


## Nutrition, growth, and other factors associated with early cognitive and motor development in Sub-Saharan Africa – a scoping review

| Journal:         | Journal of Human Nutrition and Dietetics   |
|------------------|--------------------------------------------|
| Manuscript ID    | JHND-19-10-0444-REV.R3                     |
| Manuscript Type: | Review - Systematic Review - Meta-Analysis |
| Section:         | Public Health and Epidemiology             |
|                  |                                            |





Nutrition, growth, and other factors associated with early cognitive and motor development in
 Sub-Saharan Africa – a scoping review

4 Abstract

Background: Food insecurity, poverty, and exposure to infectious disease are wellestablished drivers of malnutrition in children in Sub-Saharan Africa. Early development of cognitive and motor skills – the foundations for learning – may also be compromised by the same or additional factors that restrict physical growth. However, little is known about factors associated with early child development in this region, which limits the scope to intervene effectively. To address this knowledge gap, we compared studies that have examined factors associated with early cognitive and/or motor development within this population. 

Methods: Predetermined criteria were used to examine four publication databases
 (PsychInfo, Embase, Web of Science, and Medline) and identify studies considering the
 determinants of cognitive and motor development in children aged 0-8 years in Sub-Saharan
 Africa.

**Results:** 51 quantitative studies met the inclusion criteria, reporting on 30% of countries across the region. Within these papers, factors associated with early child development were grouped into five themes: Nutrition, Growth and Anthropometry, Maternal Health, Malaria and HIV, and Household. Food security and dietary diversity were associated with positive developmental outcomes, whereas exposure to HIV, malaria, poor maternal mental health, poor sanitation, maternal alcohol abuse, and stunting were indicators of poor cognitive and motor development. 

**Discussion:** This synthesis of research findings shows across Sub-Saharan Africa, factors which restrict physical growth also hinder development of early cognitive and motor skills, but additional factors also influence early developmental outcomes. It also reviews methodological limitations of conducting research using Western methods in sub-Saharan Africa. 

#### 

## 1 Introduction

According to the World Health Organisation (WHO) early child development spans the ages of 0-8 years. This is a critical and formative period in a child's life when the brain is developing rapidly and core cognitive and motor skills, the foundations for later learning<sup>1</sup>, are being acquired. It is estimated that 250 million, or 43% of children living in low-to-middle-income countries fail to reach their full cognitive and educational potential<sup>2</sup>. The vast majority of these children live in Sub-Saharan Africa<sup>1</sup> where there is also a high prevalence of stunting<sup>1</sup> and malnutrition<sup>3</sup>. Many low-income countries in Sub-Saharan Africa are burdened with high rates of maternal, infant, and childhood mortality as well as undernutrition. These are driven by various factors including but not limited to: lack of maternal education, poor sanitation, exposure to human immunodeficiency virus (HIV), and low rates of exclusive breastfeeding<sup>4</sup>. Coupled with economic and gender inequalities, factors which operate in the first 8 years of life result in many children failing to achieve their educational potential. A prolonged history of poor and unequal early child development and learning is shown across Sub-Saharan Africa,<sup>5</sup> which impacts on the long-term economic growth and welfare of the population. Early child development encompasses several aspects of development including physical, cognitive, psychosocial, and motor development. Factors that impact on development, such as nutrition, play an important role in developmental delay. A combination of adverse health environments (e.g. undernutrition and repeated infection) during key periods of development, and inadequate provision and uptake of schooling, maintains a cycle of poor cognitive and physical development, poverty, and inequality, which inevitably passes to subsequent generations. Cohort and longitudinal studies can examine relationships between nutritional status, prevalence of disease, maternal deprivation, and access to health care, and how these factors are associated with child growth and development over sustained periods of time<sup>6</sup>. Accordingly, recent years have seen an increase in cohort and longitudinal studies in low-to-middle-income country settings, including Sub-Saharan Africa. Increasingly, these studies are considering outcomes on cognitive and motor development - the foundations for learning that can have long-term sequelae<sup>7,8</sup>, but for Sub-Saharan Africa there is currently a lack of clear consensus on which factors have a detrimental or positive influence. This scoping review considers factors associated with early child development in Sub-Saharan African countries. Though of limited usefulness in terms of providing quantitative data relating to specific research questions, scoping reviews are an ideal tool to determine the 

range or coverage of literature on a given topic and explore emerging evidence. They give a clear indication of the volume of studies available as well as an overview of their focus. This review focused solely on cognitive and motor development as these are foundational skills that underpin educational potential and scholastic achievement<sup>9-11</sup>. Considering only cohort and longitudinal studies, the review assessed multiple factors that might influence cognitive and motor development in children under the age of 8 years, with a strong focus on the first two years of life. Enhancing understanding of how early nutrition and other environmental factors influence early child development is important for countries across Sub-Saharan Africa to break the cycle of poor cognitive and motor development which limits educational potential and attainment. By assessing current evidence, this scoping review aimed to identify key factors that are associated with early development of foundational skills that are core to later learning<sup>1,12</sup>. Method This review aimed to scope previous and current cohort and longitudinal studies conducted across Sub-Saharan Africa that had examined cognitive and motor development across early childhood. Inclusion criteria Type of studies Published and peer-reviewed quantitative studies were examined, including cohort and longitudinal studies with experimental and observational designs. *Type of population* Studies examining children aged between 0-8 years were reviewed. If a wider age range was reported, age-specific findings were extracted and reported separately. Phenomena of interest This review focused on factors that influence cognitive and/ or motor development in Sub-Saharan countries as these are foundational for later learning potential. *Type of Outcome* The primary outcome was the measurement of cognitive and/or motor development and the factors that influence these developmental processes. For inclusion, studies were required to 

provide clear details on the measurements used (outcome variables and controls), ideally including details on how measures were adapted for low-to-middle-income country contexts. However, if no such adaptation contexts were mentioned, studies were still included to examine the extent to which Western measures of early child development were employed. Context This review included studies conducted in Sub-Saharan Africa or that included at least one site within Sub-Saharan Africa. Sub-Saharan Africa is defined as the geographical area of the continent of Africa that lies south of the Sahara and includes 46 countries. Exclusion criteria Qualitative studies, mixed methods studies, literature reviews, unpublished and grey literature were excluded. Studies were also excluded if they did not specify the precise location, details of measurement of cognitive and motor development, or did not report separate findings between age groups if including older children. Studies that did not use a longitudinal or cohort design were also excluded. The inclusion and exclusion criteria are summarised in Table 1. Search strategy Four databases (PsychInfo, Embase, Web of Science, Medline) were searched from inception to extract published studies. Following the search of these main databases and removal of duplicates, an initial search and preliminary analysis was conducted of the subject headings (MeSH) and text words related to early child development contained in the title and abstract. The search strategy comprised a combination of key words (e.g. 'Early Child Development', 'Sub Saharan Africa') and controlled vocabulary (e.g. 'health', 'growth'). A full search strategy for Medline (MEDLINE In-Process & Non-Indexed Citations and OVID MEDLINE 1946 to present-Ovid) is detailed in Supplementary Table 1, as an example. The search was first performed on the 18th of December 2018 and conducted again on the 8th of October 2019. Date and language limits were not imposed.

27 Reference lists of all selected papers that met the inclusion criteria were hand searched to
28 check for additional studies.

5 29 Study selection

Following the search, all identified citations were uploaded into Endnote and duplicates were
 removed. The review authors independently screened the titles and abstracts for assessment

against the search inclusion criteria. Full texts were obtained for all titles that appeared to meet the inclusion criteria. A main review author (BF) screened and assessed the full text reports in detail against the inclusion criteria (see Table 1). Studies that did not meet the inclusion criteria were excluded. A record of excluded studies, including reasons for exclusion, is provided in the PRISMA flow diagram<sup>13</sup> (Figure 1). Data extraction and outcomes Data extraction One reviewer (BF) extracted data from the included studies, informed by a standardised data extraction tool for quantitative studies (JBI- MAStARI<sup>14</sup>) and this was checked by a second reviewer (LO). The extracted data included specific details relating to the inclusion criteria (see Table 1), which address the main aim of this scoping review. Outcomes The main outcome was the exploration of measurement of cognitive and motor development in young children aged 0-8 years in Sub-Saharan African countries and the factors influencing them. Multiple types of factors reported in the selected studies were evaluated, such as child health, growth, and development. These factors were grouped into themes within the synthesis phase and subsequently grouped into factors associated with the acquisition of early cognitive and motor skills. Assessment of methodological quality Following quality assessment reviews guidelines<sup>15</sup>, two review authors (BF and LO) critically appraised all selected studies for methodological quality using standardised quality appraisal tools for quantitative studies) (JBI Critical appraisal checklist for case studies, JBI Critical appraisal checklist for cohort studies, JBI RCTs appraisal tool<sup>8</sup>). These instruments assess the quality of evidence across studies with different designs, including but not limited to criteria, such as sampling strategy, analysis, transparency, and interpretation. Any disagreement between reviewers was resolved through discussion. Studies were stratified in Table 2 according to the result of the quality assessment. Study quality score did not affect inclusion in the review; all studies that met the inclusion criteria were subjected to data extraction and synthesis. 

> Journal of Human Nutrition and Dietetics

2

3

4

5

6

7

8

9

1 2

| 3        |  |
|----------|--|
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| /        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
|          |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
|          |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
|          |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 55<br>56 |  |
|          |  |
| 57       |  |
| 58       |  |
| 59       |  |

Following Kmet, Lee and Cook's<sup>8</sup> guidelines, an original quality score from 0 to 1 was calculated for each study. Scores were then classified from low (0 - 0.44), moderate (0.45 - 0.44)0.69), and high (0.70 - 1.00). Study quality was assessed by the two reviewers (BF and LO). Initial agreement between reviewers was 89% overall and all disagreements were resolved through discussion. Some variation in quality was shown across 51 studies included in this review. The average quality score was 0.67, which was comprised of 28 studies that received a high-quality rating, 19 studies that received a moderate-quality rating, and four studies that received a low-quality rating.

Data synthesis

10 Two reviewers (BF and LO) conducted the syntheses in a sequential order. One reviewer (BF) developed the synthesis and the second reviewer (LO) checked the findings. Any 11 12 disagreements were discussed (initial agreement of 80%) and a mutual resolution was found. Once data was extracted in descriptive form, and according to JBI scoping review guidelines, 13 14 quantitative synthesis was generated and summarised in thematic statements<sup>14</sup>. There was a high level of heterogeneity within the included studies which precluded statistical pooling of 15 16 extracted data. Consequently, an inductive approach of a narrative synthesis of the extracted data was deemed most appropriate. Configuration of all themes generated a set of statements 17 that represent the final aggregation. 18

Factors extracted for this review that were found to influence early cognitive and motor 19 20 development were categorised into five main themes, these being: Nutrition, Growth and Anthropometry, Maternal Health, Malaria and HIV, and Household and other factors. 21

22

#### Results 23

Study selection 24

25 The study selection process is illustrated in Figure 1. In total, 51 studies published between 26 1991 and 2019 met the inclusion criteria. Of these 29 (57%, 11 in 2017, 10 in 2018 and 4 in 27 2020) were published after 2016, when The Lancet published a special edition of research papers focused on this topic. 28

60

29

Table 2 summarises the extracted data for each study included in the review. Amongst the 30 included studies, a range of 14 Sub-Saharan countries were represented with 12 studies 31

| 3<br>4         | 1  | originating from South Africa, eight from Ethiopia, six from Tanzania, five from Malawi,                      |
|----------------|----|---------------------------------------------------------------------------------------------------------------|
| 5              | 2  | four from Kenya, three each from Ghana and Zambia, two each from Uganda, Botswana, and                        |
| 6<br>7         | 3  | Benin, and one each from Gambia, Sudan, Rwanda and Congo. A range of methodologies                            |
| 8<br>9         | 4  | were reported in the studies included in this review: most were prospective or longitudinal                   |
| 10<br>11       | 5  | cohort studies and four randomised control trials were also included. There was high                          |
| 12             | 6  | variability in sample size, ranging from 85 to 4205. In addition, attrition varied at follow-up               |
| 13<br>14       | 7  | from 0% to 95.3%. Twenty-seven (53%) of the 51 studies included in this scoping review                        |
| 15<br>16       | 8  | reported change of numbers in at least one point of follow up; the rest of the studies did not                |
| 17             | 9  | include data on participants lost to follow up. Of the 27 studies that reported on follow up, a               |
| 18<br>19       | 10 | mean attrition of $47.8\%$ (SD = 26.2%) was found (note: for the 5 studies that reported on                   |
| 20<br>21       | 11 | more than one point or group at follow-up, mean attrition was calculated and used to                          |
| 22<br>23       | 12 | determine the grand mean). For most studies, limited information, if any, was given as to why                 |
| 24             | 13 | loss at follow up occurred. More details are provided in Table 2.                                             |
| 25<br>26<br>27 | 14 | Measures used in assessing cognition and motor development                                                    |
| 28<br>29       | 15 | Amongst the studies included in this review, a wide range of tools were used to assess                        |
| 30<br>31       | 16 | cognitive and motor development, making it difficult to generalise findings (Table 3). The                    |
| 32             | 17 | most common assessment tool used was the Bayley Scale of Infant Development (BSID),                           |
| 33<br>34<br>35 | 18 | which was employed in 20 of the 51 (39%) studies reviewed.                                                    |
| 36<br>37       | 19 | Data extraction and summary of results                                                                        |
| 38             | 20 | Results revealed many factors associated with early cognitive and motor development. These                    |
| 39<br>40       | 21 | factors were grouped into five main overarching categories. These categories were                             |
| 41<br>42       | 22 | interlinked, reflecting a multi-level framework, and demonstrating that no individual category                |
| 43<br>44       | 23 | could explain differences in early cognitive and motor development across Sub-Saharan                         |
| 45             | 24 | Africa.                                                                                                       |
| 46<br>47       | 25 | The five main categories of factors highlighted by this review include: Nutrition, Growth and                 |
| 48<br>49<br>50 | 26 | Anthropometry, Maternal Health, Malaria and HIV, and Household.                                               |
| 50<br>51<br>52 | 27 | Nutrition                                                                                                     |
| 53<br>54       | 28 | The first group of factors influencing early cognitive and motor development related to infant                |
| 55<br>56       | 29 | and maternal nutrition. Principally, studies looked into the effect of nutrition and nutrients <sup>16-</sup> |
| 50<br>57<br>58 | 30 | <sup>20</sup> , and vitamin supplements <sup>21-24</sup> .                                                    |
| 58<br>59<br>60 |    |                                                                                                               |

Studies reporting on the influence of food consumption on early child development showed
 that children living in households that experienced food insecurity in the first two years of
 life had low gross motor, communication, and personal social scores<sup>18</sup>. Conversely, dietary
 diversity, child iron status, and early nutritional interventions that increased birth weight and
 growth in the first two years were associated with improved growth, language skills, and
 motor development<sup>19</sup>.

Less than optimal micronutrient status was a strong focus on the influence of nutrition on early child development, but most studies<sup>21-24</sup> found no impact of nutrient supplementation (zinc, multivitamin, iron and ferritin) on young children. Two studies investigating the differences between groups of infants taking zinc and vitamin supplements in Zambia<sup>22</sup> and Tanzania<sup>21</sup> found no difference in motor and cognitive development compared to placebo controls. Similarly, Mireku and colleagues (2016) demonstrated that prenatal iron deficiency and low neonatal ferritin were not associated with poor cognitive or gross motor function, although a negative relationship between gross motor function and children's haemoglobin concentration was reported<sup>24</sup>. Cognitive development and linear growth at age 4-6 years was also reported by Ocansey et al. (2019) to be significantly associated with haemoglobin concentration at 18 months<sup>25</sup>, but unlike Mireku et al (2016), Ocansey et al. (2019) found no association with motor development. A randomised control trial (RCT) exploring prenatal supplementation with vitamin A and zinc<sup>21</sup> reported no developmental benefits in children of women consuming the supplement.

9 21 *Growth and anthropometry* 

Growth and anthropometry encompass many different aspects of children's physical health. Many studies evaluated the influence of children's physical health on their early cognitive and motor development. While some studies focused on stunting and growth<sup>10,14,21-25</sup>, others focused more specifically on anthropometry at birth<sup>31-34</sup>. Most studies found a strong relationship between restricted physical growth and poor early cognitive and motor outcomes. Stunting is defined as the impaired linear growth of children who experience poor nutrition or repeated infection<sup>2</sup>. Stunting and impaired growth were shown to be strong predictors of poor cognitive and motor development<sup>16,20,30,34</sup>. In exploring the long-term effect of stunting, Crookston and colleagues (2013) demonstrated that height-for-age was positively associated with mathematics achievement, reading comprehension, and receptive vocabulary. Children 

<sup>59</sup> 32 persistently stunted between early and late childhood faced more adverse outcomes at school

compared to those who were never stunted<sup>29</sup>. Moreover, children who recovered from stunting showed persistently low cognitive test performance that was commensurate with the performance of children who remained stunted<sup>26</sup>, demonstrating a long-term impact of early stunting into later childhood. Whilst these studies largely supported a negative influence of stunting on developmental measures, one study based in Tanzania showed weight-for-age and weight-for-length scores were positively associated with gross motor scores, but not for other measures of motor and cognitive skills<sup>28</sup>. Anthropometry at birth was explored in relation to long-term early child development. Length-for-age scores at birth and at 6 and 18 months were associated with cognitive, but not motor development in children aged 4-6 years in Ghana<sup>25</sup>. High fat mass in the first 48 hours of birth predicted high global developmental scores<sup>31</sup>. A study based in South Africa showed that very low birth weight was not predictive of neurodevelopmental outcomes<sup>32</sup>. Infants born preterm (<37 weeks gestation) in Malawi had a high rate of developmental delay at 18 months, which was inversely associated with gestational age<sup>33</sup>. Maternal Factors Maternal factors were investigated primarily in relation to maternal mental wellbeing. General maternal health and mental disorders<sup>30-33</sup>, post-traumatic stress disorder (PTSD)<sup>31</sup>, and foetal alcohol spectrum disorder (FASD)<sup>40</sup> were discussed as factors affecting outcomes in early childhood. 

Accumulated exposures to maternal risk factors, for example, low socio-economic status (SES) and domestic violence, were shown to have a stronger association with child cognitive and motor development, compared to common maternal mental health disorders, such as depression or anxiety<sup>37</sup>. Infants with FASD in South Africa were shown to have impaired performance on all scales of mental development of the BSID<sup>40</sup>. Several maternal protective and risk factors were associated with cognitive and motor developmental outcomes. For example, maternal education and SES were shown to the be protective factors whereas maternal anaemia in pregnancy, depression, partner violence, and HIV infection were shown to the be risk factors<sup>41</sup>. Maternal weight and diet also influenced neurobehavioural and motor performance at birth and at 6 months. Greater maternal dietary quality was associated with better infant motor performance<sup>17</sup>. 

While common maternal mental health disorders influenced child absenteeism and school
dropout, it did not affect child academic achievement<sup>36</sup>. Other factors such as mother's access

1 to antenatal care were found to be related to improved child cognitive development $^{30,36}$ .

2 Meanwhile, low maternal height, delivery characteristics (e.g. oxytocin administration) were

3 associated with cognitive and development outcomes at 15 months<sup>38</sup>. Maternal PTSD was

4 associated with poor fine motor and poor adaptive motor development in children<sup>39</sup>. Finally,

5 greater caregiver/child stimulation was found to predict higher child cognitive scores and

6 maternal completion of primary school was associated with higher child motor and cognitive

7 scores<sup>43</sup>.

# 8 Malaria and HIV

9 Studies included in this review also considered the relationships between child development
10 and malaria or HIV (5 studies on malaria and 11 studies on HIV). Malaria studies focused
11 primarily on cognitive development<sup>44-47</sup> while HIV studies incorporated both cognitive and
12 motor development<sup>29,42-52</sup>.

Studies investigating the impact of malaria on early child development have produced inconsistent findings. Bangirana and colleagues (2014) reported that Ugandan infants with cerebral malaria and severe malarial anaemia had lower scores in cognitive ability, attention and associative memory at 12 months than their control peers. Similarly, exposure to the malaria parasite in early childhood was associated with lower tolerance of the testing procedure of the cognitive tasks at 6 years<sup>46</sup>. When tested at 5 years of age, children with malaria in a cohort study based in Malawi<sup>47</sup> showed on average a 6-month delay in motor, language and social development. Despite this, no difference in age-expected attainment was found for cognitive skills compared to control<sup>45</sup>. 

Studies on HIV have consistently demonstrated impairment of cognitive and motor functions in children and infants with HIV<sup>29,47</sup> showing delayed attainment of developmental milestones<sup>48</sup>, including gross motor skills<sup>54</sup> and neurodevelopment deficits<sup>49</sup> compared to uninfected children. Leroux and colleagues (2018) reported delays in cognitive and motor development but highlighted no delays in expressive language scores at 18 months. The effects of HIV infection on development can be overcome with treatment. Three studies investigated the outcomes of HIV care and demonstrated that infected infants and children who received HIV care achieved similar cognitive and motor scores to uninfected children at 6, 12 and 24 months<sup>56-58</sup>. 

Children can also be exposed to HIV in utero without becoming infected. Studies of HIV exposed uninfected infants have yielded inconsistent results. Whilst, Brahmbatt and

colleagues (2014) found that HIV exposure alone was associated with impaired receptive
 language skill in children and generally poor early child development, other studies found no
 difference in cognitive and motor development of infants and children exposed to HIV and
 their non-exposed peers<sup>44,45,49</sup>.

5 Household and other factors

Many household factors were found to be associated with early child development. This
highlights the importance of the environment that children grow up in for supporting the
acquisition of cognitive and motor skills. Studies investigating household factors have
examined SES<sup>10,23,37,53</sup>, sanitation and water<sup>14,54</sup>, access to antenatal care<sup>35</sup>, orphanage<sup>61</sup>, and
insecticide exposure<sup>62</sup>.

Investigations into the effect of SES on early child development have produced mixed findings, which might reflect differences in how SES is conceptualised and measured in different contexts and different countries. One study reported no effect of SES (measured by a household asset index) on early child development but rather area of residence (established by geographical area) was associated with early developmental outcomes<sup>16</sup>. In contrast, other studies demonstrated that SES (measured by a socio-economic questionnaire and household wealth) was linked to child language development<sup>59</sup> and cognitive scores at 15 months of age<sup>28</sup>. 

Access to improved water (i.e. piped water, public tap or standpipe, tube well or borehole,
 protected dug well, protected spring, and rainwater collection) at 1 year of age was associated
 with higher language scores in children at 5 and 8 years<sup>60</sup> and access to a flush-toilet in the
 home/village environment was associated with higher cognitive and motor scores in children
 aged 18-36 months compared to those where a flush-toilet was not available<sup>20</sup>.

Attendance at antenatal care by mothers was shown to have a positive association with
cognitive development at age 5<sup>35</sup>. Whilst orphaned infants showed impairments in
psychomotor development at admission (1 month old), over 85% of orphaned children
showed age-appropriate development by 18 months<sup>61</sup>.

Finally, a study investigating exposure to insecticide showed no significant relationship with cognitive development<sup>62</sup>. Other factors also investigated in some of the studies included the influence of twin birth<sup>63</sup>, ethnicity<sup>64</sup>, early mental development<sup>65</sup>, and birth asphyxia<sup>66</sup> on early child development. These studies demonstrated that twin birth was associated with delayed attainment of motor development milestones<sup>57</sup>, and factors linked to ethnicity such as 

Page 13 of 77

1

| 2           |             |
|-------------|-------------|
| 3<br>4      | 1           |
| 5           | 2           |
| 6<br>7<br>8 | 3           |
| 8<br>9      | 4           |
| 10<br>11    | 5           |
| 12          | 6           |
| 13<br>14    | 5<br>6<br>7 |
| 15<br>16    | 8           |
| 17<br>18    |             |
| 19          | 9           |
| 20<br>21    | 10          |
| 22<br>23    | 11          |
| 24          | 12          |
| 25<br>26    | 13          |
| 27<br>28    | 14          |
| 29          | 15          |
| 30<br>31    |             |
| 32<br>33    | 16<br>17    |
| 34<br>35    | 18          |
| 36          | 18<br>19    |
| 37<br>38    | 20          |
| 39<br>40    | 21          |
| 41<br>42    | 22          |
| 43          | 23          |
| 44<br>45    | 24          |
| 46<br>47    | 25          |
| 48          | 26          |
| 49<br>50    | 27          |
| 51<br>52    | 28          |
| 53          |             |
| 54<br>55    | 29          |
| 56<br>57    | 30          |
| 58          | 31          |
| 59<br>60    | 32          |

family stability and income were positively associated with motor and language development<sup>58</sup>. Moreover, poor mental development at age one was associated with poor cognitive development at age 5<sup>59</sup>. Regular treatment of asphyxia after birth was associated with good cognitive scores at three years of age. Prado et al. (2018)<sup>13</sup> also considered the influence of access to play materials and activities with caregivers on early language and motor development and showed a positive association of these factors on growth and language development.

## 9 Discussion

The aim of this review was to scope published literature reporting on factors associated with early cognitive and motor development in Sub-Saharan Africa. A detailed understanding of these factors is a prerequisite for design of future longitudinal cohort studies and interventions targeted at improving the lives of children living across this region. A clear need for focussed research in this area was revealed. In total, only 51 studies have been published in the past 28 years (between 1991 and 2019) which met the inclusion criteria, with the majority of studies (90%) being published in the past 10 years. The recent rise in studies focusing on this topic demonstrates increasing awareness of the need to enhance understanding of factors influencing development of foundational skills that underpin later learning potential<sup>67</sup>. This is a critical step for countries to be able to meet the 2030 United Nations Sustainable Development Goals. Only 14 (30%) of the 46 countries comprising the Sub-Saharan Africa region were included in the 51 studies that met the inclusion criteria for this scoping review. The absence of relevant studies from the remaining 37 countries of Sub-Saharan Africa, demonstrates an alarming lack of knowledge about factors influencing early cognitive and motor development across more than 70% of the region. Whilst the factors identified in this scoping review may

apply to other countries in the region, this needs confirmation from quantitative longitudinal
 cohort studies. The results of this scoping review are therefore important for guiding future
 research.

The 51 studies included in this review identified multiple factors that broadly addressed five key themes, namely Nutrition, Growth and Anthropometry, Maternal Factors, Malaria and HIV, and Household. Although these factors may operate in isolation, it is likely that they will interact with a multiplicative effect to influence on the development of early cognitive and motor skills. This emphasises the importance of adopting a multi-level conceptual
 framework of early child development across Sub-Saharan Africa that describes the
 complexity by which different factors influence early developmental outcomes that underpin
 potential to succeed at primary school.

Childhood nutrition, growth, and maternal health were the factors with the most frequently reported influence on early child development, with infectious diseases such as HIV and malarial infection also playing a key role. Whilst infectious diseases such as tuberculosis, gastrointestinal infections or measles are common in Sub-Saharan Africa, the studies in this review only investigated the influence of Malaria and HIV on development, demonstrating a significant lack of research in the influence of other infectious diseases in Sub-Saharan Africa. There is a well-established interrelationship between nutrition and infectious disease which is often driven by SES, and has been shown to influence physical growth, stunting and wasting. Maternal health and nutrition during pregnancy is a key driver of growth outcomes for children<sup>4</sup>. The papers identified in this scoping review indicate that this is also the case for early cognitive and motor development. Maternal nutrition and lack of specific nutrients for mothers, during pregnancy and early years were also shown to have long-term impact on child development. This has been recognised previously in randomised control trials considering the influence of iron deficiency on cognitive and motor development<sup>68</sup>. Less than optimal maternal nutrition and health directly influences children's health and growth which are also related to early cognitive and motor development. The broader literature on nutrient deficiency and cognitive development suggests that the window of time for intervention is limited and cognitive deficits at an early age have lasting effects on brain development<sup>69</sup>. However, the studies included in this review demonstrated limited positive effects of supplementation of micronutrients. While maternal and child health encompassed the main factors affecting early child development highlighted by this review, it is also important to note that household and other factors also need to be considered. This review showed that household determinants, such as access to sanitised water or access to antenatal care, influence cognitive and motor development in Sub-Saharan Africa, in a similar way to the risks of stunting and wasting.

Methodological considerations were also emphasised by this review. Sample size and
attrition were highly variable across studies, which raises concerns about data security and
limits the extent to which comparisons across studies can be drawn. Of the studies that
reported on attrition, on average 47.8% of the original sample was lost at follow up. Future

research should take this into account when recruiting new participants to ensure sufficient statistical power at follow-up.

Many studies relied on the use of psychometric tools validated for Western populations for measuring early cognitive and motor development in Sub-Saharan African countries. The use of assessment tools used in Western cultures has been shown to be somewhat problematic<sup>72</sup>. Motor and cognitive development need to be assessed in relation to cultural and environmental factors. For instance, motor assessment in Western countries include developmental stages such as climbing steps which is not necessarily relevant in some lowto-middle-income settings where steps are not a prevalent feature of many family homes. Adapting these tools by excluding such tasks is not necessarily appropriate, so using a culturally relevant tool, such as the Malawi Development Assessment Tool<sup>73</sup> for studies conducted in Malawi for instance, might be more fitting. 

The Bayley Scale of Infant Development (BSID) was the most frequently used psychometric tool used to assess early child development in the studies covered by this review. This measure is recognised internationally as one of the most comprehensive tools to assess children from as young as one month old and with the latest version of this tool, BSID-III, it is possible to obtain detailed information even from non-verbal children as to their level of functioning. However, while the BSID is considered a valid and reliable measure of early child development for Western populations, there are a number of practical barriers to use in Sub-Saharan contexts, including the high cost for materials, the need for specially trained administrators and the relatively long administration time<sup>74</sup>. Furthermore, the use of the BSID and other Western assessments is often inadequate in developing countries <sup>75</sup>. The BSID was developed in the US, a Western, high-income country, and may not translate to low-tomiddle-income country contexts<sup>72</sup>. Furthermore, the use of norm-referenced scores based on high-income-country contexts are not valid in low-income countries and may lead to children being misclassified as having developmental delay<sup>76</sup> and produce misleading results. Adapting psychometric tools to be culturally appropriate for low-to-middle-income contexts can overcome this problem. Hanlon et al. (2016)<sup>77</sup> successfully adapted the BSID for use in rural Ethiopia by translating and modifying the test materials, instructions and concepts measured. There are several emerging assessment tools that have been specially designed for use in low-to-middle-income countries. For example, the Intergrowth 21st Neurodevelopmental Assessment (Inter-NDA) is a holistic and objective measure of early child development that has been trialled in a broad range of 13 countries (none in Sub-

1 Saharan Africa) and validated against the BSID-III. The Inter-IDA items have been specially

2 designed to be culture-free and easy and reliable to administer by non-specialists in low-to-

3 middle-income contexts<sup>78</sup>.

Country-specific distributions can be used to identify children 'at risk' with greater ecological validity than comparing to Western norms. Whilst this relative method of identifying children at risk would enable comparison between countries, it is important to note that absolute levels of ability might differ across countries. This would result in some children being identified as at risk for poor early outcomes in some countries, who would not be classified at risk in other countries where the distribution of scores was lower, and vice versa. Direct comparison of test performance across countries is only meaningful when both the average (mean/median) and distribution of test scores is similar. We recommend that measures of early child development that have been developed and norm-referenced for Western, high-income, countries are validated by low-income countries before adopting them as an outcome measure in studies examining early child development. This can determine the extent to which they are suitable for administration in specific country contexts without adaptation. Depending on the results of the validation study, adaptation to test materials might be required before they are considered appropriate for use in a given context and before population distribution data is obtained. 

This scoping review has demonstrated that birth cohort and longitudinal studies are a viable method for investigating a range of multi-level factors in early childhood in Sub-Saharan Africa. Ongoing birth cohort studies are also considering a wider range of determinants of early child development than have been studies previously. For example, the Drakenstein Child Health Study follows a multi-level, ecological approach to understand cognitive, socioemotional and neuropsychological child development<sup>79</sup>. The Malnutrition and Enteric Disease Study (MAL-ED) multi-site birth cohort study is also examining child development and language acquisition from birth to 24 months in eight low-to-middle-income countries<sup>80,81</sup>. Consistent with previous research, data from the MAL-ED project in Tanzania showed child weight-for-age, weight-for-length, SES and female gender were associated with cognitive and motor development <sup>28</sup>. However, Donald et al.<sup>79</sup>, Caulfield et al.<sup>80</sup>, and Murray-Kolb et al.<sup>81</sup> all highlight important issues surrounding measurement and data collection in low-to-middle-income contexts, which can impact on results.

Future research should further investigate the multiple factors highlighted in this review,
 taking into consideration the cultural and environmental setting of different study sites. While

maternal and child health factors are prominent areas of research, the findings from this review are somewhat contradictory. Future research should aim to gain a clearer understanding of why this is and how factors such as HIV or nutrition affect early child development. This would allow for better targeted interventions and guidelines to be implemented to mitigate risk of childhood morbidity and underachievement at school. As the number of cohort studies being conducted in other low-to-middle-income countries increases, there could be potential for cross-cultural comparisons. This could further inform theoretical and practical understandings of generic factors that are associated with early child development in low-to-middle-income country contexts compared to country-specific factors. Studies in Latin America, for example, show that specific nutrient deficiency (iron) influence early child development<sup>82</sup> and the meta-analysis by Ip et al. (2017)<sup>83</sup> of randomised control trials of nutritional supplements showed improved cognitive function in children in several developing countries, including Bangladesh, Chile, China, Colombia, Guatemala, India, Indonesia, Jamaica, Mexico, Nepal, Pakistan, Peru, Thailand, Vietnam, as well as several nations in Sub-Saharan Africa. However, in the context of uncontrolled observational studies, findings from a wide representation of multiple types of backgrounds and study sites might not be generalisable over all contexts. The sample of studies included for this scoping review was skewed by a strong prevalence of studies from South-Africa (12 out of 51), and mainly from urban sites, which might not reflect the conditions of other countries and settings.

## *Limitations*

This scoping review has highlighted several factors that influence early cognitive and motor development in infants born across Sub-Saharan Africa. Despite the serious consequences of poor early child development on an individual's potential and a country's economic growth, surprising few studies have focussed on this important issue. Many studies reported on one particular factor, and there was variability across findings, so it is difficult to generalise results until a more comprehensive evidence base exists. Drawing firm conclusions was a challenge for this review due to variabilities in reporting, methodology and quality of the literature. As such, the results from this scoping review should be treated as early indications of how different factors influence early cognitive and motor skills, until further studies are available to enable general trends to be established through replication and reproducible findings. The studies reviewed here also show high variability in sample size and attrition, which can bias findings, especially with small samples and high levels of attrition. In addition, there is variability across studies in the conceptualisation and measurement of 

different factors and skills, which makes drawing conclusions difficult. To enable generalisation within and across countries, studies need to adopt a consistent conceptual framework and ideally utilise the same tasks to measure early cognitive and motor skill, with appropriate norms. As development is a dynamic process that changes over time, a finding at one point in time is not necessarily indicative of outcomes at a later point in development. Downstream effects mean that secondary impairments can emerge later in the developmental pathway for functions that are reliant on the development of a specific function acquired at an earlier age. To address these limitations, longitudinal monitoring is required across the first 8 years in life, and beyond. Cohort studies are needed, ideally from pregnancy or birth, across the early childhood period to enable a greater understanding of factors that influence early cognitive and motor skill to be determined. These are difficult to conduct largely because they require acquisition of big datasets across a long period of time and are thus costly. Nevertheless, longitudinal pregnancy or birth cohort studies are the best methodology for addressing this issue. Benefits might also be gained from utilising applied statistical techniques that enable different datasets to be combined in a meaningful manner. These techniques are starting to emerge from the work of big data scientists and have the potential to be transformational when applied to understanding factors that influence the process of early child development across Sub-Saharan Africa. Accordingly, we call upon funding agencies to invest in these methods, if we are to gain a better understanding of what causes poor developmental outcomes in early childhood, how best to intervene, and ultimately how to prevent the cycle of poverty that mars these countries. Recommendations for future research This review has uncovered a number of significant omissions and inconsistencies in the evidence base relating to early life influences on cognitive and motor development. To enable generalisation within and across countries, studies need to adopt a consistent conceptual framework and ideally utilise the same tasks to measure early cognitive and motor skill, with appropriate norms. As development is a dynamic process that changes over time, a finding at one point in time is not necessarily indicative of outcomes at a later point in development. Downstream effects mean that secondary impairments can emerge later in the developmental pathway for functions that are reliant on the development of a specific function acquired at an earlier age. To address these limitations, Llongitudinal monitoring is required across the first 8 years in life, and beyond. Cohort studies are needed, ideally from pregnancy or birth, across the early childhood period to enable a greater understanding of factors that influence early 

| 1                                      |    |                                                                                                |
|----------------------------------------|----|------------------------------------------------------------------------------------------------|
| 2<br>3                                 | 1  | cognitive and motor skill to be determined. These are difficult to conduct largely because     |
| 4<br>5<br>7<br>8<br>9<br>10<br>11      | 2  | they require acquisition of big datasets across a long period of time and are thus costly.     |
|                                        | 3  | Nevertheless, longitudinal pregnancy or birth cohort studies are the best methodology for      |
|                                        | 4  | addressing this issue. Benefits might also be gained from utilising applied statistical        |
|                                        | 5  | techniques that enable different datasets to be combined in a meaningful manner. These         |
| 12                                     | 6  | techniques are starting to emerge from the work of big data scientists and have the potential  |
| 13<br>14<br>15<br>16<br>17<br>18<br>19 | 7  | to be transformational when applied to understanding factors that influence the process of     |
|                                        | 8  | early child development across Sub-Saharan Africa. Accordingly, we call upon funding           |
|                                        | 9  | agencies to invest in these methods, if we are to gain a better understanding of what causes   |
|                                        | 10 | poor developmental outcomes in early childhood, how best to intervene, and ultimately how      |
| 20<br>21                               | 11 | to prevent the cycle of poverty that mars these countries.                                     |
| 22<br>23                               | 12 | We further recommend that measures of early child development that have been developed         |
| 24<br>25                               | 13 | and norm-referenced for Western, high-income, countries are validated by low-income            |
| 26<br>27                               | 14 | countries before adopting them as an outcome measure in studies examining early child          |
| 28                                     | 15 | development. This can determine the extent to which they are suitable for administration in    |
| 29<br>30                               | 16 | specific country contexts without adaptation. Depending on the results of the validation       |
| 31<br>32                               | 17 | study, adaptation to test materials might be required before they are considered appropriate   |
| 33<br>34                               | 18 | for use in a given context and before population distribution data is obtained.                |
| 35<br>36                               | 19 |                                                                                                |
| 37<br>38                               | 20 | To address these limitations, longitudinal monitoring is required across the first 8 years in  |
| 39                                     | 21 | life, and beyond. Cohort studies are needed, ideally from pregnancy or birth, across the early |
| 40<br>41                               | 22 | childhood period to enable a greater understanding of factors that influence early cognitive   |
| 42<br>43                               | 23 | and motor skill to be determined. These are difficult to conduct largely because they require  |
| 44<br>45                               | 24 | acquisition of big datasets across a long period of time and are thus costly. Nevertheless,    |
| 46                                     | 25 | longitudinal pregnancy or birth cohort studies are the best methodology for addressing this    |
| 47<br>48                               | 26 | issue. Benefits might also be gained from utilising applied statistical techniques that enable |
| 49<br>50                               | 27 | different datasets to be combined in a meaningful manner. These techniques are starting to     |
| 51<br>52                               | 28 | emerge from the work of big data scientists and have the potential to be transformational      |
| 53                                     | 29 | when applied to understanding factors that influence the process of early child development    |
| 54<br>55                               | 30 | across Sub-Saharan Africa. Accordingly, we call upon funding agencies to invest in these       |
| 56<br>57                               | 31 | methods, if we are to gain a better understanding of what causes poor developmental            |
| 58<br>59                               | 32 | outcomes in early childhood, how best to intervene, and ultimately how to prevent the cycle    |
| 60                                     | 33 | of poverty that mars these countries.                                                          |
|                                        |    | 18                                                                                             |

| 3<br>4                                       | 1  |                                                                                                  |
|----------------------------------------------|----|--------------------------------------------------------------------------------------------------|
| 5<br>6                                       | 2  | Conclusion                                                                                       |
| 7<br>8                                       | 3  | In conclusion, this scoping review has highlighted many important factors to take into           |
| 9<br>10                                      | 4  | consideration when conducting research in low-to-middle-income country contexts. The             |
| 11                                           | 5  | complex relationship between early nutrition, growth, infectious disease and poverty in          |
| 12<br>13                                     | 6  | determining early child development is clear, highlighting the importance of well-designed       |
| 14<br>15<br>16<br>17                         | 7  | and targeted interventions to improve cognitive function, educational attainment and             |
|                                              | 8  | achievement of potential. Methodological factors, such as attrition rates or the use of specific |
| 18                                           | 9  | assessment tools, are important considerations in conducting research in low-to-middle-          |
| 19<br>20                                     | 10 | income countries. Factors affecting early child development highlight the need for a multi-      |
| 21<br>22                                     | 11 | level approach, including maternal health, child health and household determinants.              |
| 23<br>24                                     | 12 | Due to the wide range of studies included, the wide difference in methods, designs and in        |
| 25<br>26                                     | 13 | study qualities, it is difficult to summarise clear conclusions or make strong                   |
| 27                                           | 14 | recommendations from this review. The variance found in this review demonstrates a need          |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35 | 15 | for more robust and consistent research on this topic. This is needed to gain a more             |
|                                              | 16 | comprehensive understanding of how different factors come to play in early child                 |
|                                              | 17 | development in Sub-Saharan Africa and how targeted interventions can address these               |
|                                              | 18 | impacts.                                                                                         |
| 36                                           | 19 | Transparency Declaration                                                                         |
| 37<br>38                                     |    |                                                                                                  |
| 39<br>40                                     |    | Transparency Declaration                                                                         |
| 41                                           | 20 | The authors affirm that this manuscript is an honest, accurate, and transparent account of the   |
| 42<br>43                                     | 21 | study being reported. The reporting of this work is compliant with PRISMA guidelines. The        |
| 44<br>45                                     | 22 | lead author affirms that no important aspects of the study have been omitted.                    |
| 46<br>47                                     | 23 | Acknowledgement                                                                                  |
| 48<br>49<br>50<br>51                         | 24 | This work was supported by the Economic and Social Research Council through an Impact            |
|                                              | 25 | Accelerator Award from the University of Nottingham [grant number ES/M500598/1]                  |
| 52                                           | 26 | awarded to NP and SLE.                                                                           |
| 53<br>54<br>55                               | 27 |                                                                                                  |
| 56<br>57                                     | 28 | Figure legends                                                                                   |
| 58                                           |    |                                                                                                  |

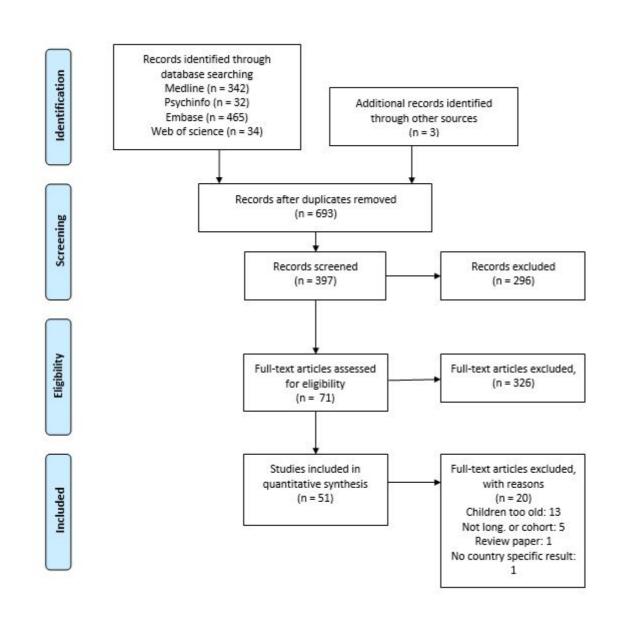
| 1              |   |                                                                            |
|----------------|---|----------------------------------------------------------------------------|
| 2<br>3         | 1 | Figure 2 Frequency of publications included in the scoping review per year |
| 4<br>5         |   |                                                                            |
| 6<br>7         | 2 |                                                                            |
| 8<br>9         | 3 |                                                                            |
| 10<br>11       | 4 |                                                                            |
| 12<br>13       |   |                                                                            |
| 14<br>15       |   |                                                                            |
| 16<br>17       |   |                                                                            |
| 17<br>18<br>19 |   |                                                                            |
| 20             |   |                                                                            |
| 21<br>22       |   |                                                                            |
| 23<br>24       |   |                                                                            |
| 25<br>26       |   |                                                                            |
| 27<br>28       |   |                                                                            |
| 29<br>30       |   |                                                                            |
| 31<br>32       |   |                                                                            |
| 33<br>34       |   |                                                                            |
| 35<br>36       |   |                                                                            |
| 37<br>38       |   |                                                                            |
| 39<br>40       |   |                                                                            |
| 41<br>42       |   |                                                                            |
| 43<br>44       |   |                                                                            |
| 45<br>46       |   |                                                                            |
| 47<br>48       |   |                                                                            |
| 49<br>50       |   |                                                                            |
| 51<br>52       |   |                                                                            |
| 53<br>54       |   |                                                                            |
| 55<br>56       |   |                                                                            |
| 57<br>58       |   |                                                                            |
| 59<br>60       |   |                                                                            |
| 59             |   |                                                                            |

| 1<br>2         |    |     |                                                                                           |
|----------------|----|-----|-------------------------------------------------------------------------------------------|
| 3<br>4         | 1  | Ref | erences                                                                                   |
| 5<br>6         | 2  | 1.  | Grantham-McGregor S, Cheung YB, Cueto S, Glewwe P, Richter L, Strupp B, et al.            |
| 7<br>8         | 3  |     | Developmental potential in the first 5 years for children in developing countries. Lancet |
| 9<br>10        | 4  |     | Lond Engl. 2007;369(9555):60-70.                                                          |
| 10<br>11<br>12 | 5  | 2.  | WHO   Early child development [Internet]. WHO. [cited 2019 Jul 2]. Available from:        |
| 13             | 6  |     | http://www.who.int/topics/early-child-development/en/                                     |
| 14<br>15       | 7  | 3.  | UNICEF, editor. Improving child nutrition: the achievable imperative for global           |
| 16<br>17       | 8  |     | progress. New York: United Nations Children's Fund; 2013. 124 p.                          |
| 18<br>19       | 9  | 4.  | Chalashika P, Essex C, Mellor D, Swift JA, Langley-Evans S. Birthweight, HIV              |
| 20<br>21       | 10 |     | exposure and infant feeding as predictors of malnutrition in Botswanan infants. J Hum     |
| 22<br>23       | 11 |     | Nutr Diet. 2017 Dec;30(6):779–90.                                                         |
| 24<br>25       | 12 | 5.  | Bakilana A, Moucheraud C, McConnell C, Hasan R. Early Childhood Development:              |
| 26<br>27       | 13 |     | Situation Analysis for Malawi [Internet]. World Bank; 2016 [cited 2019 Apr 15].           |
| 28<br>29       | 14 |     | Available from: http://elibrary.worldbank.org/doi/book/10.1596/24574                      |
| 30<br>31       | 15 | 6.  | ADEOKUN LA. EARLY CHILD DEVELOPMENT AND THE NEXT CHILD                                    |
| 32<br>33       | 16 |     | DECISION. Genus. 1983;39(1/4):115–40.                                                     |
| 34<br>35       | 17 | 7.  | Pitchford NJ, Papini C, Outhwaite LA, Gulliford A. Fine Motor Skills Predict Maths        |
| 36<br>37       | 18 |     | Ability Better than They Predict Reading Ability in the Early Primary School Years.       |
| 38             | 19 |     | Front Psychol [Internet]. 2016 [cited 2020 Mar 17];7. Available from:                     |
| 39<br>40       | 20 |     | https://www.frontiersin.org/articles/10.3389/fpsyg.2016.00783/full                        |
| 41<br>42       | 21 | 8.  | Davis EE, Pitchford NJ, Limback E. The interrelation between cognitive and motor          |
| 43<br>44       | 22 |     | development in typically developing children aged 4-11 years is underpinned by visual     |
| 45<br>46       | 23 |     | processing and fine manual control. Br J Psychol. 2011;102(3):569-84.                     |
| 47<br>48       | 24 | 9.  | Pianta RC, McCoy SJ. The first day of school: The predictive validity of early school     |
| 49<br>50       | 25 |     | screening. J Appl Dev Psychol. 1997 Jan 1;18(1):1-22.                                     |
| 51<br>52       | 26 | 10. | Diamond A. Close Interrelation of Motor Development and Cognitive Development and         |
| 53<br>54       | 27 |     | of the Cerebellum and Prefrontal Cortex. Child Dev. 2000;71(1):44–56.                     |
| 55<br>56       | 28 | 11. | van der Fels IMJ, te Wierike SCM, Hartman E, Elferink-Gemser MT, Smith J, Visscher        |
| 57             | 29 |     | C. The relationship between motor skills and cognitive skills in 4–16 year old typically  |
| 58<br>59       | 30 |     | developing children: A systematic review. J Sci Med Sport. 2015 Nov 1;18(6):697–703.      |
| 60             |    |     |                                                                                           |

| 1<br>2         |    |     |                                                                                         |
|----------------|----|-----|-----------------------------------------------------------------------------------------|
| 3              | 1  | 12. | Feinstein L. Inequality in the Early Cognitive Development of British Children in the   |
| 4<br>5         | 2  |     | 1970 Cohort. Economica. 2003;70(277):73-97.                                             |
| 6<br>7         | 3  | 13. | Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred      |
| 8<br>9         | 4  |     | reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015       |
| 10<br>11       | 5  |     | statement. Syst Rev. 2015;4(1):1.                                                       |
| 12<br>13       | 6  | 14. | JBI. Joanna Briggs Institute reviewers' manual 2014 edition [Internet]. Adelaide: JBI;  |
| 14<br>15       | 7  |     | 2014 [cited 2015 May 15]. 2014.                                                         |
| 16<br>17       | 8  | 15. | Kmet LM, Lee RC, Cook LS, Alberta Heritage Foundation for Medical Research,             |
| 18<br>19       | 9  |     | University of Calgary, Faculty of Medicine, et al. Standard quality assessment criteria |
| 20<br>21       | 10 |     | for evaluating primary research papers from a variety of fields. Edmondton, Alta.:      |
| 22<br>23       | 11 |     | Alberta Heritage Foundation for Medical Research; 2004.                                 |
| 24<br>25       | 12 | 16. | Ajayi OR, Matthews G, Taylor M, Kvalsvig J, Davidson LL, Kauchali S, et al. Factors     |
| 26             | 13 |     | associated with the health and cognition of 6-year-old to 8-year-old children in        |
| 27<br>28       | 14 |     | KwaZulu-Natal, South Africa. Trop Med Int Health. 2017 May;22(5):631–7.                 |
| 29<br>30       | 15 | 17. | Allen LH. The nutrition CRSP: what is marginal malnutrition, and does it affect human   |
| 31<br>32       | 16 |     | function?. Nutr Rev. 1993;51(9):255–67.                                                 |
| 33<br>34       | 17 | 18. | Milner E.M., Fiorella K.J., Mattah B.J., Bukusi E., Fernald L.C.H. Timing, intensity,   |
| 35<br>36       | 18 |     | and duration of household food insecurity are associated with early childhood           |
| 37<br>38       | 19 |     | development in Kenya. Matern Child Nutr. 2018;14(2):e12543.                             |
| 39<br>40       | 20 | 19. | Prado E., Adu-Afarwuah S., Ashorn P., Hess S.Y., Lartey A., Maleta K., et al. How       |
| 41<br>42       | 21 |     | nutrition and environmental influences shape child development during the first 1000    |
| 43<br>44       | 22 |     | days: Direct and indirect associations in four prospective cohorts of young children in |
| 45<br>46       | 23 |     | Africa. Ann Nutr Metab. 2017;71(Supplement 2):539.                                      |
| 40<br>47<br>48 | 24 | 20. | Sudfeld CR, McCoy DC, Fink G, Muhihi A, Bellinger DC, Masanja H, et al.                 |
| 49             | 25 |     | Malnutrition and Its Determinants Are Associated with Suboptimal Cognitive,             |
| 50<br>51       | 26 |     | Communication, and Motor Development in Tanzanian Children. J Nutr.                     |
| 52<br>53       | 27 |     | 2015;145(12):2705–14.                                                                   |
| 54<br>55       | 28 | 21. | Locks LM, Manji KP, McDonald CM, Kupka R, Kisenge R, Aboud S, et al. The effect         |
| 56<br>57       | 29 |     | of daily zinc and/or multivitamin supplements on early childhood development in         |
| 58<br>59<br>60 | 30 |     | Tanzania: results from a randomized controlled trial. Matern Child Nutr. 2017;13(2).    |

| 3        | 1  | 22          | Manno D, Kowa PK, Bwalya HK, Siame J, Grantham-McGregor S, Baisley K, et al.             |
|----------|----|-------------|------------------------------------------------------------------------------------------|
| 4<br>5   | 2  | 22.         | Rich micronutrient fortification of locally produced infant food does not improve mental |
| 6        |    |             |                                                                                          |
| 7<br>8   | 3  |             | and motor development of Zambian infants: a randomised controlled trial. Br J Nutr.      |
| 9        | 4  |             | 2012;107(4):556–66.                                                                      |
| 10<br>11 | 5  | 23.         | Mireku MO, Davidson LL, Boivin MJ, Zoumenou R, Massougbodji A, Cot M, et al.             |
| 12<br>13 | 6  |             | Prenatal Iron Deficiency, Neonatal Ferritin, and Infant Cognitive Function. Pediatrics.  |
| 14       | 7  |             | 2016;138(6).                                                                             |
| 15<br>16 | 8  | 24.         | Mireku M.O., Davidson L.L., Koura G.K., Ouedraogo S., Boivin M.J., Xiong X., et al.      |
| 17<br>18 | 9  | 24.         |                                                                                          |
| 19       |    |             | Prenatal hemoglobin levels and early cognitive and motor functions of one-year-old       |
| 20<br>21 | 10 |             | children. Pediatrics. 2015;136(1):e76–83.                                                |
| 22       | 11 | 25.         | The association of early linear growth and haemoglobin concentration with later          |
| 23<br>24 | 12 |             | cognitive, motor, and social-emotional development at preschool age in Ghana -           |
| 25<br>26 | 13 |             | Ocansey Maternal & amp; Child Nutrition - Wiley Online Library [Internet]. [cited        |
| 27       | 14 |             | 2019 Oct 9]. Available from:                                                             |
| 28<br>29 | 15 |             | https://onlinelibrary.wiley.com/doi/full/10.1111/mcn.12834                               |
| 30<br>31 | 16 | 26.         | Casale D, Desmond C. Recovery from stunting and cognitive outcomes in young              |
| 32<br>33 | 17 | -0.         | children: evidence from the South African Birth to Twenty Cohort Study. J Dev Orig       |
| 34       | 18 |             | Health Dis. 2016 Apr;7(2):163–71.                                                        |
| 35<br>36 | 10 |             |                                                                                          |
| 37<br>38 | 19 | 27.         |                                                                                          |
| 39       | 20 |             | Postinfancy growth, schooling, and cognitive achievement: Young lives 1-4. Am J Clin     |
| 40<br>41 | 21 |             | Nutr. 2013;98(6):1555–63.                                                                |
| 42<br>43 | 22 | 28.         | Ribe IG, Svensen E, Lyngmo BA, Mduma E, Hinderaker SG. Determinants of early             |
| 44       | 23 |             | child development in rural Tanzania. Child Adolesc Psychiatry Ment Health. 2018 Mar      |
| 45<br>46 | 24 |             | 20;12:18.                                                                                |
| 47<br>48 | 25 | 29.         | Sunny B.S., DeStavola B., Dube A., Kondowe S., Crampin A.C., Glynn J.R. Does early       |
| 49<br>50 | 26 | <u>_</u> ). | linear growth failure influence later school performance? A cohort study in karonga      |
| 51       | 27 |             | district, Northern Malawi. PLoS ONE. 2018;13(11):e0200380.                               |
| 52<br>53 |    | 2.0         |                                                                                          |
| 54<br>55 | 28 | 30.         | Whaley SE, Sigman M, Espinosa MP, Neumann CG. Infant predictors of cognitive             |
| 56       | 29 |             | development in an undernourished Kenyan population. J Dev Behav Pediatr JDBP.            |
| 57<br>58 | 30 |             | 1998;19(3):169–77.                                                                       |
| 59<br>60 |    |             |                                                                                          |
|          |    |             |                                                                                          |

| 2        |    |     |                                                                                         |
|----------|----|-----|-----------------------------------------------------------------------------------------|
| 3<br>4   | 1  | 31. | Abera M, Tesfaye M, Girma T, Hanlon C, Andersen GS, Wells JC, et al. Relation           |
| 5        | 2  |     | between body composition at birth and child development at 2 years of age: a            |
| 6<br>7   | 3  |     | prospective cohort study among Ethiopian children. Eur J Clin Nutr. 2017;71(12):1411-   |
| 8        | 4  |     | 7.                                                                                      |
| 9<br>10  |    |     |                                                                                         |
| 11<br>12 | 5  | 32. | Ballot DE, Potterton J, Chirwa T, Hilburn N, Cooper PA. Developmental outcome of        |
| 12<br>13 | 6  |     | very low birth weight infants in a developing country. BMC Pediatr.                     |
| 14<br>15 | 7  |     | 2012;12(100967804):11.                                                                  |
| 16       | 8  | 33  | Gladstone M., White S., Kafulafula G., Neilson J.P., van den Broek N. Post-neonatal     |
| 17<br>18 | 9  | 55. | mortality, morbidity, and developmental outcome after ultrasound-dated preterm birth in |
| 19       |    |     |                                                                                         |
| 20<br>21 | 10 |     | rural malawi: A community-based cohort study. PLoS Med. 2011;8(11):e1001121.            |
| 22       | 11 | 34. | McDonald C.M., Manji K.P., Kupka R., Bellinger D.C., Spiegelman D., Kisenge R., et      |
| 23<br>24 | 12 |     | al. Stunting and wasting are associated with poorer psychomotor and mental              |
| 25       | 13 |     | development in HIV-exposed tanzanian infants. J Nutr. 2013;143(2):204–14.               |
| 26<br>27 |    |     |                                                                                         |
| 28<br>29 | 14 | 35. | Di Cesare M, Sabates R. Access to antenatal care and children's cognitive development:  |
| 29<br>30 | 15 |     | a comparative analysis in Ethiopia, Peru, Vietnam and India. Int J Public Health.       |
| 31<br>32 | 16 |     | 2013;58(3):459–67.                                                                      |
| 33       | 17 | 36  | Mekonnen H., Medhin G., Tomlinson M., Alem A., Prince M., Hanlon C. Impact of           |
| 34<br>35 | 18 | 201 | maternal common mental disorders on child educational outcomes at 7 and 9 years: A      |
| 36       |    |     |                                                                                         |
| 37<br>38 | 19 |     | population-based cohort study in Ethiopia. BMJ Open. 2018;8(1):e018916.                 |
| 39       | 20 | 37. | Servili C, Medhin G, Hanlon C, Tomlinson M, Worku B, Baheretibeb Y, et al. Maternal     |
| 40<br>41 | 21 |     | common mental disorders and infant development in Ethiopia: the P-MaMiE Birth           |
| 42       | 22 |     | Cohort. BMC Public Health. 2010;10(100968562):693.                                      |
| 43<br>44 |    | •   |                                                                                         |
| 45<br>46 | 23 | 38. | Blakstad MM, Smith ER, Etheredge A, Locks LM, McDonald CM, Kupka R, et al.              |
| 40<br>47 | 24 |     | Nutritional, Socioeconomic, and Delivery Characteristics Are Associated with            |
| 48<br>49 | 25 |     | Neurodevelopment in Tanzanian Children. J Pediatr. 2019 Apr 1;207:71-79.e8.             |
| 50       | 26 | 39  | Koen N., Brittain K., Donald K.A., Barnett W., Koopowitz S., Mare K., et al. Maternal   |
| 51<br>52 | 27 | 57. | posttraumatic stress disorder and infant developmental outcomes in a South African      |
| 53       |    |     |                                                                                         |
| 54<br>55 | 28 |     | birth cohort study. Psychol Trauma Theory Res Pract Policy. 2017;9(3):292–300.          |
| 56       | 29 | 40. | Davies L., Dunn M., Chersich M., Urban M., Chetty C., Olivier L., et al. Developmental  |
| 57<br>58 | 30 |     | delay of infants and young children with and without fetal alcohol spectrum disorder in |
| 59       |    |     | -                                                                                       |
| 60       |    |     |                                                                                         |


| 2              |    |     |                                                                                         |
|----------------|----|-----|-----------------------------------------------------------------------------------------|
| 3<br>4         | 1  |     | the Northern Cape Province, South Africa. Afr J Psychiatry South Afr. 2011;14(4):298–   |
| 5<br>6         | 2  |     | 305.                                                                                    |
| 7<br>8         | 3  | 41. | Donald KA, Wedderburn CJ, Barnett W, Nhapi RT, Rehman AM, Stadler JAM, et al.           |
| 9              | 4  |     | Risk and protective factors for child development: An observational South African birth |
| 10<br>11<br>12 | 5  |     | cohort. PLOS Med. 2019 Sep 27;16(9):e1002920.                                           |
| 13             | 6  | 42. | Douglas DB, Waziry R, McCarthy EP, Tadesse AW, Feyssa MD, Kawooya M, et al.             |
| 14<br>15       | 7  |     | Meeting the World Health Organization Maternal Antenatal Care Guidelines Is             |
| 16<br>17       | 8  |     | Associated with Improved Early and Middle Childhood Cognition in Ethiopia. J Pediatr.   |
| 18<br>19       | 9  |     | 2019 Jun 1;209:33-38.e1.                                                                |
| 20<br>21       | 10 | 43. | Pitchik H.O., Fawzi W.W., McCoy D.C., Darling A.M., Abioye A.I., Tesha F., et al.       |
| 22             | 11 |     | Prenatal nutrition, stimulation, and exposure to punishment are associated with early   |
| 23<br>24       | 12 |     | child motor, cognitive, language, and socioemotional development in Dar es Salaam,      |
| 25<br>26       | 13 |     | Tanzania. Child Care Health Dev. 2018;44(6):841–9.                                      |
| 27<br>28       | 14 | 44. | Bangirana P, Opoka RO, Boivin MJ, Idro R, Hodges JS, Romero RA, et al. Severe           |
| 29<br>30       | 15 |     | malarial anemia is associated with long-term neurocognitive impairment. Clin Infect Dis |
| 31<br>32       | 16 |     | Off Publ Infect Dis Soc Am. 2014;59(3):336–44.                                          |
| 33<br>34       | 17 | 45. | Brim R, Mboma S, Semrud-Clikeman M, Kampondeni S, Magen J, Taylor T, et al.             |
| 35             | 18 |     | Cognitive Outcomes and Psychiatric Symptoms of Retinopathy-Positive Cerebral            |
| 36<br>37       | 19 |     | Malaria: Cohort Description and Baseline Results. Am J Trop Med Hyg.                    |
| 38<br>39       | 20 |     | 2017;97(1):225–31.                                                                      |
| 40<br>41       | 21 | 46. | Fink G, Olgiati A, Hawela M, Miller JM, Matafwali B. Association between early          |
| 42<br>43       | 22 |     | childhood exposure to malaria and children's pre-school development: evidence from      |
| 44<br>45       | 23 |     | the Zambia early childhood development project. Malar J. 2013 Jan 8;12:12.              |
| 46<br>47       | 24 | 47. | Knox PC, MacCormick IJC, Mbale E, Malewa M, Czanner G, Harding SP. Longitudinal         |
| 48<br>49       | 25 |     | Visuomotor Development in a Malaria Endemic Area: Cerebral Malaria and Beyond.          |
| 49<br>50<br>51 | 26 |     | PloS One. 2016;11(10):e0164885.                                                         |
| 52             | 27 | 48. | Benki-Nugent S., Wamalwa D., Langat A., Tapia K., Adhiambo J., Chebet D., et al.        |
| 53<br>54       | 28 |     | Comparison of developmental milestone attainment in early treated HIV-infected          |
| 55<br>56       | 29 |     | infants versus HIV-unexposed infants: A prospective cohort study. BMC Pediatr.          |
| 57<br>58       | 30 |     | 2017;17(1):24.                                                                          |
| 58<br>59<br>60 |    |     |                                                                                         |

| 1                                                                                                                                                                                                                                                          |                                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3                                                                                                                                                                                                                                                     | 1                                                  | 49.        | Brahmbhatt H, Boivin M, Ssempijja V, Kigozi G, Kagaayi J, Serwadda D, et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4<br>5                                                                                                                                                                                                                                                     | 2                                                  |            | Neurodevelopmental benefits of antiretroviral therapy in Ugandan children aged 0-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6<br>7                                                                                                                                                                                                                                                     | 3                                                  |            | years with HIV. J Acquir Immune Defic Syndr 1999. 2014;67(3):316-22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8<br>9                                                                                                                                                                                                                                                     | 4                                                  | 50.        | Chaudhury S., Mayondi G.K., Williams P.L., Leidner J., Shapiro R., Diseko M., et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10<br>11                                                                                                                                                                                                                                                   | 5                                                  |            | In-utero exposure to antiretrovirals and neurodevelopment among HIV-exposed-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12<br>13                                                                                                                                                                                                                                                   | 6                                                  |            | uninfected children in Botswana. AIDS. 2018;32(9):1173-83.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14<br>15                                                                                                                                                                                                                                                   | 7                                                  | 51.        | Chaudhury S., Williams P.L., Mayondi G.K., Leidner J., Holding P., Tepper V., et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16<br>17                                                                                                                                                                                                                                                   | 8                                                  |            | Neurodevelopment of HIV-exposed and HIV-unexposed uninfected children at 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 18<br>19                                                                                                                                                                                                                                                   | 9                                                  |            | months. Pediatrics. 2017;140(4):e20170988.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20<br>21                                                                                                                                                                                                                                                   | 10                                                 | 52.        | Le Roux S.M., Donald K.A., Brittain K., Phillips T.K., Zerbe A., Nguyen K.K., et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 22                                                                                                                                                                                                                                                         | 11                                                 |            | Neurodevelopment of breastfed HIV-exposed uninfected and HIV-unexposed children                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23<br>24                                                                                                                                                                                                                                                   | 12                                                 |            | in South Africa. AIDS. 2018;32(13):1781–91.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 25<br>26                                                                                                                                                                                                                                                   | 13                                                 | 53.        | McGrath N, Fawzi WW, Bellinger D, Robins J, Msamanga GI, Manji K, et al. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 27<br>28                                                                                                                                                                                                                                                   | 14                                                 |            | timing of mother-to-child transmission of human immunodeficiency virus infection and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 29<br>30                                                                                                                                                                                                                                                   | 15                                                 |            | the neurodevelopment of children in Tanzania. Pediatr Infect Dis J. 2006;25(1):47–52.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 31<br>32                                                                                                                                                                                                                                                   | 16                                                 | 54.        | Msellati P, Lepage P, Hitimana DG, Van Goethem C, Van de Perre P, Dabis F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 33<br>34                                                                                                                                                                                                                                                   | 17                                                 |            | Neurodevelopmental testing of children born to human immunodeficiency virus type 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 35<br>36                                                                                                                                                                                                                                                   | 18                                                 |            | seropositive and seronegative mothers: a prospective cohort study in Kigali, Rwanda.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 37                                                                                                                                                                                                                                                         | 19                                                 |            | Pediatrics. 1993;92(6):843–8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 38                                                                                                                                                                                                                                                         |                                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 38<br>39<br>40                                                                                                                                                                                                                                             | 20                                                 | 55.        | Springer P.E., Slogrove A.L., Laughton B., Bettinger J.A., Saunders H.H., Molteno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 39<br>40<br>41                                                                                                                                                                                                                                             |                                                    | 55.        | Springer P.E., Slogrove A.L., Laughton B., Bettinger J.A., Saunders H.H., Molteno C.D., et al. Neurodevelopmental outcome of HIV-exposed but uninfected infants in the                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 39<br>40<br>41<br>42<br>43                                                                                                                                                                                                                                 | 20                                                 | 55.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 39<br>40<br>41<br>42<br>43<br>44<br>45                                                                                                                                                                                                                     | 20<br>21                                           | 55.        | C.D., et al. Neurodevelopmental outcome of HIV-exposed but uninfected infants in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 39<br>40<br>41<br>42<br>43<br>44                                                                                                                                                                                                                           | 20<br>21<br>22                                     | 55.<br>56. | C.D., et al. Neurodevelopmental outcome of HIV-exposed but uninfected infants in the Mother and Infants Health Study, Cape Town, South Africa. Trop Med Int Health. 2018;23(1):69–78.                                                                                                                                                                                                                                                                                                                                                                                                    |
| 39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48                                                                                                                                                                                                   | 20<br>21<br>22<br>23                               |            | C.D., et al. Neurodevelopmental outcome of HIV-exposed but uninfected infants in the Mother and Infants Health Study, Cape Town, South Africa. Trop Med Int Health. 2018;23(1):69–78.                                                                                                                                                                                                                                                                                                                                                                                                    |
| 39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50                                                                                                                                                                                       | 20<br>21<br>22<br>23<br>24                         |            | <ul> <li>C.D., et al. Neurodevelopmental outcome of HIV-exposed but uninfected infants in the Mother and Infants Health Study, Cape Town, South Africa. Trop Med Int Health. 2018;23(1):69–78.</li> <li>Strehlau R, van Aswegen T, Potterton J. Neurodevelopmental assessment of HIV-</li> </ul>                                                                                                                                                                                                                                                                                         |
| 39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52                                                                                                                                                                           | 20<br>21<br>22<br>23<br>24<br>25                   | 56.        | <ul> <li>C.D., et al. Neurodevelopmental outcome of HIV-exposed but uninfected infants in the Mother and Infants Health Study, Cape Town, South Africa. Trop Med Int Health. 2018;23(1):69–78.</li> <li>Strehlau R, van Aswegen T, Potterton J. Neurodevelopmental assessment of HIV-exposed uninfected and early-treated HIV-infected children: study protocol. BMC Res</li> </ul>                                                                                                                                                                                                      |
| 39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54                                                                                                                                                               | 20<br>21<br>22<br>23<br>24<br>25<br>26             | 56.        | <ul> <li>C.D., et al. Neurodevelopmental outcome of HIV-exposed but uninfected infants in the Mother and Infants Health Study, Cape Town, South Africa. Trop Med Int Health. 2018;23(1):69–78.</li> <li>Strehlau R, van Aswegen T, Potterton J. Neurodevelopmental assessment of HIV-exposed uninfected and early-treated HIV-infected children: study protocol. BMC Res Notes. 2018;11(1):235.</li> <li>Van Rie A., Dow A., Mupuala A., Stewart P. Neurodevelopmental trajectory of HIV-infected children accessing care in kinshasa, Democratic Republic of Congo. J Acquir</li> </ul> |
| 39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56                                                                                                                                                   | 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27       | 56.        | <ul> <li>C.D., et al. Neurodevelopmental outcome of HIV-exposed but uninfected infants in the Mother and Infants Health Study, Cape Town, South Africa. Trop Med Int Health. 2018;23(1):69–78.</li> <li>Strehlau R, van Aswegen T, Potterton J. Neurodevelopmental assessment of HIV-exposed uninfected and early-treated HIV-infected children: study protocol. BMC Res Notes. 2018;11(1):235.</li> <li>Van Rie A., Dow A., Mupuala A., Stewart P. Neurodevelopmental trajectory of HIV-</li> </ul>                                                                                     |
| <ul> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> <li>53</li> <li>54</li> <li>55</li> <li>56</li> <li>57</li> <li>58</li> </ul> | 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 56.        | <ul> <li>C.D., et al. Neurodevelopmental outcome of HIV-exposed but uninfected infants in the Mother and Infants Health Study, Cape Town, South Africa. Trop Med Int Health. 2018;23(1):69–78.</li> <li>Strehlau R, van Aswegen T, Potterton J. Neurodevelopmental assessment of HIV-exposed uninfected and early-treated HIV-infected children: study protocol. BMC Res Notes. 2018;11(1):235.</li> <li>Van Rie A., Dow A., Mupuala A., Stewart P. Neurodevelopmental trajectory of HIV-infected children accessing care in kinshasa, Democratic Republic of Congo. J Acquir</li> </ul> |
| 39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57                                                                                                                                             | 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 56.        | <ul> <li>C.D., et al. Neurodevelopmental outcome of HIV-exposed but uninfected infants in the Mother and Infants Health Study, Cape Town, South Africa. Trop Med Int Health. 2018;23(1):69–78.</li> <li>Strehlau R, van Aswegen T, Potterton J. Neurodevelopmental assessment of HIV-exposed uninfected and early-treated HIV-infected children: study protocol. BMC Res Notes. 2018;11(1):235.</li> <li>Van Rie A., Dow A., Mupuala A., Stewart P. Neurodevelopmental trajectory of HIV-infected children accessing care in kinshasa, Democratic Republic of Congo. J Acquir</li> </ul> |

| 1<br>2   |    |     |                                                                                         |
|----------|----|-----|-----------------------------------------------------------------------------------------|
| 3<br>4   | 1  | 58. | Boivin MJ, Barlow-Mosha L, Chernoff MC, Laughton B, Zimmer B, Joyce C, et al.           |
| 5        | 2  |     | Neuropsychological performance in African children with HIV enrolled in a multisite     |
| 6<br>7   | 3  |     | antiretroviral clinical trial. Aids. 2018 Jan 14;32(2):189-204.                         |
| 8<br>9   | 4  | 59. | Reynolds S.A., Andersen C., Behrman J., Singh A., Stein A.D., Benny L., et al.          |
| 10<br>11 | 5  |     | Disparities in children's vocabulary and height in relation to household wealth and     |
| 12<br>13 | 6  |     | parental schooling: A longitudinal study in four low- and middle-income countries.      |
| 14<br>15 | 7  |     | SSM - Popul Health. 2017;3((Reynolds, Fernald) School of Public Health, University of   |
| 16<br>17 | 8  |     | California, Berkeley, CA, United States):767-86.                                        |
| 18<br>19 | 9  | 60. | Dearden K.A., Brennan A.T., Behrman J.R., Schott W., Crookston B.T., Humphries          |
| 20       | 10 |     | D.L., et al. Does household access to improved water and sanitation in infancy and      |
| 21<br>22 | 11 |     | childhood predict better vocabulary test performance in Ethiopian, Indian, Peruvian and |
| 23<br>24 | 12 |     | Vietnamese cohort studies? BMJ Open. 2017;7(3):e013201.                                 |
| 25<br>26 | 13 | 61. | Espie E., Ouss L., Gaboulaud V., Candilis D., Ahmed K., Cohuet S., et al. Against the   |
| 27<br>28 | 14 |     | Odds: Psychomotor development of children under 2 years in a Sudanese orphanage. J      |
| 29       | 15 |     | Trop Pediatr. 2011;57(6):412–7.                                                         |
| 30<br>31 | 16 | 62. | Eskenazi B, An S, Rauch SA, Coker ES, Maphula A, Obida M, et al. Prenatal Exposure      |
| 32<br>33 | 17 |     | to DDT and Pyrethroids for Malaria Control and Child Neurodevelopment: The              |
| 34<br>35 | 18 |     | VHEMBE Cohort, South Africa. Environ Health Perspect. 2018 Apr;126(4):047004.           |
| 36<br>37 | 19 | 63. | Goetghebuer T, Ota MOC, Kebbeh B, John M, Jackson-Sillah D, Vekemans J, et al.          |
| 38<br>39 | 20 |     | Delay in motor development of twins in Africa: A prospective cohort study. Twin Res.    |
| 40<br>41 | 21 |     | 2003 Aug;6(4):279–84.                                                                   |
| 42<br>43 | 22 | 64. | Molteno CD, Hollingshead J, Moodie AD, Bradshaw D, Bowie MD, Willoughby W.              |
| 44<br>45 | 23 |     | Preschool development of coloured children in Cape Town. South Afr Med J Suid-Afr       |
| 46<br>47 | 24 |     | Tydskr Vir Geneeskd. 1991;79(11):665–70.                                                |
| 48       | 25 | 65. | Hsiao C, Richter LM. Early Mental Development As a Predictor of Preschool Cognitive     |
| 49<br>50 | 26 |     | and Behavioral Development in South Africa: The Moderating Role of Maternal             |
| 51<br>52 | 27 |     | Education in the Birth to Twenty Cohort. Infants Young Child. 2014 Mar;27(1):74.        |
| 53<br>54 | 28 | 66. | Wallander JL, Biasini FJ, Thorsten V, Dhaded SM, de Jong DM, Chomba E, et al. Dose      |
| 55<br>56 | 29 |     | of early intervention treatment during children's first 36 months of life is associated |
| 57<br>58 | 30 |     | with developmental outcomes: an observational cohort study in three low/low-middle      |
| 59<br>60 | 31 |     | income countries. BMC Pediatr. 2014;14(100967804):281.                                  |
| -        |    |     |                                                                                         |

| 1<br>2   |    |     |                                                                                          |
|----------|----|-----|------------------------------------------------------------------------------------------|
| 3<br>4   | 1  | 67. | McGrath M. Advancing Early Childhood Development: From Science to Scale. Field           |
| 5<br>6   | 2  |     | Exch 53. 2016 Nov 3;41.                                                                  |
| 7<br>8   | 3  | 68. | Lozoff B, Beard J, Connor J, Felt B, Georgieff M, Schallert T. Long-Lasting Neural and   |
| 9<br>10  | 4  |     | Behavioral Effects of Iron Deficiency in Infancy. Nutr Rev. 2008 Jun 28;64:S34-43.       |
| 11       | 5  | 69. | Congdon EL, Westerlund A, Algarin CR, Peirano PD, Gregas M, Lozoff B, et al. Iron        |
| 12<br>13 | 6  |     | deficiency in infancy is associated with altered neural correlates of recognition memory |
| 14<br>15 | 7  |     | at 10 years. J Pediatr. 2012 Jun;160(6):1027-33.                                         |
| 16<br>17 | 8  | 70. | Langley-Evans SC. Nutrition in early life and the programming of adult disease: a        |
| 18<br>19 | 9  |     | review. J Hum Nutr Diet. 2015 Jan;28:1–14.                                               |
| 20<br>21 | 10 | 71. | Langley-Evans SC, Carrington LJ. Diet and the developing immune system. Lupus.           |
| 22<br>23 | 11 |     | 2006 Nov;15(11):746–52.                                                                  |
| 24<br>25 | 12 | 72. | Mendonça B, Sargent B, Fetters L. Cross-cultural validity of standardized motor          |
| 26<br>27 | 13 |     | development screening and assessment tools: a systematic review. Dev Med Child           |
| 28<br>29 | 14 |     | Neurol. 2016 Dec;58(12):1213–22.                                                         |
| 30<br>31 | 15 | 73. | Gladstone M, Lancaster GA, Umar E, Nyirenda M, Kayira E, Broek NR van den, et al.        |
| 32       | 16 |     | The Malawi Developmental Assessment Tool (MDAT): The Creation, Validation, and           |
| 33<br>34 | 17 |     | Reliability of a Tool to Assess Child Development in Rural African Settings. PLOS        |
| 35<br>36 | 18 |     | Med. 2010 May 25;7(5):e1000273.                                                          |
| 37<br>38 | 19 | 74. | Boggs D, Milner KM, Chandna J, Black M, Cavallera V, Dua T, et al. Rating early child    |
| 39<br>40 | 20 |     | development outcome measurement tools for routine health programme use. Arch Dis         |
| 41<br>42 | 21 |     | Child. 2019 Apr 1;104(Suppl 1):S22–33.                                                   |
| 43<br>44 | 22 | 75. | Fernald LCH, Kariger P, Engle P, Raikes A. Examining Early Child Development in          |
| 45<br>46 | 23 |     | Low-Income Countries: A Toolkit for the Assessment of Children in the First Five         |
| 47       | 24 |     | Years of Life [Internet]. World Bank; 2009 [cited 2019 Jul 3]. Available from:           |
| 48<br>49 | 25 |     | http://elibrary.worldbank.org/doi/book/10.1596/28107                                     |
| 50<br>51 | 26 | 76. | Cromwell EA, Dube Q, Cole SR, Chirambo C, Dow AE, Heyderman RS, et al. Validity          |
| 52<br>53 | 27 |     | of US norms for the Bayley Scales of Infant Development-III in Malawian children. Eur    |
| 54<br>55 | 28 |     | J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc. 2014 Mar;18(2):223-30.             |
| 56<br>57 | 29 | 77. | Hanlon C, Medhin G, Worku B, Tomlinson M, Alem A, Dewey M, et al. Adapting the           |
| 58<br>59 | 30 |     | Bayley Scales of infant and toddler development in Ethiopia: evaluation of reliability   |
| 60       | 31 |     | and validity. Child Care Health Dev. 2016;42(5):699-708.                                 |

| 2            |    |     |                                                                                      |
|--------------|----|-----|--------------------------------------------------------------------------------------|
| 3<br>4       | 1  | 78. | Murray E, Fernandes M, Newton CRJ, Abubakar A, Kennedy SH, Villar J, et al.          |
| 5            | 2  |     | Evaluation of the INTERGROWTH-21st Neurodevelopment Assessment (INTER-               |
| 6<br>7<br>8  | 3  |     | NDA) in 2 year-old children. PLOS ONE. 2018 Feb 28;13(2):e0193406.                   |
| 8<br>9<br>10 | 4  | 79. | Donald KA, Hoogenhout M, du Plooy CP, Wedderburn CJ, Nhapi RT, Barnett W, et al.     |
| 11           | 5  |     | Drakenstein Child Health Study (DCHS): investigating determinants of early child     |
| 12<br>13     | 6  |     | development and cognition. BMJ Paediatr Open [Internet]. 2018 Jun 13 [cited 2019 Apr |
| 14<br>15     | 7  |     | 15];2(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014194/      |
| 16<br>17     | 8  | 80. | Caulfield LE, Bose A, Chandyo RK, Nesamvuni C, de Moraes ML, Turab A, et al.         |
| 18<br>19     | 9  |     | Infant Feeding Practices, Dietary Adequacy, and Micronutrient Status Measures in the |
| 20<br>21     | 10 |     | MAL-ED Study. Clin Infect Dis. 2014 Nov 1;59:S248–54.                                |
| 22<br>23     | 11 | 81. | Murray-Kolb LE, Rasmussen ZA, Scharf RJ, Rasheed MA, Svensen E, Seidman JC, et       |
| 24           | 12 |     | al. The MAL-ED Cohort Study: Methods and Lessons Learned When Assessing Early        |
| 25<br>26     | 13 |     | Child Development and Caregiving Mediators in Infants and Young Children in 8 Low-   |
| 27<br>28     | 14 |     | and Middle-Income Countries. Clin Infect Dis. 2014 Nov 1;59(suppl_4):S261-72.        |
| 29<br>30     | 15 | 82. | Grantham-McGregor S, Ani C. A Review of Studies on the Effect of Iron Deficiency on  |
| 31<br>32     | 16 |     | Cognitive Development in Children. J Nutr. 2001 Feb 1;131(2):649S-668S.              |
| 33<br>34     | 17 | 83. | Ip P, Ho FKW, Rao N, Sun J, Young ME, Chow CB, et al. Impact of nutritional          |
| 35<br>36     | 18 |     | supplements on cognitive development of children in developing countries: A meta-    |
| 37<br>38     | 19 |     | analysis. Sci Rep Nat Publ Group Lond. 2017 Sep;7:1–9.                               |
| 39           | 20 |     |                                                                                      |
| 40<br>41     |    |     |                                                                                      |
| 42<br>43     |    |     |                                                                                      |
| 45<br>44     |    |     |                                                                                      |
| 45           |    |     |                                                                                      |
| 46<br>47     |    |     |                                                                                      |
| 48           |    |     |                                                                                      |
| 49<br>50     |    |     |                                                                                      |
| 51           |    |     |                                                                                      |
| 52           |    |     |                                                                                      |
| 53<br>54     |    |     |                                                                                      |
| 55           |    |     |                                                                                      |
| 56           |    |     |                                                                                      |
| 57<br>58     |    |     |                                                                                      |
| 59           |    |     |                                                                                      |
| 60           |    |     |                                                                                      |



## Table 1 – Search inclusion and exclusion criteria

| Inclusion criteria                  | Exclusion criteria                  |
|-------------------------------------|-------------------------------------|
| Peer-reviewed cohort, observational | Qualitative or mixed method studies |
| and longitudinal studies            | Studies with unspecified locations  |
| Sub-Saharan Africa                  | Studies with unspecified outcome    |
| Children aged 0-8 years             | measures                            |
| Cognitive and/or motor development  | Older age groups including children |
| measures                            | over 8                              |
|                                     |                                     |

## Table 2- Characteristics and quality ratings of the final included studies

| s                                            | Study and<br>study design                              | Торіс                                                                | Exposure Measure                                                                                                                                                                        | Cognitive/Motor<br>Outcome Measure                                                                                                 | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Location             | Participants                                                                                    |                                                                                                                                                         | Quality<br>Rating | Review<br>theme                                              |
|----------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------|
|                                              |                                                        |                                                                      |                                                                                                                                                                                         |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | Age                                                                                             | Initial N<br>Follow- Up N                                                                                                                               | _                 |                                                              |
| C                                            | OGNITIVE D                                             | EVELOPMENT                                                           | 1                                                                                                                                                                                       |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                    |                                                                                                 |                                                                                                                                                         |                   |                                                              |
| 6 (<br>) L<br>0 c                            | bera et al<br>2017, 26)<br>ongitudinal<br>ohort study  | Birth weight<br>and cognitive<br>early child<br>development<br>(ECD) | Body composition<br>(FM and FFM) within<br>48h of birth                                                                                                                                 | Denver<br>Developmental<br>Screening Test<br>(DDST-II)                                                                             | FFM but not FM was positively associated with higher global development score at age 2 ( $\beta$ 2.48, 95% CI 0.17; 4.79).                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ethiopia             | Birth to 2<br>years                                                                             | 617 enrolled<br>227 at follow<br>up<br>Attrition =<br>63.2%                                                                                             | High              | Growth and<br>anthro-<br>pometry                             |
| 2 (<br>3  <br>4   P                          | ijayi et al<br>2017, 10)<br>Prospective<br>ohort study | Health,<br>nutritional<br>status and<br>cognitive ECD                | Site, sex, education,<br>child's HIV status,<br>SES, parent<br>education status,<br>haemoglobin and<br>height for age                                                                   | Grover-Counter<br>Scale of Cognitive<br>Development.<br>Subtests of the<br>Kaufman Assessment<br>Battery for Children<br>(KABC II) | Area of residence and height-for-age ( $p<0.05$ )<br>were factors affecting cognitive test scores,<br>regardless of attending pre-school. Paternal level<br>of education ( $p<0.05$ ) was also associated with<br>cognitive test scores of children for all three<br>cognitive test results, whereas HIV status, sex<br>and SES were not.                                                                                                                                                                                                                                       | South Africa         | Recruited<br>at 4-6<br>years<br>Tested at<br>6-8 years                                          | 1581 enrolled<br>1383 at follow<br>up<br>Attrition =<br>12.5%                                                                                           | Low               | Growth and<br>anthro-<br>pometry<br>Environment<br>Nutrition |
| 18 (<br>19 E<br>20 s<br>21 22<br>23 24       | Ballot et al<br>2012, 27)<br>Birth cohort<br>tudy      | Very low birth<br>weight and<br>ECD                                  | Very low birth weight                                                                                                                                                                   | Bayley Scales of<br>Infant and Toddler<br>Development (BSID)                                                                       | Approximately one third of infants were<br>identified as being at risk (score between 70 and<br>85) on each subscale. Factors associated with<br>poor outcomes included cystic periventricular<br>leukomalacia (PVL), resuscitation at birth,<br>maternal parity, prolonged hospitalisation and<br>duration of supplemental oxygen. PVL was<br>associated with poor outcome on all three<br>subscales. Birth weight and gestational age were<br>not predictive of neurodevelopmental outcomes.                                                                                  | South Africa         | 16 months                                                                                       | 178 enrolled<br>106 at follow<br>up<br>Attrition =<br>40.5%                                                                                             | High              | Growth and<br>anthro-<br>pometry                             |
| 26 a<br>27 P<br>28 c<br>29<br>30<br>31<br>32 | Bangirana et<br>I (2017, 38)<br>Prospective<br>ohort   | Malaria and<br>cognitive<br>development                              | Cerebral malaria<br>(CM): Coma, P.<br>falciparum on blood<br>smear<br>Severe Malarial<br>Anaemia (SMA): P.<br>falciparum on blood<br>smear or children<br>with haemoglobin<br>levels ≤5 | Mullen Scales of<br>Early Learning<br>(MSEL), Colour<br>Object Association<br>Test, Early Childhood<br>Vigilance Test              | At 12 months, children with CM had lower<br>adjusted scores than community children (CC) in<br>cognitive ability ( $p$ <0.001), attention ( $p$ <0.05),<br>and associative memory ( $p$ <0.05). Children with<br>SMA had lower scores than CC in cognitive ability<br>( $p$ <0.05) but not attention or associative<br>memory. Cognitive ability scores in children with<br>CM and SMA did not differ significantly.                                                                                                                                                            | Uganda               | Between<br>18 months<br>and 5<br>years<br>Tested at<br>Baseline,<br>6 and 12<br>months<br>later | 268 enrolled<br>221 at follow<br>up<br>Attrition =<br>17.5%                                                                                             | High              | Malaria and<br>HIV                                           |
| 34 (<br>35  <br>36   P                       | oivin et al<br>2018, 52)<br>Prospective<br>ohort study | Antiretroviral<br>exposure and<br>neurodevelop<br>ment               | Ante-partum and<br>post-partum to<br>antiretroviral<br>treatment in HIV<br>exposed uninfected<br>children (HEU) and<br>HIV unexposed and<br>uninfected children<br>(HUU)                | MSEL and KABC II                                                                                                                   | At 48 months, MSEL cognitive composite scores<br>were worse for children of mothers who did not<br>remain on triple antiretroviral treatment<br>throughout both the ante-partum and post-<br>partum treatment phases (adjusted means 80.64<br>[95% CI 77.74-83.54] and 81.34 [78.19-84.48],<br>respectively), compared with those who did<br>remain on triple treatment (adjusted mean<br>85.93, 95% CI 83.05-88.80; p=0.0486 for the<br>comparison of all groups). The KABC-II<br>composite scores (mental processing index) did<br>not differ at 48 or 60 months according to | Malawi and<br>Uganda | 12, 24, 48<br>and 60<br>months                                                                  | 861 enrolled<br>738 at 12m;<br>790 at 24m;<br>692 at 48m;<br>445 at 60m;<br>follow up<br>Attrition =<br>14.3%;<br>8.2%,<br>19.6%; 48.3&<br>at 12m, 24m, | High              | Malaria and<br>HIV                                           |

Journal of Human Nutrition and Dietetics

| Study and study design                              | Торіс                                                   | Exposure Measure                                                                                                                                                                                                                                                             | Cognitive/Motor<br>Outcome Measure                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location                                                   | n Participants                                                             |                                                                                                                                                                                                       | Quality<br>Rating | Review<br>theme                  |
|-----------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|
|                                                     |                                                         | e<br>C<br>K<br>a<br>p<br>f                                                                                                                                                                                                                                                   | exposure (p=0.81 and 0.89, respectively, for<br>comparison of all groups). Scores for MSEL and<br>KABC-II for children of mothers on triple<br>antiretrovirals in both the ante-partum and post-<br>partum treatment phases were similar to those<br>for children in the HIV-unexposed and uninfected<br>reference group at all time points. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            | 48m, and<br>60m follow up                                                  |                                                                                                                                                                                                       |                   |                                  |
| (2017, 39)                                          | Malaria and<br>cognitive and<br>psychiatric<br>outcomes | Infants with<br>Retinopathy-positive<br>cerebral malaria (a<br>Blantyre Coma Scale<br>of $\leq 2$ , P. falciparum<br>parasitemia) and a<br>control group with no<br>CM                                                                                                       | Malawi<br>Developmental<br>Assessment Tool,<br>KABC II                                                                                                                                                                                                                                                                                       | In children younger than 5 years, cases were<br>delayed in motor, language, and social<br>development by approximately<br>6 months, compared with controls (p<0.001).<br>More significant delays occurred in those with<br>MRI abnormalities at the 1-month follow-up visit.<br>There were no differences between cases and<br>controls in inhibitory self-control, nor in cognitive<br>function in children under 5 years of age.                                                                    | Malawi                                                     | 6 months<br>to 5 years<br>tested at<br>baseline<br>and 1<br>month<br>later | 221                                                                                                                                                                                                   | High              | Malaria and<br>HIV               |
| Desmond                                             | Stunting and<br>cognitive<br>function                   | Height for age z<br>score (HAZ) ≤ -2 SD                                                                                                                                                                                                                                      | Revised Denver Pre-<br>screening<br>Developmental<br>Questionnaire (R-<br>DPDQ)                                                                                                                                                                                                                                                              | Children who recovered from stunting by age 5<br>still performed significantly worse on cognitive<br>tests than children who did not experience early<br>malnutrition, and almost as poorly as children<br>who remained stunted. These findings suggest<br>that the timing of nutritional inputs in the early<br>years is key in a child's cognitive development.                                                                                                                                     | South Africa<br>– Birth to<br>twenty                       | Tested at<br>5 years,<br>recruited<br>at birth                             | 3273 enrolled<br>2y- 1839<br>4y- 1858<br>5y- 1586<br>between 1019<br>& 666 based<br>on which<br>controls were<br>included<br>Attrition =<br>43.8%;<br>43.2%;<br>51.5% at 2y,<br>4y, & 5y<br>follow up | High              | Growth and<br>anthro-<br>pometry |
|                                                     | Growth and<br>cognitive ECD                             | HAZ at 1 year and 8<br>years. Four<br>categories:<br>recovered (stunted<br>at age 1y not at age<br>8y), faltered (not<br>stunted at age 1y<br>and stunted at age<br>8y), persistently<br>stunted (stunted at 1<br>and 8y), or never<br>stunted (not stunted<br>at 1 and 8y). | School attendance,<br>math test, the Early<br>Grade Reading<br>Assessment,<br>Peabody Picture<br>Vocabulary Test<br>(PPVT)                                                                                                                                                                                                                   | The HAZ (1) was inversely associated with<br>overage for grade and positively associated with<br>mathematic achievement, reading<br>comprehension, and receptive vocabulary.<br>Unpredicted growth from 1 to 8 y of age was<br>also inversely associated with overage for grade<br>(OR range across countries: 0.80–0.84) and<br>positively associated with mathematics<br>achievement (effect-size range: 0.05–0.10),<br>reading comprehension (0.02–0.10), and<br>receptive vocabulary (0.04–0.08). | Ethiopia,<br>India, Peru<br>and<br>Vietnam-<br>young lives | Birth to 8<br>years<br>Tested at<br>5 and 8<br>years                       | 8062 overall<br>1757 in<br>Ethiopia<br>Attrition =<br>78.2%                                                                                                                                           | Moderate          | Growth and<br>anthro-<br>pometry |
| Davies et al<br>(2011, 35)<br>Birth cohort<br>study | Developmenta<br>l delay and<br>foetal alcohol           | Foetal alcohol<br>spectrum disorder<br>(FASD). Diagnosis                                                                                                                                                                                                                     | Griffiths Mental<br>Development scales                                                                                                                                                                                                                                                                                                       | Infants and children with FASD performed worse<br>than their non-FASD counterparts over all scales<br>and total developmental quotients. Mean<br>quotients for both groups decline between                                                                                                                                                                                                                                                                                                            | South Africa                                               | 7-12<br>months<br>and again                                                | 392 enrolled<br>83 at 17m<br>follow up                                                                                                                                                                | High              | Maternal<br>factors              |

### Table 2- Characteristics and quality ratings of the final included studies

| Study and<br>study design                                                     | Торіс                                                                 | Exposure Measure                                                                                                                                                                                                                                    | Measure         Cognitive/Motor         Findings           Outcome Measure         Findings         Findings | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Participants                                               |                                                                       | Quality<br>Rating                                                                                                                                                      | Review<br>theme |                                    |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------|
|                                                                               | spectrum using Institute of<br>disorder Medicine criteria             | 5                                                                                                                                                                                                                                                   |                                                                                                              | assessments across subscales with a particularly<br>marked decline in the hearing and language<br>scale at Time 2 (scores dropping from 110.6 to<br>83.1 in the non-FASD group and 106.3 to 72.7 in<br>the FASD group; p=0.004).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            | at 17-21<br>months                                                    | Attrition =<br>78.8%                                                                                                                                                   |                 |                                    |
| Dearden et al<br>(2017, 54)<br>Prospective<br>cohort study                    | Household<br>water and<br>sanitation and<br>vocabulary<br>performance | sanitation used<br>definition from<br>UNICEF Joint<br>Monitoring Program                                                                                                                                                                            | PPVT                                                                                                         | Access to improved water at 1 year was<br>associated with higher language scores at 5<br>years (3/4 adjusted associations) and 8 years<br>(4/4 unadjusted associations). Ethiopian children<br>with access to improved water at 1 year had test<br>scores that were 0.26 SD (95% CI 0.17 to 0.36)<br>above children without access at 5 years.                                                                                                                                                                                                                                                                                                                                                                                                                           | Ethiopia,<br>India, Peru<br>and<br>Vietnam-<br>young lives | Birth to 8<br>years<br>Tested at<br>5 and 8<br>years                  | 7269 overall<br>1792 in<br>Ethiopia<br>Attrition =<br>75.3%                                                                                                            | High            | Environment                        |
| Di Cesare &<br>Sabates<br>(2013, 30)<br>Longitudinal<br>birth cohort<br>study | Antenatal<br>care and<br>cognitive ECD                                | Antenatal care<br>described by WHO<br>recommendation<br>(four visits during<br>pregnancy and a<br>skilled practitioner<br>during birth)                                                                                                             | Cognitive<br>development<br>Assessment (CDA)                                                                 | Positive association between mother's access to antenatal care and children's cognitive development in stunted ( $\beta$ 0.40; p>0.05) and non-stunted children ( $\beta$ 0.56; p<0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Young lives:<br>Ethiopia,<br>India, Peru,<br>and Vietnam   | Birth to 5<br>years                                                   | 3722 overall<br>1,807 in<br>Ethiopia<br>Attrition =<br>51.5%                                                                                                           | Moderate        | Maternal<br>factors<br>Environment |
| Douglas et al<br>(2019, 36)<br>Longitudinal<br>cohort study                   | WHO<br>maternal<br>guidelines and<br>cognition                        | Antenatal care<br>described by WHO<br>recommendation<br>(four visits during<br>pregnancy and a<br>skilled practitioner<br>during birth)                                                                                                             | CDA, PPVT, Early<br>Grade Reading<br>Assessment (EGRA)<br>and math test                                      | Children of mothers who received the WHO<br>recommended 4+ antenatal care visits or<br>received the WHO recommended first antenatal<br>care visit during the first trimester scored higher<br>on all academic achievement tests. In the<br>multivariable analysis, children of mothers who<br>received 4+ antenatal care visits scored<br>significantly higher on the CDA at ages 4-5 years<br>and Math Test at ages 7-8 years. Children of<br>mothers who received antenatal care in the first<br>trimester scored higher on the CDA at ages 4-5<br>years. Children of mothers who received both<br>antenatal care in the first trimester and 4+<br>antenatal care visits scored significantly higher<br>on the CDA at ages 4-5 years and Math Test at<br>both ages 7-8 | Ethiopia                                                   | From 4-5<br>years to 8<br>years<br>Tested at<br>4-5 and 7-<br>8 years | 1914                                                                                                                                                                   | Moderate        | Maternal<br>factors                |
| Eskenazi et al<br>(2018, 56)<br>Birth cohort<br>study                         | Prenatal<br>Insecticide<br>exposure and<br>neurodevelop<br>ment       | Maternal exposure to<br>the insecticide<br>dichlorodiphenyltrichl<br>oroethane (DDT) and<br>its breakdown<br>product<br>dichlorodiphenyldichl<br>oroethylene (DDE).<br>Blood tests pre- and<br>post-natal and<br>pyrethroid<br>metabolites in urine | BSID-III                                                                                                     | Exposure to DDT and DDE were not associated<br>with lower scores on the BSID-III. Prenatal<br>exposure to pyrethroids may be associated at 1<br>year of age with poorer social-emotional<br>development. At 2 years of age, poorer language<br>development was observed with higher prenatal<br>pyrethroid levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | South Africa                                               | Tested at<br>1 and 2<br>years                                         | 752 enrolled<br>665<br>completed<br>visits at both<br>1y and 2y<br>and 40<br>completed<br>one visit at<br>either 1y or<br>2y<br>Attrition =<br>11.6% for<br>those that | High            | Environmen                         |

| Study and study design                                                             | Торіс                                                                             | Exposure Measure                                                                        | Cognitive/Motor<br>Outcome Measure                                                                                                                                                                                                            | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Location     | Part                                                                                          | icipants                                 | Quality<br>Rating | Review<br>theme                  |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------|------------------------------------------|-------------------|----------------------------------|
|                                                                                    |                                                                                   |                                                                                         |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                                                                               | completed<br>visits at both<br>1y and 2y |                   |                                  |
| Gladstone et<br>al (2011, 28)<br>Community-<br>based<br>stratified<br>cohort study | Preterm birth<br>and<br>developmenta<br>l outcome -<br>stratified<br>cohort study | Preterm babies born<br>under 37 weeks of<br>gestation                                   | Ten Question<br>Questionnaire,<br>Malawi Development<br>Assessment Tool                                                                                                                                                                       | Compared to infants born at term: preterm<br>infants were at significantly greater risk of death<br>(hazard ratio 1.79, 95% CI 1.09–2.95);<br>surviving preterm infants were more likely to be<br>underweight (weight-for-age z score; p,0.001) or<br>wasted (weight-for-length z score; p,0.01) with<br>no effect of gestational age at delivery; were<br>more often screened for disability on the Ten<br>Question Questionnaire (p=0.002); and had<br>higher rates of developmental delay on the<br>MDAT at 18 months (p=0.009), with gestational<br>age at delivery increasing this likelihood<br>(p=0.01). | Malawi       | Tested at<br>12, 18 and<br>24 months                                                          | 850                                      | Moderate          | Growth and<br>anthro-<br>pometry |
| Hsiao &<br>Richter (2014,<br>59)<br>Longitudinal<br>birth cohort<br>study          | Early mental<br>development<br>and cognitive<br>and behaviour<br>development      | Griffiths Mental<br>Development Scales<br>(GMDSs) at age 1<br>and maternal<br>education | Adapted items of R-<br>PDQ and PDQ-II at<br>age 5                                                                                                                                                                                             | Mental development at 1 year of age significantly<br>predicted preschool outcomes when children<br>were 5 years of age ( $\beta$ 0.19; p<0.01), over and<br>above the contributions of maternal education ( $\beta$<br>0.29; p<0.01). Children with the poorest mental<br>development at 1 year of age also had the<br>poorest cognitive and behavioural development<br>at 5 years of age. However, higher levels of<br>maternal education attenuated the negative<br>impacts of early developmental delay on<br>preschool cognitive and behavioural outcomes.                                                  | South Africa | Birth to 5<br>years<br>Tested at<br>1 and 5<br>years                                          | 167                                      | Low               | Environmer                       |
| Knox et al<br>(2016, 41)<br>Longitudinal<br>birth cohort<br>study                  | Cerebral<br>malaria and<br>cognitive<br>impairment –<br>longitudinal<br>study     | Retinopathy-<br>confirmed cerebral<br>malaria children                                  | Oculomotor tasks,<br>including isuomotor<br>prosaccade and<br>antisaccade tasks,<br>recorded eye<br>movements that are<br>typically associated<br>with persistent or<br>serious impairments<br>in attention and<br>behavioural<br>inhibition. | There were no statistically significant differences<br>between the cerebral malaria and control groups,<br>suggesting that cerebral malaria survivors are<br>not generally at an increased risk of persistent<br>cognitive deficits.                                                                                                                                                                                                                                                                                                                                                                            | Malawi       | for<br>interventio<br>n and 117<br>months<br>for<br>controls -<br>tested<br>over 32<br>months | 47 and 37 for<br>controls                | Moderate          | Malaria and<br>HIV               |
|                                                                                    |                                                                                   | Maternal common<br>mental disorders<br>(CMD) was<br>measured with SRQ-<br>20            | Academic<br>achievement,<br>absenteeism and<br>dropout                                                                                                                                                                                        | After adjusting for potential confounders,<br>exposure to maternal CMD at 7-8 years was<br>associated significantly with school dropout (OR<br>1.07; 95% CI 1.00 to 1.13, p=0.043) and<br>absenteeism (incidence rate ratio 1.01; 95% CI<br>1.00 to 1.02 p=0.026) at the end of 2014-15<br>academic year. There was no association<br>between maternal CMD and child academic<br>achievement.                                                                                                                                                                                                                   | Ethiopia     | 7-8 years<br>and<br>8-9 years                                                                 | 2090                                     | High              | Maternal<br>factors              |

# Table 2- Characteristics and quality ratings of the final included studies

| Study and<br>study design                                         | Торіс                                             | Exposure Measure                                                                                                                                                                             | Cognitive/Motor<br>Outcome Measure                                                          | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location                                                | Part                                                     | icipants                                                                                                                                                        | Quality<br>Rating | Review<br>theme                  |
|-------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|
| Reynolds et al<br>2017, 53)<br>Longitudinal<br>cohort study       | SES and<br>vocabulary<br>ECD                      | Household wealth<br>index (housing<br>quality, ownership of<br>consumer durables,<br>and<br>access to services<br>such as electricity,<br>water and sanitation)<br>and parental<br>education | PPVT                                                                                        | Children in the top quartile of household SES<br>were taller and had better language skills than<br>children in the bottom quartile; differences in<br>vocabulary scores between children with high<br>and low SES were also reported. For vocabulary,<br>SES disparities emerged early in life, but<br>patterns were not consistent across age and<br>widen between 5 and 12y in Ethiopia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Young lives:<br>Ethiopia,<br>India, Peru<br>and Vietnam | At 5, 8<br>and 12<br>years                               | 1986 in<br>Ethiopia<br>1345 at follow<br>up<br>Attrition =<br>32.3%                                                                                             | Moderate          | Environmen                       |
| Sunny et al<br>2018, 24)<br>Longitudinal<br>Dirth cohort<br>Study | Stunting and<br>school<br>performance             | Anthropometric<br>measures collected<br>at first visit after<br>birth and after 1<br>year and between<br>the age of 4-8;<br>Height-for age                                                   | School outcomes                                                                             | The effects of stunting on schooling were evident<br>in early childhood but were more pronounced in<br>late childhood. Children who were stunted in<br>early childhood (9.3%) were less likely to<br>perform underage at enrolment, more likely to<br>repeat Standard 1, and were 2–3 times more<br>likely to be overage for their grade by the age of<br>11, compared to their non-stunted peers. Those<br>persistently stunted between early and late<br>childhood (7.3%) faced the worst consequences<br>on schooling, being three times as likely to enrol<br>late and 3–5 times more likely to be above the<br>age for their grade by the age of 11, compared<br>to those never stunted.                                                                                                                                                               | Malawi                                                  | Tested at<br>Birth, 11-<br>16 months<br>and 4-8<br>years | 1595 at birth<br>1239 at 11-<br>16m follow<br>up;<br>1044 at 4-8<br>years follow<br>up<br>Attrition =<br>22.3% &<br>34.5% at 11-<br>16m & 4-8<br>year follow up | High              | Growth and<br>anthro-<br>pometry |
| MOTOR DEVE                                                        | LOPMENT                                           | 1                                                                                                                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                       |                                                          | 1                                                                                                                                                               |                   |                                  |
| et al (2017,<br>42)<br>Prospective<br>cohort study                | l milestones<br>and HIV -<br>prospective<br>study | HIV-infected infants<br>and control of HIV<br>uninfected and<br>unexposed (HUU)<br>infants                                                                                                   | Tests adapted from<br>the DDST-II                                                           | HIV-infected infants on ART had delays in<br>attainment of developmental milestones<br>compared to HUU infants: median age at<br>attainment of sitting with support, sitting<br>unsupported, walking with support, walking<br>unsupported, monosyllabic speech and throwing<br>toys were all delayed (all p-values <0.0005).<br>Compared with HUU infants, the subset of HIV-<br>infected infants with both virologic suppression<br>and immune recovery at 6 months had delayed<br>speech (delay: 2.0 months; p=0.0002) and a<br>trend for delayed walking unsupported. Among<br>HIV-infected infants with poor post-ART<br>responses at 6 months (lacking viral suppression<br>and immune recovery) there were greater delays<br>versus HUU infants for walking unsupported<br>(delay: 4.0 months; p=0.0001) and speech<br>(delay: 5.0 months; p=0.0001). | Kenya                                                   | and 6<br>months                                          | 73 HIV-<br>infected and<br>92 HUU                                                                                                                               | High              | Malaria and<br>HIV               |
| Espie et al<br>2011, 55)<br>Longitudinal<br>cohort study          | Psychomotor<br>development<br>in orphans          | Children under 1<br>month of age<br>admitted to an<br>orphanage                                                                                                                              | Simplified Neonatal<br>Behaviour<br>Assessment Scale<br>(NBAS), Brunet-<br>Lezine Scale and | At admission, 15% of children <1 month had a regulation impairment according to the NBAS, and 33.8% presented with a distressed state (ADBB score >5). More than 85% (129/151) ournal of Human Nutrition and Dietetics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sudan                                                   | Tested at<br>2,4,9,12<br>and 18<br>months                | 148 enrolled<br>7 at 18<br>months follow<br>up                                                                                                                  | Moderate          | Environmer                       |

| Study and<br>study design                                         | Торіс                                         | Exposure Measure                                                                                                                         | Cognitive/Motor<br>Outcome Measure                                                                               | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location                      | Part                                                            | icipants                                                                                                                                                                                                           | Quality<br>Rating | Review<br>theme     |
|-------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
|                                                                   |                                               |                                                                                                                                          | Alarm Distress Baby<br>Scale (ADBB)                                                                              | recovered normal psychomotor development by 18 months.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                                                                 | Attrition =<br>95.3%                                                                                                                                                                                               |                   |                     |
| Goetghebuer<br>et al (2011,<br>57)<br>Prospective<br>cohort study | Twins and<br>motor<br>developmenta<br>I delay | Twins and singleton<br>with a birth weight<br>above 2.5kg                                                                                | Eight motor<br>milestones adapted<br>from the DDST-II                                                            | Significant difference between singletons and<br>twins in maintaining head (p<0.05), sitting<br>without support (p<0.05) and walking (p<0.05),<br>with twins having a higher age of milestone<br>achievement. When monozygotic and dizygotic<br>twins were compared, a significant heritability<br>was observed for crawling, sitting, standing and<br>walking, with over 90% of the observed<br>population variance being attributed to genetic<br>rather than environmental factors.                                                                                                                                                                                                           | Gambia                        | months                                                          | 84 twin pairs<br>and 72<br>singletons<br>All singletons<br>were followed<br>up but only<br>44 twin pairs<br>were followed<br>up at 18<br>months<br>Attrition =<br>0% for<br>singletons;<br>47.6% for<br>twin pairs | Moderate          | Environme           |
| Manno et al<br>(2012, 16)<br>Randomised<br>control trial          | psychomotor<br>development                    | Four treatment<br>groups: Zinc<br>supplement,<br>multivitamins<br>supplement,<br>multivitamin and zinc<br>supplement and<br>placebo      | BSID-III and<br>development<br>milestones from test<br>developed by WHO<br>multicentre growth<br>reference study | No significant difference in mean BSID-III scores<br>in any of the five test domains for univariate or<br>multivariate models comparing each of the four<br>treatment groups.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Zambia                        | 6 to 18<br>months                                               | 743<br>202 received<br>BSID-III at 6,<br>12 & 18<br>months<br>Attrition =<br>72.8%                                                                                                                                 | High              | Nutrition           |
| COGNITIVE A                                                       | ND MOTOR DE                                   |                                                                                                                                          |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                             |                                                                 |                                                                                                                                                                                                                    | I                 |                     |
| Allen (1993,<br>11)                                               |                                               | Mother's diet: Intake<br>of animal product,<br>zinc, iron, vitamin<br>B12. Maternal weight<br>and fatness, birth<br>weight               | Brazelton Neonatal<br>Assessment Scale                                                                           | Maternal weight and diet during pregnancy<br>appeared to affect infant neurobehavioural<br>performance at birth and in the first 6 months.<br>Maternal dietary intake was also associated with<br>motor development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Egypt,<br>Kenya and<br>Mexico | Tested at<br>3, 6, 18,<br>24 months                             | Not reported                                                                                                                                                                                                       | Low               | Nutrition           |
| Blakstad et al<br>(2019, 33)<br>Prospective<br>cohort study       |                                               | Demographic,<br>socioeconomic,<br>delivery<br>characteristics and<br>infant growth<br>measures. HIV<br>exposed and<br>unexposed children | BSID-III                                                                                                         | Low maternal height predicted all BSID-III<br>domains in HIV-unexposed children; low<br>maternal education predicted lower cognitive<br>(standardized mean difference, -0.41; 95% CI, -<br>0.74 to -0.08) and lower gross motor scores<br>(standardized mean difference, -0.32; 95% CI, -<br>0.61 to -0.04) in HIV-exposed children. Among<br>delivery characteristics, facility delivery predicted<br>higher cognitive scores (standardized mean<br>difference, 1.36; 95% CI, 0.26-2.46); and<br>oxytocin administration predicted lower fine<br>motor scores (standardized mean difference, -<br>0.48; 95% CI, -0.87 to -0.09) in HIV-exposed<br>children. Higher length-for-age z-scores at 6 | Tanzania                      | From 6<br>weeks to<br>24 months<br>Tested at<br>14-17<br>months | 196 HIV-<br>exposed<br>226 HIV-<br>unexposed                                                                                                                                                                       | Moderate          | Maternal<br>factors |

## Table 2- Characteristics and quality ratings of the final included studies

| Study and<br>study design                                                 | Торіс                                                                             | Exposure Measure                                                                                                                                       | Cognitive/Motor<br>Outcome Measure                        | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Location     | Part                     | icipants                                                         | Quality<br>Rating | Review<br>theme                          |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|------------------------------------------------------------------|-------------------|------------------------------------------|
|                                                                           |                                                                                   |                                                                                                                                                        |                                                           | weeks of age predicted better cognitive<br>(standardized mean difference, 0.15; 95% CI,<br>0.01-0.29) and expressive language scores<br>(standardized mean difference, 0.16; 95% CI,<br>0.02-0.29) at 15 months in HIV-exposed infants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                          |                                                                  |                   |                                          |
| Brahmbhatt<br>et al (2014,<br>43)<br>Prospective<br>birth cohort<br>study | Neurodevelop<br>ment and<br>Antiretroviral<br>therapy                             | Maternal and Child<br>HIV status                                                                                                                       | MSEL                                                      | Compared to uninfected children and uninfected<br>mothers dyads, HIV-infected children were more<br>likely to have global deficits on all measures of<br>neurodevelopment except gross motor skills,<br>whereas in dyads of HIV infected mothers of HIV<br>uninfected children, there was impairment in<br>receptive language (adj. PRR=2.67, CI: 1.08,<br>6.60) and early learning composite score (adj.<br>PRR=2.94, CI: 1.11, 7.82). Of the children born<br>to HIV infected mothers, HIV infected children<br>did worse than those unifected only in Visual<br>Reception skills (adj. PRR=2.86; CI: 1.23–6.65).<br>Of the 116 HIV+ children, 44% had initiated<br>ART. Compared to ART duration of <12 months,<br>ART durations 24–60 months was associated<br>with decreased impairments in Fine Motor,<br>Receptive Language, Expressive Language and<br>ELC scores | Uganda       | 0-6 years                | 329                                                              | Moderate          | Malaria and<br>HIV                       |
| Chaudhury<br>et al (2017,<br>45)<br>Prospective<br>birth cohort<br>study  | Neurodevelo<br>pment and<br>HIV –<br>prospective<br>cohort                        | HIV exposed<br>uninfected children<br>(HEU) and HIV<br>unexposed and<br>uninfected children<br>(HUU)<br>DNA PCR test                                   | BSID-III, DMC                                             | HEU children performed equally well on<br>neurodevelopmental assessments at 24 months<br>of age compared with HUU children.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Botswana     | Birth to<br>24<br>months | 670 children<br>with BSID-<br>III<br>723 with<br>DMC             | Moderat<br>e      | Malaria an<br>HIV                        |
|                                                                           | Neurodevelop<br>ment and<br>Antiretroviral<br>exposure –<br>prospective<br>cohort | HIV exposed and<br>uninfected (HEU)<br>children exposed in<br>utero to either ART<br>(antiretroviral<br>therapy) or ZDV<br>(zidovudine<br>monotherapy) | BSID-III,<br>Development<br>Milestones Checklist<br>(DMC) | Neurodevelopmental outcomes at 24 months of<br>age were similar in ART-exposed versus ZDV-<br>exposed HEU children. Adjusted mean Bayley-III<br>scores were similar among ART exposed versus<br>ZDV-exposed, with adjusted mean differences<br>(95% CI): Bayley-III Cognitive:0.3 (-1.4, 0.9);<br>Gross Motor: 0.8 (-0.1, 1.7); Fine Motor: 0.5 (-<br>0.2, 1.3); Expressive Language: 0.7 (-0.3, 1.7);<br>Receptive Language: 0.1 (-0.7, 0.8);<br>Development Milestone Checklist Locomotor:<br>0.0 (-0.5, 0.6); Fine Motor: 0.3 (-0.3, 0.8);<br>Language: -0.1 (-0.5, 0.4); Personal-Social: 0.2<br>(-0.7, 1.1).                                                                                                                                                                                                                                                         | Botswana     | Birth to 24<br>months    | 598                                                              | Moderate          | Malaria and<br>HIV                       |
| Donald et al<br>(2019, 37)<br>Population-<br>based birth<br>cohort study  | Risks and<br>protective<br>factors of<br>child<br>development                     | Sociodemographic<br>and environmental<br>variables, child and<br>maternal physical<br>health, substance                                                | BSID-III                                                  | Bivariate and multivariable analyses revealed<br>several factors that were associated with<br>developmental outcomes. These included<br>protective factors (maternal education, higher<br>birth weight, and socioeconomic status) and risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | South Africa | Birth to 24<br>months    | 1143 at birth<br>734 at 24m<br>follow up<br>Attrition =<br>35.8% | High              | Maternal<br>factors<br>Malaria an<br>HIV |

| Study and<br>study design                                           | Торіс                                                                                  | Exposure Measure                                                                                                                     | Cognitive/Motor<br>Outcome Measure                                                                                             | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Location                                             | Parti     | icipants                                                    | Quality<br>Rating | Review<br>theme     |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------|-------------------------------------------------------------|-------------------|---------------------|
|                                                                     |                                                                                        | use and psychosocial<br>measures                                                                                                     |                                                                                                                                | factors (maternal anaemia in pregnancy,<br>depression or lifetime intimate partner violence,<br>and maternal HIV infection). Boys consistently<br>performed worse than girls (in cognition [beta =<br>-0.74; 95% CI $-1.46$ to $-0.03$ , p = $0.042$ ],<br>receptive language [beta = $-1.10$ ; 95% CI $-1.70$<br>to $-0.49$ , p < $0.001$ ], expressive language [beta<br>= $-1.65$ ; 95% CI $-2.46$ to $-0.84$ , p < $0.001$ ], and<br>fine motor [beta = $-0.70$ ; 95% CI $-1.20$ to $-0.20$ ,<br>p = $0.006$ ] scales). There was evidence that<br>child sex interacted with risk and protective<br>factors including birth weight, maternal anaemia<br>in pregnancy, and socioeconomic factors |                                                      | _         |                                                             |                   |                     |
| Fink et al<br>(2013, 40)<br>Prospective<br>cohort study             | Early<br>childhood<br>exposure to<br>Malaria and<br>pre-school<br>development          | Cluster-level<br>parasitaemia data<br>was used to<br>construct a village<br>specific measure                                         | Adapted PPVT,<br>physical<br>development,<br>behaviour and socio-<br>emotional<br>development,<br>general fine motor<br>skills | Exposure to the malaria parasite was associated with lower ability to cope with the demand of the cognitive tasks procedure (Z-score difference - 1.11, 95% CI -2.43-0.20). No associations were found between malaria exposure and receptive vocabulary or fine-motor skills.                                                                                                                                                                                                                                                                                                                                                                                                                      | Zambia                                               | 6 years   | 1686<br>1410 at follow<br>up<br>Attrition =<br>16.4%        | High              | Malaria and<br>HIV  |
| Koen et al<br>(2017, 34)<br>Birth cohort<br>study                   | Maternal<br>posttraumatic<br>stress<br>disorder<br>(PTSD) and<br>infant<br>development | Childhood Trauma<br>Questionnaire, The<br>Intimate Partner<br>Violence<br>Questionnaire and<br>clinical interviews to<br>assess PTSD | BSID-III                                                                                                                       | Maternal PTSD was significantly associated with<br>poor fine motor ( $\beta$ -1.5; p<0.05) and adaptive<br>behaviour-motor development ( $\beta$ -1.3; p<0.05);<br>the latter remained significant when adjusted for<br>site, alcohol dependence, and infant head-<br>circumference-for-age z-score at birth.                                                                                                                                                                                                                                                                                                                                                                                       | South Africa<br>Drakenstein<br>Child Health<br>Study | 8.9       | 675 enrolled<br>112 at follow<br>up<br>Attrition =<br>83.4% | High              | Maternal<br>Factors |
| Le Roux et al<br>(2018, 46)<br>Prospective<br>birth cohort<br>study | Breastfeeding<br>HIV infants<br>and<br>neurodevelop<br>ment                            | HIV-infected women<br>and HEU children                                                                                               | BSID-III                                                                                                                       | Compared to HIV-unexposed children, HEU<br>children had higher odds of cognitive delay [odds<br>ratio (OR) 2.28 (95% confidence interval<br>(CI)1.13–4.60)] and motor delay [OR 2.10<br>(95%CI 1.03–4.28)], but not language delay, in<br>crude and adjusted analyses. Preterm delivery<br>modified this relationship for motor<br>development: compared with term HIV-<br>unexposed children, term HEU children had<br>similar odds of delay, preterm HIV-unexposed<br>children had five-fold increased odds of delay<br>(adjusted OR 4.73, 95% CI 1.32;16.91) and<br>preterm HEU children, 16-fold increased odds of<br>delay (adjusted OR 16.35, 95% CI 5.19; 51.54).                            | South Africa                                         | months    | 521                                                         | High              | Malaria and<br>HIV  |
| Locks et al<br>(2017, 15)<br>Randomised<br>control trial            | Zinc and<br>multivitamin<br>intervention<br>and early<br>child                         | Infants randomised<br>to one of four<br>interventions: zinc<br>supplement,<br>multivitamin<br>supplement, zinc and                   | BSID-III                                                                                                                       | No significant difference in mean BSID-III scores<br>for any of the five domains in univariate or<br>multivariate models comparing each of the four<br>treatment groups. No significant difference in<br>mean BSID-III scores when comparing children<br>who received zinc supplements versus those who                                                                                                                                                                                                                                                                                                                                                                                             | Tanzania                                             | 15 months | 2400 of which<br>247<br>completed<br>BSID-III               | High              | Nutrition           |

Journal of Human Nutrition and Dietetics

| Study and<br>study design                                   | Торіс                                                                                    | Exposure Measure                                                                                                                                                                                                              | Cognitive/Motor<br>Outcome Measure                                                                                                                                                                      | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location | Part                                                                  | icipants                                                     | Quality<br>Rating | Review<br>theme                                        |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------|--------------------------------------------------------------|-------------------|--------------------------------------------------------|
|                                                             | development<br>- RCT                                                                     | multivitamin<br>supplement, or<br>placebo                                                                                                                                                                                     |                                                                                                                                                                                                         | did not, or in comparisons of children who<br>received multivitamin supplements versus those<br>who did not.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                       |                                                              |                   |                                                        |
| McDonald et<br>al (2013, 29)<br>Prospective<br>cohort study | HIV and<br>neurodevelop<br>ment –<br>prospective<br>cohort RCT                           | Pregnant women<br>infected with HIV<br>received 1 of 4<br>regimens of<br>multivitamins<br>through to lactation.                                                                                                               | Psychomotor<br>Development Index<br>(PDI) and Mental<br>Development Index<br>(MDI) of BSID-III                                                                                                          | Preterm birth, child HIV infection, stunting, and<br>wasting were independently associated with low<br>scores on the PDI and MDI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tanzania | months -<br>tested at                                                 | 331 at follow<br>up<br>Attrition =                           | Moderate          | Growth and<br>anthro-<br>pometry<br>Malaria and<br>HIV |
| McGrath et al<br>(2006, 47)<br>Prospective<br>cohort study  | Timing of<br>transmission<br>of HIV and<br>neurodevelop<br>ment -RCT                     | Pregnant women<br>with infected HIV<br>received a daily dose<br>of 1 of 4 regimens:<br>vitamin A;<br>multivitamins,<br>excluding vitamin A;<br>multivitamins,<br>including vitamin A;<br>or placebo; through<br>to 18 months. | PDI and MDI of<br>BSID-III                                                                                                                                                                              | Children who tested HIV-1-positive at birth had<br>significantly higher decreases per month in MDI<br>and PDI than HIV-1negative children; 1.1 [95%<br>confidence interval (95% CI), 0.4, 1.8] for MDI<br>and 1.4 (95% CI 0.0, 2.7) for PDI. Children who<br>tested HIV-1-positive after birth had an<br>additional 0.6 (95% CI 0.1, 1.1) point decrease<br>in MDI per month and a 0.6 (95% CI 0.0, 1.1)<br>higher decrease in PDI each month than HIV-1-<br>negative children. Testing HIV-1-positive at birth<br>was associated with a 14.9 (95% CI 5.0, 44.7)<br>times higher rate of becoming developmentally<br>delayed in mental function, while testing HIV-1-<br>positive after birth was associated with a 3.2<br>(95% CI 1.6, 6.4) times higher rate than in<br>uninfected children. | Tanzania | months-<br>tested at                                                  | 1078 enrolled<br>327 at follow<br>up<br>Attrition =<br>69.7% | High              | Malaria and<br>HIV                                     |
| Milner et al<br>(2018, 12)<br>Longitudinal<br>panel study   | Food<br>insecurity<br>(timing,<br>intensity and<br>duration) and<br>child<br>development | Household Food<br>Insecurity Access<br>Scale                                                                                                                                                                                  | Subscales of the<br>Ages and Stages<br>Questionnaire:<br>Inventory (ASQ:I)<br>were used to assess<br>3 domains of child<br>development: gross<br>motor,<br>communication, and<br>personal social skills | Children in households that experienced greater aggregate food insecurity over the past 2 years (intensity) had significantly lower gross motor ( $\beta$ -0.14; p=0.045), communication ( $\beta$ -0.16; p=0.023), and personal social skills ( $\beta$ -0.20; p<0.05) Z-scores than children with greater food security. Children with more time exposed to food insecurity (duration) had significantly lower gross motor ( $\beta$ -0.050; p=0.10), communication ( $\beta$ -0.042; p=0.057), and personal social skills ( $\beta$ -0.037; p=0.76) Z-scores than children with less time exposed to food insecurity.                                                                                                                                                                       | Kenya    | Children<br>under 2<br>years.<br>Visited 5<br>times over<br>24 months | 309 enrolled<br>304 at follow<br>up<br>Attrition =<br>1.6%   | Low               | Nutrition                                              |
| Mireku et al<br>(2015, 18)<br>Prospective<br>cohort study   | Prenatal<br>Haemoglobin<br>(Hb), and<br>early<br>cognitive<br>and motor<br>development   | Blood sample to<br>measure Hb<br>concentration                                                                                                                                                                                | MSEL                                                                                                                                                                                                    | A significant negative quadratic relationship<br>between infant gross motor function and Hb<br>concentration at first and second antenatal care<br>visits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Benin    | 1 year                                                                | 828 enrolled<br>636 at follow<br>up<br>Attrition =<br>23.2%  | High              | Nutrition                                              |
| Mireku et al<br>(2016, 17)<br>Prospective                   | Prenatal iron deficiency, neonatal                                                       | Blood and stool<br>sample during<br>pregnancy and at                                                                                                                                                                          | MSEL                                                                                                                                                                                                    | Neither prenatal ID nor CBSF concentration was<br>associated with poor cognitive or gross motor<br>function of children at age 1 year. CBSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Benin    | 1 year                                                                | 828 enrolled<br>636 at follow<br>up                          | High              | Nutrition                                              |

44 45

| Study and study design                                                       | Торіс                                                                                                     | Exposure Measure                                                                                                                                                                                   | Cognitive/Motor<br>Outcome Measure                                                                                                                                                                   | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Location     | Part                                       | icipants                                                     | Quality<br>Rating | Review<br>theme                  |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------|--------------------------------------------------------------|-------------------|----------------------------------|
| cohort study<br>Molteno et al                                                | ferritin, and<br>early<br>cognitive and<br>motor<br>development<br>- prospective<br>cohort<br>Development | birth to measure low<br>cord blood serum<br>ferritin (CBSF) and<br>iron deficiency (ID).<br>Daily iron and folic<br>acid supplement<br>during pregnancy<br>Preschool children of                   | Three milestones,                                                                                                                                                                                    | concentrations were lower among mothers who<br>had ID anaemia (IDA) at delivery compared with<br>non-IDA pregnant women (adjusted mean<br>difference: -0.2 [95% confidence interval: -0.4<br>to -0.0]).<br>At 12 months, development correlated best with                                                                                                                                                                                                                                                                                                  | South Africa | Birth to 5                                 | Attrition =<br>23.2%<br>187                                  | Low               | Environmen                       |
| (1991, 58)<br>Birth cohort<br>study                                          | of children of<br>colour                                                                                  | colour. Social<br>background,<br>economic status and<br>physical environment<br>were recorded                                                                                                      | saying single words.<br>Specific assessment<br>designed.                                                                                                                                             | family stability. Language development at 30<br>months was associated with mother's education<br>and family stability and reflected a general lag in<br>verbal skills. By 5 years there was a good<br>correlation between development and social<br>indicators, particularly income and mother's<br>education.                                                                                                                                                                                                                                             |              | years                                      |                                                              |                   |                                  |
| Msellati et al<br>(1993, 48)<br>Prospective<br>cohort study                  | HIV and<br>development                                                                                    | Children born to<br>seropositive mothers<br>and that were either<br>infected with HIV-1,<br>uninfected, or with<br>indeterminate status.                                                           | II and Illingworth's<br>The Development of                                                                                                                                                           | The proportion of abnormal neurologic<br>examinations in HIV-infected children varied<br>from 15% to 40% according to age and was<br>always higher than in HIV-uninfected children<br>born to HIV-seropositive and seronegative<br>mothers. The proportion of abnormal<br>examinations in infected children was 12.5% at 6<br>months, 16% at 12 months, 20% at 18 months,<br>and 9% at 24 months of age and was more<br>frequent than in HIV-uninfected children.<br>Developmental delay was principally due to<br>significantly lower gross motor scores. | Rwanda       | Tested at<br>6, 12, 18<br>and 24<br>months | 436 (218 HIV<br>and 218 non-<br>HIV)                         | Moderate          | Malaria and<br>HIV               |
| Ocansey et al<br>(2019, 19)<br>Follow up of a<br>randomised<br>control trial | Growth,<br>haemoglobin<br>concentration<br>association<br>with cognitive<br>and motor<br>development      | Birth length and<br>linear growth (LAZ)<br>at three postnatal<br>periods and<br>haemoglobin<br>concentration (Hb)                                                                                  | NIH Toolbox 9-Hole<br>Pegboard<br>NEPSY-II body part<br>naming and<br>identification and<br>comprehension of<br>instructions,<br>paired-associate<br>learning and recall<br>task and block<br>design | Cognitive development at 4-6 years was<br>significantly associated with LAZ at birth (beta =<br>0.12, 95% CI = 0.05, 0.19), DELTALAZ from 6<br>to 18 months (beta = 0.16, 95% CI = 0.04,<br>0.28), and Hb at 18 months (beta = 0.13, 95%<br>CI = 0.06, 0.20), but not with DELTALAZ during<br>0-6 months, DELTALAZ from 18 months to 4-6<br>years, Hb at 6 months, or Hb at 4-6 years. No<br>evidence of associations with motor or social-<br>emotional development were found.                                                                           | Ghana        | and 4-6<br>years                           | 966<br>710 for the<br>LAZ sample<br>617 for the<br>Hb sample | High              | Nutrition                        |
| Pitchik et al<br>(2018, 20)<br>Prospective<br>cohort study                   | Motor and<br>cognitive<br>development,<br>early life<br>nutrition and<br>parenting<br>practices.          | Height and weight of<br>children,<br>questionnaire<br>assessing caregiver<br>stimulation and<br>verbal and physical<br>punishment. Mothers<br>prenatal<br>supplementation of<br>zinc and vitamin A | Early Tanzanian<br>version of the<br>Caregiver<br>Reported Early<br>Childhood<br>Development Index<br>(CREDI)                                                                                        | Children born to mothers having received<br>prenatal vitamin A had significantly lower<br>reported motor scores, -0.29 SD, 95% CI [-0.54,<br>-0.04], $p = 0.03$ , as compared with children<br>whose mothers did not receive vitamin A. There<br>was no significant effect of prenatal zinc intake<br>on any development domain. Greater caregiver-<br>child stimulation was associated with 0.38 SD,<br>95% CI [0.14, 0.63], $p < 0.01$ , better<br>cognitive/language scores, whereas children who                                                       | Tanzania     | 20-39<br>months                            | 198                                                          | High              | Maternal<br>factors<br>Nutrition |

# Table 2- Characteristics and quality ratings of the final included studies

| Study and<br>study design                                           | Торіс                                                                                      | Exposure Measure                                                                                                                                                                                                                                                                   | Cognitive/Motor<br>Outcome Measure                                                                                         | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Location                       | Part                                      | icipants                                                    | Quality<br>Rating | Review<br>theme                  |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|-------------------------------------------------------------|-------------------|----------------------------------|
| Prado et al                                                         | Predictors of                                                                              | Sociodemographic                                                                                                                                                                                                                                                                   | Ghana and Malawi-                                                                                                          | experienced both verbal and physical<br>punishment had 0.29 SD, 95% CI [-0.52, -0.05],<br>p = 0.02, lower scores in socioemotional<br>development. Maternal completion of primary<br>school was associated with higher reported<br>motor and cognitive/language development.<br>Further, children of mothers who were <155 cm<br>tall had lower cognitive and language scores.<br>Out of 42 indicators of the 34 factors examined,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ghana,                         | 18 months                                 | 4205                                                        | Moderate          | Nutrition                        |
| (2017, 13)<br>Prospective<br>cohort study                           | language and<br>motor<br>development                                                       | information. Blood<br>samples for<br>assessment of<br>malaria and<br>haemoglobin status.<br>Saliva sample to<br>assess stress levels.<br>SRQ-20. Infant<br>feeding practices.<br>HOME inventory                                                                                    | Kilifi Developmental<br>Inventory and<br>MacArthur Bates<br>Communicative<br>Development<br>Inventory<br>Burkina Faso- DMC | 6 were associated with 18-month language<br>and/or motor development in 3 or 4 cohorts:<br>child linear and ponderal growth, variety of play<br>materials, activities with caregivers, dietary<br>diversity, and child haemoglobin/iron status.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Malawi, and<br>Burkina<br>Faso |                                           |                                                             |                   |                                  |
| Ribe et al<br>(2018, 23)<br>Prospective<br>cohort study             | Determinant<br>of early<br>cognitive<br>development                                        | Gender, WAMI index,<br>HOME score, weight-<br>for-age z-score,<br>length-for-age z-<br>score and head<br>circumference-for<br>age z-score                                                                                                                                          | BSID-III                                                                                                                   | Univariate regression analysis, weight-for-age<br>and weight-for-length z-scores at 6 months were<br>significantly associated with Bayley gross motor<br>score at 15-months, but not with other Bayley<br>scores at 15-months. Length-for-age z-scores at<br>6 months were not significantly associated with<br>Bayley scores at 15-months. Socio-economic<br>status, measured by a set of assets and monthly<br>income, was significantly associated with Bayley<br>cognitive score at 15-months.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tanzania                       | Tested at<br>birth, 6<br>and 15<br>months | 262 enrolled<br>137 at follow<br>up<br>Attrition =<br>47.7% | Moderate          | Growth and<br>anthro-<br>pometry |
| Servili et al<br>(2010, 32)<br>Population-<br>based cohort<br>study | Maternal<br>Common<br>Mental<br>Disorder<br>(CMD) and<br>early<br>cognitive<br>development | Maternal CMD using<br>SRQ-20. Cofounding<br>variables: SES,<br>parental education<br>levels, marital<br>discord, pregnancy<br>time point, episodes<br>of malaria, social<br>support, maternal<br>height and weight,<br>maternal prolonged<br>labour, infant<br>nutritional status. | Adapted BSID-III<br>(no time limit, no<br>stairs questions,<br>translated)                                                 | Antenatal maternal CMD symptoms were<br>associated with poor infant motor development<br>( $\beta$ -0.20; 95% CI: -0.37 to -0.03), but this<br>became non-significant after adjusting for<br>confounding variables. Postnatal CMD symptoms<br>were not associated with any domain of infant<br>development. There was evidence of a dose-<br>response relationship between the number of<br>time-points at which the mother had high levels<br>of CMD symptoms (SRQ $\geq$ 6) and impaired infant<br>motor development ( $\beta$ -0.80; 95%CI -2.24, 0.65<br>for ante- or postnatal CMD only, $\beta$ -4.19; 95% CI<br>-8.60, 0.21 for ante- and postnatal CMD,<br>compared to no CMD; test-for-trend c213.08(1),<br>p < 0.001). Although this association became<br>non-significant in the fully adjusted model, the $\beta$<br>coefficients were unchanged indicating that the<br>relationship was not confounded. In multivariable<br>analyses, low socio-economic status and low | Ethiopia                       | Birth to 12<br>months                     | 521 enrolled<br>199 at follow<br>up<br>Attrition =<br>61.8% | Moderate          | Maternal<br>factors              |

| Study and<br>study design                                   | Торіс                                                 | Exposure Measure                                                                                                                | Cognitive/Motor<br>Outcome Measure     | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Location     | Part                                                                         | icipants                                                    | Quality<br>Rating | Review<br>theme                             |
|-------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------|---------------------------------------------|
|                                                             |                                                       |                                                                                                                                 |                                        | infant weight-for-age were associated with<br>significantly low scores on both motor and<br>cognitive developmental scales. Maternal<br>experience of physical violence was significantly<br>associated with impaired cognitive development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                                              |                                                             |                   |                                             |
| (2018, 49)<br>Prospective<br>cohort study                   | HIV and<br>neurodevelop<br>mental<br>outcomes         | HIV uninfected<br>infants of HIV<br>infected (HUU) and<br>HIV uninfected<br>(HEU) mothers                                       | BSID-III, Alarm<br>Distress Baby Scale | Performance on the BSID did not differ in any of the domains between HEU and HUU infants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | South Africa | 11 to 14<br>months                                                           | 96 (58 HUU<br>and 38 HEU)                                   | High              | Malaria a<br>HIV                            |
| Strehlau et al<br>(2016, 50)<br>Prospective<br>cohort study | HIV and<br>neurodevelop<br>mental delay               | HIV infected infants<br>before starting ART<br>and after viral<br>suppression had<br>been achieved.                             | 0,                                     | Compared with pre-ART, better outcomes were<br>reported at time of viral suppression with a lower<br>proportion of children failing the gross motor<br>(31.5% vs. 13%, p=0.0002), fine motor (21.3%<br>vs. 10.2%, p=0.017), problem solving (26.9%<br>vs. 9.3%, p=0.0003) and personal-social<br>(19.6% vs. 7.4%, p=0.019) domains. However,<br>there was no change in the communication<br>domain (14.8% vs. 12.0%, p=0.6072).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | South Africa | Under 2<br>years                                                             | 323 enrolled<br>195 at follow<br>up<br>Attrition =<br>39.6% | High              | Malaria a<br>HIV                            |
| Sudfeld et al<br>(2015, 14)<br>Randomised<br>control trial  | Malnutrition<br>and early<br>cognitive<br>development | Length and weight of<br>children. 6 items<br>from the UNICEF<br>Multiple Indicator<br>Cluster Survey Early<br>Child Development | Adapted BSID-III                       | Height-for-age z score (HAZ) was associated<br>with cognitive, communication, and motor<br>development z scores across the observed range<br>in this population (all p values for linear relation<br><0.05). Each unit increase in HAZ was<br>associated with +0.09 (95% CI:0.05, 0.13),<br>+0.10 (95% CI:0.07, 0.14), and +0.13 (95%<br>CI:0.09, 0.16) higher cognitive, communication,<br>and motor development z scores, respectively.<br>The relation of weight-for-height z score (WHZ)<br>was nonlinear with only wasted children (WHZ<br><22) experiencing deficits (p values for nonlinear<br>relation <0.05). Wasted children had 20.63<br>(95% CI:20.97, 20.29), 20.32 (95% CI:20.64,<br>0.01), and 20.54 (95% CI: 20.86, 20.23) deficits<br>in cognitive, communication, and motor z scores.<br>Tall maternal stature and flush toilet use were<br>associated with high cognitive and motor z<br>scores, whereas being born small for gestational<br>age was associated with a 20.16 (95% CI:<br>20.30, 20.01 z score deficit in cognition. | Tanzania     | 18 to 36<br>months                                                           | 1036                                                        | High              | Growth a<br>anthro-<br>pometry<br>Nutrition |
| Van Rie et al<br>(2009, 51)<br>Prospective<br>cohort study  | HIV care and<br>neurodevelop<br>ment                  | uninfected children,<br>HIV exposed children                                                                                    | BSID-III in young                      | After one year of care, HIV-infected children<br>achieved mean motor and cognitive scores that<br>were similar to HIV uninfected children. Overall,<br>HIV-infected children experienced accelerated<br>motor development but similar gains in cognitive<br>development compared to control children.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Congo        | 18 to 71<br>months,<br>tested at<br>baseline, 6<br>and 12<br>months<br>later | 70 HIV<br>infected<br>90 HIV<br>uninfected<br>children      | Moderate          | Malaria a<br>HIV                            |

21

22

23

27

28

29

31

#### Table 2- Characteristics and quality ratings of the final included studies

| Study and study design                                         | Торіс                                                                            | Exposure Measure                                                                                                                                                                                                                               | Cognitive/Motor<br>Outcome Measure                                                      | Findings                                                                                                                                                                                                                                                                                                                                                                                        | Location                      | Part                              | icipants                                                                                            | Quality<br>Rating | Review<br>theme                  |
|----------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|----------------------------------|
| Wallander et<br>al (2014, 60)<br>Observational<br>cohort study | Early<br>developmenta<br>l intervention<br>and early<br>cognitive<br>development | Early development<br>Intervention<br>program on children<br>with birth asphyxia<br>that required<br>resuscitation. Home<br>visits every 2 weeks<br>over 36 months.<br>Treatment dose:<br>Home visit dose and<br>program<br>implementation dose | PDI and MDI of<br>BSID-III                                                              | Higher home visits dose was significantly<br>associated with higher MDI (mean for dose<br>quintiles 1-2 combined = 97.8, quintiles 3-5<br>combined = 103.4, p<0.001). Higher treatment<br>dose was also generally associated with greater<br>mean PDI, but the relationships were non-linear.<br>Location, sociodemographic, and child health<br>variables were associated with treatment dose. | India,<br>Pakistan,<br>Zambia | 36 months                         | 540 enrolled<br>145 at follow<br>up in all<br>countries<br>Attrition =<br>73.1%                     | High              | Environment                      |
| Whaley et al<br>(1998, 25)<br>Longitudinal<br>study            | Predictors of<br>early<br>cognitive<br>development                               | Size measurements,<br>weight, height, and<br>arm circumference<br>measured at birth<br>and monthly<br>thereafter.                                                                                                                              | Adapted BSID<br>At age 5: Verbal<br>Meaning Test and<br>Raven's Progressive<br>Matrices | Shorter and lighter infants were less sociable at<br>6 months than infants who were taller and<br>maintained heavier weights. Infants with smaller<br>arms circumferences displayed lower motor<br>scores at 6 months and lower mental scores at<br>30 months.                                                                                                                                  | Kenya                         | 6, 30<br>months<br>and 5<br>years | 247 at 6m<br>137 at 30m<br>108 at 5y<br>Attrition =<br>44.5% &<br>56.3% at<br>30m & 5y<br>follow-up | Moderate          | Growth and<br>anthro-<br>pometry |

34;

#### Abbreviations:

ART – Antiretroviral Therapy

CBSF - Cord Blood Serum Ferritin

- CC Community Children 24
- 25 CHIV - Chile HIV
- 26 CM - Cerebral Malaria
  - CMD Common Mental Disorders
  - DDE Dichlorodiphenyldichloroethylene
  - DDT Dichlorodiphenyltrichloroethane
- 30 ECD - Early Childhood Development
  - ELC Early Learning Composite Score
- 32 FASD - Foetal Alcohol Spectrum Disorder 33
  - FM Fat Mass
- 34 FFM – Fat-Free Mass 35
- HAZ Height-for-age Z-scores 36
- Hb Haemoglobin 37
- HEU HIV Exposed and Uninfected 38

HUU – HIV Uninfected and Unexposed ID - Iron Deficiency

HIV - Human Immunodeficiency Virus

- MHIV Maternal HIV
- MRI Magnetic Resonance Imaging
- PTSD Post Traumatic Stress Disorder
- PVL Periventricular Leukomalacia
- RCT Randomised Controlled Trial
- SES Social Economic Status
- SMA Severe malarial Anaemia
- WAMI Work and Meaning Inventory
- ZDV Zidovudine Monotherapy

#### Measures

ADBB – Alarm Distress Baby Scale ASQ:I – Ages and Stages Questionnaire Inventory BSID - Bayley Scales of Infant and Toddler Development CDA - Cognitive Development Assessment DDST - Denver Developmental Screening Test DMC - Development Milestones Checklist KABC – Kaufman Assessment Battery for Children MDI – Mental Development Index MSEL - Mullen Scales of Early Learning NBAS - Neonatal Behaviour Assessment scale PDI – Psychomotor Development Index PPVT - Peabody Picture Vocabulary Test R-DPDQ - Revised Denver Pre-screening Developmental Questionnaire SRQ-20 – Self Reporting Questionnaire

44 45

46

| 4<br>5         |  |
|----------------|--|
| 6              |  |
| 7<br>8         |  |
| 9<br>10        |  |
| 11             |  |
| 12<br>13       |  |
| 13<br>14<br>15 |  |
| 16             |  |
| 17<br>18       |  |
| 19<br>20       |  |
| 21             |  |
| 22<br>23       |  |
| 24<br>25       |  |
| 26<br>27       |  |
| 28             |  |
| 29<br>30       |  |
| 31<br>32       |  |
| 33             |  |
| 34<br>35       |  |
| 36<br>37       |  |
| 38             |  |
| 39<br>40       |  |
| 41<br>42       |  |
| 43             |  |
| 44<br>45       |  |
| 46<br>47       |  |
| 48<br>49       |  |
| 50             |  |
| 51<br>52       |  |
| 53<br>54       |  |
| 55             |  |
| 56<br>57       |  |
| 58<br>59       |  |
| 60             |  |

# Table 3 Summary of measures used in the studies included in the scoping review

| Available Assessments                                  | Number of studies using this tool |
|--------------------------------------------------------|-----------------------------------|
| Ages and Stages Questionnaire: Inventory               | 2                                 |
| Bayley Scale of Infant Development (BSID)              | 2                                 |
| BSID-II                                                | 1                                 |
| BSID-III                                               | 17                                |
| Brazelton Neonatal Assessment scale                    | 1                                 |
| Brunet-Lezine Scale and Alarm Distress Baby Scale      | 1                                 |
| Caregiver Reported Early Childhood Development Index   | 1                                 |
| Cognitive Development Assessment Test                  | 2                                 |
| Denver Developmental Screening Test                    | 4                                 |
| Development Milestones Checklist                       | 1                                 |
| Early Childhood Vigilance Test                         | 1                                 |
| Griffiths Mental Development Scales                    | 1                                 |
| Grover-Counter Scale of Cognitive Development          | 1                                 |
| Kaufman Assessment Battery for Children                | 3                                 |
| Kilifi Developmental Inventory                         | 1                                 |
| Malawi Development Assessment Tool                     | 2                                 |
| MacArthur Communicative Developmental Inventory        | 1                                 |
| Mullen Scales of Early Learning                        | 5                                 |
| Neonatal Behaviour Assessment Scale                    | 1                                 |
| NEPSY                                                  | 1                                 |
| NIH Toolbox                                            | 1                                 |
| Peabody Picture Vocabulary Test                        | 6                                 |
| Revised-Denver Pre-screening Development Questionnaire | 2                                 |

for per period

Journal of Human Nutrition and Dietetics

## Supplementary Table 1- example of search strategy in Medline

MEDLINE- 18.12.2018

Database: Ovid MEDLINE(R) and In-Process & Other Non-Indexed Citations <1946 to November 30,

2018>

 Search Strategy:

- 1 exp Child Development/ (55661)
- 2 (child\* or infant or infants).mp. (2736049)
- 3 exp CHILD/ (1796839)
- 4 exp INFANT/ (1079561)
- 5 2 or 3 or 4 (2736049)
- 6 (health or growth or weight or height or circumference or stunting or "birth weight" or "breast feeding" or "birth order" or "gestational age" or sex or skeletal or malnutrition or "chronic illness" or disabilit\* or immuni\*).mp. (6368165)

hen

- 7 exp Cognition/ (143485)
- 8 (cognition or "cognitive function" or "cognitive development").mp. (192650)
- 9 7 or 8 (247840)
- 10 6 and 9 (65837)
- 11 5 and 10 (15264)
- 12 1 or 11 (67792)
- 13 exp "AFRICA SOUTH OF THE SAHARA"/ or exp AFRICA/ (240427)
- 14 (africa or "sub saharan africa").mp. (139988)
- 15 13 or 14 (276741)
- 16 12 and 15 (1152)
- 17 exp LONGITUDINAL STUDIES/ (118946)
- 18 exp COHORT STUDIES/ (1798914)
- 19 (longitunidal or cohort).mp. (525208)
- 20 17 or 18 or 19 (1973472)
- 21 16 and 20 (303)

\*\*\*\*\*

| 2                                                                                                                                                                                              |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2<br>3                                                                                                                                                                                         |   |
| 4<br>5                                                                                                                                                                                         |   |
| 6                                                                                                                                                                                              |   |
| 7                                                                                                                                                                                              |   |
| 8                                                                                                                                                                                              |   |
| 9                                                                                                                                                                                              |   |
| 10                                                                                                                                                                                             |   |
| 12                                                                                                                                                                                             |   |
| 13                                                                                                                                                                                             |   |
| 14                                                                                                                                                                                             |   |
| 15                                                                                                                                                                                             |   |
| 16                                                                                                                                                                                             |   |
| 17                                                                                                                                                                                             |   |
| 19                                                                                                                                                                                             |   |
| 20                                                                                                                                                                                             |   |
| 21                                                                                                                                                                                             |   |
| 22                                                                                                                                                                                             |   |
| 23<br>24                                                                                                                                                                                       |   |
| 25                                                                                                                                                                                             |   |
| 26                                                                                                                                                                                             |   |
| 27<br>20                                                                                                                                                                                       |   |
| 20<br>29                                                                                                                                                                                       |   |
| 30                                                                                                                                                                                             |   |
| 31                                                                                                                                                                                             |   |
| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38 |   |
| 33<br>34                                                                                                                                                                                       |   |
| 35                                                                                                                                                                                             |   |
| 36                                                                                                                                                                                             |   |
| 37                                                                                                                                                                                             |   |
| 30<br>39                                                                                                                                                                                       |   |
| 40                                                                                                                                                                                             |   |
| 41                                                                                                                                                                                             |   |
| 42                                                                                                                                                                                             | · |
| 43<br>44                                                                                                                                                                                       |   |
| 45                                                                                                                                                                                             |   |
| 46                                                                                                                                                                                             |   |
| 47                                                                                                                                                                                             |   |
| 48<br>49                                                                                                                                                                                       |   |
| 50                                                                                                                                                                                             | · |
| 51                                                                                                                                                                                             |   |
| 52                                                                                                                                                                                             |   |
| 53<br>54                                                                                                                                                                                       |   |
| 54<br>55                                                                                                                                                                                       |   |
| 56                                                                                                                                                                                             |   |
| 57                                                                                                                                                                                             |   |
| 58                                                                                                                                                                                             |   |

Nutrition, growth, and other factors associated with early cognitive and motor development in
 Sub-Saharan Africa – a scoping review

4 Abstract

3

5 **Background:** Food insecurity, poverty, and exposure to infectious disease are wellestablished drivers of malnutrition in children in Sub-Saharan Africa. Early development of 6 7 cognitive and motor skills – the foundations for learning – may also be compromised by the 8 same or additional factors that restrict physical growth. However, little is known about 9 factors associated with early child development in this region, which limits the scope to 10 intervene effectively. To address this knowledge gap, we compared studies that have examined factors associated with early cognitive and/or motor development within this 11 12 population.

Methods: Predetermined criteria were used to examine four publication databases
 (PsychInfo, Embase, Web of Science, and Medline) and identify studies considering the
 determinants of cognitive and motor development in children aged 0-8 years in Sub-Saharan
 Africa.

**Results:** 51 quantitative studies met the inclusion criteria, reporting on 30% of countries
 across the region. Within these papers, factors associated with early child development were
 grouped into five themes: Nutrition, Growth and Anthropometry, Maternal Health, Malaria
 and HIV, and Household. Food security and dietary diversity were associated with positive
 developmental outcomes, whereas exposure to HIV, malaria, poor maternal mental health,
 poor sanitation, maternal alcohol abuse, and stunting were indicators of poor cognitive and
 motor development.

Discussion: This synthesis of research findings shows across Sub-Saharan Africa, factors
 which restrict physical growth also hinder development of early cognitive and motor skills,
 but additional factors also influence early developmental outcomes. It also reviews
 methodological limitations of conducting research using Western methods in sub-Saharan
 Africa.

29

# 1 Introduction

According to the World Health Organisation (WHO) early child development spans the ages of 0-8 years. This is a critical and formative period in a child's life when the brain is developing rapidly and core cognitive and motor skills, the foundations for later learning<sup>1</sup>, are being acquired. It is estimated that 250 million, or 43% of children living in low-to-middle-income countries fail to reach their full cognitive and educational potential<sup>2</sup>. The vast majority of these children live in Sub-Saharan Africa<sup>1</sup> where there is also a high prevalence of stunting<sup>1</sup> and malnutrition<sup>3</sup>. Many low-income countries in Sub-Saharan Africa are burdened with high rates of maternal, infant, and childhood mortality as well as undernutrition. These are driven by various factors including but not limited to: lack of maternal education, poor sanitation, exposure to human immunodeficiency virus (HIV), and low rates of exclusive breastfeeding<sup>4</sup>. Coupled with economic and gender inequalities, factors which operate in the first 8 years of life result in many children failing to achieve their educational potential. A prolonged history of poor and unequal early child development and learning is shown across Sub-Saharan Africa,<sup>5</sup> which impacts on the long-term economic growth and welfare of the population. Early child development encompasses several aspects of development including physical, cognitive, psychosocial, and motor development. Factors that impact on development, such as nutrition, play an important role in developmental delay. A combination of adverse health environments (e.g. undernutrition and repeated infection) during key periods of development, and inadequate provision and uptake of schooling, maintains a cycle of poor cognitive and physical development, poverty, and inequality, which inevitably passes to subsequent generations. Cohort and longitudinal studies can examine relationships between nutritional status, prevalence of disease, maternal deprivation, and access to health care, and how these factors are associated with child growth and development over sustained periods of time<sup>6</sup>. Accordingly, recent years have seen an increase in cohort and longitudinal studies in low-to-middle-income country settings, including Sub-Saharan Africa. Increasingly, these studies are considering outcomes on cognitive and motor development - the foundations for learning that can have long-term sequelae<sup>7,8</sup>, but for Sub-Saharan Africa there is currently a lack of clear consensus on which factors have a detrimental or positive influence. This scoping review considers factors associated with early child development in Sub-Saharan African countries. Though of limited usefulness in terms of providing quantitative data relating to specific research questions, scoping reviews are an ideal tool to determine the 

range or coverage of literature on a given topic and explore emerging evidence. They give a clear indication of the volume of studies available as well as an overview of their focus. This review focused solely on cognitive and motor development as these are foundational skills that underpin educational potential and scholastic achievement<sup>9-11</sup>. Considering only cohort and longitudinal studies, the review assessed multiple factors that might influence cognitive and motor development in children under the age of 8 years, with a strong focus on the first two years of life. Enhancing understanding of how early nutrition and other environmental factors influence early child development is important for countries across Sub-Saharan Africa to break the cycle of poor cognitive and motor development which limits educational potential and attainment. By assessing current evidence, this scoping review aimed to identify key factors that are associated with early development of foundational skills that are core to later learning<sup>1,12</sup>. Method This review aimed to scope previous and current cohort and longitudinal studies conducted across Sub-Saharan Africa that had examined cognitive and motor development across early childhood. Inclusion criteria *Type of studies* Published and peer-reviewed quantitative studies were examined, including cohort and longitudinal studies with experimental and observational designs. *Type of population* Studies examining children aged between 0-8 years were reviewed. If a wider age range was reported, age-specific findings were extracted and reported separately. Phenomena of interest This review focused on factors that influence cognitive and/ or motor development in Sub-Saharan countries as these are foundational for later learning potential. *Type of Outcome* The primary outcome was the measurement of cognitive and/or motor development and the factors that influence these developmental processes. For inclusion, studies were required to 

provide clear details on the measurements used (outcome variables and controls), ideally including details on how measures were adapted for low-to-middle-income country contexts. However, if no such adaptation contexts were mentioned, studies were still included to examine the extent to which Western measures of early child development were employed. Context This review included studies conducted in Sub-Saharan Africa or that included at least one site within Sub-Saharan Africa. Sub-Saharan Africa is defined as the geographical area of the continent of Africa that lies south of the Sahara and includes 46 countries. Exclusion criteria Qualitative studies, mixed methods studies, literature reviews, unpublished and grey literature were excluded. Studies were also excluded if they did not specify the precise location, details of measurement of cognitive and motor development, or did not report separate findings between age groups if including older children. Studies that did not use a longitudinal or cohort design were also excluded. The inclusion and exclusion criteria are summarised in Table 1. Search strategy Four databases (PsychInfo, Embase, Web of Science, Medline) were searched from inception to extract published studies. Following the search of these main databases and removal of duplicates, an initial search and preliminary analysis was conducted of the subject headings (MeSH) and text words related to early child development contained in the title and abstract. The search strategy comprised a combination of key words (e.g. 'Early Child Development', 'Sub Saharan Africa') and controlled vocabulary (e.g. 'health', 'growth'). A full search strategy for Medline (MEDLINE In-Process & Non-Indexed Citations and OVID MEDLINE 1946 to present-Ovid) is detailed in Supplementary Table 1, as an example. The search was first performed on the 18th of December 2018 and conducted again on the 8th of October 2019. Date and language limits were not imposed. Reference lists of all selected papers that met the inclusion criteria were hand searched to check for additional studies. Study selection Following the search, all identified citations were uploaded into Endnote and duplicates were removed. The review authors independently screened the titles and abstracts for assessment 

meet the inclusion criteria.

extraction and synthesis.

1

against the search inclusion criteria. Full texts were obtained for all titles that appeared to

| 2              |    |
|----------------|----|
| 3              | 1  |
| 4<br>5         | 2  |
| 6              |    |
| 7<br>8         | 3  |
| 9              | 4  |
| 10<br>11       | 5  |
| 12<br>13       | 6  |
| 14<br>15       | 7  |
| 16             | 0  |
| 17<br>18       | 8  |
| 19<br>20       | 9  |
| 21             | 10 |
| 22<br>23       | 11 |
| 23<br>24<br>25 | 12 |
| 26<br>27       | 13 |
| 28<br>29       | 14 |
| 30             | 15 |
| 31<br>32       | 16 |
| 33             | 17 |
| 34<br>35       |    |
| 36             | 18 |
| 37<br>38       | 19 |
| 39<br>40       | 20 |
| 41<br>42       | 21 |
| 43<br>44       | 22 |
| 45             | 23 |
| 46<br>47       | 24 |
| 48<br>49       | 25 |
| 50             | 26 |
| 51<br>52       |    |
| 53             | 27 |
| 54<br>55       | 28 |
| 56             | 29 |
| 57<br>58       | 30 |
| 50<br>59       |    |

60

A main review author (BF) screened and assessed the full text reports in detail against the 3 4 inclusion criteria (see Table 1). Studies that did not meet the inclusion criteria were excluded. 5 A record of excluded studies, including reasons for exclusion, is provided in the PRISMA 6 flow diagram<sup>13</sup> (Figure 1). 7 Data extraction and outcomes 8 Data extraction 9 One reviewer (BF) extracted data from the included studies, informed by a standardised data 10 extraction tool for quantitative studies (JBI- MAStARI<sup>14</sup>) and this was checked by a second reviewer (LO). The extracted data included specific details relating to the inclusion criteria 11 (see Table 1), which address the main aim of this scoping review. 12 13 Outcomes The main outcome was the exploration of measurement of cognitive and motor development 14 15 in young children aged 0-8 years in Sub-Saharan African countries and the factors influencing them. Multiple types of factors reported in the selected studies were evaluated, 16 17 such as child health, growth, and development. These factors were grouped into themes within the synthesis phase and subsequently grouped into factors associated with the 18 19 acquisition of early cognitive and motor skills. Assessment of methodological quality 20 Following quality assessment reviews guidelines<sup>15</sup>, two review authors (BF and LO) critically 21 22 appraised all selected studies for methodological quality using standardised quality appraisal 23 tools for quantitative studies) (JBI Critical appraisal checklist for case studies, JBI Critical 24 appraisal checklist for cohort studies, JBI RCTs appraisal tool<sup>8</sup>). These instruments assess 25 the quality of evidence across studies with different designs, including but not limited to 26 criteria, such as sampling strategy, analysis, transparency, and interpretation. Any disagreement between reviewers was resolved through discussion. Studies were stratified in 27 28 Table 2 according to the result of the quality assessment. Study quality score did not affect 29 inclusion in the review; all studies that met the inclusion criteria were subjected to data

Following Kmet, Lee and Cook's<sup>8</sup> guidelines, an original quality score from 0 to 1 was calculated for each study. Scores were then classified from low (0 - 0.44), moderate (0.45 - 0.44)0.69), and high (0.70 - 1.00). Study quality was assessed by the two reviewers (BF and LO). Initial agreement between reviewers was 89% overall and all disagreements were resolved through discussion. Some variation in quality was shown across 51 studies included in this review. The average quality score was 0.67, which was comprised of 28 studies that received a high-quality rating, 19 studies that received a moderate-quality rating, and four studies that received a low-quality rating. Data synthesis Two reviewers (BF and LO) conducted the syntheses in a sequential order. One reviewer (BF) developed the synthesis and the second reviewer (LO) checked the findings. Any disagreements were discussed (initial agreement of 80%) and a mutual resolution was found. Once data was extracted in descriptive form, and according to JBI scoping review guidelines, quantitative synthesis was generated and summarised in thematic statements<sup>14</sup>. There was a high level of heterogeneity within the included studies which precluded statistical pooling of extracted data. Consequently, an inductive approach of a narrative synthesis of the extracted data was deemed most appropriate. Configuration of all themes generated a set of statements that represent the final aggregation. Factors extracted for this review that were found to influence early cognitive and motor development were categorised into five main themes, these being: Nutrition, Growth and Anthropometry, Maternal Health, Malaria and HIV, and Household and other factors. **Results** Study selection The study selection process is illustrated in Figure 1. In total, 51 studies published between 1991 and 2019 met the inclusion criteria. Of these 29 (57%, 11 in 2017, 10 in 2018 and 4 in 2020) were published after 2016, when The Lancet published a special edition of research papers focused on this topic. Table 2 summarises the extracted data for each study included in the review. Amongst the included studies, a range of 14 Sub-Saharan countries were represented with 12 studies 

| 1<br>2   |  |
|----------|--|
| 3        |  |
| 4        |  |
| 5<br>6   |  |
| 7        |  |
| 8        |  |
| 9<br>10  |  |
| 10       |  |
| 12       |  |
| 13       |  |
| 14<br>15 |  |
| 16       |  |
| 17       |  |
| 18<br>19 |  |
| 20       |  |
| 21       |  |
| 22<br>23 |  |
| 23       |  |
| 25       |  |
| 26<br>27 |  |
| 27       |  |
| 29       |  |
| 30<br>31 |  |
| 32       |  |
| 33       |  |
| 34<br>35 |  |
| 36       |  |
| 37       |  |
| 38<br>39 |  |
| 40       |  |
| 41       |  |
| 42<br>43 |  |
| 44       |  |
| 45       |  |
| 46<br>47 |  |
| 47       |  |
| 49       |  |
| 50<br>51 |  |
| 52       |  |
| 53       |  |
| 54<br>55 |  |
| 56       |  |
| 57       |  |
| 58<br>59 |  |
| 59       |  |

| 1  | originating from South Africa, eight from Ethiopia, six from Tanzania, five from Malawi,                      |
|----|---------------------------------------------------------------------------------------------------------------|
| 2  | four from Kenya, three each from Ghana and Zambia, two each from Uganda, Botswana, and                        |
| 3  | Benin, and one each from Gambia, Sudan, Rwanda and Congo. A range of methodologies                            |
| 4  | were reported in the studies included in this review: most were prospective or longitudinal                   |
| 5  | cohort studies and four randomised control trials were also included. There was high                          |
| 6  | variability in sample size, ranging from 85 to 4205. In addition, attrition varied at follow-up               |
| 7  | from 0% to 95.3%. Twenty-seven (53%) of the 51 studies included in this scoping review                        |
| 8  | reported change of numbers in at least one point of follow up; the rest of the studies did not                |
| 9  | include data on participants lost to follow up. Of the 27 studies that reported on follow up, a               |
| 10 | mean attrition of 47.8% (SD = $26.2\%$ ) was found (note: for the 5 studies that reported on                  |
| 11 | more than one point or group at follow-up, mean attrition was calculated and used to                          |
| 12 | determine the grand mean). For most studies, limited information, if any, was given as to why                 |
| 13 | loss at follow up occurred. More details are provided in Table 2.                                             |
| 14 | Measures used in assessing cognition and motor development                                                    |
| 15 | Amongst the studies included in this review, a wide range of tools were used to assess                        |
| 16 | cognitive and motor development, making it difficult to generalise findings (Table 3). The                    |
| 17 | most common assessment tool used was the Bayley Scale of Infant Development (BSID),                           |
| 18 | which was employed in 20 of the 51 (39%) studies reviewed.                                                    |
| 19 | Data extraction and summary of results                                                                        |
| 20 | Results revealed many factors associated with early cognitive and motor development. These                    |
| 21 | factors were grouped into five main overarching categories. These categories were                             |
| 22 | interlinked, reflecting a multi-level framework, and demonstrating that no individual category                |
| 23 | could explain differences in early cognitive and motor development across Sub-Saharan                         |
| 24 | Africa.                                                                                                       |
| 25 | The five main categories of factors highlighted by this review include: Nutrition, Growth and                 |
| 26 | Anthropometry, Maternal Health, Malaria and HIV, and Household.                                               |
| 27 | Nutrition                                                                                                     |
| 28 | The first group of factors influencing early cognitive and motor development related to infant                |
| 29 | and maternal nutrition. Principally, studies looked into the effect of nutrition and nutrients <sup>16-</sup> |
| 30 | <sup>20</sup> , and vitamin supplements <sup>21-24</sup> .                                                    |
|    |                                                                                                               |

Studies reporting on the influence of food consumption on early child development showed that children living in households that experienced food insecurity in the first two years of life had low gross motor, communication, and personal social scores<sup>18</sup>. Conversely, dietary diversity, child iron status, and early nutritional interventions that increased birth weight and growth in the first two years were associated with improved growth, language skills, and motor development<sup>19</sup>. 

Less than optimal micronutrient status was a strong focus on the influence of nutrition on early child development, but most studies<sup>21-24</sup> found no impact of nutrient supplementation (zinc, multivitamin, iron and ferritin) on young children. Two studies investigating the differences between groups of infants taking zinc and vitamin supplements in Zambia<sup>22</sup> and Tanzania<sup>21</sup> found no difference in motor and cognitive development compared to placebo controls. Similarly, Mireku and colleagues (2016) demonstrated that prenatal iron deficiency and low neonatal ferritin were not associated with poor cognitive or gross motor function, although a negative relationship between gross motor function and children's haemoglobin concentration was reported<sup>24</sup>. Cognitive development and linear growth at age 4-6 years was also reported by Ocansey et al. (2019) to be significantly associated with haemoglobin concentration at 18 months<sup>25</sup>, but unlike Mireku et al (2016), Ocansey et al. (2019) found no association with motor development. A randomised control trial (RCT) exploring prenatal supplementation with vitamin A and zinc<sup>21</sup> reported no developmental benefits in children of women consuming the supplement. 

*Growth and anthropometry* 

Growth and anthropometry encompass many different aspects of children's physical health. Many studies evaluated the influence of children's physical health on their early cognitive and motor development. While some studies focused on stunting and growth<sup>10,14,21-25</sup>, others focused more specifically on anthropometry at birth<sup>31-34</sup>. Most studies found a strong relationship between restricted physical growth and poor early cognitive and motor outcomes. Stunting is defined as the impaired linear growth of children who experience poor nutrition or repeated infection<sup>2</sup>. Stunting and impaired growth were shown to be strong predictors of poor cognitive and motor development<sup>16,20,30,34</sup>. In exploring the long-term effect of stunting, Crookston and colleagues (2013) demonstrated that height-for-age was positively associated with mathematics achievement, reading comprehension, and receptive vocabulary. Children persistently stunted between early and late childhood faced more adverse outcomes at school 

compared to those who were never stunted<sup>29</sup>. Moreover, children who recovered from
stunting showed persistently low cognitive test performance that was commensurate with the
performance of children who remained stunted<sup>26</sup>, demonstrating a long-term impact of early
stunting into later childhood. Whilst these studies largely supported a negative influence of
stunting on developmental measures, one study based in Tanzania showed weight-for-age and
weight-for-length scores were positively associated with gross motor scores, but not for other
measures of motor and cognitive skills<sup>28</sup>.

- 8 Anthropometry at birth was explored in relation to long-term early child development.
- 9 Length-for-age scores at birth and at 6 and 18 months were associated with cognitive, but not

 $\frac{9}{0}$  10 motor development in children aged 4-6 years in Ghana<sup>25</sup>. High fat mass in the first 48 hours

11 of birth predicted high global developmental scores<sup>31</sup>. A study based in South Africa showed

12 that very low birth weight was not predictive of neurodevelopmental outcomes<sup>32</sup>. Infants born

preterm (<37 weeks gestation) in Malawi had a high rate of developmental delay at 18

14 months, which was inversely associated with gestational  $age^{33}$ .

# 15 Maternal Factors

16 Maternal factors were investigated primarily in relation to maternal mental wellbeing.

- 17 General maternal health and mental disorders<sup>30-33</sup>, post-traumatic stress disorder (PTSD)<sup>31</sup>,
- 18 and foetal alcohol spectrum disorder (FASD)<sup>40</sup> were discussed as factors affecting outcomes
- 5 19 in early childhood.

Accumulated exposures to maternal risk factors, for example, low socio-economic status (SES) and domestic violence, were shown to have a stronger association with child cognitive and motor development, compared to common maternal mental health disorders, such as depression or anxiety<sup>37</sup>. Infants with FASD in South Africa were shown to have impaired performance on all scales of mental development of the BSID<sup>40</sup>. Several maternal protective and risk factors were associated with cognitive and motor developmental outcomes. For example, maternal education and SES were shown to the be protective factors whereas maternal anaemia in pregnancy, depression, partner violence, and HIV infection were shown to the be risk factors<sup>41</sup>. Maternal weight and diet also influenced neurobehavioural and motor performance at birth and at 6 months. Greater maternal dietary quality was associated with better infant motor performance<sup>17</sup>. 

While common maternal mental health disorders influenced child absenteeism and school
 dropout, it did not affect child academic achievement<sup>36</sup>. Other factors such as mother's access

to antenatal care were found to be related to improved child cognitive development<sup>30,36</sup>.
Meanwhile, low maternal height, delivery characteristics (e.g. oxytocin administration) were
associated with cognitive and development outcomes at 15 months<sup>38</sup>. Maternal PTSD was
associated with poor fine motor and poor adaptive motor development in children<sup>39</sup>. Finally,
greater caregiver/child stimulation was found to predict higher child cognitive scores and
maternal completion of primary school was associated with higher child motor and cognitive

#### 8 Malaria and HIV

9 Studies included in this review also considered the relationships between child development
10 and malaria or HIV (5 studies on malaria and 11 studies on HIV). Malaria studies focused
11 primarily on cognitive development<sup>44-47</sup> while HIV studies incorporated both cognitive and
12 motor development<sup>29,42-52</sup>.

Studies investigating the impact of malaria on early child development have produced inconsistent findings. Bangirana and colleagues (2014) reported that Ugandan infants with cerebral malaria and severe malarial anaemia had lower scores in cognitive ability, attention and associative memory at 12 months than their control peers. Similarly, exposure to the malaria parasite in early childhood was associated with lower tolerance of the testing procedure of the cognitive tasks at 6 years<sup>46</sup>. When tested at 5 years of age, children with malaria in a cohort study based in Malawi<sup>47</sup> showed on average a 6-month delay in motor, language and social development. Despite this, no difference in age-expected attainment was found for cognitive skills compared to control<sup>45</sup>. 

Studies on HIV have consistently demonstrated impairment of cognitive and motor functions in children and infants with HIV<sup>29,47</sup> showing delayed attainment of developmental milestones<sup>48</sup>, including gross motor skills<sup>54</sup> and neurodevelopment deficits<sup>49</sup> compared to uninfected children. Leroux and colleagues (2018) reported delays in cognitive and motor development but highlighted no delays in expressive language scores at 18 months. The effects of HIV infection on development can be overcome with treatment. Three studies investigated the outcomes of HIV care and demonstrated that infected infants and children who received HIV care achieved similar cognitive and motor scores to uninfected children at 6, 12 and 24 months<sup>56-58</sup>. 

Children can also be exposed to HIV in utero without becoming infected. Studies of HIV exposed uninfected infants have yielded inconsistent results. Whilst, Brahmbatt and

colleagues (2014) found that HIV exposure alone was associated with impaired receptive
 language skill in children and generally poor early child development, other studies found no

3 difference in cognitive and motor development of infants and children exposed to HIV and

4 their non-exposed peers $^{44,45,49}$ .

5 Household and other factors

Many household factors were found to be associated with early child development. This
highlights the importance of the environment that children grow up in for supporting the
acquisition of cognitive and motor skills. Studies investigating household factors have
examined SES<sup>10,23,37,53</sup>, sanitation and water<sup>14,54</sup>, access to antenatal care<sup>35</sup>, orphanage<sup>61</sup>, and
insecticide exposure<sup>62</sup>.

Investigations into the effect of SES on early child development have produced mixed findings, which might reflect differences in how SES is conceptualised and measured in different contexts and different countries. One study reported no effect of SES (measured by a household asset index) on early child development but rather area of residence (established by geographical area) was associated with early developmental outcomes<sup>16</sup>. In contrast, other studies demonstrated that SES (measured by a socio-economic questionnaire and household wealth) was linked to child language development<sup>59</sup> and cognitive scores at 15 months of age<sup>28</sup>. 

Access to improved water (i.e. piped water, public tap or standpipe, tube well or borehole,
 protected dug well, protected spring, and rainwater collection) at 1 year of age was associated
 with higher language scores in children at 5 and 8 years<sup>60</sup> and access to a flush-toilet in the
 home/village environment was associated with higher cognitive and motor scores in children
 aged 18-36 months compared to those where a flush-toilet was not available<sup>20</sup>.

Attendance at antenatal care by mothers was shown to have a positive association with
cognitive development at age 5<sup>35</sup>. Whilst orphaned infants showed impairments in
psychomotor development at admission (1 month old), over 85% of orphaned children
showed age-appropriate development by 18 months<sup>61</sup>.

Finally, a study investigating exposure to insecticide showed no significant relationship with cognitive development<sup>62</sup>. Other factors also investigated in some of the studies included the influence of twin birth<sup>63</sup>, ethnicity<sup>64</sup>, early mental development<sup>65</sup>, and birth asphyxia<sup>66</sup> on early child development. These studies demonstrated that twin birth was associated with delayed attainment of motor development milestones<sup>57</sup>, and factors linked to ethnicity such as 

family stability and income were positively associated with motor and language development<sup>58</sup>. Moreover, poor mental development at age one was associated with poor cognitive development at age 5<sup>59</sup>. Regular treatment of asphyxia after birth was associated with good cognitive scores at three years of age. Prado et al. (2018)<sup>13</sup> also considered the influence of access to play materials and activities with caregivers on early language and motor development and showed a positive association of these factors on growth and language development. Discussion The aim of this review was to scope published literature reporting on factors associated with early cognitive and motor development in Sub-Saharan Africa. A detailed understanding of these factors is a prerequisite for design of future longitudinal cohort studies and interventions targeted at improving the lives of children living across this region. A clear need for focussed research in this area was revealed. In total, only 51 studies have been published in the past 28 years (between 1991 and 2019) which met the inclusion criteria, with the majority of studies (90%) being published in the past 10 years. The recent rise in studies focusing on this topic demonstrates increasing awareness of the need to enhance understanding of factors influencing development of foundational skills that underpin later learning potential<sup>67</sup>. This is a critical step for countries to be able to meet the 2030 United Nations Sustainable Development Goals. Only 14 (30%) of the 46 countries comprising the Sub-Saharan Africa region were included in the 51 studies that met the inclusion criteria for this scoping review. The absence of 

relevant studies from the remaining 37 countries of Sub-Saharan Africa, demonstrates an alarming lack of knowledge about factors influencing early cognitive and motor development across more than 70% of the region. Whilst the factors identified in this scoping review may apply to other countries in the region, this needs confirmation from quantitative longitudinal cohort studies. The results of this scoping review are therefore important for guiding future research. 

The 51 studies included in this review identified multiple factors that broadly addressed five
key themes, namely Nutrition, Growth and Anthropometry, Maternal Factors, Malaria and
HIV, and Household. Although these factors may operate in isolation, it is likely that they
will interact with a multiplicative effect to influence on the development of early cognitive

Page 61 of 77

and motor skills. This emphasises the importance of adopting a multi-level conceptual
 framework of early child development across Sub-Saharan Africa that describes the
 complexity by which different factors influence early developmental outcomes that underpin
 potential to succeed at primary school.

Childhood nutrition, growth, and maternal health were the factors with the most frequently reported influence on early child development, with infectious diseases such as HIV and malarial infection also playing a key role. Whilst infectious diseases such as tuberculosis, gastrointestinal infections or measles are common in Sub-Saharan Africa, the studies in this review only investigated the influence of Malaria and HIV on development, demonstrating a significant lack of research in the influence of other infectious diseases in Sub-Saharan Africa. There is a well-established interrelationship between nutrition and infectious disease which is often driven by SES, and has been shown to influence physical growth, stunting and wasting. Maternal health and nutrition during pregnancy is a key driver of growth outcomes for children<sup>4</sup>. The papers identified in this scoping review indicate that this is also the case for early cognitive and motor development. Maternal nutrition and lack of specific nutrients for mothers, during pregnancy and early years were also shown to have long-term impact on child development. This has been recognised previously in randomised control trials considering the influence of iron deficiency on cognitive and motor development<sup>68</sup>. Less than optimal maternal nutrition and health directly influences children's health and growth which are also related to early cognitive and motor development. The broader literature on nutrient deficiency and cognitive development suggests that the window of time for intervention is limited and cognitive deficits at an early age have lasting effects on brain development<sup>69</sup>. However, the studies included in this review demonstrated limited positive effects of supplementation of micronutrients. While maternal and child health encompassed the main factors affecting early child development highlighted by this review, it is also important to note that household and other factors also need to be considered. This review showed that household determinants, such as access to sanitised water or access to antenatal care, influence cognitive and motor development in Sub-Saharan Africa, in a similar way to the risks of stunting and wasting.

Methodological considerations were also emphasised by this review. Sample size and
attrition were highly variable across studies, which raises concerns about data security and
limits the extent to which comparisons across studies can be drawn. Of the studies that
reported on attrition, on average 47.8% of the original sample was lost at follow up. Future

research should take this into account when recruiting new participants to ensure sufficient statistical power at follow-up.

Many studies relied on the use of psychometric tools validated for Western populations for measuring early cognitive and motor development in Sub-Saharan African countries. The use of assessment tools used in Western cultures has been shown to be somewhat problematic<sup>72</sup>. Motor and cognitive development need to be assessed in relation to cultural and environmental factors. For instance, motor assessment in Western countries include developmental stages such as climbing steps which is not necessarily relevant in some lowto-middle-income settings where steps are not a prevalent feature of many family homes. Adapting these tools by excluding such tasks is not necessarily appropriate, so using a culturally relevant tool, such as the Malawi Development Assessment Tool<sup>73</sup> for studies conducted in Malawi for instance, might be more fitting. 

The Bayley Scale of Infant Development (BSID) was the most frequently used psychometric tool used to assess early child development in the studies covered by this review. This measure is recognised internationally as one of the most comprehensive tools to assess children from as young as one month old and with the latest version of this tool, BSID-III, it is possible to obtain detailed information even from non-verbal children as to their level of functioning. However, while the BSID is considered a valid and reliable measure of early child development for Western populations, there are a number of practical barriers to use in Sub-Saharan contexts, including the high cost for materials, the need for specially trained administrators and the relatively long administration time<sup>74</sup>. Furthermore, the use of the BSID and other Western assessments is often inadequate in developing countries <sup>75</sup>. The BSID was developed in the US, a Western, high-income country, and may not translate to low-tomiddle-income country contexts<sup>72</sup>. Furthermore, the use of norm-referenced scores based on high-income-country contexts are not valid in low-income countries and may lead to children being misclassified as having developmental delay<sup>76</sup> and produce misleading results. Adapting psychometric tools to be culturally appropriate for low-to-middle-income contexts can overcome this problem. Hanlon et al. (2016)<sup>77</sup> successfully adapted the BSID for use in rural Ethiopia by translating and modifying the test materials, instructions and concepts measured. There are several emerging assessment tools that have been specially designed for use in low-to-middle-income countries. For example, the Intergrowth 21st Neurodevelopmental Assessment (Inter-NDA) is a holistic and objective measure of early child development that has been trialled in a broad range of 13 countries (none in Sub-

1 Saharan Africa) and validated against the BSID-III. The Inter-IDA items have been specially

2 designed to be culture-free and easy and reliable to administer by non-specialists in low-to-

3 middle-income contexts<sup>78</sup>.

Country-specific distributions can be used to identify children 'at risk' with greater ecological validity than comparing to Western norms. Whilst this relative method of identifying children at risk would enable comparison between countries, it is important to note that absolute levels of ability might differ across countries. This would result in some children being identified as at risk for poor early outcomes in some countries, who would not be classified at risk in other countries where the distribution of scores was lower, and vice versa. Direct comparison of test performance across countries is only meaningful when both the average (mean/median) and distribution of test scores is similar. We recommend that measures of early child development that have been developed and norm-referenced for Western, high-income, countries are validated by low-income countries before adopting them as an outcome measure in studies examining early child development. This can determine the extent to which they are suitable for administration in specific country contexts without adaptation. Depending on the results of the validation study, adaptation to test materials might be required before they are considered appropriate for use in a given context and before population distribution data is obtained. 

This scoping review has demonstrated that birth cohort and longitudinal studies are a viable method for investigating a range of multi-level factors in early childhood in Sub-Saharan Africa. Ongoing birth cohort studies are also considering a wider range of determinants of early child development than have been studies previously. For example, the Drakenstein Child Health Study follows a multi-level, ecological approach to understand cognitive, socioemotional and neuropsychological child development<sup>79</sup>. The Malnutrition and Enteric Disease Study (MAL-ED) multi-site birth cohort study is also examining child development and language acquisition from birth to 24 months in eight low-to-middle-income countries<sup>80,81</sup>. Consistent with previous research, data from the MAL-ED project in Tanzania showed child weight-for-age, weight-for-length, SES and female gender were associated with cognitive and motor development <sup>28</sup>. However, Donald et al.<sup>79</sup>, Caulfield et al.<sup>80</sup>, and Murray-Kolb et al.<sup>81</sup> all highlight important issues surrounding measurement and data collection in low-to-middle-income contexts, which can impact on results. 

- <sup>58</sup> 32 Future research should further investigate the multiple factors highlighted in this review,
- taking into consideration the cultural and environmental setting of different study sites. While

maternal and child health factors are prominent areas of research, the findings from this review are somewhat contradictory. Future research should aim to gain a clearer understanding of why this is and how factors such as HIV or nutrition affect early child development. This would allow for better targeted interventions and guidelines to be implemented to mitigate risk of childhood morbidity and underachievement at school. As the number of cohort studies being conducted in other low-to-middle-income countries increases, there could be potential for cross-cultural comparisons. This could further inform theoretical and practical understandings of generic factors that are associated with early child development in low-to-middle-income country contexts compared to country-specific factors. Studies in Latin America, for example, show that specific nutrient deficiency (iron) influence early child development<sup>82</sup> and the meta-analysis by Ip et al. (2017)<sup>83</sup> of randomised control trials of nutritional supplements showed improved cognitive function in children in several developing countries, including Bangladesh, Chile, China, Colombia, Guatemala, India, Indonesia, Jamaica, Mexico, Nepal, Pakistan, Peru, Thailand, Vietnam, as well as several nations in Sub-Saharan Africa. However, in the context of uncontrolled observational studies, findings from a wide representation of multiple types of backgrounds and study sites might not be generalisable over all contexts. The sample of studies included for this scoping review was skewed by a strong prevalence of studies from South-Africa (12 out of 51), and mainly from urban sites, which might not reflect the conditions of other countries and settings.

### *Limitations*

This scoping review has highlighted several factors that influence early cognitive and motor development in infants born across Sub-Saharan Africa. Despite the serious consequences of poor early child development on an individual's potential and a country's economic growth, surprising few studies have focussed on this important issue. Many studies reported on one particular factor, and there was variability across findings, so it is difficult to generalise results until a more comprehensive evidence base exists. Drawing firm conclusions was a challenge for this review due to variabilities in reporting, methodology and quality of the literature. As such, the results from this scoping review should be treated as early indications of how different factors influence early cognitive and motor skills, until further studies are available to enable general trends to be established through replication and reproducible findings. The studies reviewed here also show high variability in sample size and attrition, which can bias findings, especially with small samples and high levels of attrition. In addition, there is variability across studies in the conceptualisation and measurement of 

different factors and skills, which makes drawing conclusions difficult. To enable generalisation within and across countries, studies need to adopt a consistent conceptual framework and ideally utilise the same tasks to measure early cognitive and motor skill, with appropriate norms. As development is a dynamic process that changes over time, a finding at one point in time is not necessarily indicative of outcomes at a later point in development. Downstream effects mean that secondary impairments can emerge later in the developmental pathway for functions that are reliant on the development of a specific function acquired at an earlier age. To address these limitations, longitudinal monitoring is required across the first 8 years in life, and beyond. Cohort studies are needed, ideally from pregnancy or birth, across the early childhood period to enable a greater understanding of factors that influence early cognitive and motor skill to be determined. These are difficult to conduct largely because they require

13 acquisition of big datasets across a long period of time and are thus costly. Nevertheless,

14 longitudinal pregnancy or birth cohort studies are the best methodology for addressing this
 15 issue. Benefits might also be gained from utilising applied statistical techniques that enable
 16 different datasets to be combined in a meaningful manner. These techniques are starting to
 17 emerge from the work of big data scientists and have the potential to be transformational

18 when applied to understanding factors that influence the process of early child development

19 across Sub-Saharan Africa. Accordingly, we call upon funding agencies to invest in these

20 methods, if we are to gain a better understanding of what causes poor developmental

21 outcomes in early childhood, how best to intervene, and ultimately how to prevent the cycle

22 of poverty that mars these countries. <u>Recommendations for future research</u>

23 <u>This review has uncovered a number of significant omissions and inconsistencies in the</u>

24 evidence base relating to early life influences on cognitive and motor development. To enable

25 generalisation within and across countries, studies need to adopt a consistent conceptual

26 <u>framework and ideally utilise the same tasks to measure early cognitive and motor skill, with</u>

27 appropriate norms. As development is a dynamic process that changes over time, a finding at

28 <u>one point in time is not necessarily indicative of outcomes at a later point in development.</u>

- <sup>2</sup> 29 <u>Downstream effects mean that secondary impairments can emerge later in the developmental</u>
  - 30 pathway for functions that are reliant on the development of a specific function acquired at an
- 56
   31
   earlier age. To address these limitations, Llongitudinal monitoring is required across the first

<sup>7</sup> 32 <u>8 years in life, and beyond. Cohort studies are needed, ideally from pregnancy or birth, across</u>

33 <u>the early childhood period to enable a greater understanding of factors that influence early</u>

| 3<br>4                                                               | 1  | cognitive and motor skill to be determined. These are difficult to conduct largely because     |
|----------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------|
| 5<br>6<br>7<br>8<br>9                                                | 2  | they require acquisition of big datasets across a long period of time and are thus costly.     |
|                                                                      | 3  | Nevertheless, longitudinal pregnancy or birth cohort studies are the best methodology for      |
|                                                                      | 4  | addressing this issue. Benefits might also be gained from utilising applied statistical        |
| 10<br>11                                                             | 5  | techniques that enable different datasets to be combined in a meaningful manner. These         |
| 12                                                                   | 6  | techniques are starting to emerge from the work of big data scientists and have the potential  |
| 13<br>14                                                             | 7  | to be transformational when applied to understanding factors that influence the process of     |
| 15<br>16                                                             | 8  | early child development across Sub-Saharan Africa. Accordingly, we call upon funding           |
| 17<br>18                                                             | 9  | agencies to invest in these methods, if we are to gain a better understanding of what causes   |
| 19                                                                   | 10 | poor developmental outcomes in early childhood, how best to intervene, and ultimately how      |
| 20<br>21                                                             | 11 | to prevent the cycle of poverty that mars these countries.                                     |
| 22<br>23                                                             | 12 | We further recommend that measures of early child development that have been developed         |
| 24<br>25                                                             | 13 | and norm-referenced for Western, high-income, countries are validated by low-income            |
| 26                                                                   | 14 | countries before adopting them as an outcome measure in studies examining early child          |
| 27<br>28                                                             | 15 | development. This can determine the extent to which they are suitable for administration in    |
| 29<br>30                                                             | 16 | specific country contexts without adaptation. Depending on the results of the validation       |
| 31<br>32<br>33<br>34                                                 | 17 | study, adaptation to test materials might be required before they are considered appropriate   |
|                                                                      | 18 | for use in a given context and before population distribution data is obtained.                |
| 35                                                                   | 19 |                                                                                                |
| 36<br>37                                                             | 20 | To address these limitations, longitudinal monitoring is required across the first 8 years in  |
| 38<br>39<br>40<br>41<br>42                                           | 21 | life, and beyond. Cohort studies are needed, ideally from pregnancy or birth, across the early |
|                                                                      | 22 | childhood period to enable a greater understanding of factors that influence early cognitive   |
|                                                                      | 23 | and motor skill to be determined. These are difficult to conduct largely because they require  |
| 43<br>44                                                             | 24 | acquisition of big datasets across a long period of time and are thus costly. Nevertheless,    |
| 45<br>46                                                             | 25 | longitudinal pregnancy or birth cohort studies are the best methodology for addressing this    |
| 47<br>48                                                             | 26 | issue. Benefits might also be gained from utilising applied statistical techniques that enable |
| 49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60 | 27 | different datasets to be combined in a meaningful manner. These techniques are starting to     |
|                                                                      | 28 | emerge from the work of big data scientists and have the potential to be transformational      |
|                                                                      | 29 | when applied to understanding factors that influence the process of early child development    |
|                                                                      | 30 | across Sub-Saharan Africa. Accordingly, we call upon funding agencies to invest in these       |
|                                                                      | 31 | methods, if we are to gain a better understanding of what causes poor developmental            |
|                                                                      | 32 | outcomes in early childhood, how best to intervene, and ultimately how to prevent the cycle    |
|                                                                      | 33 | of poverty that mars these countries.                                                          |
|                                                                      |    |                                                                                                |

| 1<br>2                                                   |    |                                                                                                  |
|----------------------------------------------------------|----|--------------------------------------------------------------------------------------------------|
| 2<br>3<br>4                                              | 1  |                                                                                                  |
| 5                                                        | 2  | Conclusion                                                                                       |
| 7<br>8<br>9<br>10                                        | 3  | In conclusion, this scoping review has highlighted many important factors to take into           |
|                                                          | 4  | consideration when conducting research in low-to-middle-income country contexts. The             |
| 11                                                       | 5  | complex relationship between early nutrition, growth, infectious disease and poverty in          |
| 12<br>13<br>14<br>15<br>16<br>17                         | 6  | determining early child development is clear, highlighting the importance of well-designed       |
|                                                          | 7  | and targeted interventions to improve cognitive function, educational attainment and             |
|                                                          | 8  | achievement of potential. Methodological factors, such as attrition rates or the use of specific |
| 18                                                       | 9  | assessment tools, are important considerations in conducting research in low-to-middle-          |
| 19<br>20                                                 | 10 | income countries. Factors affecting early child development highlight the need for a multi-      |
| 21<br>22                                                 | 11 | level approach, including maternal health, child health and household determinants.              |
| 23<br>24                                                 | 12 | Due to the wide range of studies included, the wide difference in methods, designs and in        |
| 25<br>26                                                 | 13 | study qualities, it is difficult to summarise clear conclusions or make strong                   |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35 | 14 | recommendations from this review. The variance found in this review demonstrates a need          |
|                                                          | 15 | for more robust and consistent research on this topic. This is needed to gain a more             |
|                                                          | 16 | comprehensive understanding of how different factors come to play in early child                 |
|                                                          | 17 | development in Sub-Saharan Africa and how targeted interventions can address these               |
|                                                          | 18 | impacts.                                                                                         |
| 36<br>37                                                 | 19 |                                                                                                  |
| 38<br>39                                                 |    | Transparency Declaration                                                                         |
| 40<br>41                                                 | 20 | The authors affirm that this manuscript is an honest, accurate, and transparent account of the   |
| 42<br>43                                                 | 21 | study being reported. The reporting of this work is compliant with PRISMA guidelines. The        |
| 44<br>45                                                 | 22 | lead author affirms that no important aspects of the study have been omitted.                    |
| 46<br>47                                                 | 23 | Acknowledgement                                                                                  |
| 48<br>49                                                 | 24 | This work was supported by the Economic and Social Research Council through an Impact            |
| 50<br>51                                                 | 25 | Accelerator Award from the University of Nottingham [grant number ES/M500598/1]                  |
| 51<br>52<br>53                                           | 26 | awarded to NP and SLE.                                                                           |
| 55<br>54<br>55                                           | 27 |                                                                                                  |
| 56<br>57                                                 | 28 | Figure legends                                                                                   |
| 58<br>59<br>60                                           | 29 | Figure 1 Flow diagram of the study selection processes                                           |

| 2        |   |                                                                            |
|----------|---|----------------------------------------------------------------------------|
| 3<br>4   | 1 | Figure 2 Frequency of publications included in the scoping review per year |
| 5<br>6   | 2 |                                                                            |
| 7<br>8   | 3 |                                                                            |
| 9<br>10  | 4 |                                                                            |
| 11<br>12 | • |                                                                            |
| 13       |   |                                                                            |
| 14<br>15 |   |                                                                            |
| 16<br>17 |   |                                                                            |
| 18<br>19 |   |                                                                            |
| 20<br>21 |   |                                                                            |
| 22<br>23 |   |                                                                            |
| 24<br>25 |   |                                                                            |
| 26<br>27 |   |                                                                            |
| 28       |   |                                                                            |
| 29<br>30 |   |                                                                            |
| 31<br>32 |   |                                                                            |
| 33<br>34 |   |                                                                            |
| 35<br>36 |   |                                                                            |
| 37<br>38 |   |                                                                            |
| 39<br>40 |   |                                                                            |
| 41<br>42 |   |                                                                            |
| 43<br>44 |   |                                                                            |
| 45<br>46 |   |                                                                            |
| 47<br>48 |   |                                                                            |
| 49<br>50 |   |                                                                            |
| 51       |   |                                                                            |
| 52<br>53 |   |                                                                            |
| 54<br>55 |   |                                                                            |
| 56<br>57 |   |                                                                            |
| 58<br>59 |   |                                                                            |
| 60       |   |                                                                            |

| 1<br>2         |    |     |                                                                                           |
|----------------|----|-----|-------------------------------------------------------------------------------------------|
| 3<br>4         | 1  | Ref | erences                                                                                   |
| 5<br>6         | 2  | 1.  | Grantham-McGregor S, Cheung YB, Cueto S, Glewwe P, Richter L, Strupp B, et al.            |
| 7<br>8         | 3  |     | Developmental potential in the first 5 years for children in developing countries. Lancet |
| 9<br>10        | 4  |     | Lond Engl. 2007;369(9555):60-70.                                                          |
| 10<br>11<br>12 | 5  | 2.  | WHO   Early child development [Internet]. WHO. [cited 2019 Jul 2]. Available from:        |
| 13             | 6  |     | http://www.who.int/topics/early-child-development/en/                                     |
| 14<br>15       | 7  | 3.  | UNICEF, editor. Improving child nutrition: the achievable imperative for global           |
| 16<br>17       | 8  |     | progress. New York: United Nations Children's Fund; 2013. 124 p.                          |
| 18<br>19       | 9  | 4.  | Chalashika P, Essex C, Mellor D, Swift JA, Langley-Evans S. Birthweight, HIV              |
| 20<br>21       | 10 |     | exposure and infant feeding as predictors of malnutrition in Botswanan infants. J Hum     |
| 22<br>23       | 11 |     | Nutr Diet. 2017 Dec;30(6):779–90.                                                         |
| 24<br>25       | 12 | 5.  | Bakilana A, Moucheraud C, McConnell C, Hasan R. Early Childhood Development:              |
| 26<br>27       | 13 |     | Situation Analysis for Malawi [Internet]. World Bank; 2016 [cited 2019 Apr 15].           |
| 28<br>29       | 14 |     | Available from: http://elibrary.worldbank.org/doi/book/10.1596/24574                      |
| 30<br>31       | 15 | 6.  | ADEOKUN LA. EARLY CHILD DEVELOPMENT AND THE NEXT CHILD                                    |
| 32<br>33       | 16 |     | DECISION. Genus. 1983;39(1/4):115-40.                                                     |
| 34<br>35       | 17 | 7.  | Pitchford NJ, Papini C, Outhwaite LA, Gulliford A. Fine Motor Skills Predict Maths        |
| 36             | 18 |     | Ability Better than They Predict Reading Ability in the Early Primary School Years.       |
| 37<br>38       | 19 |     | Front Psychol [Internet]. 2016 [cited 2020 Mar 17];7. Available from:                     |
| 39<br>40       | 20 |     | https://www.frontiersin.org/articles/10.3389/fpsyg.2016.00783/full                        |
| 41<br>42       | 21 | 8.  | Davis EE, Pitchford NJ, Limback E. The interrelation between cognitive and motor          |
| 43<br>44       | 22 |     | development in typically developing children aged 4-11 years is underpinned by visual     |
| 45<br>46       | 23 |     | processing and fine manual control. Br J Psychol. 2011;102(3):569-84.                     |
| 47<br>48       | 24 | 9.  | Pianta RC, McCoy SJ. The first day of school: The predictive validity of early school     |
| 49<br>50       | 25 |     | screening. J Appl Dev Psychol. 1997 Jan 1;18(1):1-22.                                     |
| 51             | 26 | 10. | Diamond A. Close Interrelation of Motor Development and Cognitive Development and         |
| 52<br>53       | 27 |     | of the Cerebellum and Prefrontal Cortex. Child Dev. 2000;71(1):44–56.                     |
| 54<br>55       | 28 | 11. | van der Fels IMJ, te Wierike SCM, Hartman E, Elferink-Gemser MT, Smith J, Visscher        |
| 56<br>57       | 29 |     | C. The relationship between motor skills and cognitive skills in 4–16 year old typically  |
| 58<br>59       | 30 |     | developing children: A systematic review. J Sci Med Sport. 2015 Nov 1;18(6):697–703.      |
| 60             |    |     |                                                                                           |

| 2<br>3<br>4<br>5     | 1<br>2 | 12. | Feinstein L. Inequality in the Early Cognitive Development of British Children in the 1970 Cohort. Economica. 2003;70(277):73–97. |
|----------------------|--------|-----|-----------------------------------------------------------------------------------------------------------------------------------|
| 6<br>7               | 3      | 13. | Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred                                                |
| 8<br>9               | 4      |     | reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015                                                 |
| 10<br>11             | 5      |     | statement. Syst Rev. 2015;4(1):1.                                                                                                 |
| 12<br>13             | 6      | 14. | JBI. Joanna Briggs Institute reviewers' manual 2014 edition [Internet]. Adelaide: JBI;                                            |
| 14<br>15<br>16       | 7      |     | 2014 [cited 2015 May 15]. 2014.                                                                                                   |
| 16<br>17             | 8      | 15. | Kmet LM, Lee RC, Cook LS, Alberta Heritage Foundation for Medical Research,                                                       |
| 18<br>19             | 9      |     | University of Calgary, Faculty of Medicine, et al. Standard quality assessment criteria                                           |
| 20<br>21             | 10     |     | for evaluating primary research papers from a variety of fields. Edmondton, Alta.:                                                |
| 22<br>23             | 11     |     | Alberta Heritage Foundation for Medical Research; 2004.                                                                           |
| 24<br>25             | 12     | 16. | Ajayi OR, Matthews G, Taylor M, Kvalsvig J, Davidson LL, Kauchali S, et al. Factors                                               |
| 26                   | 13     |     | associated with the health and cognition of 6-year-old to 8-year-old children in                                                  |
| 27<br>28<br>29       | 14     |     | KwaZulu-Natal, South Africa. Trop Med Int Health. 2017 May;22(5):631–7.                                                           |
| 30                   | 15     | 17. | Allen LH. The nutrition CRSP: what is marginal malnutrition, and does it affect human                                             |
| 31<br>32<br>33<br>34 | 16     |     | function?. Nutr Rev. 1993;51(9):255–67.                                                                                           |
|                      | 17     | 18. | Milner E.M., Fiorella K.J., Mattah B.J., Bukusi E., Fernald L.C.H. Timing, intensity,                                             |
| 35<br>36             | 18     |     | and duration of household food insecurity are associated with early childhood                                                     |
| 37<br>38             | 19     |     | development in Kenya. Matern Child Nutr. 2018;14(2):e12543.                                                                       |
| 39<br>40             | 20     | 19. | Prado E., Adu-Afarwuah S., Ashorn P., Hess S.Y., Lartey A., Maleta K., et al. How                                                 |
| 41<br>42             | 21     |     | nutrition and environmental influences shape child development during the first 1000                                              |
| 43<br>44             | 22     |     | days: Direct and indirect associations in four prospective cohorts of young children in                                           |
| 45<br>46             | 23     |     | Africa. Ann Nutr Metab. 2017;71(Supplement 2):539.                                                                                |
| 40<br>47<br>48       | 24     | 20. | Sudfeld CR, McCoy DC, Fink G, Muhihi A, Bellinger DC, Masanja H, et al.                                                           |
| 49                   | 25     |     | Malnutrition and Its Determinants Are Associated with Suboptimal Cognitive,                                                       |
| 50<br>51             | 26     |     | Communication, and Motor Development in Tanzanian Children. J Nutr.                                                               |
| 52<br>53             | 27     |     | 2015;145(12):2705–14.                                                                                                             |
| 54<br>55             | 28     | 21. | Locks LM, Manji KP, McDonald CM, Kupka R, Kisenge R, Aboud S, et al. The effect                                                   |
| 56<br>57             | 29     |     | of daily zinc and/or multivitamin supplements on early childhood development in                                                   |
| 57<br>58<br>59<br>60 | 30     |     | Tanzania: results from a randomized controlled trial. Matern Child Nutr. 2017;13(2).                                              |

| 1<br>2   |    |     |                                                                                          |
|----------|----|-----|------------------------------------------------------------------------------------------|
| 3<br>4   | 1  | 22. | Manno D, Kowa PK, Bwalya HK, Siame J, Grantham-McGregor S, Baisley K, et al.             |
| 5        | 2  |     | Rich micronutrient fortification of locally produced infant food does not improve mental |
| 6<br>7   | 3  |     | and motor development of Zambian infants: a randomised controlled trial. Br J Nutr.      |
| 8<br>9   | 4  |     | 2012;107(4):556–66.                                                                      |
| 10<br>11 | 5  | 23. | Mireku MO, Davidson LL, Boivin MJ, Zoumenou R, Massougbodji A, Cot M, et al.             |
| 12<br>13 | 6  |     | Prenatal Iron Deficiency, Neonatal Ferritin, and Infant Cognitive Function. Pediatrics.  |
| 14<br>15 | 7  |     | 2016;138(6).                                                                             |
| 16<br>17 | 8  | 24. | Mireku M.O., Davidson L.L., Koura G.K., Ouedraogo S., Boivin M.J., Xiong X., et al.      |
| 18       | 9  |     | Prenatal hemoglobin levels and early cognitive and motor functions of one-year-old       |
| 19<br>20 | 10 |     | children. Pediatrics. 2015;136(1):e76-83.                                                |
| 21<br>22 | 11 | 25. | The association of early linear growth and haemoglobin concentration with later          |
| 23<br>24 | 12 |     | cognitive, motor, and social-emotional development at preschool age in Ghana -           |
| 25<br>26 | 13 |     | Ocansey Maternal & amp; Child Nutrition - Wiley Online Library [Internet]. [cited        |
| 27<br>28 | 14 |     | 2019 Oct 9]. Available from:                                                             |
| 29<br>30 | 15 |     | https://onlinelibrary.wiley.com/doi/full/10.1111/mcn.12834                               |
| 31<br>32 | 16 | 26. | Casale D, Desmond C. Recovery from stunting and cognitive outcomes in young              |
| 33       | 17 |     | children: evidence from the South African Birth to Twenty Cohort Study. J Dev Orig       |
| 34<br>35 | 18 |     | Health Dis. 2016 Apr;7(2):163–71.                                                        |
| 36<br>37 | 19 | 27. | Crookston B.T., Schott W., Cueto S., Dearden K.A., Engle P., Georgiadis A., et al.       |
| 38<br>39 | 20 |     | Postinfancy growth, schooling, and cognitive achievement: Young lives 1-4. Am J Clin     |
| 40<br>41 | 21 |     | Nutr. 2013;98(6):1555–63.                                                                |
| 42<br>43 | 22 | 28. | Ribe IG, Svensen E, Lyngmo BA, Mduma E, Hinderaker SG. Determinants of early             |
| 44<br>45 | 23 |     | child development in rural Tanzania. Child Adolesc Psychiatry Ment Health. 2018 Mar      |
| 46<br>47 | 24 |     | 20;12:18.                                                                                |
| 48<br>49 | 25 | 29. | Sunny B.S., DeStavola B., Dube A., Kondowe S., Crampin A.C., Glynn J.R. Does early       |
| 50       | 26 |     | linear growth failure influence later school performance? A cohort study in karonga      |
| 51<br>52 | 27 |     | district, Northern Malawi. PLoS ONE. 2018;13(11):e0200380.                               |
| 53<br>54 | 28 | 30. | Whaley SE, Sigman M, Espinosa MP, Neumann CG. Infant predictors of cognitive             |
| 55<br>56 | 29 |     | development in an undernourished Kenyan population. J Dev Behav Pediatr JDBP.            |
| 57<br>58 | 30 |     | 1998;19(3):169–77.                                                                       |
| 59<br>60 |    |     |                                                                                          |

| 3<br>4   |   |
|----------|---|
| 5<br>6   |   |
| 7<br>8   |   |
| 9<br>10  |   |
| 11       |   |
| 12<br>13 |   |
| 14<br>15 |   |
| 16       |   |
| 17<br>18 |   |
| 19<br>20 | 1 |
| 21<br>22 | 1 |
| 23<br>24 | 1 |
| 25<br>26 | 1 |
| 27<br>28 | 1 |
| 29<br>30 | 1 |
| 31<br>32 | 1 |
| 33<br>34 | 1 |
| 35       | 1 |
| 36<br>37 | 1 |
| 38<br>39 | 2 |
| 40<br>41 | 2 |
| 42<br>43 | 2 |
| 44<br>45 | 2 |
| 46<br>47 | 2 |
| 48       | 2 |
| 49<br>50 | 2 |
| 51<br>52 | 2 |
| 53<br>54 | 2 |
| 55<br>56 | 2 |
| 57<br>58 | 3 |
| 59<br>60 | 5 |
|          |   |

> 1 31. Abera M, Tesfaye M, Girma T, Hanlon C, Andersen GS, Wells JC, et al. Relation 2 between body composition at birth and child development at 2 years of age: a 3 prospective cohort study among Ethiopian children. Eur J Clin Nutr. 2017;71(12):1411– 7. 4 5 32. Ballot DE, Potterton J, Chirwa T, Hilburn N, Cooper PA. Developmental outcome of 6 very low birth weight infants in a developing country. BMC Pediatr. 7 2012;12(100967804):11. 8 33. Gladstone M., White S., Kafulafula G., Neilson J.P., van den Broek N. Post-neonatal 9 mortality, morbidity, and developmental outcome after ultrasound-dated preterm birth in 0 rural malawi: A community-based cohort study. PLoS Med. 2011;8(11):e1001121. 1 34. McDonald C.M., Manji K.P., Kupka R., Bellinger D.C., Spiegelman D., Kisenge R., et 2 al. Stunting and wasting are associated with poorer psychomotor and mental 3 development in HIV-exposed tanzanian infants. J Nutr. 2013;143(2):204–14. 35. Di Cesare M, Sabates R. Access to antenatal care and children's cognitive development: 4 5 a comparative analysis in Ethiopia, Peru, Vietnam and India. Int J Public Health. 2013;58(3):459-67. 6 7 36. Mekonnen H., Medhin G., Tomlinson M., Alem A., Prince M., Hanlon C. Impact of 8 maternal common mental disorders on child educational outcomes at 7 and 9 years: A population-based cohort study in Ethiopia. BMJ Open. 2018;8(1):e018916. 9 0 37. Servili C, Medhin G, Hanlon C, Tomlinson M, Worku B, Baheretibeb Y, et al. Maternal 1 common mental disorders and infant development in Ethiopia: the P-MaMiE Birth 2 Cohort. BMC Public Health. 2010;10(100968562):693. 3 38. Blakstad MM, Smith ER, Etheredge A, Locks LM, McDonald CM, Kupka R, et al. Nutritional, Socioeconomic, and Delivery Characteristics Are Associated with 4 5 Neurodevelopment in Tanzanian Children. J Pediatr. 2019 Apr 1;207:71-79.e8. 6 39. Koen N., Brittain K., Donald K.A., Barnett W., Koopowitz S., Mare K., et al. Maternal 7 posttraumatic stress disorder and infant developmental outcomes in a South African 8 birth cohort study. Psychol Trauma Theory Res Pract Policy. 2017;9(3):292-300. 9 40. Davies L., Dunn M., Chersich M., Urban M., Chetty C., Olivier L., et al. Developmental delay of infants and young children with and without fetal alcohol spectrum disorder in 0

| 1<br>2                                                   |    |     |                                                                                         |
|----------------------------------------------------------|----|-----|-----------------------------------------------------------------------------------------|
| 2<br>3<br>4                                              | 1  |     | the Northern Cape Province, South Africa. Afr J Psychiatry South Afr. 2011;14(4):298-   |
| 4<br>5<br>6                                              | 2  |     | 305.                                                                                    |
| 7<br>8                                                   | 3  | 41. | Donald KA, Wedderburn CJ, Barnett W, Nhapi RT, Rehman AM, Stadler JAM, et al.           |
| 9                                                        | 4  |     | Risk and protective factors for child development: An observational South African birth |
| 10<br>11                                                 | 5  |     | cohort. PLOS Med. 2019 Sep 27;16(9):e1002920.                                           |
| 12<br>13                                                 | 6  | 42. | Douglas DB, Waziry R, McCarthy EP, Tadesse AW, Feyssa MD, Kawooya M, et al.             |
| 14<br>15                                                 | 7  |     | Meeting the World Health Organization Maternal Antenatal Care Guidelines Is             |
| 16<br>17                                                 | 8  |     | Associated with Improved Early and Middle Childhood Cognition in Ethiopia. J Pediatr.   |
| 18<br>19                                                 | 9  |     | 2019 Jun 1;209:33-38.e1.                                                                |
| 20<br>21                                                 | 10 | 43. | Pitchik H.O., Fawzi W.W., McCoy D.C., Darling A.M., Abioye A.I., Tesha F., et al.       |
| 22                                                       | 11 |     | Prenatal nutrition, stimulation, and exposure to punishment are associated with early   |
| 23<br>24                                                 | 12 |     | child motor, cognitive, language, and socioemotional development in Dar es Salaam,      |
| 25<br>26                                                 | 13 |     | Tanzania. Child Care Health Dev. 2018;44(6):841–9.                                      |
| 27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36 | 14 | 44. | Bangirana P, Opoka RO, Boivin MJ, Idro R, Hodges JS, Romero RA, et al. Severe           |
|                                                          | 15 |     | malarial anemia is associated with long-term neurocognitive impairment. Clin Infect Dis |
|                                                          | 16 |     | Off Publ Infect Dis Soc Am. 2014;59(3):336–44.                                          |
|                                                          | 17 | 45. | Brim R, Mboma S, Semrud-Clikeman M, Kampondeni S, Magen J, Taylor T, et al.             |
|                                                          | 18 |     | Cognitive Outcomes and Psychiatric Symptoms of Retinopathy-Positive Cerebral            |
| 37                                                       | 19 |     | Malaria: Cohort Description and Baseline Results. Am J Trop Med Hyg.                    |
| 38<br>39                                                 | 20 |     | 2017;97(1):225–31.                                                                      |
| 40<br>41                                                 | 21 | 46. | Fink G, Olgiati A, Hawela M, Miller JM, Matafwali B. Association between early          |
| 42<br>43                                                 | 22 |     | childhood exposure to malaria and children's pre-school development: evidence from      |
| 44<br>45                                                 | 23 |     | the Zambia early childhood development project. Malar J. 2013 Jan 8;12:12.              |
| 46<br>47                                                 | 24 | 47. | Knox PC, MacCormick IJC, Mbale E, Malewa M, Czanner G, Harding SP. Longitudinal         |
| 48<br>40                                                 | 25 |     | Visuomotor Development in a Malaria Endemic Area: Cerebral Malaria and Beyond.          |
| 49<br>50                                                 | 26 |     | PloS One. 2016;11(10):e0164885.                                                         |
| 51<br>52<br>53                                           | 27 | 48. | Benki-Nugent S., Wamalwa D., Langat A., Tapia K., Adhiambo J., Chebet D., et al.        |
| 54                                                       | 28 |     | Comparison of developmental milestone attainment in early treated HIV-infected          |
| 55<br>56                                                 | 29 |     | infants versus HIV-unexposed infants: A prospective cohort study. BMC Pediatr.          |
| 57<br>58                                                 | 30 |     | 2017;17(1):24.                                                                          |
| 59                                                       |    |     |                                                                                         |
| 60                                                       |    |     |                                                                                         |

| 2        |     |     |                                                                                       |
|----------|-----|-----|---------------------------------------------------------------------------------------|
| 3<br>4   | 1   | 49. | Brahmbhatt H, Boivin M, Ssempijja V, Kigozi G, Kagaayi J, Serwadda D, et al.          |
| 5<br>6   | 2   |     | Neurodevelopmental benefits of antiretroviral therapy in Ugandan children aged 0-6    |
| 6<br>7   | 3   |     | years with HIV. J Acquir Immune Defic Syndr 1999. 2014;67(3):316-22.                  |
| 8<br>9   | 4   | 50  | Chaudhury S., Mayondi G.K., Williams P.L., Leidner J., Shapiro R., Diseko M., et al.  |
| 9<br>10  |     | 30. |                                                                                       |
| 11<br>12 | 5   |     | In-utero exposure to antiretrovirals and neurodevelopment among HIV-exposed-          |
| 13       | 6   |     | uninfected children in Botswana. AIDS. 2018;32(9):1173-83.                            |
| 14<br>15 | 7   | 51. | Chaudhury S., Williams P.L., Mayondi G.K., Leidner J., Holding P., Tepper V., et al.  |
| 16       | 8   |     | Neurodevelopment of HIV-exposed and HIV-unexposed uninfected children at 24           |
| 17<br>18 | 9   |     | months. Pediatrics. 2017;140(4):e20170988.                                            |
| 19       | 2   |     |                                                                                       |
| 20<br>21 | 10  | 52. | Le Roux S.M., Donald K.A., Brittain K., Phillips T.K., Zerbe A., Nguyen K.K., et al.  |
| 22<br>23 | 11  |     | Neurodevelopment of breastfed HIV-exposed uninfected and HIV-unexposed children       |
| 23<br>24 | 12  |     | in South Africa. AIDS. 2018;32(13):1781–91.                                           |
| 25<br>26 | 13  | 53. | McGrath N, Fawzi WW, Bellinger D, Robins J, Msamanga GI, Manji K, et al. The          |
| 27       |     | 55. |                                                                                       |
| 28<br>29 | 14  |     | timing of mother-to-child transmission of human immunodeficiency virus infection and  |
| 30       | 15  |     | the neurodevelopment of children in Tanzania. Pediatr Infect Dis J. 2006;25(1):47–52. |
| 31<br>32 | 16  | 54. | Msellati P, Lepage P, Hitimana DG, Van Goethem C, Van de Perre P, Dabis F.            |
| 33<br>34 | 17  |     | Neurodevelopmental testing of children born to human immunodeficiency virus type 1    |
| 35       | 18  |     | seropositive and seronegative mothers: a prospective cohort study in Kigali, Rwanda.  |
| 36<br>37 | 19  |     | Pediatrics. 1993;92(6):843–8.                                                         |
| 38<br>39 | 20  | 55  | Springer P.E., Slogrove A.L., Laughton B., Bettinger J.A., Saunders H.H., Molteno     |
| 40       | _•  | 55. |                                                                                       |
| 41<br>42 | 21  |     | C.D., et al. Neurodevelopmental outcome of HIV-exposed but uninfected infants in the  |
| 43       | 22  |     | Mother and Infants Health Study, Cape Town, South Africa. Trop Med Int Health.        |
| 44<br>45 | 23  |     | 2018;23(1):69–78.                                                                     |
| 46<br>47 | 24  | 56. | Strehlau R, van Aswegen T, Potterton J. Neurodevelopmental assessment of HIV-         |
| 48       | 25  |     | exposed uninfected and early-treated HIV-infected children: study protocol. BMC Res   |
| 49<br>50 | 26  |     | Notes. 2018;11(1):235.                                                                |
| 51       | ~ - |     |                                                                                       |
| 52<br>53 | 27  | 57. |                                                                                       |
| 54<br>55 | 28  |     | infected children accessing care in kinshasa, Democratic Republic of Congo. J Acquir  |
| 56       | 29  |     | Immune Defic Syndr. 2009;52(5):636–42.                                                |
| 57<br>58 |     |     |                                                                                       |
| 59       |     |     |                                                                                       |
| 60       |     |     |                                                                                       |

| 1<br>2                                       |    |     |                                                                                         |
|----------------------------------------------|----|-----|-----------------------------------------------------------------------------------------|
| 3                                            | 1  | 58. | Boivin MJ, Barlow-Mosha L, Chernoff MC, Laughton B, Zimmer B, Joyce C, et al.           |
| 4<br>5                                       | 2  |     | Neuropsychological performance in African children with HIV enrolled in a multisite     |
| 6<br>7<br>8                                  | 3  |     | antiretroviral clinical trial. Aids. 2018 Jan 14;32(2):189-204.                         |
| 8<br>9                                       | 4  | 59. | Reynolds S.A., Andersen C., Behrman J., Singh A., Stein A.D., Benny L., et al.          |
| 10<br>11                                     | 5  |     | Disparities in children's vocabulary and height in relation to household wealth and     |
| 12<br>13                                     | 6  |     | parental schooling: A longitudinal study in four low- and middle-income countries.      |
| 14<br>15                                     | 7  |     | SSM - Popul Health. 2017;3((Reynolds, Fernald) School of Public Health, University of   |
| 15<br>16<br>17<br>18<br>19<br>20             | 8  |     | California, Berkeley, CA, United States):767-86.                                        |
|                                              | 9  | 60. | Dearden K.A., Brennan A.T., Behrman J.R., Schott W., Crookston B.T., Humphries          |
|                                              | 10 |     | D.L., et al. Does household access to improved water and sanitation in infancy and      |
| 21<br>22                                     | 11 |     | childhood predict better vocabulary test performance in Ethiopian, Indian, Peruvian and |
| 23<br>24                                     | 12 |     | Vietnamese cohort studies? BMJ Open. 2017;7(3):e013201.                                 |
| 25<br>26                                     | 13 | 61. | Espie E., Ouss L., Gaboulaud V., Candilis D., Ahmed K., Cohuet S., et al. Against the   |
| 27<br>28                                     | 14 |     | Odds: Psychomotor development of children under 2 years in a Sudanese orphanage. J      |
| 29<br>30                                     | 15 |     | Trop Pediatr. 2011;57(6):412–7.                                                         |
| 31<br>32                                     | 16 | 62. | Eskenazi B, An S, Rauch SA, Coker ES, Maphula A, Obida M, et al. Prenatal Exposure      |
| 33                                           | 17 |     | to DDT and Pyrethroids for Malaria Control and Child Neurodevelopment: The              |
| 34<br>35<br>36<br>37                         | 18 |     | VHEMBE Cohort, South Africa. Environ Health Perspect. 2018 Apr;126(4):047004.           |
|                                              | 19 | 63. | Goetghebuer T, Ota MOC, Kebbeh B, John M, Jackson-Sillah D, Vekemans J, et al.          |
| 38<br>39                                     | 20 |     | Delay in motor development of twins in Africa: A prospective cohort study. Twin Res.    |
| 40<br>41                                     | 21 |     | 2003 Aug;6(4):279–84.                                                                   |
| 42<br>43                                     | 22 | 64. | Molteno CD, Hollingshead J, Moodie AD, Bradshaw D, Bowie MD, Willoughby W.              |
| 44<br>45                                     | 23 |     | Preschool development of coloured children in Cape Town. South Afr Med J Suid-Afr       |
| 46                                           | 24 |     | Tydskr Vir Geneeskd. 1991;79(11):665–70.                                                |
| 47<br>48<br>49                               | 25 | 65. | Hsiao C, Richter LM. Early Mental Development As a Predictor of Preschool Cognitive     |
| 50                                           | 26 |     | and Behavioral Development in South Africa: The Moderating Role of Maternal             |
| 51<br>52<br>53<br>54<br>55<br>56<br>57<br>58 | 27 |     | Education in the Birth to Twenty Cohort. Infants Young Child. 2014 Mar;27(1):74.        |
|                                              | 28 | 66. | Wallander JL, Biasini FJ, Thorsten V, Dhaded SM, de Jong DM, Chomba E, et al. Dose      |
|                                              | 29 |     | of early intervention treatment during children's first 36 months of life is associated |
|                                              | 30 |     | with developmental outcomes: an observational cohort study in three low/low-middle      |
| 59<br>60                                     | 31 |     | income countries. BMC Pediatr. 2014;14(100967804):281.                                  |
|                                              |    |     |                                                                                         |

| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 1  | 67. | McGrath M. Advancing Early Childhood Development: From Science to Scale. Field           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                       | 2  |     | Exch 53. 2016 Nov 3;41.                                                                  |
|                                                                                                                                                                                                                                       | 3  | 68. | Lozoff B, Beard J, Connor J, Felt B, Georgieff M, Schallert T. Long-Lasting Neural and   |
|                                                                                                                                                                                                                                       | 4  |     | Behavioral Effects of Iron Deficiency in Infancy. Nutr Rev. 2008 Jun 28;64:S34-43.       |
|                                                                                                                                                                                                                                       | 5  | 69. | Congdon EL, Westerlund A, Algarin CR, Peirano PD, Gregas M, Lozoff B, et al. Iron        |
|                                                                                                                                                                                                                                       | 6  |     | deficiency in infancy is associated with altered neural correlates of recognition memory |
|                                                                                                                                                                                                                                       | 7  |     | at 10 years. J Pediatr. 2012 Jun;160(6):1027-33.                                         |
|                                                                                                                                                                                                                                       | 8  | 70. | Langley-Evans SC. Nutrition in early life and the programming of adult disease: a        |
|                                                                                                                                                                                                                                       | 9  |     | review. J Hum Nutr Diet. 2015 Jan;28:1–14.                                               |
|                                                                                                                                                                                                                                       | 10 | 71. | Langley-Evans SC, Carrington LJ. Diet and the developing immune system. Lupus.           |
|                                                                                                                                                                                                                                       | 11 |     | 2006 Nov;15(11):746–52.                                                                  |
|                                                                                                                                                                                                                                       | 12 | 72. | Mendonça B, Sargent B, Fetters L. Cross-cultural validity of standardized motor          |
|                                                                                                                                                                                                                                       | 13 |     | development screening and assessment tools: a systematic review. Dev Med Child           |
|                                                                                                                                                                                                                                       | 14 |     | Neurol. 2016 Dec;58(12):1213–22.                                                         |
|                                                                                                                                                                                                                                       | 15 | 73. | Gladstone M, Lancaster GA, Umar E, Nyirenda M, Kayira E, Broek NR van den, et al.        |
|                                                                                                                                                                                                                                       | 16 |     | The Malawi Developmental Assessment Tool (MDAT): The Creation, Validation, and           |
|                                                                                                                                                                                                                                       | 17 |     | Reliability of a Tool to Assess Child Development in Rural African Settings. PLOS        |
|                                                                                                                                                                                                                                       | 18 |     | Med. 2010 May 25;7(5):e1000273.                                                          |
|                                                                                                                                                                                                                                       | 19 | 74. | Boggs D, Milner KM, Chandna J, Black M, Cavallera V, Dua T, et al. Rating early child    |
|                                                                                                                                                                                                                                       | 20 |     | development outcome measurement tools for routine health programme use. Arch Dis         |
|                                                                                                                                                                                                                                       | 21 |     | Child. 2019 Apr 1;104(Suppl 1):S22–33.                                                   |
| 43<br>44                                                                                                                                                                                                                              | 22 | 75. | Fernald LCH, Kariger P, Engle P, Raikes A. Examining Early Child Development in          |
| 45<br>46                                                                                                                                                                                                                              | 23 |     | Low-Income Countries: A Toolkit for the Assessment of Children in the First Five         |
| 47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55                                                                                                                                                                                    | 24 |     | Years of Life [Internet]. World Bank; 2009 [cited 2019 Jul 3]. Available from:           |
|                                                                                                                                                                                                                                       | 25 |     | http://elibrary.worldbank.org/doi/book/10.1596/28107                                     |
|                                                                                                                                                                                                                                       | 26 | 76. | Cromwell EA, Dube Q, Cole SR, Chirambo C, Dow AE, Heyderman RS, et al. Validity          |
|                                                                                                                                                                                                                                       | 27 |     | of US norms for the Bayley Scales of Infant Development-III in Malawian children. Eur    |
|                                                                                                                                                                                                                                       | 28 |     | J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc. 2014 Mar;18(2):223-30.             |
| 56<br>57                                                                                                                                                                                                                              | 29 | 77. | Hanlon C, Medhin G, Worku B, Tomlinson M, Alem A, Dewey M, et al. Adapting the           |
| 58<br>59                                                                                                                                                                                                                              | 30 |     | Bayley Scales of infant and toddler development in Ethiopia: evaluation of reliability   |
| 60                                                                                                                                                                                                                                    | 31 |     | and validity. Child Care Health Dev. 2016;42(5):699-708.                                 |

| 1  | 78.                                                                                              | Murray E, Fernandes M, Newton CRJ, Abubakar A, Kennedy SH, Villar J, et al.                                                         |
|----|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                  | Evaluation of the INTERGROWTH-21st Neurodevelopment Assessment (INTER-                                                              |
| 3  |                                                                                                  | NDA) in 2 year-old children. PLOS ONE. 2018 Feb 28;13(2):e0193406.                                                                  |
| 4  | 79.                                                                                              | Donald KA, Hoogenhout M, du Plooy CP, Wedderburn CJ, Nhapi RT, Barnett W, et al.                                                    |
| 5  |                                                                                                  | Drakenstein Child Health Study (DCHS): investigating determinants of early child                                                    |
| 6  |                                                                                                  | development and cognition. BMJ Paediatr Open [Internet]. 2018 Jun 13 [cited 2019 Apr                                                |
| 7  |                                                                                                  | 15];2(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014194/                                                     |
| 8  | 80.                                                                                              | Caulfield LE, Bose A, Chandyo RK, Nesamvuni C, de Moraes ML, Turab A, et al.                                                        |
| 9  |                                                                                                  | Infant Feeding Practices, Dietary Adequacy, and Micronutrient Status Measures in the                                                |
| 10 |                                                                                                  | MAL-ED Study. Clin Infect Dis. 2014 Nov 1;59:S248-54.                                                                               |
| 11 | 81.                                                                                              | Murray-Kolb LE, Rasmussen ZA, Scharf RJ, Rasheed MA, Svensen E, Seidman JC, et                                                      |
| 12 |                                                                                                  | al. The MAL-ED Cohort Study: Methods and Lessons Learned When Assessing Early                                                       |
| 13 |                                                                                                  | Child Development and Caregiving Mediators in Infants and Young Children in 8 Low-                                                  |
| 14 |                                                                                                  | and Middle-Income Countries. Clin Infect Dis. 2014 Nov 1;59(suppl_4):S261-72.                                                       |
| 15 | 82.                                                                                              | Grantham-McGregor S, Ani C. A Review of Studies on the Effect of Iron Deficiency on                                                 |
| 16 |                                                                                                  | Cognitive Development in Children. J Nutr. 2001 Feb 1;131(2):649S-668S.                                                             |
| 17 | 83.                                                                                              | Ip P, Ho FKW, Rao N, Sun J, Young ME, Chow CB, et al. Impact of nutritional                                                         |
| 18 |                                                                                                  | supplements on cognitive development of children in developing countries: A meta-                                                   |
| 19 |                                                                                                  | analysis. Sci Rep Nat Publ Group Lond. 2017 Sep;7:1–9.                                                                              |
| 20 |                                                                                                  |                                                                                                                                     |
|    |                                                                                                  |                                                                                                                                     |
|    |                                                                                                  |                                                                                                                                     |
|    |                                                                                                  |                                                                                                                                     |
|    |                                                                                                  |                                                                                                                                     |
|    |                                                                                                  |                                                                                                                                     |
|    |                                                                                                  |                                                                                                                                     |
|    |                                                                                                  |                                                                                                                                     |
|    |                                                                                                  |                                                                                                                                     |
|    |                                                                                                  |                                                                                                                                     |
|    |                                                                                                  |                                                                                                                                     |
|    |                                                                                                  |                                                                                                                                     |
|    |                                                                                                  |                                                                                                                                     |
|    |                                                                                                  |                                                                                                                                     |
|    | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | 2<br>3<br>4<br>79.<br>5<br>6<br>7<br>8<br>80.<br>9<br>10<br>11<br>81.<br>12<br>13<br>14<br>15<br>82.<br>16<br>17<br>83.<br>18<br>19 |