVB).

3. f(R, φ,X) = f0φ
mRn + f1X

q −V (φ), where f0, f1,m, n and q are constants and V (φ) is a potential (see IVC).

4. f(R, φ,X) = f0R
n + f1 φ

m Xq, where f0, f1,m, n and q are constants (see IVD).

5. f(R, φ,X) = U(φ,X)R, where U(φ,X) is an arbitrary function which depends on the scalar field φ and the
kinetic term X (see IVE).

In each case, some subcases where some specific parameters will be also studied. The specific cases listed above
represent different classes of modified theories of gravity that can be constructed with the curvature scalar X , a
scalar field φ and a kinetic term X . The first model has been widely considered in the literature and represents a
power-law f(R) gravity [30–32]. These models provide a good fitting for galactic rotation curves [33]. The second
model represents a generalisation of minimally coupled models (quintessence models) where the parameter q gives
the opportunity to have power-law kinetic terms in the action. Similar models have been studied in [34, 46]. The
third model represents a class of non-minimally couplings between a scalar field and the Ricci scalar. The case m = 2
and n = 1 has been widely studied in the literature, and in cosmology, it can reproduce a late-time accelerating
scenarios with the possibility of crossing the phantom barrier [36, 37]. Other studies have considered other power-law
parameters, see for example [38–40]. The fourth model is another family of coupling models where now the kinetic
term is coupled with the scalar field. This model is a particular case of the k-essence models, which can describe
late-time accelerating behaviour of the Universe and can describe inflation in a good agreement with cosmological
observations [41–43]. Moreover, these models also can achieve a unified model for dark matter and dark energy
avoiding the problems of the generalized Chaplygin gas models, which are due to a non-negligible sound speed in
these models [44]. Finally, the last model represents a Brans-Dicke theory, see [45, 46] for more details about this
theory. All these models have been widely studied in the literature in the context of cosmology but due to the difficulty
of finding exact solutions, there are not so many studies concerning non-trivial spherically symmetric spacetimes. In
this paper, we will find exact solutions to the models since they have interesting physics properties.

A. Case (i): f(R,φ,X) = f0R
n.

This power-law form of f(R, φ,X) gives the well-known f(R) theory of gravity, and Noether symmetries have
been investigated in Ref. [29]. As an example to see how our approach works, we revisit this form of f(R, φ,X).
Furthermore, the trace Eq.(5) in this case becomes

3n�
(

Rn−1
)

+ (n− 2)Rn = 0, (36)

which gives R = 0 for n = 1, �R = 0 for n = 2, etc. We find from the system (31) that the components of the
Noether generator Y for this case are

ξ = c1r + c2, η1 = [c1 + c3(2n− 3)]A, η2 = c3M, η3 = −c3R, η4 = 0 = η5, K = c4, (37)

which yields that Y1, Y2 and

Y3 = (2n− 3)A∂A +M∂M −R∂R, n 6= 0, 1, 2 (38)

are Noether symmetries. This explicitly represents that there exist extra two Noether symmetries Y1 and Y2 in
addition to the known one Y3 found in [29]. The first integrals of the above Noether symmetries are

I1 = −EL, I2 = I1r + f2
0nMAR2(n−1) [2n+ (1− n)MR]

[

(n− 1)
R′

R
+

M ′

M

]

, (39)

I3 = f2
0nMAR2(n−1) [2n+ (1 − n)MR]

[

(n− 1)(2n− 1)
R′

R
+ (2 − n)

A′

A

]

, (40)

where I1 is non-vanishing due to the EL 6= 0. Then, arranging the above first integrals one gets

(n− 1)
R′

R

(

A′

A
+

2M ′

M

)

+
M ′

M

(

A′

A
+

M ′

2M

)

= − I1R
2(1−n)

nf2
0MA [2n+ (1 − n)MR]

,

(n− 1)
R′

R
+

M ′

M
=

(I2 − I1r)R
2(1−n)

nf2
0MA [2n+ (1− n)MR]

, (41)

(2− n)
A′

A
+ (n− 1)(2n− 1)

R′

R
=

I3R
2(1−n)

nf2
0MA [2n+ (1 − n)MR]

,
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where n 6= 1, 2. Solving the third equation of (41) in terms of A, one finds

A = R
(n−1)(2n−1)

n−2

[

A0 +
I3

f2
0n(2− n)

∫

R
(n−1)(4n−5)

2−n dr

M [2n+ (1 − n)MR]

]

, (42)

which has same form obtained in [29]. Due to the previously obtained relation (23) of the metric function B, it takes
the form for this case:

B =
nM

[2n+ (1− n)MR]

[

(n− 1)
R′

R

(

A′

A
+

2M ′

M

)

+
M ′

M

(

A′

A
+

M ′

2M

)]

. (43)

We observe here that one can find the metric functions A and B if the functions M(r) and R(r) are known one way or
another. One can give so much examples of the exact solutions for the field equations using the above relations (42),
(41) and (43). Here the Eqs. (41) are constraint equations to be satisfied. If one chooses M(r) = r2 and R = R0r

p,
one gets hypergeometric functions for both A(r) and B(r). There are some specific cases for p where one can get
analytical solutions without those hypergeometric functions. The easiest case is as it was chosen in Ref. [29], where
one takes n = 5/4, p = −2, R0 = −5 which gives R(r) = − 5

r2 . The minus sign in R is due to the signature of the
metric. For this case, the metric coefficients A and B from the relations (43) and (42) are obtained as

A(r) =
1√
5
(k1r + k2) , B(r) =

1

2
(

1 + k2

k1r

) , (44)

where k1 = A0, k2 = 32I2/(225f
2
0 ), I1 = −I2k1/k2 and I3 = −I2/2 which comes from the constraint equations (41).

The latter solution was already found in [29]. It should be noted that the above metric is non asymptotically flat,
has a horizon at r = −k2/k1 and it was ruled out by Solar system tests [47]. Another new solution can be found by
taking M(r) = r2, R = R0r

p and p = (n− 2)/(4n2 − 10n+ 7), which gives the following metric coefficient

A(r) = r
(n−1)(2n−1)

4n2
−10n+7



A0R
2n2

−3n+1
n−2

0 +
I3(n− 1)

(

4n2 − 10n+ 7
)

R3−2n
0

4f2
0n

3(n− 2) (8n2 − 19n+ 12)
log



1− 2nr
−8n2+19n−12

4n2
−10n+7

(n− 1)R0









+
I3
(

4n2 − 10n+ 7
)

R2−2n
0

2f2
0n

2(n− 2) (8n2 − 19n+ 12)
r

−6n2+16n−11

4n2
−10n+7 . (45)

The expression for B(r) is involved but can be directly found by using Eq. (43). Another analytical solution can be
found from (42) by taking M(r) = r2, R = R0r

p and p = (2− n)/(4n2 − 9n+ 5). This solution reads

A(r) = r
1−2n
4n−5R

2n2
−3n+1
n−2

0









A0 +

I3(n− 1)(4n− 5)R
−4n2+9n−5

n−2

0 log

(

(n− 1)R0r
8n2

−19n+12

4n2
−9n+5 − 2n

)

2f2
0 (n− 2)n2(n(8n− 19) + 12)









−I3r
1−2n
4n−5R2−2n

0 log(r)

2f2
0 (n− 2)n2

, (46)

with B(r) being also too involved to write it here but it can be easily found with Eq. (43).
It is possible to give some other examples to produce new solutions from the generic statements for A and B. If we

take n = 1/2,M(r) = rq and R(r) = R0r
−q , then it follows from (7), (42) and (43) that q = 2/3 and R0 = 1, which

gives

A(r) = A0

(

1− 2k

r2/3

)

, B(r) =
2

21r4/3
(

1− 2k
r2/3

) , (47)

where k = 2I3/(3A0f
2
0 ). This solution has an event horizon at r = (2k)3/2 and it is asymptotically flat. Furthermore,

taking M(r) = rq and R(r) = R0r
−q , the equations (7), (42) and (43) yield q = 2/43 and R0 = 1006/321 for n = 3,

and q = 4/167 and R0 = 72/23 for n = 4, which gives rise to the solutions A and B

A(r) =
A0R

10
0

r20/43

[

1 +
43kR14

0

13(R0 − 3)
r13/43

]

, B(r) = − r−84/43

86
(

R0 − 3 + 43
13kR

14
0 r13/43

) , k =
I3

6A0f2
0

, (48)

for n = 3, and

A(r) =
A0R

21/2
0

r42/167

[

1 +
167kR33

0

(3R0 − 8)
r31/167

]

, B(r) = − 30752 r−330/167

27889
(

93R0 − 248 + 167kR33
0 r31/167

) , k =
I3

8A0f2
0

, (49)
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for n = 4. These two solutions are also asymptotically flat. To the best of our knowledge, the five solutions (45)–(49)
are new spherically symmetric solutions in power-law f(R) gravity. It is important to remark that in the literature,
many authors have found solutions in f(R) only considering R = constant, which indeed is a trivial case since all the
higher order terms considered in f(R) disappears. The above new solutions could be interesting since they contain
some logarithmic terms that could be related to dark matter [48].

For n = 1 (the GR case), i.e., f(R, φ,X) = f0R, the reduced Lagrangian and the constraint (23) for B become

LGR = AM ′

(

2A′

A
+

M ′

M

)

, BGR = M ′

(

2A′

A
+

M ′

M

)

, (50)

which yields that the energy function is ELGR = ABGR. Then we find from the Noether symmetry condition (31) for
the above Lagrangian the following Noether symmetries

Y1 = ∂r, Y2 = r∂r +A∂A, Y3 = A∂A −M∂M , Y4 =
1√
M

∂A, (51)

Y5 =
A√
M

∂A − 2
√
M∂M , Y6 = r2∂r + 2rM∂M with K = 4MA, (52)

Y7 =
rA√
M

∂A − 2r
√
M∂M with K = −4A

√
M, Y8 =

r√
M

∂A with K = 4
√
M, (53)

which gives rise to the following first integrals

I1 = −ELGR , I2 = I1r + 2AM ′, I3 = −2MA′, I4 =
2M ′

√
M

, I5 = −2A
√
M

(

2
A′

A
+

M ′

M

)

, (54)

I6 = I1r
2 + 4rMA

(

A′

A
+

M ′

M
− 1

r

)

, I7 = −2rA
√
M

(

2A′

A
+

M ′

M
− 2

r

)

, I8 = I4r − 4
√
M. (55)

Here we point out that the Noether symmetry Y3 for GR Lagrangian has only been obtained in [29]. Using the above
first integrals, the functions A and M together have the Schwarzschild form with some constraints as follows

A =
I7 − I5r

I4r − I8
, B = −I1

A
, M =

1

16
(I4r − I8)

2
, (56)

I5 =
4I1
I4

, I6 =
I2
I1

(I2 − 2I3), I7 =
4I2
I4

, I8 =
I4
I1

(I2 − 2I3). (57)

Thus the standard form of Schwarzschild solution is covered for I1 = −1, I4 = −4, I5 = 1, I6 = 0, I8 = 0 and
I2 = 2I3 = −I7 = 8m, where m is the Schwarzschild mass, which means that the Noether symmetry relates the
first integrals I2, I3 and I7 with the Schwarzschild radius or the mass of the gravitating system. For the classical
Schwarzschild solution, the event horizon at r = 2m corresponds to a singularity of the Schwarzschild coordinates at
which g00 = 0, i.e. A(r) = 0, and g11 = B(r) tends to infinity. It is known that a horizon is a null-hypersurface, and
one can say that r = constant is the null-hypersurface at A(r) = 0 which yields all the possible horizons.

For n = 2, the Noether symmetries are Y1, Y2 given in (35) and

Y3 = A∂A +M∂M −R∂R, (58)

with the first integrals I1 = −EL and

I2 = I1r + 2f2
0MAR2(4 −MR)

(

R′

R
+

M ′

M

)

, I3 = 6f2
0MA(4−MR)RR′, (59)

in which the latter first integral yields

A =
I3

6f2
0M(4−MR)RR′

, (60)

with I3 6= 0. Then it follows from the first integrals (59) that

R′

R
+

I3
(3I1r + α)

M ′

M
= 0, (61)
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which has a solution

R = R0

(

1 +
q

r

)

2I3
α

, (62)

for M(r) = r2, where R0 is an integration constant, α = I3 − 3I2 and q = α
3I1

. Thus, using (62) in (60) and

I1 = −f2
0ABR2(4−MR)2, we find

A = A0

(

1 +
q

r

)1−
4I3
α

[

R0r
2
(

1 +
q

r

)

2I3
α − 4

]−1

, B =
4

(

1 + q
r

)

[

4−R0r
2
(

1 +
q

r

)

2I3
α

]−1

(63)

where A0 = I1
4f2

0R
2
0
. So we have obtained a complete solution of the quadratic gravity (n = 2) when M(r) = r2. As

far as we know, this solution is a new exact solution for the quadratic gravity. This solution is asymptotically flat
if 0 < I3/α < 1/4 and can describe a black hole since its horizons are at r = −q and when r2R0(q/r + 1)2I3/α = 4,
which depends on the exponent I3/α. Thus, the above solution is a new black hole solution in quadratic gravity given
by f(R) = f0R

2.

B. Case (ii): f(R,φ,X) = f0R + f1X
q
− V (φ).

In this case, the existence of a non-trivial Noether symmetry selects the form of potential function V (φ) of the
theory, which means that it is possible to find out exact solutions for a given theory with the selected potential. Here
the function F takes the form F = 2f0 + f1(1− q)MXq −MV (φ). Further, the field Eq. (4) and trace Eq.(5) for this
case yield

R =
2V (φ)

f0
+ (q − 2)

f1
f0

Xq, ∇µ

(

Xq−1∇µφ
)

− ǫ

qf1
Vφ = 0. (64)

For the potential V (φ) = V0 (φ+ V1)
2q

1−q , we find the Noether symmetries Y1, Y2 given in (35) and

Y3 = A∂A −M∂M +
(1− q)

2q
(φ+ V1)∂φ +

X

q
∂X , (65)

with q 6= 1. Further, for the potential V (φ) = V0 (φ+ V1)
4q

2−q , it follows that the Noether symmetries are Y1, Y2, and

Y3 = − A

2
√
M

∂A +
√
M∂M +

(q − 2)

4q
√
M

(φ+ V1)∂φ − X

q
√
M

∂X , (66)

where q 6= 1, 2. For this case, the first integrals of Noether symmetries Y1 and Y2 are

I1 = −EL, I2 = I1r + f0AFM ′, (67)

which are common for all possible subcases of this case, and give

A =
I2 − I1r

f0FM ′
, B =

f0I1M
′

(I1r − I2)F
. (68)

The above relations require that

B = − I1f
2
0M

′2

(I1r − I2)2
A. (69)

The first integrals for (65) and (66) are , respectively

I3 = −MAF

[

f0
A′

A
− 1

2
f1ǫ(q − 1)Xq−1(φ+ V1)φ

′

]

, (70)

and

I3 =
√
MAF

[

f0

(

A′

A
+

M ′

2M

)

− 1

4
f1ǫ(q − 2)Xq−1(φ + V1)φ

′

]

. (71)
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Using the relations given in (68), the first integral (70) can be written in the form

A′ − I3M
′

(I1r − I2)M
A =

f1(q − 1)ǫq

2qf2q−1
0 Iq−1

1

[

I1r − I2
M ′

]2(q−1)

(φ+ V1)φ
′2q−1A2−q, (72)

where ǫq = 1 for even q, and ǫq = ǫ for odd q. This is the Bernoulli differential equation for A, and it has the solution

Aq−1 =
1

µ1

[

A0 +
f1ǫ

q(q − 1)2

2qf2q−1
0 Iq−1

1

∫

µ1

(

I1r − I2
M ′

)2(q−1)

(φ + V1)φ
′(2q−1)dr

]

, (73)

where µ1 is the integration factor given by µ1 = exp
[

(1− q)I3
∫

M ′dr/(I1r − I2)M
]

, andA0 is an integration constant.
Furthermore, together with (68), the first integral (71) takes the form

A′ +

[

I3M
′

(I1r − I2)
√
M

+
M ′

2M

]

A =
f1(q − 2)ǫq

2q+1f2q−1
0 Iq−1

1

(

I1r − I2
M ′

)2(q−1)

(φ + V1)φ
′(2q−1)A2−q, (74)

which is also a Bernoulli differential equation and has the following solution

Aq−1 =
1

µ2

[

A1 +
f1ǫ

q(q − 1)(q − 2)

2q+1f2q−1
0 Iq−1

1

∫

µ2

(

I1r − I2
M ′

)2(q−1)

(φ + V1)φ
′(2q−1)dr

]

, (75)

where µ2 is the integration factor given by µ2 = M (q−1)/2 exp
[

(q − 1)I3
∫

M ′dr/(I1r − I2)
√
M
]

, and A1 is an inte-

gration constant. Now, we search the Noether symmetries in the following relevant subcases for q = 1, 2.

1. Subcase (ii-a): q = 1.

For this subcase, the field Eq.(4) and trace Eq.(5) for this subcase give

R =
2V (φ)

f0
− f1

f0
X, �φ =

ǫ

f1
Vφ. (76)

We find that there exists Noether symmetries for the potential V = V0 (φ+ V1)
4
such that Y1, Y2 and

Y3 = − A

2
√
M

∂A +
√
M∂M − (φ+ V1)

4
√
M

∂φ, (77)

Then the first integrals of this subcase are given by (67) and

I3 =
I2 − I1r

2
√
M

+ f0F
√
MA′, (78)

where F = −M(V0φ+ V1)
4 + 2f0. Thus, these Noether integrals give rise to the same relation with (68), and

F ′

F
+

M ′′

M ′
− M ′

2M
− 1

I1r − I2

(

I1 + I3
M ′

√
M

)

= 0, M ′ 6= 0. (79)

Therefore, for M = r2, we find that

A = − 1

2f0F0r
(I1r − I2)

I13 , B =
2f0I1r

F0
(I1r − I2)

−2+I13 , (80)

φ =
1

V0
√
r

[

2f0 − F0 (I1r − I2)
1−I13

]
1
4 − V1, (81)

where F0 is an integration constant and I13 = −2I3/I1. If I13 < 1, the above metric is asymptotically flat and has an
horizon at r = I2/I1 with I13 6= 0. Hence, this solution also represents a black hole solution which to the best of our
knowledge is a new solution in this specific scalar field theory.
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2. Subcase (ii-b): q = 2.

In this subcase, the Eqs.(4) and (5) imply that

R = − 2

f0
V (φ), ∇µ (X∇µφ)− ǫ

2f1
Vφ = 0. (82)

For this subcase we find the Noether symmetries for the potentials V = V0 (φ+ V1)
−4

and V = V1e
−V0φ, respectively,

Y3 = A∂A −M∂M − (φ + V1)

4
∂φ +

X

2
∂X , (83)

and

Y3 = − A

2
√
M

∂A +
√
M∂M +

1

V0

√
M

∂φ − X

2
√
M

∂X , (84)

in addition to Y1, Y2. Here the Noether symmetry (83) can be obtained by taking q = 2 in (65). Corresponding first

integrals with the potential V = V0 (φ+ V1)
−4 are given by (67), and

I3 = −MF

[

f0A
′ − f1(I1r − I2)

2

4I1f2
0M

′2
(φ + V1)φ

′3

]

. (85)

Then, using the first integrals of this subcase, we obtain the same form of A and B with (68) and also the following
constraint equation:

A′ − I3M
′

(I2 − I1r)M
A =

f1(I2 − I1r)
2(φ+ V1)φ

′3

4I1f3
0M

′2
, (86)

where M ′ 6= 0. For M = r2, this equation has the following solution

A(r) =

[

I1r − I2
r

]

2I3
I2







A0 +
f1

16I1f3
0

∫ [

I1r − I2
r

]2(1−
I3
I2

)

(φ+ V1)φ
′3dr







, (87)

where A0 is a constant of integration. Then we find the metric function B through (69) as

B(r) = −4I1f
2
0

[

I1r − I2
r

]2(
I3
I2

−1)






A0 +
f1

16I1f3
0

∫ [

I1r − I2
r

]2(1−
I3
I2

)

(φ+ V1)φ
′3dr







. (88)

For the potential V = V1e
−V0φ, the first integrals I1 and I2 together with EL = ABF 2 gives the same relations

obtained in (68) and (69), where F = 2f0 − f1MX2 − f2V1Me−V0φ. The first integral of Y3 becomes

I3 =
I2 − I1r

2
√
M

+
√
MAF

[

f0
A′

A
+

f1
V0B

φ′2

]

, (89)

which yields

A′ −
[

I3M
′

(I2 − I1r)
√
M

+
M ′

M

]

A =
f1(I2 − I1r)

2φ′3

I1V0f3
0M

′2
. (90)

If M = r2, then the Eq. (90) gives

A(r) =
(I1r − I2)

−2I3
I1

r2

{

A1 +
f1

4I1V0f3
0

∫

(I1r − I2)
2(1+

I3
I1

)
φ′3dr

}

, (91)

where A1 is an integration constant. Thus it follows from Eq. (69) for B that

B(r) = −4I1f
2
0 (I1r − I2)

−2(1+
I3
I1

)

{

A1 +
f1

4I1V0f3
0

∫

(I1r − I2)
2(1+

I3
I1

)
φ′3dr

}

. (92)
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Then, if one specifies the scalar field φ, one can find some exact solutions. As an example, let us take the following
scalar field

φ(r) =
3C1

I1 − 2I3
(I1r − I2)

I1−2I3
3I1 , (93)

where C1 is a constant and I3 6= I1/2. Using this scalar field, the integrands in (91) and (92) become C3
1 and therefore,

it is easy to get the following solution for the metric coefficients

A(r) =
(I1r − I2)

−
2I3
I1

r2

(

A1 +
A0 r

I1

)

, B(r) = −4f2
0 I1(I1r − I2)

−2
(

I3
I1

+1
)
(

A1 +
A0r

I1

)

, (94)

where A0 = f1C
3
1/(4f

3
0V0). It is clear that for I1 = −2I3, one gets for that the metric coefficients from (94) are

A(r) = A0 +

(

A0I2 − 4A1I
2
3

)

2I3r
− A1I2

r2
, B(r) = 4f2

0

(

A0r − 2A1I3
I2 + 2I3r

)

, (95)

which behaves similarly as a Schwarzschild metric and additional contribution. This metric is asymptotically flat and
has two horizons at the surfaces r1 = 2A1I3/A0 and r2 = −I2/(2I3), i.e A(r) = 0 at these surfaces. At the surface
r = r1, the metric coefficient B(r) vanishes, and it is infinite at the surface r = r2. Therefore, the horizon at r = r2
has same behaviour with the classical Schwarzschild solution. For the specific case A0 = 1, A1 = 0, I2 = −4mI3 and
I3 = 2f2

0 , one gets the standard Schwarzschild solution A(r) = 1− 2m
r and B(r) = 1/A(r) with m = −I2/(4I3). Thus,

the Eqs. (95) can be understood as a generalization of the Schwarzschild solution found in General Relativity.

C. Case (iii): f(R,φ,X) = f0φ
mRn + f1X

q
− V (φ).

For this case, the field Eq.(4) and trace Eq.(5) take the following form

�
(

φmRn−1
)

+
(n− 2)

3n
φmRn +

2

3nf0

[( q

2
− 1
)

Xq + V (φ)
]

= 0, (96)

∇µ

(

Xq−1∇µφ
)

+
ǫ

qf1

(

mf0φ
m−1Rn − Vφ

)

= 0. (97)

In this case the potential of the corresponding theory will be V (φ) = V0φ
q(2n−m)

n−q with n 6= q, and it is obtained the
Noether symmetries for this potential such that Y1, Y2 given by (35) and

Y3 =

[

m

2q
(3− 2q) + 2n− 3

]

A∂A + (1− m

2q
) (M∂M −R∂R)−

(n− q)

2q
φ∂φ +

(m− 2n)

2q
X∂X , (98)

which have the Noether integrals

I1 = −EL, I2 = I1r + f0nR
n−1φmMAF

[

(n− 1)
R′

R
+

M ′

M

]

, (99)

I3 = MAF

{

f0nφ
mRn−1

[

ℓ
A′

A
+ p

(

(n− 1)
R′

R
+m

φ′

φ

)]

+
ǫ

2
f1(n− q)Xq−1φφ′

}

, (100)

where ℓ and p are defined as ℓ = 2−n+m
2q (q−2), p = 2n−1+m

2q (1−2q), q 6= 0, and F = f0φ
mRn−1 [2n+ (n− 1)MR]+

f1(1− q)MXq − V0Mφ
q(2n−m)

n−q . The above relations give

A(r) =

[

Rn−1φm
]−

p
ℓ

R1(r)



A0 +
I3

f0ℓn

∫

[

Rn−1φm
]

p−ℓ
ℓ R1(r)

MF
dr



 , (101)

B(r) = − I1
AF 2

, (102)

(n− 1)
R′

R
+

M ′

M
=

(I2 − I1r)R
1−n

f0nφmMAF
, (103)

where A0 is an integration constant, ℓ 6= 0, and R1(r) = exp
[

ǫf1(n−q)
2f0ℓn

∫

R1−nφ1−mφ′

X1−q dr
]

. It is seen that this case is a

generalization of the previous case.
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If n = q = 1, i.e. f(R, φ,X) = f0Rφm + f1X − V (φ), then we find the Noether symmetries Y1, Y2 given in (35)
and

Y3 = A∂A −M∂M , (104)

with vanishing potential V (φ) = 0. Thus, the corresponding Noether integrals become

I1 = −EL, I2 = I1r − I1f0MAφm

(

M ′

M
+m

φ′

φ

)

, I3 = I1f0MAφm

(

A′

A
+m

φ′

φ

)

, (105)

where EL = 4f2
0ABφ2m. These first integrals give rise to the solutions

A = φ−m

[

A0 +
I3
I1f0

∫

dr

M

]

, B = −I1φ
−2m

4f2
0A

, (106)

φm =
1

M

[

φ0 +
1

I1f0

∫

(I1r + I2)

A
dr

]

, (107)

where A0 and φ0 are integration constants. For the case M = r2, assuming φ(r) =
[

C1(A0f0I1r−I3)
r(I1r+I2)

]1/m

, it follows

from (106) and (107) that there are the possibilities (a) φ0 = 0, A0 = f−1
0 , I2 = −I3 and (b) I2 = 0, A0 = f−1

0 , I1 =
−C1I3/φ0. In case (a), one gets the following analytical solutions

A(r) =
A0

C1I1
(I1r − I3) , B(r) =

A0I
2
1C

1−2m
1 r2m

4(I3 − I1r)
, φ(r)m =

C1

r
. (108)

Then, in case (b), the analytical solutions are found as follows

A(r) =
A0

C1
r , B(r) = − A0I1C1r

4
(

C1 +
φ0

r

)2 , φ(r)m =
C1

r
+

φ0

r2
, (109)

where it should be I1 < 0. To the best of our knowledge, these are also new spherically symmetric solutions in this
non-minimally couple theory between the scalar field and the Ricci scalar. It should be noted that the solution (109)
only depends on m in the scalar field and not in the metric. The metrics (108) and (109) are non-asymptotically flat,
and they have horizons at r = I3/I1 and r = 0, respectively.

D. Case (iv): f(R,φ,X) = f0R
n + f1 φ

m Xq.

Here, the field Eq.(4) and trace Eq.(5) become

�
(

Rn−1
)

+
(n− 2)

3n
Rn +

(q − 2)f1
3nf0

φmXq = 0, ∇µ

(

φmXq−1∇µφ
)

+
ǫm

q
φm−1Xq = 0. (110)

For this case, we have the Noether symmetries Y1, Y2 and

Y3 = (2n− 3)A∂A +M∂M −R∂R − (n− q)

(m+ 2q)
φ∂φ − (m+ 2n)

(m+ 2q)
X∂X , (111)

Y4 = φ−
m
2q

(

∂φ − mX

q φ
∂X

)

, (112)

with q 6= 0. Then the first integrals corresponding to the above symmetries are

I1 = −EL, I2 = I1r + f0nMAFRn−1

[

(n− 1)
R′

R
+

M ′

M

]

, (113)

I3 = MAF

{

f0nR
n−1

[

(2− n)
A′

A
+ (n− 1)(2n− 1)

R′

R

]

+
ǫf1(n− q)

(m+ 2q)
Xq−1φm+1φ′

}

, (114)

I4 = −ǫf1qMAFXq−1φ
m(2q−1)

2q φ′ , (115)

where F = f0R
n−1 [2n+ (1− n)MR] + f1(1− q)MφmXq. Then we solve the above equation (114) in terms of A and

find

A(r) = R
(n−1)(2n−1)

n−2

[

A1 +
1

f0n(2− n)

∫

R
(n−1)(4n−5)

2−n

(

I3 +
I4(n− q)φ1+ m

2q φ′

q(m+ 2q)

)

dr

MF1

]

, (116)

where A1 is an integration constant, and F1 ≡ f0[2n+ (1 − n)MR] + f1(1 − q)MR1−nφmXq. This solution reduces
to the solution of case (i) for A given in (42) if f1 = 0 and so I4 = 0.
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E. Case (v): f(R,φ,X) = U(φ,X)R.

This case gives a Brans-Dicke type action, where the coupling to the Ricci curvature also includes the kinetic term
of the scalar field φ. Then we select some form of the function U(φ,X) to search the Noether symmetries.

1. Subcase (v-a): U = f0X
qW (φ).

The field Eq.(4) and trace Eq.(5) in this subcase have the form

R =
3X−q

(q − 1)W (φ)
� [XqW (φ)] , ∇µ

(

Xq−1WR∇µφ
)

+
ǫ

q
XqWφR = 0. (117)

For this subcase, when W (φ) is an arbitrary function of φ, it is found that the Noether symmetries are Y1,Y2 by
(35) and

Y3 = A∂A +
1

(2q − 1)
(M∂M −R∂R −X∂X) , q 6= 1

2
. (118)

The corresponding first integrals of these symmetries become

I1 = −EL, I2 = I1r + f2
0X

2qW 2MA(2− qMR)

(

M ′

M
+

W ′

W
+ q

X ′

X

)

, (119)

I3 =
f2
0

(2q − 1)
X2qW 2MA(2− qMR)

[

(1 − q)
A′

A
+ (2q + 1)

(

W ′

W
+ q

X ′

X

)]

, (120)

where W ′ = Wφφ
′. Solving the first integral (120) in terms of A it follows that

A = (XqW )
2q+1
q−1

[

A0 +
(2q − 1)I3
(1 − q)f2

0

∫

(XqW )
4q−1
1−q dr

M(2− qMR)

]

, (121)

and combining (119) yields

B = − I1
f2
0AX

2qW 2(2 − qMR)2
, (122)

W ′

W
+

M ′

M
+ q

X ′

X
=

I2 − I1r

f2
0X

2qW 2MA(2− qMR)
, (123)

where A0 is a constant of integration. Considering these results one can derive some exact solutions of the field
equations. As an example of the above solution, if we take q = 1/4,M(r) = r2 and R = α/r2, then the relations
(121)-(123) give

A =
A0

K1
r3−p (K1 r +K2)

1+pℓ
, (124)

B =
1

K1 +
K2

r

, (125)

where p = (8−α)I2
2I1K2

, ℓ = (I1K2+I2K1)
K1I2

, and K1,K2 are constants defined by K1 = −A0f
2
0 (8−α)2

16I1
and K2 = (α−8)I3

6I1
.

Considering the definition of R given by (7) to satisfy R = α/r2, we find that ℓ = −1/3 and K1 = 1− α/2 for p = 3
which means A = A0

K1
and B by (125), or ℓ = −1/4 and K1 = (4 − 2α)/3 for p = 4 which means A = A0

K1r
and B by

(125).

2. Subcase (v-b): U = f0X
1/2Vφ, where Vφ = dV (φ)/dφ.

For this subcase, the field Eq.(4) and trace Eq.(5) are as follows

R = − 6

Vφ

√
X

�

(

Vφ

√
X
)

, ∇µ

(

R√
X

Vφ∇µφ

)

+ 2ǫ
√
XVφφR = 0. (126)
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This subcase has also Noether symmetries Y1,Y2 given in (35) and Y3 with

Y3 = M∂M −R∂R −X∂X . (127)

In this subcase, we find some extra Noether symmetries as follows

Y4 = A∂A − (MR− 4)

2M
∂R − V

MRVφ
∂φ +

(

2V Vφφ

MRV 2
φ

− 1

2

)

X∂X , (128)

Y5 = − (MR− 4)

M
∂R +

(MR− 2)V

MRVφ
∂φ +

[

1 +
2(2−MR)V Vφφ

MRV 2
φ

]

X∂X , (129)

Y6 = A lnM∂A − M

2
ln
(

AM3
)

∂M +
2

M
[(MR+ 1) lnM + lnA] ∂R − V

MRVφ

[

(MR− 1) lnM +

(

1− MR

2

)

lnA

]

∂φ

+

[

1 + lnA+
2V Vφφ

MRV 2
φ

(

(MR− 1) lnM +

(

1− MR

2

)

lnA

)

]

X∂X , (130)

Y7 = A lnA

(

lnM +
lnA

2

)

∂A +M lnM

(

lnM +
lnA

2

)

∂M

+
1

M

{[(

3MR

2
− 2

)

lnM + (MR− 2) lnA2MR− 8

]

lnM +

[(

MR

2
− 2

)

lnA+MR− 4

]

lnA

}

∂R

+
V

MRVφ

{[(

MR

2
− 1

)

lnM + 2MR− 4− lnA

]

lnM +

[(

MR

4
− 1

)

lnA+MR− 2

]

lnA

}

∂φ

+
[ 2V Vφφ

MRV 2
φ

{[(

1− MR

2

)

lnM + lnA− 2MR+ 4

]

lnM +

[(

1− MR

4

)

lnA−MR+ 2

]

lnA

}

−
(

lnA+
lnM

2

)

lnM
]

X∂X , (131)

Y8 = A lnA∂A + 2M

(

lnM +
MR

4

)

∂M − 1

M
[(3MR− 4) lnM + (MR− 2) lnA] ∂R

+
V

MRVφ
[(MR− 2) lnM − lnA] ∂φ +

[

2V Vφφ

MRV 2
φ

((2−MR) lnM + lnA)− ln(MA)− 2

]

X∂X , (132)

Y9 = V

[

A∂A +M∂M −R∂R +

(

3ǫXVφ

RV
− V

4Vφ

)

∂φ −
(

2 +
6ǫXVφφ

RV
− V Vφφ

2V 2
φ

)

X∂X

]

, (133)

Y10 =
4ǫr

f2
0MAR(MR− 4)Vφ

[

∂φ − 2Vφφ

Vφ
X∂X

]

with K = V (φ), (134)

where the subscript φ denotes the derivative with respect to φ, and Vφ 6= 0. The Noether symmetries Y1, ...,Y9 have
the following nonvanishing Lie brackets:

[Y1,Y2] = Y1, [Y2,Y6] = −1

2
Y3 +

1

2
Y5, [Y2,Y7] = Y5 +Y6 +Y8, [Y2,Y8] =

1

2
Y3 +Y4,

[Y3,Y6] = −3

2
Y3 +Y4 −Y5, [Y3,Y7] = 2Y5 +Y8, [Y3,Y8] = 2Y3 +Y5, (135)

[Y4,Y6] = −1

2
Y3 +

1

2
Y5, [Y4,Y7] = Y5 +Y6 +Y8, [Y4,Y8] =

1

2
Y3 +Y4,

[Y6,Y7] = −Y7, [Y6,Y8] = −Y6 −
1

2
Y8, [Y7,Y8] = −2Y7.

Here we do not consider the Lie brackets of Noether symmetry Y10 due to the gauge function K = V (φ) appeared
together with this symmetry. For the Noether symmetries Y1 and Y10, the Noether first integrals are

I1 = −EL, I10 = rVφφ
′ − V (φ), (136)

in which the latter first integral has a solution for V (φ) in terms of r as V (φ) = V0r − V1, where V1 ≡ I10 and V0 is
an integration constant. Thus, using the definition of X which has the form X = −ǫφ′2/2B, we find from the first
relation of (136) for A that

A =
8ǫI1

f2
0V

2
0 (4 −MR)2

. (137)
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For the first integrals of the Noether symmetries Y2, ...,Y9, one can get the following relations

I2 = I1r +
2I1M

B(4 −MR)

(

M ′

M
− B′

2B

)

, I3 =
2I1M

B(4 −MR)

(

A′

2A
− B′

B

)

,

I4 =
I1M

B(4 −MR)

(

A′

2A
+

B′

B
− M ′

M
+

2V B

V0M

)

, I5 =
−2I1M

B(4 −MR)

[

A′

A
+

2M ′

M
+

2V B

V0M
(MR− 2)

]

,

I6 =
−I1M

B(4 −MR)

[

lnA

(

B′

B
+

M ′

M
+

V B

V0M
(MR− 2)

)

+ lnM

(

2B′

B
− 3A′

A
− M ′

M
− 2V B

V0M
(MR− 1)

)

+
A′

A
+

2M ′

M

]

,

I7 =
−I1M

B(4 −MR)

[

(lnA)2
(

M ′

M
− B′

2B
+

V B

2V0
(MR− 4)

)

+ 2 lnA lnM

(

M ′

2M
− B′

B
− V B

V0

)

+2(lnM)2
(

3A′

2A
− B′

B
+

M ′

2M
+

V B

2V0
(MR− 2)

)

+ 2 ln(AM2)
V B

V0
(MR− 2)

]

, (138)

I8 =
2I1M

B(4 −MR)

[

lnA

(

A′

A
+

B′

B
+

V B

V0M

)

− lnM

(

3A′

A
− 2B′

B
+

M ′

M
+

V B

V0M
(MR− 2)

)

−MR

2

(

A′

A
− B′

B
+

M ′

M

)

+
A′

A
− 2M ′

M

]

,

I9 =
I1M

B(4 −MR)

[

3B′

B
+

3V0

V
+

V BR

2V0

]

,

with V = V0r − V1. Then, it is obtained for B from the first integrals I2, I3, I4 and I9 that

B =
3V0I1M

[

K0 +
I1(V0r−V1)

2V0

]

MR− 4K0

, (139)

where K0 is a constant defined by K0 = V1
I1
V0

− I2 + I3 + 2I4 − I9. Thus, the first integrals I2 and I3 in (138) yield

[

K0 +
I1(V0r − V1)

2V0

]

MR− 4K0 =
3V0

M

(

B0I1 −
∫

(I1r − I2)(4 −MR)Mdr

)

, (140)

= 3V0M(4−MR)

(

B1I1 −
I3
2

∫

dr

M

)

, (141)

where B0, B1 are constants of integration. Furthermore, after some algebra, we find from the first integrals (138) the
following constraint relations

I5 = 4

(

I2 − I4 −
V1

V0
I1

)

,

I6 =
I5
2

+
2I1V (MR− 2)

V0(4−MR)
+

[

2I1M

B(4 −MR)

(

V0

V
+

V BR

6V0

)

− I3 −
I5
2

− 4

3
I9

]

lnA

+

[

2I1V (MR− 1)

V0(4−MR)
− 5I1M

B(4 −MR)

(

V0

V
+

V BR

6V0

)

+ I1r − I2 + 3I3 +
5

3
I9

]

lnM,

I7 = −2I1V (MR− 2)

V0(4−MR)
ln(AM2) +

[

I1VM(MR− 2)

V0(4−MR)
− I1M

2B(4−MR)

(

V0

V
+

V BR

6V0

)

− I1r + I2 −
I9
6

]

(lnA)2

−
[

I1M

B(4−MR)

(

V0

V
+

V BR

6V0

)

− 2I1V

V0(4−MR)
+ I1r − I2 −

I9
3

]

(lnA)(lnM)

+

[

5I1M

B(4−MR)

(

V0

V
+

V BR

6V0

)

− I1VM(MR− 2)

V0(4−MR)
− I1r + I2 − 3I3 −

5

3
I9

]

(lnM)2, (142)

I8 = 2I3 − (I1r − I2)(MR+ 4) +

[

2I1M

B(4 −MR)

(

V0

V
+

V BR

6V0

)

− I3 −
2

3
I9

]

MR

+2

[

I3 + I9 +
I1V

V0(4−MR)
− 3I1M

B(4−MR)

(

V0

V
+

V BR

6V0

)]

lnA

−2

[

I1V (MR− 2)

V0(4−MR)
− 5I1M

B(4 −MR)

(

V0

V
+

V BR

6V0

)

+ I1r − I2 + 3I3 +
5

3
I9

]

lnM.
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Now, for M = r2, the constraint equation (141) yields

R =
8
[

3V0

(

B1I1 +
I3
2r

)

+ K0

r2

]

2K0 − V1I1
V0

+ (I1 + 3V0I3)r + 6V0B1I1r2
, (143)

Then, using the latter R in Eqs. (137) and (139) for A and B, respectively, it follows that

A =
ǫ
[

2K0 − V1I1
V0

+ (I1 + 3V0I3)r + 6V0B1I1r
2
]2

2I1f2
0 (V0r − V1)2

, (144)

B =
V0

[

2K0 − V1I1
V0

+ (I1 + 3V0I3)r + 6V0B1I1r
2
]

4(V0r − V1)
(

B1I1 +
I3
2r

) , (145)

which is a new solution for M = r2. Some other solutions could be produced from the constraint equation (141) if
we choose an integrable function of M in it. Clearly, this solution is non-asymptotically flat unless I1 = −3V0I3 and
B1 = 0. The singularities of the solutions (144) and (145) can be classified in the following way:

• At r = V1/V0, the metric coefficients A and B tend to infinity, but the Ricci scalar remains finite there.

• At r = −I3/(2B1I1), the metric coefficient A becomes finite, B goes to infinity, and the Ricci scalar remains
finite there.

• The algebraic equation A(r) = 0 from (144) gives the solutions

r± =
1

12V0B1I1

[

−(I1 + 3V0I3)±
√

(24B1V1 + 1)I21 + 6V0I1(I3 − 8B1K0) + 9V 2
0 I

2
3

]

. (146)

Here, the outer horizon r = r+ of the metric constructed from (144), (145) and M(r) = r2 exhibits an event
horizon. The inner horizon r = r− is not because in the entire region r < r+ there are outgoing radial null
geodesics which fail to reach future null infinity and the hypersurface r = r− is not a boundary of a region with
this property. At r = r±, the metric functions A and B vanish, but the Ricci scalar diverge to infinity, which is
a true space-time singularity.

V. CONCLUSIONS

In this paper we derived the Noether symmetries of spherically symmetric metric (6) for a Lagrangian density with
the function f(R, φ,X). This analysis covers most of modified gravity models proposed in the current literature. It
is important to get any exact solutions for a given theory admitting a Noether symmetry if it exists. Besides, the
existence of a Noether symmetry “select” the integrable form of a model in a given class of theories. Furthermore,
the existence of Noether symmetries means to find out conserved quantities according to the Noether Theorem. For
each form of the function f(R, φ,X), and so for the theory of gravity, we can find out exact cosmological solutions if
there exists any Noether symmetry.
One can search for symmetries of the Lagrangian related to cyclic variables to reduce the dynamics. It is known that

the conserved quantities are related to the existence of cyclic variables into the dynamics by the Noether symmetry
(see Ref. [29] for details). But it is not unique to find those of cyclic variable because of that the required equations
for the change of coordinates have not unique solution, and it is usually needed a clever choice. Also, the solution of
equations for the choice of coordinates is not well defined on the whole space [29]. Throughout this study, we deduced
that it is better to use the classical Noether symmetry approach to find Noether symmetry in f(R, φ,X) theory of
gravity, rather that the approach used in Ref. [29]. In this study we show that under the classical Noether theorem,
Noether symmetry in f(R, φ,X) theory of gravity yields a rather handy conserved quantity (or the first integral of
motion), which can be solved easily, and it is not required to search for the cyclic coordinate. Therefore, we directly
use the conservation relation (33) associated with the obtained Noether symmetry Y in order to find exact solutions
for the field equations associated with the Lagrangian (28). In the previous section, we have studied different kinds
of f(R, φ,X) theories, in all of which the Noether symmetry exists and find exact spherically symmetric solutions
in the corresponding f(R, φ,X) theory gravity. It is important to remark that in the literature, many authors have
found solutions in f(R) only considering R = constant, which indeed is a trivial case since all the higher order terms
considered in f(R) disappears. We have found new spherically symmetric solutions in power-law f(R) gravity by
considering R 6= constant which is non-trivial and in principle, without using Noether symmetries, it could have
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been hard to find them. In addition, we have also found other solutions in theories considering the scalar field φ,
a kinetic term X and a potential V (φ). Some interesting new spherically symmetric solutions were found for non-
minimally couplings theories between the scalar curvature and the scalar field f(R, φ,X) = f0R

nφm + f1X
q − V (φ),

non-minimally couplings between the scalar field and a kinetic term f(R, φ,X) = f0R
n + f1φ

mXq , and also in
extended Brans-Dicke gravity f(R, φ,X) = U(φ,X)R. Some of these solutions also represent black hole solutions.
For some class of gravity theories in this paper we found some selected potential functions of V (φ). So one can apply
the Noether symmetry approach as a selection rule to determine the form of the potential function V (φ) of the theory.
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