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In this work, we analyse the relationship between heterogeneity and cooperation. Previous investigations sug-
gest that this relation is nontrivial, as some authors found that heterogeneity sustains cooperation, while others
obtained different results. Among the possible forms of heterogeneity, we focus on the individual perception
of risks and rewards related to a generic event, that can show up in a number of social and biological systems.
The modelling approach is based on the framework of Evolutionary Game Theory. To represent this kind of
heterogeneity, we implement small and local perturbations on the payoff matrix of simple 2-strategy games, as
the Prisoner’s Dilemma. So, while usually the payoff is considered as a global and time-invariant structure, i.e.
it is the same for all individuals of a population at any time, in our model its value is continuously affected by
small variations, both in time and space (i.e. position on a lattice). We found that such perturbations can be
beneficial or detrimental to cooperation, depending on their setting. Notably, cooperation is strongly supported
when perturbations act on the main diagonal of the payoff matrix, whereas when they act on the off-diagonal the
resulting effect is more difficult to quantify. To conclude, the proposed model shows a rich spectrum of possible
equilibria, whose interpretation might offer insights and enrich the description of several systems.

I. INTRODUCTION

The inherent heterogeneity of human beings, as well as that
of other animals, reflects in the variety of behaviours observ-
able in groups and communities of individuals. However, by
using a well defined set of categories to describe human be-
haviours [1], such as conformity, rationality, zealotry, and so
on, the complexity of a social system can be reduced and can
be tackled by appropriate models. The modern field of so-
ciophysics (also called social dynamics) [2–10] represents a
class of models whose goal is studying social phenomena and
human behaviours in mathematical terms.

Therefore, following an approach similar to that adopted
in physics, investigations in sociophysics usually define sim-
ple models, based on few degrees of freedom, and solve them
by analytical calculations or numerical simulations. This ap-
proach is extremely successful, for instance, when studying
the motion of particles, and other classic physical systems.

On the other hand, the selection of relevant properties, and
the granularity of the corresponding variables, might entail the
loss of significant information. For instance, when studying
human psychology, behaviours, and in general social phenom-
ena, such loss can be so relevant that psychologists and soci-
ologists might be reluctant to accept results obtained by a ’too
simple’ model, even if based on an elegant set of equations. In
saying ’too simple’, we refer to those models that oversimplify
a real scenario, or phenomenon, becoming unable to represent
it properly. It can be worth to mention the case of the voter
model [11], whose limits and potentialities for describing real
political scenarios have been reported in [12].

Now, let us proceed with our focus on the heterogeneity,
also called diversity. Despite being an almost ubiquitous prop-
erty of social and biological systems [13], for the sake of sim-
plicity many models can safely neglect it. On the other hand,
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sometimes further efforts to represent heterogeneity led to
findings more valuable than expected (see for instance [14]).
Also, since this property can refer to one or more aspects of a
system, seeing it as beneficial or detrimental becomes a fairly
relative matter. For instance, networks [15] can be heteroge-
neous or homogeneous in relation to their topology, like scale-
free [16] and classical random graphs [17], respectively. Here,
both the transmission of information and the viral spreading
are slower in networks with homogeneous topology. So, in
the first case, heterogeneity is clearly beneficial, while in the
other is detrimental. Interesting observations arise also con-
sidering animal cell replication, which can be realized by mi-
tosis and meiosis. Notably, the latter increases the genetic
diversity (i.e. heterogeneity) [18] of a population. In business
and science, heterogeneity of skills can make a group more
effective (e.g. [19]), in ecological systems it could affect the
size and the stability of a group (see [20]), and in social sys-
tems heterogeneity (e.g. cultural differences) might constitute
the cause of a conflict [21]. Recently, the existence of a deep
relationship between cultural differences and cooperation in
human societies has been experimentally confirmed [22]. It is
worth to mention that cooperation still represents an important
scientific challenge, and despite a huge literature focused on
its dynamics (e.g. [23–27]), a lot of questions around it still re-
quire a proper answer. Hence, clarifying further whether and
how some forms of heterogeneity can support cooperative be-
haviours might be relevant.

To this end, we concentrate on the heterogeneity of the in-
dividual perception of a risk (or reward) associated with a
generic event, i.e. we study an aspect of humans and, probably
also of other animals, that can manifest in a variety of com-
mon scenarios. In addition, since our investigation aims to
understand the relationship between this psychological aspect
and cooperative behaviours, we use the framework of Evolu-
tionary Game Theory (hereinafter EGT) [28, 29]. The latter
allows studying social dynamics, biological phenomena, and
many other evolutionary systems [30]. In addition, hetero-
geneity has already been analysed under its lens and a va-
riety of results, sometimes even controversial, has been ob-
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tained [31–34]. In our view, an increasing interest in the re-
lationship between heterogeneity and cooperation reflects its
potential relevance in many contexts and domains. This can
also be observed in the influx of recent works trying to find a
general framework to explain the effects of perception diver-
sity [14, 34–47].

Thus, motivated by a challenging debate, we analyse the
heterogeneity resulting from varying the profits that rational
individuals try to achieve in simple games. In saying ratio-
nal [48], we assume that all individuals act to maximise their
profit, so that any variation of the payoff structure can actually
influence their actions. Accordingly, in the proposed model,
individuals play games like the Prisoner’s Dilemma, whose
payoff matrix is affected by small random perturbations. As
one can note, here the payoff is not a global and constant prop-
erty of the system, since small random perturbations can last a
single interaction, and can affect a single individual at a time.
In doing so, we represent a population whose perception of
risk/reward is not defined by a static and global parameter but,
instead, by a value that fluctuates around an average.

We remark that many real scenarios involve people having
a different risk perception of the same event. Notably, from
financial markets to scientific organisations, the psychology
of risk perception plays a fundamental role, with a spectrum
of behaviours (e.g. group polarisation) that can become even
dangerous. A relevant case can be found in [49], which de-
scribes the failure of the NASA Challenger project as an ex-
ample of a dangerously reduced perception of risk. Hence, be-
yond being a common aspect of the real world, heterogeneity
of risk perception is also quite relevant and difficult to predict
or quantify. We emphasise that the perturbation approach here
developed finds connections also with new researches on po-
tential games [50], that use the operator formalism from quan-
tum mechanics to relate the payoff matrix with the Hamilto-
nian of a system [51].

The next sections describe in detail the proposed model,
show the results of numerical simulations and, eventually, dis-
cuss our findings and future developments.

II. MODEL

In the proposed model, we consider two-strategy games
whose agents can either cooperate (C) or defect (D). Mutual
cooperation yields a payoff R (reward), while mutual defec-
tion yields P (punishment). Also, a defector receives a payoff
T (temptation) when interacts with a cooperator that, in turn,
receives a payoff S, known as the Sucker’s payoff [30]. The
payoff matrix combines in a single structure all the above-
mentioned payoffs so, depending on their value, it relates to
a specific game (e.g. the Prisoner’s Dilemma). Usually, this
matrix is constant over time and it contains the same entries
for all agents. In order to represent the heterogeneity of risk
perception, we introduce small perturbations on this matrix.

Notably, such perturbations act at the local level hence, at
a same instant, two individuals might have a slightly different
payoff matrix, as well as one individual can find two slightly
different payoff matrices in two different game iterations. In

particular, perturbations (i.e. ε) are implemented via a uniform
distribution with range D (our control parameter) and they
are not cumulative. Moreover, it is important to add that the
resulting heterogeneity has zero average, i.e. perturbations
should actually give a null effect in the long term.

We consider three different configurations: FP (Full Pertur-
bation, i.e. acting on all payoff entries), MDP (Main Diagonal
Perturbation, i.e. acting only on the main diagonal of the pay-
off matrix) and ODP (Off-Diagonal Perturbation). Note that,
by doing so, there are no asymmetries between the strategies
regarding the perturbations, i.e. for any configuration both
strategies, C and D, will always have at least one of their pos-
sible payoff values perturbed. The considered configurations
do not cover the whole spectrum of possibilities as, for in-
stance, another configuration could be based on perturbations
acting only in the R and S entries, and it would result in a
population where only cooperators would be affected. The
first configuration (FP) has the following payoff matrix:

C D
C
D

[
R+ εR S + εS
T + εT P + εP

]
(1)

the MDP configuration is defined as

C D
C
D

[
R+ εR S
T P + εP

]
(2)

eventually, the ODP configuration reads

C D
C
D

[
R S + εS

T + εT P

]
(3)

where T ∈ [0, 2] and S ∈ [−1, 1]. Without loss of gener-
ality, we set R = 1 and P = 0 [52]. Although [R,P ] are
fixed, the perturbation can make said values fluctuate for each
individual and at each time (i.e. iteration). The parametriza-
tion adopted in the above payoff matrices spans four differ-
ent classes of games in the [T, S] parameter space: prisoner’s
dilemma (PD), snow-drift (SD), stag-hunt (SH), and harmony
games (HG) [7, 30] —see Figure 1. We stress that the ac-
tual parameter space has 4 dimensions, and the perturbations
will act on all four parameters [T, S, P,R] in an uncorrelated
manner.

It is a well known result that the Nash Equilibrium of a
game is not changed by the sum of a constant term in the
payoff matrix nor by its multiplication by a constant [29, 30].
However, it is important to remember that we are adding ran-
dom numbers in each payoff entry, and not global constants.
So, the actual individual payoff value will change in time and
for each agent. Accordingly, although the average value of
the perturbation is zero, locally the game class can change
from time to time [33, 53, 54]. Even so, the average game
will stay centered in the chosen initial [T, S] parameters. For
the population dynamics, we implement the usual imitative
update rule weighted by the Fermi distribution [48], in a spa-
tially distributed population with the square lattice topology.
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FIG. 1. T × S × R × P (4 dimensional) parameter space with
R = 1, P = 0, spanning four classes of games. The P dimension is
represented only in the Cartesian coordinate system (outside the pa-
rameter space, on the left-hand side). The payoff fluctuation can act
over [T, S, P,R] simultaneously and uncorrelated. This makes any
given game able to fluctuate around a (4D) box with 2ε size edges,
centered on the original game. Note that local fluctuations can lead
agents to (locally) play different classes of games depending on the
fluctuation strength.

At each time step, one agent, i, updates its strategy by com-
paring its payoff with one randomly chosen first neighbour, j.
Then, agent i adopts the strategy of agent j with probability

p(∆uij) =
1

1 + e−(uj−ui)/k
, (4)

where k is the irrationality level [30], and ui represents the
payoff of agent i. We set k = 0.1 for all simulations unless
stated otherwise.

III. RESULTS

We begin with a simplified analytical model of a mixed
game setting and try to generalise it to the perturbation pay-
off scenario. As shown in [55], the random mixing of two
fixed different games (i.e. payoff matrices) in the context of
the well-mixed population should be identical to the evolu-
tion of a population using the average payoff matrix in the
mean-field approximation (note that this is not necessarily true
for spatially distributed systems). We can generalise this re-
sult for the case of infinite discrete games randomly mixed,
which represents our model of perturbed payoffs. Suppose
that at a time t, a system is characterised by the strategy con-
figuration {s} = {s1, s2, ...sN}, where si is the strategy of
agent i, and by the payoff matrix assignment configuration
{g(t)} = {g12(t), g13(t), . . .}. Note that the variable gij(t)
indicates which game agents i and j are playing at time t. In
our specific case, gij(t)=G+ εij(t) where G is the fixed usual
payoff matrix, and εij(t) is the perturbation that is randomly
drawn and it has zero average. Let P ({s}, {g}, t) be the prob-
ability to find the system in the configuration {s} and {g} at
time t. The time evolution of this system is given by the mas-
ter equation:

d

dt
P ({s}, {g}, t) =

∑
{s}′,{g}′

P (s′, g′, t)W (s′, g′ → s, g)

−P (s, g, t)W (s, g → s′, g′) ,(5)

where W (s′, g′ → s, g) is the transition rate from the state
{s}, {g}′ to {s}, {g}.

Supposing that the strategy variables {s} are statistically
independent of the game variables {g}, and that the transition
rates are linear functions of the payoffs, we can use the main
result from [55] to obtain:〈

d

dt
P ({s}, {g}, t)

〉
g

=
d

dt
P ({s}, 〈g〉 , t). (6)

That is, the average evolution of a population playing a set {g}
of randomly mixed games will undergo the usual evolution
of a single population playing the equivalent average payoff
matrix 〈g〉.

We stress that this initial result only applies to the mean-
field approximation. Nevertheless, it is useful for comparison
with our model, since the average payoff matrix of the per-
turbed game is equal to the unperturbed matrix. Analytical
results predict that, on average, small random perturbations
should not change the evolution as long as the population is
interacting without spatial structure and the update rule is lin-
ear. This is also in line with recent results reported in [56].
Our simulations using a well-mixed topology presented some
small changes in the perturbed population evolution, with the
perturbations enhancing cooperation. In contrast, the out-
comes for the square lattice show strong and diverse emergent
effects caused by the perturbations. We proceed by presenting
the main results for the square-lattice topology.

To implement the numerical simulations we adopt an asyn-
chronous Monte-Carlo protocol with a square lattice, Von
Neumann neighbourhood and periodic boundary conditions
with N = 104 agents. We wait for the system to reach a dy-
namic equilibrium (around 104 MCS’s) and average the val-
ues over the final 1000 steps. This is repeated for 50 different
samples with the same parameters.

We begin by focusing on the final fraction of cooperators
(ρ) near the phase transition in Tc = 1.04. For the sake of
simplicity, we present the outcomes related to the weak pris-
oner’s dilemma case (i.e. S = 0). Figure 2 shows results
achieved by small (i.e. D = 0.1) and medium (D = 0.3) per-
turbations, compared to the unperturbed case (D = 0). The
main differences between the perturbed configurations and the
unperturbed one happen in the region around 0.9 < T < 1.15.
From Figure 2, we see that all three kinds of perturbation
settings can enhance the range of T where cooperation sur-
vives. Even more, we see that for strong perturbations the
MDP model seems to be the most efficient in doing so, being
followed by the FP model. The general effects of the three
different perturbation configurations become more and more
similar as D → 0. This effect was consistently observed for
other D values. It is also worth pointing out that the extinc-
tion point of cooperation is very similar for all three configu-
rations.

Figure 3 presents the difference between the final coopera-
tion level of the perturbed (ρ) and the unperturbed (ρ0) case.
Again, for simplicity, we present only the cases for D = 0.3
and D = 0.1. We report that simulations with intermediate
D values also present curves that change continuously. We
can observe that the overall effect of the perturbation is to in-
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FIG. 2. Average final cooperation level as a function of T for the
three different configurations, Full Perturbation (FP), Main Diagonal
Perturbation (MDP) and Off-Diagonal Perturbation (ODP). Dashed
lines represent small perturbation (D = 0.1) and continuous lines
represent strong perturbation (D = 0.3). Even small perturbations
can sustain cooperation past the extinction point and larger noise
strength can greatly enhance cooperative behaviour. Note however
that the effects of each configuration are slightly different.
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FIG. 3. Difference between the final cooperation level of the per-
turbed (ρ) and non-perturbed (ρ0) cases as a function of T . By anal-
isying (ρ − ρ0) we can filter off the effect of increasing T , leaving
just the perturbation effect. Dashed lines represent small perturbation
(D = 0.1) and continuous lines represent an average perturbation
(D = 0.3). While the FP and MDP settings increase cooperation,
the ODP has a non-trivial effect, decreasing cooperation if T < 1
(Harmony-Game region).

crease cooperation. Nevertheless, the ODP model can hinder
cooperation for the small region 0.9 < T < 1. In Figure 3,
it is clear that the MDP model can have a greater impact on
cooperation. What is more, if we consider that the FP model
is the sum of the MDP and ODP perturbations, it becomes
clear that the small negative values of ρ− ρ0 observed for the
weak perturbations in the FP model (red dashed line) in the
region 0.9 < T < 1 are due to the off-diagonal perturbations.
We also note that while the FP model is the direct sum of the
MDP and ODP model in terms of perturbations, the final co-
operation level in the FP model is not just the sum between
the final cooperation level of the ODP and MDP models. That
is, as expected, the final cooperation behaves non-linearly in
the types of perturbations implemented.
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FIG. 4. Average cooperation level as a function of D for the three
configurations using T = 1.04 (continuous lines) and T = 1.1 (dot-
ted lines). The cooperation enhancing effect increases monotonously
with the perturbation strength. Such effect mostly pronounced in the
cooperation extinction point Tc = 1.04.

In figure 4 we present the final cooperation level as we vary
the perturbation strength for T = 1.04 (continuous lines) and
T = 1.1 (dotted lines) in the three configurations. This al-
lows us to continuously visualise the effect of the perturbation
strength. Note that for both T values, the FP model generates
more cooperation for small perturbation effects. However, the
MDP model quickly overcomes this difference and it becomes
the more efficient type of perturbation regarding the promo-
tion of cooperation. The specific turning point varies with T
in a nontrivial manner. Also, note that while the ODP config-
uration has a very shallow slope, the other two configurations
keep increasing ρ at a fast rate as D increases. We see again
that the perturbation in the off-diagonal elements of the payoff
matrix is of little effect when compared to the main diagonal
terms.

Despite our main focus on the behaviour of rational indi-
viduals, for the sake of completeness, here we briefly present
the results achieved by continuously varying the level of ir-
rationality (controlled by the associated temperature k). The
results can be seen in Figure 5. Notably, increasing k (i.e.
adding some irrationality) one observes random fluctuations
in the imitation process, however it is important to realise how
differently that variation affects our population in comparison
to the effects resulting from random perturbations in the pay-
off. The payoff perturbation can increase cooperation for all
the studied values of k, although, after a peak value, this ef-
fect begins to diminish as irrationality keeps increasing. We
can also see that this increase is proportional to the perturba-
tion strength. On the other hand, it is more difficult to compare
the effects of each perturbation configuration. We see that for
low k values, the most influential is the MDP configuration,
followed by the FP and lastly the ODP. Nevertheless, for high
k, their effect is inverted. In the context of the evolution of
cooperation, scenarios with low irrationality are more inter-
esting, since they lead to more cooperation and as k becomes
much larger than 1 the system just behaves randomly. In the
region of k ∈ [0, 1], we see again that the diagonal perturba-
tions are the most efficient route to promote cooperation. For
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FIG. 5. Final cooperation level versus the irrationality level k for
the three different configurations at D = 0.3 (continuous lines) and
D = 0.1 (dashed lines). The solid black curve shows the unper-
turbed model, D = 0. Notice that while fluctuations originating
from varying irrationality (k) can boost cooperation, they are not cor-
related to the fluctuations resulting from payoff diversity (D).

low perturbations, however, the FP is a little more efficient.
We stress that the random perturbation effects on payoff en-

tries lead to different outcomes than randomness arising from
the irrationality level k. Specifically, we ran simulations for
a wide range of k (i.e. k ∈ (0, 3]) and while the perturba-
tion effects remained qualitatively similar, the pure effects of
varying k are very different from those of the payoff pertur-
bation. This can be more clearly seen by comparing Figures 5
and 4. Further interesting analyses, on the effects of irrational-
ity, have been reported also in [57, 58].

It is worth mentioning that payoff perturbation changes
population dynamics for very short Monte-Carlo times. Re-
markably, even earlier than 100 Monte-Carlo steps the per-
turbation can change the population evolution. This effect
has been observed in all three configurations. We also ob-
serve that lattice snapshots were not useful in characterising
the population behaviour with regard to payoff perturbations.
That is, while perturbations increase the overall cooperation
level, snapshots of the perturbed and unperturbed populations
are largely similar, with the only difference being in a greater
density of cooperators for all perturbed configurations.

IV. CONCLUSIONS

In social and biological systems, and in many other con-
texts, heterogeneity often shows up in different forms. Un-
derstanding the way it contributes to a specific process is not
always intuitive or immediate. Also, the inherent heterogene-
ity of a system is frequently neglected for practical modelling
reasons, and often this choice turns to be convenient. How-
ever, the relationship between heterogeneity and cooperation
is still a matter of open debate.

Notably, previous investigations addressing other forms of
heterogeneity (e.g. [59–63]) suggested that its relationship
with cooperation is absolutely relevant, whereas other au-
thors obtained results leading to an opposite, or different,

views [31, 64]. Therefore, this variety of findings turned
the relationship between heterogeneity and cooperation into
a stimulating debate. At this point, we deem relevant to men-
tion also a very recent investigation [22], related to large-scale
forms of cooperation, reporting a clear connection between
human cooperation and cultural differences. Looking at this
scenario, in our view it is definitely relevant to identify the
system parameters (and conditions) whose heterogeneity sup-
ports the emergence of cooperative behaviours, and trying to
compare models that lead to (maybe only apparent) conflictual
outcomes. Notably, even a small variation of a configuration
can change drastically an equilibrium.

So a further, maybe somehow speculative, generalisation of
our view can read as the need to identify parameters whose
small variations can affect the strategy equilibrium, in the
same way as in Physics one aims to find quantities whose vari-
ation does not change the equations of motion. For the sake of
clarity, we specify that while the Noether theorem is focused
on the relation between symmetry and conservation, in this
context, the opposite seems to be definitely more interesting,
i.e. the need to identify those variables whose heterogeneity
leads to a different equilibrium.

Let us now go back to the main question, i.e. is hetero-
geneity a beneficial ingredient for stimulating cooperative be-
haviours? Notably, we considered the heterogeneity of reward
and risk perception for two main reasons. First, risk percep-
tion is an individual aspect of humans, and probably also of
other animals, that influences the way individuals act in the
real world. Second, the results can find applications also in
other domains, as biology and clinical research [37]. Thus,
before discussing the main achievements, we deem important
to begin with a sort of claim, that is, our findings corrobo-
rate the idea that heterogeneity might influence cooperation.
Then, how such influence takes place is something to clar-
ify properly. Let us recall that for representing this property
(i.e. heterogeneity), we added small and local perturbations
on the payoff matrix of 2-strategy games. Then, we observed
a nontrivial, and partially unexpected, spectrum of outcomes.
In particular, we analysed three cases, i.e. perturbations act-
ing on the whole payoff matrix, acting on the main diagonal,
and on the off-diagonal, separately. The effect of these per-
turbations has to be evaluated in the proximity of the phase
transition of the system, i.e. within a narrow set of values of
the payoff matrix since far from this critical area the evolu-
tion of strategies is dominated by average payoff values and is
poorly affected by small variations. It is also worth to remark
that perturbations act independently on each single entry of
the payoff matrix, i.e. perturbations are generated by four in-
dependent uniform distributions. So, in the first case (i.e. per-
turbations acting on the whole matrix), cooperation is clearly
supported by heterogeneity. Then, considering each diagonal
individually, i.e. the main diagonal and the off-diagonal, we
found some nontrivial outcomes. In particular, perturbations
acting only on the main diagonal are more effective in foster-
ing cooperation than those acting on the whole matrix. On the
other hand, perturbations acting only on the off-diagonal sup-
port defection at the beginning of the phase transition, while
support cooperation after a given value. Therefore, the former
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case shows an unexpected behaviour, and we deem it also de-
serves further investigations to be fully clarified. According
to the results of the proposed model, the role of heterogeneity
in the dynamics of evolutionary games is definitely nontriv-
ial and difficult predict. Also, as in other systems (e.g. [65]),
individual perception can affect the dynamics of a population.

To conclude, we provide our personal intuitions on the
achieved results. Making some abuse in the terminology,
we observe that small perturbations on the main diagonal act
on ’homogeneous groups’ (i.e. C − C and D − D), while
those on the off-diagonal act on ’heterogeneous groups’ (i.e.
C −D and D−C). So, as confirmed also in previous studies
(e.g. [40, 44]), groups of cooperators are able to obtain pos-
itive feedback loops of system fluctuations. The same ben-
efits cannot be obtained by groups of defectors as, by defi-
nition, the latter never contribute to their community. This
observation can be related to the results reported in [42] and
in [66], where it has been shown that a population of random
walkers has a higher probability to cooperate if agents ’move
slowly’ in a continuous space. In particular, as in the pro-
posed model small perturbations have been more effective in

the group C−C, temporary groups of cooperators (i.e. whose
topology entailsC−C interactions) support each other and do
that better than groups of defectors, that cannot enjoy a free
lunch.

Finally, analysing the dynamics of evolutionary games
through the lens of perturbations, in the payoff matrix, could
become useful both for modelling other kinds of scenarios,
and for making connections with the recent works on poten-
tial games, and their description based on Hamiltonian func-
tions [50, 51]. For instance, payoff perturbations could be em-
bedded into an Hamiltonian by following an approach similar
to that used in perturbation theory, e.g. splitting the Hamil-
tonian function in two components, one unperturbed and the
other containing the additional (perturbative) term.
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[30] Szabó G, Fáth G. 2007 Evolutionary games on graphs. Phys.
Rep. 446, 97–216.

[31] Gracia-Lazaro C, Ferrer A, Ruiz G, Tarancon A, Cuesta JA,
Sanchez A, Moreno Y. 2012 Heterogeneous networks do not
promote cooperation when humans play a Prisoner’s Dilemma.
Proceedings of the National Academy of Sciences of the United



7

States of America 109, 12922–12926.
[32] Perc M, Szolnoki A. 2008 Social diversity and promotion of

cooperation in the spatial prisoner’s dilemma game. Phys. Rev.
E 77, 011904.

[33] Tanimoto J. 2007 Promotion of cooperation by payoff noise in
a 2 X 2 game. Phys. Rev. E 76, 041130.

[34] Zhang GQ, Sun QB, Wang L. 2013 Noise-induced enhance-
ment of network reciprocity in social dilemmas. Chaos Soliton
Fract. 51, 31–35.

[35] Szolnoki A, Perc M. 2019 Seasonal payoff variations and the
evolution of cooperation in social dilemmas. Sci. Rep. 9, 12575.

[36] Su Q, McAvoy A, Wang L, Nowak MA. 2019 Evolutionary
dynamics with game transitions. Proc. Natl. Acad. Sci. 116,
25398–25404.

[37] Stollmeier F, Nagler J. 2018 Unfair and Anomalous Evolution-
ary Dynamics from Fluctuating Payoffs. Phys. Rev. Lett. 120,
058101.

[38] Szolnoki A, Danku Z. 2018 Dynamic-sensitive cooperation in
the presence of multiple strategy updating rules. Physica A 511,
371–377.

[39] Alam M, Nagashima K, Tanimoto J. 2018 Various error settings
bring different noise-driven effects on network reciprocity in
spatial prisoner’s dilemma. Chaos Soliton Fract. 114, 338–346.
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[58] Vukov J, Szabó G, Szolnoki A. 2006 Cooperation in the noisy
case: Prisoner’s dilemma game on two types of regular random
graphs. Physical Review E p. 067103.

[59] Schreiber SJ, Killingback TP. 2013 Spatial heterogeneity pro-
motes coexistence of rock-paper-scissor metacommunities.
Theor. Popul. Biol. 86, 1–11.

[60] Santos FC, Santos MD, Pacheco JM. 2008 Social diversity pro-
motes the emergence of cooperation in public goods games. Na-
ture 454, 213–216.

[61] Huang K, Wang T, Cheng Y, Zheng X. 2015 Effect of Hetero-
geneous Investments on the Evolution of Cooperation in Spatial
Public Goods Game. PloS One 10(3), e0120317.

[62] Santos FC, Pacheco JM, Lenaerts T. 2006 Evolutionary dynam-
ics of social dilemmas in structured heterogeneous populations.
Proc. Natl. Acad. Sci. U. S. A. 103, 3490–3494.

[63] Amaral MA, Javarone MA. 2018 Heterogeneous update mech-
anisms in evolutionary games: Mixing innovative and imitative
dynamics. Phys. Rev. E 97, 042305.

[64] Perc M. 2011 Does strong heterogeneity promote cooperation
by group interactions?. New J. Phys. 13, 123027.

[65] Javarone MA, Armano G. 2013 Perception of similarity: a
model for social network dynamics. J. Phys. A: Math. Theor.
p. 455102.

[66] Meloni S, Buscarino A, Fortuna L, Frasca M, Gómez-Gardeñes
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