AR

1

Linear and nonlinear instability
of shear driven liquid films

Paul Caporn

Ph. D. Thesis
1998

Department of Mathematics
University College London

Supervisor: Dr S.N. Timoshin. Dr R.I. Bowles



ProQuest Number: 10010135

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest 10010135
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



X 2827185 ]H



Acknowledgements

First and foremost I would like to express the deepest gratitude to the best Supervi-
sors I could have wished for, Drs Sergei Timoshin and Robert Bowles. Without your
time, patience and good humour none of this would have been possible. I would also
like to thank Prof. Frank Smith for giving me the opportunity to do a Ph. D, Prof.
Susan Brown and Dr Tom Allen for their interest in my work.

To all the mathematical support team, thank you, especially to Paul, Simon and
Richard for keeping the computers at bay, and the basics backup boys in the postgrad
room (you know who you are). To all the mahy friends who have been such good
company over the last few years: Look what I've been up to!

Finally, Mum and Dad, THANK YOU. If it hadn’t been for your constant support
through everything I wouldn’t be what I am today. I owe you everything.

Mathematickeskie osnovy zdorovy



Abstract

The governing equations for a high Reynolds number flow in a boundary layer over a
film coated wall are derived from the full two dimensional Navier Stokes equations of
motion for a two fluid flow. Numerical studies of the properties of the base flow and
its stability are described for the case of the flow over an isolated surface roughness
on an otherwise flat surface. Investigations of both short and long obstacles are
undertaken in terms of the flow in a viscous-inviscid interaction region.

An investigation of strongly non-linear vortex wave interaction in a laminar
boundary layer with two pairs of oblique waves is carried out. For a particular
choice of flow parameters a resonance is found linking the two pairs of waves, and
the governing amplitude equation for the leading order disturbance is derived and
investigated.

Wave-amplitude equations are derived for the non-linear modulation of Tollmien-
Schlichting (TS) type disturbances at high Reynolds numbers. An investigation of
the instability of Reynolds-stress generated mean flow to short wavelength secondary
disturbances is carried out. A regime with linear TS/capillary wave resonance is
examined and the governing amplitude equation for non-linear wave interaction is
derived. Two intermediary regimes are also studied.

The linear instability of high Reynolds number boundary layer flow over a film-
coated wall is studied both numerically and analytically for the practically important
limit of high film viscosity. We examine the various instabilities present and relate
them to the instability classifications of Benjamin (1963) and Landahl (1962).

The work presented in Chapter 4 represents a joint investigation undertaken
with Dr S.N. Timoshin and Dr R.I. Bowles and forms the basis of a paper to be
published in Proceedings of the Royal Society.
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Chapter 1

Introduction

The effect of thin liquid film coatings in a high Reynolds number boundary layer
flow on both separation and transition to turbulence is a problem of great practical
importance in many real life situations. These include the flow over rain wetted
planes and cars, the de-icing of plane wings and the use of lubricants in many
engineering applications. We begin this Thesis with a brief review of some of the
developments in the relevant theories for homogeneous flows before examining the
specific role of a film and the alterations its presence entails.

Boundary-layer separation and the transition from laminar to turbulent flow are
two major phenomena typical for high Reynolds numbers. Both can be tackled
using asymptotic methods. We begin with separation, starting with the classical
boundary-layer theory as proposed by Prandtl in 1904. He introduced the idea of
a thin viscous layer on the surface of solid bodies, driven by a prescribed pressure
gradient and satisfying the condition of no slip on the solid boundary. In 1908 Bla-
sius obtained a similarity solution for the flow over an aligned flat plate in a uniform
stream, which held over its entire length, with the exception of the singularities in
the solution at the leading and trailing edges and the wake behind the plate. An
analysis of the 'near wake’ behind the plate by Goldstein (1930) showed the wake
splitting into two separate layers and his order of magnitude balances paved the

way for the later triple-deck theory. The classical theory however was shown to fail
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for almost all applications, by Goldstein (1948), at the point of flow reversal, and
hence separation, via what became known as a Goldstein singularity in the slope of
both the skin friction on the body surface and the boundary layer displacement. A
new theory was required to cope with separation. This was provided by a triple-
deck scheme, a viscous/inviscid interaction theory which allowed for an unspecified
pressure gradient, as developed by Stewartson & Williams (1969), Neiland (1969),
Messiter (1970), Stewartson (1970). The theory split the boundary layer into two
so-called decks with a nonlinear viscous lower deck on the body surface driven by an
external induced pressure and a rotational inviscid main deck, which remains largely
passive, shifted via the displacement caused by the lower deck. A third ’potential-
flow’ upper deck completed the description, with the local displacement from the
lower deck affecting the induced local pressure, of the order of the slope of the stream-
lines in the boundary layer, and hence affecting the lower deck. This ’interactive’
approach avoids the failure of the classical theory due to the unspecified pressure
gradient, and hence unknown displacement. The theory also does not depend on a
particular set of wall boundary conditions, which makes it applicable to a wide range
of different problems e.g. flows over bluff bodies, plates with a local wall roughness
or flows with walls containing fluid injections. For weak distortions, flow separa-
tion leads to a fully viscous eddy and re-attachment further downstream within the
triple-deck region. Larger distortions lead to global (breakaway) separation with the
viscous shear layer centering around an algebraic curve of increasing distance from
the body downstream of the separation point, see Sychev (1972), Messiter (1975),
Smith (1977). There are however some particular cases in which classical boundary
layer theory is still applicable, as in the marginal separation regime examined in
Ruban (1981), complemented by a local interactive structure in Ruban (1982) and
Stewartson, Smith & Kaups (1982) or in the condensed flow of Smith & Daniels
(1981). A detailed review of these issues can be found in Messiter (1979) and Smith
(1982).

In this Thesis a study is made of the effects of a liquid film coating within

boundary layers on both the classical and triple-deck scales.
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The second important topic of research relevant to this Thesis is on the insta-
bility of fluid flows to infinitesimal disturbances and the transition of laminar flow
to turbulence. Instability theory developed from a need to understand why m'ost
high speed flows are of a turbulent rather then laminar nature. With all the early
works based on an inviscid treatment, it has its beginnings in the analytical studies
of Helmholtz, Kelvin and Lord Rayleigh and in the experimental work of Reynolds.
This instability theory for inviscid waves was extended to include the effects of vis-
cosity in the works of Orr, Sommerfeld, Taylor, Prandtl, Tollmien and Schlichting.
The reader is referred to Drazin & Reid (1981) for a review of the early theory.
Tollmien and Schlichting showed that viscous effects could provide the mechanism
for instability, an essentially counter intuitive effect. All these theories were based
on linear approximations, and it was not until Landau (1944), in a quite general
postulation, that a nonlinear theory, now termed weakly nonlinear, was proposed.
Landau’s ideas were confirmed in an examination of plane parallel flows by Stu-
art (1960) and Watson (1960), and these first three authors lend their name to
the typical Landau-Stuart-Watson amplitude equation governing weakly nonlinear
instability waves. Itoh (1974), who derived the same form of equation for the Bla-
sius layer, and many subsequent works were all applied to flows at finite Reynolds
numbers where the effects of the flow non-parallelism are non-negligible. Smith
(1979a,b) began more rigorous investigations of the linear and nonlinear instability
of boundary-layer flows, at large Reynolds numbers, by placing the base flow and
disturbances within the triple-deck scalings (an account of earlier asymptotic ap-
proaches to the viscous-flow instability is given in Lin (1955)). Many other high
Reynolds number studies followed, examining a wide variety of instability mecha-
nisms and disturbance scalings (see review articles by Smith (1993), Hall (1990),
Cowley & Wu (1993)).

A novel nonlinear mechanism for the transition of laminar to turbulent flow was
developed initially by Hall & Smith (1988) which modelled the spatial development
of three-dimensional vortices and their interaction with relatively short wavelength

neutral waves. The theory divides into numerous categories depending on the size of
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the wave disturbance and the proportion of the 3D vortex in the mean flow. When
the vortex part of the flow was simply a small correction to the mean profile the inter-
actions with the disturbances were termed weakly nonlinear, whilst those where the
vortex comprised the entire mean flow were termed strongly nonlinear. Interactions
with small disturbances of the minimum magnitude to instigate non-linear interac-
tions, were investigated for both inviscid Rayleigh and viscous Tollmien-Schlichting
(TS) waves by Hall & Smith (1988, 1989, 1990), Smith & Walton (1989), Blackaby
(1991), Smith & Blennerhassett (1992) for weakly’ non-linear interactions, and by
Smith & Walton (1989) Walton & Smith (1992), Hall & Smith (1991), Seddougui
& Bassom (1991) for ’strongly’ non-linear interactions. The work of Hall & Smith
(1991), a study of both compressible and incompressible flows, relied on the exis-
tence of a saturated neutral wave at some upstream position, at which the interaction
was initiated with the vortex then developing downstream in order to keep the wave
neutral. Brown et al. (1993) studied shorter scale events for the initiation of this be-
haviour in the incompressible case for Rayleigh waves, although still with an abrupt
start to the interaction. Smith, Brown & Brown (1993) examined even shorter
scale events, with the vortex/wave interaction occurring chiefly through the jump
in transverse shear stress across a critical layer. They derived a wave-amplitude
equation governing the wave disturbance and found various solutions for the down-
stream behaviour including wave decay, a finite-distance wave-amplitude blow-up
and periodic solutions, which they conjectured were more likely to occur than the
downstream match to a constant wave amplitude required by Brown et al. (1993),
Hall & Smith (1991).

Much of this basic knowledge can be applied to the high Reynolds number two-
fluid problems studied in this Thesis. In addition to the behaviours noted in the
above works, the presence of an interface greatly influences the flow development.
With regard to the base flow profiles Nelson et al. (1995) examined the boundary-
layer flow development of air blowing over a film of water on a flat plate and showed
that whilst the non-parallel boundary layer growth is of O(ml/ ?), where z is the

streamwise coordinate, the film grows like O(z'/4). They constructed non-similar
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analytic solutions and showed that a linear profile in the water and Blasius profile in
the air are reasonable base-flow profiles for instability calculations. Coward & Hall
(1996), in a study of the stability of thin coatings of water on a porous wall in air
flow, constructed similarity solutions for the base profiles, made possible through
the wall condition. We could not find other works which examined the form of base
profiles for boundary layers with thin liquid film coatings, and in Chapter 1 we aim
to shed some light, computationally, on the behaviour and shape of possible base
flows.

The instabilities present for two-fluid flows in a boundary layer, on the other
hand, have received more attention, both experimentally and theore.tica.]ly. Exper-
imental investigations have been performed by, amongst others, Hanratty & Engen
(1957), Kao & Park (1972), Charles & Lilleleht (1965), Andreussi et al. (1985) and
Ludwieg & Hornung (1989). For two fluids of comparable depths Kao & Park (1972)
found no interfacial modes with the surface distortion being a manifestation of the
shear (TS) waves and concluded that the presence of an interface enhanced transi-
tion. The investigation of Ludwieg & Hornung (1989), for air flow over a thin film
of oil, showed the appearance of visible waves on the interface occuring at different
stages in the transition from laminar to turbulent air boundary layers depending on
the film thickness. The properties of the second fluid, including its depth, density
and viscosity all appear to be important. In the 1950s much theoretical work was
carried out trying to explain the phenomena of water waves generated by wind, with
a variety of mechanisms proposed, initially through the work of Lock (1954), Feld-
man (1957) and later by Miles (1957 ,1959, 1960, 1962). Miles (1957) studied the
instigation of waves on deep water by wind, based on a basic solution of near-neutral
gravity waves. He showed that the instability of a unidirectional air flow to inviscid
Rayleigh-scale disturbances was dependent on a negative curvature of the mean flow
profile at the height where the wave speed was equal to the streamwise velocity
(the critical level), thus showing that non-inflexional profiles were unstable to these
Rayleigh disturbances, in contrast with the requirement in homogeneous flow of an

inflexional profile. A classification of the various instabilities present in two-fluid
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problems was given by Benjamin (1960, 1963) and Landahl (1962) who attempted a
physical explanation of instabilities based on energy levels. They categorized three
different instabilities appearing in flows with flexible boundaries referring to these
as Class A, Class B and Kelvin-Helmholtz (K-H) waves. The first of these, the
Class A instability, which includes Tollmien-Schlichting waves modified by the flex-
ible boundary, is destabilized by dissipative forces. They demonstrated, via the
energy considerations, that an essentially counter intuitive destabilization, with the
wave growth accompanied by a transfer of energy from the wave to the main flow,
is present in the system. The Class B instability on the other hand is stabilized by
the dissipative forces and grows via an energy transfer from the mean flow to the
wave, a more intuitive mechanism. The final class, the K-H instability is driven by
velocity discontinuities. Classification in these papers is based upon near-neutral
calculations and we aim in this Thesis to verify the general classifications by direct
computation of the instabilities.

More recent instability studies involving two phase flows include those made by
Hooper & Boyd (1986), Morland & Saffman & Yuen (1991), Shrira (1993), Morland
& Saffman (1993), Coward & Hall (1996) and Timoshin (1997). Shrira (1993) ex-
amined instabilities of disturbances found in deep water with a current and a free
surface, whilst Morland & Saffman (1993) carried out linear stability analysis of an
inviscid parallel air flow over water and made numerical comparisons, finding fair
agreement with the analytic solution of Miles (1957). Coward & Hall (1996) studied
the three-dimensional flow over a porous flat plate, with suction or blowing chosen
to maintain a constant lower fluid depth. Their stability analysis showed, as in
Hooper and Boyd (1986), that discontinuities in the viscosity and/or density of the
two immiscible fluids greatly enhanced instability. Timoshin (1997) examined linear
instabilities within the triple-deck formulation of a two-fluid flow including the case
of a very viscous film and derived growth rates for TS and interfacial waves.

The inclusion of a second fluid in nonlinear stability problems leads to an en-
hanced mean flow generated by the Reynolds stresses at the fluid/fluid interface,

as first studied by Longuet-Higgins (1953) and subsequently by Dore (1970, 1976,
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1977). This effect is due to the jump in shears across the viscous layers surround-
ing the interface as opposed to a shift in velocities due to viscous layers on solid
boundaries. Dore (1976, 1977) incorporated outer viscous layers about the interfa-
cial layers, based on the double boundary layer theories developed by Riley (1965)
and Stuart (1966), through which the induced mean flow is diffused. The effect of
this stronger mean flow on the wave instability is felt through interactions at a lower
order than those with wall induced mean flow. A second fluid also allows for reso-
nant interactions between the various instabilities that may be present such as those
classified by Benjamin-Landahl, outlined above. One such case is studied in Akylas
(1982), Akylas & Benney (1982) who identify a resonance between ’air’ (Class A)
and ’water’ (Class B) modes in the case of wind on deep water.

We see then that the study of boundary layers with thin films is a complex
and fascinating field, with very little known about the effect of films on separation,
along with the apparently strong effect on stability provoked by the presence of an
interface.

For the majority of this study we simplify our analysis by assuming piecewise
constant-shear base profiles in the regions on either side of the interface with a
thickness comparable to that of the film. However we must begin by examining if
these are satisfactory base profiles, and this justification is undertaken in Chapter 2,
where we investigate the boundary layer flow over a film-coated wall with a surface
obstacle of prescribed magnitude. The first part of this chapter deals with the base
flow development from the source of the film generation. We then proceed to the
flow over a surface roughness, with the choice of scalings and the ’long’ and ’short’
obstacle classification used within this chapter following those given by Smith et
al (1981) in their investigation of homogeneous flow development. We then exam-
ine the flow over ’long’ obstacles on the triple-deck length scale, with a prescribed
pressure gradient dependent on the obstacle shape. Computations, both numerical
and analytic, are undertaken to calculate the flow development and its stability to
Rayleigh-like disturbances. In the second part of Chapter 2 we examine ’short’ ob-

stacles within a condensed flow formulation, again with a numerical treatment of the
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base flow development. This provides an important insight into the role of a film in
the onset of separation, an area which up to now has received scant attention to this
author’s best knowledge. A stability analysis is then carried out on the calculated
profiles.

In Chapter 3 we investigate weakly-nonlinear vortex/inviscid wave interactions,
in the early stages of transition for a two fluid flow, based on the single fluid study of
Smith, Brown & Brown (1993). By utilizing the assumptions of a parallel flow and a
base profile consisting of two constant shears in our region of study, we obtain wave-
amplitude equations governing the evolution of two pairs of oblique waves travelling
with identical phase speed. We show that the nonlinear development of this flow can
lead to finite-distance blow-up of the wave disturbances. In the case of non-resonant
waves we show that the amplitude equations simplify to those derived in Smith,
Brown & Brown (1993).

The stability of nonlinear Tollmien-Schlichting (TS) waves is studied within a
triple-deck framework in Chapter 4, an extension of the linear analysis of Timoshin
(1997). In a weakly non-linear analysis, the temporal evolution of two dimensional
disturbances is modelled via an amplitude evolution equation coupled with equations
governing the Reynolds stress induced mean flow. A twofold investigation of both
the stability of the much altered mean flow to Rayleigh scale disturbances and the
development of the wave disturbance is carried out. The amplitude equation is found
to contain a singularity centered around a specific combination of the surface tension,
gravity, density ratios and film thickness. A close analysis is performed within
this parameter space and a resonant structure found with magnified disturbance
amplitudes. This non-linear resonance is directly related to the linear resonance
between growing TS and decaying capillary waves outlined in Timoshin (1997). A
full investigation of the properties of the governing amplitude equation is carried out,
with the nonlinearity appearing in an unusual differentiated form. The properties
of the amplitude equations are quite disparate and two further intermediate regimes
are studied, giving a full account of the possible disturbance development schemes.

A classical boundary-layer base flow structure is used to examine the Rayleigh-
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scale stability properties of flow over a very viscous film in Chapter 5. The differ-
ent classes of instability suggested by Benjamin (1960,1963) and Landahl (1962)
are shown to be present as different limits of our general formulation, and we
demonstrate that various cases studied previously, (e.g. Kelvin-Helmholtz, Tollmien-
Schlichting, Miles, capillary/TS wave resonance) are all continuously linked in the
parameter space studied here.

We begin our investigation by outlining the dimensional governing equations and
boundary conditions for two-fluid flows which we will use throughout this study with

the specific non-dimensionalizations given at the start of each chapter.

1.1 The dimensional governing equations

The two fluid flows studied in this thesis are governed by the incompressible Navier-
Stokes equations. We define z,, y. to be the dimensional coordinates parallel and
normal to the flow direction and z, to be the spanwise coordinate perpendicular to
z, in the plane y, = 0. Then uf, v, w, pF represent the streamwise, normal
and cross-flow velocities and the pressure respectively, with the superscripts +/—
denoting the regions above or below the interface separating the two fluids at y. =
fs(Zs, 24, ts). All the flows studied take place within a boundary layer which develops
over a surface defined by y. = h,(z.), placed in the flow. The density and viscosity
of the fluid in the film are denoted by p,, . and in the main boundary layer fluid

by pt, uf. With g, representing the dimensional gravitational acceleration, the

governing equations are

Duf -1 Bp* 32 + 62uf 2ut
Dt* p* Ba:, _f: 6’!/* + azf ) (1118.)
Dof _ -10p, B 52 E g 32vi)
L= ot E > : 1.1.1b
D~ pFoun T (0m2 g2 ez ) (1.1.1b)
Duw¥ -1 3?3: pE (0%w 32w*i . 82w g
Dt, B pf!: az* 3: az ayg azg ) A

our ov:t owt
3. + 3. + o7 =0. (1.1.1d)
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The boundary conditions for these equations are firstly those of no slip on the
surface, continuity in the streamwise and spanwise velocities at the interface and

the kinematic condition at the interface

u, = wv, =0,at ¥, = hi(z,), (1.1.2)
Df,
vIo= vl = f uy =uf, vy =w!, at y. = fu(Ts,2.,1.), (1.1.3)

Dt’
where the material derivative is defined by D/Dt, = 8/0t, +u¥d/0z, +vEd/0y. +
w*d/0z,. Secondly, at the interface, defined by y, = f,, between the two fluids the

equation

[e.n]t - nvy, (—};—l + E}Z) =0aty, = f. (1.1.4)

must be satisfied, where o is the stress tensor, v, is the surface tension, the square

brackets [] denote a jump across the interface,

1 8%, 0z? 1 0%f, /022

IR ST TR A (F Y A AR (1.1.5)

are the radii of curvature, and n is the unit normal to the interface given by

1
RV 17 e (T A s (1.1.6)

We write the unit tangent vectors to n as

o o%. o)
b =TT (07 /05, (l’az*’o ! (11.7)

o oi. )
= T @ en) (0’32,’1 ’ (1-18)
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and, taking the dot product of (1.1.4) with tg,, t., n, respectively we obtain three

interfacial jump conditions

Ofe (Ove Ou. of. 2 17
9z, \3y. 5z, ) T4\ 5
py | 9% NOUs . : =0 (1.1.9)
'62* 3:1:,,, * 4 _
6f=r (61’* aw*) af* af* 17t
Oz, \Oy. Oz, *8z, Oz,
o of a5 =0 (1.1.10)
—-B* 1— * C* *
(aZa-) oz, 3
du. (af,)2 dv, . ow, (0f.) ,0f. ¥
—(z=) 5+ St A,
—Da + 2'“* a amt 3y~ az* 62# 633*
of. 0f.
—*B, +222"C,
(9 Oz, Oz, _

d?f,/0z. 82f. /62,2
. =0 (1.11
" ((1+(af./ém)2)3/2 ' (1+(8f*/6z*)2)3’2) -

where square brackets indicate a jump across the interface, parameters in the bound-
ary layer and film are denoted by +/— respectively (a different notation is used in

chapter 2 for these layers) and

1 /0u, Ov. 1 (0v.,  Ow, ! Ou, Ow,
A= (ay. +5,,:> , B, = 5(62* +%‘—> ,Cu= 3 (’67*-}' 62*) (1.1.12)

where A,, B,,C, are represent elements of the rate of strain tensor E;;.
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Chapter 2

Flow over a surface mounted

obstacle

In this chapter we numerically tackle the low within a boundary layer on a wall, for
homogeneous flows and for those with a thin film coating on the wall. The aims here
are to prepare the ground for examination of film coated flows in the subsequent
chapters. First and foremost we provide a realistic model for the base flow, which we
will use for all the subsequent work. Secondly we investigate the effects of a certain
prescribed wall roughness on the base flow, and the form of the singularities which
we expect to find in the boundary layer solution when the pressure on the boundary
layer and in the film is given. We show that for all cases considered the singularities
are always due to zero wall shear, as found in the works of Goldstein (1948), Stew-
artson, Smith & Kaups (1982), Ruban (1981,1982) rather than to flow reversal in
the middle of the flow region as in Sychev (1980), Elliott, Smith & Cowley (1983),
Timoshin (1996). Our final aim in this chapter is to investigate the destabilizing
effect of the wall roughness, or indeed of any other mechanism which affects constant
shear profiles in thin films. We find inviscid instability which is strongly influenced
by the properties of the interface.

In this work hump flows are treated as limiting cases of the triple-deck formula-

tion with the film placed in the near-wall viscous zone. Prescribed-pressure regimes
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arise when the wall roughness is long compared to the triple deck. In §2.5 we also
examine the opposite limiting case of shorter obstacles, leading to a condensed flow
formulation. The second regime is irrelevant to the base flow investigation, which
is one of the primary interests in this chapter, but is a logical analytic compliment
to the solution we derive for the longer obstacle, requiring only a straightforward
change in the problem formulation. An analysis of the single-fluid triple-deck prob-
lem for obstacles in both these limits and of those on the triple-deck scale is given
by, for example, Smith, Brighton, Jackson, Hunt (1981); see also a review article by

Smith (1982).

2.1 Blasius boundary layer on a film-coated wall

In the following chapters the investigations utilize an initial unperturbed upstream
flow consisting of piecewise linear profiles in the near-wall part of the boundary
layer. In this section we outline the general assumptions and scalings we will use for
tackling film coated flows, including the base flow profiles. Once the form of base
flow has been verified, the following subsection outlines the triple-deck scalings used
to examine flow over a wall mounted obstacle.

We assume the flow to be two-dimensional and, further, that at the leading edge
of a flat plate in a uniform stream a boundary layer on a surface is generated in
which we have steady, incompressible planar flow. Downstream of the leading edge
we have a film generated by a slot, in the form of a jet; see fig 2:1(a). Gravity and
surface tension are included in the problem formulation for the base flow calculations,
although they are discarded in the numerical investigation later as in a related work
by Nelson et al. (1995).

The governing Navier-Stokes equations, (1.1.1), are non-dimensionalized using
the distance between the leading edge of the plate and the slot L,, the free stream
speed U,, the viscosity v} and the density p} in the upper fluid. The typical
pressure is p,U2, and we use standard notation for the Reynolds number Re =

p;"U.f/,/pf (> 1), the Froude number Fr = Uf/gj,,. and surface tension coef-
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ficient ¥ = v./pt Uff,*. The non-dimensionalized streamwise and normal velocity
components are %, U, we take Z, § as the boundary layer coordinates parallel and nor-

/2_17. With p the non-dimensional

mal to the flow, with z, = z,,(:i +1), 9 = Ij,.}ie_l
pressure and f the interface position between the two fluids, taken initially to be a

, the height of the slot, the governing equations become

our  out L out 185t 0%t
ot Ve T ey T e T e (21.1)
op* out  9v*
= 0. — = 2.1.2
a7 =% o T ey =0 (2.1.2)

where we define p™ = 1, vt =1, p~ = p,” /p.t, v~ = vo—/v,*. The appropriate

boundary conditions are

J— o0 it =1, (2.1.3)
v+ o
L wt=am, o= 2L 000
g=f: Dt oy 8y (2.1.4)
Pt -9 =5fzz— (o~ - 1)f/Fr,
y=0: 4= =0,% =0, (2.1.5)
z=0 it =Up, 4~ = j’_lj(& - 'g)) ) f: a (216)

where Up = Up(¥ — @) is the Blasius profile, J is a constant measuring the strength
of the jet and the shape of the interface is described by § = f(m)

Using the numerical method outlined below, in §2.3.1, a number of different
profiles were placed at the initial station and the profiles calculated for the flow
downstream. We were looking for these test profiles to quickly form two linear
profiles, one in the film and the other in the boundary layer. A model of the case with
a Blasius profile in the boundary-layer fluid and a jet flow from the slot is shown in
fig 2:1(b). We see that the profiles in the near-wall region reach a limiting piecewise
linear form over the distance | X |= 10, where X = &, see also fig 2:1(c). Many
different initial profiles were run and all of them eventually formed two constant

shear profiles. Nelson et al. (1995) established the limiting behaviour as & — oo
for a film within a Blasius boundary layer on a flat plate. The film thickens like
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%1/4 with the main boundary layer growing like £/2, and the interfacial shear in
the boundary layer decreasing like #71/2 with the film flow driven by the applied
interfacial shear. If ¥ is the mass flux at the slot, given by the value of the stream
function ¥ at the interface, so that 4~ = 0¥ /307, then the streamwise velocities and
interface position in the region § ~ O(#/4) are given by

- Ab +

o _ 20 Ay MY w 2‘1’5#"51/2
U = =7, u =(1—-p 9 =4 —
p=VE ( )

”—51/2

(2.1.7)

where )\, = 0Up/0%(0), and the boundary layer flow approaches the Blasius profile
downstream in the region §%°/2 ~ 1. By alfering ¥, either via the size of the
injection slot or the speed of the jet, we can set the film thickness downstream. At
Z > 1 the film forgets about the specific source. This allows us to perform the
triple-deck analysis at a station L, downstream in the next section, which requires a
film of thickness O(Re~5/8), in terms of the local Reynolds number (see fig 2:1(a)), if
we have a flux of O(R’e_l/st/Sf:s/B). Hence we may assume for all our subsequent
analysis that our predetermined initial local base profile consisting of two constant
shears can be obtained, or is indeed typical, in a two fluid system. Other mechanisms
can be treated in a similar fashion, for example injection through a porous wall, cf.

Coward & Hall (1996).

2.2 Triple deck on a wall mounted obstacle

In this subsection we outline the scalings used to investigate the flow within a bound-
ary layer which develops over a local surface roughness defined by y. = h.(z.), see
fig 2:2(a). We quote the rescalings used for a short-scale analysis of flow over a flat
plate, which lead to the triple-deck equations for film coated flows, as derived by
Timoshin (1997), Tsao et al. (1996) from the full Navier-Stokes equations. After
non-dimensionalizing we perform a Prandtl shift, introducing the surface shape into
the problem.

The governing Navier-Stokes equations are non-dimensionalized as in §2.1, but

here we take the characteristic length L, to be from the leading edge of the plate
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to the local point of investigation (taken to be the centre of an obstacle on the wall
later in this section), with corresponding Reynolds number Re = p} U, L./ut (> 1),
Froude number Fr = U2/g,L, and surface tension coefficient 4 = v,/pt U2L,. The
non-dimensionalized temporal and spatial co-ordinates, velocities, pressures and in-
terface shape are denoted by ¢, &, 4, @, 9, p and f With @ denoting the unper-
turbed interface position upstream from the area under investigation, we rescale to

the triple-deck variables in the viscous sublayer (zone I in fig 2:1(a))
['& 9,9, &,9,1t, a, f] [eo/\+3/4u, egA+3/év,e§A+1/2p, eg()\+)'5/4m,
SNy, )2, SOF) e, S| (2.2)
with g = Re /8,y representing the local normal coordinate in the viscous sublayer,
and At denoting the shear of the upper profile. We write p* = 1, vt =1, p~ =

pe”/psT, v~ = v, /v,T and defining y = h(z) to be the non-dimensional wall shape
apply a Prandtl shift to the triple-deck equations,

y=Y +h(z), v= V-}-ua—h (2.2.2)
bz’
This leaves us with
ou* ot out 4 Out 1 gpt | 0%u*
=-— 2.
Y e Y ey T e Y ave (2:2.3)
gur QvE
Bz + ¥ 2 0, (2.2.4)
and the appropriate boundary conditions are
1
Y - 00 ut :Y+a(p'u" — 1)+ A(z) + h(z) + o(1), (2.2.5)
Y =0 v~ =0,v" =0, (2.2.6)
t=Y - U,
T — —00 ¢ 4t T : (2.2.7)

“=X7Y
where A~ = 1/pv~, U, = a)~ and the shape of the interface is described by
Y = f(z,t) with a = f(z = —o0) denoting the film thickness upstream from the

roughness. The interfacial conditions become

_ _ af af out _Ou~
+_ Vt=vV- = +
s "% TV 8 v v (2:28)
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Pt =07 = Y(fox + hez) — (07 = 1)(f + h)/Fr (2.2.9)

where 7 = 3(A+)~%/4, Fr = Fred(At)~5/% are the rescaled surface tension coeffi-
cient and Froude number respectively. Finally the interaction condition for subsonic

flows completes the triple deck formulation,

pr =L [T 0ALG(s1) (2.2.10)

M) T—8

2.3 Boundary layer on elongated obstacles

From now one in this Chapter we examine the steady case, /0t = 0. The first step
now is to rescale the problem taking the length of the hump L as our typical length
scale. We consider long humps with L > 1 on the triple deck scale. The procedure
is similar to that used in Smith, Brighton, Jackson, Hunt (1981). We take

Y~ILI5, z~L, u~Y ~ L3,

+

Then from the balance u*u} ~ pt and, from (2.2.10) we know A ~ zp*, we have

pi NLS‘, ANL%.

We examine now humps with a height scale A ~ L'g', as we want a contribution
(A+h)~ O(L:IT) ie. A= —h+O(L%). This height produces a nonlinear response in
the viscous layer with the induced pressure proportional to the slope of the obstacle
h/L.

To keep the interfacial effects in the analysis we must ensure that the film remains

within the viscous sublayer so we take
a.~f~L:17 = f<h (2.3.1)

Finally in order to keep surface tension and gravitational effects in the problem

formulation we take

L3 ~y(L7Y3) ~ (L33 /Fr = 4~ O(L), Fr ~ O(L). (2.3.2)
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In accordance with the estimates above we introduce new variables,
V:l: — L—1/3,5:i:, p:l: — L2/3ﬁi’ u:b — Ll/sﬂt,
y=13, Fr=£E, = —L3h(z) + L3 A(z). (2.3.3)

The flow scheme is shown in fig2:2(a) and the governing equations expressed in the

new variables are

ot ou* 1 0p* o*a* '
_x0u  _p0uT 1 opT 07U
U+ 0 37 el +v 577 (2.3.4)
dut ot
4+ = 2.3.
55 T 57 0, (2.3.5)
with the boundary conditions
gooo: at=g§—a+ U, + A(Z)+ o(1), (2.3.6)
§=0: @ =0,9" =0, (2.3.7)
at=g-a+U,,
2 — —00 v (2.3.8)
u” =77,
and also at § = f(z)
_ at 7~
at =a-, 7t =97 = 2t fz(3), % = p‘%, (2.3.9)
pt — 5~ = Jhzz — h(p~ - 1)/ Fr, (2.3.10)
_ 1 [ 8h/8s(s)
+ - _Z AT
pr=—c - ds. (2.3.11)

There is no pressure/displacement relation now with the interaction condition re-
placed by a given pressure related to the surface roughness.
For computational purposes the pressure-hump shape relation (2.3.11) is rewrit-

ten taking Fourier transforms,

F(p )=/_: et (2)dz, F(p*)=~|k|F(R(z)), (2.3.12)
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so that

dpt 1 [ gz Tin
G ") "% [~ik | k | F(h(z))] dk. (2.3.13)
For the pressure gradient in the film the relation (2.3.10) can be differentiated and

the derivatives of h calculated explicitly for a chosen roughness.

2.3.1 The numerical method

Numerical solutions are obtained to the problems setup in §2.1 and §2.3, by marching
in the appropriate co-ordinate & or Z, using iferations at each streamwise station.
We outline the numerical method in terms of the variables in §2.3, however the
rescalings take the same form for both problems, replacing all variables Z,... with
#,... and setting h = 0, with the only difference in numerical representations being
the far-field boundary conditions.

To construct the actual solution we rescale the normal coordinate in the film
and make a further Prandtl shift in the boundary layer with respect to the unknown

interface position. In the boundary-layer equations (2.3.4), (2.3.5) we write

Ut =a*t, Vt=st-atf(z), X =1, (2.3.1.1a)
Pt =5t Yt=g-f(z), F=7, (2.3.1.1b)
which yields the equations, valid for Yt > 0,
ou+ out ort Ut
+ + - = i
U X +V YT ax + Gy +? (2.3.1.2)
out avt
—_—t = = 2.3.1.
0X  ovt 0 (2.3.1.3)
with boundary conditions
Yt s 00: Ut=Y+t4+U,-a+ A(X)+ F(X)+o(1) (2.3.1.4)
Yt=0: Vt=0 (2.3.1.5)
X —o0: Ut=Y*+U, Foa (2.3.1.6)

where our initial interfacial speed is U, = a/p v~



Chapter 2: Boundary layer on elongated obstacles 26

The film region is mapped onto the finite strip 0 < Y~ < 1 using a change of
variables suggested by Dr J. W. Elliott ( private communication ). We write

¥y

Y ==, X=2z, U =147, (2.3.1.7a)
@
< 7
Vi=9"-Y" =4, P~ =35, F=§, (2.3.1.7D)
0z
which give the equations
_oU- V- oUu- 1 8P~ v~ 0%~
oXx T Fav- ~ p 60X T Flay-? (23.18)
(U-F) 08V~
e + 7 = 0, (2.3.1.9)
and boundary conditions
Y =0: U=V =0, (2.3.1.10)
Y =1: V- =0, (2.3.1.11)
X—>-0: U=UY". (2.3.1.12)

The interfacial conditions of continuity of tangential velocity and normal velocity, the
jump in pressures and shears and the viscous-inviscid interaction condition, which

becomes a given pressure relation, are then expressed as

e ou+t p-oU-
+iyv+ — — — 27 (vt = 7 7Y (v —
UHY* =0)= U~ (Y™ =1), (vt =0) = (v =1), (231.13)

Vi yt=0)=V"(Y  =1)=0, (2.3.1.14)

dPt dP~ _&PH  (p-1)dH

dX  dx  Tdxs3 Fr dX'

pr=_1 /°° S_H/B—s(s)ds’ (2.3.1.16)

T ) X-—5

(2.3.1.15)

where h(Z) = H(X).
The problem in §2.1 can also be represented by the same transformations (2.3.1.1),

(2.3.1.7) (with all variables Z, ... replaced by &, ...) and the obstacle removed, H(X) =
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0. The only differences, for numerical purposes, are the boundary conditions, (2.1.3),

(2.1.6), which become

Yt - o0 Ut —1, (2.3.1.17)

X=0: Ut =Ug(Y*), Um=JY(1-Y-), F=g& (2.3.1.18)

where J = 42J.
A three-point backward difference is used for X-derivatives and a two-point

central difference for the normal direction:

0E(X)  3¢(X) - 46(X — AX) + £(X — 2AX)

= = (2.3.1.19)
BE(YE Y+ AYE) - (Y - AY?
g(Yi ) _ & 2)Ayfi( ) (2.3.1.20)

where ¢ is a representative function.
Provided the solution is known at X — 2AX and X — AX the momentum equa-

tions at the next X -station are written in the form

QUL + 55U + U = df (2.3.1.21)

with the coefficients given by

VPAY - v 3UTPAY - 9u-
s o= I - L= J Jdol.
% T T oFe (Fp)?’ 7 ax T (Fr)*’ (2.3.1.222)
/R S 2.3.1.22b
c; = - ST - (FP)Z’ (2.3.1.22b)
— _2 -1
- — = 2.3.1.22
dj = (AY7) ( - dx Taax \ T 2A% » (23122
+P A+ +P A +2
g GAYT oo S0 AT
I 2 ’ J 2AX ’

VIPAY dp+ UFP Ay t? + g+t
P e E—— d‘f:(AY+)2 _ b 2 J F] ,
3 2 7 dX = 2AX 2AX

(2.3.1.22d)
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where the superscripts p,2,1 and subscript ;7 represent, respectively, the predictor
value for the current X- station, the value at the X — AX and at X — 2AX and
the Y* position. Omitting references to the specific fluid layer, to calculate the new

values for U, V, F, the function U€ is written in the form

Usr = p;US + g; (2.3.1.23)

7

which upon substitution into (2.3.1.21) gives

~¢j dj — a;g;

9 g = 2.3.1.24
ajpi +b; 17T ajp;+ b ( )

Pj—1 =

From the boundary conditions, (2.3.1.10), (2.3.1.4), along with the condition of

continuity in U% at the interface we find

po =0, g =Ufys, U =0, U =Ug,. (2.3.1.25)

Jjmaz— -1~ jmaz— -1

For the problem in boundary layer flow in §2.1 the far-field conditions require

+ _ + _
pjmaa:+—1 =0, qjmax+—1 =1, (2.3.1.263.)

and for the triple deck problem described in §2.3 we have

1, ¢f =AY, (2.3.1.26b)

Pimazt—1 = 1 Gzt 1
where the subscripts jmaz™,jmaz™,int refer to values being taken at the final
points in Y*,Y~ and at the interface, respectively. V¢ is then found using the in-
compressibility conditions (2.3.1.9), (2.3.1.3) which have also been discretized using
the two- and three-point difference forms (2.3.1.19), (2.3.1.20).

To begin the solution procedure, guesses are made for the interfacial velocity
and position U, F at the new X —station, together with a predicted velocity
distribution U%P, V*P across the flow. Then the relations (2.3.1.21) -(2.3.1.25) with
the appropriate far-field condition, (2.3.1.26a) or (2.3.1.26b) are used to calculate
the ’corrector’ velocities U*¢, V*¢. This procedure is carried out with three pairs of

initial guesses for the interfacial speeds and positions. Two functions representing

interfacial boundary conditions, A and B defined as

A(Uint’F) = :'cntFJc( - ifm B(Uintz F) = #—(U}-’-— )‘iﬂt - (U;-+ )iﬂt (23127)
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are used to calculate corrector values for U, F with two-point Newton iterations
aimed at satisfying the conditions A = 0, B = 0 and the whole procedure is iterated

until a convergence criterion,
AU <€ 6 AF < ¢, (2.3.1.28)

is satisfied, where ¢; is a chosen tolerance, typically of O(107°).

2.3.2 Results

Having established a credible model for the two-fluid flow, within the film and for a
comparable depth within the boundary layer fluid, we look at the various parameters
which influence the onset of the Goldstein singularity/flow breakdown for flow over
an obstacle. For the purposes of the numerical calculations the obstacle was defined

to be
H(X)=hoe X’ —00 < X < c0. (2.3.2.1)

The first and most obvious parameter is hg, the hump size coefficient. The

velocity profile in the film can be written in the form
U =X"Y +hlU-, (2.3.2.2)

and since the flow breaks down where U~ /Y~ — 0, we expect the height hg to
be important, especially close to the wall where the correction U~ is likely to have
its greatest influence. Looking at our figures 2:2 and 2:3 we see that the slope of the
skin friction approaches the Goldstein singularity, through the marginal singularity
where QU™ /0Y ~(0) — 0, as the obstacle height, |hg|, is increased. Graphs of the
comparative hump effects are shown in figs 2:2(b)-(e), for a system of water in the
film and an equal mixture of silicone oil V2 and 1-2-3-4-tetrahydronaphtalene in the
boundary layer, with the parameters taken from Pouliquen, Chomaz & Huerre (1994)
as an example of a real dynamical system, and in Figs 2:3(a),(b) for a homogeneous
system. The other factors which can affect the onset of the marginal singularity are,
p~, v™, 7, Fr and &, and Table 2:1 shows how the variation of these parameters

)

affects flow breakdown within the obstacle range —0.5 < hg < 0.5.
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Starting with the effect of the density ratios on flow separation, it was found
that if the film fluid is less dense than that in the boundary layer then separation is
retarded, whilst denser films cause separation for smaller obstacles. This is because
the shear is reduced in a denser film fluid and vice versa and so a film coating of a
less dense fluid will cause an otherwise separating flow to remain attached.

Introduction of surface tension into the system appears to enhance flow reversal
as does an increased gravitational influence, Fr # co. As with density, less viscous
fluids in the film do not cause separated flows for the same obstacle height as the
equivalent homogeneous system, whilst more viscous fluids in the film have the
opposite effect, enhancing separation.

The final parameter, the non-dimensional film thickness, does not appear to
affect the behaviour of the system in terms of flow reversal, at least not for the
chosen values of @, although it must be remembered that the assumption has been
made in the scaling of the problem that the film thickness remains within the viscous
sublayer of the triple deck formulation. No internal separation of the type found in
Sychev (1980), Elliott, Smith, Cowley (1993), Timoshin (1996) was encountered in
the cases studied here, with all failures of the numerical method, i.e. the occurrence
of singularities, being caused by zero wall shear.

Leaving separation aside, and concentrating on flows whose streamwise velocity
profiles return to their original linear form far downstream, we turn to the graphs of
the displacement function A(Z) and the skin friction for a given obstacle and two fluid
system. Figs 2:2(b),(e) and 2:3(a),(b) show intervals of z with decreasing wall shear
but increased displacement and hence the likelihood of inflexion points developing
in the velocity profiles fig 2:4(a),(b), which will facilitate Rayleigh instability. This

will be examined in the next section.

2.4 Inviscid instabilities in film-coated flows

It was noted in §2.3.2 that the flow may become unstable to inviscid shorter-scale

Rayleigh-like instabilities. If we write L = LRe™% as the lengthscale of the boundary
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layer flow over an obstacle on the triple-deck scale, with L representing the obstacle

length, then the new disturbance lengthscale scale L,, is taken as
IPRe~% < L, < I (2.4.1)

i.e. short compared to the triple deck scale but at least as long as the characteristic
Rayleigh scale O(Re~5/8). First we examine the case Re™ ¢ L1/3 < L, from which
we obtain a long-wave (in terms of the film thickness) integral condition for the
disturbance phase speed ¢. We then examine disturbances with L, = Re"%fll/"',
variations of the pressure term in y then affect the flow and instability is governed
by the full inviscid Rayleigh equation.

We begin with an analytical examination of both regimes, solving for a slightly
perturbed two shear streamwise linear velocity profile, such as that generated by the
flow over a shallow obstacle, to obtain the disturbance growth rate explicitly. The
results are then compared with those obtained numerically using a discrete iterative '
method for the full Rayleigh problem, as outlined in a subsequent section, on the

profiles calculated in §2.3.2.

2.4.1 The long-wave instability

We introduce small temporal and spatial wave perturburbations, O(6), to the veloc-
ities and pressure fields and define the wave as

E = exp [z’k (Lia:- - -Lc—t')] . (2.4.1.1)

w w

With the governing equations given by (2.3.4)-(2.3.11) we write the velocities and

pressure as

2t = UG +6(FTE +cec)+ ... (2.4.1.2)
7t = L+ Li(ﬁ;’“E +ee)t .. (2.4.1.3)
o= .+ 5(;§CE +ec)+ .. (2.4.1.4)
which lead to the relation
(U* — )iy = Uzt (2.4.1.5)
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The boundary conditions at the wall, infinity and an interfacial condition relating

the normal velocity and pressure in the film to that in the boundary layer complete

the problem formulation:

) = k*oF
—p~ (57U~ ~ (U~ = )iy)

where 4 = y/LZ%. We solve this and find a general solution in the form
—+ _ o+t R S S,
7 =Q7(U" —¢) m((]‘*——c)i 7+ Q2 (UT —¢)

f
=010 -0 [ e 40 -0

(2.4.1.6)

(2.4.1.7)

(2.4.1.8)

(2.4.1.9)

The boundary conditions (2.4.1.6) force @; = 0, Q7 = 0, from the interfacial

condition (2.4.1.7) we obtain the relation

O L
Qf = Q7 - 7 —,

and the normalization condition #;(f) = 1 gives

7 -1
Q7 = ((Ua_c)/o (U__l:c—)gdﬂ> .

Continuity of ¥ at the interface then gives the dispersion relation

L [y p——"
4 (1 - (U——c)zdy> ; @ -p®

2.4.2 Rayleigh-wave instability

(2.4.1.10)

(2.4.1.11)

(2.4.1.12)

In this subsection we attain an asymptotic approximation to the disturbance phase

speed ¢ from the inviscid Rayleigh equation for disturbances with wavelength L,, =

Re-1AL3,
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We start by taking an analytic approximation to the streamwise base velocity
profiles U(7) in (2.4.1.2), writing them as piecewise-linear profiles with a small cor-
rection O(e), here proportional to base flow departure from linearity and hence the
hump size ho, where § € € <« 1. A similar analysis applies to the enhanced mean
flow profiles examined in Chapter 4. We also expand the interfacial position in

powers of ¢, and write

Ut = §-a+U,+eGH(3), (2.4.2.1)

U™ = A §+eG (%), (2.4.2.2)

f = atef. (2.4.2.3)

Here @ is the unperturbed interface position, A~ = 1/p~, U, = A~ @ and we normalize

the flow such that at the interface 4 (§ = f) = U, + .

The shortened lengthscale, compared with that of §2.4.1, leads to the full inviscid

Rayleigh equation for the normal velocities 'T)f,

(U* = c)(vi5, — K*0F) = Ugy™ 05" (2.4.2.4)
with boundary conditions
7 (F=0)=0, 57 (§=00) = 0. (2.4.2.5)
Expanding 7; and c in powers of €
v, =Vo+eVi+.., c=co+ecy+ ..., (2.4.2.6)

and, substituting into (2.4.2.4), we find the solutions

-, v

(2.4.2.7)

We take these solutions, which satisfy the boundary conditions (2.4.2.5) and put
them into the interfacial condition (2.4.1.7). Linearizing and taking terms O(1)

gives a dispersion relation for the leading order phase speed co,

(U, = co) (L + k(Us — co) — p~ (A~ = (U, — co)k coth ka)) = 4k%,  (2.4.2.8)
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which has the solution

1-p A"+ /(1= p~2")2 + 47k3(1 + p~ coth ka)

2.4.2,
2k(1 + p~ coth ka) ( %)

COZUs'l'

We note that, for all positive wavenumbers k, cq is real. In particular in the case of
no surface tension

1—-p~ A"
k(1 + p~ cothka)’

co=U, or cg=U, + (2.4.2.10)

The growth rate will be found from ¢;. The next order terms, O(e), in (2.4.2.4) give

(U* = co)(Vigy — B*ViE) = GEVot, (2.4.2.11)

and we look for a solution of the form V() = F*(3)V:(§). The solution now
depends on the position of a critical layer which forms at § = §. where U(%.) = co.

We will first pursue the case of a critical layer in the film. We have

for § < ¥,
_ _ (71 et . _
Vim =V, /0 V0_2 {/; e cods} ds+ b, Vy; (2.4.2.12)
for 7 > 7.,
Vo= v /’7 1_2 {/ G_:,Vo_z ds} ds+Vy /g b—zzdy+bgVo", (2.4.2.13)
A g ATS —¢o 7 Vo

7 1 i G+y+? 7y
vt =vt — 35’0 W s 04
v /a vi? {/& 17—&+U,—cods}ds+ ° /a V0+2dy+b5 {242.14)

where the b;’s are constants of integration. The solution for ¥}~ contains a term of

the form
Vi =B(7-F)n|§— Fe| + .., (2.4.2.15)

and as § — 7.

B (GEQVO- )!7:‘9:

2y =W e 2.4.2.16
wog-1 A=(7 —co/A7) ( )
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so B = Gg3(¥)Vy (9c)/A™ and §c = co/A™. The jump in the derivative of the

normal velocity across the critical layer is proportional to the logarithmic term in
(2.4.2.15),

i Gy(9e)Vo (3c)
A_ )

Vig(#F) - V537 ) =B = (2.4.2.17)

where 7% denotes the limit value taken as y — 7. above or below the critical layer.
The remaining boundary conditions are the normalization (2.4.1.6) at the interface,

the continuity in the normal velocity across the critical layer, i.e.
ViE(a) = - iV (@), Vi @) = Vi (g), (2.4.2.18)

and the pressure jump across the interface written as (2.4.1.7).
Our aim is to find the imaginary part of ¢; so we need concentrate only on

the imaginary parts of the relations (2.4.2.18). Solving for Vi, using the boundary

conditions (2.4.2.17),(2.4.2.18), substituting into (2.4.1.7), and taking the imaginary

terms O(e) we find

_ p~(Us - CO)BWGEg(

"~ A-sinh ka((U, — co)*k(sinh k@ + p— cosh k@) — k2 sinh k@)

'yc)sinh2 kg,

C1z (24219)

In the case of the critical layer occurring in the boundary layer we find

(Us = co)*mGfy(fe )e >~ e)
(sinh k(e — @) + cosh k(F. — a))(k(1 + p~ coth ka)(U, — co)? — k2)
(2.4.2.20)

Ci1: =

Taking the long wave limit £ — 0, the imaginary part of the complex wave speed
is given by the formula

- (= _o\a2
- Ggg('_l/.;)?f(U_, co)¥z

c1i T if 9. < a, (2.4.2.21)

GL(F)m(Us — o)
p-a!

if g, > a. (2.4.2.22)

C1; —

We see that positive curvature at the critical height § = 3. provokes instability if

. < @, and conversely negative curvature is destabilizing if 7. > a.
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We also examine the short wave limit £ — oo of (2.4.2.19), (2.4.2.20) to see if
instability persists. For both the case of the critical layer in the film and the critical
layer in the boundary layer flow we see that surface tension becomes the dominant
effect for short waves and the disturbance is strongly stabilized. If there is no surface

tension ¢;; — 01 as k£ — oo.

2.4.3 The numerical Rayleigh instability calculation

Here we solve the problem numerically for the boundary layer and film flows with
boundary conditions (2.4.1.6), (2.4.1.7) with the velocity profile, 4%, and interfacial
position f calculated using the numerical method of §2.3.1. Our numerical method
uses the inviscid Rayleigh equation (2.4.2.4) rewritten with the second order deriva-

tive in the normal velocity V* in a central difference form,

v

At VE+VE =0, (2.4.3.1)

where

(2.4.3.2)

U; (Ag*)?
Uj—c ’

a; = — (2 + kz(A:lji)z + J

with the base velocity profiles written in terms of the original vertical co-ordinate
7, subscripts 7 corresponding to the discrete § position and primes denoting differ-

entiation with respect to §. We write
+ +17+ +

which, upon substitution into (2.4.3.1), gives us the formulae

1 ¢
+ + J
U S S I 2.4.3.4
Pjt pEtar T TpELGE ( )
with the boundary conditions (2.4.1.6), (2.4.1.7) requiring
of =1, pf =0, ijm+ =0, (2.4.3.5)
g5 =0, p;=0, Vo =1 (2.4.3.6)
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For any given k£ we make a guess on ¢, calculate the appropriate normal velocity
profile as above, and perform Newton iterations to satisfy the interfacial condition
(2.4.1.7).

It is important to note that there are three constraints on the effectiveness of
this method, numerically speaking. The first is due to the normalization in V at
the interface. If the non-dimensional initial film thickness, @, is too large then
the numerical method for the film will struggle, as the solution decays away from
the wall. This in effect means the entire solution is being distorted to satisfy our
condition V* = 1 at the interface.

The film thickness also affects the size of the phase speed ¢ which, as was seen in
the analytic approximation where ¢; = ¢;(co), affects the magnitude of the instability.
Further, the method is unable to detect weak instabilities, ¢; = O(107%), as these
would require a grid size smaller than our minimum computationally reasonable
stepsize, 2.5 x 1073,

The final constraint is the value for the numerical far field. In the numerical
solution for the viscous sublayer flow over an obstacle, a value of § = 7; + 10 was
used since, at this point, the gradient of the profile was always unaffected by the
obstacle (i.e. it remained constant). This was sufficient then for a calculation of
the profiles over the length of the obstacle, a more distant far field would have just
increased calculation time unnecessarily. However for the instability calculations,
especially at small wavenumbers, the numerical method requires a more distant far
field such that a smooth and natural decay of the normal velocity can occur. To
overcome this problem the profiles calculated for the flow over the hump were linearly
extended such that the far field became 9, = %; + 80. This number was reached
upon comparison of values calculated for the phase speed ¢ for different values of
Joo. At this distance our solutions did not alter before the third decimal place, an

accuracy we were willing to accept in return for a realistic computational time.
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2.4.4 Numerical results for instability

We examine the case of non-separating flows which remain attached over the entire
obstacle. We will compare the instabilities of two fluid flows over a given obstacle
with those of its homogeneous counterpart.

We start by examining the displacement function A(Z) and the skin friction for a
given obstacle and two fluid flow, figs 2:2(a),(d), and 2:3(a),(b). We observe intervals
of ¢ with decreasing wall shear but increased displacement and hence the likelihood
of inflexion points , see figs 2:4(a),(b), developing in our velocity profiles, which will
facilitate Rayleigh instability.

We discovered, as in Bodonyi & Smith (1985), Tutty & Cowley (1986), that
for homogeneous flow inflexional profiles are not necessarily sufficient for instability.
We examined an obstacle of a slightly different form but, as was seen in Bodonyi &
Smith, there appears to be a minimum obstacle height required to instigate instabil-
ity. In the next section we will examine the stability of a flow with parameters based
on two realistic fluids but first we compare the stability of a two fluid system with
its homogeneous counterpart taking into account the effect of varying parameters in
the two fluid system. We look for instabilities in the flow over an obstacle of height
h = 0.35, close to the greatest common obstacle height for which both flows remain
attached. When the skin friction (86U~ /8(§ = 0)) becomes zero a singularity occurs
in the slope of the skin friction and displacement and the flow scheme breaksdown,
indicating a strong effect of the obstacle on the flow development. Using the size
of the skin friction as an indication of the effect on flow development we compared
a variety of homogeneous and two fluid systems. Even for two fluid systems with
a larger skin friction than the homogeneous counterpart we find instabilities where
none could be found for the single fluid case. When we examine the hump size
(ho = 0.42) which causes the minimum non-zero, i.e. calculable, skin friction for
a homogeneous system, we did eventually find a small pocket of instability for the
single fluid system, fig 2:5, but this was still much smaller than that of a two fluid

counterpart with p~ = 2, v~ = 0.5, a = 2 which had much larger minimum skin
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friction.

These instabilities, which we found analytically in equations (2.4.2.20), (2.4.2.19),
appear to be present for many non-homogeneous flows. We can have confidence in
the validity of the asymptotic approximation to the growth rate when we see how
well it correlates with our numerical solution, see figs 2:6(e). We will show that
the presence of a film significantly enhances the instabilities present in homogeneous
flows over an obstacle, with instability found for arbritrarily shallow obstacles in

two-fluid flow.

2.4.5 A particular two-fluid flow

In this subsection we examine the instabilities present for a particular two fluid
flow, that of water in the film and an equal mixture of silicone oil V2 and 1-2-3-
4-tetrahydronaphtalene in the boundary layer, as used in §2.3.2, and compare the
results with its homogeneous counterpart over an obstacle of height hg = 0.35. In
the two fluid case strong instabilities were discovered at the z-stations before and
after the hump maximum, in the areas of greatest velocity variation, as the flow first
accelerates and later deccelerates. With a film thickness a = 2, we discover, in the
area leading up to the hump, that the profiles are unstable to long waves which decay
in strength and become much shorter as the hump is approached (figs 2:6(a),(b)).
At the crest of the hump no instabilities could be found. Soon after the crest the
profiles again become susceptible to long wave instabilities, and the strength of
these instabilities decreases and their wavelengths become shorter, until eventually
no unstable waves were detected for profiles further downstream (figs 2:6(c),(d)).
Comparison of the numerical calculations, using the full numerical solution, for
long waves £k — 0 is favourable with the numerical solutions calculated using the
integral condition (2.4.1.12). Further comparisons were made with the analytic main
approximation to the growth rate (2.4.2.19) and, as shown in fig 2:6(e), there appears
to be a fair degree of correlation.

For homogeneous flow over the same obstacle height no instabilities could be

found. It was unclear however if this lack of instability in the homogeneous flow was
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realistic or simply a failing in the numerical method to detect small instabilities. To
establish which of these eventualities was more likely we devised a 'merged’ profile,

where the two calculated profiles for each distinct station were combined in the ratio
U= (1 - )\)Uw/oﬂ + )\Uhg, 0< A<, (2.4.5.1)

where the subscripts 'w/oil’ and ’hg’ refer to water/oil, and homogeneous flows
respectively. As can be seen in figs 2.7 (a)-(c), there do not appear to be any
significant instabilities in the homogeneous flow. Fig 2:7(c) shows the value for the
growth rate calculated using the integral condition (2.4.1.12), for varying values of

A

2.5 The condensed flow problem

In this section we consider a different regime of the previous problem, that of con-
densed flow over a short surface mounted hump on a film coated wall, of length
L < 1 on the triple deck scale. The formulation is exactly the same as §2.3 but with

the hump size and displacement written as
h~ L3, A~ L%3. (2.5.1)

The obstacle size is the minimum required to illicit a non-linear response from the
viscous layer, and now the far field boundary condition for the viscous sublayer,

(2.2.5), is replaced by
at =g+ h(z)-a+ U, asf— oo (2.5.2)

The problem is rescaled as in §2.3.1, using (2.3.1.1), (2.3.1.7) and we obtain the
governing equations (2.3.1.2),(2.3.1.3) and (2.3.1.8),(2.3.1.9). Taking the derivative
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with respect to Y'* of these equations we find

Ut 6;? + Vvt ?9?: = %2}%, (2.5.3)
aaL; L .g%t_ _— (2.5.4)
U_?-(—?m%-i-%—-%—[f_g?—; = %%’ (2.5.5)
32’% N ZTV:' = 0, (2.5.6)

where W* = §U*/8Y*, and the boundary conditions are
Wt —1aY?t - oo, (2.5.7)

and, at the interface Y+ =0,Y~ =1
pWT/F=WT, (2.5.8)
Fr (600 g+ e+ O e 1) =

(2.5.9)

The last of these conditions comes from the equations (2.5.3), (2.5.5) at the interface
at Yt =0,Y" =1 where

§Pt 8P~ __8F (1-p7)OF

+ _ — = =
V==0 3% ~3x ~Taxe Pr 08X’ (2.5.10)
+ -_
Ut=u-, %UY = %Uf (2.5.11)

and is required to fully specify the problem.

2.5.1 The numerical method

Exactly as before we discretize (2.5.3)-(2.5.9), writing derivatives with respect to
X in a three point backward difference form and those in Y in a central difference

form. In the same manner as in §2.3.1, W* is written as

Whii=PiWH+QF, Wi, = PfW;;+Q7, (2.5.1.1)
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and the governing equations (2.5.3), (2.5.5) are written as

ame.i + b;-th,- + c;-kW,-*_ll,- =dF (2.5.1.2)

) ?
with the index i, 7 indicating the discretized X,Y* positions respectively and the

constants a; ,in, ;t,dj‘, when Ui > 0, given by

Viay+t 3ULAYH? VEAY*
S I U & SN St A SN S L0 W
a; 1 5 b} 2 oAX " G 2+ 5 (2.5.1.3)
+ r+2 + —AY " F
dt = (Wj,i—2 WJ‘ 1)AY ui a- =1-— YJ_‘AY_F’ (2.5.1.4)
7 20X g -
3U-AY-?F? (3F; - 4F | + F. )Ay—zp.
- _ _o_ It 1 1 1—1 1—2 1
b = 2 Rx T 2AXU— » (2515)
VZAY"F; (W YAY -2 F2U 7,
- _ I : - — §i-2 J‘l. 1 [ R K 5.1,
R SAX v~ , (25.16)

with AX, AY? representing the stepsize in the X,Y* directions. In the regions
of reversed flow then the backward difference for X-derivatives is exchanged for a

three-point forward difference, i.e. if U <0 then

3AY " FRU;, y BF—4Fa+ Rg)AV "R

bj =-2+4 A= A X - (2.5.1.7)
- (W]7i+1 - (WJ i+2 )AY_zeU )
d]- = AKX - (2.5.1.8)
and similarly if U_,’T; <0,
2
bt =24 3UJT1' dt = (4WJ-I-7-+1 WJ t+2)AY+ U+ (2 5.1 9)
i AY+2 T T 2AX ' R

The difference representations of the momentum equations, (2.5.1.2) along with

(2.5.1.1) give the relations

—-a; d> —c; Q7
P .= -7 T = N B 2.5.1.10
g+ c; P7+ b5’ Qi cj Py +b7’ ( )

—ct df —atot
S — R L (2.5.111)

o P+ o B + ]

and so the boundary conditions become
Upazi =Y —a+ U, + F; + H;, Vl, Vimazi = 0, (2.5.1.12)
- Wim

—_._W;a:t = W]fi’ Wmam - W- (25113)

dcnom
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where
- — ‘F?Qil- + ;az 1 ’Fiz(p—. B 1)U1—i,—t(3U]j},_1. - 4Uv‘l-i,-i—‘.l + U]?l,-i—2)
T =AYt T AY - 2u-AX
(" — 1)(3F —4F;y + Fi3) Y(3Fi;—3F— F3 — ),
+ SFrAX - AX) (2.5.1.14)
— __1—Pr:m:: FL(P].-I-—]‘)
Wdcnom T AY- - AY+ . (2.5.1.15)
We define Pt . =0, Q,';am_l =land Py =0, Q; = Wy, where W is

the guess for Wy ;, initially taken to be the value at the previous X station. The
same approach is taken with the problem formulation now as in §2.3.1, and we apply

Newtons method, using two functions

A(W:Ci) Ft) = U; - (Y -a+U,+ F; + Hi): B(Wl_,iv Fi) = VlTi: (2'5'1'16)

ax,1

to satisfy A = 0, B = 0. The solution is then marched in X and for areas of
reversed flow two approaches were used. The first was to make the downstream
profiles U* all zero as a first guess, the FLARE approximation (Reyhner & Fliigge-
Lotz (1968), Smith (1982)) and then iterate globally. The second involved using
downstream profiles calculated previously for an obstacle of height hg — §éh where hg

is the obstacle height under investigation, with §h < 1, again see Smith (1982).

2.5.2 Results for condensed flow

In this subsection we examine how the different flow parameters p~, 1=, a influence
the flow development. Table 2:2 shows the obstacle heights, with an error 0(0.2) at
which the flow reversed. We see that denser fluids in the film retard flow separation
due to the implicit decrease in adverse pressure gradient in the momentum equations.
Stronger viscosity in the film has a similar effect, whilst the film thickness does not
appear to affect the flow structure on these scales. The effects of gravity and surface
tension on the hump flow were neglected. We present the profile curvatures for
both a homogeneous and the two fluid flow of water and oil examined in §2.4.4 in

figs 2:8(a) & (b) , over the maximum obstacle height at which we could obtain good
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results for the homogeneous case, before making a stability analysis of these profiles.
The regions of reversed flow (Uiﬂ; < 0) can be seen more clearly on a contour plot of
the streamfunction v, where @ = 99 /07, shown in fig 2:8c for the water/oil flow over
a hump of height 2. As an accuracy test for this method, a comparison was made of
our results with those calculated by F.T.Smith (1977), (for an obstacle defined by
H(X) = ho(1—X?){for the region | X |< 1 and zero elsewhere ) and Tutty & Cowley
(1986) ( for an exponential profile similar to our own, H(X) = hgexp[—10X?]).
Good agreement was found with the single fluid solutions, although our method
fails for strong regions of reversed flow. We performed a stability analysis on the
profiles calculated for a hump size hg = 2.0 to see their susceptibility to Rayleigh
type disturbances and both long and short wave instability. Profiles at z-stations
upstream of the obstacle maxima h = hg, which have negative curvature (see fig
2:8a,b), were stable at all wavenumbers whilst those downstream of the obstacle
maxima, where curvatures are positive, were found to be unstable. It would appear
from a comparison of figs 2:9(a),(b) with figs 2:9(c),(d) that the short wave instability
found in the water/oil case may be due to the presence of an interface. As for the
case of long obstacles calculated previously, the instabilities found were stronger in
the two fluid flow examined than in the homogeneous flow over similar obstacles.
We conclude that even for short scale surface roughness the presence of a film can

dramatically affect the stability and development of the flow.
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2.6 Tables and figures

p~ | v” @ |5 |g=1/Fr | Obstacle height
1.00 | 0511000 0 -
1.00 051 ]|1.00(0 0 -
1.00 [ 1.01}1.00 | O 0 0.5
1.00{1.01|1.000 0 -0.4
1.00 ] 1.51 {1.00 | 0 0 0.4
1.00 | 1.51 | 1.00 | O 0 -0.3
0.51 | 1.00 [ 1.00 | O 0 -
0.561|1.001.00]|0 0 -0.5
1.01 |1.00}1001{0 0 0.5
1.01 1001000 0 -0.4
1.56141.00 | 1.00 0 0 0.4
1.51 | 1.00|1.00]|0 0 -0.3
2.00 | 2.00{2.00]|0 0 0.2
2.00 200 (2001(0 0 -0.2
2.00 | 2.00 | 2.00| 2 0 0.1
2.00 | 2.00 | 2.00 | 2 0 -0.1
2.00 | 2.00 (2000 2 -0.1
2.00|2.00{200]0 2 -0.1
12011201010 0 0.4
120 {120 | 101 |0 0 -0.3
1201200510 0 0.4
120 1120|051 |0 0 -0.3
1.20 (120|001 |0 0 0.5
1.20 | 1.20 | 0.01 |0 0 -0.4

Table 2:1 A table of initial obstacle heights at which the flow scheme in §2.3 failed,
i.e. where F~19U~/8Y~ — 0. The flow was calculated for obstacles in the region
|hol < 0.5, initially for hg = 0, with a stepsize dh = |0.1|. A bar indicates no failure.
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v- p~ @ | Obstacle separation height
1.0 0.1 5.0 1.00
1.0 0.1 | 5.0 -1.00
1.0 | 0.575| 5.0 2.00
1.0 | 0.575 | 5.0 -1.60
1.0 | 1.05 | 5.0 2.40
1.0 1.05 | 5.0 -1.80
1.0 | 1.525| 5.0 2.60
1.0 [ 1.525| 5.0 -2.00
0.1 1.0 5.0 1.00
0.1 1.0 | 5.0 -1.00
0.575| 1.0 | 5.0 1.80
0.575 | 1.0 | 5.0 -1.40
1.05 1.0 5.0 2.40
1.05 | 1.0 | 5.0 -1.80
1.525 | 1.0 5.0 3.00
1525 | 1.0 5.0 -2.40
2.0 1.0 5.0 3.40
2.0 1.0 | 5.0 -2.60
2.0 1.0 | 275 3.20
2.0 1.0 | 275 -2.40
2.0 1.0 | 0.5 2.40
2.0 1.0 | 0.5 -1.80

Table 2:2 Neglecting surface tension and gravity, values of the obstacle height
ho at which flow reversal first occurs in the condensed flow scheme of §2.5, for various

combinations of p~, v, a.
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Figure 2:1. (a) The flow structure for r film generation via a jet from a slot
inside the boundary layer on a plate with an obstacle downstream.
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Figure2:1(b) The velocity profiles at various X-stations calculated numerically for
(2.3.1.2)-(2.3.1.3), (2.3.1.8)-(2.3.1.9) with upstream profiles U~ = 4Y(1-Y), in the
film, and the Blasius profile, in the boundary layer fluid, with boundary conditions
(2.3.1.4), (2.3.1.13) (2.3.1.16) for & = 2, p~ = 1.087, v~ = 0484, 5 = 0, Fr = 0,
ko = 0 (c) The velocity profile curvature §%%/83? for (2)
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Figure 2:2. (a) The Triple-deck structure for the boundary layer flow on

a film coated wall over an obstacle of nondimensional length L.
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3.0

1.95—

1.85—]

Figure 2:2 Numerical solutions for the flow scheme in (2), with initial base flow
profileas given by (2.3.1.6), (2.3.1.12) and parameters @ = 2, p~ = 1.087, v~ =
0.484, § = 0, Fr = oo, for various obstacle heights:(b) The scaled wall shear
F-1dU~ [dY~(0) against X-station, (c) The interfacial position F against X-station.
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Figure 2:2. As before. (d) The interfacizl speed U*(0) against X-station, (e) The

displacement A against X-station.
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Figure 2:3. Numerical solutions as in fig 2:2 for homogeneous flow with pa-
rameters a = 2, p~ = 1.0, v~ = 1.0, 5 = 0, Fr = oo for various ho. (a) The scaled
wall shear F~1dU~/dY~(0) against X-station, (b) The displacement A against
X-station.
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Figure 2:4. The cuvature of the velocity profiles @t at various X-stations, ho =

0.35,7 = 0, Fr = o (a) For the water/oil system p~ = 1.087, v~ = 0.484. (b) For

the homogeneous system p~ = v~ = 1.
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Figure 2:5. The unstable eigenvalues of (2.4.2.4), with boundary conditions (2.4.2.5),
(2.4.1.7), and velocity profiles of the homogeneous flow over an obstacle height
ho = 0.42, with, p~ = 1.0, v~ =1.0,7 = 0, Fr = 0, @ = 2.0. Imaginary wave

speed ¢; versus k for profiles at various X-stations.



Chapter 2: Tables and figures 55

4.0
(&
c
D
-

1.5 T T T T T L T T I

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
k
0.12

Figure 2:6. The Rayleigh instability of velocity profiles taken from flow over a
hump, with p~ = 1.087, v~ = 0.484, @ = 2.0, hop = 0.35, 5 = 0, Fr = 0. (a)
real phase speed c, against k for various X-stations upstream of hump peak, (b)

imaginary phase speed ¢; with X-stations as ()



Chapter 2: Tables and figures 56

real ¢
N
[4)]
|

1.0

Figure 2:6. As before, (c) real phase speed c, against k, for various X-stations

downstream of hump peak, (d) imaginary phase speed ¢; against k.
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Figure 2:6. (e) Comparison of analytic solution for ¢; from (2.4.2.19) with the
numerical solution, for various X-stations.

Figure 2:7. The Rayleigh instability of the combined profiles in (2.4.5.1) for an
obstacle of height ho = 0.35, at X = 1 with § = 0, Fr = o0, & = 2.0. (a) Phase

speed ¢, against wavenumber k for various A.



Chapter 2: Figures and tables 5-8

(b)

0.5

0.0 1
0.0 0.5 1.0

A

Figure 2:7. As before (b) imaginary phase speed ¢; agianst k. (c) ¢; against A for
E =0 calculated using (2.4.1.12).
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Figure 2:8. The curvature of profiles taken from the condensed flow over an obstacle

of height ho = 2.0, with 7 = 0, Fr = 00, @ = 2. (a) for p~ = 1.087, v~ = 0.484, with
7 plotted against §%@/87° . (b) ¥ plotted against §2a/87? for p~ = 1.0, v~ = 1.0.
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Figure 2:8 As before, (¢) Contour plot of the flow in (a) for various constant values

of the streamfunction %, indicated next to each streamline.
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Figure 2:9. The unstable eigenvalues of (2.4.2.4), with boundary conditions (2.4.2.5),

(2.4.1.7), and velocity profiles taken at verious X-stations for the condensed flow

over an obtacle with hg = 2.0, @ = 2 (a) p~ = 1.087, v~ = 0.484, real phase speed

¢, against wavenumber k. (b) as (2), imaginary phase speed ¢; against wavenumber

k
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Chapter 3

Vortex-wave interaction in a

two-fluid flow

3.1 Introduction

As outlined in the literature review in the general Introduction, vortex-wave interac-
tion (VWI) theory involves the coupling of a steady three-dimensional vortex with
oblique short scale waves in a boundary-layer flow and attempts to track the devel-
opment of both vortex and wave downstream of the wave source. It is thought that
these type of interactions may provide a mechanism for the transition to turbulence
in a boundary layer. In this Chapter we develop the weakly nonlinear vortex/inviscid
wave theory for the case of two-fluid flow in a linear shearing motion. To start with,
a pair of oblique waves are assumed to be imposed on the base flow as in the related
work of Brown (1993), Brown et al (1993) Smith, Brown, Brown (1993) (hereafter
referred to as SBB). However due to the specific role of the interface and the zero
curvature of the base profile, we find that, firstly, all oblique waves are neutral in the
leading inviscid flow approximation (and therefore can produce VWI) and, secondly,
for some choices of the film parameters two pairs of oblique waves with the cross-
wavenumbers §# and 38 can have equal phase speeds and streamwise wavenumbers.

The second property means that the two pairs will interact between themselves via
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the contributions to the wave induced vortex which is generated around the critical
layer in the manner described in SBB. The precise mechanism of the resonance will
become clear from the form of the amplitude equations. We add this second pair of
waves to the problem formulation and, using an asymptotic flow structure similar
to that developed in SBB, we find equations governing the wave amplitudes.

The chapter is organized as follows. In §3.1.1 we establish a dispersion relation,
through which we show the possibility of a resonance between pairs of waves, in the
sense described above. A numerical analysis of the dispersion relation is followed
by some analytic work which verifies the existence of resonant modes. In §3.2 we
use the asymptotic structure developed in Brown et al (1993) and SBB to introduce
the second pair of oblique waves and in the subsequent sections obtain solutions in
the various flow regions, shown in fig 3:1(a)(b) . Matching the various solutions
we obtain four wave-amplitude evolution equations and some solutions for various
initial conditions are then calculated, with the effects of nonlinearity shown.

Qur approach to the flow is similar to that taken in SBB, although we make
a slightly different non-dimensionalization to suit our problem. At a set point the
streamwise velocity profile is perturbed by means of a vibrating ribbon or some other
device, generating a pair of oblique waves, periodic in the span-wise direction. The
equations of motion (1.1.1) are non-dimensionalized taking the interfacial speed U,
the undisturbed film thickness h,, the time h,/U.,, the film viscosity p, and density
p. and the pressure p_ g,.h, as reference parameters, g, being the gravitational
acceleration. This gives the Navier-Stokes equations for a three-dimensional (3-D)

flow in the form

Du -1 0p o,
Dt~ FrpEos R’V (3.1.1a)
Dv -1 ap + #:h 2
Dt - 3y P 1.1b
Dt = Froley 7T R (3.1.1)
Dt 9z v 3.1.1
Dt ~ Frp%0z ' pERe’ - (311c)
) (3.1.1d)

gz ' Oy 0z
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Here Fr = U2/g.h., Re = p;U,h,/u;, are the Froude number and Reynolds
number respectively, the 4+/— signs refer to the flow above and below the interface,
p~ = p” =1, pt = p,pt = p, where p = pf/p; and p = p}/p; denote the
viscosity and density ratios in the fluids. Also D = /8t + ud/0z + v8/0y +wd/0z

and V2 = §%/9z?% + 6%/0y? + 0?/022. The base flow solution of these equations is

taken as
v =Uo(y), p=Po(y), v=0, w=0, (3.1.2)
where
Po=-y, Up=y, for0<y<1, (3.1.3)
Po=—(p(y—1)+1), Up=At(y-1)+1, fory>1, (3.1.4)
and At =1/p.

3.1.1 Linear inviscid disturbances

For large Reynolds numbers a monochromatic disturbance to the base flow in the

form
(u,v,w,p) = (Vo,0,0, Po) + (2,9, w,p)E + c.c. (3.1.1.1)

where E = expli(az + Bz — wt)], ¢ = w/a, and 4,7,w,p are small, is governed by
the equations

-1

ia(Uo — )i+ Up (y)7 = miaﬁ, (3.1.1.2)
ia(Up — ¢)¥ = "ﬁ;—;t%’ (3.1.1.3)
. _ -1 .
ta(Ug — )i = Fropt 107, (3.1.1.4)

10t + oo + ifw = 0, (3.1.1.5)
9y
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which, for the constant-shear base profile, combine into a simplified Rayleigh equa-

tion,
Ty — (@® + %)5 = 0. (3.1.1.6)

The solution of the latter must be continuous at the interface and vanish at y = 0

and as y — 00, hence we can take

7= Asinhyy, when 0 <y <1, (3.1.1.7)

7 = Asinhyexp[y(1 - y)], when y > 1, (3.1.1.8)

where 72 = a? 4 2. For the effectively inviscid perturbed motion the interfacial

kinematic and pressure-jump conditions can be combined to give

[ply = )]t = —(By* + (1 - iai=g (3.1.1.9)

where B = v,/p; g.h? is the Bond number and the square brackets indicate the
jump value across the interface. Using (3.1.1.2), (3.1.1.4), (3.1.1.5) and (3.1.1.7),
(3.1.1.8) the explicit solution for ¥, the interfacial condition (3.1.1.9) gives the fol-
lowing expression for the disturbance phase speed
B (v —1)tanhy

2u(1 + ptanhy)y

N (v —1)tanhy 2+7tanh7(1—p+72B)
2v(1+ ptanhy)y a?Fr(1+ ptanhvy)

(3.1.1.10)

and we have used At = 1/u. Examples of the phase speed dependence on the flow
parameters are shown in figures 3:2(a)-(e). The nonlinear theory presented later
in this chapter relies on the assumption that the oblique waves with the spanwise
wavenumbers § and 38 have the same phase speed and wavenumber a. Figs 3:3
(a),(b) show this type of resonance for some choices of the parameters At and p,
and in Table 3:1 we show a few examples of the many sets of parameters for which

¢(B) = ¢(30). Below we establish certain sufficient conditions for the resonance.
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3.1.2 A sufficient condition for resonance
Assuming that § is small we expand é = 1 — ¢ as a Taylor series in 32
ﬂfi
é = co(a) + B2 (a) + —2—'—62(01) + (3.1.2.1)

where ¢; = 8¢/8(82)(8 = 0) , é&; = 82¢/8(B%)*(8 = 0). For the resonance condition
é(a,B) = é(a,3B) to be satisfied it is sufficient to have ¢1(a) = 0 at some a = aq.

Indeed, in this case we can take
a=a+ea, B=¢l*B, (3.1.2.2)

with small ¢, so that the resonance condition can be written as

o o 06 81 5.4 o o_OC e84 .
Qﬂzeza—azl(ao) + Eezﬂ‘*cz(ao) = ﬁzezaa—;(ao) + ——2—c2(ao) + ... (3.1.2.3)
Hence
L a dé
ﬁ = _562(&0) E(ao) + ... (3124)

The right-hand side of (3.1.2.4) can always be made positive by choosing & with the
appropriate sign. Further, we can show that the sufficient condition é; = 0 will be
satisfied, at least for small &, provided the kinematic viscosity of the upper fluid is

small. Suppose that

o = ho*a, :3* = ho*ﬂ, B* = ho*zBa Fr* = F”'/haa P* =P /J'* =H
(3.1.2.5)

with ho* — oo and the scaled variables o*, §*, ... of O(1). We find that if ho* — o0,
then
dé

o(8**)

. (1—,0*>\+) —2(p*>\+—1)2 (1—p*+3a*2B*))
pacg  Aa3(1+p%) T\ 4a3(1+ )2 o*?Fri(1+p%)

-1
-1y (G- 4B
3.1.2.6
X <4a 4(1+ p*)2ar? * a*Fr*(1+ p*) ( )

The condition 8¢/8(6*?) = 0 can now be written as

2D14/ Dy? + Dyo* + D3a*® = —2D,% + Dya* 4 3D30*? (3.1.2.7)
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where Dy = (p"\* —1)/(2(1+ ")), Dz = (1— p*)/(Fr*(1+ ")), Ds = B*/(Fr(1+
p*)). We find that D; > 0 when 1/v* = p*/p* > 1and Dy < Ofor1/v* < 1,D; >0
for all values of p* as long as the lower liquid is denser then the upper liquid, and D3
is always positive. The sketch of the left-hand side and right-hand side of (3.1.2.7)

in fig 3:4 shows that the required o* exists when D; > 0 i.e. when v* < 1.
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3.2 VWI with two pairs of waves.

In the previous section we established the possibility of co-existence of two pairs of
oblique waves having the same values of the phase speed and streamwise wavenumber
and with the cross-wavenumbers § and 33. Here we consider nonlinear interactions
between such waves. The starting equations are taken in the non-dimensional form

(3.1.1).

3.2.1 The core flow.

The inviscid core flow regions are those marked 1,2,3 in fig 3:1 and have scalings

y = O(1) and z = O(1). For the velocity and pressure we make the following

expansions:
(,L—Lleiﬁz + ﬂ;e_iﬁz + aze‘i3ﬂz + ﬁ;e—i:iﬁz)E_{_
uw="Uo(y) +€ | (3" + ale P> + 14e"P= 4 u5e"F2)E4 (3.2.1.1a)
+... 4+ c.c.
(q—)leiﬁz + ,l—jzre—iﬂz + ﬁzeiBﬁz + ,-l-];e—iBﬁz)E_*_
v=—€ | S(T3eP" + 1je P + 5,e"P% 4 gle~1382)E 4 (3.2.1.1b)
+...+ c.c.
(wleiﬂz 1 w;e—iﬂz + wzeiBﬁz + w;e—i3ﬁz)E+
w = 67 63('11738#31 + w;e--iﬁz + w4ei3ﬁz + w;e—i3ﬁz)E+ (3.2.11C)
+...+ c.c.
(ﬁleiﬁz + ﬁ;e_iﬂ" + pze‘i3ﬂz + ﬁ;e_iaﬁz)E‘}‘
p = Po(y) + 67 63(f3eiﬂz + ?;e—iﬁz + ﬁ4ei3ﬁz + ﬁze—t:sﬂz)E_l_ (3_2'1.1(1)

+...+ c.c.

where E = explia(z — ct)], € = Re™/8, c.c. stands for the complex conjugate and
terms in E? and E® have been ignored since they do not affect the VWL NOTE:

the superscript * does NOT denote the complex conjugate in this context.
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A explanation of notation is required before we proceed. We will be using the
superscript [¥] to indicate the result for the second (asterisked) wave as the same
as that for the first wave with any sign changes for the second wave indicated by
[F] in front of the corresponding expression. We will be adding a second subscript
where necessary to differentiate between core solutions in regions 1,2 and 3 of figures
3:1(a), 3:1(b) where the precise domain of the solution is important.

For the leading normal-velocity terms the solution can be written in the form

ﬁl(zl,y) = Vl(y)Al(zl); 1'){(m1,y) = Vl‘(y)Al*(ml), (3212)

o1, 7) = Va(y)Az(z1), ¥3(e1,v) = Va*(y)A2*(z1), (3.2.1.3)

and we aim to obtain amplitude equations for the functions A;. The y-dependent

coefficients, for the case of the critical layer in the lower fluid are

[t] _ [t] _ Sinh 'Yly [a] _ Sinh '71 11(1_y) 4
Vip =Vip = sinh 9.’ Via' = sinh'ylyce ! (3-2.1.4a)
yil oyl = SV g S gy (3.2.1.4b)

21 22 sinh Y2 Ve ) 23 sinh V2 ,

3z is the slow streamwise coordinate and 42 = o? + 8%, 42 = o® + 96°.

where z; = €
The wave amplitudes are hence defined by the magnitude of the normal velocity

oscillation at the critical layer. For the case of the critical layer in the upper fluid

we have
Vll'l*] = %il_lnhh’)I_’;lye‘n(yc—l), Vl[;] — Vl[;] —_ e’n(yc—y), (3.2.1.58.)
* i h * * -
3 = gy Y, Vi = Vg = el (3.2.1.5b)

We now use these solutions to solve for the next-order wave perturbations. For

the critical layer in the lower flow we get the general solutions

iacoshy1y
71 sinh 119

*]—

1‘):[;’1] = Fg;]— sinhy1y + G[m cosh 11y — yA[l']l(aq), (3.2.1.6a)
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] _ [» ] b tacoshyy A[*]I
oy = Fi~ sinhyiy + G3;~ coshyyy — P . (z1), (3.2.1.6b)
_[*] _ [*]- —my _ 1 sinh 71 y(1-y) [+)'
33 F33 € - sinh Y1e ye Al (wl)) (3.2.16C)

and, for the case of the critical layer in the upper fluid,

1’;&'1] Fg;]"' sinhy1y + G:[;;H coshy1y — za—C?Shﬂye”‘(”C_I)Ag*]l(:nl), (3.2.1.72)
71 sinh 7y,

a5 = Fl3¥ sinhyiy + Gyt coshmy + ——ye‘“(”c D AM (zy), (3.2.1.7b)

"g;] — F:E;He—'ny + ;_clxye'Yl(yc—y)A[l*]l(ml). (3217C)

Similar results are derived for 74,7}.

The undetermined constants F, G will be deduced in §3.3 where matches are
made to the Stokes layer at the wall, and to the buffer and interfacial boundary
layers. The superscripts +/— used here refer to the critical layer occurring above or

below the interface.

3.2.2 The buffer layer.

The buffer, zones 4 in fig 3:1(a),(b), acts as a viscous, diffusive layer which smoothes
the discontinuities in the mean velocity field generated by the waves and supplies
the main vortex corrections to the wave. We introduce a new variable Y = O(1)

such that y — y. = €¥/2Y and expand the solution in the form

u = UO(yc) + 53/2YU0,('!/C) + Esﬁm +
B ~ % -1z
o Zes n2—1 Un 16. + uzn_le. E
i et Figne¥Br 4+ i, e3P (3.2.2.1)

+h.o.t. + c.c.

m
24: sne) [ Ton-1€®® + B, 7 E
€ 2
&7 5, €317 7% =3Bz (3.2.2.2)
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w = &5 4+
Sl st LD 4 By, e 3B (3.2.2.3)
+h.ot. +c.c.
p = Po(y)+?Y P (ve)+ ...+
ifﬂnz__ll Pna€® 4 P e )
e | = +hane¥Br 1 py e~ (3.2.2.4)

+h.ot. +c.c.

where 4, ¥,, and W, are the mean-flow corrections which can be written in the

form,

ﬁm — ﬁzmemﬁz + ﬁ;me-—-hﬂz + ﬁ4me4zﬁz

+ﬁ2me—4iﬁz + ﬁemeGiﬁz + ﬁ;me—&'ﬂz_ (3'2.2'5)

Here @iy, = (%m, Um, Wm) and the coefficients ﬁl[:l are z-independent.
Upon substitution into equations (3.1.1) we obtain relations similar to those in

SBB for the first few wave terms, in particular matching to the core flow we find

’l.)]_ = Al(ml), ’1-12 = Az((l);[), (3226)
~ FrotU, ) ls . FrotU, AN
5y = P You\¥e) z_a"v(y )Agl(zl), fy = 0 Jou¥e) ia"”(y )Agl(ml). (3.2.2.7)

The density and shear here are assumed to be chosen according to the position of the
critical layer. The solutions to the leading wave terms, in a similar manner to those
in Brown (1993), are all manifestations of the external core behaviour. Solutions for
the e*3%%2 harmonics are of an equivalent form to those for e**#? with all parameters
B replaced with 38, and y; with 7,.

The first significant change from the theory in Brown (1993) is when we examine

the terms of O(€%/?) in the z— and z— momentum and continuity equations. For
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example, for the terms with ¢#* harmonic we have the governing equations

! . -~ ~ -~ . ~ -~ . -~ ~
Uo (v.)Y (iaiiy + U3z, ) + clisg, + 1t lom + 10y,
+i0lylam + Uomy 91 + Uomy U2 + Gamy U3
! . -~ - -~ -~ -~ ~
+Uo (yc)i7 + (2] tUgm — 2Watls,, + 4Wslam)

+

_ o u . 2.
= _—FTp?p? + p_i(usyy - 1°d), (3.2.2.8)

and

Uo (ve)Y (sathy + Bz, ) + ia(Tam®? + @4, Wy + am@])

B 5L i( 2,) (3.2.2.9)
= T pip7 Wsyy — 711" W1), 4.4
iaiiy + fizz, + iB7 + B7y = 0. (3.2.2.10)

Manipulating these relations using solutions for the previous terms we find that

7 Y N
Uryy = 5—’712V12A1($1) + Uy(y—f)y(uzm‘wl — U, Wy + 2gm D))y
1 e o N
+W(v1u2m}’y + V2lymyy + Tolamyy) (3.2.2.11)

where we have expanded VI[*],V.L,[*] in the core flow about the critical layer in the

form

[*]
V[*]—1+ZV y ye)"

Vi
vl = 1+ZM»

n=1
and matched to the buffer. The relation (3.2.2.11) shows that the e#*-component of
the wave is affected by mean-flow corrections proportional to cos(26z) and cos(45z).
These corrections are calculated next. For the vortex components in the buffer, given

by (3.2.2.5), the continuity equation reduces to

6;;’171 = —nifWnm, a;’;m = nifd},, where n = 2,4,6, (3.2.2.12)

and the z- and 2-momentum equations are, respectively,

orakl,  prcoall,

oY T AE ey U(yc)lT“EIL, (3.2.2.13)
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a,d')’[;]n :b 82 ["‘]

G pi Sy (3.2.2.14)

Again the viscosity and density are chosen according to the critical layer position.
Except for differences in notation, analysis of (3.2.2.12)-(3.2.2.14) proceeds exactly
as in Brown (1993) by taking Fourier transforms, of equation (3.2.2.14) first, writing

the jump value for the nth z-harmonic of the mean vortex as

[} [*] O+ = [ v+l jo = JB, (3.2.2.15)

Womy

where [Wnmy]®, is found in the critical layer analysis in the Appendix to this

Chapter, and defining the Fourier transform of a function g to be

1 [ .
7"(9)=E/ 9(z1,Y)e " dz,. (3.2.2.16)

Performing the transform and solving for F(wWn.m,) we obtain the solution

.7'-(.]7[:]) e—0|Y|’

2.2.1
5 (3 7)

Folh) =

where 02 = ikcpt/p* and Real(c) > 0. We then substitute (3.2.2.17), along with
(3.2.2.12), into (3.2.2.13) to obtain an equation for ki),

_ 5k Y gl
Fall —azf(ak,ln):[ ]Uy(z;)mﬂp / F (2; ) e=ol¥1 gy, . (3.2.2.18)

Integrating the right hand side for Y > 0, Y < 0 and solving, we establish that

Flal) = Pl (¥e)P™ )1 - —f’ll"("'Y| +1)), (3.2.2.19)

2utot
Falh) = - IR g Ty, g2za0m

for Y > 0 and Y < 0, respectively. We substitute this form into equation (3.2.2.18)

to obtain the relation

0 q 62.7:(unm) = ]Uy(yc)niﬂ ol
e TR 2.2.2
/0 ¥ ay? dY = ke F(J), forY > 0, (3 0)

which we can invert using the convolution theorem. Coupled with the corresponding

result for Y < 0 this leaves us with

oo 2.~ [+ _ ; z
/ 5’1“ aaz;:; gy - | ]Uyéi/c)mﬂ / ' ) (s)ds. (3.2.2.21)
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We can now use this relation to integrate (3.2.2.11) across the buffer layer. This

is dome, in a similar fashion to the approach in Brown (1993), by using

1.pzl] ~[+]
0 N o < S U v ./ (3.2.2.22)
Frp*ioaly(ye)Y Frp*iaUy(y)Y
to establish a relation of the form
* (ﬂ'Zmﬁ’l)Y Zﬂﬁl /oo '&2mYY
me 2 JY = — Y .2.2.2
o Uy(y)Y 2Frptialy(y.) y ° 3 )

which, along with similar expressions for the other terms in (3.2.2.11), reduces all
integrals to the form (3.2.2.21).
As a result we obtain

3 B ¥ 20625 um
(Grv]=, = Bf — By + (s P am¥Y

dY
Uy(yc) FrpizaU 'yc)

Ua uszY
+ —=mr L dY 3.2.2.24a
(Uy(yc) Frp* zaU yc) ( )
U3 126%p3 /°° Lamyy
+ 2 _ - —dY.
Tl ™ FroFialy o) |~ ¥

For the other three wave terms of this magnitude in ¢, upon similar manipulation,

we have
- - 26%p, /co iy
o _ B‘ _B i 2mYY dY
["’7Y]—oo 7 7 +( y(yc) FrpizaUy(yc)z) w Y
By 12825, /°° Uymyy
_ . mYY gy (3.2.2.24b
+(Uy(yc) Frptialy(y.) ) e Y ( )
} 6653 / * Tamyy
_ i dy,
0w T Frial, @) L Y
- - U 26°h1 * domyy
© = Bf — By +(—2 - / v Y
[v8Y] o0 8 8 (Uy(yc) + FrpiZOth(yc)Z) —o Y
o 46°p; / > famyy
_ dy  (3.2.2.24
+(Uy(yc) Frpialy(y.) ) S 4 ¢ °
s 183%p3 / © lgmyy
___ 18 iy,
t (Uy('!/c) F'rpizaUy(y,_.)z) o Y ,
. 46°51 .
~% 700 — B*+ B# 4 / amYY dY
[93y]%0 = B3 7 (yc) FrpizaUy(ycP) ~w ¥

By 26%5 /°° UWmyy
mi2dY (3.2.2.24d
¥ (Uy(’.‘!c) ¥ F’r‘piiaUy(yc)z) S 4 ( )
Uy 186°p, / ® Ugnyy
__ 18 mYY gy,
Uy(ye) FrotialUy(ye)?' J oo Y

+(
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Here B.[,*], Bé[;] are constants which will be discussed in §3.3.

3.2.3 The viscous interfacial layers

The shape of the interface is taken in the form

y=y; =1+¢€ (me’* + e % 4 e3P 4 nte 3P E
1 +e3(nze? + . )E + ... + c.c.

and we write the new vertical coordinate as
7=y —w)=0(1). (3.2.3.1)
As in the other layers of the flow we expand the velocities and pressures as

u = Up(1)+EUs (1)g+ € ((111 T+ mUs (1)) + (dg + anol(l))e&iﬁz) E

-l—em(('&;; + 'r;;;Uol(l))ez"ﬁz +.)E+ .. +cec (3.2.3.2)
v = € ('Z)leiﬁz + 9577 4 9P 4 ﬂ;€_3iﬁt) E + €93 + ..)E
+...+cec. (3.2.3.3)
w o= € (wleiﬂ’ + i P 4y Pr 4 'Lb;e'3"’5‘) E + (3¢ + ..)E
+...4+ c.c. (3.2.3.4)

p = Po(1)+ P (1)i+€ ((Br+mPo(1)e? ++(; + mP (1) + .. ) B
+€%((p3 + maPo (1)) + . )E + c.c. (3.2.3.5)

For the e*#* terms, the governing equations to the order required here are
t1g =0, P1g=0, (3.2.3.6)

and

. N 1 N ia . ,u,i .
iU, 4y + Up (1)1 = _FTpi_pl + p—iulgg, (3.2.3.7a)
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1
U, b1 = ———pag, 2.3.7b
ol = ~ g (32.3.70)
- P
tal,i = ——F_;;’;pl + ;;wlgg, (3.2.3.7¢)
1oty + U35 + 181 = 0, (3.2.3.7d)

where U, = 1 — c¢. From these equations, observing the invariance of ¥; and p; with

respect to ¥, we establish that

By = —Frp*ial,o1§ + Pj, (3.2.3.8)

styr ! "
.+ _ 57U (1) topy A% cosh ot + BE sinh o4
= —— - B h 3.2.3.9
i3 7T, F'rui(ai)z + AT cosh 0*§ + B sinh 0™, ( )
where o = \/ialU,p* /put with oF = o -}-iaii and o > 0. Again the superscripts

+/— indicate whether we are examining the parameters above or below the interface

and P;:: is a constant of integration to be calculated later. We apply the boundary

conditions of no exponential growth as |§| — co and find
Af =-Bf, A7 =By. (3.2.3.10)
Using similar arguments we find, from (3.2.3.7c), that
BE = __ bR + C#(cosh ot F sinh 0%9) (3.2.3.11)
1 FTﬂi(Ui)z 1 )
and substituting (3.2.3.9), (3.2.3.11) into equation (3.2.3.7d) we obtain

2k ~trr ! 1 E:l:
7P 7+ 37Uo ( )i/ + U—i(sinh oty F coshoty) + VE, (3.2.3.12)

4
9y = -
3 Frut(o*)? Us

where st are constants of integration, which will be determined from matching,

and Ef,t = —z'ozA:IE - iﬂCf. Using the conditions at the interface,
[prag)t =0, [phdy)l =0, of =9, (3.2.3.13)

the constants A:It, 6'1:h and E'3i can be expressed in terms of the pressure component
ﬁli and the interface shift 7; in the following form:

1

ct = (i’f(; ~1)+m(l-p +7123)) B

FraU,(1+ /pp)’

(3.2.3.14)
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a _ x
Af = Ecj, A = —,/—ppECf, (3.2.3.15)
.2 2
Ef = _’_}Lc;, Ey = z—“—ﬂ——- it (3.2.3.16)

Then, application of the kinematic condition to (3.2.3.12) shows that

+/ .+ + At
N3 = _E3 /U + V3c 1)1371
1alU, a?l,?

(3.2.3.17)

We can now express the jump value [Ps.]t, which we will require for matching to

the core flow, in terms of known constants and V,;}. From the interfacial jump

requirement
[Bs + ﬂsPog]gi = —m’Bns, (3.2.3.18)
we then find that
—Efjot+ Vit b
A +°° 2 3 35 121
=-Mm"B+1- 2.3.
(B3I = — (m*B +1-p) ( ot a2U,2) ,  (3.23.19)

and similar results are obtained for the jumps in p3, p4, and pj.

3.2.4 The viscous Stokes layer on the wall

The viscous Stokes layer on the wall behaves exactly as in Brown (1993). It has a

stretched vertical co-ordinate ¥ = €73y = O(1), and the expansions

u=eY + (e +..)E+ ...} + cc., (3.2.4.1)
v =€e05ePE +..) + cec., (3.2.4.2)
w=¢€(0,ePE+ ..)+cec., (3.2.4.3)

p=—Y +(5,eP*E+..) +cec. (3.2.4.4)

We obtain, on substitution into the governing equations (3.1.1), the solutions

254
O I o S B s
U= -y (Y + c_r(e 1)) , (3.2.4.5a)
. o=[x]
sl 1B (g L er b
U == (Y + 5(e 1)), (3.2.4.5b)

where & = v/—iac, Real(d) > 0 and we will match these solutions to the core flow

in the next section.
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3.3 The amplitude equations

In this section we derive the controlling wave-amplitude equations for A[;], A[;] by
establishing the jump in the fundamental correction to the leading disturbances in
the core flow, ﬁg*], and its derivative, aa:[;‘]/ay, across the critical and interfacial
boundary layers. We do this by matching the solutions in the buffer, the core flow,
the Stokes wall layer and the critical layer. Due to the linearity of the base profile
the logarithmic singularity in the wave solution at the critical layer present in SBB,

Brown et al (1993), Brown (1993) is absent therefore
B B —ofori=1,8. (3.3.1)

The constants of integration, F:ﬁ, Fsiz, Gghl, G:':.bz: in (3.2.1.6), (3.2.1.7) can now
be calculated. Recall, when the critical layer occured in the lower fluid the solutions

for #3 ( and similarly 74, 7 ) were

17:[;1]" = Fg;]_ sinh ;9 + Gg‘;]' coshy1y + Tg]_(y), (3.3.2a)
17:[;2]~ = FaE;]- sinhy1y + G['Z]_ coshyy + T:,[’;]—(y), (3.3.2b)
3T = ey 41 (y), (3.3.2¢)

and for the case of the critical layer in the upper fluid

ot = P sinhyyy + GUF coshmy + T (), (3.3.3a)
17:[;;]'}' = F;;H sinh y19 + Gg‘;*’ coshmy + Ts[;H(y), (3.3.3b)
Bt = Faytermv i Ti(y), (3.3.3¢)

where we have defined T;ii as

t' *|— 3 S' h — ‘l
yAg.] (zl), T3[2] = _zaln—'ylye'n(l y)Agl (ml)’

tacoshy1y
71 sinh11yc

TM— — '
3 71 sinh 1.

(3.3.4a)
1

o+ tacoshy1y e—1) 4[%)' [+ _ o e—y) 4[¥)
T:£1] = _myeﬁ(y I)A[l] (z1), T = 7—1ye’71(y y)A1 (z1) (3.3.4b)
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Matching to the Stokes layer at the wall we find, from (3.2.4.5),

oy 2
iy — . T} 3.3.5
31 QCFT\/mPH( ) ( )

and we can express pn](O) using the solutions (3.2.1.4), (3.2.1.5), (3.2.1.3) to show
that,

s iaF'r
B(0) =

= (U6(0)5(0) - (To(0) - e)al3,(0)

C.miA[;](ml) fory. <1
71 sinh 719, (3.3.6)

s T e”’l(y“,l)A[l'](ml) fory. > 1

71 sinh 7,
and again similar results hold, with «; replaced by 7, for %4,9;. To find the values

of the other unknowns we must use relations found from matching to the buffer and
viscous interfacial layers. For clarity we will concentrate on the case of the wave 73

only. First, matching to the buffer layer yields the relations

y= yc —
a2 =, (3.3.72)
- 5 28R / " UamYY gy
[v3y] B (Uy(yc) FTPiiaUy(yc)z) ~o ¥
) 66°p2 /oo Lymyy
. ~ ‘ mYY gy
(Uy(yc) Frp*ialy(yc)? Y
7 126%p; / Y4myy
N o1 dy
(Uy('yc) Frp*wa(yc)z) ~o ¥
- (3.3.7b)

and then matching between the core flow and the viscous interfacial boundary layer

we find

Ba(y = 1%) = V3l, ta(y=17) = Va, (3.3.8)

Pa(y=1%)=Pi, pa(y=1") = Py, (3.3.9)

where Vfc,PgE are unknown constants of integration. Although we do not know any-
thing about the precise values of these constants all that is required is the difference

between them, which we find from (3.2.3.16) with (3.2.3.17). Hence

[1’3]y—1+ =Vof - Vi =

y=1"

(1 ~ o), (3.3.10)



Chapter 3: The amplitude equations 81

and EJ is given by (3.2.3.14)-(3.2.3.16), with

R _ Frpio ¢+, _ _

5t = 7i(1) = = (Uss(Dm(1) = (Uo(1) - s (1)) (3:3.11)
where j = 2 or j = 3 depending on whether y. < 1 or y. > 1 respectively. We
need one further relation, and we find this in the core flow from a coupling of the

z—,z—momentum equations with the incompressibility condition to get
1+
. ! — . —
ptiatsUg (1) - p:tUo(l)vl._m1 - p:tzozU,'u.h,:1

L a1t
lptial,v3,)i" = i 2 (3.3.12)

_ Y17 _
+FTP1.¢-1 Fr D3 1-

or, using the result from the interfacial layer (3.2.3.19), with (3.3.10) and (3.2.3.13)
[piz'aU,ﬁgy]%t = P3'f)1z1(1) + Qs’l_)gj(l) + Ra, (3.3.13)

where j =3ify. < 1,7 =2ify. > 1, and

2
2b! 1 2
P; = 2 - 1- B

3 (F'rozzU,2 FT‘U,) ( pEM )

+ (1 - Ui) (At -1,

2
Q3= —1 (1-p+m12B) +ialpAt ~ 1),

ialU,Fr
2 +
_ 71 _ 2 . _ E3
R3 = (iaU,Fr (1-p+m°B) —ia(l p)) pr

We can now determine the unknown constants, in the expressions for %3, (3.3.3).
On substitution into the two interfacial jump conditions (3.3.13), (3.3.10) we find
ET
Fp=en (U—i(l - p) + T5(1) — T5,(1) + F5ysinhy; + G3, cosh'n) (3.3.14)

Applying relation (3.3.7a) we obtain

- _ o, (G~ G3)
= 132 Al 3.1
Fyy=Fyp + tanh 1y, (3.3.15)
and then using the latter and substituting into the relation (3.3.7b) we get
K, sinh
G5, =G5 + Lt (3.3.16)

021 (sinh 412 — cosh 712) '
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Substitution for Fg3, G5, into the interfacial jump condition (3.3.13) gives the rela-
tion
Fy, (—taUgsy1 (psinhyy 4 coshy;) — Qasinhy) =
. _ _ _ K, sinhy;
—taUg | pTa0, (1) = T57.,(1) ) + | G5y +
(P 32y( ) 31y( )) ( 31 " (sinh2 71 — cosh? ’Yl))
X (taUyy1 (p coshyy + sinh ;) + Q3 coshy;)

_ Bt ]
+Patiay (1) + Ba+ Qa (1= )+ T ()

. Ef - -
+ialUsm1p (U—i(l —p)+ T5(1) - T32(1)> (3.3.17)
and we note that
(—taU,71 (psinhy; + coshy;) — Qasinhy,) =0

is equivalent to the dispersion relation for the phase speed (3.1.1.10) and so the left
hand side of (3.3.17) is zero, which gives the basis equation governing the amplitude
function A;. All that is to be done now is write all the various components in terms
of A;.

For the case of the critical layer in the upper fluid we find

E+
rf = (B - 1+ (@50 - 1) + (G - G5 ot

1
Fi 3.18
Xsinh T + fa (3.3.18)
Fify = em¥ (Ff sinh 119 + G, coshmye) (3.3.19)
K,
= —Fa 35 , 3.3.20
> 3 41 sinh 119 + 71 cosh 719 ( )
i ; : cosh
F(Qasinhmy + iaUsm(psinhy + coshm )(1+ = Ny -
sinh 74

coshy;?
sinh 7,

K, (iaUa (P71 sinhy; — 7 ) — Q3 cosh ')’1)
X (71 sinh 119 + 71 cosh y13e) "
—iall,(pTh(1) — T, (1)) + iall, Gy sinh
ial,coshy;, (EF
T emhyy (;;j?(l — p)+ T4 (1) = T5(1) + G5, coshmy
+ P31, (1) + Rz + Q3T55(1). (3.3.21)
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Again the left hand side of equation (3.3.21) is zero as it has a factor which is the
dispersion relation and again we may form an amplitude equation for A;. With
similar results holding for 93, ¥4, 3 the problem is now fully described.

Next we write the pressures and normal velocity components in terms of the
amplitudes AE'] and match the solutions of the core flow as y — y. with those of the
buffer layer as |Y| — oo.

From matching, via the buffer layer, to the core flow, the leading order normal

velocity perturbations ;5 in the critical layer are
ot = al(y) for j = 1,2, (3.3.22)

and so in conjunction with equation (A.8) from the Appendix we find

Z\j[_*] _ Frp*Uy(y.)ic

: o Al(2y) for j = 1,2. (3.3.23)

We substitute for [%_ @nmyy/YdY in (3.2.2.24) using equations (A.19),
(3.2.2.21) and change the notation to explicitly show the A[l*]-dependence writing

EiM = BFAM ), Ry = RYAM (),  TEM = 7EMAY (o)),
GEM = Al (), B = B AN (ay),

and likewise for the terms E‘[;], RL'], i[*] fol['], ﬁ[*] Combining all our information

we finally have the amplitude equations,
i 2
- 4ﬂ“’ o1 - 20 4 x
2!
v v 1 . v Ty
(PIP]:;/ Al ;cds + 3P2P15/ AgAlcdS + 3PfP;c/ AI ;Cdé')

_ 4,64,%5(1 6'@2)A2 X

v v T o o Ty v o k3
(P{Plc / AtArds + 3P1 B} / A% Aids + 3P P, / AlAgcds)

i 12 .
- 486 Ei¢(1 - ﬂ —) 45 X
i
voowv v,y Z1 ]
(PIP';C/ AlAgcdS + PICPZ/ ;CAgdS) = MliAl + LitAl, (3.3.24&)
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i 232
—aptPie - 24,
Hi gj!
o u T v o Ty . T
(Pl‘Plc/ A;‘Alcds-i—SPl"cP;/ AICA;ds+3P1P2C/

— 00 —00 -0

Al Azcds>

4Pi 12ﬂ2 * e * Dx D 1 *
— 48,6 —-f( )Az (PIPZC/ AlAzcdS + Plcpz/ AchzdS

"' — 00

6,52
7)z

(PlP{C / A Al ds + 3P, Py, /

—00 —00

‘B4pt E(l

Ty v u Ty
ApArds + 3P; By / Al ;Cds)

—0o0

= MEA; + LEAY, (3.3.24b)

ﬂ4p‘£(1+ )A1 X

T o o T o o T
(PIP]’:;—/ AlAicds + 3P2P1C/ AgAlcds + 3P;P;c/ AIA;Cds)

i 42
— 48421 - ﬂ

1

i 8 2 5 o [ !
_ 304ptPig1 - 2 ﬂ VA (Png,_. / AzA;Cds) = MEA, + LEA;, (3.3.24c)
i

—00

~ )4 (PlP;c / Ay Al ds + PP, / A;cAgds)

Pi 4ﬁ2 o o T o o 31
; 1 —o0

2 —0oQ

AIcAgds)
— 421+ 2—E)A* X
i M !

T

. v Ty o o v o Ty
(Pl*Plc / At Ayds + 3525 / AL A3ds + 3B, B / A1A25d5>

— 00

— 3248425 ¢(1 - liﬂ YAz (PZPZC / AzAZCds> MEAS + LEAY, (3.3.24d)
Hi

where

= (avyl(i)pif Fo (5) T (5)

M— — + 71
1™ " sinh v, (y12eU,(p coshy; + sinh 1) + Q3 cosh ;)

. ot
Ry +(Qs +ialimp) (1 - p)
+G3, ((113aU,(p coshy; + sinh 1) + Q3 cosh 7))

) (3.3.25a)
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- _ _ T1
1 sinh 7, (712aU,(p coshy; + sinhy;) 4+ Q3 cosh ;)

P3Vi(1) + QsT5;(1) — dal,(pTsay(1) — Ta1y(1))

' > ] , (3.3.25b)
+ialsmp(T5(1) — T5,5(1))
Mt = v1(sinh y1yc + cosh y1yc)
! tal,(py1 sinhy; — —nTc;%-?_’) — Q3 coshy;
. N— . _ COSh‘Yl E;— _ ~N—
X mfjm (G31 sinh 71 — Gnay (\F(l )+ Ga °°Sh71)) , (3.3.26a)
+R3
= ¥1(sinh 1y + coshy19c)
' ial,(py1sinhy; — %) — Q3 coshy,
Pyem(ve—1) Pty _ g fit _ Pt
N iU, + Q3T32(1) al, (PTazy(l) T31y(1)) ’ (3.3.26b)

1alU,v, cosh T 2
— ielaeoshn (F4(1) - T55(1))

and for L;t, M.f simply replace ; by 72, and the subscripts 3 with the subscript 4.

The effect of four-wave resonance in the non-linear VWI is now obvious. We see
that the nonlinearity in the amplitude equations supplies a coupling between the
first and second pairs of waves. This coupling can be traced back to the mechanism
of the vortex-production by waves. For example the e’ wave term contributes to
the e?"#% vortex components, which in self-interaction with the e’¥ wave contributes
both to that wave and to the second wave proportional to e3*#2, The second pair
of waves acts in a similar manner. For the four-wave interaction to be possible,
however, the resonance conditions formulated at the start of this chapter must be
satisfied. For non-resonant waves the amplitude equations simplify and the entire
theory reduces to a special parallel-flow case of the VWI-theory developed in SBB.

Equations (3.3.24)-(3.3.26) were solved numerically using a second order accurate
marching method. Figs 3:5 (a),(b) show the effect of the nonlinearity on the wave
development in the flow, with the parameters taken from a resonant solution to

(3.1.1.10). A number of different wave evolutions are possible, as in SBB, depending
on the signs of Mz-i,Lf: and the (-dependent nonlinear coefficients. Due to the
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large number of possible parameter values, with the four initial wave amplitudes
also altering the flow development we present only a few example cases, all with
symmetric initial conditions for the pairs of waves. Imposing the initial conditions
Ay = A = 1,A; = A} =0 at z; = 0, in fig 3:5(a) we see that a finite-distance
blow-up of both pairs of waves occurs, with the second pair of waves, which are
infinitesimally small at the initial station, captured by the nonlinearity. For the cases
that were investigated, the non-linear growth of the initially infinitesimally small pair
of waves was a typical phenomenon. In SBB this blow-up could be attributed to
a ratio of the spanwise and streamwise wavenumbers and the equations could be
reduced to a quadratic form for analysis, however in our case this reduction can
not be done because of the interplay between modes. A comparison with the linear
behaviour of the solution shows the dramatic effect of the nonlinear terms. A second
resonant example, shown in fig 3:5(b), shows the nonlinearity stimulating growth in
the second pair of waves and retarding the first pair before both are damped further

downstream.

A Appendix A: The Critical layer
The critical layer has scalings governed by the balance

(Uo — c)u ~ Re tuy,, (A.la)

= (¥~ 9e)Uy(ye)u ~ Re T uyy. (A.1b)
We introduce a new variable Y; where
Y-y =€V (A.2)
and expand the velocities and pressure as

u = Uo(ye) + €Uy(ye)Vs + -
(62 + iige™7 + tpe3P% + tije™% ) B+
+6 (thyce™P% + 63 €2 4 tip e~ "3P" + 1 BB E 14 (A.3a)
& (4zeP* + .. )E+ ... + cc.,
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(1716iﬂ2 + ,;;Ie—iﬁz + .l‘jze+i3,6z + ﬁ;e"isﬁ‘)E+

V=€ | (Bree7P 4 57 B 4 Bpe382 4 33 -1y | 4.,  (A.3b)
S(¥3eP* + )E+ ... +cc.
s "Z’Om + mzmeﬁﬁz + w;me—ziﬁz 1 w4me4iﬂz

w =€ ) ) i + ..
+wzme—42ﬁz + wemes‘lﬁz _+_ ,u‘}gme—szﬂz
(167 + Wye=P% 4 hpeti2 4y~ Et
+€8 | (Wice B + Wi B2 4 wye— P 4 3 eBB)E-1L | (A.3¢)

E(Wze®* + .)E+ ...+ ce.

P = Po(y)+€P (ye) + -
(1682 + Pre=iPz 4 Poe+idPz 4 pre—i3Pz)E 4
+€ | (Bree % + B + Prce™ P 4 B ePP)E1L | (A3d)
E(P3eP* + L)E+ ...+ cc.
where Wy, is, as will be demonstrated, the lowest order mean-flow correction gen-
erated by the jumps in the transverse shear stresses.
As in the other sections we proceed by substituting these expansions into our
equations (3.1.1) and collecting terms of like magnitude in e. From matching between

the critical layer flow and the buffer layer we know that
3 = 0fori=1,2, (A.4)

and obviously the conjugates are also constant with respect to Y;. Turning to the

continuity equation we obtain

_év ™ % ﬁ o ¥ ~ Sﬁ - % ] 3:8'&.}:

Uy = UL, U =y, = -y, Uy = -,
o ﬂ ~ ~ ﬁ v ~ 316 ~ ~ Sﬁ A
Uic = _Ewlc: U = ZwIm U2e = —EwZC’ e = 'E"ch' (A.5)
From the z-momentum we establish that
o +
} o . apy | p*
zaUy(yC)Yiul + Uy('yc)vl == T + Uit (Aﬁ)
Frp*= " p
and from the z-momentum balance we have
ialy(3e)Yith = — g + Sy, (A.7)
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Together with the results from the y-momentum, that ﬁ[l*], f)[;] are Y;- independent,

and those of (A.5) we get

o Ug(ye)iaFrptst
A = y(y)ﬁz L (A.82)
[ U,(y.)iaFr % 4]
Py = ”(y)%z P (A.8b)

From the z-momentum equation we find, from the F independent terms that wg,, =

0 and collecting terms in e?*#% of O(€!°) gives us

- YR vk Vi v v 9 o vk v vk vk
—ia(t U], + U305, + UpWic + UscWa + Uy W1 + U D7)

v g vk Vo v v % v [T IAA v Wk
01 Wiy, + V1 Wacy, + V2VWiey; + VicWay; + U Wiy T U Wiy,

. Y] "F1 R IK 3 ) %) “ “ LK IR vk VR
+1ﬁ(w1wlc + 3w1'u.’2c — WaWic + 311)1C’U)2 + wlcu)] - wzcwl)

+
v
= ,'.Ew2mY1Y11 (Ag)

[*]

Substituting for %;" we have

v vk [ v “ [YERY) vk vk vk vk
N Wiy, + vy, + VicWoy; + V2Wicy; + Vo W1y, + U1 Wacy,
+
4- v ux v o ok vk _ ;‘L o A_ 10
+4if(01W7, + W1cW2 + W1Dy.) = o Damitis (A.10)

and using equation (A.4) we obtain the relation

(o] p:E (=)
/ Womy; v, dY1 = 4%'[3;; / (D103 + W1cWa + WIW5.) dYr
- 00

— 00

oo
U Wy, + U7.01 + V1cWat
1 1c 1c 1 1lcW2 (A'll)
iZﬁlc + ﬁ;cwi‘l‘ + ﬁ;‘ﬁj;c
where we have used the fact that ﬁle)’s are Y; independent and since
3~ L fori=1,2 A12
wi(c)"’?l’ ori1=1,2, (A.12)

this implies

1B£21)—>0a.s | Y1 |— cofori=1,2
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and the term is square brackets in (A.11) does not contribute and we simply have

/ ﬁzmylyl dYyy = 4'Lﬂ / 'wlu“){c + Wy Wy + ’lb;'lf);cdyl (A13a,)

Similarly
/ Womy v, 8% = —W}—; / Wit + WiW3 + W1WacdYy, (A.13b)
o p:i: )
[ dimivdv = sioly [ agan v otaan, (A1)
—00o ,u —00
co pi )
/ Vimy,y,4Y1 = —8iﬁ—i/ Wy + Wi WadYn, (A.13d)
—o0 K Joo
0 p:h oo
/ meYLYIdyl = 122',3;]';/ ﬁ)gﬁ’:;chl, (A.13e)
/ Dgmy,v, dY1 = '12%'5;?/ WyWedY]. (A.131)

Now returning to the z-momentum equation and picking terms in e** of O(e”)

we get

+ o
o . P Y gz
iy, — zaUy(yC)y‘—inwl = _m;, (A14)

which has the solution

cmy 2/3 00
. 18p1 ( #i ) / i(ptauy(y )/,_Li)‘/’ylk—ks/s
W = — e < dk. A.15
' FrpE\aly(y)p 0 (4.18)

We combine this with the solution for the conjugate

= +iﬂ151c pE 23 /°° ci(PEaly(ye)/ut) PYik-k 3 g1 (A.16)
e Fru* \ alUy(yc)p* 0 ’ '

to obtain

00 + 5/3 n2x a 2/3
s p ﬂpwlc(?) ( 2)
dY, = — < ~2)n A17
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and in general we get

/ wlalldy, = e FIB) (- Al F)niB), (A.18)
where
1when j,k=1
I,n=
3 when 7,k =2
and

- it 5/3 19\ 2/3 9 '
szrzpﬂ(aUy(yc)pi)' (5) (—5)'

Combining equations (A.13) and (A.18) give us expressions for the jump in the

transverse shear across the critical layer, e.g

: +
Bemn]t = &ﬁi" ((iB5,)(~3iBF50) + (3iB52)(~iBHLe))
+
= 24iﬂ35—i(ﬁ1ﬁ5c+ﬁzﬁ‘{c) (A.19)

(] 0¥

. A . . *
with similar expressions for wj, , w;,. , We,,-
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3.2 Tables and figures

a |p |Fr Blp |v B C

0.110.1}1000|0 {0.2|0.5 |2.6200] 1.8376
0.1)0.1(1000(2 |0.2|0.5 |0.3800 | 2.7881
0.2101]1000|2 |0.2}0.5 |0.6200 | 2.6058
03]0.1|1000(2 |[0.2]|0.5 |[0.7900 | 2.4621
0410110002 }|0.2]0.5 |[0.9233] 2.3519
0.5{0.1]1000)2 [0.2]|0.5 |1.0300] 2.2609
0.1]0.1]1000|2 |0.3]0.33|0.6300 | 4.0701
0.20.1;1000|2 |0.3]0.33| 0.9400 | 3.5907
0301|1000 (2 |03]0.33|1.1533 | 3.2909
0.4{01(1000|2 |03)0.33]|1.3167| 3.0771
0.1 (0.2 (10006 |03]0.67|0.1500 | 1.9468
0.1/03)|1000 (6 [05]06 |0.2100 | 2.1885
0.1|/04|1000|6 |05]|0.8 |0.2100 1.3853
020.1]10 0 [02]05 |0.2033 | 2.9240
03]0.1]10 0 ({02]05 |0.7733 | 2.7032
0.4]0.1]10 0 (02|05 |[1.1733 ] 2.4715
0.5]0.11]10 0 [02|05 |1.4733| 2.2923
0.2 03|10 2 {05 (0.6 |0.0300]| 2.2484
0.3|103]10 2 {0506 |0.0330| 2.1981

Table 3:1 A few examples of resonant sets of parameters for which ¢(8) = ¢(38).
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Figure 3:1 The base flow structure in the case when the critical layer oc-

* curs (a) above the interface and (b) below the interface
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Figure 3:2 Numerical solutions of (3.1.1.10), phase speed ¢ plotted against 8, with
psrameters indicated below each figure (a) a varying, (b) p varying.
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Figure 3:2 As before, (c) B = B/Fr varying, (d) Fr verying.
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Figure 3:3 (a) Numerical solutions of (3.1.1.10), phase speed ¢ plotted against

a, for crosswise wavenumbers § and 34, with parameters indicated underneath the

figure.
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Figure 8:3(b) As before, with parameters indicated below the figure.
Figure 3:4 A plot of the left and right hand side of equation (3.1.2.7) against a

with Dy =1, D3 = 2, and various D;.
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Figure 3:5 The solutions of (3.3.24) with modulus of the wave-amplitudes IAE'JI
plotted against z; with initial conditions A;(—o0) = Aj(~) = 1, Ay(-x) =
A3j(—o0) = 0 and parameters for figure (a) as in 3:3(a), and for figure (b) as in
3:3(b).
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Chapter 4

Nonlinear short-wave TS

instability

In this chapter we examine the weakly-nonlinear behaviour of Tollmien-
Schlichting (TS) instability waves in a boundary layer on a liquid-film coated flat
plate. The flow is entirely two dimensional and the problem will be tackled using a
high Reynolds number, high-frequency triple-deck theory. The formulation used and
some of the solutions found are similar to those in the single-fluid studies of Smith
& Burggraf (1985), who investigated monochromatic small amplitude disturbances
and their subsequent growth into fully nonlinear regimes, and Smith (1986) for the
case of two-dimensional wave packets.

As mentioned in the introduction to the Thesis there are many different effects
and mechanisms being observed during laminar-turbulent transition in film flows.
We investigate the temporal development of two-dimensional waves with a fixed
wavenumber along with, in one case, a longer-scale modulated disturbance. The
high-Reynolds-number flow governed by the triple-deck equations introduced in §2.2
of Chapter 2 is taken as a starting point thus involving the interfacial effects whose
influence on the TS modes we aim to investigate. The film-flow generation could
be achieved by various means, for example by passing a moving plate through a

stationary two-fluid system close to the interface between the fluids, or via injection
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of a second fluid through the solid boundary, or through a slot as described in
Chapter 2. Here we do not concern ourselves with the precise mechanism of the
generation of disturbances or even the base film flow and require only that the
instability is triggered in the fully developed part of the flow.

The single-fluid investigation carried out by Smith & Burggraf (1985) shows that
the spatial development of finite amplitude disturbances are governed at the first
weakly-nonlinear stage by an equation of the Stuart-Landau-Watson type but with
an imaginary nonlinear coefficient. As a consequence the nonlinearity cannot influ-
ence the growth rate of the disturbance which continues to grow until the interaction
becomes fully nonlinear, the near wall Stokes layer also becoming nonlinear and may
then become prone to a Van Dommelen type singularity creating a finite-distance/
finite-time eruptive breakdown cf. Van Dommelen & Shen (1982). Smith (1986)
examined short-wave packets of finite amplitude waves and obtained a controlling
Schrodinger equation again with an imaginary nonlinear coefficient. In addition
however there is also a second order spatial derivative which describes a ’spreading’
of the disturbance amplitude due to wave dispersion.

We may apply the basic premises developed in the above papers to the two-fluid
flow using the triple-deck framework of Chapter 2, §2.2. A linear stability analysis
carried out by Timoshin (1997) shows that the leading neutral disturbance frequency
for short TS waves of wavelength O(k™!) is w, = O(k?) whereas the growth rate w;
is of O(1). For such short waves the flow becomes essentially inviscid except for thin
viscous layers near the wall and surrounding the interface. The instability mecha-
nism for the TS waves is provided by the vertical velocity displacements produced
in these viscous layers with the interface therefore heavily influencing instability.
Stable short capillary waves also present in the flow become important under cer-
tain conditions. For whilst the leading-order TS growth rate remains independent
of the wavelength, for a particular combination of the flow parameters the growth
rate rises to O(k%). This occurs by way of a linear resonance between the growing
TS modes and decaying capillary waves substantially altering the characteristic flow

scalings. This chapter represents a nonlinear extension of that work.
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In section §4.2 we will formulate expansions for the weakly-nonlinear flow and
derive a governing wave-amplitude equation for the leading-order disturbance. We
will also derive equations governing the extra mean flow induced in viscous layers
around the interface by means of the shear jump mechanism described in Longuet-
Higgins (1953) and Dore (1970, 1975, 1976). We show that the presence of a second
fluid leads to a stronger mean flow than in the homogeneous case. However, as in
the single-fluid studies, the coefficient of the nonlinear term in the governing wave-
amplitude equation is imaginary and so does not affect the exponential wave growth
rate. Although the nonlinear terms do not affect the flow development here, the
alterations to the shear profile by the interfacially generated mean flow allows the
flow to be destabilized by shorter Rayleigh scale disturbances. These instabilities
are examined in §4.3. The wave-amplitude equation of §4.2 again predicts the same
linear resonance as in Timoshin (1997) and in §4.4 we explore this resonance at a
nonlinear level. The amplitude equation changes from a first-order (as in Smith
& Burggraf) to a second-order equation suggesting a strong wave coupling. The
nonlinear coefficient is again imaginary but this time the nonlinearity appears in
a differentiated form which, to this authors’ best knowledge, has not been seen
before. The wave development is examined and classified and then in §§4.5,4.5.5 two
intermediate regimes are studied to try and form some sort of bridge between the
two original cases with the apparently disparate forms of their governing amplitude
equations.

Before starting the analysis, an outline of the typical scalings governing the

temporal development of nonlinear TS waves is presented.

4.1 The triple-deck equations and scalings

We assume that disturbances are introduced in the triple-deck region located at
some distance from the origin of the base boundary layer and the film source as
shown in fig 4:1a. The disturbed motion in the viscous zone is governed by the

equations derived in §2.2 which, on neglect of the wall roughness assumed in that
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section can be written in the following non-dimensional and scaled form

out L out  Gut 1 8pt L 0%

5 +u 5 + v & - e +v R (4.1.1)
out vt
’% —8—? -_ 0. (4.1.2)

The boundary conditions for the equations (4.1.1), (4.1.2) are those of no-slip on
the wall, and a match to the flow in the bulk of the boundary layer,

vm =9 =0,ony=0, (4.1.3)

wt =y —a+u, + Az, t)+o(l), as y — oo, (4.1.4)

where a is the unperturbed film thickness and u, is the interfacial streamwise velocity
of the base flow. Since, in the base state, both are constants within the region we
are investigating we may interpret the unknown function A(z,t) as the negative
disturbance displacement. The disturbance displacement is related to the pressure
in the viscous sublayer above the interface by way of the principal value integral

p+(m,t) = l/w a_A_Ls_’_t_)____qs__, (4'1'5)

T ) Os z-—3

which reflects viscous/inviscid interaction. For our purposes in this chapter it proves
convenient to replace (4.1.5) with the original formulation in the potential outer part
of the triple-deck
6? o? 0¢ 0A 0¢ " 9 .
('6?4_'6?)4):0) 8—y(0)=—6_w’ “%(O)ZP y > 0asz® +y° — oo,
(4.1.6)
where ¢ is the disturbance potential and A is the displacement function in (4.1.4).
At the interface between the two fluids at y = f(z,t) we have the kinematic
condition, with continuity of streamwise and normal velocities, the continuity of
the tangential stresses and a pressure jump expressed in terms of the scaled surface

tension coefficient, v, and gravitational acceleration, G = 1/Fr. These are

_ out _0u~ 2 d
t=u ,u"’-a—y—zp By vi=6—{+ui£, (4.1.7)

U
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2
pt—p = (7% +G(1- P")f) : (4.1.8)

As our base flow, in agreement with computations in Chapter 2, we take

vt = y—a+tu, y>a, (4.1.9a)
v = Ay, 0<y<a, (4.1.9b)

= a, (4.1.9¢)
vE o= pf=4=0. (4.1.9d)

Since pt = vt = pt = 1 this solution of the triple-deck equations is valid as long

as A” =1/p” and u, = aX"~.

4.1.1 The instability scalings

We focus on short (high-frequency) TS waves, choosing a small parameter € < 1 to
represent their length. Such waves are governed by three time scales, a fast, neutral
oscillation scale O(€?), an intermediary time scale of O(e) which reflects the presence
of an interface, and a slow scale of O(1), which picks out linear wave growth driven

by the viscosity, see Timoshin (1997). The fast scale can be seen from the estimates

a—gti ~ a—a%;i, pt ~ —:—, wt ~ A, =>t~2? (4.1.1.1)
modelling the inertia-pressure balance, the interaction condition and the wave dis-
placement respectively. As usual in weakly-nonlinear theories, we suppose that the
base flow (4.1.9) is perturbed by a small wave disturbance of a chosen wavenumber
and with the streamwise velocity u, = O(é;) where the subscript w indicates the
wave. Non-linearity in the z-momentum equations (e.g. the term wu,) generates
a second harmonic and mean flow terms of O(6;%€¢) and then the fundamental cor-
rection, from the interaction of the leading disturbance with the second harmonic
and mean flow terms, is of O(§;3%€?). The wave self-modulation starts when the fast
temporal development of the fundamental correction is balanced with the slow-scale
temporal development of the fundamental disturbance. This requires 62 = O(1), so

the leading-order streamwise velocity in the wave is O(1). Hence for the wave in the
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film, for example, we can write
u” = Ao(t)ug (y)E + c.c., where E = exp[i(kX — woT — wity)], (4.1.1.2)

and we define t; = ¢ ¢, T = ¢ %t, X = ¢ 'z with the operator

9 _ 108 18 8

5t a2or Teon, T ot
of O(1) and real parameters k, wp, w;.

The evolution equation for the amplitude Ag(t) derived in the next section turns

out to have the following structure:

% = (o, +10;)Ao + ( imaginary const. ).(non-linear terms), (4.1.1.3)
where 0,,0; denote the real and imaginary parts of the linear wave growth rate.
The structure holds for a general choice of film parameters and is in some respects
similar to that in Smith & Burggraf (1985).

As well as the wave amplitude and development scales, a second important area
of interest in this study is an alteration in the mean flow forced by the Reynolds
stresses. For short TS waves the lower deck of the flow field in fig 4:1(a) becomes
essentially inviscid apart from inside thin layers of thickness O(¢) which form either
side of the interface and on the wall (the latter being the well documented Stokes
layer). This is illustrated in fig 4:1(b). For the mean velocity u = u,, say, in these

layers, we have the viscosity/Reynolds-stress balance of the form

—- azum 6uw 6uw
14 3_312 = <uw—am— + 'Uw—a-y—> ’ (4114)
hence, with u,, = O(1) and (z,y) = O(¢) we have
Oy,
5 =001) (4.1.1.5)

A subtle difference exists between the mean-flow generation near a solid wall and
at a fluid/fluid boundary. In the first case the estimate (4.1.1.5) implies u,, = O(e)
outside this viscous layer (see Smith & Burggraf (1985)), whereas in the second
case the relation du,,/8y = O(1) implies a shift in the shears outside this layer,
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both above and below the interface (see Longuet-Higgins (1953), Dore (1970, 1975,
1976)). The mean flow then evolves on the slow temporal scale ¢ = O(1) and the

diffusive balance

ng— = 6;%, (4.1.1.6)
implies that the induced mean flow spreads over a region y = O(1). We conclude
that, in the case under examination here, the induced mean velocity is of the same
order as the base-flow velocity, namely of O(1).

The wave-amplitude evolution equation of the form (4.1.1.3) works for any order-
one parameters of the film except at a resoﬁance, described in the linear study
by Timoshin (1997) as being between growing TS modes and decaying capillary
modes, characterized by a certain relation between a,p™,7 and G in the triple-deck
formulation. At resonance the growth rate of short waves rises to O(k%2), as in
the linear problem, and so the slow time scale governing the wave growth becomes

t = O(€%/?). We discuss the scalings for this and for two further intermediate regimes

in the preambles to each section.

4.2 Short scale disturbances. The inviscid regions

For a general choice of the gravity and surface tension coefficients, we define the short
streamwise coordinate to be X = ¢ 'z where € is an arbitrary small parameter. The

other scaled variables involved, as outlined in §4.1.1, are
=€, T=€¢2, z;=e (4.2.1)

with the operators

0_106 .16 8 6 _10 8 8
0t €20T ' ebt; Ot 0z €0X 0Oz 0Oz

of O(1). The solution to the triple-deck equations in the region y = O(1) is sought

in the following form above (4) and below (—) the interface:
o= uE (z1,t,9) + (uF Ao(z1, ) E + c.c.) + €(ui B + w5 E +cc. + 1)

+E(WEE +ce)+ ..oy (4.2.2)
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v = €N (vFAE + ce)+ (vEE+vEE fce)+e(vEE 4 ce)+ ., (4.2.3)
pt = e N (pEAE +ce)+ (0EE  + pEE+cc)+ e(pEE+ce)+ ... (4.2.4)

f=a+ e(FoAoE + c.c.)+ E(FpE? + FioE + c.c. + Fy)

+e3(F11E +ce)+ .., (4.2.5)

where we define £ = exp[i(kX — woT — wity)], wo and w; are assumed to be real
and k > 0 for definiteness. The terms without the F factor represent the mean flow
which evolves on the slow scales.

Instead of using the interaction law (4.1.5), the lower-deck solution will be con-
structed simultaneously with the solution for the potential-flow equations (4.1.6).
Taking the vertical co-ordinate for this region as 7 = ¢!y = O(1) the equations
(4.1.6) become

1 8% . % L% 1 0%
0% T 29%X00;, " oa T @ o (4.2.6)

0 s _ gy 104 _ 04 (10¢ 3¢) _
87‘;(77 =0)= Teox  “bzy’ (e 8X " 8z, q=0 P (4.2.7)
The potential ¢ then expands in the form
¢ = (Q_SO('I_])E + C.C.) + 6((510E + (}T)zoEz + C.C.) + 62((]_511E + ) +.... (428)

Returning to the viscous sublayer we substitute (4.2.2)-(4.2.5) into the triple-
deck equations (4.1.1), (4.1.2) to find, to leading order, that

+ +
—iwoud = —z‘k%i—, ikuE + %% =0. (4.2.9)

We normalize the disturbance with respect to the leading streamwise wave com-
ponent and note from the first equation in (4.2.9) that this velocity component is
independent of the normal coordinate. Combining this fact with the leading-order
solution for the potential (4.2.8), do = iAo exp[—k7]], we find that pj = kul. The far
field condition, which becomes ug (y — o0) — 1 (using the normalization) together
with the upper-fluid momentum balance in (4.2.9) then provide the leading-order

wave frequency wy = k2.
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The leading-order wave terms can now be found in the form

ud =1, pf =k, vf=-ik(y-a+kd), Fo=A, (4.2.10)
- “k:A _ kA - ik?A

Py = d —— U = Y ===, (4.2.11)

A= k_ . (4.2.12)

k*(p=[a—7)+G(1-p7)
In deriving (4.2.10)-(4.2.12) we have used the kinematic condition at the interface

and the leading-order pressure jump,

vEi(a) = —~iweFy = —ik?Fy, (4.2.13)

¥ —p; = —KFy+G(l-p7)F, (4.2.14)

and applied the no penetration wall condition vy (y = 0) = 0. In order to keep the
gravity effects at the main order we have also taken a larger value of G, G = ¢ %G
with G = 0(1).

We remark here that it is obvious from the form of A in (4.2.12) that, given a
particular combination of parameters, A may become infinite and the solution will
become invalid. Subsequent sections will deal with this scenario and we will here
only concentrate on the case of a finite A.

For the higher-order wave terms in (4.2.2)-(4.2.4) we have the following momen-

tum and continuity balances,

+ ik +
~ik?ul) — dwiud Ao + ikuFu Ao + AovE ag;o = —prtw, (4.2.15)
I T R’ 2ikpa,
—2ik*uyy + ik(ug Ao) = — o (4.2.16)
F) + *
ikud + 3”—;0 =0, 2ikul + %‘l =0, (4.2.17)
]
ud 6;0 ikPud — dwpud + ikud gud) + ikududt A + AfuE ;‘;o

out ut zkp 0Ao dut
+ :l: Um1 11 i + 0
+vig 6 + Aoy By + zkuo u 140 = = 63: +v By

(4.2.18)
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The equation (4.2.16) shows that the first harmonic terms ui, are y-independent

and we find from the potential-flow equation (4.2.6) that
$20 = c20 exp [—2k7], (4.2.19)
where cz9 = tuj, is fixed by the conditions (4.2.7). This leads to the relation
Py = 2kul,. (4.2.20)

For the first harmonic terms this gives the solution

A2 -
U = _-210’ Plo = =45, v =1i(y— a)AJ+ vaoe, (4.2.21)

- _ P ASFE (2P  FARF
Ugg = kp" + 2a2 ' Vgg = —10 - + 22 Y, (4_2,22)

where we have used the condition of no-penetration at the wall. The constants p;,
and vy, can be found from the interfacial conditions but they are not required in
the subsequent analysis.

Before the other wave terms are considered we need to state a very important
assumption with regard to the properties of the mean flow. The O(1) mean velocity

in (4.2.2) is governed by the diffusion equation

Oupmo _ g,
= (4.2.23)

We shall assume (and we verify this in section §4.3) that the wave induced corrections
to the base profile in (4.1.9) are confined to the layer y = O(1), that is, the far-field
boundary condition to (4.2.23) takes the form

uto - y—a+u,+0(l) asy— oo. (4.2.24)

m

Now we consider the first fundamental correction terms for the wave. The solution
for the corresponding potential flow term in (4.2.8),
b10 = iufo(y — 00) exp [—k7]], gives the viscous/inviscid interaction condition

+ L Tt
Pio = kyli{%o Uig- (4225)
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We apply this and the relation (4.2.24) to the far-field limit of equation (4.2.15) to

find the real frequency correction wy,
wy = ku, — k2A. (4.2.26)

The velocities for the first fundamental correction are then written in the form

oA A out
ufy = BO4ZO(ut w4 k8) - 22y -atkA) S (4.2.27)
vy = —iply(y—a) - i(kA - u,)Ao(y — a)
—iA /y [u"' —(s—a+ kA)au'T‘O] ds + v (4.2.28)
0 . 'm0 9s 10c? e
_ Plo . Aol ( wy Ourg )
up = P4 (- oyt ), (4.2.29)
kp a k Oy
- [P0 A tkAoA (Y] Ou _
Vi = —t (%— Oaw1>y+ ao /0 [s——;slo—umo] ds + vy,
(4.2.30)

where '”i+0c is a constant which we will calculate presently and the constant v, will
be found from matching to the viscous Stokes layer on the wall. Before this however
we will form the basis of the governing equation for the amplitude Ag by taking the
far-field limit y — oo of equation (4.2.18) for the fundamental correction. Again
we use the assumption that the mean flow occupies a region y ~ O(1) and so

ut . (y — 00) — 0 does not affect the limit equation which becomes

0A © Ut
O +iptkA + v, + on/ Uty — (y—a+kA)—/20dy
ot a dy
_1A0|A0|2 —ikp}, + ik? hm '“11 + kng (4.2.31)
T3
where we have defined U}, = ut, — (y —a + u,) for the convergence of the integral. |

The potential equations (4.2.6), (4.2.7) and the far-field condition for the second

wave fundamental show that

dA - 0 0A
$11 = (c11 — ifm)e™", ¢“(0)_ Jim { ik == (4.2.32)

3 62)1
where c11 is a constant, ¢;; = —¢ lim uy; — 2/k0Ao/8X;, and the viscous/inviscid

y—oo
interaction condition becomes
. .04Ap

ph = ky]ingo uf; - e (4.2.33)
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Substitution into (4.2.31) then gives us

0A 0A )
6—t0 + 2k0_0 + z(kApi"c + 'vi*bc) + on/

+

(o o]

ou,
—(y—a+kA)

[R— 2 — .
2A0|A0| 0

(4.2.34)

4.2.1 The viscous Stokes layer on the wall

Close to the wall there is a thin viscous layer of thickness O(¢), the Stokes layer,
which smoothes the inviscid velocity profiles so that the conditions of no-slip and no-
penetration can be satisfied to all orders on the wall at 7 = 0, where n = e"1y = O(1)

is the local normal coordinate. In this layer we take the following expansions

u” = (dg (7)E + c.c.) + €(tmo(n) + ..) + ..., v7 = (9o (M) E + c.e)+ ...

(4.2.1.1)
Substituting into the triple-deck equations we obtain
8%y ik? ik 0ty
S+ g = Ao, ikiy + 2 =0, 4.2.1.2
8772 + v Ug pv Do Ao, thkig + —— an ( )
_8%, ._0uy* . _,01;
v 6—7]2 = ’l)o 0—7] + ’UO —‘6—7‘7—. (4.2.1.3)

Solutions for the leading wave terms are found to be

)

7 ok p
where 0~ = y/—tk?/v~. Substituting these solutions into equation (4.2.1.3) and

g = PoAoy _pmomny e o _TPodop, (), (a214)

integrating twice we find

A o e el a
= 2 - - + Cin+ C,,
T p‘zkl/ (( )( _) (0")2 + (U' +U"’)2 17 2

(4.2.1.5)
where the constants C;, C, are fixed by matching with the region y = O(1) and the

no-slip at the wall, respectively,

2
Ci= a;y (y=0), Cz=-p_0 19 (1-1) (4.2.1.6)
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A consequence of the form of 4, the combined base and generated mean flow in

m0»
this layer, is that, on matching (7 — o0), we get the boundary condition of no-slip
applying to the leading-order induced mean flow outside the viscous layer. From the
matching condition for the normal velocities we also find the constant v, in (4.2.30)

to be

vy = P20 (4.2.1.7)
op~

4.2.2 The interfacial viscous layer

In the viscous layer about the interface we write our velocity components in terms

of the shifted and stretched normal co-ordinate z defined by
y=f+ €z (4.2.2.1)

We also introduce the adjusted vertical velocity w* = v* — 8f/8t — u*8f/dz, and
seek the solution in the form
v o= (@ (Z)AE +ce)+at, +e(aE, +.)+ . (4.2.2.2)
w (DF(2)A0E + c.c.) + ... . (4.2.2.3)

The governing equations for the terms shown explicitly are

2=+
ik 4 16 UG

—ik?aE = ~EP VTR (4.2.2.4)
ika§+%§ = 0, (4.2.2.5)
02%;,,,0 = 0, (4.2.2.6)
*6261:’;1 = |Ao|2(-g:6g§*+w§*%i§). (4.2.2.7)

with stars denoting the conjugate values. The solution of (4.2.2.5) is of the form

it
sz
+ ik’ Wo -4

+ Fotz pOi
a¥ = Q*e (eF77% -1) - E (4.2.2.8)

where 0% = /—ik?/vE, 0 > 0; the constants Q* and a constant of integration in

'EJE,': are determined by the conditions of continuity of tangential stress and streamwise
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velocity at the interface and the interfacial condition @ (0) = 0. With the expression

for p* already given in (4.2.10), (4.2.11) we have

o-— Lokble oy -0~ Vv~ (1 - kA/a)
T 14Vt T 14pVm

The second formula in (4.2.2.8) shows that at large z the vertical velocity for the

(4.2.2.9)

wave acquires a non-zero finite part. The effect of this is similar to the near-wall
Stokes layer contribution to the wave solution and like the latter it affects the linear
growth rate of the wave.

Returning to the mean-flow equations (4.2.2.6), (4.2.2.7), the first of these shows
that the solution, on matching with the inviscid region, is
%o = Um where U, is a constant. We then substitute (4.2.2.8) into (4.2.2.7) and

integrate to find

+2 e
(:*: klgil + 'LQ ipo (Z:E %)) e:FLT:!:i
L= |4of? P +v A

2k|Q*|?

IH

L 0%
)

14

N

+ +*\3
eFloF+a®)z 0 o

(4.2.2.10)

where AL are constants of integration. The stress continuity condition and the
formula (4.2.2.9) then give us a relation for the wave-induced mean shear jump

across the whole interfacial layer,

p~Vo= (kAJa — 1) (1 + kAa/p‘z)
l+p‘\/;: ’

Ad — um AL = V2| Ao)? (4.2.2.11)

where we have used the unit values for p*, u*, v*. It is this jump in shears, as
opposed to a velocity shift due to the Stokes layer, which causes the enhanced mean

flow contribution.

4.2.3 The amplitude equation

We may now determine the governing equation for the wave amplitude Ao(z1,1).
This is obtained from (4.2.34), by matching between the inviscid regions and the

interfacial and near-wall viscous layers. The leading order match shows that the
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mean profile ufno in the region y = O(1) is continuous across the interface, hence
+

Umo

(a) = @¥,. Matching the first fundamental correction (of O(1) in the normal

velocity expansion (4.2.3)) with the solution in the viscous layers gives two relations,

) ) ) kQt A
vy, + 10 Ao(wr — kut(a)) + ik?Fo = — prra (4.2.3.1)
i (p—1°“> — ik Ao(kD — u,) + FOA0 / [ya“mo - u:no] dy
- a 0 dy
k@~ A
vy + iAAg(wr — kuEo(a)) + ik2Fyo = 3_ 0 (4.23.2)
and combining these with the pressure jump condition
Plo ~ Pro = = [vk* + G(p™ = 1)] Fro, (42.3.3)
gives us pfo in terms of Fyo,
kAp~ Ao kAAgp~ /" Ou_ _ 1P Vy
+ - _Z2=F 70 — T Z-m0 _ —
ol = - (kA — u,) + o A Y By Umo | dY
Ap~ A kp~Q~ A k
+22 200 — kut (a)) - —‘igg—_—° + % Fuo. (4.2.3.4)

If we now define the induced mean flow in the film as U, = u,,o — A"y and
substitute for vjy_ from (4.2.3.1) and for p}, from (4.2.3.4), using (4.2.1.7), (4.2.2.9)
and (4.2.25) then the relation (4.2.34) gives us the wave amplitude equation in its
final form

04q 0Ao f 2 i
TeRa 21c6—m1 = 2A0|Ao| + (B +16:) Ao +
2A2 . — a - -
L [ |5 - v -k (P22 - 1) (0
iAo aoo 0 y 6U+ .
—l—/a [U;Q —(y—a-}—kA)—W’"o] dy
(4.2.3.5)
where
p Vv~ 2, 1L2A2 Y
L= kA —a)* + E*A%(1 4+ p~Vv7)), 4.2.3.6)
b= oy ey (BB - H RN ),
_ 272 P~
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The equation governing the wave-generated mean flow is found from (4.2.23) by
subtracting the base flow and applying the no-slip wall condition (justified in §4.2.1),
the decay condition in the far field and two interfacial conditions established in
§4.2.2, those of continuity in the induced velocity and a prescribed jump in the
shear (4.2.2.11). The final formulation for the induced mean flow is of the form
ouZ, _ o,

5 =V a2 (4.2.3.8a)
U.,=0aty=0, Ult,>0asy— oo, (4.2.3.8b)
out ou_
U+ — - m0 _ - m0 = = 40
mO0 UmO’ ay K 6'!/ J at Y a, (4 2.3 8C)
p~V2v- ( kA)2 )
J=—————(1-—] |4}~ 4.2.3.8d
1+ P—\/V_: a | OI ( )

In the case of two fluids with identical properties (p~ = v~ = 1,7 =G =0 ) the
equation (4.2.3.5) reduces to

04y , . BA; 1—i i R
5t g = 5 Aot 5 4ol Aol’, (4.2.3.9)

which is almost identical to the equation derived in study of spatial instability by
Smith & Burggraf (1985) with the exception of the coefficient to the nonlinear term.
The difference in non-linear coefficients is due to the different approach we took in
calculating the wave-generated mean flow, allowing it to spread only through the
diffusive layer y = O(1) as opposed to the uninhibited mean-flow penetration across
the entire boundary layer assumed in Smith & Burggraf (1985). Solutions presented
in the next section verify the validity of our approach for the case of temporally
developing waves but whether the same is true for spatial instability remains an open
question. It is important to note however that in both (4.2.3.9) and (4.2.3.5) the
nonlinear coefficient is always imaginary and therefore nonlinearity does not affect
the growth rate of |Ag|. As a point of interest we also note that the homogeneous
problem of Smith & Burggraf (1985) has very similar temporal (8/0z; = 0) and
spatial (0/0t = 0) formulations. This is a quirk unassociated with the two-fluid case
where the generated mean flow destroys spatio-temporal symmetry, see equation
(4.2.3.8). However we see that for both the single- and two-fluid systems the linear

growth rate 3, is positive for all choices of the flow parameters.
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4.3 Solution properties and secondary instabilities

The absolute value of the wave amplitude |Ag| governed by (4.2.3.5) is unaffected
by the nonlinearity due to its purely imaginary coefficient. To illustrate, if we take

the slow z—dependence in the form exp[ik;z;] with constant k; then
|4o|? = Agoexp(26rt), Aoo = constant. (4.3.1)

This growing wave amplitude then creates stronger mean flow, as can be seen from
(4.2.3.8) and due to the quadratic nature of the mean flow’s dependence on |4y it
is growing faster than the base wave. The possible subsequent stages of the wave
development are discussed in the final section, §4.6. Here we focus on properties
of the induced mean flow which, as we aim to show, can become unstable to short-
wavelength secondary disturbances which could be generated by, for example, the
background noise of experimental equipment or external vibrations.

We begin by solving equations (4.2.3.8) with (4.3.1). Writing the total mean

velocity, i.e. the sum of the induced and base compomnents as
wt =+ 0(e), (4.3.2)

as in the expansions for u* in (4.2.2), we find

uto =y —a+u,+ An(t)sinh (£_a)e_e+(y'“) fory > a, (4.3.3)
Uy =AY+ An(t)sinh (§7y) for0 <y < a, (4.3.4)
where ¢ = /28, /vE, and

Agop~ V2w~ (1 — kA [a)? et
(14 p~v/v~)(£* sinh (€-a) + p~¢ cosh (6~a))’

The secondary disturbances described in the following section are short compared

An(t) = (4.3.5)

with the primary TS waves and are heavily influenced by surface tension, whose
effect is greater than that of gravity on short waves, as can be seen from the pressure
jump condition (4.2.14). Therefore we assume that the primary wave is unaffected
by surface tension but allow an influence on the secondary waves by a rescaling of the
surface tension coefficient, and neglect gravity for both the primary and secondary

disturbances for simplicity.
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4.3.1 Intermediate secondary disturbances

~

In this subsection we consider secondary disturbances of wavelength O(é) assumed
to be smaller then the wavelength of the primary modes but larger then the film

thickness whilst even shorter perturbations will be examined in §4.3.2. Here we take
Ret < é<e (4.3.1.1)

and perturb the primary-wave solution of the governing triple-deck equations, (4.1.1),

(4.1.2), in the following manner

uE = (wAoE + c.c+ Aguiy) + ...+ 6 (RE + ce) + ..., (4.3.1.2)
+ ba . -

vt =4 ?(vE +ce)+ .., (4.3.1.3)

pt = .. 4+ 6. (PE + cc)+ ..., (4.3.1.4)

f=a+ .. +&(FfE+ce)+ ..., (4.3.1.5)

where §, < €" for all positive n, E = exp[ik(X — éT)] and the new temporal
and spatial variables are defined as X = zé~!, T = t6~1. With regard to the

temporal development of the mean flow we can treat u;ﬁo as frozen and the temporal
development of the primary wave can also be ignored on these scales. We find, upon

substitution into (4.1.1), (4.1.2) the equation

2% 2;%
0% £ 0%,

(g — €) o = v 5y (4.3.1.6)

Solving in the same manner as employed in Chapter 2 §2.4.1, by applying the inviscid
interfacial and wall conditions and the decay of 9% /0y at infinity, we arrive at the

dispersion relation

a dy B ,?];2 /a dy /oo dy
0y T 1-— IRy T =0, 4.3.1.7
/o(u;o—c)z g ( o Jo (67 ) Jo (g - 0P (43.17)

for the disturbance phase speed é = ¢é(k) where, in order to keep surface tension

in the equation, we take 4 = v6~2 to be of O(1). In the case p~ = 1,4 = 0 the
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equation (4.3.1.7) reduces to the relation

/a _w /O<> W, (4.3.1.8)
0 (mp— 7 o (ufg— 07

as derived earlier for a homogeneous flow by Smith & Bodonyi (1985), Tutty &
Cowley(1986). In their studies of short waves in interactive boundary layers they
showed that the appearance of secondary instability required a strong inflexional
profile. In our case, however, the profiles are characterized by azu,ﬁo /8y? always
being positive (see (4.3.3), (4.3.4)), but the shear 0ui0/6y is discontinuous at the
interface and this proves to be sufficient to provoke instability.

Solutions of (4.3.1.7) with (4.3.3)-(4.3.5) have been obtained numerically for the
flow with p~ = 1.087 and v~ = 0.484, the water/oil mixture used in Chapter 2.
We see that for the case of a fixed wavenumber k = 1, fig 4:2(a), the instability is
damped by increased surface tension as expected and that the maximum instability
appears at a finite mean flow amplitude A,,. In fig 4:2(b) we examine the case of
a fixed value of A, close to the instability maximum at A,, = 0.5, and vary the
wavenumber k. The maximum instability occurs as k& — 0 which implies that in the
case of the least stable generated mean flow amplitude the most unstable waves are
long. Short waves are stabilized by surface tension and a plausible candidate for the
neutral-wave solution is a stationary disturbance é = 0. Indeed if é — 0 then the

integral over the film region in (4.3.1.7) becomes large and (4.3.1.7) reduces to

. b dy
1- »‘yk2/ — =0, (4.3.1.9)
a (“;;0)2

This gives us a relation between the surface temsion coefficient and the neutral
wavenumber. For our example, with the mean flow set near its instability maxi-
mum at A,, = 0.5, the integral has the value 0.44256, hence, for 4 = 0.1 the neutral
wavenumber is k = 4.75352 and for ¥ =0.2, k = 3.36124. These points shown in fig

4:2(b) seem to be in agreement with computations for the unstable waves.

4.3.2 Instability of weak primary waves

As in the stability analysis for two fluid flow over an obstacle tackled in §2.4.2, we can

show analytically that instability will always be present as long as some alteration to
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the shear profile takes place, no matter how small. Since the mean flow corrections
are related to the slowly growing primary waves, instability of the former will also
indicate secondary instability of the latter. When A,, is small the combined base

and induced mean velocities can be written as

uE = uf(y) + AnUE + .y An =0, (4.3.2.1)

where
u, = A"y, fory<a, (4.3.2.2)
u =y—a+u, for y > a. (4.3.2.3)

We proceed exactly as in §2.4.2, with I = Re~3/8, expanding the phase speed in the
form ¢ = ¢p + Amecr + ..., which gives us, to the first order, a neutral solution for ¢

with the dispersion relation

(co — us)(co — ;—) = . (4.3.2.4)

exactly analogous to equation (2.4.2.9) in the limit £ — 0. The root ¢p is such that
either ¢g > u, and ¢ > a/p~ or ¢g < u,, ¢g < a/p~. The growth rate c;; at the
next order depends on the location of the critical layer y = y., where 'u.bi(yc) = ¢o.
Again as in (2.4.2.21), (2.4.2.22) we find

_ WGU;(’)’(%)(“: — ¢o)?

C1i =
' p~(us —afp™)
_ cg';rU,;O(yc)(u, - ‘30)2

T T (v, — afp7)

with the difference in formulae due to the rescaled surface tension here. Equations

, ify.>a; (4.3.2.5a)

, if g < a. (4.3.2.5b)

(4.3.2.5) show that for instability to occur we need Uty (ve) < 0 if the critical layer
is above the interface and U,;g (yc) > 0 if it is below the interface. In the numerical
solutions of the previous subsection we had U,fg > 0 so only the second instability
mode was found, i.e. the one with the critical layer in the lower fluid. From (4.3.2.4)
we see that this instability will disappear if 7y takes the value 4 = u,/ k2. A similar

result holds for increased wavenumber k and fixed surface tension.
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4.3.3 Weak surface tension

In flows with sufficiently reduced surface tension much shorter secondary waves can
exist, with the typical wavelength (on triple-deck scales) of order § = Re™%. Such

waves are governed by the Rayleigh equation

i Bzu,ﬂ:l R
(v, - ¢) ( 7 " k%i) = Wz%i, (4.3.3.1)

which, unlike the previously considered form (4.3.1.6) captures the pressure variation

across the layer y = O(1). The boundary conditions of no-penetration at the wall,

decay at infinity and the usual inviscid interfacial conditions give us

9*(00) =0, 97(0)=0, 9(a)=9"(a), (4.3.3.2)
8vt out
(uoo — €)—5—(a) - —5™%(a)™(a) )
(200 — &) I = k9% (a),
P ((uan - ©%-(0) - L) (@)

(4.3.3.3)

where ugo = uZ,(a) denotes the interfacial speed. Solutions of (4.3.3.1)-(4.3.3.3)
were obtained numerically using the method described in §2.4.3. In the case of
small A,,, which corresponds to weak generated mean flow, the maximum growth
rates occur as £ — 0 and hence long waves provide the fastest growing instability, see
fig 4:3(a). For the stronger induced mean flow, in fig 4:3(a), the maximum growth
rate increases and appears at a finite wavenumber. The inclusion of surface tension
reduces instability and gives a short-wave neutral point, shown in fig 4:3(d), which
is not present in the case of zero surface tension where we observe very short waves
to have a small growth rate and a phase speed which approaches the interfacial
velocity, see fig 4:3(c). We may show, however, that for any fixed 4 the growth of
the primary wave and hence the impact of A,, will eventually overcome the surface
tension effect. The latter can be seen in the limit as A,, — oo, when the disturbance

phase speed and the base profile can be written in the form
é= Amsinh (§7a)é + 0(1), (4.3.3.4)
ut, = Ansinh (67 a)ad (y) + O(1), (4.3.3.5)
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with § rescaled as 4 = §/(Am sinh (67a))? = O(1), and

it, = exp[-¢t(y—a)ify > a; 4, = M ifo<y<a (4.3.3.6)

sinhé~a

We solve for ¢ using equations (4.3.3.1-4.3.3.3) by simply replacing ufno, é, 4 with
ﬁio, ¢, 4, and note the increased surface tension required to provide an upper
neutral point. The solutions for such strong induced mean flow are shown in fig
4:4 and again we see no neutral cut off for short waves in the flow without surface
tension. Taking the short wave limit of the Rayleigh equation in these new variables,
we find analytically that  — 1 and 7% — exp[:;:l;:(y —a)] as k- oo.

In the case of surface tension still exerting an influence, which we remark re-
quires relatively strong surface tension within the weak surface tension regime,(i.e.
the unscaled tension is of O(Re~/242,) < 1), we again find the solution curves
approaching neutral points at finite wavenumbers. As in the previous subsections
we assume these neutral solutions to occur at zero phase speed ¢ = 0, only this time
the neutral wavenumber is determined by the full Rayleigh formulation of (4.3.3.1-
4.3.3.3) with (4.3.3.4-4.3.3.6). The relation between the scaled surface tension ¥ and

the neutral wavenumber k is found to be of the form

o~ |ViE ) + k2 coth [ay/()e + B7] - ¢ cothag]
et — A J(EF)2 + k2 + 5k = 0. (4.3.3.7)

From this we can now calculate, for example, the value of 4 for which k= 0, that
is the magnitude of surface tension required for complete stabilization of secondary
modes in the flow with dominating induced mean component. So in the case of an
equal mixture of silicone oil V2 and 1-2-3-4-tetrahydronaphtalene for the main fluid
and water in the film as used in previous sections we have p~ = 1.087, v~ = 0.484,
and for the critical value of 4, 4. = 0.81545, see fig 4:5. In terms of the previous
variables 7 > Re~7 \pAZsinh? (£~a)J. is then the requirement for stabilization of

the short secondary modes.
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4.4 Nonlinear TS-capillary wave resonance

The general set of expansions (4.2.2)-(4.2.5) assumed in §4.2 fails when the constant
A in (4.2.12) becomes infinite, which is described in Timoshin (1997) as correspond-
ing to a crossing of the TS wave and a capillary mode. This extreme value of A can
occur for a variety of combinations of the gravity and surface tension coefficients G
and . We will, for definiteness, concentrate on the case of negligible gravity and a
resonant value of the surface tension, 7o = p~/a, see (4.2.12) .

It was shown that the resonant growth-rate for the linear counterpart to this
study, Timsohin (1997), was O(k%/?), so here we take the slow temporal scale to be
0(63/2) and assume that v is close to, and expand about, the critical value v = 7o,

writing
1
7=7+ €1, 11 = O(1). (4.4.1)

4.4.1 Derivation of the amplitude equation

The fast and slow variables for the wave disturbance are now defined by the relations
X=¢lz, T=e2t =%%, (X,T,t)=0(1). (4.4.1.1)

The expansions for the disturbance above and below the interface have to be consid-
ered separately due to an increased amplitude in the film velocity terms, see (4.2.11).
The same argument used for the non-resonant regime earlier in this Chapter, con-
necting the wave fundamental, harmonic/mean flow interaction and fundamental

correction terms holds here but leads to a different non-linear wave amplitude,
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namely u,, = O(e~%/%) in the film, where we take

uT = e_%(Ao(tl)E + c.c)+ e_%(u,‘,—oE2 +cc)+

e'li(ul'oE +upE+ce)+ .., (4.4.1.2)
v= = e f(vg(t)E +cc)+ e T(vpE? +ce) +

€ (v E + v B + c.c) + ..y (4.4.1.3)
p = e_}(Ao(tl)E.kp' +ce)+ e_%(pz"oE2 +ecec)+

e_%(p;oE + Bt ce)+ .., (4.4.1.4)

where € < 1 is measure of the TS wavelength, E = exp[i(kX — woT)], with real k
and wp and the function describing the interface between the two fluids is expanded

in the form

f=a+ e%(FgE' +cc)+ e’%‘(FmE2 +ecec)+ e%(FloE + FyE3 + ce)+t ... .
(4.4.1.5)

Substitution into the triple deck equations (4.1.1), (4.1.2) provides the momentum

balances
—twoAg = —iszo, = Wo = kz, (4416)
2ik
—iwguy, + kA2 = —p—’_—pgo, (4.4.1.7)
0A C o aw— ik _
6To—zwoum+zkAou20 = ——z—_plo, (4.4.1.8)
1 p
and continuity balances
Ovg Ovy vy
kAo + =% =0, 2ikuy,+ —2 =0, tku+ —-2=0 4.4.1.9
thdo + By WRUgg + By kU + By ) ( )

where, again, the superscript (*) denotes the complex conjugate. The wall Stokes
layer does not make a contribution to the normal velocity components until we reach

the terms O(e“%), s0
%5 (0) = vi(0) = v7o(0) = 0, (44.1.10)

and the solutions normalized on the streamwise velocity in the film (note a different

normalization in §4.2) become

vy = —iky (4.4.1.11)
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- _Pn A _ Pao , A
Uyg = kp— + o Vgg = -2 (p + 5 (4.4.1.12)
_ 1 040 . Dy 4« 1
Y10 = k258 T k2 —4Ao+ 2k2 gzt [ Ao [ T - P10 (44.1.13)
_ 1040 | Dy
v = — (Ea_tl + kzo A} + o5 Ao | Ao |2 +—p10) iy. (4.4.1.14)

In the expansions for the upper fluid

ut = e_li(ui"OE+c.c.)+y—a+u, -I-e}?(ui"lE—}-c.c.)ﬁ- oy (4.4.1.15)
vt o= e_%(vfoE +ce)+ ..., (4.4.1.16)
pt = e"%(pi"OE +ece)+ e‘%(pflE +ce)+ ..y (4.4.1.17)

with the orders of the leading velocity terms determined from the interfacial kine-

matic condition. Substituting these into the triple-deck equations we obtain

—iwou;fo = —ikpfy, = kufy = p, (4.4.1.18)
—iwouf; + 22 6t Oty = —ikpf,. (4.4.1.19)

Then since u}; in (4.4.1.19) is y-independent the viscous-inviscid interaction law

gives us
ph = kufy, (4.4.1.20)

and substitution into (4.4.1.19) gives the relation

1 61’?0

+ _
T T=0. (4.4.1.21)

We now turn our attention to the interfacial conditions. From the pressure jump

condition (4.1.8) (with neglected gravity) we obtain the relations,

—kp_Ao = —’)’okzFo, (44122)
P = 4k70Fao, (4.4.1.23)

fo—Po = —Y0k’Fio - mk*Fo. (4.4.1.24)
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The kinematic condition leads us to another set of relations,

~ikady = —ik®Fp, (4.4.1.25)
2i
—2ik A Fy — pL“pzo iaA? = —2iwoFy, (4.4.1.26)
vio(a) + ik AgFoo — i( =22 P20 | g2\Fr = —ikEFgug, + 2ikAFao +
oF,
'6—: - ZwoFm (4.4.1.27)

and we note that the equations (4.4.1.22), (4.4.1.25) are simultaneously satisfied
only if 79 = p~/a, which was the condition for TS-capillary wave resonance in the

linear approximation. Substituting this result back into (4.4.1.23), (4.4.1.26) we find
a
Fyo = -mAg, Dyo = —2p" A3, (4.4.1.28)

and then (4.4.1.24), (4.4.1.27) with (4.4.1.21) and the condition that, to the leading
order, v is continuous across the viscous layers at the interface finally gives us the

wave-amplitude equation for Ag

k 8t2 + 1ka—a—1—k Ao—-’L

Tp~ 0

T —(A%AY). (4.4.1.29)

There are, as in the non-resonant case §4.2 and as noted above, thin layers
about the interface and a thin Stokes layer on the wall in which the viscous effects
are dominant. The interfacial viscous layers are surrounded by a diffusion layer of
thickness O(e/%) where the Reynolds-stress-generated mean profile adjusts to the
outer conditions. We see that, unlike the non-resonant case, any induced mean flow
does not spread througout the depth of the film due to the shortened slow time scale.
These viscous layers are inactive in the present resonant regime as can be seen from

the following argument. In the viscous interfacial layer we take

Z=¢€(y - f(z,t) = 0(1), w* = %% + ui% — v, (4.4.1.30)

where we may regard w® as representing viscous corrections to the inviscid outer



Chapter 4: Nonlinear TS-capillary wave resonance 124

solution. The film-flow components in the layer z = O(1) below the interface are

u = € $(T7(2)AE + cc +ang) + € (T (2) + ) (4.4.1.31)

+oony (4.4.1.32)
w™ = e §(Wo(2)"AoE +c.c) + ..., (4.4.1.33)
p- = e“%(pngE +ece)+ ... (4.4.1.34)

with %ps a constant relating to the mean flow in the diffusion layer. We see that
the viscous contribution to the normal velocity is of O(e"%) here and so does not
enter the wave-amplitude equation derivation in the present resonant regime. The
same order-of-magnitude estimate holds also for the corrections produced by the
wall Stokes layer and the interfacial layer above the interface. The extra mean
velocity anticipated in (4.4.1.32) is of O(e‘%) and the induced shear will then be of
O(e_%) at the edges of this layer. As in §4.2 the induced mean flow spreads across
a layer in which the diffusive effects occur over the slow development time scale.
In the resonant regime the slow time is of O(e%), so the diffusion layer thickness
is of O(e%). The mean velocity correction, driven by the shear of O(e_%), in the
diffusive layer is then uX,, = O(e"%) which, incidentally, is of the same order as the
leading wave component in the film. Corresponding to this induced mean flow will
be the induced streamwise and normal wave terms. An estimate for the mean-flow
generated correction to this wave velocity, 4~ ~ %4, can be found from the balance
o,/ ot ~ ik, 00%,,./0z where z, t are the fast scales and uZ,,, = O(e%/4),
ut, .. = O(e7%/*). Hence ui:; q4= O(¢7/2) in the wave, and from incompressibility
the corresponding normal component is '”iid = O(e'a/ *). Clearly the extra normal

term of O(e"%) plays no part in balances used in the derivation of the amplitude

equation (4.4.1.29) and so can be neglected.

4.4.2 Analysis of the amplitude equation

Before beginning our analysis of the amplitude equation (4.4.1.29) we note the ob-
vious dissimilarities with the form for the non-resonant case (4.2.3.5). Our new

equation contains a second-order derivative of the wave amplitude which signifies
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the presence of two wave modes coupled through the non-linear term. As has been
noted in the prior sub-section, the equation contains no contributions from either the
viscous interfacial, diffusion or Stokes wall layers. Again we see a purely imaginary
nonlinear coefficient but this time, due to its differentiated form, the nonlinearity
provides a strong phase-amplitude interaction as we will find in this subsection.

Second-order amplitude equations are well known in the theory of weakly non-
linear resonant interaction, see e.g. Drazin (1970), Akylas (1982), Akylas & Ben-
ney (1982), who examined the direct- and near-resonance between instability modes
present for wind blowing over infinitely deep water. Weismann (1979), who looked at
the stability of two- and three-dimensional wave packets in a two-fluid system of infi-
nite depth, and Guckenheimer & Knobloch (1983), Dangelmayr & Knobloch (1987),
for various problems, all encounter similar equations, which may be transformed
into “energy” equations (see 4.4.2.9 below). However the particular combination of
coefficients present in our equation (some of which are complex-valued) seems to be
new and deserves investigation.

To ease analysis of the amplitude equation we make the change of variables

1 1
2 [ak3\* - 207\ 2% _
o (Y 4 o () saaa

which gives us

24 dA . d(A|AP)
W + ZI‘E - A= ZT, (44.22)
where the coefficient I' can be thought of as a “detuning parameter”,
1
71 [ak?\?
=—|—] . 4.4.2.
F=% <2p‘) ( )
Next we write
A = p(%) explig(3)], (4.4.2.4)

where p,¢ are purely real functions of {. The equation (4.4.2.2) then splits into two

real equations for the magnitude p and phase ¢ of the wave amplitude,

d%p

2 __ 3
Fr il Tou—p=-pu, (4.4.2.5)
dp | du _dp _d(p°)
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where u = d¢/dt. Integration of these two equations gives us

dp\? 1 ¢ I, (T2 ¢ , 21
(Iz?) = TP Tl T_E"l)” “ggp e (4427)
_ 3 2 I‘ C1 1
u = P 2+ 757 (4.4.2.8)

where ¢y, ¢y are arbitrary constants, and we may think of (4.4.2.7) as being in the

form of an “energy integral”,

d 2
(??) = f(p) + ca, (4.4.2.9)
1 6 T 4 r2 1 2 C% 1
- _ iy B Rt S | -+ 4.4.2.1
fo) =g+ 1t - (- 2-1) - 22 (4.4.2.10)

with c; representing the “energy level” and f(p) the “potential”. We now analyze
the solutions in the phase plane of the variables p, dp/dt.

The solutions separate into two distinct instances depending on whether ¢; is
zero or not. We begin with the special case ¢; = 0, see fig 4:6(a)-fig 4:6(g) and
notice that for all values of the detuning parameter I' the potential function f(p)
has the property that f(0) = 0 and so there exists a stationary point at the origin
where dp/dt = p = 0. As we vary the detuning parameter we uncover a number
of typical solutions separated by the critical values of T', defined by I'? = 4 (or in
the earlier notation 42 = 8p~/ak ). If I' < -2, fig 4:6(a), then the origin is the
only stationary point surrounded by a family of periodic orbits which we obtain by
varying the energy level parameter c;. When I' = -2, fig 4:6(b), the first of the
critical values of T', we reach the limit of the single stagnation point solution. For
values of T greater then this, see figs 4:6 (c)-(e), a second stagnation point bifurcates
from the origin along the p axis giving rise to a separatrix solution along with a
second set of periodic solutions. The solutions lying on the separatrix have orbits of
infinite period, growing from infinitesimally small disturbances to a finite amplitude
before eventually decaying. We can see this from the shape of the separatrix which
approaches the origin linearly.

Our next value of interest for I' is when it crosses the second critical value T' = 2,
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see fig 4:6(f). The phase-plane diagram now shows a saddle point separating two
stable stationary points, one at the origin and one at a finite value of p.

The form of this diagram is typical for all values of I' > 2, fig 4:6(g). We note
that there are no solutions of (4.4.2.9), (4.4.2.10) with unbounded amplitude growth:
all waves initiated at a small or finite amplitude remain bounded. This important
property also holds in the second case of a non-zero value for c;, see fig 4:7(a)-fig
4:7(c). Here we observe that the potential function f(p) — —oo for both p — 0 and
p — oo with either one of two maxima at finite positive p, depending on the values
of the coefficients ¢;,I'. A numerical exploration was made using the Mathematica
package and it was discovered that there exists a unique critical value of I'; which we
will denote as I' = I'c(c1), as a boundary between the cases of one or two maxima see
fig 4:7(d). For T < T, fig 4:7(a), there exists only one maximum and this translates
to the existence of a single stagnation point at a finite non-zero value of p in the
phase-plane diagram. For T' > T, fig 4:7(c), there are two maxima and this gives a
saddle point solution separating two stationary points in the phase plane. For the
critical case of I' = I, fig 4:7(b), the saddle point occurs at the same point on the
p axis as the stationary point.

A comparison between the nonlinear wave behaviour and the corresponding lin-
ear wave properties reveals the important stabilizing role of the nonlinear effects.
The linearized version of (4.4.2.2) gives us two solutions of the form A = exp(5?)

where
g=——=+14/1— —. (4.4.2.11)

We see that the linear solutions for the case when | I' |> 2 are neutral and hence are
similar to the nonlinear solutions. This is because away from the direct resonance
the capillary and TS waves remain neutral on the timescale ¢ = O(e%/2), the slow
growth only being felt on larger temporal scales (see below §§4.5 4.5.5). By contrast,
when | I' |< 2 the linear theory shows growing and decaying waves as described in
Timoshin (1997). The non-linear effects for such waves therefore have a crucial, and

indeed dominant, stabilizing role.
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4.5 The near resonant regimes

Here and in §4.5.5 we bridge the gap between the two disparate regimes described in
§§4.2,4.4. The weakly-nonlinear TS waves in §4.2 are essentially governed by a first-
order differential equation with the growth-rate term associated with viscous effects
but, in contrast, the resonant regime in §4.4 is governed by a second-order equation
which relies on purely inviscid mechanisms. In order to elucidate the connection
between these two regimes, in this section we consider an O(e'/2) neighbourhood of
the critical surface tension value 4y = 79, as in §4.4, the difference being that the
detuning parameter y; = €~ /2(y — ) will be assumed outside the strong resonance
,i.e. | 11 |> 71c, where v1. = \/W corresponding to I' = 2 in the discussion
in §4.4.2. Further, in comparison with the theory of strong interaction developed
in §4.4, the wave amplitude will be taken sufficiently small to take into account the
slow wave growth induced by viscous effects. This will take us back to the weakly-
nonlinear modulation regimes typical for non-resonant wave development, as in §4.2.
We will also show that the analysis along these lines becomes invalid in a refined
vicinity of the critical detuning parameter v; — 41 = O(€), and the modifications in

the theory required in that case will be given in the next section.

4.5.1 The first near-resonant regime

For the remainder of this Chapter the surface tension coefficient is taken in the form

7 =70+ €291 + €7, (4.5.1.1)

where 70 = p~/a and 71, 72 are arbitrary except that |y;] > /8p~/(ak). The
O(e) correction in (4.5.1.1) is not strictly necessary, however its presence will help

in evaluating the range of applicability of the theory in this section. The film-flow
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components are written as

U o= e_%(Ao(r)ugE +cc)+ (upE? +upE + c.c.)

+e%(u1“1E +ee+..)+ ..

vT = e':'(Ao('r)vo_E +c.c.)+ e (vpE? + v E +c.c.)

—i—e_%(vl_lE +ece+ )+

pm = €

N

+e'%(p1‘1E +ce+..)+ ..

(Ao(T)pg E + c.c.) + € M (pjoE? + P E + c.c.)

(4.5.1.2)

(4.5.1.3)

(4.5.1.4)

where E = exp[i(kX — woT — wit1)], 7 = €, ¢ = e‘%t, T=¢€2k>0; wy, w

are real and the interface position is described by

Ff=a+€e(FoE +c.c)+ €(FioE + FaoE? + c.c.)+ €2 [FuE + c.c.+ ] + ...

Upon substitution into (4.1.1),(4.1.2) we have the relations,

Wty o

—Woly = —p—_Po,

—2iwguy, + ik(Aoug )2 = "2;—_161’2—0’
—iwoUiy — widoUg = —;—prfo:

. _0A _. - _
—iwouy; — Wity + Ug -B—‘ro + ATikyAoug + tkuzgAgug*

_ _ ik _
+A" Aovg = —p—_pu,

and

dvg . Ovy
ku” 4+ —9 — 2kus + —20 =
1kug + By 0, 2ikuyy+ 5 0,

Ovy; _ 0
?

Oy

tkugy + 6—”19- =0, ikup +

Oy

(4.5.1.5)

(4.5.1.6)
(4.5.1.7)

(4.5.1.8)

(4.5.1.9)

(4.5.1.10)

(4.5.1.11)

for the momentum and continuity balances respectively. The leading terms then,
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after normalizing the streamwise component u;, are found to be

uy =1, wo=k? py =kp”, vy = —iky, (4.5.1.12)

_ Dy Az . { 2p5,
Upg = Icp%—*-gl(cl’ Ugg = —18 (p—f°+A3) v, (4.5.1.13)
up, = %ﬂ - %Ao, vy = —i (% - ‘-"kle) v, (4.5.1.14)

— -— . — 2
wo = 2o (P e, N 104 1 (P AS) 0 g
T P

_ fpy w1 (P, w 1 .,.(p5m A2 y 8A
o= [ (M- o) s (B2 ) o 150

(4.5.1.16)

where v,, represents the effect of the wall and is given by (4.2.1.7). For the flow

above the interface in the region y = O(1) the expansions are,

vt = y—atu,+ (u'l"oE +cc)+ e%(uflE + c.c.)
+e(u'1"2E + ug'OE2 +ce)+ .., (4.5.1.17)
vt = e‘%(vJE +cc)+ e (vHE + vhE* + ce) + .., (4.5.1.18)

pt = €' (pHE +cc)+ e_li(pi"lE +c.c)+ (PLE + pHoE* + cc) + ...y

(4.5.1.19)
and the coefficients are governed by the equations
—-ik*uy = —ikpf,, (4.5.1.20)
—ik?ud; —dwiud, + i = —ikpf, (4.5.1.21)
duf; .
—2ik?ufy + ik(ut)? + vfy + v ;;1 = —2ikph,, (4.5.1.22)
020+ g ot dufy I ot

—ik“u], — wwyuy; + 5 T (y — a + u,)ikufy + viy = —tkpl,, (4.5.1.23)

ovg . ovf; vy,
=2 =0, ikufy+ 22 =0, -2 =0 4.5.1.24
ay 0’ RUyo + a,y ’ ay ( )
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The velocity components here can be expressed via the pressure contributions,

: + + +
w1 p P
o = 2rpk uh =0, o = L uf = %, (4.5.1.25)
1 .
vl = —2(P}o)” — ikp30, (4.5.1.26)
. z'w1 1 6p+ .
'Uit) = —i(y — a)p;-o + —E—p;ﬁ - E-a'—;g - 'W'SPTO' (4.5.1.27)

where the viscous-inviscid interaction condition has already been taken into account.

4.5.2 The viscous diffusion layer

The thickness of this layer, based on the slow time scale, is O(e%) and so we construct

a new local normal co-ordinate # along with a new velocity component w¥,

y=f+e%2, vi=a—f+ui?—f

r 52+ wt, (4.5.2.1)

For the flow above the interface the velocities expand as

4+

ut = e 2@t (5,7) + (W E + c.coF fima) + oy (4.5.2.2)

wt = e 5 [(—iufyE + Byu) E + c.c] + ..oy (4.5.2.3)

where the mean-flow terms are necessary for the subsequent match with an even
thinner interfacial layer and w,, is a constant of integration which represents the
effect of the inner layer on the wave.

In the diffusion layer in the film we take

u” =€ (i, + AoE + c.c) + (i, + GpE + G B2 + c.c) 4 .y, (4.5.2.4)

w =€ By E + c.c.)+ € F(BLE + BB + c.c.) + oory (4.5.2.5)

with the pressure, which is a constant with respect to y across the entire boundary
layer, represented by the inviscid solution. The governing equations for the wave

terms are of the form

by . 2ik__
z'kAo+?-;£Z.°— = 0, —2ik2ﬁ2_0+zkAg=—;z:-p20 (4.5.2.6)
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. OWa0
21k = 5.2,
1KUg0 + 93 0 (4 5.2 7)
P A e __0u, k
—ik?4], — iwy Ao + 1k Aol + g % = —:7:1’10: (4.5.2.8)
. Oy,
ikig, + ;’;0 = 0, (4.5.2.9)
O, . ,._0a  __,0ul, _08%L,
5 + (g 33 + g 33 )=v 552 (4.5.2.10)
Solving for wq , liag, Wap, #yg, W1e We Obtain
Wy = —ikApZ, (4.5.2.11)
_ Al pn - (2, Poo ) -
o = 48 ﬁ%zm:—%%+ﬁ?%, (4.5.2.12)
. wy Ao (._ .01, 2%
Iy = —1340t <um0 z 620) + E}II%’ (4.5.2.13)
e LWL, o 2l Ot o P1o -
Wiy = Wy —1t|=—AoZ+ Ag Ao — S ds+ —=%|,
0 63
(4.5.2.14)

where the constant w,; will be found in the next subsection. The mean flow in the

diffusion layer is governed by
~+ ~+
oux, - %k,
ot 022’

with the boundary conditions

it (3=00) =0, 9, 4(3=~00) =0, 4,,(2=0)=4},(3=0),v

and the shear jump relation of the form
Ollpo Ot

oz M ez

where J is determined in the next subsection.

4.5.3 The interfacial viscous layer

(4.5.2.15)

(4.5.2.16)

(4.5.2.17)

As in the non-resonant case in §4.2, viscosity affects the wave components in a

thinner interfacial layer defined as

y=f+ez, z=0(1).

(4.5.3.1)
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We take the following expansions in this region both above and below the interface:

ut = € 3(GEAE + .+ o) + (BE; +...), (4.5.3.2)

wE = 3 (DEAE + c.c)+ ... . (4.5.3.3)

In a similar manner to the non-resonant regime, §4.2.2, we have

+ 1N+ N .
S ik 5 ipy 2
@t = QT 4 ffi’ o = igii(e?"*z ~1)- —Z;Oi—, (4.5.3.4)

where ot = /—ik2/vE, Real(o%) > 0, Q% are found to be

_ -1 ‘ p Vv
Q- =— - gt=_PYU 4.5.3.5
1+p~Vv— 14+ p~Vv- ( )
and matching (4.5.3.4) to the outer diffusion-layer solution we find that
e Vo
Wy = ———————Ag. 4.5.3.6
T (453

The jump condition for the generated mean flow across the interface is then

found to be

VoAl VR
E T

This last equation, combined with (4.5.2.15), (4.5.2.16) and (4.5.2.17) completes

J=AL —p A,

(4.5.3.7)

the set of relations governing the mean flow in the diffusion layer.

4.5.4 The amplitude equation

With the exception of the jumps in pressure across the interface, which we will
calculate first, we now have enough information about the jumps in shears and
velocities to derive the wave amplitude equation and the generated mean flow. The

interfacial pressure jump condition (4.1.8) provides the relations

p~ Ao = Yok Fo, (45.4.1)

Pao = 470k Fao, (4.5.4.2)
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Pl — Pro = —Y0k? Fio — 1k’ Fo, (4.5.4.3)

P — Py = —1ok’ Fi1 — mk* Fio — 12k Fo. (4.5.4.4)

Armed with these relations all that is left to do is match the viscous and inviscid
flow regions. The normal velocity match between the viscous diffusion layer and

inviscid region in the boundary-layer fluid shows that

vy = —~ik®Fy, vfy = ~2ik®Fy, (4.5.4.5)
and also
w 10pf, . . .
vih(a) = Tlpf'l - E—% — du,ply = —1k? Fig — iw Fo. (4.5.4.6)

Substituting these relations into equations (4.5.1.25), (4.5.1.26) we have

z’wl

7??0 = —ik?Fy, (4.5.4.7)
+ 2
—ik (%9) — ikp}, = —2ik? Fyo, (4.5.4.8)
1w 18pf, . . .
TPI? - ;'6—;0 — fuypfy = —ik?Fio — w1 Fp. (4.5.4.9)

We note that the constant w,, does not enter the solution as it appears at O(e"é).
Next we match the diffusion layer in the film to the lower inviscid layer, which

yields the relations

Ao = SFo, (4.5.4.10)

—ikAoFo —ia (% + Ag) = —2ik2F20 + ikFvo, (45411)

—ia (% - %Ao) = —ik?Fyo — iw, Fy, (4.5.4.12)
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P20 adA
ZkAono-—’l,<—2— A>F0+ w_k?;g

—ia pll_fl(fll:q_“’_ on A}
p~ kK2 \p~ k 2

= —-’L’C Fn - zwlFm + a— + 22kF20A0 + ’lL,ZkFo

. A . el N i, -
—ikFg (2; + :20) + Wy — on/(; (umo za;z°> dz.

(4.5.4.13)

Combining (4.5.4.10) with (4.5.4.1) shows that 9 = p~/a, the condition of resonance
in §4.2. Then (4.5.4.12),(4.5.4.7) and the relation between them, the jump condition

(4.5.4.3), provide an equation for wy,

.
——i—wf — makw, + ak? =0, (4.5.4.14)

and the pressure components pZ, in terms of Ag and Fio:

Fio. (4.5.4.15)

Repeating a similar combination, the equations (4.5.4.13), (4.5.4.8) and the pressure
jump (4.5.4.2) give us

a -

Zkz
(% + “w—z) . (4.5.4.17)

1

Pg—o = —Aczz

Substituting these results into the remaining triplet of relations (4.5.4.13), (4.5.4.4)

and (4.5.4.9) we obtain the following equation for the wave amplitude:

2¢ a?k? dAo e Ou_,
a_2r - _ 7m0 g4
(k' p*w%> dr +ZA°/0 (u"‘“’ 78z ) 2t
e—iT/4\ /- 7 2
ZAOIAQIz +1 < - au,) Ao
T4V k?

3 ik
_ipi_ [72ak - a.( kw )] Ao+ ° A°, (4.5.4.18)

1

where w,; was determined in (4.5.3.6).
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The form of the equation, with purely imaginary non-linear co-efficients and
first-order differentiation shows that the growth rate will be dependent only on the
viscous terms wy, V. The non-linear terms will cause only rapid phase changes
and the equation and solution properties are therefore similar to those for the non-
resonant regime in §4.2.3.

Since w; above was assumed to be real, this imposes a restriction on the values
of 4, permissible. The validity of the calculation leading to (4.5.4.18) breaks down
if the coefficient of the derivative in the amplitude equation becomes zero which

occurs when

k3
w? = ;7. (4.5.4.19)

This critical value of w; is exactly that at which the roots of (4.5.4.14) coalesce
and corresponds to the value I' = 2 in the resonant regime, section §4.4. It is in this
region of v where w; becomes complex and we must alter the assumed development

time scales.

4.5.5 The second near-resonant regime

We begin this section by analyzing the region in 4 where the previous intermedi-
ary regime fails, and then outline the structure for one further regime to link the
behaviours of the solutions in §4.4 and §4.5. In the previous section we found a

wave-amplitude evolution equation, (4.5.4.18), which was governed by the balance

dA
ad_‘ro ~ linear growth rate terms (4.5.5.1)

where a = a(7:1) and the linear growth rate terms come from the viscous wall and
interfacial layers. As a — 0, the solution to the quadratic equation, (4.5.4.14),

governing w; in terms of 7y, approaches a double root. We see that, as y; — 7.

w; = wic+ O(vV711 — "), @ — 0(v11 —71c) (4.5.5.2)

Therefore, writing Ao = e°""A(r), to maintain the growth-rate contributions

from the viscous layers, the growth rate becomes o, ~ (71 — 71c)“%. We can see
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that the scalings used in §4.5 become invalid when,

1

-1

e ——
V71— Y1e

Growth then occurs over the same time scale as neutral development when €

~ € 3 (Wie + VAT = 71e) 88 1 = T1e. (4.5.5.3)

L
2~

Y1 — Y1c, 50 We now concentrate on the role of the second correction to 7, namely

72, when 71 = 7.

4.5.6 The flow expansions

For the surface tension and flow parameters in the film we take the expansions of

the form

v = oty ters (4.5.6.1)

ww o= € V2 Ao(tr)E + c.c.) + (uppE? + upE + cc. + A7)
+et/ (U E + c.c.) + €/} (u,E + up E* + upo E® + c.c.) + .(4.5.6.2)

vT = €33 (—ikyAo(ty) + c.c.) + € (v E? + v E + c.c.)
+e ¥ L E+ce)+ e V(v E+ ..+ cc) (4.5.6.3)

p~ = e 3(kp~ Ao(t2)E + c.c.)+ € (ppE? + pE + c.c.)
+e 4 prE+ce)+ eV pLE+ ...+ ce) + .y (4.5.6.4)

where E = exp[i(kX — woT — wity)], t = € %/%t, t; = ¢ 3/%t, T = ¢ ?t. Again we
have normalized the leading- order streamwise velocity in the film.

Note that the slow time-scale has been shortened to O(e~%/4) whilst the wave
amplitude remains at the same order as in §4.5. Substituting these expansions into
the triple-deck equations we obtain the following relations, from the momentum

conservation
g ik _
—ik*ul, — w1 Ag = —Fpm, (4.5.6.5)

2k
—2ik?uy, + ik A2 = —pL_p;O, (4.5.6.6)
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0Ao ik

—ik?ul, + —— = ——p73, 4.5.6.7
nT B p_Pn ( )
12— . - . - . . 3u2_0 . _
—tk®uy, — wiug + thugAf + zky-éy—Ao = —2ikp,, (4.5.6.8)
and from the continuity,

o Ovg . Ovg
ikul, + 7;9 =0, 2ikuy, + a—;o- =0, (4.5.6.9)

_ . Ovg; .~ Ov,
ikul; + —a;l =0, ikul, + —6—;-2- =0. (4.5.6.10)

The solutions for the leading terms here are

- _ P _w = - _; (P _w1
ulo - kp._ k2 AO’ v 0 — 2 (p_ ]C AO) y; (4.5.6.11)
y AZ 29
U = 22+ 5P, v = i (pLEQ + A?,) v, (4.5.6.12)
P, 104
ull - p._ + Zk2 6t2 ) (4.5.6.13)
—_ i (Pn, 104
vy, = —i <p_ t o) ¥ (4.5.6.14)

The next-order terms include the first viscous effects felt in the film

_pn e (r e, A (R, &
Y12 = kp'— k2 (kp— k2A0)+ k (kp._ +2k ) (45.6.15)

— oy WY w1 (P w1\ e (P A 456.1
VI = Vu - + = (kp‘ 2 0) y — 143 (kp‘ +op )Y (4.5.6.16)

where v, is the wall contribution from the Stokes layer given by (4.2.1.7).

We now turn to the flow above the interface. Here we take the expansions

wt=y—a+u, + (uhLE +ce)+ At E +ee)+ e2(uE +ce) + .y
(4.5.6.17)
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vt = €32 E 4+ cc)+ e (v B2+ vhE 4 ce) + ..., (4.5.6.18)
pt = €Y ohE +ce)+ e (phE +cc)+ eV (phE+ce)+ ... . (4.5.6.19)
Then along with the viscous-inviscid interaction condition, which gives
kufy(y = ) = piy, kufi(y = 00) = pf;, kufy(y — o) = pf, (4.5.6.20)
we obtain, firstly, the momentum balances,
—iwiufy + v =0, (4.5.6.21)
au:-o z'wl +
%—iwu++( —a+ u,)ikufy +vfy =0 (4.5.6.23)
B, 1U;p T \Y s 10T Y10 =Y, -0-0.
and secondly the continuity balances,
. oy,
ikut, + -;9—11/9 =0, (4.5.6.24)
dvg dv;
-+ =0, 22 =0 4.5.6.25
5 =0, 3 (45.6.25)
From (4.5.6.20), (4.5.6.22) and (4.5.6.21) we find that
1 0p7, wy
H= 10 ot = gt 4.5.6.2
Pi= o, 0 T g Plo (4.5.6.26)
Also from (4.5.6.24), (4.5.6.25) we have
vy = —ikufy(y — a) + BY, (4.5.6.27)
where, on substituting into (4.5.6.23),
+ oy G 4o 10ph
Bt = —iu,pfy + - (4.5.6.28)

& P27 e,
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Before we turn to the viscous layer of thickness O(e) and the diffusion layer of

0(65/ 8) at the interface we express the shape of the interface as

f = a+ 61/2(F0E + C.C.) + G(onEz + FioFE + C.C.) + 65/4(F11E + C.C.)
+/2(FE +cc)+ ..., (4.5.6.29)

and calculate the pressure jumps at the successive orders of e. We find the relations:

Yok

Ao = —pTFo, (4.5.6.30)

Plo—Pro = —kz*roFﬁ — k?y1 Fy, (4.5.6.31)

Pyo = 470k* Fao, (4.5.6.32)

P — P = —Y0k? Fu, (4.5.6.33)

Pl — Py = —k*10Fi2 — 11k* Fio — 72k* Fo. (4.5.6.34)

4.5.7 The interfacial viscous layers

First we tackle the O(e) viscous layer about the interface. The result is, to the
leading order, the same as in the previous intermediary case, as can be deduced

from the velocity expansions

wt = eV GEAE + ce + TE) + ooy (4.5.7.1)

wt = e VTBEE + ce) + ..., (4.5.7.2)

which are valid when z = ¢~}(y— f) = O(1), and where w* = v*—-0f/9t—u*df/0z.
The leading disturbance terms are given by (4.5.3.2),(4.5.3.3) of the previous section.

As in the other regimes there are diffusive layers about the interface. The thick-
ness of this layer in the current regime is of O(¢%/®), and the normal adjusted com-

ponents w¥ , in terms of the vertical coordinate # = e~5/3(y — f) = O(1), along with
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the streamwise velocities u* are taken as
vt = u,+(BFE +ce)+ ..., (4.5.7.3)
wt = €Y (D, AGE + c.c.)+ O(e%/8). (4.5.7.4)
v = e YAGTE +cc)+0(1), (4.5.7.5)
wo = 6_7/8(—z'p520"A0E +ce)+ e_l/z(wuonE +c.c.)
+0(e73/8). (4.5.7.6)

where, from matching to the interfacial viscous layer, of thickness O(¢), we find

1 —ir/4 vVv— —i1r/4.

wvuzie ) wvl:_T /V...e

The wave terms will be matched to the inviscid flow above and below the interface

(4.5.7.7)

in the next section. It only remains to be noted here that the induced mean flow in
this region does not contribute in any way to the wave amplitude equation.

The final layer of interest is the viscous Stokes layer on the wall, which can be
tackled in exactly the same manner as in §4.2.1. The only result required here is

the value of the constant

kA ;
o 20 = 3/ Ay with 0~ = /—ik?Jv-, (4.5.7.8)

Vy =
o

which enters (4.5.6.16).

4.5.8 The amplitude equation

We match the inviscid and viscous layers to obtain the amplitude equation, starting

with the inviscid upper flow and viscous diffusion layer. This gives

v3 (y = a) = —ik*Fy, (4.5.8.1)

v}y = —ik?Fio — iw Fy, (4.5.8.2)
and then combining equation (4.5.8.1) with (4.5.6.26) we find that

p+0 = ——Fo. (4583)
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Similarly the result of (4.5.8.2) and (4.5.6.27), (4.5.6.28) is

7:0.11 + 1 apil'l

kP27 1,

— iuypfy = —ik?Fyy — iw; Fp. (4.5.8.4)

We now turn to the flow in the film and, matching between the inviscid and

diffusion layers, find the relations

k

4o = =Fy, (4.5.8.5)

—ia (% - %Af,) = ik Fo — iw F, (4.5.8.6)

-

—ia (% + A?,) = —2ik? Fy + 2ik Fo Ao, (4.5.8.7)
Lo (P 104\ _ 0k _ o

w (B 55 = G W (1589

vy = —2ik?Fy (4.5.8.9)

—1 P_i-z — ﬂ p_;O_ — ﬂ * _@ .A_g
" (p' k (kp” szo) T (kp‘ * 2k))
oo
+y + kAL Fao — 4 (7"3—0 + Ag) Fi=
—?:kzFlz - ‘iw1F10 + ika)\_Fo - 1ku2—0F5 + Wy + 21’0A6F20 (45810)

Eventually (4.5.8.10) will provide us with the amplitude equation. First, however,
we must write all the terms as functions of Ag.
We begin by combining condition (4.5.6.30) with (4.5.8.5) to find 7o = p~/a as

the leading-order resonance condition. Substituting this into (4.5.8.6) gives

2aw

Fo=- 3

1 a -
4o+ 17 —Pioy (4.5.8.11)

and then the pressure jump condition (4.5.6.31) becomes

2w p”
o = ( E - ka’n) Ao, (4.5.8.12)
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whilst we leave pJ, written as

k2p-
a

- 2p7kuw
plO = k

Ao+ Py, (4.5.8.13)

Combining these with the relation (4.5.8.3) again, as in §4.5, we find the relation
(4.5.4.19) for wy which we will apply later,

k? k3
w? 2::’1w1 + 27“ =0. (4.5.8.14)

Next we combine (4.5.8.7) with (4.5.6.32), and obtain

Fyo = —%Ag, Py, = —2p~ AZ. (4.5.8.15)

Then from (4.5.8.8) and (4.5.6.33) we have

_  2ip~ 84y  pK? 2ip~ 0Ap
T i e o (4.5.8.16)
and placing this solution back into (4.5.6.26) with (4.5.8.12) gives us
kam
=—. 4.5.8.1
w1 4'0_ ( 5.8 7)

The last formula coupled with (4.5.8.14) specifies the values of 71, wy, to be

20~ 2k
T = £2 L ==
7

- (4.5.8.18)

which are exactly the critical values encountered in the previous intermediary regime.
All that remains is to calculate pi, in terms of Ay and substitute the result into

(4.5.8.10). We can now rewrite (4.5.8.4) in terms of Ag

kE (. 2w p” wha
= (o (2 ) 29)
kE (20~ a1\ 0?40 KB
— == - — — —F 45.8.1
+iw1 (ik2 iwl) o2 w 10, (4.5.8.19)

and then the pressure-jump condition (4.5.6.34) gives us

_ k(27 an\ 84, k ( (2w1p‘ iwia
P = E(ikz _m) 52 i \"\ Tk kam k) Ao

2p-— k3
Fip + (’)&"?2 - —) Fio + 12ka4o. (4.5.8.20)

a wi

+
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Substituting (4.5.8.20), (4.5.8.15), (4.5.8.13) and (4.5.8.18) back into (4.5.8.10) we

obtain the required wave-amplitude equation for Ag(t2):

. 2 [2p~d%A
_S’Lgn(W1 ) ﬁ —]C; '—dt20
2

3 2u, k _ : v

2p~ a p- a(l+ p~vVv™)
(4.5.8.21)
We can transform this equation into a simpler form by writing
ty = BT, Ag= P14, (4.5.8.22)

where both 3,8, are real and define 3, 5, as

_2 [tpVi)ya _\/ V2ov-
== - , B1= Ty (4.5.8.23)

to leave us with the transformed amplitude equation

B

-
A - -
= (T1 +i)A + A]AP, (4.5.8.24)

sign(w1) 53

where the coefficient T'; is defined as

_ Eg_ 2u, 3 M \a 1 p v a\/§(1 + p~ V)
r1~(2p‘+ a p 4 +a\/§<1+p'\/v_:))< p=Vv— )
(4.5.8.25)

The solution to (4.5.8.24) now only depends on the sign of w;, the initial conditions
for A and the real parameter T';. Examples of the behaviour for various I'; are
shown in Figs 4:8(a) & (b). As we see from (4.5.8.18) there are two possible values
of the frequency correction w;, corresponding to the two admissible values of the
surface tension correction ;. These specific values mark the critical conditions at
the coalescence of real eigenvalues of the linearized resonant amplitude equation in
§4.4. The next-order correction term 7y, contained in the parameter I'; represents
a measure of the deviation from the exact mode crossing. By taking the limit
2 = —oo0 if 41 > 0 or conversely 7 — oo if 7; < 0 we can establish a continuation

of the present flow regime into the resonant regime governed by (4.4.1.29) where



Chapter 4: The near resonant regimes 145

we need to take I' close to &2 and make the appropriate adjustments in the wave

amplitude and slow time scales. In (4.4.1.29) we rewrite A as

A = §,B(6,T)e™T, (4.5.8.26)

and take I' = 42 + §T". This gives us the equation
d’B . . dB . ~(.dB .
ba (éfﬁ + 2zw5tﬁ —~w?B +i(2+ 6T (&:ﬁ + sz) - B)
= 62i(iwA|A|* + o(5:)). (4.5.8.27)
Picking out terms of O(6,6;) gives us the relation w = F1. Then if welet 62 ~ 62 ~ §
we find
d’B -
-7z = ~@(-TB+ B|B|%). (4.5.8.28)
Hence if I' = +2 (or T = -2), with T > 0, (I' < 0) respectively, then w = -1
(w = +1) and (4.5.8.28) corresponds to the limit v, —» —oo (2 — o) in (4.5.8.24).
A continuation from the flow regime in this section to that in §4.2 can be seen
by taking the limit as v — Fo0 in (4.5.8.24), i.e. moving away from resonance. We

let y3 — 0o (ory; = —00)ify; > 0 (41 < 0 ) respectively and write A in (4.5.8.24)

as
A = e2VINLIT (s, T), (4.5.8.29)

Taking é; = 1/+/|T'1], the equation (4.5.8.24) becomes

iz‘fl-f + B = —iB|BJ? (4.5.8.30)

at the leading order where 7 = t/ \/|—I—‘1— "

For O(1) values of -y, the wave behaviour in equation (4.5.8.24) is strongly af-
fected by the term 7Ap. This non-conservative term can be regarded as an extra
energy supply in the system and comes from the viscous interfacial and wall layers.
The response of the wave to the supplied energy depends on the sign of w;. Ifw; < 0

then at large time |A| grows linearly with a rapid quadratic phase growth,

A~ 2te't, . (45.8.31)
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By contrast, in the case w; > 0 we find a finite-distance blow-up singularity in the

wave development at some instance t, with
|4 ~ V2(t — t.)7 (4.5.8.32)

The value w; = +1 (or w; = —1) corresponds to the critical value I' = +2 (T' = —-2)
in terms of the analysis for the resonant regime in §4.4. The increased amplitudes

produced during this intermediary stage will lead to a strongly nonlinear flow.

4.6 Concluding remarks

We will use a graph of the scaled primary disturbance amplitude Ag plotted against
the surface tension coefficient v, fig 4:9, to illustrate the different regimes which have
been examined in this chapter. The wave-amplitude A in the film will be measured in
powers of ¢, the disturbance wavelength. We saw in §4.2, the non-resonant regime,
that the TS disturbance required an amplitude O(1) to initiate self-modulation.
However, on solution of the governing equation, this modulation affected only the
phase and not the size of the disturbance. We find similar ’passive’ nonlinearities
in the homogeneous-fluid cases that were examined by Smith & Burggraf (1985)
and also in Van Duin (1996) for a water-wave problem. Where our system differs
is in the stronger interfacially generated mean flow in comparison with the single-
fluid cases where the mean-flow generation is restricted to the Stokes wall layer as
discussed in the general introduction in Chapter 1. The increased mean current
exposes the flow to background or secondary short-wave disturbances to which, in
the case of weak surface tension, they are potentially unstable. The magnitude
of the interfacial tension is important here. Whilst we note that increased surface
tension stabilizes the mean profiles to secondary disturbances, if the surface tension
coefficient is close to a certain critical value o (defined in §4.4), then resonance
between decaying capillary waves and growing TS modes can occur. This resonant
regime is examined in §4.4 and is illustrated by region (II). In an O(e%) neighborhood
of the resonant range of 4 we find an increased initial amplitude O(e'%) required for

self-modulation and hence faster time scales. The flow becomes essentially inviscid
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and the nonlinearity stabilizes the flow with two potential outcomes of either finite-
amplitude wave oscillations or eventual decay. The two infermedia.te regimes studied
in section §§4.5,4.5.5 are shown in the sketch by (III) and (IV). These regimes serve
as a bridge between the non-resonant, viscous regime and the essentially inviscid,
resonant case with its non-linear ceiling on the disturbance growth.

We will now consider what may happen to the weakly non-linear modes over
longer time periods. As has just been discussed, the resonant case is clearest for
large times. Infinitesimally small growing disturbances eventually decay due to the
non-linear effects in (4.4.1.29). We cannot tell however if finite amplitude distur-
bances will remain either periodic or bounded on larger temporal scales. In the
non-resonant case, on the other hand, it is clear from the form of the non-linearity,
which affects the phase alone, that the disturbance will continue to grow unchecked
until it becomes strongly non-linear. In Smith & Burggraf’s single-fluid study short
waves continue to grow until they reach the largest magnitude of O(e™!) for a weakly
non-linear theory. At this stage the Stokes layer becomes non-linear as does the
waves dispersion relation which is governed by a Benjamin-Ono equation with ini-
tial conditions which take into account longer scale, non-linear events.

In the two-fluid flow examined here however we have a different scheme devel-
oping. Because of the stronger generation of mean flow at the interface as opposed
to the viscous wall layer the entire flow scheme may be altered before these large
wave amplitudes of O(e™!) are reached. Whilst the linear growth rate of the dis-
turbance is of the form | A |~ exp[f,t], the generated mean flow is growing like
[ uio |~ exp[20,t] due to the quadratic nature of the Reynolds-stress terms driving
the mean flow in the interfacial layer, see §4.2.2. When the disturbance amplitude
reaches O(e":lT) the mean velocity becomes of O(e¢™!), and the generated mean flow
will enter the leading-order wave solutions in equations (4.2.10), (4.2.11). Investiga-

tion of this later stage has been carried out by S N Timoshin recently.
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4.4 Figures
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Flgure 4:1. (a) The Triple deck structure for the boundary layer flow on

a film coated wall (b) The additional layers which appear within the viscous

sublayer, (i) The Stokes layer, (ii) the interfacial layer. Also shown is the base

profile ( on the left) and the profile as altered by Reynolds stresses ( on the

right ).
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Figure 4:2. Numerical solutions of (4.3.1.7) with y; = 5,p~ = 1.087,v~ = 0.484,
(a) For k = 1 the imaginary (¢;), 2nd scaled real ( &./10 ) parts of the complex phase
speed & versus Ay, for different 4, (b) /10, & versus wavenumber k for A,, = 0.5.
The neutral points predicted by (4.3.1.9) at k= 4.75352, and k = 3.36124 are

indicated with crosses.



Chapter 4: Figures 15-0

@) 1.5 . , ,

(b) o ,

0.6 -

0.4 | .

0.2 | 1
0-15
0.0 .

0.0 1.0 2.0 A 3.0 4.0 5.0

K

Figure 4:3. The unstable eigenvalues of (4.3.3.1)- (4.3.3.3) with ; = 5,p” =

1.087,v~ = 0.484.(a) The growth rate u; = é;k versus the wavenumber k with
4 = 0 for increasing induced mean flow amplitude Ar,. (b) The imaginary phase

speed & versus k for various Ap.
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Figure 4:3. As before, (c) The real phase speed & versus k for various A, (d)

The imaginary phase speed &; versus k, with A,, = 5 for various 7.
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Figure 4:4. Strong induced mean flow. The Rayleigh instability of the induced
mean profiles (4.3.3.6), imaginary phase speed & versus wavenumber k with Y =
5,p~ = 1.087,v~ = 0.484 for various 4.

Figure 4:5. The numerical solution of (4.3.3.7) showing neutral wavenumber &

against 4 for y; = 5,p~ = 1.087,v™ = 0.484.
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Figure 4:6. The phase plane of equations (4.4.2.9) & (4.4.2.10), when ¢; = 0. (a)
I'=-3,(b)T'=-2.



Chapter 4: Figures

154

(o

b _‘ 3
(d 2.5 |
o ﬂ

® oot "/

-1.0—]
-1.5—]

-2.0—

-2.5

Figure 4:6. As before (¢) I'=-1,(d) I'=0.



T T 1 T | °T T T T 71 B A I S I N H S R R R
32104QG 3210..146



Chapter 4: Figures 15'6

i
@

¢

Figure 4:6. As before (g) I' = 1.
Figure 4:7. The phase plane of equations (4.4.2.9) & (4.4.2.10), for ¢; = 1 with
the critical T, = 2.85461, (a) I' < I'..
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Figure 4:7 As before, (b) I' =T, (¢) I > I.
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Figure 4:8. Numerical solutions of (4.5.8.24) with the initial conditions

A(0) = 0.3 with the value of A'(0) determined by the growing mode solution of the
linearised equation sign{w;)A" = (T3 +1)A. (a) | A | against T with w; < 0 for
various I';. (b) As in (=), but with w; > 0.
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Figure 4:9 The scaled disturbance a.;r{plitude A sketched a.gé.inst the scaled
suface tension coefficient 7 for the different regimes examined in this chapter,

with the shaded region denoting the range of secondary instability.
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Chapter 5

Instability of low on a very

viscous film

5.1 Introduction

The Kelvin-Helmholtz (K-H) instability is a model of inviscid instability in irrota-
tional flow. It can occur when two uniform horizontal currents, with velocities U},
U; and densities p, p;, are in contact. As before, the superscripts +/— refer to
the upper/lower fluids. If the contact surface possesses interfacial tension and the
flow is subject to gravity, then the growth rate w;, of a small planar disturbance in
a travelling-wave form exp[i(k.«z, — w,t,)] is given by the well known formula (e.g.

see Landau & Lifshitz (1959) p241)

k2pfpt (U7 — U2 kuga(py — pf k3
w,-,z\/*pp(U UT) _ Eugelpr = p2) 4 (5.1.1)

(px +p3)? pr +p¥ ’
where 7., g. are the surface tension coefficient and gravitational acceleration respec-
tively. In a stably stratified flow we see that long waves (small k,) are neutral in the
presence of gravity whilst short waves (large k.) are stabilized by surface tension.
The K-H instability relies on the discontinuity in streamwise velocities which can
only be admitted in a purely inviscid analysis. In the case of viscous fluids, the
velocity field (for both the disturbance and the base flow) is continuous therefore

this instability is not present in the usual sense (see, however, below in §5.3) and
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instabilities are governed by either the full Orr-Sommerfeld or Rayleigh equation for
viscous or inviscid disturbances respectively.

The outcome of such generalizations becomes rather non-trivial, for more subtle
mechanisms which rely on the curvature distribution in the base velocity profile,
the presence of viscosity and a solid boundary in the flow or on the strength of the
interfacial forces which may come into play and modify the simple formula (5.1.1)
or completely replace it with new instabilities. Some of the most relevant results
for the investigation undertaken here, in particular the three-fold classification by
Benjamin (1960), Landahl (1962), have already been quoted in the introduction to
the Thesis, Chapter 1.

It should be emphasized, however, that Benjamin-Landahl’s classification and
many related studies into the physics of various types of instabilities (e.g. Baines &
Mitsudera (1994), Baines, Mahjumdar & Mitsudera (1996), Craik & Adams (1979),
Cairns (1979)) often rely on quasi-neutral arguments. To what extent and how such
models can be applied to the stability calculations for a particular flow obviously
depends on the nature of that flow.

Our aim in this chapter is to examine the instability of a laminar boundary layer
developing, in contrast with previous chapters, on a relatively thick coat of a very
viscous fluid covering the solid wall. The flow is entirely two-dimensional and its
geometry is shown in fig 5:1. The main boundary layer and the film are assumed to
have comparable thickness, and the disturbance length scales are then taken of the
same order, i.e. O(Re/2), in a suitably non-dimensionalized form with Re (3> 1)
denoting the Reynolds number based on the global flow parameters. We take these
to be the development length of the boundary layer, the free-stream speed far from
the wall and viscosity and density of the boundary-layer fluid. The assumption of
large film viscosity is crucial here: on one hand it simplifies the treatment of the
base flow allowing us to neglect the flow rate in the film, but on the other hand it
makes calculation of the disturbance in the film more tedious since we intend to treat
perturbations in the lower fluid as fully viscous. In the upper fluid the perturbed

motion is naturally inviscid, on account of the large Reynolds number.
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Instability in this flow may arise for various reasons. The inflexional Rayleigh
instability could appear if an adverse pressure gradient is acting on the boundary
layer. Below we eliminate this possibility by taking model non-inflexional profiles
in the upper fluid (mostly the Blasius, or, to illustrate one theoretical point, an
artificial exponential profile). The K-H instability can be expected when the film
is somewhat thicker than the boundary layer, viscosity in the film is not very large
and the disturbance wavelength is large.

The Miles (1957) mechanism of water-wave generation by wind (Class B waves
in the Benjamin-Landahl classification) and the TS modes (Class A waves) are of
relevance to the problem, the former for sufficiently strong gravity and the latter for
thicker films.

In the solutions presented below all these classes of instabilities appear as special
limits of a more general instability formulation. Numerical solutions for the full
formulation establishes connections between the various growing modes and clarifies

the conditions for their appearance.

5.2 The problem formulation

The flow is governed by the Navier-Stokes equations, as given in the general introduc-
tion §1.1, and we assume a non-dimensionalization with respect to the characteristic
length of the solid body L., the free stream speed U, and the viscosity and density
in the upper fluid, with the +/— sign convention applied to upper/lower fluids with
respect to the interface. Hence the base flow is characterized by the non-dimensional
velocities (u*, v*) in the (&, §)-directions, the pressures p* in the two fluids, the time
{, the Reynolds number Re (3> 1), the Froude number Fr = U,%/g,L., g, being
the gravitational acceleration, surface tension coefficient 4 = v,/p,UZL., density p~
and viscosity v~ in the film (note we have taken p* = vt = 1). The key assumption

in this chapter is that g~ is large, and we take
p~ = Ret?u5  with g = O(1). (5.2.1)

The film density is of O(1).
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For our instability calculation we adopt a quasi-parallel approximation in which
the base velocity at a chosen station (£ = &g in fig 5:1) is treated as unidirectional
with the undisturbed interface at § = a parallel to the wall and the pressure varying
with ¢ on account of gravity. The film thickness is of O(Re“l/z), i.e. of the same
order as the main boundary layer. Then the tangential stress continuity at the
interface, Qut /9y = u~Ou~ /Y, shows that, for the film viscosity given in (5.2.1),
the film velocity is of O(Re~'/?). This leads to the following representation of the

base-flow components:

f=a (5.2.2)

§>0 ut = UF(9), ,vt =0, pt = Pf(9) = -g/Fr;  (5.2.3)
-a<y<0 u~ = O(Re™'/?), v~ =0, p~ = Py (§) = —gp~/ Fr,

(5.2.4)

where the vertical coordinate has been shifted onto the interface and scaled § =
Re'/?(§ — &), @ = Re/?a and the Froude number is taken small, Fr = Fr/v/Re
with Fr = O(1), in order to retain gravitational effects in the formulation for distur-
bances. The base flow (5.2.3), (5.2.4) is perturbed by a travelling-wave disturbance
of small amplitude &, where § > Re~1/2,

(ut,vt,pt) = (UF,0, BF) + 8(at,v%,pH)E + ..., (5.2.5)

(u=,v",p")=(0,0,P )+ 6(z",%7,p )E+ .., (5.2.6)

where the leading film velocity has been neglected, and E = exp[ik(z — ct)] is the

wave-factor written in terms of fast Rayleigh-scale variables
(& — &o,1) = Re™Y/*(x, ). (5.2.7)

The interface shape is written as § = §nE with 7 a perturbation to the base interface
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position ¥ = 0. For the disturbance above the interface we find the relations

domt ek, GU5 4 P
tk(US —c)a™ + wracil —ikp™, (5.2.8)
. _ dpt
ik(UF — )t = arE (5.2.9)
=+
ikat + ddig _— (5.2.10)
and from these obtain the Rayleigh equation,
d*ut d2Ug
+ 2-+y _ @Y -4
(UO —C)( dﬂz — k%3 )— d—y_z—’v . (5211)
In the film the disturbance equations are
2__ . —_ -k —_—
CU (oW o BT (5.2.12)
dy Ho Ho
d?v~ wp~ 1 dp~
T -2y = (5.2.13)
dy Ho o dY
kT + % = 0, (5.2.14)
with w = ck, and these give us the general solution,
- = AcoshA*4§ + Bsinh A*§ + C cosh A™3 + D sinh A~ 7, (5.2.15)
where AT = k and A~ = {/k? — twp~/py . We normalize the solution as
77(0) = 1 and apply the no-slip boundary conditions on the wall,
dij-
7 (~a) =0, dlg(—a) =0. (5.2.16)

One more boundary condition needed to solve completely for %~ follows from the
requirement of tangential stress continuity at the interface. Above the interface there
is a thin layer of thickness O(Re~'/%) in which viscous effects become important in
the upper fluid. We write § = Re~1/%Y and expand the velocity and pressure

components as

v dUyf L Y?242UuSt
ut = UF(0)+ Re AY—ﬁ(O) + Re™2 - dﬂg 0)+ ...+
§(at(Y)E +cc.)+ ..., (5.2.17)
vt = §(3H(Y)E +cc)+ ..., (5.2.18)
pt = BN+ ()E+ce)+ ... . (5.2.19)
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Substituting these expansions along with those for the lower flow into the interfacial

conditions we obtain the relations

du~
dy

p7(0)-57(0) = n(—l—;,%_) ~2ug %(0) - K%y, (5.2.21)

(0)+1ik3~(0) = 0, (5.2.20)

where ¥ = 4V Re is the scaled surface tension coefficient and * = p*(0). Combining
(5.2.14) with (5.2.20) we obtain the fourth condition for 77:

2~ 2y
Z57 (O +K77(0) = 0. (5.2.22)

The constants in (5.2.15) are then found to be

2k?
C:_m, A=1—C, (5223)

_ A(A cosh A~@cosh A*a — A*sinh Atasinh A~@) + CA~
B A~ cosh A—@sinh At@ — At sinh A-@cosh A*a ’
_ AXt + C(Atcosh A@cosh Ata — A~ sinh A*asinh A~a)
B A~ cosh A~asinh A*@ — At sinh A-@cosh Ata

B

(5.2.24)

D (5.2.25)

In order to couple the film and boundary-layer disturbances, we use (5.2.8), (5.2.10)

(5.2.21) and the kinematic condition at the interface —iwn = v*(0). This gives

%(0) = 7+(0) [(__Af+(1_p-)_7_k2)

Frc? c?
gy ((wp™/pg - 26?)A+B — 2k22-D
- ( o (5.2.26)

where A, = dU; /d§(0). Thus, the disturbance phase speed ¢ = ¢(k) is an eigenvalue
of the Rayleigh equation (5.2.11) with the usual boundary condition

7t (00) = 0, (5.2.27)

and the interfacial condition (5.2.26). Numerical and asymptotic solution of this
problem are discussed below. Unless specified otherwise Uy is taken as the Blasius

profile, in particular Ay = 0.33206.
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5.3 The thick inviscid fililm limit

First of all we would like to demonstrate how some of the known instabilities can be
derived from the formulation (5.2.11), (5.2.26), (5.2.27). This will also link our work
with previous studies such as those undertaken by Shrira (1993), Morland, Saffman
and Yuen (1991), Morland & Saffman (1993), Miles (1957) and others.

In the limit of inviscid disturbance in the film, 4y — 0, the boundary condition
(5.2.26) reduces to

dvt N kpm  (1-p7) K\ 4
E(O)_ (__-c—+tanhk&+ Fre2 e )" (0). (5.3.1)

If, next, film thickness is large, @ — oo, then this relation becomes

%(0) = (—%‘3 +kp” + (1—;7:7_) - kz—") 77(0). (5.3.2)
This last form was used by Miles (1957), Morland, Saffman & Yuen (1991), Morland
& Saffman (1993) in their study of wind-induced water waves. If in (5.3.2) we put
p~ =0, and write Fr = — Fr that is for the case of heavy fluid in the boundary layer
and gravity pointing upward, the boundary condition becomes of the form used in
Shrira (1993) who investigated instability of a current with a free surface.

Let us consider in more detail the flow with inviscid disturbances on thick films
(5.3.2). The disturbance phase speeds, obtained numerically with the use of the
method described in §5.4, for the Blasius profile in the boundary layer, with several
values of the Froude number and negligible surface tension, are illustrated in Fig
5:2(a). The solutions for small (Fr = oo0) and finite (Fr # oo) gravity are clearly
distinct. In the first case, Fr = o0, v = 0, @ — 00, we can expand the solution of

the Rayleigh equation (5.2.11) in the form
ot = 3§ + kv, c=2 +kt1,as k— 0. (5.3.3)

Substituting into the governing equation (5.2.11) and matching to the potential flow
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region where y = O(1/k) we find

ﬁg- = UJ— — Co (534)
st - Ut —co) = (UF — oo_(l_ﬂd- 5.3.5
vl - C1+Q1( 0 CO) ( 0 Co) o (U+—C0)2 y’ ( M )
0
d—-+
codL;(O) + 1 d = —p~cd — M7 (0), (5.3.6)

where surface tension and gravitational influence have been neglected, and @, is an
undefined constant. We find that the unstable wave is governed by the relation

S LV (5.3.7)
14p~

Co
The imaginary part of ¢y corresponds to the K-H growth rate given by the formula
(5.1.1). Hence we found that KH instability arises as the long-wave limit of our
formulation in the case of inviscid perturbations on a thick film. A comparison of
the numerical solution with the limit formula (5.3.7) is made in fig 5:2(b). Note that
the condition of negligible gravity is vital for the K-H type limit solution, we see
that even a small amount of gravity eliminates the eigenmode at sufficiently small
wavenumbers, see fig 5:2(a), Fr = 10, 20.
Consider next short waves. First, neglecting gravity and surface tension (Fr =

o0, 7 = 0), we observe that short-wave instability persists for all wavenumbers. The

growth rate, derived by Timoshin, is found to be

12X ele™+1)7

 _ 1emel T _ 4 _ g
¢ = R T 1) cosh(p™ + 1) *(tanh (p™ + 1) 1), as k — oo,

(5.3.8)

for this case, where A; = —A§/48. Gravity enhances short-wave instability, as is
seen in fig 5:2(a). This connects with Miles (1957) suggestion that water waves are
destabilized by a boundary-layer type flow in the air. We find that in fig 5:2(a)
the phase speed at £ = 0.4 is ¢, = 0.4449 for Fr = 10, and this is close to a pure
water-wave with phase speed ¢, = (kFr)~1/2 = 0.5.

We can illustrate this connection analytically in the limit p~ — oo (strong grav-
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itational influence) for an inviscid thick film. Writing the solution in the form

c=co+ pi_cl + . (5.3.9)
5t = ¢ + pi_qsl + ..., (5.3.10)

at the leading order we find immediately that
Co = —==, (5.3.11)

which is the phase speed of deep water waves, and then from (5.3.2) we have

_ colcodo(0) + Xs) + K2y — 1/Fr.

Sk (5.3.12)

Since ¢g is real the solution for ¢g will have a critical layer at the point § = 7.
where U (3.) = co. The effect of this critical layer is most easy to evaluate for
short waves k£ — oo, and we write ¢y, USL as functions of the shorter-scale vertical

co-ordinate z = k1/2,

- 1 -
$o = do(2) + k—gq&l(z) +o (5.3.13)
2
b A1 bY: _1_
Ug- = k_ z+ 4|k2‘z + .. A1 = _éa Co = k 2Cp. (5314)

Substitution into (5.2.11) and application of the normalization #*(0) = 1 gives the

solution
do = e7%, (5.3.15)
T )
_Q%e~* + PEer 4 ;1;;» / In|z—z e ?*dz, (5.3.16)

where z. = co/ M is the critical layer position, the superscripts +/— refer to regions
above and below z = 2 respectively and yi = z., ¥y = 00, y; =0, y; = z.. We
apply the boundary conditions (5.3.2) and find that

pt=0, P-=Q + 2);1 (— + bﬂ) . (5.3.17)
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At the critical layer, q—Sli must be continuous whereas the derivative is singular and

must satisfy the usual logarithmic jump condition

@(z = zc) — ig1_5—(2 =z)=1m

1
5 - (5.3.18)

These constraints lead to the solutions
A =2 -2z, 00 2
Qt = % (/ In|z -z e ?*dz — / In|z— 2 |e"2zdz)
2Ab Zc 0
M 1 Co 2z, —( 2z
" (8 + 4/\b> e“® — Q7 (e“* - 1), (5.3.19)

Alége_h“w

o (5.3.20)

Q7 =

where the subscript 7 denotes the imaginary part. Substituting this result back into
(5.3.12) using (5.3.13) we find
Alwe’z/)‘b\/—ﬁ

e UL 5.3.21
2(Friki )3 ( )

C1: =

We observe that the instability here is dependent on the existence of a critical
level where the curvature of the base profile must be negative. This is exactly the
mechanism investigated by Miles and others and which was defined in Benjamin

(1963) as Class B instability.

5.4 The numerical solution

In the full formulation the equation (5.2.11) was solved numerically with the bound-
ary conditions (5.2.26), (5.2.27) and the normalization condition #+(0) = 1. The
method (a second order accurate discretization with Newton iterations to improve
on the value of ¢ for a given k) is a minor modification of the method described in
Chapter 2. The results for the complex frequency w = k¢ = w, + iw; and various
combinations of the flow parameters are shown in figs 5:3(a)-(e). First we examine
the effect of viscosity variations in the film with no interfacial effects, i.e. at Fr = oo,

7 = 0. We see in fig 5:3(a) that stronger film viscosity reduces growth rates, with
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the maximum in w;(k) always around a finite wave number. In fig 5:3(b) we see that
even without gravity the density variation strongly affects the instability as it alters
the momentum/pressure balance in the film part of the disturbance. For increas-
ingly dense films the maximum instability decreases and occurs for longer waves.
The loss of this instability for very large values of p~ shows that very viscous and
heavy films act like a solid wall, in effect turning the flow into that of a single fluid.
The introduction of surface tension, v # 0, damps the instability at all wavenum-
bers, particularly affecting short waves, the growth rate maximum is decreased for
increased <y, occuring for longer waves, see fig 5:3(c). Gravity also stabilizes the flow,
fig 5:3(d), although the wavenumber of the most unstable disturbance is only weakly
dependent on the Froude number. A rather interesting non-monotonic behaviour
under the Froude number variation is observed on short waves, however, since the
short waves are completely stabilized by viscosity we do not see here the strong
destabilizing influence of gravity noted for inviscid disturbances in §5.3. The effect
of the film thickness is quite obvious from fig 5:3(e). As the film thickness decreases
for Fr = o0, v = 0, the growth rate maximum decreases and the unstable spectrum
moves towards longer waves. Increasing the film thickness on the other hand leads

to saturation of the solution as the wall effect becomes weak.

5.4.1 Long-wave limit

In this section we analytically obtain a long-wave limit solution to the full problem.
We approach this by assuming ¥ < 1 and expand both above and below the interface
in powers of k. Starting with the flow in the film we expand the perturbations %™,

v~, p~ and frequency as follows

4 = kg (9) + k225 + ..., (5.4.1.1)
77 = k297 (9) + K505 + ..y (5.4.1.2)
P~ =Py (9)+ kpy + ...y (5.4.1.3)
w=klwo + kw4 ... . (5.4.1.4)
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Substituting these expansions into the governing equations (5.2.12)-(5.2.14) and ap-
plying the boundary conditions
diag L o
d—:l?(o) = 0, vl(—a) = 0, Uy (0) = 1, (5415)

where the last of these is a normalization of our choosing, we find that

_ 3 7° | 2a —— _ 3uo
7 :ﬁ< g~ + = ) Py =_—as°—. (5.4.1.6)

Likewise, in the upper flow we expand the perturbations in &%, %%, p*, writing

Pt =05 +kp{ + K255 + .., (5.4.1.7)

ot = ot + kvt + K2u + (5.4.1.8)
1

at = Eag +af +kaf + ..., (5.4.1.9)

and upon substitution into (5.2.8)-(5.2.10) we obtain the solutions

35 = QoUf, (5.4.1.10)
o= Uf (Ql—/: Bf;;dy); (5.4.1.11)
As§—0, o — T((;) (5.4.1.12)
Pt = Prc+ Qo (g + /: {(UF)? -1} dy) . (5.4.1.13)
5 = U (Qz— /: —édy); (5.4.1.14)
As§— 0, T3 — % (5.4.1.15)
where
r o= —Qowo%%t - ipg, (5.4.1.16)
s = —ipf —wodvl — Qowr dgj, (5.4.1.17)

Qo, Q1, Q2, p1c are constants of integration and, without loss of generality, we set

Q1=Q2=0.
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From the definitions of r, s we see that

g
Do
wo = —-Po_ 5.4.1.18
° QoXe ( )
s(0) + 97 (0)
w SR TR 5.4.1.19
' Qo ( )

and from the kinematic condition, along with the jump in pressures we find

3ot T
#o_l____

o (5.4.1.20)

5(0) = Ab) QO =

where I' = -5 + (p~ — 1)/ Fr and we have rescaled the surface tension to keep it in
the problem by writing v = §/k?.
The expansions in the far field where Y = kj = O(1) are written as

uf = af (Y) +kag ..., (5.4.1.21)
v =3 (Y) + kdS ..., (5.4.1.22)
pf =97 (Y) + kp7 ..., (5.4.1.23)

and substitution into (5.2.8)-(5.2.10) gives the solutions

7 =ice”Y, 9F =ceY, (5.4.1.24)

B =idcge™, F =cpeY, (5.4.1.25)

where ¢;, ¢z are constants of integration. Then the match with the region § = O(1)

gives
c1 = Qo, s = iQo, (5.4.1.26)
ca = —L1Qo, P1c = —iQo(Ly — Ly) (5.4.1.27)
where
Ly = lim, l 1+ /w 1"‘”°U° (y)dy] , (5.4.1.28)
—0 g
Ly = 51_%/11 ((U(;"(y))z - 1) dy. (5.4.1.29)

Therefore wyg = 1/Mp is real and the growth rate is given by w; which is found by
combining (5.4.1.20), (5.4.1.27) and (5.4.1.19). Numerical integration of L;, L, gives
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the values L = —2.21428, L, = —2.38489 and since 5] (0) = p1. we find that

1 L1+ L,
—— 4
Qo Ab

We note here that neither surface tension nor gravity affect the growth rate at this

wy = : (5.4.1.30)

order. We show in fig 5:4 a graphical comparison of the asymptotic solution (5.4.1.4)

with ¢,, ¢; computed for the full problem.

5.5 The thin-film limit case

In this subsection we describe various instabilities arising on thin films. Simultane-
ously with the film thickness the viscosity py will also be taken small to capture
the most typical flow regimes. Our numerical solutions in §5.4 show that thin-film
instability tends to be moved towards smaller wavenumbers, hence we take k <« 1
as well.

5.5.1 TS instability on a viscous thin film

Suppose first that & and a are of the same order, (k,a) = O(e) say, where € < 1.
We take the film viscosity pg = O(e*) and we will justify this choice later. So we

write

k=¢K, a=cd, py =€y, (K,apy)=0(1). (5.5.1)
The disturbance components in the film are sought in the form

" =eU(Y), 7" =V (Y), 5 =€E€P(Y), (5.5.2)

to leading order, with Y = §/e = O(1) and the frequency and interfacial displace-

ment written as

w=€Q+.. n=€f+... (5.5.3)
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Substitution into (5.2.12)-(5.2.14) and the use of the boundary conditions
U~(-a)=V~(-a)=0,dU~/dY(0) = 0 lead to the solutions

_ KPP~ (. cosho¥Y
v= Qo (a. ~ cosh a&) ' (5:5.4)
V- :_isz_?— (&+Y_sinhaii+sin-haY) . (5.5.5)
Qp ocoshoa

where ¢ = 4/ —iwp~ /. The interfacial kinematic condition then becomes

(5.5.6)

7= KPS (& B tanha&)

Q2p- o

The disturbance in the upper fluid takes a three-layer structure. In the region

7 ~ O(1), we have

at = eAUF (§) + ..., 7t = E(~iKAUF(H)) + ..., (5.5.7)
pt=ePYE +cec. + ..., (5.5.8)

and we find, matching in the usual way to the outer potential flow where § ~ O(e™?)

that
Pt = |K|A. (5.5.9)
Then in the region Y ~ O(1), Y > 0 the solution takes the form
at = ey A+ 0(e), 77 = E(BY — iK\A), (5.5.10)
with the same pressure (5.5.8) and the constant B given by the relation
MB = —iKPT +iQ)NA. (5.5.11)

The kinematic condition for the upper flow, B = —i}7, along with (5.5.9) and the

interfacial condition,

- s
Pt — P~ 4+ K37+ (p—ﬁ—)ﬁ =0, (5.5.12)
T

with the surface tension coefficient and the Froude number adjusted to the present

regime by v = Je and Fr = ¢~ 1Fr, lead eventually to the dispersion relation for
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2 = Q(K)
K2 p~ -1 tanhoa
MW — K|K 92——("K2 : )(- ))
(X | |)( - \7 t @ o
R ,
+>\bI;_|K| (&— tan:”“) Q=0, (5.5.13)

with 0 = 4/—iQp~/fg . Figures 5:5(a)-(c) illustrate the growth rate §; obtained
numerically from (5.5.13). The effect of gravity in fig 5:5(a) is rather complex, as we
see that long waves are damped whilst short waves are not affected, and the range
of wavenumbers in the middle is destabilized. On the other hand, the influence of
surface tension, shown in fig 5:5(b), does not affect long waves, but destabilizes short
waves. A most remarkable behaviour is observed for reduced film viscosity with an
island of instability arising in a fixed wavenumber interval as g — 0, see fig 5:5(c).
These properties are explored in more detail in the next subsection whilst here we
comment on the connection of the present regime with the solutions derived in the
previous subsections and elsewhere. At small wavenumber K — 0, the solution of
(5.5.13) has the limit properties

Q, = %’Z{I + O(K?), (5.5.14)

385 K*|K|
(B3 )2+ 9(p~ — 1)2a8X2 | Fr’

which for large Fr coincide with the long-wave result (5.4.1.4). The gravity term

Q= + O(K*) (5.5.15)

explicitly included in (5.5.15) confirms the stabilizing influence on long waves ob-
served in all our numerical solutions in this chapter. If, next, ¥ = 0, Fr = oo and

p~ — 00, fig — 0o with jig ~ p~ then

K|K| 1 tanhoga . 1
= — K\ —— — — 5.5.16
Q Ab + = KX ( 70 a> + O(P_z )) ( )

where 0o = {/—iK|K|p~/pg. The solution of the form (5.5.16) was derived by

Timoshin (1997), in his §5.4, as a special limit of the TS instability governed by the
triple-deck equations, see Chapter 4. The destabilizing effects of surface tension,
which caused a resonance between capillary and TS waves in Chapter 4, appear to

also be present here and we discuss this possibility in the next section.
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5.5.2 Thin films of smaller viscosity

The formation of an isolated range of instability at a reduced film viscosity in fig
5:5(c) could have been explained by simply taking the limit z; — 0 in (5.5.13),
however far more interesting results are obtained if we assume much smaller values

of the film viscosity,
po = €0y, with iy = O(1). (5.5.1)

We keep the other parameters (i.e. K,p™,a ) scaled as in §5.5.1 and expand the

complex wave speed ¢ as
c=¢(co+ecy + ey + ez +.). (5.5.2)

As in §5.5.1, the upper fluid has three distinct regions with § of O(e€), 0O(1) and
O(€7!). A new feature here is that the film also becomes multi layered, due to the
reduced viscosity, splitting into three regions for § < 0, Y + @ ~ O(e3), Y ~ O(1)
and Y ~ O(€®) where we recall § = €Y. The viscous effects are contained within
wall and interfacial layers, with the interfacial viscous layer remaining inactive for
our purposes. As the calculations for the limit solution below are both long and
tedious we present the expansions along with solutions for their coefficients but
reserve comment only for the most significant steps.

In the region § ~ O(€) above the interface we take § = €Y, expand the base
Blasius profile Uy and the solution of the Rayleigh equation (5.2.11) in the form

Uf = eY + M Y* + ..., with X\, = —)2Z/48, (5.5.3)
7t = (V5 + eV + €V, + eV + £V + 1), (5.5.4)
c=€(co+ €c1 + €2cy + 3¢5 + ) (5.5.5)

where the leading coefficients are found to be

Vot = XY + By, Vit = A1Y + By, V,F = AY + By, (5.5.6)
+ + + Yt y3 Y2
Vo =Va, + Q5 (Y — Yo) + 12X F-*‘Y‘ﬁ-i-ycﬁ

+1201(Y2 + BoY2) (Y - Yo)n|Y - Y| - (Y - ¥2)) + dF, (5.5.7)
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with constants A;, B;, V5", Qf and d*. The superscript + refers to the value of
V5" above or below the critical level Y = Y. = ¢o/Xs. In the layer § = O(1) the
solution expands as

T = (Vi + eVt + EVF+ EVF AV 4L, (5.5.8)
whereas in the outer region ¥ = e§ = O(1) we have

ot = VH(P)+ ... (5.5.9)

For the terms shown in (5.5.8) we obtain the solutions

Vot =UF, Vit = co(UF - 1) + | K|, (5.5.10)
~ y 1
Vit =c1+ d(Us — 1) — 620U ~ 921Uo+(/ { ¥z 1}‘13 —7)+ &2,
w LUg (s)
(5.5.11)

V3+ = (0(3) - COK2 —~ C1Co — 92060 + Cz)(UJ - 1) - 030U6'_
-6 ~1%ds—Y;) + &3, 5.5.12
31(/ { T ) } s—Y1)+ @ ( )

where 6;; are real constants and the functions ®;(7) have the following properties:

& = U+(/y{(—U-;%W— l}ds—g), (5.5.13)
&, = UF (/oy (U;*)Z (/0 [k Uy - |K|<I>'1'}d'r) ds), (5.5.14)
&, = UF (/ly (—U—}? (/0 rg(T)d'r> ds) , (5.5.15)

T3 = KZUJ' ((UJ - l)Co - |K|§1) + Co@lzl - (02160 - |K|Cl)§;’,

(5.5.16)
. K1 5, 4 -
As Yy— 00! @2 b d '—2—y + 921?/ + 920 + t.S.t., (5517)
6A
Asg—0: & 12c0(c0 + Bo)7® + O(3%), (5.5.18)
b
K K
As § — oo X1 3 4 037 + 030 + t.s.t., (56.5.19)
3,(0
As ’_17 —0: §3 — —2(—)C—O-ﬂlnﬂ + 033@ + 032?2 +t.s.t. . (5520)

b
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Here the letters t.s.t. denotes transcendentally small terms. Matching to the
solution in layers § = O(1) and § = O(€) shows that
| K]

Bo = —-Cc+ -, (5521)
Ab
0
By = —c -+ -2, (5.5.22)
b
_ 2 3 631
-BZ = CoK + c1c0 — Co — 02060 —c3 + T (5523)
b

Provided that cg, 1, ca are real, the growth rate is contained in the next term c3 =

c3r + ic3;. To determine c3; we only need to loqk at the imaginary part of 1744',
Vit = (UF - 1)cai (5.5.24)

Then, from matching to the region § = O(e), we find that
12\ c3| K|
A

with the value of d* related to the logarithmic phase jump across the critical layer

C3; = —Im(V3w + d+) = —Vaui + (5525)

in the region § = O(€), ¥ > 0. In the film, § < 0, in the wall Stokes layer, we write

Y +a= €Y. The leading terms in the disturbance expansions are

- =U5(Y), 7 =V (V), 5 =e€Py, (5.5.26)
and we obtain the result
-y D~ _—s¥
p- = Hh (1 < - Y) : (5.5.27)
cop ol

where 6 = \/~1Kco/v~. In the main part of the film, where § = €Y, Y = O(1),

Y < 0 the expansions are

47 =45 + €] + a4y + €d3 + ...y (5.5.28)
77 = iy + 9] + iy + €97 + ..., (5.5.29)
B~ =eby + €y + P, + €53+, (5.5.30)

and for the normal velocity terms (for example), in terms of the pressures, we have

the following relations

- iKp, oy o iK ( c1Pg ,_) .
= — Y +a), = - - + Y +a), 5.5.31
Yo cop- ( a), cop- co p1 ) ( ) ( )
. 1K C2 C% — C._ . . -
__ _e2 a).-_a 5.32
Uy cop- (( CO+CS)P0 COI’1 +p2)(Y+a.), (5.5.32)
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L 1K 2¢cico c‘;‘ 3\ ._ cy Cf e CLL
'U3 = cop_ (( ctz) CS = po + _C_o‘ + C(Z) pl - apz + p3
x(Y + &). (5.5.33)

Then the interfacial pressure jump condition and the kinematic condition lead, first

of all, to an equation for the leading-order phase speed,

_ |K| Cop_ T
IKI—(Ab co YR (5.5.34)

where I' = K2 4 (p~ — 1)/ Fr, and then to the sequence of corrections to the phase

speed
¢ = K2A51020 (CQ + 1/&-|— P/CQ) - Cg(l - p—/é) - CQ(P bt Al) (5 5 35)
p~[a(|K|/ X — 2¢0) + T'/eo (1 + Ao/ co) ’ '
= [(1 - Cof? + -P—) (cho + ¢1¢0 — Cg — coba0 + f:_i_l_)
a co Ab

- 2 r A -1

_a (131 _ 2P (Bl + -le(,))] (~(1 ;) _Bo_ C—Sa) . (5.5.36)
Co a Co Co Co a pP

We note that if ¢g in (5.5.34) is complex-valued then this formula provides the
leading order growth rate so the rest of the analysis is not necessary. The first
bracketed expression in (5.5.34) can be thought of as relating to TS waves, and the
second is related to gravity-capillary waves. The instability governed by (5.5.34) can
thus be interpreted as a resonance between the two classes of neutral waves, very
similar to the K-H mechanism in (5.1.1). We saw in fig 5:5(b) that an increase in
surface tension destabilized a wider band of wavenumbers, indicating a resonance
of this kind. However when cp is real we see that so are ¢;, ¢, but ¢3 is not and

c3; = Im(c3) is found to be

n 1 . |K|) v (T pc 128\ c3| K |7
a7 N 2K \eg @ PR

|K| ar|K|\"!
200 — 1 — ) .5.37
X ( - 5 prin (5.5.37)

Numerical results for the leading order instability and its corrections in this regime

are shown in figures 5:6(a)-(c) and figs 5:7(a),(b). Two distinct modes can be seen
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in Fig 5:6(a) corresponding to Class A (TS) and Class B modes of the Benjamin-
Landahl classification. We see, for the long-wave limit K < 1 that when no gravi-
tational influence is present cg fully describes the leading order instability. However
with a gravitational effect, in our example Fr = 10, the leading instability is given
by c3i, see fig 5:6 (c), K < 0.02. Class B waves remain stable, whilst for TS (Class
A) waves a slight broadening of the unstable wave spectrum is seen. For short waves,
on the other hand, we see that there appears to be a critical value of the Froude
number, Fr., below which the presence of gravity provides a positive imaginary
correction to ¢, increasing the destabilizing role of the curvature for Class B waves
but stabilizing TS modes, see fig 5:6 (b). For Fr > Fr. the curvature plays an (al-
most negligible) contrary, i.e. stabilizing, role over a small wavenumber range. An
analysis of the influence of both curvature and viscosity on the instabilities present
shows curvature to be the dominant force. However if we take fig > 1, linking with
the previous regime, we see in fig 5:7(a), that the effect of viscosity overcomes that
of curvature and a wider range of K becomes unstable for Class A waves. We clearly
see the destabilizing role of viscosity for TS waves both here and in fig 5:5(c). Strong
viscosity, within this regime, can stabilize bands of wavenumber for Class B modes
even in the presence of gravity or surface tension but we observe in fig 5:7(b) that
surface tension will become the dominant effect as K becomes large and a second

range of wavenumbers will become unstable.

5.6 Discussion

Through analytical investigation of limiting regimes of the Rayleigh problem (given
by (5.2.11), (5.2.26), v*(c0) = 0 and v*(0) = 1) we have been able to see how
different flow parameters affect the instability mechanisms. The K-H, Tollmien-
Schlichting, and Miles mechanisms as well as a capillary/TS wave resonance are
found to operate in special limits of the full formulation, however in order to de-
termine full instability ranges, especially the range of the growth rate maximum,

numerical solution of the problem is necessary in general. We have also shown that
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the various special cases tackled in previous papers are continuously connected in
the parameter space of the Rayleigh problem considered here.

There are some apparent discrepancies between the behaviours of the full nu-
merical and limiting solutions which require clarification. We do not observe a
short-wave instability in the full solution whilst one is present in limiting solutions
in §5.5. This means that an alternative limit theory is required to describe the
short-wave cut-off of the curves in figs 5:3, for example. It is also clear that the
shape of the growth-rate curves in figs 5:5, 5:6 and 5:7 with a pronounced hump in
the middle surrounded by broad ranges of weakly growing modes, has nothing in
common with computational solutions shown in fig 5:3, with perhaps the exception
of one curve in fig 5:3(a). One reason for this difference is of a technical nature:
full numerical solutions were difficult to obtain for thinner films due to very small
growth rates. The small growth rates are in agreement with our predictions in §5.5,
where it is shown that this is related to the small curvature of the Blasius profile
near the interface. We can expect that a better agreement between thin film theory
and numerical solutions can be obtained for a base profile with larger curvature. To
verify this idea we have computed a few solutions in the full formulation using the
exponential base-velocity distribution Ug‘ =1 - exp[—y]. The results are shown in
fig 5:8, and we can see an agreement with the properties of the limiting solution
(note that the theory in §5.5 can be easily adjusted to the case with an exponential
profile).

Finally we comment on the validity of our numerical solutions for very long
waves. The growth rate calculations at very small wavenumbers were difficult since
the solutions obtained by the Rayleigh solver require a far field condition to be
imposed at § = §mqz Of inverse proportion to the wavelength for small wavenumbers.
Via accuracy tests a relation Jmq. = 5/k was settled on as a satisfactory numerical
depth for the upper fluid. Values smaller than this meant that the solution for o+
struggled to decay as § — ¥maz. Because of this restriction calculations became very
slow for k < 0.02 and so this was taken as the longest wavelength to be examined.

The stepsize dj was chosen to be dj = 0.005 for the full Rayleigh solutions. For the
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parameters k = 0.1, p~ = 2, ug = 0.1, a = 5, ' = 0 with 64001 steps and varying

stepsize dy the following results were obtained:

dy = 0.01, c = 0.2283496 + 0.0951937:
dy = 0.005 ¢ = 0.2283497 + 0.0951939:
dy = 0.0025, ¢ = 0.2283497 + 0.0951939:

A doubling of stepsize and halving of §,,.; gave exactly the same answer.

(5.6.1)
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Figure 5:2(a) Numerical solutions of (5.2.11), with the boundary conditions (5.3.2),
(5.2.27) and @ = 5,p~ = 2.0, gy = 1.0,7, = 0, real and imaginary c plotted against
wavenumber k for various Fr. (b) a comparison of the solution when Fr = oo with

(5.3.7).
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Figure 5:3 The full Rayleigh problem. Unstable eigenvalues of (5.2.11), (5.2.26)
and (5.2.27); w, /10 and growth rate w; versus wavenumber k for (a) @ = 5,p” =
2.0,7,t = 0, Fr = o0 and pg varying, (b) @ = 5,5 = 1.0,7, = 0,Fr = o0 and p~

varying.
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Figure 5:3 As before, (c) @ = 5,p~ = 2.0, 5 = 1.0, Fr = oo and 9, varying, (d)
a=>5,p" =2.0,uy =1.0,7: =0, and Fr varying.
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Figure 5:3(e) As before, (e) p~ = 2.0, gy = 1.0, 75t = 0, F'r = o0 and @ varying.
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Figure 5:4. Comparison of the complex phase speed ¢ = w/k = ¢, + ic; versus the
wavenumber k, calculated from (5.2.11), (5.2.26) and (5.2.27), with the limit formula

(5.4.1.4), (5.4.1.18), (5.4.1.30) for @ = 5, 5 = 1.0,p” = 2.0,7t =7 = 0, Fr = o0.
Figure 5:5. The numerical solution of (5.5.13), with & = 1,p™ = 2.0. The growth

rate ; plotted against K, (a) ¥ = 0,; = 1 for various Fr,
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Figure 5:6. Numerical values for the complex phase speed components
Cor, Coiy C3i, With fig =.1,p~ = 2,8 = 1,% = 0 given by (5.5.34), (5.5.37). Letters 4,
B denote the Benjamin-Landahl wave class; (a) ¢g against wavenumber K varying

Fr (b) c3; against wavenumber K varying Fr,
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Figure 5:6. As before, (¢) ca;, cor, Co; 2gainst wavenumber K, with varying Fr.
Figure 5:7. Numerical values for the complex phase speed component c3;, plotted
against wavenumber K, with p~ = 2, @ = 1. (a) Class A wave, § = 0, Fr = oo

various f.
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Figure 5:6. As before, (c) ca;, cor, Co; against wavenumber K, with varying Fr.

Figure 5:7. Numerical values for the complex phase speed component c3;, plotted
against wavenumber K, with p~ = 2, @ = 1. (a) Class A wave, ¥ = 0, Fr = o

various fi.
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Figure 5:8. The full Rayleigh problem with Ug" = 1—exp[-7]. Unstable eigenvalues

of (5.2.11), (5.2.26) and (5.2.27), with growth rate ¢; = w;/k versus wavenumber k

for p~ = 2.0, 75t = 0, @ = 0.1, for various Fr, pig .
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Chapter 6

Conclusions

To conclude this Thesis we summarize here the new results obtained in Chapters
2-5.

First and foremost we showed in Chapter 2 that a two shear profile was indeed
a valid initial approximation for triple-deck studies of two-fluid flow when the film
lies completely within the viscous sublayer. We then went on to investigate the
stability properties of two-fluid flow over an elongated obstacle and found that the
presence of a thin film greatly enhanced inviscid instability. The discontinuity in
material properties at the interface was seen to provide an important mechanism for
instability. A study of the condensed flow problem, for short obstacles, then allowed
us to calculate separated profiles for two fluid flow and we showed that the presence
of a film could retard or enhance flow separation, depending on the film thickness
and the ratio of film and boundary layer fluid viscosities and densities.

In Chapter 3 we derived wave-amplitude equations governing the resonant in-
teraction of two pairs of oblique waves traveling with the same phase speed and
their interaction with a three-dimensional vortex which develops in a unidirectional
piecewise shear flow. The wave-amplitude equations were found to reduce to those
of Smith, Brown & Brown (1993) in the non-resonant limit. We showed that the
presence of this second pair of waves could lead to finite-distance wave-amplitude

blow-up, which may lead to stronger nonlinear regimes or to transition.
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The linear stability study of Tollmien-Schlichting disturbances in film flows by
Timoshin (1997) was extended to cover weakly-nonlinear temporal TS instabilities.
The governing wave-amplitude equation was derived along with equations for strong
Reynolds-stress induced mean flow in the interfacial layers. The stability proper-
ties of the altered base profile to secondary disturbances were examined within these
layers and Rayleigh instability was found. In the absence of such background distur-
bances it was found that, for a particular combination of the surface tension, gravity,
film thickness and density ratios, a resonance could take place which was attributed
to the interaction of growing TS modes and decaying capillary modes. Analysis of
the wave-amplitude equation showed non-linear effects forcing a saturation in mag-
nitude of the disturbances. The disparate natures of the two regimes were connected
via two intermediate regimes and a smooth analytic transition between the regimes
confirmed the expansion structures.

In the final chapter we studied the instability of disturbances of a comparable
wavelength to the lower layer thickness in flow on a very viscous film. We showed
that disturbances previously categorized distinctly, namely the Class A, Class B and
KH modes in the Benjamin-Landahl classification, exist as special limiting cases of
our general formulation. Investigation of the thin film case revealed the presence of

a similar resonance mechanism to that of Chapter 4.
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