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A b s tra c t

The governing equations fo r a high Reynolds number flow  in  a boundary layer over a 

film  coated w a ll are derived from  the fu ll two dimensional Navier Stokes equations o f 

m otion  fo r a tw o flu id  flow. Num erical studies o f the properties o f the base flow  and 

its  s ta b ility  are described for the case o f the flow over an isolated surface roughness 

on an otherwise fla t surface. Investigations o f bo th  short and long obstacles are 

undertaken in  terms o f the flow in  a viscous-inviscid in te raction  region.

A n  investigation o f strongly non-linear vortex wave in te rac tion  in  a lam inar 

boundary layer w ith  tw o pairs o f obUque waves is carried out. For a pa rticu la r 

choice o f flow  parameters a resonance is found Unking the two pairs o f waves, and 

the governing ampUtude equation fo r the leading order disturbance is derived and 

investigated.

W ave-ampUtude equations are derived fo r the non-Unear m odu la tion  o f ToUmien- 

SchUchting (TS ) type disturbances at high Reynolds numbers. A n  investiga tion  o f 

the instab iU ty o f Reynolds-stress generated mean flow  to  short wavelength secondary 

disturbances is carried out. A  regime w ith  Unear TS/capiUary wave resonance is 

examined and the governing ampUtude equation fo r non-Unear wave in te rac tion  is 

derived. Tw o in te rm ed ia ry  regimes are also studied.

The Unear instab iU ty o f high Reynolds number boundary layer flow  over a film - 

coated waU is studied bo th  numericaUy and analyticaUy fo r the practicaUy im p o rta n t 

Umit o f h igh film  viscosity. We examine the various instabiUties present and relate 

them  to  the instab iU ty classifications o f Benjam in (1963) and Landahl (1962).

The w ork presented in  Chapter 4 represents a jo in t investigation undertaken 

w ith  D r S.N. T im osh in  and D r R .I. Bowles and forms the basis o f a paper to  be 

pubUshed in  Proceedings o f the Royal Society.
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C hapter 1

Introduction

The effect o f th in  liq u id  film  coatings in a high Reynolds number boundary layer 

flow on b o th  separation and trans ition  to  turbulence is a problem  o f great practica l 

im portance in  m any real life  situations. These include the flow over ra in  wetted 

planes and cars, the de-icing o f plane wings and the use o f lubricants in  many 

engineering applications. We begin this Thesis w ith  a b rie f review o f some o f the 

developments in  the relevant theories for homogeneous flows before exam ining the 

specific role o f a film  and the a lterations its  presence entails.

Boundary-layer separation and the trans ition  from  lam inar to  tu rbu len t flow are 

two m a jo r phenomena typ ica l fo r high Reynolds numbers. B o th  can be tackled 

using asym pto tic  methods. We begin w ith  separation, s ta rting  w ith  the classical 

boundary-layer theory as proposed by P ra n d tl in  1904. He in troduced the idea o f 

a th in  viscous layer on the surface o f solid bodies, driven by a prescribed pressure 

gradient and satisfying the cond ition  o f no sHp on the solid boundary. In  1908 B la ­

sius obta ined a s im ila rity  solution fo r the flow  over an aligned fla t p late in  a un ifo rm  

stream, which held over its  entire length, w ith  the exception o f the singularities in  

the so lu tion  at the leading and tra ilin g  edges and the wake behind the plate. A n  

analysis o f the ’near wake’ behind the p late by Goldstein (1930) showed the wake 

sp littin g  in to  tw o separate layers and his order o f m agnitude balances paved the 

way fo r the la te r trip le-deck theory. The classical theory however was shown to  fa il
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fo r alm ost a ll applications, by Goldstein (1948), at the poin t o f flow  reversal, and 

hence separation, v ia  w hat became known as a Goldstein s ingu la rity  in  the slope o f 

bo th  the skin fr ic tio n  on the body surface and the boundary layer displacement. A  

new theory  was required to  cope w ith  separation. This was provided by a tr ip le ­

deck scheme, a viscous/inviscid  in te raction  theory which allowed fo r an unspecified 

pressure grad ient, as developed by Stewartson &  W illiam s (1969), Neiland (1969), 

Messiter (1970), Stewartson (1970). The theory spht the boundary layer in to  two 

so-called decks w ith  a nonlinear viscous lower deck on the body surface driven by an 

externa l induced pressure and a ro ta tio n a l inviscid m ain deck, which remains largely 

passive, shifted v ia  the displacement caused by the lower deck. A  th ird  ’po ten tia l- 

fio w ’ upper deck completed the description, w ith  the local displacement from  the 

lower deck affecting the induced local pressure, o f the order o f the slope o f the stream ­

lines in  the boundary layer, and hence affecting the lower deck. This ’in te rac tive ’ 

approach avoids the fa ilu re  o f the classical theory due to  the unspecified pressure 

gradient, and hence unknown displacement. The theory also does not depend on a 

pa rticu la r set o f w a ll boundary conditions, which makes i t  applicable to  a wide range 

o f d ifferent problems e.g. flows over b lu ff bodies, plates w ith  a local w a ll roughness 

or flows w ith  walls containing flu id  in jections. For weak d is tortions, flow  separa­

tio n  leads to  a fu lly  viscous eddy and re-attachm ent fu rthe r downstream w ith in  the 

trip le-deck region. Larger d is tortions lead to  global (breakaway) separation w ith  the 

viscous shear layer centering around an algebraic curve o f increasing distance from  

the body downstream  o f the separation po in t, see Sychev (1972), M essiter (1975), 

Sm ith (1977). There are however some pa rticu la r cases in  which classical boundary 

layer theory  is stiU applicable, as in  the m arginal separation regime examined in  

Ruban (1981), complemented by a loca l in teractive s tructure  in  Ruban (1982) and 

Stewartson, S m ith  &  Kaups (1982) or in  the condensed flow  o f Sm ith  &  Daniels

(1981). A  detailed review o f these issues can be found in  Messiter (1979) and Sm ith

(1982).

In  th is  Thesis a study is made o f the effects o f a liqu id  film  coating w ith in  

boundary layers on bo th  the classical and trip le-deck scales.
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The second im p o rta n t top ic o f research relevant to  th is Thesis is on the ins ta ­

b il ity  o f flu id  flows to  in fln ites im a l disturbances and the tra n s itio n  o f lam inar flow 

to  turbulence. In s ta b ility  theory developed from  a need to  understand why most 

h igh speed flows are o f a tu rbu len t ra ther then lam inar nature. W ith  aU the early 

works based on an inviscid trea tm ent, i t  has its beginnings in  the ana ly tica l studies 

o f H e lm holtz , K e lv in  and Lord Rayleigh and in  the experim enta l w ork o f Reynolds. 

Th is in s ta b ility  theory fo r inviscid waves was extended to  include the effects o f vis­

cosity in  the works o f O rr, Sommerfeld, Taylor, P rand tl, ToUmien and Schlichting. 

The reader is referred to  D razin &  Reid (1981) fo r a review o f the early theory. 

ToUmien and Schlichting showed th a t viscous effects could provide the mechanism 

fo r instabiU ty, an essentiaUy counter in tu itive  effect. AU these theories were based 

on Unear approxim ations, and i t  was not u n til Landau (1944), in  a quite general 

postu la tion , th a t a nonUnear theory, now termed weakly nonUnear, was proposed. 

Landau ’s ideas were confirmed in  an exam ination o f plane paraUel flows by S tu­

a rt (1960) and W atson (1960), and these firs t three authors lend th e ir name to  

the typ ica l Landau-S tuart-W atson ampUtude equation governing weakly nonUnear 

instab iU ty waves. I t  oh (1974), who derived the same fo rm  o f equation fo r the B la ­

sius layer, and m any subsequent works were aU appUed to  flows at fin ite  Reynolds 

numbers where the effects o f the flow non-paraUeUsm are non-negUgible. Sm ith 

(1979a,b) began more rigorous investigations o f the Unear and nonUnear instab iU ty 

o f boundary-layer flows, at large Reynolds numbers, by placing the base flow  and 

disturbances w ith in  the trip le-deck scaUngs (an account o f earUer asym pto tic  ap­

proaches to  the viscous-flow instabiU ty is given in  L in  (1955)). M any o ther high 

Reynolds num ber studies foUowed, exam ining a wide varie ty o f instab iU ty mecha­

nisms and disturbance scaUngs (see review articles by Sm ith  (1993), HaU (1990), 

Cowley &  W u (1993)).

A  novel nonUnear mechanism for the trans ition  o f lam inar to  tu rb u le n t flow  was 

developed in itiaU y by HaU &  Sm ith (1988) which modeUed the spatia l development 

o f three-dim ensional vortices and the ir in te raction  w ith  re la tive ly  short wavelength 

neu tra l waves. The theory divides in to  numerous categories depending on the size o f
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the wave disturbance and the p roportion  o f the 3D vortex in  the mean flow . W hen 

the vo rtex  pa rt o f the flow  was sim ply a small correction to  the mean profile  the in te r­

actions w ith  the disturbances were termed weakly nonlinear, w h ils t those where the 

vo rtex  comprised the entire mean flow were termed strongly nonlinear. In teractions 

w ith  sm all disturbances o f the m in im um  m agnitude to  instiga te  non-linear in terac­

tions, were investigated for both  inviscid Rayleigh and viscous ToUmien-Schlichting 

(TS ) waves by HaU &  Sm ith (1988, 1989, 1990), Sm ith &  W alton  (1989), Blackaby 

(1991), Sm ith  &  Blennerhassett (1992) fo r ’weakly ’ non-Unear in teractions, and by 

Sm ith  &  W a lton  (1989) W alton &  Sm ith (1992), HaU &  Sm ith (1991), Seddougui 

&  Bassom (1991) fo r ’s trong ly ’ non-Unear interactions. The w ork o f HaU &  Sm ith 

(1991), a s tudy o f bo th  compressible and incompressible flows, reUed on the exis­

tence o f a saturated neutra l wave at some upstream position, at which the in te rac tion  

was in itia te d  w ith  the vortex then developing downstream in  order to  keep the wave 

neutra l. B row n et al. (1993) studied shorter scale events fo r the in it ia t io n  o f th is  be­

haviour in  the incompressible case for Rayleigh waves, although stiU w ith  an abrupt 

s ta rt to  the in te raction . Sm ith, Brown &  Brown (1993) examined even shorter 

scale events, w ith  the vortex/w ave in te raction  occurring chiefly th rough  the ju m p  

in  transverse shear stress across a c ritica l layer. They derived a wave-ampUtude 

equation governing the wave disturbance and found various solutions fo r the  down­

stream behaviour inc lud ing wave decay, a fin ite-distance wave-ampUtude blow-up 

and periodic solutions, which they conjectured were more Ukely to  occur than  the 

downstream  m atch to  a constant wave ampUtude required by B row n et al. (1993), 

HaU &  Sm ith  (1991).

M uch o f th is  basic knowledge can be appUed to  the high Reynolds num ber two- 

flu id  problems studied in  this Thesis. In  add ition  to  the behaviours noted in  the 

above works, the presence o f an interface greatly influences the flow  development. 

W ith  regard to  the base flow profiles Nelson et al. (1995) examined the boundary- 

layer flow  development o f a ir blow ing over a film  o f water on a fla t p la te  and showed 

th a t w h ils t the  non-paraUel boundary layer g row th  is o f 0 (x ^ /^ ) ,  where x  is the 

stream wise coordinate, the film  grows Uke 0 (x ^ /^ ) .  They constructed non-sim ilar
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ana lytic  solutions and showed th a t a linear profile in  the water and Blasius profile  in  

the a ir are reasonable base-flow profiles fo r in s ta b ility  calculations. Coward &  H all

(1996), in  a study o f the s ta b ility  o f th in  coatings o f water on a porous w a ll in  a ir 

flow , constructed s im ila rity  solutions fo r the base profiles, made possible th rough 

the w a ll condition . We could not find  other works which examined the fo rm  o f base 

profiles fo r boundary layers w ith  th in  liq u id  film  coatings, and in  Chapter 1 we aim 

to  shed some lig h t, com putationally, on the behaviour and shape o f possible base 

flows.

The instab ilities  present fo r tw o-flu id  flows in  a boundary layer, on the other 

hand, have received more a tten tion , bo th  experim enta lly and theoretically. Exper­

im enta l investigations have been performed by, amongst others, H a n ra tty  &  Engen 

(1957), Kao &  Park (1972), Charles &  LiUeleht (1965), Andreussi et al. (1985) and 

Ludwieg &  Hornung (1989). For two flu ids o f comparable depths Kao &  Park (1972) 

found no in te rfac ia l modes w ith  the surface d is to rtion  being a m anifesta tion  o f the 

shear (TS ) waves and concluded th a t the presence o f an interface enhanced trans i­

tion . The investigation o f Ludwieg &  Hornung (1989), fo r a ir flow over a th in  film  

o f o il, showed the appearance o f visible waves on the interface occuring at d ifferent 

stages in  the trans ition  from  lam inar to  tu rbu len t a ir boundary layers depending on 

the film  thickness. The properties o f the second flu id , inc lud ing its  depth, density 

and viscosity aU appear to  be im p o rta n t. In  the 1950s much theore tica l w ork was 

carried out try in g  to  explain the phenomena o f water waves generated by w ind , w ith  

a varie ty o f mechanisms proposed, in it ia lly  th rough the w ork o f Lock (1954), Feld­

man (1957) and la te r by Miles (1957 ,1959, 1960, 1962). M iles (1957) studied the 

ins tiga tion  o f waves on deep water by w ind, based on a basic solution o f near-neutra l 

g ra v ity  waves. He showed th a t the in s ta b ility  o f a un id irectiona l a ir flow  to  inviscid 

Rayleigh-scale disturbances was dependent on a negative curvature o f the mean flow 

profile  at the height where the wave speed was equal to  the streamwise velocity 

(the c ritica l level), thus showing th a t non-inflexional profiles were unstable to  these 

Rayleigh disturbances, in  contrast w ith  the requirem ent in  homogeneous flow  o f an 

in flex iona l profile . A  classification o f the various instab ilities  present in  tw o-flu id
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problems was given by Benjam in (1960, 1963) and Landahl (1962) who a ttem pted  a 

physical exp lanation o f instab ilities based on energy levels. They categorized three 

different ins tab ilities  appearing in  flows w ith  flexible boundaries re ferring  to  these 

as Class A , Class B and Ke lv in -H e lm ho ltz  (K -H ) waves. The firs t o f these, the 

Class A  in s ta b ility , which includes ToUmien-Schlichting waves m odified by the flex­

ible boundary, is destabiUzed by dissipative forces. They dem onstrated, v ia  the 

energy considerations, th a t an essentiaUy counter in tu itive  destabiUzation, w ith  the 

wave g row th  accompanied by a transfer o f energy from  the wave to  the m ain flow , 

is present in  the system. The Class B instab iU ty on the o ther hand is stabiUzed by 

the dissipative forces and grows v ia  an energy transfer from  the mean flow  to  the 

wave, a more in tu itiv e  mechanism. The fina l class, the K -H  instab iU ty is driven by 

velocity d iscontinuities. Classification in  these papers is based upon near-neutra l 

calculations and we aim in  th is Thesis to  verify  the general classifications by direct 

com puta tion  o f the instabiUties.

M ore recent instab iU ty studies invo lv ing  tw o phase flows include those made by 

Hooper &  Boyd (1986), M orland &  Saffman &  Yuen (1991), Shrira (1993), M orland 

&  Saffman (1993), Coward &  HaU (1996) and T im oshin (1997). Shrira  (1993) ex­

amined instabiUties o f disturbances found in  deep water w ith  a current and a free 

surface, w h ils t M orland  &  Saffman (1993) carried out Unear stabiU ty analysis o f an 

inviscid para lle l a ir flow  over water and made num erical comparisons, find ing  fa ir 

agreement w ith  the ana lytic  solution o f M iles (1957). Coward &  H a ll (1996) studied 

the three-dim ensional flow  over a porous fla t plate, w ith  suction or b low ing chosen 

to  m a in ta in  a constant lower flu id  depth. T he ir stabiUty analysis showed, as in  

Hooper and Boyd (1986), th a t d iscontinu ities in  the viscosity a n d /o r density o f the 

two im m iscib le  flu ids greatly  enhanced instabiU ty. T im oshin (1997) examined Unear 

instabiUties w ith in  the trip le-deck fo rm u la tion  o f a tw o-flu id  flow  inc lud ing  the case 

o f a very viscous film  and derived g row th  rates fo r TS and in te rfac ia l waves.

The inclusion o f a second flu id  in  nonUnear stabiUty problems leads to  an en­

hanced mean flow  generated by the Reynolds stresses at the f lu id /f lu id  interface, 

as firs t studied by Longuet-H iggins (1953) and subsequently by Dore (1970, 1976,
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1977). Th is  effect is due to  the ju m p  in  shears across the viscous layers surround­

ing the interface as opposed to  a sh ift in  velocities due to  viscous layers on solid 

boundaries. Dore (1976, 1977) incorporated outer viscous layers about the in te rfa ­

cial layers, based on the double boundary layer theories developed by R iley (1965) 

and S tuart (1966), th rough  which the induced mean flow  is diffused. The effect o f 

th is stronger mean flow  on the wave in s ta b ility  is fe lt th rough interactions at a lower 

order than  those w ith  w a ll induced mean flow. A  second flu id  also allows for reso­

nant in teractions between the various instab iflties th a t may be present such as those 

classified by B en jam in-Landahl, outlined above. One such case is studied in  Akylas

(1982), A kylas &  Benney (1982) who iden tify  a resonance between ’a ir ’ (Class A ) 

and ’w a te r’ (Class B ) modes in  the case o f w ind on deep water.

We see then th a t the study o f boundary layers w ith  th in  film s is a complex 

and fascinating fie ld, w ith  very l i t t le  known about the effect o f film s on separation, 

along w ith  the apparen tly strong effect on s ta b ility  provoked by the presence o f an 

interface.

For the m a jo r ity  o f th is  study we s im p lify  our analysis by assuming piecewise 

constant-shear base profiles in  the regions on e ither side o f the interface w ith  a 

thickness comparable to  th a t o f the film . However we must begin by exam ining i f  

these are satis factory base profiles, and th is  ju s tifica tio n  is undertaken in  Chapter 2 , 

where we investigate the boundary layer flow  over a film -coated w a ll w ith  a surface 

obstacle o f prescribed m agnitude. The firs t pa rt o f th is  chapter deals w ith  the base 

flow  development from  the source o f the film  generation. We then proceed to  the 

flow  over a surface roughness, w ith  the choice o f scalings and the ’long ’ and ’sho rt’ 

obstacle classification used w ith in  th is chapter fo llow ing those given by Sm ith et 

al (1981) in  th e ir investigation o f homogeneous flow  development. We then exam­

ine the flow  over ’long ’ obstacles on the trip le-deck length scale, w ith  a prescribed 

pressure gradient dependent on the obstacle shape. C om puta tions, bo th  numerical 

and ana ly tic , are undertaken to  calculate the flow  development and its  s ta b ility  to  

Rayleigh-like disturbances. In  the second pa rt o f Chapter 2 we examine ’sho rt’ ob­

stacles w ith in  a condensed flow  fo rm u la tion , again w ith  a num erical trea tm ent o f the
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base flow  development. Th is provides an im p o rta n t insight in to  the role o f a film  in 

the onset o f separation, an area which up to  now has received scant a tten tion  to  this 

a u th o r’s best knowledge. A  s ta b ility  analysis is then carried out on the calculated 

profiles.

In  C hapter 3 we investigate weakly-nonlinear vo rtex /inv isc id  wave interactions, 

in  the early stages o f tra n s itio n  fo r a tw o flu id  flow , based on the single flu id  study o f 

Sm ith , B row n &  B row n (1993). B y u tiliz ing  the assumptions o f a paralle l flow and a 

base profile  consisting o f tw o constant shears in  our region o f study, we obta in  wave- 

am plitude equations governing the evolution o f tw o pairs o f oblique waves trave lling  

w ith  iden tica l phase speed. We show th a t the nonlinear development o f th is flow can 

lead to  fin ite -d istance blow-up o f the wave disturbances. In  the case o f non-resonant 

waves we show th a t the am phtude equations s im p lify  to  those derived in  Sm ith, 

B row n &  B row n (1993).

The s ta b ility  o f nonlinear ToUmien-Schlichting (TS ) waves is studied w ith in  a 

trip le-deck fram ew ork in  Chapter 4, an extension o f the linear analysis o f T im oshin

(1997). In  a weakly non-linear analysis, the tem pora l evolution o f tw o dimensional 

disturbances is mo defied v ia  an am plitude evolution equation coupled w ith  equations 

governing the Reynolds stress induced mean flow . A  tw ofo ld  investigation o f both  

the s ta b ility  o f the much altered mean flow  to  Rayleigh scale disturbances and the 

development o f the wave disturbance is carried out. The am plitude equation is found 

to  contain a s ingu la rity  centered around a specific com bination o f the surface tension, 

grav ity , density ra tios and film  thickness. A  close analysis is perform ed w ith in  

th is param eter space and a resonant s tructure  found w ith  magnified disturbance 

am plitudes. Th is  non-linear resonance is d irec tly  related to  the linear resonance 

between grow ing TS and decaying capillary waves outlined in  T im osh in  (1997). A  

fu ll investiga tion  o f the properties o f the governing am plitude equation is carried out, 

w ith  the non linea rity  appearing in  an unusual diff'erentiated form . The properties 

o f the am plitude  equations are quite disparate and tw o fu rth e r in term ediate regimes 

are studied, g iv ing  a fu ll account o f the possible disturbance development schemes.

A  classical boundary-layer base flow structu re  is used to  examine the Rayleigh-
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scale s ta b ility  properties o f flow  over a very viscous fllm  in  Chapter 5. The d iffe r­

ent classes o f in s ta b ility  suggested by Benjam in (1960,1963) and Landahl (1962) 

are shown to  be present as different lim its  o f our general fo rm u la tion , and we 

dem onstrate th a t various cases studied previously, (e.g. Ke lv in -H e lm ho ltz , ToUmien- 

Schlichting, M iles, cap illa ry /T S  wave resonance) are aU continuously linked in  the 

param eter space studied here.

We begin our investigation by ou tlin ing  the dimensional governing equations and 

boundary conditions fo r tw o-flu id  flows which we w ill use throughout th is  s tudy w ith  

the specific non-dim ensionalizations given at the s ta rt o f each chapter.

1.1 The dimensional governing equations

The tw o flu id  flows studied in  th is thesis are governed by the incompressible Navier- 

Stokes equations. We deflne z*, y* to  be the dimensional coordinates para lle l and 

norm al to  the flow  d irection and z* to  be the spanwise coordinate perpendicular to 

æ* in  the plane ?/* =  0. Then u f ,  v f ,  w f ,  p f  represent the streamwise, norm al 

and cross-flow velocities and the pressure respectively, w ith  the superscripts + /  — 

denoting the regions above or below the interface separating the tw o flu ids at y* =  

/♦ (x+ , z*, f* ) .  A l l  the flows studied take place w ith in  a boundary layer which develops 

over a surface defined by ?/* =  h *(z * ) , placed in  the flow. The density and viscosity 

o f the flu id  in  the  fllm  are denoted by p " ,  p~ and in  the m ain boundary layer flu id  

by p ^ , p j". W ith  p* representing the dimensional g rav ita tiona l acceleration, the 

governing equations are

± /  a2„.,± a2„„±D w ^  —1 d p f  p f  f w:

p f  dz^ p f  V
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The boundary conditions for these equations are firs tly  those o f no slip on the 

surface, con tinu ity  in  the streamwise and spanwise velocities at the interface and 

the k inem atic  cond ition  at the interface

u~ =  v~ =  0,a t  ( 1 .1.2 )

j } 3-t y* — Z*, t * ) ;  (1.1.3)

where the m ate ria l derivative is defined by D f  Dt^  =  d/dt^, - \ - u f d / d x ^  +  +

w ^ d j d z ^ .  Secondly, at the interface, defined by ?/* =  / * ,  between the tw o flu ids the 

equation

l a . n ] t  -  H7 * =  0 at 2/* =  (1-1-4)

m ust be satisfied, where a is the stress tensor, 7 * is the surface tension, the square 

brackets [] denote a ju m p  across the interface,

1 d‘̂ f , ld x l  1 d^f,/dz^
R i  ( i  +  (0 / . /a x . )2 )3 /2 ’ Æ2 { i  +  { d f . / d z , y f / ^ ’ 

are the ra d ii o f curvature, and n is the un it norm al to  the interface given by

(1.1.5)

We w rite  the u n it tangent vectors to  n as

‘-  = 7 r T ï è w ( ' ’’ê ' 0 '
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and, tak ing  the dot product o f (1.1.4) w ith  t^ * , t^ , n , respectively we ob ta in  three 

in te rfac ia l ju m p  conditions

- B ,

(  dv^
d x ^ )

d h  d u _ n
dz^ dx^

(  ÊA
dz^ \ 9 y .
- B , f i -

d f *
dx^

dz^

1]
/ J

=  0 (1.1.9)

d f *
dz^

% %  \  
dz^ dx^,

dx^

(  du  ̂ f  df^ \   ̂ dv^ dw^ f  ^
dx^ \ d x ^

- 2 ^ B .  +
U C / Z ^

 ̂  ̂ dz .̂ \ ^ d z t )

= 0 (1.1.10)

J \

+7# + = 0 (1.1.11)
(1 +  (a A /^ z ,)2 )3 /2  (1 +  ( a A /a z , ) 2) " / \

where square brackets indicate a jum p  across the interface, parameters in  the bound­

ary layer and film  are denoted by + / — respectively (a d ifferent n o ta tion  is used in 

chapter 2 fo r these layers) and

I  ( du^ d v ^ \  I f d v ^  dw^

2 \ d z ,  ' % .  y  ’ -  K f e  £ r  ’

where A *, .B*, C* are represent elements o f the rate o f s tra in  tensor E i j .
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C hapter 2

Flow over a surface m ounted  

obstacle

In  th is chapter we num erically tackle the flow w ith in  a boundary layer on a wall, fo r 

homogeneous flows and fo r those w ith  a th in  film  coating on the w all. The aims here 

are to  prepare the ground for exam ination o f fllm  coated flows in  the subsequent 

chapters. F irs t and foremost we provide a realistic model fo r the base flow , which we 

w ill use fo r a ll the subsequent work. Secondly we investigate the effects o f a certa in 

prescribed w a ll roughness on the base flow, and the fo rm  o f the singularities which 

we expect to  find  in  the boundary layer solution when the pressure on the boundary 

layer and in  the film  is given. We show th a t fo r all cases considered the singularities 

are always due to  zero w all shear, as found in  the works o f G oldstein (1948), Stew­

artson, Sm ith  &  Kaups (1982), Ruban (1981,1982) ra the r than  to  flow  reversal in  

the m iddle o f the flow  region as in  Sychev (1980), EU io tt, Sm ith  &  Cowley (1983), 

T im oshin (1996). O ur fina l aim in th is chapter is to  investigate the destabiliz ing 

effect o f the waU roughness, or indeed o f any o ther mechanism which affects constant 

shear profiles in  th in  film s. We find inviscid in s tab ih ty  which is s trong ly  influenced 

by the properties o f the interface.

In  th is  w ork hump flows are treated as h m iting  cases o f the trip le -deck fo rm u la ­

tion  w ith  the film  placed in  the near-wall viscous zone. Prescribed-pressure regimes
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arise when the wall roughness is long compared to  the tr ip le  deck. In  §2.5 we also 

examine the opposite lim itin g  case o f shorter obstacles, leading to  a condensed flow 

fo rm u la tion . The second regime is irrelevant to  the base flow  investiga tion , which 

is one o f the p rim a ry  interests in  th is chapter, bu t is a logical ana ly tic  com plim ent 

to  the solution we derive fo r the longer obstacle, requ iring  on ly a s tra igh tfo rw ard  

change in  the problem  fo rm u la tion . A n  analysis o f the single-flu id trip le-deck p rob­

lem fo r obstacles in  bo th  these lim its  and o f those on the trip le-deck scale is given 

by, fo r example. Sm ith, B righ ton , Jackson, H unt (1981); see also a review artic le  by 

Sm ith (1982).

2.1 Blasius boundary layer on a film-coated wall

In  the fo llow ing chapters the investigations u tilize  an in it ia l unperturbed upstream 

flow  consisting o f piecewise linear profiles in  the near-wall p a rt o f the boundary 

layer. In  th is  section we outline the general assumptions and scalings we wiU use for 

tack ling  f ilm  coated flows, includ ing the base flow profiles. Once the fo rm  o f base 

flow has been verified, the fo llow ing subsection outlines the trip le-deck scalings used 

to  examine flow  over a w a ll mounted obstacle.

We assume the flow  to  be two-dim ensional and, fu rth e r, th a t at the leading edge 

o f a fla t p la te in  a un ifo rm  stream a boundary layer on a surface is generated in 

which we have steady, incompressible planar flow . Downstream  o f the leading edge 

we have a f ilm  generated by a slot, in  the fo rm  o f a je t; see fig  2 :1(a). G ra v ity  and 

surface tension are included in  the problem  fo rm u la tion  fo r the base flow  calculations, 

a lthough they are discarded in  the num erical investigation la te r as in  a related work 

by Nelson et al. (1995).

The governing Navier-Stokes equations, (1.1.1), are non-dimensionalized using 

the distance between the leading edge o f the p late and the slot 2 *, the free stream 

speed Î7*, the viscosity i/j" and the density p f  in  the upper flu id . The typ ica l 

pressure is p * U f ,  and we use standard no ta tion  fo r the Reynolds num ber Re =  

p f U i , L ^ l p f  ( >  1), the Froude number F r  =  (7*/gf*2* and surface tension coef-
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fic ient 7  =  7 * / / ) j ^ T h e  non-dimensionalized streamwise and norm al velocity 

components are u, v, we take x, y as the boundary layer coordinates para lle l and nor­

m al to  the flow , w ith  z* =  2 * (z  -f 1), y* =  W ith  p  the non-dimensional

pressure and /  the interface position between the two flu ids, taken in it ia lly  to  be a 

, the height o f the slot, the governing equations become

f -»■ ï  + f -»■ <-̂ 1
where we deflne =  1, i/+ =  1 , p~ =  p * ~ / =  f/* — The appropria te 

boundary conditions are

y -> 0 0  =  1, (2.1.3)

jD /
=  U  , =  V  =  — =  p

3/ =  / :  ' D r  ay  (2.1.4)

p+ - p -  =  j f î i  -  { p -  -  l ) f / F r ,  

y =  0 : u “  =: 0, 7; “  =  0, (2.1.5)

X =  0 : u'^ =  Ub , =  Jy{à  -  ÿ), ; f  =  à (2.1.6)

where Ub  =  Ub {v — à) is the Blasius profile, J  is a constant measuring the strength 

o f the je t  and the shape o f the interface is described by y =  f { x ) .

Using the num erical method outlined below, in  §2.3.1, a num ber o f different 

profiles were placed at the in it ia l s ta tion  and the profiles calculated fo r the flow 

downstream. We were looking fo r these test profiles to  qu ickly fo rm  tw o linear 

profiles, one in  the fllm  and the other in  the boundary layer. A  model o f the case w ith  

a Blasius profile  in  the boundary-layer flu id  and a je t flow from  the slot is shown in 

fig  2 : l(b ) .  We see th a t the profiles in  the near-wall region reach a lim it in g  piecewise 

linear fo rm  over the distance | X  |=  10, where X  =  x, see also fig  2 : l(c ) .  M any 

different in it ia l profiles were run and êdl o f them  eventually form ed tw o constant 

shear profiles. Nelson et a l  (1995) established the lim itin g  behaviour as x —> 00 

fo r a film  w ith in  a Blasius boundary layer on a fla t plate. The film  thickens like
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w ith  the main boundary layer growing like and the in te rfac ia l shear in

the boundary layer decreasing like w ith  the film  flow  driven by the applied

in te rfac ia l shear. I f  Ÿg is the mass flu x  at the slot, given by the value o f the stream 

func tion  Ÿ at the interface, so th a t u~ =  d '^ f d y ,  then the streamwise velocities and 

interface position  in  the region y ~  are given by

where \b  =  d U B ld y {0 ) ,  and the boundary layer flow  approaches the Blasius profile 

downstream  in  the region yx~^/^  ~  1 . B y  a ltering Ÿg , e ither v ia  the size o f the 

in jec tion  slot o r the speed o f the je t, we can set the fllm  thickness downstream. A t 

z 1 the fllm  forgets about the specific source. Th is allows us to  perform  the 

trip le -deck analysis at a s ta tion  A* downstream in  the next section, which requires a 

f llm  o f thickness 0 (E e “ ^/®), in  terms o f the local Reynolds number (see fig  2 : l(a ) ) ,  i f
V “ ly/8 3/8__3/8

we have a flu x  o f 0(TZe L j  A* ). Hence we may assume fo r aU our subsequent 

analysis th a t our predeterm ined in it ia l local base profile  consisting o f tw o constant 

shears can be obtained, or is indeed typ ica l, in  a two flu id  system. O ther mechanisms 

can be trea ted in a sim ilar fashion, fo r example in jection  th rough a porous wall, cf 

Coward &  H a ll (1996).

2.2 Triple deck on a wall mounted obstacle

In  th is  subsection we outline the scalings used to  investigate the flow  w ith in  a bound­

ary layer which develops over a local surface roughness defined by %/* =  h * (z * ) , see 

fig  2;2(a). We quote the rescalings used fo r a short-scale analysis o f flow  over a fla t 

p la te, which lead to  the trip le-deck equations fo r fllm  coated flows, as derived by 

T im osh in  (1997), Tsao et al. (1996) from  the fu ll Navier-Stokes equations. A fte r 

non-dim ensionalizing we perform  a P ra n d tl sh ift, in troduc ing  the surface shape in to  

the problem .

The governing Navier-Stokes equations are non-dimensionalized as in  §2.1, bu t 

here we take the characteristic length T* to  be from  the leading edge o f the plate
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to  the local po in t o f investigation (taken to  be the centre o f an obstacle on the wall 

la ter in  th is section), w ith  corresponding Reynolds number Re =  ( >  1),

Froude number F r  — and surface tension coefficient 7 =  7 * //)+  The

non-dimensionalized tem pora l and spatia l co-ordinates, velocities, pressures and in ­

terface shape are denoted by f, x , ÿ, û, v, p  and / ,  W ith  à denoting the unper­

turbed interface position upstream from  the area under investiga tion , we rescale to  

the trip le-deck variables in  the viscous sublayer (zone I  in  fig  2 : l(a ) )

û , v , p , x , ÿ , i , à , f  =

€ ^(A + )-^ /7 , ( 2 .2 .1)

w ith  €o =  y  representing the local norm al coordinate in  the viscous sublayer,

and A+ denoting the shear o f the upper profile. We w rite  p"*" =  1, z/"*" =  1, p “  =  

p^T! P * ^ ■> and defining y =  h(x)  to  be the non-dimensional w a ll shape

apply a P ra n d tl sh ift to  the trip le-deck equations,

y =  Y  / i(x ) ,  V =■ V  u ——. (2.2.2)

This leaves us w ith

and the appropria te boundary conditions are

y  ^  00 u'^ =  Y  +  a( -  1) +  A (x )  -1- h{x )  -j- o ( l) ,  (2.2.5)

y  =  0 u~ =  0, v~ =  0 , (2 .2 .6 )

u+ =  Y - a + U , ,   ̂ (2.2.7)

u~ =  \ ~ Y

where A“  =  Ug =  a \ ~  and the shape o f the interface is described by

y  =  f { x , t )  w ith  a =  f { x  =  - 00) denoting the f ilm  thickness upstream  from  the

roughness. The in te rfac ia l conditions become
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•p’*’ ~  P — l { f x x  +  hxx) — {p — 1 ) ( /  +  h ) l F r  (2.2.9)

where 7  =  F r  =  are the rescaled surface tension coeffi­

cient and Froude num ber respectively. F ina lly  the in te raction  condition fo r subsonic 

flows completes the tr ip le  deck fo rm u la tion ,

= (2.2.10)
^  7-00  3 - 5

2.3 Boundary layer on elongated obstacles

From now one in  th is  Chapter we examine the steady case, d j d t  =  0. The firs t step 

now is to  rescale the problem  tak ing  the length o f the hump L  as our typ ica l length 

scale. We consider long humps w ith  T 1 on the tr ip le  deck scale. The procedure 

is s im ila r to  th a t used in  Sm ith, B righ ton , Jackson, H unt (1981). We take

y  ~ Z f 3 ,

Then from  the balance ~  p ^  and, from  (2.2.10) we know A  ~  zp"*", we have

A  L s .

We examine now humps w ith  a height scale /i ~  Ts  ̂ as we want a con tribu tion  

{A-\ -h)  0 { L ^ )  i.e. A =  - h - \ - 0 { L ï ) .  Th is  height produces a nonlinear response in

the viscous layer w ith  the induced pressure p roportiona l to  the slope o f the obstacle 

h / L .

To keep the in te rfac ia l effects in  the analysis we m ust ensure th a t the fllm  remains 

w ith in  the viscous sublayer so we take

a ~ / ~ T 3  => f  <. h. (2.3.1)

F in a lly  in  order to  keep surface tension and g rav ita tiona l effects in  the problem  

fo rm u la tion  we take

i l  ~  (£ V 3 ) / jT r  =» 7  ~  0 (X ) ,  f r  ~  0 ( i ) ,  (2.3.2)
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In  accordance w ith  the estimates above we in troduce new variables,

Y  =  X =  L x ,

f  =  h =  L ^ / %  a =  L ^ / %

7  =  X7 , F t =  ^ ,  A  = - L ' ^ h [ x )  +  L~̂  À {x ) .  (2.3.3)

The flow  scheme is shown in  flg2 :2(a) and the governing equations expressed in  the 

new variables are

w ith  the boundary conditions

ÿ  00 : Ü + =  ÿ - â y U ,  +  À {x )  +  o { l ) ,  (2.3.6)

ÿ =  0 :  û~ =  0, v~ =  0, (2.3.7)

x - > - o o  f  (2.3.8)
u -  =  X~y,

and also at ÿ =  f { x )

S+ =  « - ,  5 + =  î - =  ü ± / î ( x ) ,  ^  =  (2.3.9)

p+ -  p -  =  j h î  -  h { p -  -  1)1 F t , (2.3.10)

(2.3.11)
7T X -  S

There is no pressure/ displacement re la tion  now w ith  the in te rac tion  condition re­

placed by a given pressure re lated to  the surface roughness.

For com pu ta tion a l purposes the pressure-hump shape re la tion  (2,3.11) is re w rit­

ten ta k in g  Fourier transfo rm s,

/ oo _

e - ‘ '‘* p + ( x ) d i,  :F (p+) =  - 1 * 1  H K ^ ) ) ,  (2.3.12)

-00
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so th a t

^  ^  /  e'kc I I 3^{h{x))]  dk. (2.3.13)
dx I'K y_oo

For the pressure gradient in  the film  the re la tion  (2.3.10) can be differentiated and 

the derivatives o f h calculated e xp lic itly  fo r a chosen roughness.

2.3.1 The numerical m ethod

N um erica l solutions are obtained to  the problems setup in §2.1 and §2.3, by m arching 

in  the appropria te  co-ordinate x or ï ,  using ite ra tions at each streamwise station. 

We outhne the num erical m ethod in  terms o f the variables in  §2.3, however the 

rescalings take the same fo rm  fo r bo th  problems, replacing aU variables x ,. . .  w ith  

X , ... and setting  h =  0 , w ith  the on ly difference in num erical representations being 

the fa r-fie ld  boundary conditions.

To construct the actua l so lution we rescale the norm al coordinate in  the film  

and make a fu rth e r P ra n d tl sh ift in  the boundary layer w ith  respect to  the unknown 

interface position . In  the boundary-layer equations (2.3.4), (2.3.5) we w rite

(7+ =  V +  =  Ü+ — ü " ^ ^ (x ) ,  X  =  X,  (2.3.1.1a)

P + = p + ,  r +  = ÿ - / ( x ) ,  F = f, (2.3.1.1b)

which yields the equations, vaHd fo r >  0 ,

^  +  .  « P .3 .1 .3 )

w ith  boundary conditions

y + - o o :  U+ =  Y + +  U , - â  +  À { X )  + F ( X )  +  o { l )  (2.3.1.4)

r +  =  0 :  7 +  =  0 (2.3.1.5)

X  -0 0  : U+ = Y +  +  U „  F  (2.3.1.6)

where o u r in it ia l in te rfac ia l speed is Ua =  a ! p ~ u ~ .
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The film  region is mapped onto the fin ite  strip  0 <  Y~ <  1 using a change o f 

variables suggested by D r J. W . E llio tt ( private com m unication ), We w rite

Y~ =  , X  =  X, U~ — (2.3.1.7a)
f { ^ )

V -  =V~  P-=r, F = f ,  (2.3.1.7b)

which give the equations 

and boundary conditions

Y ~ = 0 :  U - = V ~  = 0, (2.3.1.10)

y -  =  1 : y -  =  0, (2.3.1.11)

X - ^ - o o :  U =  UsY~.  (2.3.1.12)

The in te rfac ia l conditions o f con tinu ity  o f tangentia l velocity and norm al velocity, the 

ju m p  in  pressures and shears and the viscous-inviscid in te raction  condition , which 

becomes a given pressure re la tion , are then expressed as

u + { Y +  =  0) =  u - { Y -  =  1), ^ ( y +  =  0) =  ^ ^ ( y -  =  i ) ,  ( 2 .3 .1.13 )

y + ( y +  =  0) =  V - { Y ~  =  1) =  0 , (2.3.1.14)

dP +  d P -  _d?H { p - - l ) d B

d X  d X  ' d X ^  F t d X '
(2.3.1.15)

P +  =  - -  r  (2.3.1.16)
7T / __  X  — S—  00

where h [ x )  =  H { X ) .

The problem  in  §2.1 can also be represented by the same transform ations (2.3.1.1), 

(2.3.1.7) (w ith  aU variables z , ...replaced by x , ...) and the obstacle removed, H { X )  =
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0. The only differences, fo r numerical purposes, are the boundary conditions, (2.1.3),

(2 .1 .6 ), which become

00 : £/■+ -^  1, (2.3.1.17)

X  =  0 :  U-^ =  Ub ( Y + ) ,  U~ =  J Y - ( l - Y - ) ,  F  =  a (2.3.1.18)

where J  =  d?J.

A  three-po in t backward difference is used fo r derivatives and a tw o-po in t 

centra l difference fo r the norm al d irection:

d i { X )  U { X )  -  A i { X  -  A X )  -h i { X  -  2 A X )
d X  2 A X

a e (y ± )  ^ ( y ±  -h A y ± )  -  ^ ( y ±  -  A y ± )

(2.3.1.19)

(2.3.1.20)
5 y ±  2A y ±

where ^ is a representative function.

P rovided the solution is known at X  — 2 A X  and X  — A X  the m om entum  equa­

tions at the next X -s ta tio n  are w ritte n  in  the form

=  d f  (2 .3 .1.21 )

w ith  the coefficients given by

—  P A T T -  _  O T T - PV - ^ A Y -  jy- _ 3 U - ^ A Y -  2u -
“1 -  -  2AX  + (2-3-l-22a)

V T ^ A y -
9  -  (2.3.1.22b)

. . , 2 / 1 d P -  u f
d -  =  ( A y - ) ^  ^

, y .+ ^ A y +  ^  3 [ f t ^ A y + ^

y -+ P A y +

^ 2  ^

(2.3.1.22d)
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where the superscripts p, 2 ,1  and subscript j  represent, respectively, the pred ic to r

value for the current X -  sta tion , the value at the X  — A X  and at X  — 2A X  and

the position. O m ittin g  references to  the specific flu id  layer, to  calculate the new 

values fo r U, V, F , the func tion  is w ritte n  in  the form

U j ^ i = P j U j  +  qj (2.3.1.23)

which upon substitu tion  in to  (2.3.1.21) gives

^
From the boundary conditions, (2.3.1.10), (2.3.1.4), along w ith  the cond ition  o f 

continu ity  in  at the interface we find

Pjmax--1 ~  ^ jm a x - - l  ~  — 0, U}' =  U^nt’ (2.3.1.25)

For the problem  in  boundary layer flow  in  §2.1 the far-fie ld  conditions require

P^Tnax+-l ~  (2.3.1.26a)

and fo r the trip le  deck problem  described in  §2.3 we have

^ ^ a x + - l  “  ^tmax+- l  ~  > (2.3.1.26b)

where the subscripts jmax~^ , j m a x ~ , i n t  refer to  values being taken a t the fina l 

points in  Y + , Y "  and at the interface, respectively. is then found using the in ­

compressibility conditions (2.3.1.9), (2.3.1.3) which have also been discretized using 

the two- and three-poin t difference forms (2.3.1.19), (2.3.1.20).

To begin the solution procedure, guesses are made fo r the in te rfac ia l velocity 

and position Uint, F  at the new X —station, together w ith  a pred icted velocity 

d is tribu tion  across the flow. Then the relations (2.3.1.21) -(2.3.1.25) w ith

the appropria te far-held condition , (2.3.1.26a) or (2.3.1.26b) are used to  calculate 

the ’corrector’ velocities This procedure is carried out w ith  three pairs o f

in it ia l guesses fo r the in te rfac ia l speeds and positions. Tw o functions representing 

interfacia l boundary conditions, A  and B  defined as

A{Uint,F) =  U f „ ,F j r - V ^ , ,  B{Uiru,F) =  f i - { U ç _ U - { U + ^ ) i n t  ( 2 . 3 . 1 . 2 7 )
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are used to  calculate corrector values fo r Uint, F  w ith  tw o-po in t Newton ite ra tions

aimed at satisfy ing the conditions A  =  0 , J9 =  0 and the whole procedure is ite ra ted

u n til a convergence crite rion ,

A U < € i A F C e i ,  (2.3.1.28)

is satisfied, where ei is a chosen tolerance, typ ica lly  o f 0 ( 10“ ®).

2.3.2 R esults

Having estabhshed a credible model fo r the tw o-flu id  flow , w ith in  the film  and fo r a 

comparable depth w ith in  the boundary layer flu id , we look at the various parameters 

which influence the onset o f the G oldstein s ingu la rity /flow  breakdown fo r flow  over 

an obstacle. For the purposes o f the num erical calculations the obstacle was defined 

to  be

H { X )  =  hoe~^^, -oo < X  < oo. (2.3.2.1)

The firs t and most obvious param eter is /iq , the hump size coefficient. The 

ve locity profile  in  the film  can be w ritte n  in  the form

U~ =  X~Y~  +  h o t / - ,  (2.3.2.2)

and since the flow  breaks down where d U ~ I d Y ~  —> 0, we expect the height Hq to  

be im p o rta n t, especially close to  the w a ll where the correction Ü~  is hkely to  have 

its  greatest influence. Looking at our figures 2:2 and 2:3 we see th a t the slope o f the 

skin fr ic tio n  approaches the Goldstein singularity, th rough the m arg ina l s ingu la rity  

where d U ~ / d Y ~ {0) —> 0, as the obstacle height, |/io|, is increased. Graphs o f the 

com parative hum p effects are shown in  figs 2 :2(b )-(e ), fo r a system o f w ater in  the 

film  and an equal m ix tu re  o f sihcone o il V2 and 1-2-3-4-tetrahydronaphtalene in  the 

boundary layer, w ith  the parameters taken from  Pouhquen, Chomaz &  Huerre (1994) 

as an example o f a real dynam ical system, and in  Figs 2 :3 (a ),(b ) fo r a homogeneous 

system. The o ther factors which can affect the onset o f the m arg ina l s ingu la rity  are, 

p - , I / - ,  7 , F r  and â, and Table 2:1 shows how the va ria tion  o f these parameters 

afi’ects flow  breakdown w ith in  the obstacle range —0.5 <  ho <  0.5.
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S ta rting  w ith  the effect o f the density ratios on flow  separation, i t  was found 

th a t i f  the f ilm  flu id  is less dense than  th a t in  the boundary layer then separation is 

retarded, w h ils t denser film s cause separation fo r smaller obstacles. Th is is because 

the shear is reduced in  a denser film  flu id  and vice versa and so a film  coating o f a 

less dense flu id  w ill cause an otherwise separating flow to  rem ain attached.

In tro d u c tio n  o f surface tension in to  the system appears to  enhance flow  reversal 

as does an increased g ra v ita tio n a l influence, F r  ^  oo. As w ith  density, less viscous 

flu ids in  the film  do not cause separated flows fo r the same obstacle height as the 

equivalent homogeneous system, w h ils t more viscous fluids in  the film  have the 

opposite effect, enhancing separation.

The fin a l param eter, the non-dimensional film  thickness, does not appear to  

affect the behaviour o f the system in  term s o f flow reversal, at least no t fo r the 

chosen values o f â, a lthough i t  m ust be remembered th a t the assumption has been 

made in  the scaling o f the problem  th a t the film  thickness remains w ith in  the viscous 

sublayer o f the tr ip le  deck fo rm u la tion . No in te rna l separation o f the type found in 

Sychev (1980), E ll io t t ,  Sm ith , Cowley (1993), T im osh in  (1996) was encountered in 

the cases studied here, w ith  aU failures o f the num erical m ethod, i.e. the occurrence 

o f singularities, being caused by zero waU shear.

Leaving separation aside, and concentrating on flows whose streamwise velocity 

profiles re tu rn  to  th e ir  o rig ina l linear fo rm  fa r downstream, we tu rn  to  the graphs of 

the displacement func tion  À { x )  and the skin fr ic tio n  fo r a given obstacle and tw o flu id  

system. Figs 2 :2 (b),(e ) and 2 :3 (a ),(b ) show intervals o f x w ith  decreasing wall shear 

bu t increased displacement and hence the like lihood o f in flexion points developing 

in  the ve loc ity  profiles fig  2 :4 (a ),(b ), which w ill fa c ilita te  Rayleigh ins tab ility . This 

w in be examined in  the next section.

2.4 Inviscid instabilities in film-coated fiows

I t  was noted in  §2.3.2 th a t the flow  may become unstable to  inviscid  shorter-scale 

Rayleigh-like ins tab ilities . I f  we w rite  L  =  L R e ~ ^  as the lengthscale o f the boundary
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layer flow  over an obstacle on the trip le-deck scale, w ith  L  representing the obstacle 

length , then the new disturbance lengthscale scale is taken as

P^^R e~<  <  <  2 '/ ^  (2.4.1)

i.e. short compared to  the tr ip le  deck scale bu t at least as long as the characteristic 

Rayleigh scale F irs t we examine the case <C from  which

we ob ta in  a long-wave (in  term s o f the film  thickness) in tegra l condition fo r the 

disturbance phase speed c. We then examine disturbances w ith  =  Re~îL^^^ ,  

varia tions o f the pressure te rm  in  y then affect the flow  and ins tab ih ty  is governed 

by the fu ll inv isc id  Rayleigh equation.

We begin w ith  an ana ly tica l exam ination o f bo th  regimes, solving fo r a s ligh tly  

pe rtu rbed tw o  shear streamwise linear ve locity profile , such as th a t generated by the 

flow  over a shallow obstacle, to  ob ta in  the disturbance grow th  ra te expHcitly. The 

results are then compared w ith  those obtained num erica lly using a discrete ite ra tive  

m ethod fo r the fu ll Rayleigh problem , as outhned in  a subsequent section, on the 

profiles calculated in  §2.3.2.

2.4.1 The long-wave instability

We in troduce sm all tem pora l and spatia l wave pe rtu rburba tions , 0(<?), to  the veloc­

ities and pressure fields and define the wave as

E  =  exp i k  ( æ — -— t (2.4.1.1)

W ith  the governing equations given by (2.3.4)-(2.3.11) we w rite  the velocities and 

pressure as

=  U ^ { ÿ )  +  6 { ü f E  +  c . c . ) + ... (2.4.1.2)

=  ... H—-— E  -{- c.c.) +  ... (2.4.1.3)
Lin

V

6 { p f E C.C. )  +  ... (2.4.1.4)

which lead to  the re la tion

=  (24.1.5)
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The boundary conditions at the wall, in f in ity  and an in te rfac ia l cond ition  re la ting

the norm a l ve loc ity  and pressure in  the film  to  th a t in  the boundary layer complete

the problem  fo rm u la tion :

V (2/ =  0) =  0 , - g ^ i y  =  00) =  0 (2.4.1.6)

and at y =  f

( [ , . _ , ) (  ( W - 1" * - ‘ K . )  I . # . , .

\  - p 'K B r t f . -  - ( y - /

where 7  =  7 /Z ^ .  We solve this and find  a general solution in  the fo rm

5 + =  Q t { U +  -  c) £  -  0 ) (2  4.1.8)

^  1
V -  =  Q - ( U -  -  c) ^  _ _  dg +  Q ^ { U -  -  c) (2.4.1.9)

The boundary conditions (2.4.1.6) force =  0, Q 2 =  0, from  the in te rfac ia l

cond ition  (2.4.1.7) we ob ta in  the re la tion

QZ =  P ~ Q ï  -  ^ T c ’ (2.4.1.10)

and the no rm a liza tion  condition V i ( f )  =  1 gives

Q l  — ~  Jo {U~ — (2.4.1.11)

C o n tin u ity  o f v at the interface then gives the dispersion re la tion

2.4.2 Rayleigh-wave instability

In  th is  subsection we a tta in  an asym pto tic  approxim ation to  the d isturbance phase 

speed c fro m  the inv isc id  Rayleigh equation fo r disturbances w ith  wavelength Lw =
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We s ta rt by tak ing  an ana lytic  approxim ation to  the streamwise base ve locity 

profiles U (ÿ )  in  (2 .4.1 .2 ), w ritin g  them  as piecewise-hnear profiles w ith  a small cor­

rection 0(e) ,  here p ropo rtion a l to  base flow  departure from  linea rity  and hence the 

hump size ho, where d <C e <C 1. A  s im ila r analysis applies to  the enhanced mean 

flow profiles examined in  Chapter 4. We also expand the in te rfac ia l position in  

powers o f e, and w rite

(7 + =  ÿ - â + U ,  +  eG+(ÿ),  (2.4.2.1)

U~  =  A -ÿ  +  e G -(ÿ ), (2,4.2.2)

f  — c - j - c f i . (2.4.2.3)

Here d is  the unperturbed interface position, A“  =  l / p ~ , U a  =  A“ aand  we norm alize 

the flow  such th a t at the interface û ^ ( ÿ  — f )  =  Ug -{■ e.

The shortened lengthscale, compared w ith  th a t o f §2.4.1, leads to  the fuU inviscid

Rayleigh equation fo r the norm al velocities v^ ,

(Cr± -  c)(ü±  J -  k ^ v * )  =  U ÿ ÿ ^ v f  (2.4.2.4)

w ith  boundary conditions

v ~ ( y  =  0 ) =  0 , v '^ (ÿ  =  00) =  0 . (2 .4.2 .5)

Expanding v i  and c in  powers o f e

Vi =  Vq "b •••> c =  cq "1“ eci -j- ..., (2 .4.2 .6 )

and, subs titu ting  in to  (2 .4.2 .4), we find  the solutions

=  (2.4.2.T)

We take these solutions, which satisfy the boundary conditions (2.4.2.5) and pu t

them  in to  the in te rfac ia l condition (2.4.1.7). L inearizing and tak ing  term s 0 (1 )

gives a dispersion re la tion  fo r the leading order phase speed c q ,

(Ua — C o )  (l + h(Ua — Cq )  — p (X — (Ua ~  Co)k COth. k à ) )  = 7^ )̂ (2 .4 .2.8)
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which has the  solution

1 -  p A ±  \ / ( l - p - A - ) ^  +  47 * 3(1 +  p -  cothfcS) /o .  o 01 
2fc(l +  p - c o th i5 )  ■ ^

We note th a t, fo r a ll positive wavenumbers k, cq is real. In  pa rticu la r in  the case o f

no surface tension

C o  =  U. or C o  =  ! 7 ,  +  ^  '  (2.4.2.10)

The g row th  ra te  w ill be found from  c i. The next order term s, 0 (e ), in  (2.4.2.4) give

(£1± -  c o )(v 4 -  -  1 :V ± )  =  Fo±, (2.4.2.11)

and we look fo r a solution o f the fo rm  V-^{ÿ)  =  F ^ { ÿ ) V ^ { ÿ ) .  The solu tion now 

depends on the position  o f a c ritica l layer which form s at ÿ =  ÿc where U{ÿc) =  cq.

We w ill f irs t pursue the case o f a c ritica l layer in  the film . We have 

fo r ÿ <  ÿc,

V f  =  Vo / ;  ^  V ;  (2.4.2.12)

fo r ÿ >  ÿc,

= V  r  A I  r  + V  r  ̂ d y + h v , - ,  ( 2 .4 .2 .13)
dye Vq [dye  ̂ 0̂ J dye: Vq

•• G+,V q̂ '

0 ÿ - â + u ,  ,   ̂ .0

where the 6i ’s are constants o f in tegra tion . The solution fo r V {' contains a te rm  o f

the fo rm

V f  = B{ÿ  -  ÿc)l iL\ÿ -  ÿc\ - \ - ..., (2.4.2.15)

and as ÿ —> ÿc

^  ■■■ "  A-(S -  co/Â-V (2.4.2.16)
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so B  =  G ^ÿ {ÿ c )V ^ {ÿ c ) l ^ ~  and ÿc =  c q / \ ~ . The jum p  in  the derivative o f the 

norm al ve loc ity  across the c ritica l layer is p ropo rtiona l to  the loga rithm ic  te rm  in

(2.4.2.15),

y { ÿ { v t )  -  y i ÿ i ÿ c )  =  (2.4.2.17)

where ÿ f  denotes the lim it  value taken as y ÿc above or below the c ritica l layer. 

The rem ain ing boundary conditions are the norm aliza tion  (2.4.1.6) a t the interface, 

the con tin u ity  in  the norm al ve locity across the c ritica l layer, i.e.

F ± (a ) =  -/iV o $ (â ), V f  (5+) =  V f  ( ÿ f ), (2.4.2.18)

and the pressure ju m p  across the interface w ritte n  as (2.4.1.7).

O ur aim  is to  find  the im aginary p a rt o f Ci so we need concentrate only on 

the im ag inary  parts o f the relations (2.4.2.18). Solving fo r Vi,- using the boundary 

conditions (2.4.2.17), (2.4.2.18), substitu ting  in to  (2.4.1.7), and tak ing  the im aginary 

term s 0 (e) we find

^ ^  _____________ f>_(t^» -C o )V G j,j,(ÿc)s inh^fcÿc_____________  (2.4.2.19)
X~ sinh ka[{Ug — co)^A:(sinh A:â +  p~ cosh A:â) — sinh kà)

In  the case o f the c ritica l layer occurring in  the boundary layer we find

{Us -  co)^7rO^(ÿc)e^(°"^=)
Cli =  7— TTT:--------— ---------r-7TI--------ITTTT .̂ ., , ,2

(sinh k{yc -  a) +  cosh k{yc -  a ) ) { k { l  +  p~ c o th ka){Ua -  cq) -  7 /2̂ )
(2.4.2.20)

Taking the long wave lim it A; —> 0, the im aginary p a rt o f the com plex wave speed 

is given by the fo rm u la

C i i  i f  <  a, (2.4.2.21)

C l i  ~  '^1  i f  >  a. (2.4.2.22)
p a ^

We see th a t positive  curvature at the c ritica l height ÿ =  ÿc provokes in s ta b ility  i f  

ÿc <  â, and conversely negative curvature is destabiliz ing i f  ÿc >  cl.
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We also examine the short wave h m it A; oo o f (2.4.2.19), (2.4.2.20) to  see i f  

in s ta b ility  persists. For bo th  the case o f the c ritica l layer in  the film  and the c ritica l 

layer in  the boundary layer flow  we see th a t surface tension becomes the dom inant 

effect fo r short waves and the disturbance is strongly stabihzed. I f  there is no surface 

tension c ^  —̂ O'*' as A: —> oo.

2.4.3 The numerical Rayleigh instability calculation

Here we solve the problem  num erica lly fo r the boundary layer and film  flows w ith  

boundary conditions (2.4.1.6), (2.4.1.7) w ith  the ve locity profile , ü ^ ,  and in te rfac ia l 

position  /  calculated using the num erical m ethod o f §2.3.1. O ur num erical method 

uses the inviscid  Rayleigh equation (2.4.2.4) rew ritten  w ith  the second order deriva­

tive  in  the norm a l ve locity in  a centra l difference fo rm ,

+  a j V p  +  v g t i  =  0, (2.4.3.1)

where

a j  =  - { 2  +  j  , (2,4.3.2)

w ith  the base ve loc ity  profiles w ritte n  in  terms o f the orig ina l ve rtica l co-ordinate 

ÿ, subscripts j  corresponding to  the discrete ÿ  position  and primes denoting d iffe r­

en tia tion  w ith  respect to  ÿ. We w rite

=  P i (2.4.3.3)

which, upon subs titu tion  in to  (2.4.3.1), gives us the form ulae

P ? + i -  p f  +  a f ’

±

w ith  the boundary conditions (2.4.1.6), (2.4.1.7) requ iring

Q2 — P t  ~  ^m ax+ ~  (2 .4.3.5)

Î 2 “  P2 ~  ^ jmax-  ~  (2 .4.3.6 )
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For any given k we make a guess on c, calculate the appropria te norm al velocity 

profile as above, and perform  New ton ite ra tions to  satisfy the in terfac ia l condition

(2.4.1.7).

I t  is im p o rta n t to  note th a t there are three constraints on the effectiveness o f 

th is m ethod, num erica lly  speaking. The firs t is due to  the norm alization in  V  at 

the interface. I f  the non-dim ensional in it ia l f ilm  thickness, â, is too large then 

the num erical m ethod fo r the film  w ill struggle, as the solution decays away from  

the wall. Th is  in  effect means the entire solution is being d istorted to  satisfy our 

condition =  1 at the interface.

The film  thickness also affects the size o f the phase speed c which, as was seen in  

the ana lytic  approx im ation  where Ci =  Ci(co), affects the  m agnitude o f the instab ih ty. 

Further, the m ethod is unable to  detect weak instab ih ties, C{ =  0 (1 0 “ '^), as these 

would require a g rid  size smaller than  our m in im um  com puta tiona lly  reasonable 

stepsize, 2,5 X 10“ ^.

The fin a l constra in t is the value fo r the num erical fa r field. In  the numerical 

solution fo r the viscous sublayer flow  over an obstacle, a value o f f/oo =  ÿi +  10 was 

used since, a t th is  po in t, the gradient o f the profile  was always unaffected by the 

obstacle (i.e. i t  rem ained constant). This was sufficient then fo r a calculation of 

the profiles over the length o f the obstacle, a more d istan t fa r field would have ju s t 

increased ca lcu la tion  tim e  unnecessarily. However fo r the ins tab ih ty  calculations, 

especially a t smaU wavenumbers, the num erical m ethod requires a more d istant fa r 

field such th a t a sm ooth and n a tu ra l decay o f the norm al ve locity can occur. To 

overcome th is  problem  the profiles calculated fo r the flow  over the hump were hnearly 

extended such th a t the fa r fie ld became ÿoo =  ÿi +  80. This number was reached 

upon comparison o f values calculated fo r the phase speed c fo r d ifferent values o f 

ÿoo- A t th is  distance our solutions did not a lte r before the th ird  decimal place, an 

accuracy we were wiUing to  accept in  re tu rn  fo r a reahstic com puta tiona l tim e.
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2.4.4 N um erical results for instability

We examine the case o f non-separating flows which remain attached over the entire 

obstacle. We w ill compare the ins tab ilities  of two flu id  flows over a given obstacle 

w ith  those o f its  homogeneous counterpart.

We s ta rt by exam ining the displacement function A { x )  and the skin fr ic tio n  fo r a 

given obstacle and tw o flu id  flow , flgs 2 ;2 (a ),(d ), and 2:3(a),(b). We observe intervals 

o f X w ith  decreasing w a ll shear bu t increased displacement and hence the likehhood 

o f in flex ion  po in ts , see flgs 2 :4 (a ),(b ), developing in  our velocity profiles, which w ill 

fa c ilita te  Rayleigh ins tab ility .

We discovered, as in  Bodonyi &  Sm ith  (1985), T u tty  &  Cowley (1986), th a t 

fo r homogeneous flow  in flex iona l profiles are not necessarily sufficient fo r ins tab ility . 

We exam ined an obstacle o f a s ligh tly  different fo rm  bu t, as was seen in  Bodonyi &  

Sm ith, there appears to  be a m in im um  obstacle height required to  instigate ins tab il­

ity . In  the next section we wiU examine the s ta b ility  o f a flow w ith  parameters based 

on tw o rea lis tic  flu ids bu t firs t we compare the s tab iflty  o f a tw o flu id  system w ith  

its  homogeneous counterpart tak ing  in to  account the effect o f varying parameters in  

the tw o  flu id  system. We look fo r instabihties in  the flow  over an obstacle o f height 

h =  0.35, close to  the greatest common obstacle height fo r which bo th  flows remain 

attached. W hen the skin fr ic tio n  [ d U ~  f  dÿ{ÿ  =  0)) becomes zero a s ingu la rity  occurs 

in  the slope o f the skin fr ic tio n  and displacement and the flow scheme breaksdown, 

ind ica ting  a strong effect o f the obstacle on the  flow development. Using the size 

o f the skin fr ic tio n  as an ind ica tion  o f the effect on flow development we compared 

a varie ty  o f homogeneous and tw o flu id  systems. Even fo r two flu id  systems w ith  

a la rger skin fr ic t io n  than  the homogeneous counterpart we find instab ilities where 

none could be found fo r the single flu id  case. When we examine the hump size 

{ho =  0.42) which causes the m in im um  non-zero, i.e. calculable, skin fr ic tio n  fo r 

a homogeneous system, we did eventually find  a small pocket o f in s tab ih ty  fo r the 

single flu id  system, fig  2:5, bu t th is  was s till much smaller than th a t o f a tw o flu id  

counterpart w ith  p~ =  2, =  0.5, a =  2 w h ich  had much larger m in im um  skin
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fr ic tio n .

These ins tab ilities , which we found ana ly tica lly  in  equations (2.4.2.20), (2.4.2.19), 

appear to  be present fo r m any non-homogeneous flows. We can have confidence in 

the va lid ity  o f the asym ptotic  approxim ation to the grow th ra te when we see how 

well i t  correlates w ith  our numerical solution, see figs 2:6(e). We w ill show th a t 

the presence o f a f ilm  s ign ificantly enhances the instabihties present in  homogeneous 

flows over an obstacle, w ith  ins tab ih ty  found for a rb r itra r ily  shallow obstacles in 

tw o -flu id  flow .

2.4.5 A particular two-fluid flow

In  th is  subsection we examine the instabihties present fo r a pa rticu la r two flu id  

flow , th a t o f w ater in  the film  and an equal m ix tu re  o f sihcone o il V2 and 1-2-3- 

4-te trahydronaphta lene in  the boundary layer, as used in  §2.3.2, and compare the 

results w ith  its  homogeneous counterpart over an obstacle o f height Hq =  0.35. In  

the tw o  flu id  case strong instabihties were discovered at the x-sta tions before and 

a fter the hum p m axim um , in  the areas o f greatest velocity varia tion , as the flow  firs t 

accelerates and la te r deccelerates. W ith  a film  thickness a =  2, we discover, in  the 

area leading up to  the hum p, th a t the profiles are unstable to  long waves which decay 

in  streng th  and become much shorter as the hump is approached (figs 2 :6 (a ),(b )). 

A t the crest o f the hump no instabihties could be found. Soon after the crest the 

profiles again become susceptible to  long wave instabihties, and the strength o f 

these instab ih ties decreases and the ir wavelengths become shorter, u n til eventuahy 

no unstable waves were detected for profiles fu rth e r downstream (figs 2 :6 (c ),(d )). 

Com parison o f the num erical calculations, using the fuU num erical solution, fo r 

long waves A; —> 0 is favourable w ith  the num erical solutions calculated using the 

in teg ra l cond ition  (2.4.1.12). Further comparisons were made w ith  the ana lytic  m ain 

app rox im a tion  to  the g row th  ra te (2.4.2.19) and, as shown in  fig 2:6(e), there appears 

to  be a fa ir  degree o f corre lation.

For homogeneous flow  over the same obstacle height no instabihties could be 

found. I t  was unclear however i f  th is lack o f in s tab ih ty  in  the homogeneous flow was
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realistic or s im ply a fa iling  in the numerical m ethod to  detect small ins tab ilities . To 

establish which o f these eventualities was more like ly  we devised a ’m erged’ profile, 

where the tw o calculated profiles fo r each d is tinc t s ta tion were combined in  the ra tio

U =  (1 — ^)Uyr/oii +  Af/hg, 0 <  A <  1, (2.4.5.1)

where the subscripts ’w /o i l ’ and ’hg ’ refer to  w a te r/o il, and homogeneous flows 

respectively. As can be seen in  figs 2.7 (a )-(c ), there do not appear to  be any 

significant ins tab ilities  in  the homogeneous flow . F ig  2:7(c) shows the value fo r the 

grow th ra te calculated using the in tegra l condition (2.4.1.12), fo r vary ing values o f 

A.

2.5 The condensed flow problem

In  th is section we consider a different regime o f the previous problem , th a t o f con­

densed flow over a short surface mounted hump on a film  coated w all, o f length 

X <C 1 on the tr ip le  deck scale. The form u la tion  is exactly the same as §2.3 bu t w ith  

the hump size and displacement w ritte n  as

(2.5.1)

The obstacle size is the m in im um  required to  il l ic it  a non-linear response from  the 

viscous layer, and now the fa r field boundary condition fo r the viscous sublayer, 

(2.2.5), is replaced by

ü'^ =  ÿ +  h (x )  -  à +  Us, as ÿ - *  00 (2.5.2)

The problem  is rescaled as in  §2.3.1, using (2.3.1.1), (2.3.1.7) and we ob ta in  the 

governing equations (2.3.1.2), (2.3.1.3) and (2.3.1.8), (2.3.1.9). Taking the derivative
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w ith  respect to  o f these equations we find

d U +  dV +
d X  (2.5.4)

+  (2.5.5)

^  +  1 ^  =  0, (2.5.6)

where =  d U ^  / d Y ^   ̂ and the boundary conditions are

-4  1 as y +  - *  oo, (2.5.7)

and, a t the interface Y~^ — 0 , Y "  =  1

p - W ~ / F  =  W + ,  (2.5.8)

(2.5.9)

The last o f these conditions comes from  the equations (2.5.3), (2.5.5) at the  interface 

at Y'^ =  0, Y ~  =  1 where

W - W  P ' " l

and is required to  fu lly  specify the problem.

2.5.1 The numerical m ethod

E xac tly  as before we discretize (2.5.3)-(2.5.9), w r it in g  derivatives w ith  respect to  

X  in  a three po in t backward difference form  and those in  Y  in  a centra l difference 

fo rm . In  the same manner as in  §2.3.1, is w r it te n  as

+  Q Î ’ +  « 7 -  (2-5-1-1)



Chapter 2: The condensed ûow problem  42

and the governing equations (2.5.3), (2.5.5) are w ritte n  as

=  d f ,  (25 .1 .2 )

w ith  the index i , j  ind ica ting  the discretized X , Y ^  positions respectively and the 

constants a ^ , 6^ , c ^ ,d ^ ,  when U^- >  0 , given by

p . , . , . ,

'7  -
_  _  , V , :A Y - F i . .  { W - , _ , - A W - , _ ^ A Y - ^ F ? U ^

’ “ i  -  2 h x 7 ^  ’
(2.5.1.6)

w ith  A X ,  A y ^  representing the stepsize in  the X , Y ^  directions. In  the regions 

o f reversed flow  then the backward difference fo r X -deriva tives is exchanged fo r a 

three-point fo rw ard  difference, i.e. i f  U^- <  0 then

(2.5.1.8)
J 2 A X u -

and s im ila rly  i f  <  0 ,

The difference representations o f the m om entum  equations, (2.5.1.2) along w ith

(2 .5.1 .1) give the relations

=  ÿ # '

and so the boundary conditions become

U -a , , i  =  Y - i + U .  +  Fi  +  H i ,  V i t  =  =  0. (2.5.1.12)

=  7̂ ,  (2.5.1.13)
* denom
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where

f i - A y +  A y -  2/x - A X

I (P~ ~  -  4 J { - i  +  i^ i - 2) _  7(3Ft_2 -  3 F j - i  -  F j -3  -  F{)^^ .
2 F r A X  ( Â Y p

(2.5.1.15)

We define =  0, =  1 and = 0 ,  Q 2 =  - where - is

the guess fo r in it ia lly  taken to  be the value at the previous X  s ta tion. The

same approach is taken w ith  the problem  fo rm u la tion  now as in  §2.3.1, and we apply 

Newtons m ethod, using tw o functions

MWr.i ,  Pi)  =  U+,. . i  - { Y - a + U ,  + Fi +  Hi) ,  B{wr,i, Fi) =  y+., (2.5.1.16)

to  satisfy A  =  0, B  =  0. The solution is then marched in  X  and fo r areas of 

reversed flow  tw o approaches were used. The firs t was to  make the downstream 

profiles a ll zero as a firs t guess, the F L A R E  approx im ation  (Reyhner &  Flügge- 

Lotz (1968), Sm ith  (1982)) and then ite ra te  globally. The second involved using 

downstream profiles calculated previously fo r an obstacle o f height ho — 6h where ho 

is the obstacle height under investigation, w ith  6h <C 1, again see Sm ith  (1982).

2.5.2 R esults for condensed flow

In  th is  subsection we examine how the different flow  param eters p ~ , p ~ , a influence 

the flow development. Table 2:2 shows the obstacle heights, w ith  an error 0 (0 .2 ) at 

which the flow  reversed. We see th a t denser fluids in  the f ilm  re ta rd  flow  separation 

due to  the im p lic it decrease in  adverse pressure gradient in  the  m om entum  equations. 

Stronger viscosity in  the film  has a s im ila r effect, w h ils t the  f ilm  thickness does not 

appear to  affect the flow  s tructu re  on these scales. The effects o f g ra v ity  and surface 

tension on the hum p flow  were neglected. We present the profile  curvatures fo r 

bo th  a homogeneous and the tw o flu id  flow  o f water and o il examined in  §2.4.4 in 

figs 2 :8 (a) &  (b ) , over the m axim um  obstacle height a t which we could obta in  good
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results fo r the homogeneous case, before m aking a stab ih ty  analysis o f these profiles. 

The regions o f reversed fiow  <  0) can be seen more clearly on a contour p lo t o f 

the stream function  'ip, where ü =  d' ipldÿ, shown in  fig 2 :8c fo r the w a te r/o il fiow over 

a hump o f height 2. As an accuracy test fo r th is  m ethod, a comparison was made of 

our results w ith  those calculated by F .T .S m ith  (1977), (fo r an obstacle defined by 

H { X )  — h o { l  — X'^)  fo r the region | X  |<  1 and zero elsewhere ) and T u tty  &  Cowley 

(1986) ( fo r an exponentia l profile  sim ilar to  our own, H [ X )  =  h o e x p [-1 0 X ^ ]) . 

Good agreement was found w ith  the single flu id  solutions, a lthough our m ethod 

fails fo r strong regions o f reversed fiow. We perform ed a s tab ih ty  analysis on the 

profiles calculated fo r a hump size Hq =  2.0 to  see the ir susceptibiUty to  Rayleigh 

type disturbances and bo th  long and short wave instab ih ty. Profiles at x-stations 

upstream o f the obstacle m axim a h =  Hq, which have negative curvature (see fig 

2 :8a,b), were stable at a ll wavenumbers w h ils t those downstream o f the obstacle 

m axim a, where curvatures are positive, were found to  be unstable. I t  would appear 

from  a comparison o f figs 2 :9 (a ),(b ) w ith  figs 2:9(c),(d) th a t the short wave ins tab ih ty  

found in  the w a te r/o il case m ay be due to  the presence o f an interface. As fo r the 

case o f long obstacles calculated previously, the instabihties found were stronger in 

the two flu id  fiow  examined than  in  the homogeneous fiow over s im ila r obstacles. 

We conclude th a t even fo r short scale surface roughness the presence o f a film  can 

dramaticaUy affect the s tab ih ty  and development o f the flow.
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2.6 Tables and figures

p u a 7 g =  i f F r Obstacle height

1.00 0.51 1.00 0 0 -

1.00 0.51 1.00 0 0 -

1.00 1.01 1.00 0 0 0.5

1.00 1.01 1.00 0 0 -0.4

1.00 1.51 1.00 0 0 0.4

1.00 1.51 1.00 0 0 -0.3

0.51 1.00 1.00 0 0 -

0.51 1.00 1.00 0 0 -0.5

1.01 1.00 1.00 0 0 0.5

1.01 1.00 1.00 0 0 -0.4

1.51 1.00 1.00 0 0 0.4

1.51 1.00 1.00 0 0 -0.3

2.00 2.00 2.00 0 0 0.2

2.00 2.00 2.00 0 0 -0.2

2.00 2.00 2.00 2 0 0.1

2.00 2.00 2.00 2 0 -0.1

2.00 2.00 2.00 0 2 - 0.1

2.00 2.00 2.00 0 2 -0.1

1.20 1.20 1.01 0 0 0.4

1.20 1.20 1.01 0 0 -0.3

1.20 1.20 0.51 0 0 0.4

1.20 1.20 0.51 0 0 -0.3

1.20 1.20 0.01 0 0 0.5

1.20 1.20 0.01 0 0 -0.4

T a b le  2:1  A  tab le  o f in it ia l obstacle heights at which the flow  scheme in  §2.3 fa iled, 

i.e. where F ~ ^ d U ~ / d Y ~  —> 0. The flow  was calculated fo r obstacles in  the region 

|ho| <  0.5, in it ia lly  fo r ho =  0 , w ith  a stepsize dk  =  |0 .1 |. A  bar indicates no fa ilure.
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V P a Obstacle separation height

1.0 0.1 5.0 1.00

1.0 0.1 5.0 - 1.00

1.0 0.575 5.0 2.00

1.0 0.575 5.0 -1.60

1.0 1.05 5.0 2.40

1.0 1.05 5.0 -1.80

1.0 1.525 5.0 2.60

1.0 1.525 5.0 -2.00

0.1 1.0 5.0 1.00

0.1 1.0 5.0 - 1.00

0.575 1.0 5.0 1.80

0.575 1.0 5.0 -1.40

1.05 1.0 5.0 2.40

1.05 1.0 5.0 -1.80

1.525 1.0 5.0 3.00

1.525 1.0 5.0 -2.40

2.0 1.0 5.0 3.40

2.0 1.0 5.0 -2.60

2.0 1.0 2.75 3.20

2.0 1.0 2.75 -2.40

2.0 1.0 0.5 2.40

2.0 1.0 0.5 -1.80

T a b le  2 :2  Neglecting surface tension and gravity, values o f the obstacle height 

ho at which flow  reversal firs t occurs in  the condensed flow scheme o f §2,5, fo r various 

com binations o f /?~, i / ~ , â.
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F igure 2:1. (a) The flow structure for hlm generation via a jet from a slot 
inside the boundary layer on a plate with an obstacle downstream. -4
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Figure2 : l(b )  The velocity profiles at various X-stations calculated numerically for 

(2.3.1.2)-(2.3.1.3), (2.3.1.8)-(2.3.1.9) with upstream profiles U~ =  4 7 ( 1 - 7 ) ,  in the 

film, and the Blasius profile, in the boundary layer fluid, with boundary conditions 

(2.3.1.4), (2.3.1.13) (2.3.1.16) for a =  2, p" =  1.087, %/" =  0.484, 7  =  0, / r  =  oo, 

fig =  0 (c) The velocity profile curvature d^ujdy^ for (a)



9

?
No

S '
c

g
g
fX
pT
c r

F ig u r e  2 :2 .  (a )  T h e  T r ip le -d e c k  s tru c tu re  fo r  th e  b o u n d a ry  la ye r flo w  on

a f i lm  coa ted  w a ll ove r an obstac le  o f n o n d im e n s io n a l le n g th  L.
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Figure 2:2 Numerical solutions for the flow scheme in (a), with initial base flow 

profileas given by (2.3.1.6), (2.3.1.12) and parameters 5 =  2, p” =  1.087, =

0.484, 7  =  0 , F r  =  00, for various obstacle heights:(b) The scaled wall shear 

F~^dU~IdY~{0) against %-station, (c) The interfacial position F  against X-station.
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Figure 2 :2 . As before, (d) The interfacial speed £f‘*’(0) against X-station, (e) The 

displacement A against %-station.
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Figure 2:3. Numerical solutions as in fig 2:2 for homogeneous flow with pa­

rameters a =  2, p~ — 1.0; v~ — 1.0, 7  =  0, F r  =  00 for various ho- (a) The scaled 

wall shear F~^dU~ldY~(0) against %-station, (b) The displacement À  against 

%-station.
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Figure 2:4. The cuvature of the velocity profiles at various X-stations, ho =  

0.35,7  =  0, F r =  00 (a) For the water/oil system p~ =  1.087, i/~ =  0.484. (b ) For 

the homogeneous system p~ =  i/~ =  1.
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Figure 2:5. The unstable eigenvalues of (2.4.2.4), with boundary conditions (2.4.2.5), 

(2.4.1.7), and velocity profiles of the homogeneous flow over an obstacle height 

ho = 0.42, with, p~ =  1.0, u~ =  1.0, 7 =  0, F r =  0, a =  2.0. Imaginary wave 

speed Ci versus k for profiles at various %-stations.
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Figure 2 :6 . The Rayleigh instability of velocity profiles taken from flow over a 

hump, with p~ =  1.087, u~ =  0.484, â =  2.0, ho =  0.35, 7  =  0, F r  =  00. (a) 

real phase speed against k for various X-stations upstream of hump peak, (b ) 

imaginary phase speed c* with X-stations as (a)
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Figure 2:6. As before, (c) real phase speed against for various JC-stations 

downstream of hump peak, (d) imaginary phase speed c,- against k.
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Figure 2 :6 . (e) Comparison of analytic solution for Cj from (2.4.2.19) with the 

numerical solution, for various %-stations.

Figure 2:7. The Rayleigh instability of the combined profiles in (2.4.5.1) for an 

obstacle of height ho =  0.35, at X  =  1 with 7  =  0, F r  =  co, 5 =  2.0. (a) Phase 

speed <v against wavenumber k for various A.
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Figure 2:7. As before (b) imaginary phase speed c* agianst k. (c) q against A for 

k =  0 calculated using (2.4.1.12).
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F ig u re  2 :8 . The curvature o f profiles taken from  the condensed flow  over an obstacle 

o f height ho =  2.0, w ith  7  =  0, F r  =  oo, 5 =  2. (a ) fo r p~ =  1.087, i /~ =  0.484, w ith  

ÿ  p lo tte d  against d'^ujdy^  . ( b )  ÿ  p lo tted  against d'^ujdy^ fo r p "  =  1 .0 , v~  =  1 .0 .



C hapter 2: Tables and figures 60

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
- 1.0 -0.5 0.0 0.5 1.0

F ig u re  2 :8  As before, (c )  Contour p lo t o f the flow in  (a) fo r various constant values 

o f the stream function V’ j ind icated next to  each streamline.
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Figure 2:9, The unstable eigenvalues of (2.4.2.4), with boundary conditions (2.4.2.B), 

(2 .4 .1.7), and velocity profiles taken at various X-stations for the condensed flow 

over an obtacle with ho =  2.0, 5 =  2 (a) p~ =  1.087, u~ =  0.484, real phase speed 

Cj. against wavenumber k. (b) as (a), imaginary phase speed c* against wavenumber 

k
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F ig u re  2 :9 . As before, (c ) p =  1.0, v  =  1.0, against wavenumber k. (d )  as 

(c), Ci against wavenumber k
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C hapter 3

Vortex-wave interaction in a 

two-fluid flow

3.1 Introduction

As outlined in  the lite ra tu re  review in  the general In troduc tion , vortex-wave in terac­

tio n  (V W I)  theory involves the coupling o f a steady three-dimensional vortex w ith  

oblique short scale waves in  a boundary-layer flow and attem pts to  track  the devel­

opment o f b o th  vo rtex and wave downstream o f the wave source. I t  is though t th a t 

these type o f in teractions may provide a mechanism fo r the trans ition  to  turbulence 

in  a boundary layer. In  th is Chapter we develop the weakly nonlinear v o rte x /in  viscid 

wave theory fo r the case o f tw o-flu id  flow  in  a linear shearing m otion. To s ta rt w ith , 

a pa ir o f oblique waves are assumed to  be imposed on the base flow as in  the related 

w ork o f B row n (1993), B row n et al (1993) Sm ith, Brown, Brown (1993) (hereafter 

referred to  as SBB). However due to  the specific role o f the interface and the zero 

curvature o f the base profile , we find  th a t, firs tly , a ll oblique waves are neu tra l in  the 

leading inv isc id  flow  approxim ation (and therefore can produce V W I)  and, secondly, 

fo r some choices o f the film  parameters two pairs o f oblique waves w ith  the cross- 

wavenumbers /? and 3/5 can have equal phase speeds and streamwise wavenumber s. 

The second p ro p e rty  means th a t the tw o pairs w ill in teract between themselves v ia
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the con tribu tions to  the wave induced vortex which is generated around the c ritica l 

layer in  the manner described in  SBB. The precise mechanism o f the resonance w ill 

become clear from  the fo rm  o f the am plitude equations. We add th is  second pa ir o f 

waves to  the problem  fo rm u la tion  and, using an asym ptotic flow  s truc tu re  sim ilar 

to  th a t developed in  SBB, we find  equations governing the wave am plitudes.

The chapter is organized as follows. In  §3.1.1 we establish a dispersion re la tion , 

th rough which we show the possib ility  o f a resonance between pairs o f waves, in  the 

sense described above. A  numerical analysis o f the dispersion re la tion  is followed 

by some ana ly tic  w ork which verifies the existence o f resonant modes. In  §3.2 we 

use the asym pto tic  s tructu re  developed in Brown et al (1993) and SBB to  in troduce 

the second pa ir o f oblique waves and in  the subsequent sections ob ta in  solutions in  

the various flow  regions, shown in  fig  3 : l(a )(b )  . M atch ing the various solutions 

we ob ta in  fou r wave-am plitude evolution equations and some solutions fo r various 

in it ia l conditions are then calculated, w ith  the effects o f nonhnearity shown.

O ur approach to  the flow is sim ilar to  th a t taken in  SBB, a lthough we make 

a s ligh tly  different non-dim ensionalization to  suit our problem. A t a set po in t the 

streamwise ve loc ity  profile  is perturbed by means o f a v ib ra ting  ribbon or some other 

device, generating a pa ir o f oblique waves, periodic in  the span-wise d irection. The 

equations o f m o tion  ( 1.1 .1) are non-dimensionalized tak ing  the in te rfac ia l speed [f* , 

the und is tu rbed film  thickness h*, the tim e the film  viscosity and density

p~ and the pressure as reference parameters, being the g ra v ita tio n a l

acceleration. Th is gives the Navier-Stokes equations fo r a three-dimensional (3 -D ) 

flow in  the fo rm

D v

D u  - 1  dp 2 
D t  F r p ^  dx p^Re  ’

(3.1.1a)

P ) 1 (3.1.1b)

D w  - 1  dp  2^  
D t  F r p ^  dz p^Re  ’

(3.1.1c)

du dv dw (3.1.1d)
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Here F r  =  ( 7 * Re =  p~U^h^, lp~,  are the Fronde num ber and Reynolds 

num ber respectively, the + / — signs refer to  the flow  above and below the interface, 

p~ =  p~ =  I ,  p~̂  =  p,p~^ =  p,  where p  =  p t  I  P i  and p =  p t  I  P i  denote the

viscosity and density ratios in  the fluids. A lso D  =  d / dt  +  u d f  dx +  v d f  dy  F  w d  j d z

and =  d ^ Id x ^  +  d^ /dy^  +  d^ jdz^ .  The base flow  solution o f these equations is

taken as

y>=Uo{y ) ,  p =  Po{y), v =  0 , w =  0 , (3.1.2)

where

Po =  - y ,  Uo =  y,  fo r 0 <  2/ <  1, (3.1.3)

Pq =  ~ { p { y  — 1) +  1), Uq =  ^~^{y — 1) +  1, fo r 2/ >  1, (3.1.4)

and =  1 / p .

3.1.1 Linear inviscid disturbances

For large Reynolds numbers a monochrom atic disturbance to  the base flow  in  the 

fo rm

(u , V, w ,p )  =  {Uq, 0 ,0 , Po) +  ('ü, w , p ) E  +  c.c. (3.1.1.1)

where E  =  exp [ i {a x  +  Pz -  w t)], c — u / a ,  and ü , v , w , p  are small, is governed by 

the equations

ia {Uo -  c)u +  U o{y )v  =  (3 .1 .1 .2 )

i a ( U o - c ) v =  (3.1.1,3)

ia {Uo -  c)w =  (3.1.1.4)

dv
i a ü  +  —— h iPw  =  0, (3.1.1.5)

dy
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which, fo r the constant-shear base profile, combine in to  a sim plified Rayleigh equa­

tion ,

^yy -  =  0. (3.1.1.6)

The solution o f the la tte r must be continuous at the interface and vanish at %/ =  0

and as 2/ ^  00, hence we can take

V =  Asmh 'yy ,  when 0 <  y <  1, (3.1.1.7)

V =  > ls in h 7 exp[7 ( l  -  %/)], when y >  1, (3.1.1.8 )

where 7  ̂ =  +  (3^. For the effectively inviscid perturbed m otion  the in te rfac ia l

kinem atic and pressure-jump conditions can be combined to  give

[p(y =  l ) ] t  =  - ( ^ 7 ^  +  (1 -  c) (3.1.1.9)

where B  =  ' y * / p lg * h ‘l  is the Bond number and the square brackets ind icate the 

jum p  value across the interface. Using (3.1.1.2), (3.1.1.4), (3.1.1.5) and (3.1.1.7), 

(3.1.1.8 ) the exp lic it solution fo r v, the in te rfac ia l cond ition  (3.1.1.9) gives the fo l­

low ing expression fo r the disturbance phase speed

^  ̂ (%/ -  1) ta n h 7
21/(1 -f p ta n h 7 )7

j~} {u -  1) tanh7 7 tanh7 ( l  -  p +  7^5)
y \ 2 i / ( l -1- p ta n h 7 )7 y a ^ F r ( l  -|- p ta n h 7 )

(3.1.1.10)

and we have used A**" =  1/p.  Examples o f the phase speed dependence on the flow  

parameters are shown in  figures 3:2(a)-(e). The nonlinear theory presented la te r 

in  th is  chapter relies on the assumption th a t the oblique waves w ith  the spanwise 

wavenumbers and 3/3 have the same phase speed and wavenumber a.  Figs 3:3 

(a ),(b ) show th is type o f resonance fo r some choices o f the parameters A"  ̂ and p, 

and in  Table 3:1 we show a few examples o f the m any sets o f parameters fo r which 

c{/3) =  c(3/3). Below we establish certain sufficient conditions fo r the resonance.
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3.1.2 A sufficient condition for resonance

Assuming th a t /5 is small we expand c =  1 — c as a Taylor series in  /3^

c =  co(o:) +  /3^c i(a ) +  ~^C2{oi) +  (3.1,2.1)

where Ci =  dc /d {P^) {P  =  0) , C2 =  d^c /d {P^Y {P  =  0). For the resonance condition

c(a,P)  =  c(a,3/3)  to  be satisfied i t  is sufficient to  have C i(a ) =  0 at some a =  ag.

Indeed, in  th is  case we can take

a  =  ao +  60 ; P =  (3.1.2.2)

w ith  smaU e, so th a t the resonance condition can be w ritte n  as

9/5^€^a-^— (ao) +  P^C2{ctg) — /3 ^ e ^ a -^ (a o )  4-----^ ^ 2( ^ 0) +  (3.1.2.3)

Hence

The righ t-hand side o f (3.1.2.4) can always be made positive by choosing â  w ith  the 

appropria te sign. Further, we can show th a t the sufficient condition c i =  0 wiU be 

satisfied, at least fo r small â,  provided the k inem atic viscosity o f the upper flu id  is 

small. Suppose th a t

a* =  ho*a, P* =  ho*P, B *  =  ho*^B, F r *  =  F r fhQ ,  p* =  p*  =  p

(3.1.2.5)

w ith  hg* —>■ 00 and the scaled variables a * , /?*,... o f 0 (1 ) .  We find  th a t i f  kg* —> 00, 

then

dc (1 , / - 2 (/o*A+ -  1)^ { 1 -  p* +  3 a *^ B * )

/3*2=o 4 a * ^ ( l- h p * )  V 4 a * ^ ( l- t - /9*)2 a * ^ F r * { l  +  p*)

The cond ition  dc /d (/3*^) =  0 can now be w ritte n  as

2 D i < ^ D i ^  +  D i a *  +  Dsa*^  =  - 2 0 ^ ^  +  D ^ a *  +  ZD^a*^  (3.1.2.7)
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where =  ( p * X + -  1) / (2(1 + p * ) ) ,  D 2 =  (1 -  p * ) / ( F r * ( l  + p ^ ) ) ,  B 3 =  B * / ( F r * ( l  +  

p*)).  We find  th a t D i  >  0 when l / i / *  =  p * / p *  >  1 and D i  <  0 fo r 1 / 1/* <  1, D 2 >  0 

fo r a ll values o f p*  as long as the lower liqu id  is denser then the upper liqu id , and D 3 

is always positive. The sketch o f the le ft-hand side and righ t-hand side o f (3.1.2.7) 

in  fig 3:4 shows th a t the required a * exists when D i >  0 i.e. when i/* <  1.
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3.2 V W I with two pairs of waves.

In  the  previous section we established the possib ility  o f co-existence o f tw o pairs o f 

obhque waves having the same values o f the phase speed and streamwise wavenumber 

and w ith  the cross-wavenumbers j3 and 3^. Here we consider nonlinear in teractions 

between such waves. The s ta rtin g  equations are taken in  the non-dimensional form  

(3.1.1).

3.2.1 The core flow.

The inv isc id  core flow  regions are those marked 1,2,3 in  fig 3:1 and have scalings 

y =  0 (1 )  and x =  0 (1 ) .  For the velocity and pressure we make the follow ing 

expansions:

^  (ü ie ^ ^ ^  -i- -h ^

6̂ (Û3e'^^ +  (3.2.1.1a)

y “h c.c. J

y- =  Uo{y) -f

V =  e 4-

-{-... 4“ c.c.

■)E+

/

w =  e

(  4- 4- 4- w ;e -*^ ^ ')E 4 - ^

4- 4- 4- w\e~'^^^^)E-{-

y  4"-”  4" c.c. J

(3.2.1.1b)

(3.2.1.1c)

V =  Po[y)  + e3(^3gt/3z +  p4c '^ "  +  v \ e - ' ^ ^ ^ ) E ^  (3 .2 .1 .Id )

y  4"” ' 4" c.c. J

where E  =  e x p [ia (x  -  et)], e =  c.c. stands fo r the complex conjugate and

term s in  E^  and E ^  have been ignored since they do no t affect the V W I. N O TE : 

the superscript * does N O T  denote the complex conjugate in  th is context.
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A  explanation o f no ta tion  is required before we proceed. We w ill be using the 

superscript [*] to  ind icate the result fo r the second (asterisked) wave as the same 

as th a t fo r the firs t wave w ith  any sign changes fo r the second wave ind icated by 

[=p] in  fro n t o f the corresponding expression. We w ill be adding a second subscript 

where necessary to  d ifferentia te between core solutions in  regions 1,2 and 3 o f figures 

3 : l(a ) ,  3 : l(b )  where the precise dom ain o f the solution is im po rtan t.

For the leading norm al-ve loc ity  terms the solution can be w ritte n  in  the fo rm

v i { x i , y )  =  V i { y ) A i { x i ) ,  v ^ { x i , y )  =  V i * { y ) A i * { x i ) ,  (3.2.1.2)

=  V2{ y ) A 2{ x i ) ,  v ^ ( x i , y )  =  V2* { y ) A 2* { x i ) ,  (3.2.1.3)

and we aim  to  ob ta in  am phtude equations fo r the functions A{. The y-dependent 

coefficients, fo r the case o f the c ritica l layer in  the lower flu id  are

H  ^  W ^  s i ^  [ , ^  (3 .2 .1 .4 a)
smh7i2/c sinh7i2/c

f W  =  v ÿ  =  y H  =  (3.2.1.4b)
"  s inh722/t s in h 72ÿc

where x i  =  e^x is the slow streamwise coordinate and 7 ^ =  +  /5^, 7 I  =  +  9j3^.

The wave am plitudes are hence defined by the m agnitude o f the norm al ve loc ity  

oscilla tion at the c ritica l layer. For the case o f the c ritica l layer in  the upper flu id  

we have

V f f  =  s in h 7 il/g^i(!/c-i)^ yW  ^  y W  ^  g7i(yc-y)^ (3 .2 .1.5a)
sinh 7 i

[,] ^  s in h 72y ^^ (y^_ i) y W  ^  yW  ^  g72(y=-y) (3 .2 .1 .5b)
smh 72 » 22 23 V /

We now use these solutions to  solve fo r the next-order wave pertu rba tions. For 

the c rit ica l layer in  the lower flow  we get the general solutions

4 i  =  ^ 3i ~  s in h 7 i 2/ +  cosh713/ -  (®i)> (3.2.1.6a)



C hapter 3: V W I w ith  two pairs o f waves. 71

4*2 =  ^32 s in h 712/ +  cosh712/ -  (3.2.1.6b)
7i Sinn 7 i 2/c

and, for the case of the critical layer in the upper fluid,

4 i  =  s in h 712/ +  cosh7 i 2/ -  7 i2/ ^^7^(y, -1  )^[* ]  (3.2.1.7a)
7 i Sinn 7 i

4*2 =  '^32̂ '*' s in h 7 i 2/ +  G ^"^  cosh712/ +  ( x i ) ,  (3.2.1.7b)

(3.2.1.7c)

S im ila r results are derived fo r Ü4,û^.

The undeterm ined constants F,  G  w ill be deduced in  §3.3 where matches are 

made to  the Stokes layer at the wall, and to  the buffer and in te rfac ia l boundary 

layers. The superscripts + / — used here refer to  the c ritica l layer occurring above or 

below the interface.

3.2.2 The buffer layer.

The buffer, zones 4 in  fig  3 : l(a ) ,(b ) , acts as a viscous, diffusive layer which smoothes 

the d iscontinu ities in  the mean ve locity field generated by the waves and supplies 

the m ain  vo rtex  corrections to  the wave. We introduce a new variable Y  =  G ( l )  

such th a t y — ŷ . — and expand the solution in  the form

=  UoiVc) +  (^'"‘Y U o iV c )  +  +

,11/2

/  4

E € 2
(

n = l

^ 2n - ie i/3z —ifiz

y +h.o. t .  +  c.c.

E
(3.2.2.1)

V =

V2n - ie

+T/2n6

I  + h . 0 . t .  +  C.C

+  ^ In - ie

+  ^5n'
,-3 i l3 z

E
(3.2.2.2)
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w = +

4

,11/2 E 3 ( n - l )  
€ 2

ii>2„ - ie ' ' ’  ̂ +  iü L - i«  

„ = i  \  +  i i ; „ e -3 '^ ^

y -\-h.o,t, -|- c.c.

E
(3.2.2.3)

P — -Po(2/c) + (î/c) + ••• +

y  I  P2n - i e ‘»‘  +

I +P2ne"‘^" + ( 3 . 2 . 2 . 4 )

/

n = l

^ -\-h.o.t. -j- c.c.

where üm, Vm and Wm are the mean-flow corrections which can be w ritte n  in  the 

fo rm ,

Qm =  +  Ü*

+ u „ - 4 i / 3 z
4 m (3.2.2.5)

Here ùm =  (f^mj f^m) and the coefficients ù |^  are z-independent.

Upon subs titu tion  in to  equations (3.1.1) we obta in  relations s im ila r to  those in  

SBB fo r the firs t few wave term s, in  pa rticu la r m atching to  the core flow  we find

v i  =  > i i ( x i) ,  V2 =  A 2{ x i ) ,  (3.2.2.6 )

^  (3.2.2.7)
l a l a

The density and shear here are assumed to  be chosen according to  the position  o f the 

c ritica l layer. The solutions to  the leading wave term s, in  a s im ila r m anner to  those 

in  B row n (1993), are all m anifestations o f the external core behaviour. Solutions fo r 

the harmonics are o f an equivalent fo rm  to  those fo r w ith  a ll parameters

P replaced w ith  3/3, and 71 w ith  72 .

The firs t significant change from  the theory in  B rown (1993) is when we examine 

the term s o f 0 (e^^/^) in  the x — and z — m om entum  and con tinu ity  equations. For
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example, fo r the terms w ith  harm onic we have the governing equations

Uo { y c ) Y { ia Ü 7  + + i a ü lÜ 2 m  +  iaûg'îiam

+ i a Ü 2Ü^m +  ^ 2mY^\  +  ^ 2m.Y^2 +

+  Uo{yc)v7 +  il3{2w*Ü2m -  2w 2Û2Tn +

P 7  +  — 7 l ^ û l ) ,  ( 3 . 2 . 2 . 8 )
F r p ^  p

and

U o ( y c ) Y ( i a w 7 +  wzxC) +  ia{xL2mfh{ +  ül rn '^2 +

=  - J ^ P 7  +  ^ {^ S Y Y  -  7 1 ' w i ) ,  ( 3 . 2 , 2 . 9 )

i a ü j +  i P w 7 i - v j Y  =  0. (3.2.2.10)

M an ipu la ting  these relations using solutions fo r the previous terms we find  th a t 

f}7YY =  y 7 l^ V i2A i(a :i)  +  +  2Ü4mWl)Y

+  J j - j ; ^ - ÿ ÿ {ÿ l ÿ ‘2rriYY +  h ^ l ^ y Y  +  ^2^ im YY )  (3.2.2.11)

where we have expanded in  the core flow  about the c ritica l layer in  the

fo rm

-  VcTF ‘-  =  i  +  ^
n = l

v H  =  1 +  f ;
71= 1

and m atched to  the buffer. The re la tion  (3.2.2.11) shows th a t the component o f

the wave is affected by mean-flow corrections p ropo rtiona l to  cos(2/?z) and cos(4/5z).

These corrections are calculated next. For the vo rtex  components in  the buffer, given

by (3.2.2.5), the con tinu ity  equation reduces to

8 v dv*
=  -n i /3wnm, =  ni(3w*^^ where n  =  2 ,4 ,6 , (3.2.2.12)

and the x-  and z-m om entum  equations are, respectively.
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Again the viscosity and density are chosen according to  the c ritica l layer position.

Except fo r differences in  no ta tion , analysis o f (3.2.2.12)-(3.2.2.14) proceeds exactly

as in B row n (1993) by tak ing  Fourier transform s, o f equation (3.2.2.14) firs t, w ritin g  

the jum p  value fo r the n th  z-harm onic o f the mean vortex as

[4 * iy l§ -  =  [“ n irl-oo =  4 * ’ . (3.2.2.15)

where [ninmy]“ oo is found in  the c ritica l layer analysis in  the A ppend ix  to  th is 

Chapter, and defin ing the Fourier transfo rm  o f a function  g to  be

1 f ° °
T { g ) = ^  /  ^ ( z i , y ) e - ' " 'W z i .  (3.2.2.16)

V27r j - oo

Perform ing the transfo rm  and solving fo r ^(wnm)  we ob ta in  the solution

(3.2.2.17)

where =  ik cp^ fp^  and Real[a) >  0. We then substitu te  (3.2.2.17), along w ith  

(3.2.2.12), in to  (3.2.2.13) to  ob ta in  an equation fo r

(3.2.2.18)

In teg ra ting  the rig h t hand side fo r Y  >  0, Y  < 0  and solving, we establish th a t

-  e - ' l ^ l ( ^  +  1)), (3.2.2.19a)

^ (-W  ) ^  _ [ z h g ÿ g k l : F ( j M ) ( l  _ e -‘’ l ^ l ( ^  +  1)), (3.2.2.19b)

for y  > 0  and Y  <  0, respectively. We substitu te  th is fo rm  in to  equation (3.2.2.18) 

to  ob ta in  the re la tion

r  fo r y  >  0 . ( 3 .2 .2 .20 )
Jq X u Y  4z/cc

which we can inve rt using the convolution theorem. Coupled w ith  the corresponding

result fo r Y  <  0 th is  leaves us w ith

/ I  =  l -W v iy > iP  1 2  4 " '(4 j^ . (3-2.2.21)
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We can now use th is  re la tion  to  in tegrate (3.2.2.11) across the buffer layer. This 

is done, in  a s im ila r fashion to  the approach in  Brown (1993), by using

- *

F r p i f a U ^ ) Y ’

to  establish a re la tion  o f the fo rm

which, along w ith  s im ila r expressions fo r the other terms in  (3.2.2.11), reduces a ll 

integrals to  the fo rm  (3.2.2.21).

As a result we ob ta in

[«7y]“ „ ,  =  5 +  -  5 f  +  Z’”n
FTp^ iaU y (ycY

h 6/)^P2
UyiVc) Frp^ iaUyi^ycY

12/3%I ( 2̂ 12/3̂ P2 s f
F r p M a U y i y ^ y ’ J_

oo
oo

Uy{y,) F rp^ iaU y[y ,f '  Y
For the o ther three wave terms o f th is  magnitude in  e, upon s im ila r m anipu la tion ,

we have

l « .  =  V  -

_  G ffp ; r  W r  ■ „

^^Uy{y,) FrpiiaUy{y,y> Y

[w ]-= o  =  B+ -  5s +  ( +  prp±Lul(y ,y '>  - ^ f ^ d Y

+ - F r p Z u y { y . y ^  L

_ IS ffp: X r  W y
+ ^!7„(ÿe) Fr p^i aUy( y, y’ Y

K y ] “ .  =  B -  -  B r  +  -  p X u y . f ^ L

d)

_ 1%8 :P2 / “  « L y y  . y

Fr pMaUy{ y , f ’ Y
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Here are constants w h ich  w ill  be discussed in  §3.3.

3.2.3 The viscous interfacial layers

T he  shape o f the  in te rface  is taken  in  the  fo rm

. (  +  rj2'e~^*^‘ ) E
ÿ  =  Vi =  1 +

y ( 7 /3 6  +  +  ... +  c.c.

and we w r ite  the  new v e rtic a l coord ina te  as

y =  e~^{y -  y i )  =  0 {1 ) .  (3 .2 .3 .1)

As in  the  o th e r layers o f the  flo w  we expand the  ve locities and pressures as

u  = Fo(l) +  ((^1 + g

+€^°((Û 3 +  % tfo '( l) )e ‘^^ +  ...)S  +  ... +  c.c. (3.2.S.2)

% =  6? E  +  +  - ) E

-t~... "t" C.C. (3.2.3 3)

w =  é’  ( tû ie ' f :  +  E  +  £‘ ° (*3 e ’^" +  . . .)£

~f~ C.C. ( 3 .2.3 4 )

p =  F o ( l)  +  ( ' f o ' ( l ) ÿ  +  ( (P i  +  V i P o ' { l ) y ^ ‘  +  H P 2 +  m P o { l ) y ' ^ ‘  +  ...)  E

+ ( " ( ( %  +  m P o ' W y ^ "  +  - ) E  +  c.c. (3.2.3.S)

For the term s, the governing equations to  the order required here are

viy =  0, pi{j =  0, (3.2.3.6 )

and

j.

iaUgUi  +  Uq ( l ) f l i  =  — p ^ p ± P i +  (3.2.3.7a)
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iaUsVi  =  (3.2.3.7b)

iaUsWi =  . Pi +  ^ w i y y ,  (3.2.3.7c)
r r p ^  p=

i a u i  +  i)2y +  =  0, (3.2.3.7d)

where U3 =  1 — c. From  these equations, observing the invariance o f Vi and p i w ith  

respect to  y, we establish th a t

P3 =  - F r p ^ i a U a V i y  +  (3.2.3.8 )

cosh sinh (3.2.3.9)
laUa F r p ^ { a ^ y  

where cr^ =  y/ iaUaP^ / wi t h =  up +  i a f  and >  0. Again the superscripts 

+ / — ind icate whether we are exam ining the parameters above or below the interface 

and is a constant o f in teg ra tion  to  be calculated later. We apply the boundary 

conditions o f no exponentia l g row th  as \y\ 00 and find

A +  =  - P + ,  A -  =  B ~ .  (3.2.3.10)

Using s im ilar arguments we find , from  (3.2.3.7c), tha t

 -------- , 2 +  C ^(cosh a"^y sinh a * y ) ,  (3.2.3.11)
F r p ^ [ a ^ )

and subs titu ting  (3.2.3.9), (3.2.3.11) in to  equation (3.2.3.7d) we ob ta in

^  ~  T? ^  +  % ( s in h a ^ y  f  cosha^y) +  (3.2.3.12)
F r p ^ [ a ^ )  Ua cr^

where are constants o f in tegra tion , which w ill be determ ined from  m atching, 

and =  —i a A ^  — . Using the conditions at the interface,

[/i=tûis]+= 0, [M±râiÿ]t=0, Oi+ = t'r, (3.2.3.13)

the constants and can be expressed in  terms o f the pressure component

p ^  and the interface sh ift 771 in  the fo llow ing form :

C t  =  ( p j ( J  -  1) +  m ( l  -  P +  7 1 ^ 5 ))  (3-2-3.14)
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A+  =  | C + ,  A f  =  - ^ | C + ,  (3.2.3.15)

E t  =  - ' ^ C + ,  Æ3-  =  LT ; .j / ^ c + .  (3.2.3.16)

Then, app lica tion  o f the kinem atic condition to  (3.2.3.12) shows th a t

, 3 „ „ ,

We can now express the ju m p  value [P sc ji, which we w ill require fo r m atch ing to

the core flow , in  term s o f known constants and V ^ .  Prom the in te rfac ia l ju m p

requirement

\p 3  +  % fbÿ ]o - =  (3.2.3.18)

we then find  th a t

f e l t s  =  -  f e ' B  +  1 -  , )  +  ^ )  . (3.2.3.19)

and s im ila r results are obtained for the jum ps in  ^ 3, ^ 4, and p\ .

3.2.4 The viscous Stokes layer on the wall

The viscous Stokes layer on the w all behaves exactly as in  B rown (1993). I t  has a 

stretched ve rtica l co-ordinate Ÿ  =  e~^y =  0 ( 1), and the expansions

u =  €^Ÿ -j- £^(uie*^^ -f ... ' jE -|- . . . )  -f- C .C ., (3.2.4.1)

u  =  - f  . . . )  -b C .C ., (3.2.4.2)

w =  E  -|- . . . )  -f- C .C ., (3 2 .4 .3 )

p =  —e^Ÿ -f- €^(pjC^^^P/ "b ...) *b c.c. (3.2.4.4 )

We ob ta in , on substitu tion  in to  the governing equations (3.1.1), the solutions

= + (3.2.4.5b)

where â =  y / - i a c ,  R eal(â) >  0 and we wiU m atch these solutions to  the core flow

in  the next section.
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3.3 The amplitude equations

In  th is  section we derive the contro lling  wave-amplitude equations fo r by

establishing the ju m p  in  the fundam ental correction to  the leading disturbances in  

the core flow , and its  derivative, dvl*^/dy,  across the c ritica l and in te rfac ia l 

boundary layers. We do this by m atching the solutions in  the buffer, the core flow , 

the Stokes w a ll layer and the c ritica l layer. Due to  the lin e a rity  o f the base profile  

the loga rithm ic  s ingu la rity  in  the wave solution at the c ritica l layer present in  SBB, 

Brown et al (1993), B rown (1993) is absent therefore

b !* )+  -  =  0 fo r Î =  7 ,8 . (3.3.1)

The constants o f in tegra tion , G 31, G 32, in  (3.2.1.6), (3.2.1.7) can now

be calculated. Recall, when the c ritica l layer occured in  the lower flu id  the solutions 

fo r Ü3 ( and s im ila rly  V4 , ) were

s in h 7 i2 /- f  c o s h 7 i2 /+  t ] * ^ " ( 2/) ,  (3 .3 .2a)

~ s in h 7 i 2/ - f - c o s h 7 1 2 / - l - r ] i^ ~ ( 2/) ,  (3 .3 .2 b )

=  4 ^ - 6 - ^ ! ^  + T ^ l y ) ,  (3 .3 .2c)

and fo r the case o f the critica l layer in  the upper flu id

=  -f3i^ '^s inh7 i 2/ - f  G^’\^'^cosh7 i y - l - r ] i ^ ' ' ' ( 2/), (3.3.3a)

^ 2^  =  -^32 sinh 7 i y c o s h 7 i 7/ - f T | 2̂ '*'(y), (3.3.3b)

=  fg + e - ^ ^ ^  +  T W + (y ), (3.3.3c)

where we have defined as

" S ’ - =
(3.3.4a)

J , ] +  ^  yW +  ^  (3.3.4b)
7 i sinh 7 i  7 i
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M atching to  the Stokes layer at the w a ll we find , from  (3.2.4.5),

G i f  =  — (3. 3. 5)
a c F r y / —lac

and we can express p |*i(0 ), using the solutions (3.2.1,4), (3.2,1.5), (3.2.1.3) to  show 

th a t,

Pn’ (O) =  ^  -  ( N O )  -  c ) 4 t ( 0 ) )

c i a F r

7 i  sinh 7i2/c 
c i a F r  .g7i(y c - i)^ W ^ 2.  ̂j  fo r Vc >  1

(3.3.6)

i  7 i  sinh 7 i

and again s im ila r results hold, w ith  71 replaced by 72 , fo r Ü4,ü^. To find  the values 

o f the other unknowns we must use relations found from  m atch ing to  the buffer and 

viscous in te rfac ia l layers. For c la rity  we w ill concentrate on the case o f the wave Ü3 

only. F irs t, m atching to  the buffer layer yields the relations

=  0 , (3.3.7a)

’̂ '=“ ' ‘»=vr -  F r p M a U y i y , y >  J _ ^  Y

I f  ^2 _ _ _ 6 £ h _ .  r  ^

F r p M a U y { y , f >  Y
) 2 ^ *  roo

d Y

, /  ^2 _  12/3%  . r
^C ^y(yc) F r p M a U y { y , y ^  J _ ^  Y  

=  K i ,  (3.3.7b)

and then m atching between the core flow  and the viscous in te rfac ia l boundary layer 

we find

%(%/ =  I'* ') =  M y  =  1 " )  =  (3.3.8)

Psiv  =  I"*") =  3=^, P3{y =  1“ ) =  (3.3.9)

where V^ jP^c  are unknown constants o f in tegra tion . A lthough  we do no t know any­

th ing  about the precise values o f these constants a ll th a t is required is the  difference 

between them , which we find  from  (3.2.3.16) w ith  (3.2.3.17). Hence

[v s ly l j -  =  V'at -  1̂ 3c =  - ^ ( 1  -  P)^ (3.3.10)
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and is given by (3.2.3.14)-(3.2.3.16), w ith

Pi =  P i j W  =  ( ^ o j ( l ) ^ i ( l )  -  ( ^ o ( l)  -  c ) i ; i jy ( l ) )  , (3.3.11)

where j  =  2 or j  — 3 depending on whether <  1 or yc >  1 respectively. We 

need one fu rth e r re la tion , and we find  th is in  the core flow from  a coupling o f the 

z —; z —m om entum  equations w ith  the incom pressib ility condition to  get

1+

[p^iotUsV^y\Ÿ_
p ^ ia v ^ U o iX )  -  p"^Uo{l)viy:^^ -  p^^iaUsUio:^
, i cL 71^ (3.3.12)

1-

or, using the result from  the in te rfac ia l layer (3.2.3.19), w ith  (3.3.10) and (3.2.3.13) 

[p^ iaUsV3y ] \ l  =  Psvixd'^)  +  <?3%3j(l) +  R 3 , (3.3.13)

where j  =  3 i f  i/c <  1, J =  2 i f  yc >  1, and

Q 3 =  +  -  1) '

+

We can now determ ine the unknown constants, in  the expressions fo r % ,  (3.3.3). 

On subs titu tion  in to  the tw o in te rfac ia l jum p  conditions (3.3.13), (3.3.10) we find

^ " ^ ( 1  -  /)) +  ^ 3i ( ^ )  "  ^ 2(^) +  -^2  s inh 7 i  +  G 32 cosh7 i ^  (3.3.14) 

A pp ly ing  re la tion  (3.3.7a) we obta in

and then using the la tte r  and substitu ting  in to  the re la tion  (3.3.7b) we get

71 (sinh-Ji -̂JoshV)-
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S ubstitu tion  fo r Ggg iu to  the in terfac ia l jum p  condition (3.3.13) gives the rela­

tio n

^32 { - i a l l s ' l f i  (/?sinh7 i  +  cosh 71) -  Q 3 sinh 71) =

sinh 7 i  A

■^7 i  -  c o s h ^ 7 i )  J
X  { i a U s j i  (pcosh7 i  +  sinh 71 ) +  Q 3 cosh71 )

+ -P 3 'ÿ ix i(l) +  R 3 +  Q 3 ^ - ^ ( 1  -  /)) +

+iaUa'Yip ^ - ^ ( 1  -  p) +  ^ 3i ( l )  -  ^32 (^)^  (3.3.17)

and we note th a t

{ —iaUa ' f i  (p sinh 7 % -f cosh 71) -  Q 3 sinh 71) =  0

is equivalent to  the dispersion re la tion  for the phase speed (3.1.1.10) and so the le ft 

hand side o f (3.3.17) is zero, which gives the basis equation governing the am plitude 

func tion  A i .  AU th a t is to  be done now is w rite  aU the various components in terms 

o f A i .

For the case o f the critica l layer in  the upper flu id  we find  

-P3Ï  =  +  (^32(^) “  ^ 31( 1)) +  (^32 “  ^ 31)

 ̂ +  f + ,  (3.3.18)
sinh 7 i

s in h 7 i 2/c +  G jg cosh71 , (3.3.19)

G + =  - F + ---------— --------^ ---------r ------- , (3.3.20)
7 i  sinh 7 i 2/c +  7 i  cosh 7 1 3 /c

^ ^ ( Q s s in h 7 1  +  iaC f3 7 i ( p s in h 7 i  +  cosh 7 i ) ( l  - f  ^ ^ ^ ^ )  =

K i  (^iaUs ^P7 i  s inh 7 i  -  ~  Qs cosh 71

x ( 7 i  sinh 7 i 3/c -f 71 cosh7i2/c)“  ̂

- i a U s {p T ^ ^ y { l )  -  T + y ( l) )  +  i a U s G t i l i  s in h 71 

( ÿ ( l  - P )  +  -  T3t ( l )  +  G t ,  cosh71

+-P3‘̂ l i i ( l )  + -K3 +  Q 3 ^ ;^ (1 ) ' (3.3.21)
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Again the le ft hand side o f equation (3.3.21) is zero as i t  has a fac to r which is the

dispersion re la tion  and again we may form  an am plitude equation fo r A\ .  W ith

sim ilar results hold ing fo r iig, Ü4 , the problem  is now fu lly  described.

Next we w rite  the pressures and norm al ve locity components in  terms o f the 

amplitudes and m atch the solutions o f the core flow  as y yc w ith  those o f the 

buffer layer as |y |  00 .

From m atching, v ia  the buffer layer, to  the core flow , the leading order norm al 

velocity perturbations Vi 2̂ in  the c ritica l layer are

vW =  ® l* l(y ,) fo r  j  =  1, 2 . (3.3.22)

and so in  conjunction w ith  equation (A .8 ) from  the A ppend ix  we find

^  fo r i  =  1 . 2 . (3.3.23)
I 3

We substitu te  fo r UnmYY d Y  in  (3.2.2.24) using equations (A .19),

(3.2.2.21) and change the no ta tion  to  exp lic itly  show the A|*^-dependence w ritin g

Gai'*' =  4 * ' =  •Pi'*’ 4 * ’ ( ^ i ) .

and likewise fo r the terms 4 *^ : 4*^- Com bining a ll our in fo rm a tion

we fina lly  have the am plitude equations,

[ P i P Ù  A i A l J s  +  SP iP i ,  A 2A u d s  +  3 P ^ P l  A \ A l , d s
\  V —OO V —oo J —oo

-  -  ^ ) A 2 X
P i 72

(  P i  Pic r  A l A u d s  +  3P i^ P i  j  ' A;,A5ds + 3P i f ’2c /  ’ A i A 2cds
\  J — OO J — OO J — oo

-  4 8 ^ " % ( 1  -  ^ ) A '2 X
Mi f2

( p i P i ,  r  A i A ' J s  +  P i , p 2 r  A J .A jd s )  =  M f A i  +  4 4 ,  (3.3.24a)
\  J — OO J —oo /
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'fA c  /  ' AlAi^ds +  r  Al^A^ds +  3 A  A c H  A^Aicdsj
J —OO J — oo J — oo /

- 4 8 ^ '^ — ^ ( 1 -------— ) A 2 ( P \ P 2c [  +  A*c-̂ 2 [
f ^ i  'J2 \  J — oo J — oo J

(AAc r  A i A U ^  +  SPiPic  r  A 2A u d s  +  3 P ' P ; ,  C  A \ A \ ^ d ^
\  J —OO J — OO J —oo /

=  M ^ A {  +  i f A l ' ,  (3.3.24b)

-  4 / 3 ^ ^ f ( l  +  ^ ) A i  X 
Pi 7i

( A A c  r *  A iA Î,(iÆ  +  3 A A c  r  A2Aicd3 +  3 A A c  T '  A J A J .d i')
\  J — OO J —oo J —oo /

— 48/3"^— ^ ( 1 -----— ) ^ i  /  A l ^ A 2d s \
Mi Tl V J — oo J — oo J

-  3 2 4 /3 ^ ^ ( ( l  -  — ) A J  ( A A c  A 2 A 5 , d 5 )  =  M ± A ;  +  A 4 ,  (3.3.24c)
M i 7 2  \  7 - 0 0  /

-  48/3^— ^ ( 1 ----- — )A i +  A c A  /  '^ ic '^ 2c('Ŝ
Mi 7 i V 7—00 7—oo /

-  ) x ;  X
Pi 7l

A  Ac r  A 'A u d s  +  3P^^P^ r  A l^A lds +  3Pip2c C  A iA iJ s ]
J —OO J — oo J — oo J

-  3 2 4 A - ( ( 1  -  — ) A 2 f  A  Ac r *  A 2 A ; , d 4  = M } A l  + i±  A j ' ,  (3.3.244)
M i 7 2  \  7 - 0 0  /

where

 ̂= ( a U ^ w )  G9

sinh "/I {‘y i iaUa{p  cosh 71 +  sinh 71) +  Q 3 cosh 71 )

X I  y  (3.3.25a)
\  + Ô 3 1  ( ( 7 iîû:C^5 (p  cosh7 i +  sinh 7 i) +  Q 3  cosh 7 i)) J



Chapter 3: The am p litude  equations 85

i f  =  -
s in h 7 i  (71 zaî7a(/> cosh 7 i  +  sinh 71) +  Q 3 cosh 71)

X I - W D )  , ( 3  3

+ i a U , j i p ( f £ ( l ) - f

j ^ +  ^  7 i(s inh7 i? /c +  cosh7i2/c)

i a U s ( p j i  sinh j i  -  ^̂ 3- ^ " -) -  Q 3 cosh 7 1  

i a U . j i  (Ô 31 s in h 7 i  -  f f ^ ( l  -  p) +  cosh 7 1 ) )  ^

+  ̂ 3 )
(3.3.26a)

 _________ 7 i( s in h 7 iT/c +  cosh 71 ________

 ̂ iaU ,{p 'y I  sinh'yI -  -  Q 3 cosh 71

-  i a U ,  ( / , % ( ! )  -  % ( ! ) )
(3.3.26b)

and fo r s im ply replace 71 by 72 , and the subscripts 3 w ith  the subscript 4.

The effect o f four-wave resonance in  the non-linear V W I is now obvious. We see 

th a t the non linearity  in  the am plitude equations supplies a coupling between the 

firs t and second pairs o f waves. This coupling can be traced back to  the mechanism 

o f the vo rtex-p roduction  by waves. For example the wave te rm  contributes to  

the vo rtex  components, which in  self-interaction w ith  the wave contributes 

bo th  to  th a t wave and to  the second wave p roportiona l to  The second pa ir

o f waves acts in  a s im ila r manner. For the four-wave in te raction  to  be possible, 

however, the resonance conditions form ula ted at the s ta rt o f th is chapter must be 

satisfied. For non-resonant waves the am plitude equations s im p lify  and the entire 

theory reduces to  a special paralle l-fiow  case o f the V W I-th e o ry  developed in  SBB.

Equations (3.3.24)-(3.3.26) were solved num erically using a second order accurate 

m arching m ethod. Figs 3:5 (a ),(b ) show the effect o f the non linearity  on the wave 

development in  the flow , w ith  the parameters taken from  a resonant solution to

(3.1.1.10). A  num ber o f d ifferent wave evolutions are possible, as in  SBB, depending 

on the signs o f M ^ , L f  and the /3-dependent nonlinear coefficients. Due to  the
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large num ber o f possible param eter values, w ith  the fou r in it ia l wave amplitudes 

also a lte ring  the flow  development we present only a few example cases, all w ith  

sym m etric in it ia l conditions fo r the pairs o f waves. Im posing the in it ia l conditions 

y li =  A* =  1 ,^ 2  =  Ag =  0 at x i  =  0, in  fig  3:5(a) we see th a t a fin ite-d istance 

blow-up o f b o th  pairs o f waves occurs, w ith  the second pair o f waves, which are 

infin itesim aUy sm all at the in it ia l s ta tion, captured by the nonlinearity. For the cases 

th a t were investigated, the non-linear g row th  o f the in it ia lly  infinitesim aUy smaU pa ir 

o f waves was a typ ica l phenomenon. In  SBB th is blow-up could be a ttr ib u te d  to  

a ra tio  o f the spanwise and streamwise wavenumbers and the equations could be 

reduced to  a quadra tic  fo rm  fo r analysis, however in  our case th is reduction can 

not be done because o f the in te rp lay between modes. A  comparison w ith  the linear 

behaviour o f the solution shows the dram atic  effect o f the nonlinear terms. A  second

resonant example, shown in  fig 3:5(b), shows the non linearity  s tim u la ting  grow th in

the second pa ir o f waves and re ta rd ing  the firs t pa ir before bo th  are damped fu rth e r 

downstream.

A A ppendix A: The Critical layer

The c ritica l layer has scaUngs governed by the balance

{Uq -  c)u ^  Re'^^Uyy, (A . la )

^  {y ~  2/c )^y (3/c)^ ~  ̂ y y  (A . lb )

We in troduce a new variable Y i where

V - V c  =  (A .2 )

and expand the velocities and pressure as

u  =  Uo{yc) +  ^^Uy{yc)Yi +  . . .

(A ,3a)

^  € ^ ( r i3 e * ^ ^  -f- . . . ) jF  . . .  -f- C .C ., J
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V =  6 (WlcG -i/3 ^ _L r , *+  +  hce -i3i3z _j_

y  4* ...)^? +  ... +  c.c.

+ (A .3b)

w =
WQm +  +  W2TTÎ

+  ..

+  6"

^ +  w*e +  WgC ^

^  e^(iü3C*^^ 4“ ...)jB  +  ... 4" c.c.

(A .3c)

P — Po{y)  4- c^fo  (2/c) 4-...

^ 4- P2^“ *^^^)£^4-

4 - r

\

/

(A .3d )(P ic c - '^ ' 4- 4- P2c c - '^ ^ ' +

\̂  4" ...).£/ +  ... +  c.c.

where iü„ ^  is, as w ill be dem onstrated, the lowest order mean-flow correction gen­

erated by the jum ps in  the transverse shear stresses.

As in  the o ther sections we proceed by substitu ting  these expansions in to  our 

equations (3.1.1) and collecting terms o f like magnitude in  e. From m atching between 

the c ritica l layer flow  and the buffer layer we know tha t

^ i î l  =  0 for i  =  1 , 2 , (A.4)

and obviously the conjugates are also constant w ith  respect to  Y i. Tu rn ing  to  the 

con tinu ity  equation we obta in

V s,* .  3/5  ̂ 3/5
U i  =  W i ,  U i  =  — W i ,  U2 = -------------W2,  U2 =   W g ,

a a a a
/5 w V,* /^ V,* 3/5  ̂ V,* 3/5

Ulc =  lüic, U-̂ c =  —l^lc, '^2c = ------- 1̂ 2c, 'li2c =   '^ 2c'a a

From  the z-m om entum  we establish th a t

a ct

iaUy{yc)YiUi  4- Uy{vc)vi  =

and from  the z-m om entum  balance we have

■ TT / .laUyiVc jY iW i  =

(A.5)

(A.6)

(A.7)
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Together w ith  the results from  the 7/-momentum , th a t are Yi-  independent,

and those o f (A .5 ) we get

pH  =  (A .8a)

pH  =  U y { y . ) i a F j p ^ é ; ^   ̂ (A .8b)

From  the z-m om entum  equation we find , from  the E  independent term s th a t lüom =

0 and collecting terms in  o f 0 (e^°) gives us

- i a { u i w { ^  +  +  U2W1C +  uicW2 +  +  u*2yu){)

+ViW*^Y, +  +  ^2^ 1cn +  +  v^ w I y^

+ i p { w i w l ^  +  3wIw2c -  W2W1C +  3wicW2 +  î î iîc ^ l -  '^ îc '^ î)

=  ^  
p

S ubstitu ting  fo r we have

^I '^lcY,  +  ^Ic'^lY, +  hcW 2Y, +  ^2"Ü;icyi +  +  " ^ * A y ,

3+ 4 iP {w iw l ^  +  wicW2 +  =  ^ f ü 2m y iy i, (A .10)

and using equation (A .4 ) we obta in  the re lation

, ±  roo

f  W 2 m Y iY : .d Y i =  4 z / ) ^  /  ( w iW ^ c  +  1^1 A  +  1^1
J — oo P  J — oo

+
Viwl^  +  V*^Wi +  VicW2 +  

V2W1C +  V^^wl +  V^W2c
( A . l l )

where we have used the fact th a t are Yi  independent and since

~  fo r Î =  1,2, (A .12)

th is implies

WyL 0 as I Y i I—> 00 fo r 2 =  1,2
i ( c )  ' '
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and the te rm  is square brackets in  ( A . l l )  does not con tribu te  and we sim ply have

/•o o  ±  roo

/  'W2TTiYiYidYi =  wicW2 +  w *w l^d Y i .  (A .13a)
J — GO J — OO

S im ila rly

/  "^^mYiYidYi =  f  w^wic +  wl^W2 Y w iW 2cdYi,  (A .13b)
J — oo M  J — oo

[  WimYiYidYi =  +  u;J^u;2d y i,  (A .13c)
J — oo J — oo

[  '^imYiY]_dYi — f  W2c'w* A wicW2dY i ,  (A .13d)
J —oo M  J — oo

r  WGmY,Y,dYi =  1 2 i p ^  r  W2W*2, d Y u  (A .13e)
J — oo J — oo

=  - 1 2 i / 3 ^  r  w l w 2, d Y i .  (A .13 f)
J —oo J — oo

Now re tu rn ing  to  the z-momentum  equation and picking term s in  o f O(e^) 

we get

'WiYiYi -  i o L U y {y c ) ^ Y iW i  =  -  , (-A-14)

which has the solution

Wi

We combine th is  w ith  the solution fo r the conjugate

^  _ 2 ê É i f  ^  '  f° °  e‘(>''^=u,<.yc)/i‘* f ' ‘ Yik-k‘ /3^i  ̂ ( A . 1 5 )

F T f i ^ \ a U y { y c ) p ^ J  Jo

Wu  

to  ob ta in

=  f ------ 7 - V t )  '  r  (A .16)
F T p ^ \ a U y [ y c ) p ^ J  Jo
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and in  general we get

r  =  « p ” [T ] ; i /3 ) ( -p i ‘j[T ])™ i/3), (A .18)
J — OO

where

and

1 when j , k  =  1
l , n  =

3 when j , k  =  2

F r ' ^ p ^ ^  \ a U y { y c ) p ^  J  \ 3 J  \  3

Com bining equations (A .13) and (A .18) give us expressions fo r the ju m p  in  the 

transverse shear across the c ritica l layer, e.g

[ * 4m y .It  =  ^ ^ ^ ( ( i / 9 f t ) ( - 3 i / 3 p ; , )  +  (3 i/3 p 2 ) ( - i/3 p ; j)

=  2 4 i/3 " 4 (p ip 5 ,  +  p2P Î,) (A .19)
P'

w ith  sim ilar expressions fo r w l ^ ,



Chapter 3: Tables and figures 91

3.2 Tables and figures

a Fr B P u P C

0.1 0.1 1000 0 0.2 0.5 2.6200 1.8376

0.1 0.1 1000 2 0.2 0.5 0.3800 2.7881

0.2 0.1 1000 2 0.2 0.5 0.6200 2.6058

0.3 0.1 1000 2 0.2 0.5 0.7900 2.4621

0.4 0.1 1000 2 0.2 0.5 0.9233 2.3519

0.5 0.1 1000 2 0.2 0.5 1.0300 2.2609

0.1 0.1 1000 2 0.3 0.33 0.6300 4.0701

0.2 0.1 1000 2 0.3 0.33 0.9400 3.5907

0.3 0.1 1000 2 0.3 0.33 1.1533 3.2909

0.4 0.1 1000 2 0.3 0.33 1.3167 3.0771

0.1 0.2 1000 6 0.3 0.67 0.1500 1.9468

0.1 0.3 1000 6 0.5 0.6 0.2100 2.1885

0.1 0.4 1000 6 0.5 0.8 0.2100 1.3853

0.2 0.1 10 0 0.2 0.5 0.2033 2.9240

0.3 0.1 10 0 0.2 0.5 0.7733 2.7032

0.4 0.1 10 0 0.2 0.5 1.1733 2.4715

0.5 0.1 10 0 0.2 0.5 1.4733 2.2923

0.2 0.3 10 2 0.5 0.6 0.0300 2.2484

0.3 0.3 10 2 0.5 0.6 0.0330 2.1981

T a b le  3:1 A  few examples o f resonant sets o f parameters fo r which c{P)  =  c(3/5).
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Figure 3:1 The base flow structure in the case when the critical layer oc­

curs (a) above the interface and (b) below the interface
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F ig u re  3:2 Num erical solutions o f (3.1.1.10), phase speed c p lo tted  against /3, w ith  

psrameters ind icated below each figure (a ) a  varying, (b )  p varying.
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Figure 8:2 As before, (c) B =  B jF r  varying, (d) F t varying.
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F ig u re  8 :2  As before, (e ) p. varying.

F ig u re  3 :3  (a )  Num erical solutions o f (3.1.1.10), phase speed c p lo tte d  against 

a , fo r crosswise wavenumbers p  and 3j9, w ith  parameters indicated underneath the  

figure.
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F ig u re  3 :3 (b )  As before, w ith  parameters indicated below the figure.

F ig u re  3 :4  A  p lo t o f the le ft and righ t hand side o f equation (3.1.2.7) against a  

w ith  D 2 =  1, D 3 =  2 , and various D i .
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Figure 3:5 The solutions of (3.3.24) with modulus of the wave-amplitudes 

plotted against xi with initial conditions j4 i(—oo) =  i4J(—oo) =  1, A2(—oo) =  

i4J(—oo) =  0 and parameters for figure (a) as in 3:3(a), and for figure (b ) as in 

3:3(b).
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C hapter 4

Nonlinear short-wave TS 

instability

In  th is  chapter we examine the weakly-nonlinear behaviour o f ToUmien- 

Schlichting (TS ) in s ta b ility  waves in a boundary layer on a liq u id -film  coated fla t 

plate. The flow  is entire ly  tw o dimensional and the problem  w ill be tackled using a 

high Reynolds num ber, high-frequency trip le-deck theory. The fo rm u la tion  used and 

some o f the solutions found are s im ilar to  those in  the single-fluid studies o f Sm ith 

&  B u rgg ra f (1985), who investigated m onochrom atic small am plitude disturbances 

and the ir subsequent g row th  in to  fu lly  nonlinear regimes, and Sm ith  (1986) fo r the 

case o f two-dim ensional wave packets.

As mentioned in  the in tro d u c tio n  to  the Thesis there are m any different effects 

and mechanisms being observed during lam ina r-tu rbu len t tra n s itio n  in  film  flows. 

We investigate the tem pora l development o f two-dim ensional waves w ith  a fixed 

wavenumber along w ith , in  one case, a longer-scale m odulated disturbance. The 

high-Reynolds-num ber flow  governed by the trip le-deck equations in troduced in  §2.2 

o f Chapter 2 is taken as a s ta rting  po in t thus invo lv ing the in te rfac ia l eflfects whose 

influence on the TS modes we aim to  investigate. The film -flow  generation could 

be achieved by various means, fo r example by passing a m oving p la te  th rough a 

s ta tionary tw o -flu id  system close to  the interface between the flu ids, o r v ia  in jection
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o f a second flu id  th rough the solid boundary, or th rough a slot as described in  

Chapter 2 . Here we do not concern ourselves w ith  the precise mechanism o f the 

generation o f disturbances or even the base film  flow  and require on ly th a t the 

in s ta b ility  is triggered in  the fu lly  developed pa rt o f the flow.

The single-flu id investigation carried out by Sm ith &  B u rgg ra f (1985) shows th a t 

the spatia l development o f fin ite  am plitude disturbances are governed at the firs t 

weakly-nonlinear stage by an equation o f the S tuart-Landau-W atson type bu t w ith  

an im ag inary  nonlinear coefficient. As a consequence the non linearity  cannot in flu ­

ence the g row th  ra te  o f the disturbance which continues to  grow u n til the in te raction  

becomes fu lly  nonlinear, the near wall Stokes layer also becoming nonlinear and may 

then become prone to  a Van Dommelen type s ingu la rity  creating a fin ite -d is tance / 

fin ite -tim e  erup tive  breakdown cf. Van Dommelen &  Shen (1982). Sm ith  (1986) 

examined short-wave packets o f fin ite  am plitude waves and obtained a contro lling  

Schrodinger equation again w ith  an im aginary nonlinear coefficient. In  add ition  

however there is also a second order spatia l derivative which describes a ’spreading’ 

o f the d isturbance am plitude due to  wave dispersion.

We m ay apply the basic premises developed in  the above papers to  the tw o-flu id  

flow  using the trip le-deck fram ework o f Chapter 2, §2.2. A  linear s ta b ility  analysis 

carried out by T im osh in  (1997) shows th a t the leading neutra l disturbance frequency 

fo r short TS waves o f wavelength 0 { k ~ ^ )  is =  0{k'^)  whereas the g row th  rate 

is o f 0 (1 ) .  For such short waves the flow  becomes essentially inviscid except fo r th in  

viscous layers near the waU and surrounding the interface. The in s ta b ility  mecha­

nism  fo r the TS waves is provided by the vertica l ve locity displacements produced 

in  these viscous layers w ith  the interface therefore heavily influencing ins tab ility . 

Stable short cap illa ry  waves also present in  the flow  become im p o rta n t under cer­

ta in  conditions. For w h ils t the leading-order TS grow th  rate remains independent 

o f the wavelength, fo r a p a rticu la r com bination o f the flow  parameters the grow th 

ra te  rises to  0 { k ^ ) .  Th is occurs by way o f a linear resonance between the growing 

TS modes and decaying cap illa ry  waves substantia lly  a lte ring  the characteristic flow  

scalings. Th is  chapter represents a nonlinear extension o f th a t work.
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In  section §4.2 we w ill fo rm ula te  expansions fo r the weakly-nonlinear flow  and 

derive a governing wave-am plitude equation fo r the leading-order disturbance. We 

w ill also derive equations governing the ex tra  mean flow  induced in  viscous layers 

around the interface by means o f the shear jum p  mechanism described in  Longuet- 

Higgins (1953) and Dore (1970, 1975, 1976). We show th a t the presence o f a second 

flu id  leads to  a stronger mean flow  than  in  the homogeneous case. However, as in  

the single-flu id studies, the coefficient o f the nonlinear te rm  in  the governing wave- 

am plitude equation is im aginary and so does not affect the exponentia l wave grow th 

rate. A lthough  the nonlinear terms do not affect the flow  development here, the 

a lterations to  the shear profile  by the interfaciaUy generated mean flow  allows the 

flow  to  be destabilized by shorter Rayleigh scale disturbances. These instab ilities 

are examined in  §4.3. The wave-am plitude equation o f §4.2 again predicts the same 

linear resonance as in  T im oshin (1997) and in  §4.4 we explore this resonance at a 

nonlinear level. The am plitude equation changes from  a firs t-o rder (as in  Sm ith 

&  B u rgg ra f) to  a second-order equation suggesting a strong wave coupling. The 

nonlinear coefficient is again im ag inary  bu t th is tim e the non linearity  appears in  

a d ifferentia ted fo rm  which, to  th is authors ’ best knowledge, has not been seen 

before. The wave development is examined and classified and then in  §§4.5,4.5.5 two 

in term edia te  regimes are studied to  t r y  and fo rm  some sort o f bridge between the 

two orig ina l cases w ith  the apparently disparate forms o f the ir governing am plitude 

equations.

Before s ta rtin g  the analysis, an outline  o f the typ ica l scalings governing the 

tem pora l development o f nonlinear TS waves is presented.

4.1 The triple-deck equations and scalings

We assume th a t disturbances are in troduced in  the trip le-deck region located at 

some distance from  the o rig in  o f the base boundary layer and the film  source as 

shown in  fig  4:1a. The d isturbed m otion  in  the viscous zone is governed by the 

equations derived in  §2.2 which, on neglect o f the w all roughness assumed in  th a t



Chapter 4: The trip le-deck equations and scalings 101

section can be w ritte n  in  the fo llow ing non-dimensional and scaled fo rm

w  +  w  -  °

The boundary conditions fo r the equations (4.1,1), (4.1.2) are those o f no-slip on 

the w all, and a m atch to  the flow  in  the bu lk o f the boundary layer,

u~ =  v~ =  0, on y =  0, (4.1.3)

u'^ =  y -  a-j- Uj +  A ( x , t )  o ( l ) , as y oo, (4.1.4)

where a is the unpertu rbed film  thickness and u , is the in te rfac ia l streamwise velocity 

o f the  base flow . Since, in  the base state, bo th  are constants w ith in  the region we 

are investiga ting  we m ay in te rp re t the unknown function  A ( x , t )  as the negative 

disturbance displacement. The disturbance displacement is related to  the pressure 

in the viscous sublayer above the interface by way o f the princ ipa l value in tegra l

- • < - < > I ' " )

which reflects v iscous/inviscid  in teraction . For our purposes in  th is  chapter i t  proves 

convenient to  replace (4.1.5) w ith  the o rig ina l fo rm ula tion  in the po ten tia l outer pa rt 

o f the trip le-deck

(4.1.6)

where ^  is the d isturbance potenticd and A  is the displacement function  in  (4.1.4).

A t  the interface between the two fluids at y =  f { x , t )  we have the kinem atic 

condition , w ith  con tinu ity  o f streamwise and norm al velocities, the con tinu ity  o f 

the tangen tia l stresses and a pressure jum p  expressed in  terms o f the scaled surface 

tension coefficient, 7 , and g rav ita tiona l acceleration, G =  1/ F r .  These are

=  =  =  |  +  (4.1.7)
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p + - p -  =  ( ^ 7 0  +  G ( 1 - / > - ) / ^ .  (4.1.8)

As our base flow , in  agreement w ith  com putations in  Chapter 2 , we take

u+ =  y -  a - j -U j ,  y >  a, (4.1.9a)

u~ =  X~y, 0 <  y <  a, (4.1.9b)

f  =  a, (4.1.9c)

=  A  =  0. (4.1.9d)

Since =  1 th is solution o f the trip le-deck equations is valid  as long

as X~ =  l / p ~  and Ug =  aX ~ .

4.1.1 The instability scalings

We focus on short (high-frequency) TS waves, choosing a small param eter e <C 1 to  

represent th e ir length. Such waves are governed by three tim e scales, a fast, neu tra l 

oscilla tion scale O(e^), an in term ediary tim e scale o f 0 (e) which reflects the presence 

o f an interface, and a slow scale o f 0 ( 1), which picks out linear wave g row th  driven 

by the viscosity, see T im osh in  (1997). The fast scale can be seen from  the estimates

m odelling the inertia-pressure balance, the in teraction  condition and the wave dis­

placement respectively. As usual in  weakly-nonlinear theories, we suppose th a t the 

base flow  (4.1.9) is pertu rbed by a small wave disturbance o f a chosen wavenumber 

and w ith  the streamwise velocity =  0 ( 6%) where the subscript w  indicates the 

wave. N on -linea rity  in  the x-m om entum  equations (e.g. the te rm  uux)  generates 

a second harm onic and mean flow  terms o f O (^i^e) and then the fundam enta l cor­

rection, from  the in te rac tion  o f the leading disturbance w ith  the second harm onic 

and mean flow  term s, is o f 0{6i^e^).  The wave self-m odulation starts when the fast 

tem pora l development o f the fundam ental correction is balanced w ith  the slow-scale 

tem pora l development o f the fundam ental disturbance. This requires <5̂ =  0 (1 ) ,  so 

the leading-order streamwise ve locity in  the wave is 0 (1 ) .  Hence fo r the wave in  the
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film , fo r example, we can w rite

u~ =  A o ( t ) u Q ( y ) B C .C ., where B  =  e x p [ i ( k X  -  cuqT -  u j i t i ) ] ,  (4.1.1.2) 

and we define T  =  e~^t, X  =  e~^x w ith  the operator

A - i A  l A  A
dt  d T  e d t i  dt

o f 0 (1 )  and real parameters A;, wg, w%.

The evolution equation fo r the am plitude A o (t) derived in  the next section tu rns 

out to  have the fo llow ing structure:

dA^

dt
=  [ c r  +  icn)Ao +  ( im aginary const. ) .(non-linear term s), (4.1.1.3)

where ar,(Ji  denote the real and im aginary parts o f the linear wave grow th  rate. 

The structure  holds fo r a general choice o f film  parameters and is in  some respects 

sim ilar to  th a t in  Sm ith &  B urggra f (1985).

As well as the wave am plitude and development scales, a second im p o rta n t area 

o f in terest in  th is  study is an a lte ra tion  in  the mean flow  forced by the Reynolds 

stresses. For short TS waves the lower deck o f the flow  fie ld in  fig  4 : l(a )  becomes 

essentially inviscid apart from  inside th in  layers o f thickness 0 (e) which fo rm  e ither 

side o f the interface and on the wall (the la tte r  being the well documented Stokes 

layer). Th is is illus tra ted  in fig  4 : l(b ) .  For the mean ve loc ity  u =  Um say, in  these 

layers, we have the viscosity/Reynolds-stress balance o f the fo rm

/  du^i, du.
- dx  +  ay  /  ' (4.1.1.4)

hence, w ith  Uu, =  0 ( 1) and ( x , y )  =  0 (e) we have

^  =  0 (1 ) .  (4.1.1.5)

A  subtle difference exists between the mean-flow generation near a solid w a ll and 

at a f lu id /f lu id  boundary. In  the firs t case the estimate (4.1.1.5) im plies Ujn =  0 (e ) 

outside th is  viscous layer (see Sm ith &  B u rgg ra f (1985)), whereas in  the second 

case the re la tion  d u m ld y  =  0 ( 1) implies a sh ift in  the shears outside th is  layer.
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both  above and below the interface (see Longuet-H iggins (1953), Dore (1970, 1975, 

1976)). The mean flow  then evolves on the slow tem pora l scale t =  0 (1 )  and the 

diffusive balance

implies th a t the induced mean flow  spreads over a region y =  0 (1 ) .  We conclude 

th a t, in  the case under exam ination here, the induced mean ve locity  is o f the same 

order as the base-flow velocity, namely o f 0 ( 1).

The wave-am plitude evolution equation o f the fo rm  (4.1.1.3) works fo r any order- 

one parameters o f the film  except a t a resonance, described in  the linear study 

by T im oshin (1997) as being between grow ing TS modes and decaying capillary 

modes, characterized by a certain re la tion  between a ,p ~ ,7  and G  in  the trip le-deck 

fo rm u la tion . A t resonance the grow th ra te  o f short waves rises to  as in

the linear problem , and so the slow tim e scale governing the wave g row th  becomes 

t =  0 (e^ /^). We discuss the scalings fo r th is and fo r two fu rth e r in term edia te  regimes 

in  the preambles to  each section.

4.2 Short scale disturbances. The inviscid regions

For a general choice o f the g rav ity  and surface tension coefficients, we define the short 

streamwise coordinate to  be X  =  e~^x where e is an a rb itra ry  small param eter. The 

other scaled variables involved, as outlined in  §4.1.1, are

t i  =  e t, T  =  £ t, x i  =  ex (4.2.1)

w ith  the operators

d _  1 d I d  d  d  _ l  d  d  d

o f 0 (1 ) .  The solution to  the trip le-deck equations in  the region y =  0 (1 )  is sought 

in  the fo llow ing fo rm  above (-1-) and below ( —) the interface:

+  C.C.) +  (4.2.2)
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=  €~^(v q A qE  +  c.c.) +  +  v^qB  +  c.c.) +  €(v^i B  +  c.c.) +  (4.2.3)

=  e~^(poAoB  +  c.c.) +  (p }qB^  +  p f o ^  +  c.c.) +  e (p ^ E  +  c.c.) +  ... (4.2.4)

/  =  a +  e(BoAoB  +  c.c.) +  ^ { F ^ qB"^ +  F \ qB  +  c.c. +  h ^ )

“t" c.c.) 4" •••} (4.2.5)

where we define B  =  e x p [ i { k X  — uqT  — w ^ ti) ] ,  ujq and cui are assumed to  be real 

and k >  0 fo r definiteness. The terms w ith o u t the B  fac to r represent the mean flow 

which evolves on the slow scales.

Instead o f using the in te raction  law  (4.1.5), the lower-deck solu tion w ill be con­

structed sim ultaneously w ith  the solution fo r the po ten tia l-fiow  equations (4.1.6). 

Taking the ve rtica l co-ordinate for th is  region as fj =  e~^y =  0 (1 )  the equations

(4.1.6) become

=  =  ~  “  (ill +
The po ten tia l (f) then expands in  the fo rm

(f) =  (^o(p)h7 -j- c.c.) - f e^^ ioB  -|- ^ 2qB^ 4- c.c.) 4- ^ ^ { ^ i i B  4- •••) 4- ••• • (4.2.8)

R eturn ing to  the viscous sublayer we substitu te  (4 .2.2)-(4.2.5) in to  the trip le - 

deck equations (4.1.1), (4.1.2) to  find , to  leading order, th a t

- iuoUg =  ikuQ +  =  0. (4.2.9)

We normalize the disturbance w ith  respect to  the leading streamwise wave com­

ponent and note from  the firs t equation in  (4.2.9) th a t th is  ve loc ity  component is 

independent o f the norm al coordinate. Com bining th is  fact w ith  the leading-order 

solution fo r the po ten tia l (4.2.8), 0o =  exp [—A:?/], we find  th a t pg =  kuQ.  The fa r

fie ld condition , which becomes u j ( p  —̂ oo) -> 1 (using the no rm aliza tion ) together 

w ith  the upper-flu id  m om entum  balance in  (4.2.9) then provide the leading-order 

wave frequency uq =  k^.
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The leading-order wave terms can now be found in  the fo rm

Uq = 1, Pq =  k, =  —i k [ y  — a-\- k A ) ,  Fq =  A , (4.2.10)

=  k \ p - / a - - , ) + G { i - p - y

In  deriving (4.2.10)-(4.2.12) we have used the k inem atic condition at the interface 

and the leading-order pressure ju m p ,

=  - i u o F o  =  - i k ^ F o ,  (4.2.13)

Po ~  Po — -k^F o ' y o - { -G { l  — p )Fq, (4.2.14)

and applied the no penetra tion  waU cond ition  u ^ ( i/  =  0) =  0. In  order to  keep the 

g ra v ity  effects at the m ain order we have also taken a larger value of  G,  G =  e~^G 

w ith  G =  0 ( 1).

We rem ark here th a t i t  is obvious from  the fo rm  o f A  in  (4.2.12) th a t, given a 

pa rticu la r com bination o f parameters, A  may become in fin ite  and the solution w ill 

become inva lid . Subsequent sections wiU deal w ith  th is  scenario and we w ill here 

on ly concentrate on the case o f a fin ite  A .

For the h igher-order wave terms in  (4.2.2)-(4.2.4) we have the fo llow ing momen­

tu m  and con tinu ity  balances.

- i k^u^Q  -  i u i u ^ A o  4- i ku^u^Q Ao  +  (4.2.15)

-2ik^u^ç^ +  i k { u ^ A o f  =  (4.2.16). 2 . . ±  , A \2  _  ^ ^ ^ 2 0

P

iku^Q 4- =  0, 2iku^Q 4- =  0, (4.2.17)

^0 ^  +  iku^QUQ*Al  -K A*qV ^ * ^ ^

+ 4 % ^  +  ^ 0^ ? ^  +  i k n U t , A o  =

(4.2.18)
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The equation (4.2.16) shows that the first harmonic terms u q̂ are ^-independent 

and we find from the potential-fiow equation (4.2.6) that

020 = C2oexp [-2/:^], (4.2.19)

where C20 =  is fixed by the conditions (4.2.7). This leads to the relation

P20  ~  (4.2.20)

For the first harmonic terms this gives the solution

^2
U2Q =  "P20 ~  "̂ 20 ~  (̂2/ ~ )̂'^Q d" T̂20c, (4.2.21)

where we have used the condition of no-penetration at the wall. The constants 

and U20C can be found from the interfacial conditions but they are not required in 

the subsequent analysis.

Before the other wave terms are considered we need to state a very important 

assumption with regard to the properties of the mean flow. The 0(1) mean velocity 

in (4.2.2) is governed by the diffusion equation

We shall assume (and we verify this in section §4.3) that the wave induced corrections 

to the base profile in (4.1.9) are confined to the layer y =  0(1), that is, the far-field 

boundary condition to (4.2.23) takes the form

' îio y -  CL + Ug +  0(1) as y -> 00. (4.2.24)

Now we consider the first fundamental correction terms for the wave. The solution 

for the corresponding potential flow term in (4.2.8),

010 =  iW^oiy 00) exp [—A;?7], gives the viscous/inviscid interaction condition

p jj =   ̂ flni uj’o- (4.2.25)
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We apply th is  and the re lation (4.2.24) to  the far-held l im it o f equation (4.2.15) to  

hnd the real frequency correction U j ,

=  ku^ — A. (4.2.26)

The velocities fo r the h rs t fundam ental correction are then w ritte n  in  the form

4- _  Wo 
k

Ulo — +  (^mO -   -  a +  k A )
d u tmO

k dy

'10 =  - ^ P w ( y  -  a) -  i ( k A  -  u , )Ao (y  -  a)

'^10 —

- i A

PÏO

iAo r
Ja

m̂O — (5 — a -f- A:A)
d u tmO

ds

+
A qA du.

uo =  —I

k p -  a 

; f  ̂  _  A qA u i  
p -  a

y A

mO I J

i k A n A  fy

(4.2.27)

(4.2.28)

(4.2.29)

AqA  n

a Jo ds mO

(4.2.30)

where is a constant which we w ill calculate presently and the constant w ill 

be found from  m atching to  the viscous Stokes layer on the wall. Before th is  however 

we w ill fo rm  the basis o f the governing equation fo r the am plitude A q by tak ing  the 

far-he ld  l im it  1/ —> 00 o f equation (4.2.18) fo r the fundam ental correction. Again 

we use the assum ption th a t the mean how occupies a region y ~  0 ( 1) and so 

u t i i y  00) —> 0 does not affect the lim it equation which becomes 

dAo
d t

~ “ Ao|Ao|^ “  ~'^^Pii  d" i k^  lim  - f k —— ,
2  y -*o o  0 X 1

roo

+  W i o ^ ^  +  ^yJoc +  ^-^0 /  — (2/ — a -f A;A)
Ja

(4.2.31)

where we have dehned =  u^o  -  (1/ -  a +  u^) fo r the convergence o f the in tegra l. 

The po ten tia l equations (4.2.6), (4.2.7) and the far-held condition fo r the second 

wave fundam enta l show th a t

W i =  ( c i i  - d x i
' (4.2.32)

where c n  is a constant, c n  =  —i  lim  u u  -  2 l k d A o l d X i j  and the viscous/inviscid
y -*o o

in te rac tion  cond ition  becomes

(4 .2.33)
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S ubstitu tion  in to  (4,2.31) then gives us

l̂Oc) + ^^0 j  U^o -  {y -  a +  k A ) dy

— 0-

(4.2.34)

4.2.1 The viscous Stokes layer on the wall

Close to  the wall there is a th in  viscous layer o f thickness 0 (e ), the Stokes layer, 

which smoothes the inviscid velocity profiles so th a t the conditions o f no-slip and no­

penetra tion  can be satisfied to  aU orders on the wall at 77 =  0 , where 7} =  e~^y =  0 { 1 )  

is the local norm al coordinate. In  th is layer we take the fo llow ing expansions

u~ =  ( * 0 (77)^; -I- c.c.) - f e{iLmo(rj) +  •••) +  - - ,  +  c.c.) -|- ... .

(4.2.1.1)

S ubstitu ting  in to  the trip le-deck equations we obta in

Solutions fo r the leading wave terms are found to  be

&Ô =  -  6- ' " " ) ,  % =  - ^ ( 7; +  -  1 )). (4.2.1.4)

where a~  =  y / —i k ? l u ~ . S ubstitu ting  these solutions in to  equation (4.2.1.3) and 

in teg ra ting  tw ice we find

(4.2.1.5)

where the constants C i, C 2 are fixed by m atching w ith  the region y =  0 ( 1) and the 

no-slip at the wall, respectively.

- 2 , 12

=  =  (4 2 .1 .6 )
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A  consequence o f the fo rm  o f û^ q, the combined base and generated mean flow  in 

th is layer, is th a t, on m atching (77 —> 00), we get the boundary condition o f no-slip 

applying to  the leading-order induced mean flow  outside the viscous layer. From  the 

m atching cond ition  fo r the norm al velocities we also flnd the constant in  (4.2.30) 

to  be

(4.2.1.7)
a - p -

4.2.2 The interfacial viscous layer

In  the viscous layer about the interface we w rite  our velocity components in  terms 

o f the shifted and stretched norm al co-ordinate z deflned by

y =  / 4 - e z .  (4.2.2.1)

We also in troduce the adjusted vertica l velocity — d f j d t  — u ^ d f f d x ,  and

seek the so lution in  the fo rm

u ^  — (uq (2)AoFJ-f c.c.) +  "t" •••) +  •••> (4 .2 .2 .2 )

=  (wg (z )A o E  +  c.c.) +  ... . (4.2.2.3)

The governing equations fo r the term s shown exp lic itly  are

- ik^UQ  — - - ^ P q +  ■ 0-2° , (4.2.2.4)

d w ^
ikuQ +  =  0, (4.2.2.5)

d'^umO

dz^
=  0, (4.2.2.6)

u ^,2 -  + (4.2.2.7)

w ith  stars denoting the conjugate values. The solution o f (4.2.2.5) is o f the fo rm

+ ^ .  - 1 ) - ^  (4.2.2.8)

where <7^  =  y / —ik ^ f u ^ ^  >  0; the constants and a constant o f in teg ra tion  in

are determ ined by the conditions o f con tinu ity  o f tangentia l stress and streamwise
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velocity at the interface and the in te rfac ia l condition Wq (0) =  0. W ith  the expression 

fo r already given in  (4.2.10), (4.2.11) we have

g -  =   ̂ ~  g +  =  (4.2.2.9)
l  +  l  +  p - V l / -

The second fo rm u la  in  (4.2.2.8 ) shows th a t at large z the vertica l ve locity fo r the 

wave acquires a non-zero fin ite  pa rt. The effect o f this is s im ilar to  the near-wall 

Stokes layer con tribu tion  to  the wave solution and like the la tte r  i t  affects the linear 

grow th  ra te  o f the wave.

R eturn ing to  the mean-flow equations (4.2.2.6 ), (4.2.2.7), the firs t o f these shows 

th a t the so lu tion, on m atching w ith  the inviscid region, is

ü^o  =  C/rn where Um is a constant. We then substitu te (4.2.2.8 ) in to  (4.2.2.7) and 

in tegra te  to  find

+  u~A-  A ±

(4.2.2.10)

where are constants o f in tegra tion . The stress con tinu ity  condition and the 

form ula  (4.2.2.9) then give us a re la tion for the wave-induced mean shear ju m p  

across the whole in te rfac ia l layer,

p ~ \ / ü - { k à / a  -  1) ( l  +  kAa/p~'^')
A+ -  m‘ A -  =  V 2 |A o |" I ------------------------------- > - ---------------- -- 1 , (4.2.2.11)

where we have used the u n it values fo r . I t  is th is  ju m p  in  shears, as

opposed to  a ve loc ity  sh ift due to  the Stokes layer, which causes the enhanced mean 

flow  con tribu tion .

4.2.3 The am plitude equation

We m ay now determ ine the governing equation fo r the wave am plitude Ao{x \^ t ) .  

Th is is obta ined from  (4.2.34), by m atching between the inviscid regions and the 

in te rfac ia l and near-wall viscous layers. The leading order m atch shows th a t the
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mean profile  u^ q in  the region y  =  0 ( 1) is continuous across the interface, hence 

— '^mo* M atch ing  the firs t fundam enta l correction (o f 0 (1 )  in  the norm al 

ve locity expansion (4.2.3)) w ith  the solution in  the viscous layers gives tw o re lations,

i kQ-^Ao
iv{Q^ +  iAAo{uJi  -  fcuJo(a)) +  iA: F io  =  -

- i  _ ikAAo{kA -  Us) + i k A A o
y ^ - u .

dy mO dy

-\-Vw +  iAAo[uJi  — ku^Q^a))  +  ik"^ F \ q — - —  ,

and com bining these w ith  the pressure jum p  condition

Pio ~ Pio -  ~ + ^{P ~ )̂] “̂ lOj

gives us p j)  i l l  term s o f jPio ,

(4.2.3.1)

(4.2.3.2)

(4.2.3.3)

Pto =

+

a

A p - A o

Mp~ r  
Jo dy mO dy -

ip

± k p - Q ' A o  _ k
(^ 1  “  A :u ^ o (u )) -

acT' + (4.2.3.4)

I f  we now define the induced mean flow in  the film  as U ^ q — ~  ^.nd

substitu te  fo r from  (4.2.3.1) and fo r p^Q from  (4.2.3.4), using (4.2.1.7), (4.2.2.9) 

and (4.2.25) then the re la tion  (4.2.34) gives us the wave am plitude equation in  its  

fina l fo rm

iAc

\ +/:
+  {PT +  iP i )Ao +  

d y - k A C ^ - l ) u U a )  ^
dy

dy
dy

(4.2.3.5)

where

\ / 2u ^ ( l +  p ~ V ü ~ )
{ { k A  -  a)^ +  k ^ A ^ { l  + p  V ü ~ ) ) , (4.2.3.6)

(3i — —̂ r  *b k^A^  ( 1 +  —̂—{ua — 2 k A )  ) . (4.2.3.T)
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The equation governing the wave-generated mean flow  is found from  (4.2.23) by 

subtracting  the base flow  and app ly ing the no-slip w a ll cond ition  (jus tifled  in  §4.2.1), 

the decay cond ition  in  the fa r fle ld and two in te rfac ia l conditions established in 

§4.2.2, those o f con tinu ity  in  the induced ve locity and a prescribed ju m p  in  the 

shear (4.2.2.11). The flna l fo rm u la tion  fo r the induced mean flow  is o f the form

^mo =  0 at 2/ =  0, U^Q -> 0 as 2/ -> oo, (4.2.3.8b)

U L  =  U-o,  =  J a t y  =  a. (4.2.3.8c)

P'
In  the case o f tw o  flu ids w ith  iden tica l properties (p “  = i / “  =  l , q '  =  G =  0 )  the 

equation (4.2.3.5) reduces to

(4.2.3.8d)

which is almost identica l to  the equation derived in  study o f spatia l in s ta b ility  by 

Sm ith &  B u rgg ra f (1985) w ith  the exception o f the coefficient to  the nonlinear term . 

The difference in  non-linear coefficients is due to  the different approach we took in 

calculating the wave-generated mean flow , allow ing i t  to  spread only th rough the 

diffusive layer 2/ =  0 ( 1) as opposed to  the un inh ib ited  mean-flow penetra tion  across 

the entire boundary layer assumed in  Sm ith  &  B urggra f (1985). Solutions presented 

in  the next section verify  the va lid ity  o f our approach fo r the case o f tem pora lly  

developing waves bu t whether the same is true  fo r spatia l in s ta b ility  remains an open 

question. I t  is im p o rta n t to  note however th a t in  bo th  (4.2.3.9) and (4.2.3.5) the 

nonlinear coefficient is always im ag inary  and therefore non linearity  does not affect 

the g row th  ra te o f jylol. As a po in t o f in terest we also note th a t the homogeneous 

problem  o f Sm ith  &  B u rgg ra f (1985) has very sim ilar tem pora l [ d f d x i  =  0) and 

spatia l ( ^ / 5 t  =  0) fo rm ula tions. This is a qu irk  unassociated w ith  the tw o-flu id  case 

where the generated mean flow  destroys spatio-tem pora l sym m etry, see equation

(4.2.3.8 ). However we see th a t fo r bo th  the single- and tw o-flu id  systems the linear 

g row th  ra te  (5r is positive fo r aU choices o f the flow  parameters.
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4.3 Solution properties and secondary instabilities

The absolute value o f the wave am plitude |Ao| governed by (4.2.3.5) is unaffected 

by the non linearity  due to  its  pure ly im aginary coefficient. To illus tra te , i f  we take 

the slow z —dependence in  the fo rm  expfz/îiæ i] w ith  constant k i  then

|Ao|^ =  Aooexp(2/3j.t), A qq =  constant.  (4.3.1)

This grow ing wave am plitude then creates stronger mean flow , as can be seen from

(4.2.3.8 ) and due to  the quadra tic  nature o f the mean flow ’s dependence on |.4o| i t  

is grow ing faster than  the base wave. The possible subsequent stages o f the wave 

development are discussed in  the fina l section, §4.6. Here we focus on properties 

o f the induced mean flow  which, as we aim to  show, can become unstable to  short- 

wavelength secondary disturbances which could be generated by, fo r example, the 

background noise o f experim enta l equipment or external v ibrations.

We begin by solving equations (4.2.3.8 ) w ith  (4.3.1). W ritin g  the to ta l mean 

velocity, i.e. the sum o f the induced and base components as

=  ““ mO +  0 ( 4 ,  (4.3.2)

as in  the expansions fo r in  (4.2.2), we flnd

'“ mO =  3/ -  a +  Ua +  Am { t)  sinh fo r y >  a, (4.3.3)

u “ o =  +  Am{t )  sinh ( C v )  fo r 0 <  2/ <  a, (4.3.4)

where and

A „ ( t )  = ------------------------V ^ i l - k A l a f e y ^ * -------------- (4 .3 .5 )
(1 +  p - \ /z 7 - ) (^ +  sinh ( ^ -a )  +  cosh (^ "a ) )

The secondary disturbances described in  the fo llow ing section are short compared

w ith  the p rim a ry  TS waves and are heavily influenced by surface tension, whose

effect is greater than  th a t o f g ra v ity  on short waves, as can be seen from  the pressure

ju m p  cond ition  (4.2.14). Therefore we assume th a t the p rim ary  wave is unaffected

by surface tension b u t allow an influence on the secondary waves by a rescaling o f the

surface tension coefficient, and neglect g rav ity  fo r bo th  the p rim ary  and secondary

disturbances fo r s im plic ity .
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4.3.1 Interm ediate secondary disturbances

In  th is subsection we consider secondary disturbances o f wavelength 0 {6 )  assumed 

to  be smaller then the wavelength o f the p rim ary  modes bu t larger then the film  

thickness w h ils t even shorter pertu rba tions w ill be examined in  §4.3.2. Here we take

Re~'î < ( ? < £ ,  (4.3.1.1)

and pe rtu rb  the prim ary-w ave solution o f the governing trip le-deck equations, (4.1.1), 

(4.1.2), in  the fo llow ing  manner

— (^Uq A q E  -f- c.c -(- A g U ^ g )  -|- . . .  -f- 6 a { y ,È  -f- C .C .) -f ..., (4.3.1.2)

=  ... +  ^ { v È  +  c.c.) +  (4.3.1.3)
8

p ^  =■ ... -|- 8a{pÊ -f- c.c.) “t" ..., (4.3.1.4)

f  — <z -f- ... -(- 6a(^f È  -f- c.c.) -|- ..., (4.3.1.5)

where 6a <C fo r aU positive n, E  =  exp [ i k [ X  — cT)] and the new tem pora l

and spatia l variables are defined as X  =  x6~^, T  =  t6~^. W ith  regard to  the 

tem pora l development o f the mean flow  we can trea t frozen and the tem pora l

development o f the p rim a ry  wave can also be ignored on these scales. We find , upon 

subs titu tion  in to  (4.1.1), (4.1.2) the equation

(4.3.1.6)

Solving in  the same m anner as employed in  Chapter 2 §2.4.1, by applying the inviscid 

in te rfac ia l and waU conditions and the decay o f d v ^  j d y  at in fin ity , we arrive at the 

dispersion re la tion

L  7  ̂/o L  ^

fo r the disturbance phase speed c =  c(k)  where, in  order to  keep surface tension

in  the equation, we take 7  =  j6 ~ ^  to  be o f 0 (1 ) .  In  the case =  1, 7  =  0 the



Chapter 4: Solution properties and secondary instab ilities  116

equation (4.3.1.7) reduces to  the re lation

/ : 0 4 7 ^ - " '  "
as derived earlier fo r a homogeneous flow by Sm ith &  Bodonyi (1985), T u tty  &  

Cowley(1986). In  the ir studies o f short waves in  in teractive  boundary layers they 

showed th a t the appearance o f secondary in s ta b ility  required a strong in flex iona l 

profile . In  our case, however, the profiles are characterized by d^u^Q/dy'^ always 

being positive (see (4.3.3), (4.3.4)), bu t the shear d u ^ ^ jd y  is discontinuous at the 

interface and th is  proves to  be sufficient to  provoke ins tab ility .

Solutions o f (4.3.1.7) w ith  (4.3.3)-(4.3.5) have been obtained num erica lly  fo r the 

flow  w ith  p~ =  1.087 and =  0.484, the w a te r/o il m ix tu re  used in  C hapter 2 .

We see th a t fo r the case o f a fixed wavenumber ^ =  1 , fig 4:2(a), the in s ta b ility  is

damped by increased surface tension as expected and th a t the m axim um  in s ta b ility  

appears at a fin ite  mean flow  am plitude Am- In  fig 4:2(b) we examine the case of 

a fixed value o f Am^ close to  the in s ta b ility  m axim um  at Am  =  0.5, and vary the 

wavenumber k. The m axim um  in s ta b ility  occurs as A: —+ 0 which implies th a t in  the 

case o f the least stable generated mean flow am plitude the most unstable waves are 

long. Short waves are stabilized by surface tension and a plausible candidate fo r the 

neutral-wave so lu tion is a s ta tionary disturbance c =  0. Indeed i f  c 0 then the 

in teg ra l over the film  region in  (4.3.1.7) becomes large and (4.3.1.7) reduces to

1 -  i ' k ‘‘  r  - r ^  =  0. (4.3.1.9)

This gives us a re la tion  between the surface tension coefficient and the neu tra l 

wavenumber. For our example, w ith  the mean flow set near its  in s ta b ility  m ax i­

m um  at Am  =  0.5, the in teg ra l has the value 0.44256, hence, fo r 7  =  0.1 the neu tra l 

wavenumber is Â: =  4.75352 and fo r 7  =  0.2, k =  3.36124. These points shown in  fig  

4 :2(b) seem to  be in  agreement w ith  com putations fo r the unstable waves.

4.3.2 Instability of weak primary waves

As in  the  s ta b ility  analysis fo r tw o  flu id  flow over an obstacle tackled in  §2.4.2, we can 

show ana ly tica lly  th a t in s ta b ility  w ill always be present as long as some a lte ra tion  to
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the shear profile  takes place, no m a tte r how small. Since the mean flow  corrections 

are related to  the slowly growing p rim ary  waves, in s ta b ility  o f the fo rm er w ill also 

indicate secondary in s ta b ility  o f the la tte r. W hen Am is sm all the combined base 

and induced mean velocities can be w ritte n  as

'^ i. =  '^b iy )  +  ^rnUmO +  - ,  0, (4 .3 .2 .l )

where

=  X~y, fo r y <  a, (4.3.2.2)

=  y -  a A Us for y >  a. (4.3.2.3)

We proceed exactly as in  §2.4.2, w ith  L  =  expanding the phase speed in  the

fo rm  c =  Co +  AmCi +  •••, which gives us, to  the firs t order, a neu tra l solution fo r cq 

w ith  the dispersion re la tion

( cq — 'Uj ) ( cq — ^3 ) =  ' (4.3.2.4)

exactly analogous to  equation (2.4.2.9) in  the lim it k —> 0. The roo t cq is such th a t

e ither cq >  u ,  and Cq >  a fp~  or cq <  Ua, cq <  a /p ~ . The g row th  ra te  c ^  at the

next order depends on the location o f the critica l layer y  =  yc, where u f [ y c )  =  cq.

Again  as in  (2.4.2.21), (2.4.2.22) we find

if (4,3.2.5a)
p -{u s  -  a l p - )  

a \- '^ {us  -  a j p - )
C i i  =  °  , i f  Vc <  a. (4.3.2.5b)

w ith  the difference in  form ulae due to  the rescaled surface tension here. Equations

(4 .3 .2 .5 ) show th a t fo r in s ta b ility  to  occur we need CfJ[o(2/c) <  0 i f  the c ritica l layer 

is above the interface and /7~o(2/c) >  0 i f  i t  is below the interface. In  the num erical 

solutions o f the previous subsection we had >  0 so only the second in s ta b ility  

mode was found, i.e. the one w ith  the c ritica l layer in  the lower flu id . Prom (4.3,2 .4) 

we see th a t th is  in s ta b ility  w ill disappear i f  7  takes the value 7  =  Uajk^. A  s im ila r 

result holds fo r increased wavenumber k and fixed surface tension.
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4.3.3 Weak surface tension

In  flows w ith  suffic iently reduced surface tension much shorter secondary waves can 

exist, w ith  the typ ica l wavelength (on trip le-deck scales) o f order S =  E e ~ * .  Such 

waves are governed by the Rayleigh equation

( “ mO -  (4.3.3.1)

which, unlike the previously considered fo rm  (4.3.1.6) captures the pressure varia tion

across the layer y =  0 (1 ) .  The boundary conditions o f no-penetration at the wall,

decay at in fin ity  and the usual inviscid in te rfac ia l conditions give us

û+(oo) =  0, û " (0 )  =  0, û+ (a ) =  û “ (a), (4.3.S.2)

( uqo — c )

^  ( “00 -  -  ^ ^ ( a ) v + ( a )  ^

( ( “ 00 -  ô ) ^ ( û )  -  ^ ( “ ) “ ‘ ( “ ) }\  \  dy dy J /
(4.3.3.3)

where uqq =  u^Q(u) denotes the in te rfac ia l speed. Solutions o f (4.3.3.1)-(4.3.3.3) 

were obtained num erically using the m ethod described in  §2.4.3. In  the case o f 

small Am, which corresponds to  weak generated mean flow , the m axim um  grow th  

rates occur as k 0 and hence long waves provide the fastest grow ing instab ih ty , see 

fig 4:3(a). For the stronger induced mean flow , in  fig  4:3(a), the m axim um  grow th  

rate increases and appears at a fin ite  wavenumber. The inclusion o f surface tension 

reduces in s ta b ility  and gives a short-wave neutra l po in t, shown in  fig  4 :3(d), which 

is not present in  the case o f zero surface tension where we observe very short waves 

to  have a small g row th  ra te and a phase speed which approaches the in te rfac ia l 

velocity, see fig  4:3(c). We may show, however, th a t fo r any fixed 7  the g row th  o f 

the p rim ary  wave and hence the im pact o f Am w ill eventually overcome the surface 

tension effect. The la tte r  can be seen in  the fim it as Am  —» 00 , when the disturbance 

phase speed and the base profile  can be w ritte n  in  the fo rm

c =  Am  sinh ( C cl)c +  0 (1 ) ,  (4.3.3.4)

'^mO =  ^rn  smh ( C +  ^ (1 ) ,  (4.3.3.5)
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w ith  7  rescaled as 7  =  7 /(A m  sinh a))^ =  0 ( 1), and

'^mo =  e x p [ - ^ + (2/ -  a)] i f  y >  a; u ~ q =  i f  0 <  y <  a (4.3.3.6)

We solve fo r c using equations (4,3.3.1-4,3.3.3) by sim ply replacing u ^ q , c , 7  w ith  

'“ mO> 7 j note the increased surface tension required to  provide an upper 

neutra l po in t. The solutions fo r such strong induced mean flow  are shown in  fig 

4:4 and again we see no neu tra l cut o ff fo r short waves in  the flow  w ith o u t surface 

tension. Taking the short wave lim it o f the Rayleigh equation in  these new variables, 

we flnd  ana ly tica lly  th a t c —» 1 and exp[=f A:(y — a)] as A: 00 .

In  the case o f surface tension s till exerting an influence, which we rem ark re­

quires re la tive ly  strong surface tension w ith in  the weak surface tension regime,(i.e. 

the unsealed tension is o f <C 1), we again flnd  the solution curves

approaching neu tra l points at fin ite  wavenumbers. As in  the previous subsections 

we assume these neu tra l solutions to  occur at zero phase speed c =  0 , on ly  th is tim e 

the neutra l wavenumber is determ ined by the fu ll Rayleigh fo rm u la tion  o f (4.3.3.1- 

4.3.3.3) w ith  (4.3.3.4-4.3.3.6). The re la tion  between the scaled surface tension 7  and 

the neutra l wavenumber k is found to  be o f the form

^ coth a ( '

-  ^ ( ^ + )2 - fÂ 2  -f 7 P  =  0. (4.3.3.7)

From th is we can now calculate, fo r example, the value o f 7  fo r which Â =  0, th a t 

is the m agnitude o f surface tension required fo r complete stab iliza tion  o f secondary 

modes in  the flow  w ith  dom inating  induced mean component. So in  the case o f an 

equal m ix tu re  o f silicone o il V2 and 1-2-3-4-tetrahydronaphtalene fo r the m ain flu id  

and water in  the film  as used in  previous sections we have p~ =  1.087, u~ =  0.484, 

and fo r the c rit ica l value o f 7 , %  =  0.81545, see fig  4:5. In  terms o f the  previous 

variables 7  >  AfcAj^sinh^ (^~ a )7 c is then the requirement fo r s tab iliza tion  o f 

the short secondary modes.
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4.4 Nonlinear TS-capillary wave resonance

The general set o f expansions (4.2.2)-(4.2.5) assumed in  §4.2 fails when the constant 

A  in  (4.2.12) becomes in fin ite , which is described in  T im osh in  (1997) as correspond­

ing to  a crossing o f the TS wave and a cap illa ry mode. This extreme value o f A  can 

occur fo r a varie ty o f combinations o f the g rav ity  and surface tension coefficients G 

and 7 . We w ill, fo r definiteness, concentrate on the case o f negligible g rav ity  and a 

resonant value o f the surface tension, 70 =  p " /u ,  see (4.2.12) .

I t  was shown th a t the resonant g row th-ra te  fo r the linear counterpart to  this 

study, T im soh in  (1997), was so here we take the slow tem pora l scale to  be

0 (e^/^) and assume th a t 7  is close to , and expand about, the c ritica l value 7  =  70 , 

w ritin g

7  =  7 o +  =  0 (1 ) .  (4.4.1)

4 .4 .1  D e r iv a t io n  o f  th e  a m p l i t u d e  e q u a t io n

The fast and slow variables fo r the wave disturbance are now defined by the relations

X  = £-*x, r  = e-^t, il = r^ /^ i, ( x , r , t i )  =  o (i). (4.4.1.i)

The expansions fo r the disturbance above and below the interface have to  be consid­

ered separately due to  an increased am plitude in  the film  velocity term s, see (4.2.11). 

The same argum ent used fo r the non-resonant regime earlier in  th is  Chapter, con­

necting the wave fundam enta l, harm onic/m ean flow  in te raction  and fundam ental 

correction term s holds here bu t leads to  a different non-linear wave am plitude.
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namely in  the film , where we take

U  =  € * ( A o ( t l ) j E /  -f- c . c )  + 6  2 (^U2qE ^  "t" C .C .) +

6 * ( “UjgjE +  u^qE^  +  c.c.) +  ..., (4.4.1.2)

■y" =  (^i)-B  +  c.c.) +  +  c.c.) +

€ * -f" v^qE^  +  c.c.) -{■ ..., (4.4.1.3)

p — c 4 (v4o(ti)^.A:/) +  c.c.) +  6 ^{jp2qE^ +  c.c.) +

( * (Pio-^ +  î*30-^^ “1“ +  •••> (4.4.1.4)

where e <C 1 is measure o f the TS wavelength, E  =  e x p [ i [ k X  — ujqT ) ] ,  w ith  real k

and Wo and the func tion  describing the interface between the two flu ids is expanded

in  the fo rm

/  =  a +  €*(^FqE +  c.c.) +  (^F2qE^ +  c.c.) +  (^FiqE +  F;^oE^ +  c.c.) +  ... .

(4.4.1.5)

S ubstitu tion  in to  the tr ip le  deck equations (4.1.1), (4.1.2) provides the m om entum  

balances

— IÜJQA.Q — —ik^Ao, ujQ =  k^, (4.4.1.6)

—2 iwQU2Q -j- ikA.Q —
2ik

P20> (4.4.1.7)

dAo  _
ÎLüqU-̂ q +  lkAQV,2o —

i k  _ 
Pio> (4.4.1.8)

and con tinu ity  balances

ikA o  +  _  0, ^ ik u 2o 1 — 0 , ikVi-^Q 4" (4.4.1.9)

where, again, the superscript ( * )  denotes the complex conjugate. The w a ll Stokes 

layer does not make a con tribu tion  to  the norm al velocity components u n t il we reach 

the terms 0 (e ~ î) ,  so

(0) =  "^^(0) =  =  0, (4.4.1.10)

and the solutions norm alized on the streamwise ve locity in  the film  (note a different 

norm aliza tion  in  §4.2) become

Vq =  —iky  (4.4.1.11)
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+  ’'2° =  2'- (4.4.1.12)

2^ " ^ °  I I '  (4.4.1.13)

I I '  (4.4.1.14)

In  the expansions fo r the upper flu id

=■ € * (̂ u ^qE  +  c.c.) y  — fl +  Uj +  £4 jE7 +  c.c.) -|- ..., (4.4.1.15) 

u+ =  £ - ï ( u + ^  +  c .c . )+ . . . ,  (4.4.1.16)

=  e“ 4 (p+qE +  c.c.) +  e” ï(p ]^ iE  +  c.c.) +  ..., (4.4.1.17)

w ith  the orders o f the leading ve locity  terms determ ined from  the in te rfac ia l kine­

m atic  cond ition . S ubstitu ting  these in to  the trip le-deck equations we ob ta in

—îujqu^q =  —ikp^Q, ~  PiO’ (4.4.1.18)

—iujQ'^ii +  +  "uio =  — (4. 4. 1. 19)

Then since in  (4.4.1.19) is y-independent the viscous-inviscid in te raction  law 

gives us

P Îi =  (4.4.1.20)

and subs titu tion  in to  (4.4.1.19) gives the re la tion

(4.4.1.21)

We now tu rn  our a tten tion  to  the in te rfac ia l conditions. From  the pressure jum p  

cond ition  (4.1.8) (w ith  neglected g ra v ity ) we obta in  the relations,

—kp A q =  —'yo^^-^Oj (4.4.1.22)

pJo =  4A:^7oF2o, (4.4.1.23)

Pio “  Pio — —'yok^FiQ — l ik ^ F o .  (4.4.1.24)
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The k inem atic  cond ition  leads us to  another set o f relations,

~ik(iA.Q — —ik^ Fq  ̂ (4.4.1.25)

2ia
— 2ikA.QFQ — —~P20 ~  =  —2iojQF2o, (4.4.1.26)

'^ io (^ )  ikÂQF2o — ' ^1“  +  -^0 )^ 0  =  — +  2ikÂQF2o  +

 IujqF iq . (4.4.1.27)
Ot\

and we note th a t the equations (4.4.1.22), (4.4.1.25) are simultaneously satisfied 

on ly i f  7 o =  which was the condition fo r TS-capillary wave resonance in  the

linear approx im ation . S ubstitu ting  th is  result back in to  (4.4.1.23), (4.4.1.26) we find

-^20 =  “  “ 2p“ i4§, (4.4.1.28)

and then (4.4.1.24), (4.4.1.27) w ith  (4.4.1.21) and the condition th a t, to  the leading

order, v is continuous across the viscous layers at the interface fina lly  gives us the 

wave-am plitude equation fo r A q

(4.4.1.29)

There are, as in  the non-resonant case §4.2 and as noted above, th in  layers 

about the interface and a th in  Stokes layer on the wall in  which the viscous effects 

are dom inant. The in te rfac ia l viscous layers are surrounded by a diffusion layer o f 

thickness 0 (e ^ /^ ) where the Reynolds-stress-generated mean profile adjusts to  the 

outer conditions. We see th a t, unlike the non-resonant case, any induced mean flow 

does no t spread th rougou t the depth o f the film  due to  the shortened slow tim e scale. 

These viscous layers are inactive in  the present resonant regime as can be seen from  

the fo llow ing argum ent. In  the viscous in te rfac ia l layer we take

z =  € "^ (2/ - / ( x , t ) )  =  0 (1 ) ,  =  ^  +  (4.4.1.30)

where we m ay regard w'^ as representing viscous corrections to  the inviscid outer
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solution. The film -flow  components in  the layer z =  0 (1 )  below the interface are

u~ =  € - i ( ü ~ ( z ) A o B  +  c.c. +  üm ) +  ( û -o ( 2) +  ...) (4.4.1.31)

+  ..., (4.4.1.32)

w~ =  € - * ( wo(z ) - A oN  +  c.c. )4 - . . . ,  (4.4.1.33)

p — € * (pq A qE  “t" c.c.) ... . (4.4.1.34)

w ith  ÜM a constant re la ting  to  the mean flow in  the diffusion layer. We see th a t 

the viscous con tribu tion  to  the norm al velocity is o f 0 (e“ * )  here and so does not 

enter the wave-am plitude equation derivation in  the present resonant regime. The 

same order-of-m agnitude estimate holds also fo r the corrections produced by the 

w a ll Stokes layer and the in te rfac ia l layer above the interface. The extra  mean 

ve locity antic ipa ted in  (4.4.1.32) is o f 0 (e “ ^ ) and the induced shear w ill then be o f 

0 (c"2  ) at the edges o f th is  layer. As in  §4.2 the induced mean flow  spreads across 

a layer in  which the diffusive effects occur over the slow development tim e scale. 

In  the resonant regime the slow tim e is o f 0 (c2 ), so the diffusion layer thickness 

is o f 0 (e * ) .  The mean ve locity correction, driven by the shear o f 0 (e “ ?), in  the 

diffusive layer is then 'Umean — (^ (c "*  ) which, incidentally, is o f the same order as the 

leading wave component in  the film . Corresponding to  this induced mean flow wiU 

be the induced streamwise and norm al wave terms. A n  estimate fo r the mean-flow 

generated correction to  th is  wave velocity, u~ ~  can be found from  the balance 

~  '^mean^^wave/^2; where z , f  are the fast scales and =  0 (e~^/^),

u^ave =  0 (€ “ ^/^). Hence in  the wave, and from  incom pressib ility

the corresponding norm al component is C learly the ex tra  norm al

te rm  o f 0 (e” ï )  plays no p a rt in  balances used in  the derivation o f the am plitude 

equation (4.4.1.29) and so can be neglected.

4.4.2 Analysis of the am plitude equation

Before beginning our analysis o f the am plitude equation (4.4.1.29) we note the ob­

vious d issim ilarities w ith  the fo rm  fo r the non-resonant case (4.2.3.5). Our new 

equation contains a second-order derivative o f the wave am plitude which signifies
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the presence o f tw o wave modes coupled through the non-linear te rm . As has been 

noted in  the p rio r sub-section, the equation contains no contribu tions from  either the 

viscous in te rfac ia l, diffusion or Stokes waU layers. Again we see a pure ly im ag inary  

nonlinear coefficient bu t th is  tim e, due to  its  differentiated fo rm , the non linearity  

provides a strong phase-amplitude in teraction  as we wiU find  in  th is  subsection.

Second-order am plitude equations are well known in  the theory o f weakly non­

linear resonant in te rac tion , see e.g. D razin (1970), Akylas (1982), Akylas &  Ben- 

ney (1982), who examined the direct- and near-resonance between in s ta b ility  modes 

present fo r w ind  b low ing over in fin ite ly  deep water. Weismann (1979), who looked at 

the s ta b ility  o f two- and three-dimensional wave packets in  a tw o-flu id  system o f in f i­

n ite  depth, and Guckenheimer &  Knobloch (1983), Dangelm ayr &  Knobloch (1987), 

fo r various problem s, a ll encounter sim ilar equations, which may be transform ed 

in to  “ energy”  equations (see 4.4.2.9 below). However the pa rticu la r com bination o f 

coefficients present in  our equation (some o f which are complex-valued) seems to  be 

new and deserves investigation.

To ease analysis o f the am plitude equation we make the change o f variables

-  (&) '■ (4.4.2.1)

which gives us

where the coefficient F can be thought o f as a “ detuning param eter” .

Next we w rite

À  =  p[t)exp[i( l){t) ],  (4.4.2.4)

where p̂ (f> are pure ly  real functions o f t. The equation (4.4.2.2) then splits in to  tw o

real equations fo r the m agnitude p and phase (j> o f the wave am plitude,

^  -  pu^ -  Tpu -  p =  -p ^ u ,  (4.4.2.S)

+ + =  (44.2 .6)
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where u  =  dcf)/dtt. In tegra tion  o f these two equations gives us

â) =  + + (4 4.2.7)

u =  +  (4 4 .2 .8 )

where Ci,C2 are a rb itra ry  constants, and we may th in k  o f (4.4.2.7) as being in  the 

fo rm  o f an “ energy in teg ra l” ,

( ^ )  (4.4.2.9)

/ ( p )  =  - ^ p "  +  ^ p '  -  ( y  -  y  -  i )  p ' -  (4.4.2.10)

w ith  C2 representing the “ energy level”  and f [ p )  the “ po te n tia l” . We now analyze 

the solutions in  the phase plane o f the variables p^dp/dt.

The solutions separate in to  two d is tinc t instances depending on whether c\ is 

zero or no t. We begin w ith  the special case C\ =  0, see fig  4 :6(a)-fig  4:6(g) and 

notice th a t fo r a ll values o f the detuning param eter T the po ten tia l func tion  f { p )  

has the p roperty  th a t /(O ) =  0 and so there exists a s ta tiona ry  po in t a t the o rig in  

where d p fd t  =  p =  0. As we vary the detuning param eter we uncover a number 

o f typ ica l solutions separated by the c ritica l values o f F, defined by F^ =  4 ( o r in  

the earlier no ta tion  7 ^ =  d>p~ ja k  ). I f  F <  —2, fig  4:6(a), then the o rig in  is the 

on ly s ta tiona ry  po in t surrounded by a fam ily  o f periodic orb its  which we ob ta in  by 

varying the energy level parameter C2. W hen F =  —2, fig  4 :6 (b ), the firs t o f the 

c ritica l values o f F, we reach the lim it  o f the single stagnation po in t solution. For 

values o f F greater then th is, see figs 4:6 (c)-(e), a second stagnation po in t bifurcates 

from  the orig in  along the p axis g iv ing rise to  a separatrix solu tion along w ith  a 

second set o f periodic solutions. The solutions ly ing  on the separa trix  have orb its  o f 

in fin ite  period, grow ing from  in fin ites im a lly  small disturbances to  a fin ite  am plitude 

before eventually decaying. We can see this from  the shape o f the  separatrix  which 

approaches the o rig in  linearly.

O ur next value o f interest fo r F is when i t  crosses the second c ritica l value F =  2,
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see fig  4 :6 (f), The phase-plane diagram now shows a saddle po in t separating tw o 

stable s ta tionary points, one at the o rig in  and one at a fin ite  value o f p.

The fo rm  o f th is  diagram is typ ica l fo r a ll values o f F >  2, fig  4:6(g). We note 

th a t there are no solutions o f (4.4.2.9), (4.4.2.10) w ith  unbounded am plitude  grow th: 

all waves in itia te d  at a small or fin ite  am plitude remain bounded. Th is im p o rta n t 

p roperty  also holds in  the second case o f a non-zero value fo r Ci, see fig  4:7(a)-fig  

4:7(c). Here we observe th a t the po ten tia l func tion  f [ p )  —> —oo fo r b o th  /? —> 0 and 

p oo w ith  e ither one o f two m axim a at fin ite  positive p, depending on the values 

o f the coefficients c i,F . A  numerical exp lora tion  was made using the M athem atica  

package and i t  was discovered th a t there exists a unique c ritica l value o f F, which we 

W Ü 1 denote as F =  F c (c i), as a boundary between the cases o f one or tw o m axim a see 

fig 4:7(d). For F <  Fc, fig  4:7(a), there exists on ly one m axim um  and th is  translates 

to  the existence o f a single stagnation po in t at a fin ite  non-zero value o f p in  the 

phase-plane diagram. For F >  Fc, fig 4:7(c), there are two m axim a and th is  gives a 

saddle po in t solution separating two s ta tionary points in  the phase plane. For the 

c ritica l case o f F =  Fc, fig  4:7(b), the saddle po in t occurs at the same po in t on the 

p axis as the s ta tionary  po in t.

A  comparison between the nonhnear wave behaviour and the corresponding l in ­

ear wave properties reveals the im p o rta n t s tab iliz ing role o f the nonlinear effects. 

The linearized version o f (4.4.2.2) gives us tw o solutions o f the fo rm  A  =  exp (â t) 

where

iV  / F2 
a =  - - ^ ± y i - — . (4.4.2.11)

We see th a t the linear solutions fo r the case when | F | >  2 are neu tra l and hence are 

s im ilar to  the nonlinear solutions. Th is is because away from  the d irect resonance 

the cap illary and TS waves remain neu tra l on the timescale t  =  0 (e ^ /^ ), the slow 

grow th only being fe lt on larger tem pora l scales (see below §§4.5 4.5.5). B y  contrast, 

when I F |<  2 the linear theory shows grow ing and decaying waves as described in  

T im oshin (1997). The non-linear effects fo r such waves therefore have a crucia l, and 

indeed dom inant, s tab iliz ing role.
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4.5 The near resonant regimes

Here and in  §4.5.5 we bridge the gap between the two disparate regimes described in  

§§4.2,4.4. The weakly-nonlinear TS waves in  §4.2 are essentially governed by a firs t- 

order d iffe ren tia l equation w ith  the grow th-ra te  te rm  associated w ith  viscous effects 

bu t; in  contrast, the resonant regime in  §4.4 is governed by a second-order equation 

which relies on pure ly  inviscid mechanisms. In  order to  elucidate the connection 

between these tw o regimes, in  th is  section we consider an neighbourhood o f

the c ritica l surface tension value 7  =  70 , as in  §4.4, the difference being th a t the 

detuning param eter 71 =  — 70 ) w ill be assumed outside the strong resonance

, i.e. I 7 i  1> 7 ic j where 71c =  / { a k )  corresponding to  F =  2 in  the discussion

in  §4.4.2. F u rthe r, in  comparison w ith  the theory o f strong in te raction  developed 

in  §4.4, the wave am plitude w ill be taken sufficiently small to  take in to  account the 

slow wave g row th  induced by viscous effects. This wiU take us back to  the weakly- 

nonlinear m odu la tion  regimes typ ica l fo r non-resonant wave development, as in  §4.2. 

We w in also show th a t the analysis along these lines becomes inva lid  in  a refined 

v ic in ity  o f the c ritica l detuning param eter 71 — 71c =  0 (c), and the m odifications in  

the theory required in  th a t case wiU be given in  the next section.

4.5.1 The first near-resonant regime

For the rem ainder o f th is  C hapter the surface tension coefficient is taken in  the fo rm

7  =  70 +  e^^^7i +  (72, (4.5.1.1)

where 70 =  p~ j a  and 71 , 72 are a rb itra ry  except th a t |7 i |  >  y /^ p ~ ! {a k ) .  The 

0 (e ) correction in  (4.5.1.1) is no t s tr ic t ly  necessary, however its  presence w ill help 

in  evaluating the range o f app licab ility  o f the theory in  th is section. The film -flow
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components are w ritte n  as

u ~  =  € ~ ^ ( A o ( t ) u q E  +  c . c . )  +  ( ^ 20^ ^  + ' ^ 10^  +

+  c.c. - j- ...) +  ... (4.5.1.2)

v~ =  e~2 [AQ{T)vQE 4 -c .c .)A  e~'^{v~QE'^-\-v~qE 4 -c.c.)

-\-€ 2 ^ . . ) - } ■ • • •  (4.5.1.3)

p -  =  € ~ ^ A o { t ) p q E c . c . ) - \ - e ~ ^ { p 2oE^ A p Ïq E  +  c.c.)

+e 2 (^p^^E +  c.c. +  ...) 4" ... (4.5.1.4)

where E  =  exp[i(A ;X  — ujqT  — o ^ iti) ], r  =  e~^t, t i  =  e~^t, T  =  A: >  0; ujq, lji

are real and the interface position is described by

/  =  a +  £2 (i^Q^ -|“ c.c.) +  6{^F\qE +  F 2qE^ +  c.c.) +  € ^ [F i iE  +  c.c. -f* >..] -H ...

(4.5.1.5)

Upon subs titu tion  in to  (4.1.1),(4.1.2) we have the relations,

—icjQUQ =  —— Pq, (4.5.1.6)

2 ik
—2iüJoU2Q +  ik^AoUQ ) =  — (4.5.1.7)

i k
—iuou^^Q — {u i A qUq =  - -pzP iQ j  (4.5.1.8)

dAo
4“ Uq q 4” ^  ikyAoUQ 4~

i k
4"A A qVq =  ~ ~ ^ P i i j  (4.5.1.9)

and

ikuQ 4- =  0, 2iku2Q +  ~  (4.5.1.10)

4- =  0, iA:u^i 4- =  0, (4.5.1.11)

fo r the  m om entum  and con tinu ity  balances respectively. The leading term s then.
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after norm aliz ing the streamwise component Uq , are found to  be

U q — 1 ,  loq — ^  j P q  — j — i k y  y

""20 "  ^  '"2"o =

(4.5.1.12)

(4.5.1.13)

(4.5.1.14)

(4.5.1.15)

?20 V dAo
y -  T-k d r  '

(4.5.1.16)

where v^j represents the effect o f the wall and is given by (4.2.1.7). For the flow  

above the interface in  the region y =  0 ( 1) the expansions are,

=  y -  a-\-Ua + { u ^qE  +  c .c . ) - \ - e - i { u ^ ^ E c .c . )

-t-e('u^F7 -|- -j- c.c.) - t- ..., (4.5.1.17)

v'^ =  e~2 [ v ^ E  +  c.c.) +  €~^{v^qE +  v^qE^ +  c.c.) +  ..., (4.5.1.18)

p'^ — e ^[p '̂ qE  +  c .c .) -{■ e  ̂ 4- c.c.) +  (pj^-G +  +  c.c.) +  ...,+ ,+ ï?2

and the coefficients are governed by the equations

(4.5.1.19)

-  i c J i u ^ Q  +  v j

P71+
- 2 ik \+ a  +  ik {u + o f  +  4  +

dutn

d r

i’kpiQj (4.5.1.20)

- # n , (4.5.1.21)

—2ikp2Q, (4.5.1.22)

'10 — (4.5.1.23)

^ i -  =  0, i k u t o + ^  =  0, ^  =  0 .
dy dy dy

(4.5.1.24)
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The ve locity components here can be expressed v ia  the pressure contribu tions,

u j  =  ~ ^P iO i '^10 =  '^20 =  ^ 5  (4.5.1.25)

V2q =  “ j^(P io) "  (4.5.1.26)

=  - î ( y  -  ^)Pio +  ^ P n  -  (4.5.1.27)

where the viscous-inviscid in te raction  condition has already been taken in to  account.

4.5.2 The viscous diffusion layer

The thickness o f th is layer, based on the slow tim e scale, is 0 (c2 ) and so we construct

a new local norm al co-ordinate z along w ith  a new velocity component w ^ ,

y =  f  +  e h ,  ^  -b -b (4.5.2.1)

For the flow  above the interface the velocities expand as

u'^ =  6"& fl+ o (z ,T ) +  (u ^o^  +  c.c. -b flm i) +  (4.5.2.2)

w'^ =  e“ 2 [ ( - i i i + j i  +  Wyu)h^  +  C.C.] -b ..., (4.5.2.3)

where the mean-flow terms are necessary fo r the subsequent m atch w ith  an even

th inner in te rfac ia l layer and Wyy, is a constant o f in teg ra tion  which represents the 

effect o f the inner layer on the wave.

In  the d iffusion layer in  the film  we take

u =  € 2 (û^Q -b AqB  -b c.c.) -b ( f l ^ i  +  4- ̂ 20^ ^  4” c.c.) -b (4.5.2.4)

w~ =  € -^ {w q E  -b c.c.) -b € - 2 {w~qE -b W2oE^ +  c.c.) -b ..., (4.5.2.5)

w ith  the pressure, which is a constant w ith  respect to  y across the entire boundary

layer, represented by the inviscid solution. The governing equations fo r the wave

term s are o f the fo rm

ikA o  +  ^ ^  =  0, - 2 i k ^ Ü2Q +  i k A l  =  ~ ^ P 2 o  (4.5.2.6)
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2ikÜ2o +  =  0
oz

dvT
- ik ^ û ~ Q  -  iu iA o  + ikAoü;^Q  + Wg

i k  _ 
— Pio^

iku^Q +  =  0 ,
dz

Solving fo r Wq , ügQ, lügoj ““ io j '^ lo  obta in  

Wq =  - i k A o z ,

“ 20 =  #  +  & ,  w,o =  - i ( A l  +  ^
2k kp '

- — y| I ------U I ~ -
"̂ 10 -  +  - ^  ( r̂nO

-d û ;

dz

^10  — ^ ^ A qz +  A i  
k

k p - '

dû.mO ds +

(4.5.2.7)

(4.5.2.8)

(4.5.2.9)

(4.5.2.10)

(4.5.2.11)

(4.5.2.12)

(4.5.2.13)

(4.5.2.14)

where the constant w^i wiU be found in  the next subsection. The mean flow in  the 

diffusion layer is governed by

dt
(4.5.2.15)

w ith  the boundary conditions

^m o(^ ~  —oc) =  0, û^ q[ z =  0) =  û^ q[ z =  0), 1/ (4.5.2.16)

and the shear ju m p  re la tion  o f the fo rm

dz dz

where J  is determ ined in  the next subsection.

(4.5.2.17)

4.5.3 The interfacial viscous layer

As in  the non-resonant case in  §4.2, viscosity affects the wave components in  a 

th inner in te rfac ia l layer deflned as

y =  f  €z, z =  0 (1). (4.5.3.1)
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We take the fo llow ing expansions in  th is region bo th  above and below the interface:

=  e ~ ^ (u ^ A o E  +  c.c +  û^o)  +  (4.5.3.2)

=  €“ 2 (tD^^o-S +  c.c.) +  ... . (4.5.3.3)

In  a s im ila r manner to  the non-resonant regime, §4.2.2, we have

® ± =  ± l ^ ( e = F ‘' * ' - l ) - î ^ ,  (4.5.3.4)

where a *  =  y / —i k^ / ,  R e a l(a ^ )  >  0, are found to  be

Q~ = ------------ 7= ,  (4.5.3.5)
l  +  P ~ \ / u -  l - f / 9 “ V Z / -

and m atch ing (4.5.3.4) to  the outer diffusion-layer solution we find  th a t

Wyi =  y = A o .  (4.5.3.6 )
1 +  p ~ \ v ~

The ju m p  cond ition  fo r the generated mean flow  across the interface is then 

found to  be

J  =  A + - m ' A -  =  (4.5.3.7)
« 1 -b p - V f / "

This last equation, combined w ith  (4.5.2.15), (4.5.2.16) and (4.5.2.17) completes 

the set o f re lations governing the mean flow in  the diffusion layer.

4.5.4 The am plitude equation

W ith  the exception o f the jum ps in  pressure across the interface, which we w ill

calculate firs t, we now have enough in fo rm a tion  about the jum ps in  shears and

velocities to  derive the wave am plitude equation and the generated mean flow . The 

in te rfac ia l pressure ju m p  cond ition  (4.1.8) provides the relations

p~ A q =  'yo^Fo, (4.5.4.1)

P20 =  ^7 o^^F2o, (4.5.4.2)
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Pio ~  Pio — ~7o^^P'io — (4.5.4.3)

P n  ~  P ii  — ~  7 i^^-^ io  — 12^'^F q- (4.5.4.4)

A rm ed w ith  these relations a ll th a t is le ft to  do is match the viscous and inviscid 

flow  regions. The norm al ve locity m atch between the viscous diffusion layer and 

inviscid  region in  the boundary-layer flu id  shows th a t

Vq =  —ik^Fo^ v^Q ~  —2ik^F2o, (4.5.4.5)

and also

— ~ ^ P i i  ~  ^  ~  ' '̂^aPio =  —ik^F io  — iujiFo. (4.5.4.6 )

S ubstitu ting  these relations in to  equations (4.5.1.25), (4.5.1.26) we have

—j^PiQ  =  —ik^Fo, (4.5.4.7)

- i ) b  (  -  ikpto =  -2ik^Fio, ( 4 . 5 . 4 . 8 )

~  ^  — —ik^FiQ — iuiFo. ( 4 . 5 . 4 . 9 )

We note th a t the constant Wyy, does not enter the solution as i t  appears at 0 {e ~ ^ ) .

Next we m atch the diffusion layer in  the film  to  the lower inviscid layer, which

yields the relations

A q — —Fq  ̂ (4.5.4.10)

- ik A o F o  -  ia  ( ^  +  A g ) =  - i i k ^ F i o  +  ikFoAo, (4.5.4.11)

- ! a  I ^  -  y A o  ) =  - ik ^ F io  -  (4.5.4.12)
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ikAQF2o — i  (  ^  +  -<4.0 ) jPq +  "yu; —
a 8 A q 
k d r

■la
P i i  ( Pio \  , -4o / P20 A l

dFo
— —ik  F \ i  — icüiFio H— —----- h 2ikF2oAQ +  UgikFo

o r

( i t +
^du.mO

mO dz
dz.

(4.5.4.13)

Com bining (4.5.4.10) w ith  (4 .5 .4 .1) shows th a t 70 =  p~ Jcl, the condition o f resonance 

in  §4.2. Then (4.5.4.12), (4.5.4.7) and the re la tion between them , the ju m p  condition 

(4.5.4.3), provide an equation fo r Wi,

~  lio-ku ji +  ak^ =  0 , (4.5.4.14)

and the pressure components in  terms of A q and F iq :

ak"
(4.5.4.15)

Repeating a s im ila r com bination , the equations (4.5.4.13), (4.5.4.8 ) and the pressure 

ju m p  (4.5.4.2) give us

F 2 0 - - - ^ A o, P20 -  “ 2p Aq, (4.5.4.16)

, i2 f  ^  a ^ k ^ \
(4.5.4.17)

S ubstitu ting  these results in to  the rem aining tr ip le t o f relations (4.5.4.13), (4.5.4.4) 

and (4,5.4.9) we ob ta in  the fo llow ing equation fo r the wave am plitude:

2a a^k^ \  dAo
+ ^  (ii„o -

du.mO

dz
dz -}■

1 +  p ~ V ï ^

7a.

2k'
Ao — — îAo|i4o| +  2 I "TT ) -^0

OLü\

- I - j2ak  -  a ( 1 +

k^

k ^ U a \
■<4q + ikAo

(4.5.4.18)

where Wyi was determ ined in  (4.5.3.6 ).
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The fo rm  o f the equation, w ith  purely im aginary non-linear co-efficients and 

firs t-o rder d iffe ren tia tion  shows th a t the grow th  rate w ill be dependent on ly on the 

viscous term s Wvi,Vu,. The non-linear terms w ill cause only rap id  phase changes 

and the equation and solution properties are therefore s im ilar to  those fo r the non­

resonant regime in  §4.2.3.

Since uji above was assumed to  be real, th is imposes a res tric tion  on the values 

o f 7 i  perm issible. The va lid ity  o f the calculation leading to  (4.5.4.18) breaks down 

i f  the coefficient o f the derivative in  the am plitude equation becomes zero which 

occurs when

o ak^
= (4.5.4.19)

'  2/ , - -

Th is c rit ica l value o f u)i is exactly th a t at which the roots o f (4.5.4.14) coalesce 

and corresponds to  the value F =  2 in  the resonant regime, section §4.4. I t  is in  th is 

region o f 7  where uji becomes complex and we must a lte r the assumed development 

tim e scales.

4.5.5 The second near-resonant regime

We begin th is  section by analyzing the region in  7  where the previous in te rm ed i­

ary regime fa ils, and then outline the structure for one fu rth e r regime to  lin k  the 

behaviours o f the solutions in  §4.4 and §4.5. In  the previous section we found a 

w ave-am plitude evo lu tion  equation, (4.5.4.18), which was governed by the  balance

~  linear grow th rate terms (4.5.5.1)
cLt

where a  =  0 (71 ) and the linear grow th rate terms come from  the viscous w all and 

in te rfac ia l layers. As a  —> 0, the solution to  the quadratic equation, (4.5.4.14), 

governing in  term s o f 71 , approaches a double roo t. We see th a t, as 71 71c

u i  — > u \ c  +  0 ( 1 / 7 1  —  7 i c ) ,  oc — *  0 ( 1 / 7 1  —  7 i c )  ( 4 .5 . 5 . 2 )

Therefore, w r it in g  A q =  e°'’’'^ Â (r) , to  m ain ta in  the g row th-ra te  con tribu tions 

from  the viscous layers, the grow th rate becomes Or ~  (71 — 7 ic )~ ^ . We can see
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th a t the scalings used in  §4.5 become invalid  when,

r ^ ~  +  y / l \  -  l i e )  as 7 i  7 ic. (4.5.5.3)
V 7 i -  7ic

G row th  then occurs over the same tim e scale as neu tra l development when €2 ~  

7 i  — 7 ic , so we now concentrate on the role o f the second correction to  7 , namely 

72 , when 71 =  71 .̂

4.5.6 The flow expansions

For the surface tension and flow  parameters in  the film  we take the expansions o f 

the fo rm

7  =  7o +  e^^^7 i  +  ^72 (4.5.6.1)

u =  € ^^^(Ao(t2)-£ '+  C .C .) +  (ujo-S^ +  UjqJ? +  C.C. +  A y)

c.c.) +  4" +  c.c.) +  .(.4.5.6 .2)

V =  e ^^^(—îA:2/.i4o(t2) 4- c.c.) +  e ^Çv2qE^ +  "^iqE +  c.c.)

+e +  c.c.) +  e 4“ ••• 4- c.c.) (4.5.6 .3)

p "  =  e~^/^(A:p“ ^ o ( i2) ^  4 -c.c.) +  4 -c.c.)

+e +  c.c.) +  c ^^^{jP\2^  4" ••• 4* c.c.) 4* ..., (4.5.6 .4)

where E  =  exp[z(A;X — wgT -  w it i ) ] ,  Î 2 =  t i  =  T  =  €~^t. A gain we

have norm alized the leading- order streamwise velocity in  the film .

Note th a t the slow time-scale has been shortened to  0 (e “ ®/^) w h ils t the wave 

am plitude remains at the same order as in  §4.5. S ubstitu ting  these expansions in to  

the trip le-deck equations we obta in  the fo llow ing re lations, from  the m om entum  

conservation

i k  _
—ik  “UjQ — iuj\AQ — — ~Pio^ (4 .5.6.5 )

2ik
-2ik^U2o  4- i k A l  =  - — P20  ̂ (4.5.6.6)
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2 _ , dAo ik  _
-lA ; U ji + Pi i ,  (4.5.6 .7)

- i k ‘̂ u^2 ~  ~  -2%A;pi2, (4.5.6 .8 )

and from  the continu ity,

iku~Q +  ^  =  0, 2iku~Q +  ^  =  0, (4.5.6.9)

iku^^ +  =  0, iku .2  +  =  0. (4.5.6.10)
dy  %

The solutions fo r the leading terms here are

“  T ^ ° )  (4.5.6.11)

^20 =  ^ + ^ ,  =  +  (4.5.6.12)

(4.5.6.14)

The next-order terms include the firs t viscous effects fe lt in  the  film

* f  ( | 4  * I) ■ («■»■»>

where Vyj is the w a ll con tribu tion  from  the Stokes layer given by (4.2.1.7).

We now tu rn  to  the flow  above the interface. Here we take the expansions

tt+ =  2/ -  a +  Ua +  {u ^qE  +  c.c.) +  +  c.c.) +  +  c.c.) +  ...,

(4.5.6.17)
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E  c.c.) +  e ^{v^qE"  ̂ -j" ‘̂ 10-'̂  4" c.c.) +  ..., (4.5.6.18)

p ^  =  €~^{jp'̂ qE  +  c.c.) +  +  c.c.) +  +  c.c.) +  ... . (4.5.6.19)

Then along w ith  the viscous-inviscid in te raction  condition , which gives

oo) =  oo) =  p+i, ku^2(y  oo) =  p^2> (4.5.6.20)

we obta in , firs tly , the m om entum  balances,

-icuiu^Q +  u j" =  0, (4.5.6.21)

- g ^  =  - p P n ,  (4.5.6.22)

dut"11
dt2

and secondly the con tinu ity  balances.

-  i u i u t 2 +  {y -  CL-\- Ug)ikutQ +  v̂ Q =  0, (4.5.6.23)

dy  ’ dy  

From (4.5.6.20), (4.5.6.22) and (4.5.6.21) we find  th a t

,+ _

^-11+
iku to  +  =  0, (4.5.6.24)

d v l  ^  =  0 . (4.5.6.25)

PÎ. =  -o" =  y p t o -  (4.5.6.26)

Also from  (4.5.6.24), (4.5.6.25) we have

=  “ ^^'“ io (^  “  “ ) + ( 4 . 5 . 6 . 2 7 )  

where, on su bs titu ting  in to  (4.5.6.23),

5 +  -  -iUsPiQ  +  ~ i^P i2  ~  (4.5.6.28)
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Before we tu rn  to  the viscous layer o f thickness 0 (e )  and the d iffusion layer o f 

at the interface we express the shape o f the interface as

/  =  Û +  €^^^(FqE +  c.c.) +  e(F2oF^  4- F iq E  +  c.c.) +  ^ ^ ^ ( F \ \ E  +  c.c.)

- \ - ^ / ‘̂ (E i2E  +  c.c.) +  •••} (4.5.6.29)

and calculate the pressure jum ps at the successive orders o f e. We find  the relations:

A q =  (4.5.6.30)

Pio -  Pig =  - ^ ^ l o F io  -  k^'yiFo, (4.5.6.31)

PJo =  47ofc^p2G, (4.5.6.32)

P n  “  P n  =  “ Tg^^P i i j  (4.5.6.33)

P i2 “  P i2 — —k^ loF i2  — l \ k ^ F \ q — (4.5.6.34)

4 .5 .7  T h e  in t e r f a c ia l  v is c o u s  la y e rs

F irs t we tackle the 0 (e )  viscous layer about the interface. The result is, to  the 

leading order, the same as in  the previous in te rm ed ia ry  case, as can be deduced 

from  the ve locity  expansions

=  e~^^^(ÛQÂoE +  c.c. +  ü^ q) +  ..., (4.5.7.1)

=  e ^^^(w q E - \ - c.c. ) + . . . ,  (4.5.7.2)

which are va lid  when z =  e~^(y—f )  =  0 ( 1), and where =  v'^ — d f  f d t  — u ^ d f  jd x .

The leading d isturbance terms are given by (4.5.3.2),(4.5.3.3) o f the previous section.

As in  the o ther regimes there are diffusive layers about the interface. The th ic k ­

ness o f th is  layer in  the current regime is o f 0 (€®/®), and the norm al adjusted com­

ponents , in  term s o f the ve rtica l coordinate z =  —/ )  =  0 ( 1), along w ith
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the streamwise velocities are taken as

u + _=  “u, +  ( { t jE  +  c.c.) +  (4.5.7.3)

w + =  +  c.c.) +  0 (6 -^ /^ ) .  (4.5.T.4)

u~ =  e -^ /^ (û + F  +  c.c.) +  0 ( l ) ,  (4.5.7.5)

w ~  —  z a ~  A qE  +  c.c. )  +  €~^^^{w v i A qE  +  c.c.)

+ 0 (e -^ /® ). (4.5.7.6)

where, from  m atch ing to  the in te rfac ia l viscous layer, o f thickness 0 (e), we find

W„I = --------^  e -W 4  (4.5.7.7)
^ l  +  p~y/ i '~

The wave term s w ill be m atched to  the inviscid flow above and below the interface

in  the next section. I t  on ly remains to  be noted here th a t the induced mean flow  in

this region does not con tribu te  in  any way to  the wave am plitude equation.

The fina l layer o f in terest is the viscous Stokes layer on the wall, which can be

tackled in  exactly  the same m anner as in  §4.2.1. The only result required here is

the value o f the  constant

_  ikA o  _  £3771/4^^3^^ w ith  a~  =  y / - i k ' ^ l u ~ , (4 .5 .7 .8 )

which enters (4.5.6.16).

4.5.8 The am plitude equation

We m atch the inviscid  and viscous layers to  obta in  the am plitude equation, s ta rting  

w ith  the  inviscid  upper flow  and viscous diffusion layer. Th is gives

"^oiy  =  fl) =  —ik^Foj  (4.5.8.1)

v^Q =  —ik'^Fio — iu î Fq, (4.5.8 .2)

and then com bining equation (4.5.8.1) w ith  (4.5.6.26) we find  th a t

p
p^Q =  F q, (4.5.8 .3)

üJi



Chapter 4: The near resonant regimes 142

S im ila rly  the resu lt o f (4 .5.8 .2) and (4.5.6.27), (4.5.6.28) is

—j^ P i2  — ~  ^"^aPiQ =  —ik ^ F \ i  — iujiFq. (4.5.8 .4)

We now tu rn  to  the flow  in  the film  and, m atching between the inviscid and 

diffusion layers, find  the relations

k
A q =  ~ F q  ̂ (4.5.8 .5)

- i a  ( ^  -  y A o )  =  - ik '^ F io  -  (4.5.S.6)

—ia  ( —^  +  A g )  =  —2 ifc^J 2̂0 2ifc^oAo, (4.5-8-7)

%  =  - 2 i k ‘‘ F i i  (4.B.8.9)

+  ‘̂ 11; +  ik Â Q F 2 Q  — i  ^ +  44q^ F q =

—i k “̂ F \ 2  — i ( jJ \F \Q  4* i k d X  F q — iku2QFQ +  +  2 ik A Q F 2 Q -  (4.5.8.10)

E ventua lly  (4.5.8.10) w ill provide us w ith  the am plitude equation. F irs t, however, 

we m ust w rite  a ll the  terms as functions o f A q .

We begin by com bining condition (4.5.6.30) w ith  (4.5.8 .5) to  find  70 =  p ” /a  as 

the leading-order resonance condition . S ubstitu ting  th is  in to  (4.5.8 .6 ) gives

-^0  =  — ^ ^ 0  +  ^ 2̂ P Ï o ,  (4.5.8.11)

and then the pressure ju m p  cond ition  (4.5.6.31) becomes

Pio =   ^ 0, (4.5.8.12)
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w hils t we leave p^Q w ritte n  as

+  (4.6.8,13)
^ '0  “  fc

Com bining these w ith  the re la tion  (4.5.8 .3) again, as in  §4.5, we find  the re la tion

(4.5.4.19) fo r a>i which we w ill apply la ter,

+  0  =  0. (4,5.8.14)

Next we combine (4 .5.8 .7) w ith  (4.5.6.32), and obta in

•^20 — ^20 — A^. (4.5.8.15)

Then from  (4.5.8 .8 ) and (4.5.6.33) we have

and placing th is  solution back in to  (4.5.6.26) w ith  (4.5.8.12) gives us

w i =  (4.5.8.17)
4/7“

The last fo rm u la  coupled w ith  (4.5.8.14) specifies the values o f 71 , w%, to  be

' 9/7“  2 /j
I ' l  =  ± 2 ^  — , =  — . (4.5.8.18)

which are exactly the c ritica l vedues encountered in  the previous in te rm ed ia ry  regime.

AU th a t remains is to  calculate in  terms o f A q and substitu te  the result in to  

(4.5.8.10). We can now rew rite  (4.5.8 .4) in  terms o f A q

. k f .  ( 2 w i p ~  \  i u i a

+  (4.5.8.19)

and then the pressure-jump condition (4.5.6.34) gives us

k  / 2 / 7  a ' f i \  d ^ A o  k  ( .  / 2w%/7 \  i( jJ \a

M  M  j " s i r  +  ■  T " .

H — jF i2 +  ( l i f c ^ ---------)  +  72fcaAo- (4.5.8.20)
a \  ( j i \ )
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S ubstitu ting  (4.5.8.20), (4.5.8.15), (4.5.8.13) and (4.5.8.18) back in to  (4.5.8.10) we 

ob ta in  the required wave-amplitude equation fo r Ao(<2):

2 l 2 p -  d^Ao

(4.5.8.21)

We can transfo rm  th is equation in to  a simpler fo rm  by w ritin g

t2 =  I 3 f ,  Ao =  / 3 i i ,  (4.5.8.22)

where bo th  P , P i  are real and define /S, P i  as

to  leave us w ith  the transform ed am plitude equation

s i g n { u j i ) - ^ ^  =  (F i +  i ) A  +  A |A |^ , (4.5.8.24)

where the coefficient F i is defined as

r, = f + J _  f f 5 ^ 1 ± p ^ )
\2p a p a \/2  \ 1  +  p - \ / ïÿ -  J J y p ~ V ï^  J

(4.5.8.25)

The solu tion to  (4.5.8.24) now only depends on the sign o f w i, the in it ia l conditions 

fo r A  and the real param eter F%. Examples o f the behaviour fo r various F i are 

shown in  Figs 4:8(a) &  (b). As we see from  (4.5.8.18) there are tw o possible values 

o f the frequency correction w i, corresponding to  the tw o admissible values o f the 

surface tension correction 71. These specific values m ark the c ritica l conditions at 

the coalescence o f real eigenvalues o f the linearized resonant am plitude equation in  

§4.4. The next-o rder correction te rm  72 contained in  the param eter F i represents 

a measure o f the deviation from  the exact mode crossing. By tak ing  the lim it  

72 —> -0 0  i f  7 i  >  0 o r conversely 72 —> 00 i f  71 <  0 we can establish a continua tion  

o f the present fiow  regime in to  the resonant regime governed by (4.4.1.29) where
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we need to  take F close to  ± 2  and make the appropria te  adjustm ents in  the wave

am plitude and slow tim e scales. In  (4.4.1.29) we rew rite  À  as

À  = 6aB {6 tî)e^ '^, (4.5.8.26)

and take F =  ± 2  +  ^F. Th is gives us the equation

^  -  B

=  6l i{ iu)A\A\ '^ +  o{8t)). (4.5.8.27)

P icking out terms oï  O {6a^t) gives us the re la tion  w =  q :l. Then i f  we le t S

we find

d^B
=  - u ; ( - T B  A  B jB j ^ ) .  (4.5.8.28)

Hence i f  F =  + 2  (or F =  —2), w ith  F >  0, (F <  0) respectively, then a; =  —1 

(w =  + 1 ) and (4.5.8.28) corresponds to  the lim it 72 —> —00 (72 —> 00) in  (4.5.8.24).

A  continua tion  from  the fiow  regime in  th is section to  th a t in  §4.2 can be seen 

by tak ing  the lim it  as 72 ±00 in  (4.5.8.24), i.e. m oving away from  resonance. We

let 72 —> 00 ( or 72 —̂ - 00) i f  7 i  >  0 ( 7 i  <  0 ) respectively and w rite  À  in  (4.5.8.24) 

as

À =  ). (4.5.8.29)

Taking St =  1 / Y^|F i|, the equation (4.5.8.24) becomes

± 2^  +  B  = (4.5.8.30)
dr

at the leading order where r  =  t /y ^ |F i| , .

For 0 (1 )  values o f 72 the wave behaviour in  equation (4.5.8.24) is s trong ly  af­

fected by the te rm  i A q. Th is non-conservative te rm  can be regarded as an ex tra  

energy supply in  the system and comes from  the viscous in te rfac ia l and w a ll layers. 

The response o f the wave to  the supplied energy depends on the sign o f u i .  I f  w i < 0  

then at large tim e |Â| grows linea rly  w ith  a rap id  quadratic phase g row th ,

i ~ 2 i e ’* \ (4.5.8.31)
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By contrast, in  the case >  0 we find  a fin ite-d istance blow-up s ingu la rity  in  the 

wave development at some instance tc w ith

(4.5.8.32)

The value w i =  -f-1 (o r =  —1) corresponds to  the c ritica l value T =  -}-2 (F =  —2 ) 

in  term s o f the analysis fo r the resonant regime in  §4.4. The increased amplitudes 

produced during  th is  in te rm ed ia ry  stage w ill lead to  a strong ly nonlinear flow.

4.6 Concluding remarks

We w ill use a graph o f the scaled p rim a ry  disturbance am plitude A q p lo tted  against 

the surface tension coefficient 7 , fig  4:9, to  illu s tra te  the different regimes which have 

been examined in  th is  chapter. The wave-am plitude A  in  the film  w ill be measured in 

powers o f e, the disturbance wavelength. We saw in  §4.2, the non-resonant regime, 

th a t the TS disturbance required an am plitude 0 (1 )  to  in it ia te  self-m odulation. 

However, on solution o f the governing equation, th is m odu la tion  affected on ly the 

phase and not the size o f the disturbance. We find  s im ila r ’passive’ nonlinearities 

in  the homogeneous-fluid cases th a t were examined by Sm ith  &  B u rgg ra f (1985) 

and also in  Van D u in  (1996) fo r a water-wave problem . W here our system differs 

is in  the stronger in te rfac ia lly  generated mean flow in  comparison w ith  the single­

flu id  cases where the mean-flow generation is restricted to  the Stokes w a ll layer as 

discussed in  the general in tro d u c tio n  in  Chapter 1. The increased mean current 

exposes the flow  to  background or secondary short-wave disturbances to  which, in  

the case o f weak surface tension, they are po ten tia lly  unstable. The m agnitude 

o f the in te rfac ia l tension is im p o rta n t here. W h ils t we note th a t increased surface 

tension stabilizes the mean profiles to  secondary disturbances, i f  the surface tension 

coefficient is close to  a certa in c ritica l value 70 (defined in  §4.4), then resonance 

between decaying cap illa ry  waves and grow ing TS modes can occur. Th is  resonant 

regime is examined in  §4.4 and is illu s tra ted  by region ( I I ) .  In  an 0(62 ) neighborhood 

o f the resonant range o f 7  we find  an increased in it ia l am plitude 0 (6“  î )  required for 

self-m odulation and hence faster tim e scales. The flow  becomes essentially inviscid
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and the non linearity  stabilizes the flow  w ith  two po ten tia l outcomes o f e ither fln ite- 

am plitude wave oscillations or eventual decay. The tw o in term ediate regimes studied 

in  section §§4.5,4.5.5 are shown in  the sketch by ( I I I )  and ( IV ) .  These regimes serve 

as a bridge between the non-resonant, viscous regime and the essentially inviscid, 

resonant case w ith  its  non-linear ceiling on the disturbance grow th .

We w ill now consider w hat may happen to  the weakly non-linear modes over 

longer tim e periods. As has ju s t been discussed, the resonant case is clearest for 

large times. In fin ites im a lly  sm all grow ing disturbances eventually decay due to  the 

non-linear elfects in  (4.4.1,29). We cannot teU however i f  f in ite  amphtude d is tu r­

bances wiU rem ain e ither periodic or bounded on larger tem pora l scales. In  the 

non-resonant case, on the other hand, i t  is clear from  the fo rm  o f the non-hnearity, 

which affects the phase alone, th a t the disturbance w ill continue to  grow unchecked 

u n til i t  becomes strong ly non-linear. In  Sm ith &  B u rg g ra f’s single-fluid study short 

waves continue to  grow u n til they reach the largest m agnitude o f 0 (e“ ^) fo r a weakly 

non-linear theory. A t  th is  stage the Stokes layer becomes non-linear as does the 

waves dispersion re la tion  which is governed by a Benjam in-O no equation w ith  in i­

t ia l conditions which take in to  account longer scale, non-linear events.

In  the tw o -flu id  flow  examined here however we have a d ifferent scheme devel­

oping. Because o f the stronger generation o f mean flow  at the interface as opposed 

to  the viscous w a ll layer the entire flow  scheme may be altered before these large 

wave am plitudes o f 0(e~^ )  are reached. W h ils t the linear g row th  rate o f the dis­

turbance is o f the fo rm  | A  |~  exp[/5j.t], the generated mean flow  is grow ing like 

I “̂ mO exp[2/5rt] due to  the quadratic nature o f the Reynolds-stress terms driv ing  

the mean flow  in  the in te rfac ia l layer, see §4.2.2. W hen the disturbance am plitude 

reaches 0 (e” ^ ) the mean ve loc ity  becomes o f 0 (e“ ^), and the generated mean flow 

w ill enter the leading-order wave solutions in  equations (4.2.10), (4.2.11). Investiga­

tion  o f th is  la te r stage has been carried out by S N T im osh in  recently.
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4.4 Figures

( d )

L *
-w -

(b)

F igure 4:1. (a) The Triple deck structure for the boundary layer flow on 

a film coated wall (b ) The additional layers which appear within the viscous 

sublayer, (i) The Stokes layer, (ii) the interfacial layer. Also shown is the base 

profile ( on the left) and the profile as altered by Reynolds stresses ( on the 

right ).
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Figure 4:2. Numerical solutions of (4.3.1.7) with y* =  5,p“ =  1.087, =  0.484,

(a) For k =  l  the imaginary (cj), and scaled real ( c^/lO ) parts of the complex phase 

speed c versus Am for different 7 , (b ) c^/lO, c* versus wavenumber k for Am =  0.5. 

The neutral points predicted by (4.3.1.9) at =  4.75352, and k =  3.36124 are 

indicated with crosses.
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F ig u re  4 :3 . The unstable eigenvalues o f (4.3.3.1)- (4.3.3.3) w ith  y* =  5 , / ) "  =  

1.087,1/" =  0 .484 .(a ) The grow th  ra te  Wj =  Cjfc versus the wavenumber k  w ith  

7  =  0 fo r increasing induced mean flow  am plitude Am- ( b )  The im aginary phase 

speed Ci versus k  fo r  various A ^ .
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F ig u re  4 :3 . As before, (c )  The real phase speed versus k  fo r various Am, (d )  

The im ag ina ry  phase speed c* versus Â, w ith  Am =  5 fo r various 7 .
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F ig u re  4 :4 . Strong induced mean flow. The Rayleigh in s ta b ility  o f the  induced 

mean profiles (4.3.3.6), im ag inary phase speed Cj versus wavenumber k  w ith  y» =  

b,p~ =  1.087, i '~ =  0.484 fo r various 7 .

F ig u re  4 :5 . The num erical solution o f (4.3.3.7) showing neutra l wavenumber k  

against 7  fo r y{ =  5 ,p “  =  1.087, u~ =  0.484.
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Figure 4:6. The phase plane of equations (4.4 2.9) & (4.4.2.10), when ci =  0. (a) 

r = -3, (b) r = - 2.



Chapter 4: Figures 154

2 .0

1 . 5  —

1 .0  —

0 . 5  —

0.0

- 0 . 5  —

- 1 .0

-1  . 5  —

-2 .0

P

2 . 5

2 .0

1 . 5  —

1 .O —

0 . 5  —

0.0

- 1.0 —

- 1 . 5  —

- 2.0  —

- 2 . 5

P

Figure 4:6. As before (c) V =  -1 ,  (d) F =  0.
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Figure 4:6. As before (e) F =  1, ( f )  F =  2.
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Figure 4:6. As before (g) F =  1.

Figure 4:7. The phase plane of equations (4.4.2.9) & (4.4.2.10), for ci =  1 with 

the critical Fc =  2.85461, (a) F <  Fg.
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Figure 4:7 As before, (b) T  =  Fc, (c) F >  Fg.
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F ig u re  4 :7 . As before, (d )  the critica l Tc against Ci.
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F ig u re  4 :8 . Num erical solutions o f (4.5.8.24) w ith  the in it ia l conditions 

i4(0) =  0.3 w ith  the value o f Æ(0) determined by the growing mode solution o f the 

linearised equation s i ÿ n ( u i ) Â "  =  (F i +  i )Â .  (a ) | Â  | against T  w ith  w i <  0 fo r 

various F i-  ( b )  As in  (a), bu t w ith  Wi >  0.
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Figure 4 :9  The scaled disturbance amplitude A  sketched against the scaled 

suface tension coefficient 7  for the different regimes examined in this chapter, 

with the shaded region denoting the range of secondary instability.
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C hapter 5

Instability of flow on a very  

viscous film

5.1 Introduction

The K e lv in -H e lm holtz  (K -H ) in s ta b ility  is a model o f inviscid in s ta b ility  in  irro ta - 

tiona l flow. I t  can occur when tw o un ifo rm  horizonta l currents, w ith  velocities 

U~ and densities p ~ , are in  contact. As before, the superscripts + / — refer to  

the upper/low er flu ids. I f  the contact surface possesses in te rfac ia l tension and the 

flow is subject to  gravity , then the grow th  rate o f a small p lanar d isturbance in  

a travelling-wave fo rm  exp[ i {k^x^ -  is given by the well known fo rm u la  (e.g.

see Landau &  L ifsh itz  (1959) p241)

l k l p t p * { U ^  -  U ^ y  - p t )  +  'T*k^

i p :  +  p : r -----------------------1

where j * , g *  are the surface tension coefficient and g rav ita tiona l acceleration respec­

tively. In  a stab ly s tra tifled  flow  we see th a t long waves (sm all A:*) are neu tra l in  the 

presence o f g ra v ity  w h ils t short waves (large A:*) are stabilized by surface tension. 

The K -H  in s ta b ility  relies on the d iscontinu ity  in  streamwise velocities w hich can 

only be adm itted  in  a pure ly inviscid analysis. In  the case o f viscous flu ids, the 

velocity fle ld (fo r bo th  the disturbance and the base flow ) is continuous therefore 

th is in s ta b ility  is not present in  the usual sense (see, however, below in  §5.3) and
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instab ilities are governed by e ither the fu ll O rr-Som m erfeld or Rayleigh equation fo r 

viscous or inviscid  disturbances respectively.

The outcome o f such generalizations becomes ra the r n o n -tr iv ia l, fo r more subtle 

mechanisms which re ly on the curvature d is tribu tion  in  the base ve loc ity  profile , 

the presence o f viscosity and a solid boundary in  the flow  or on the strength  o f the 

in te rfac ia l forces which may come in to  play and m od ify  the simple fo rm u la  (5.1.1) 

or completely replace i t  w ith  new instab ilities. Some o f the most relevant results 

fo r the investigation undertaken here, in  pa rticu la r the three-fo ld classification by 

Benjam in (1960), Landahl (1962), have already been quoted in  the in tro d u c tio n  to  

the Thesis, Chapter 1.

I t  should be emphasized, however, th a t Ben jam in-Landah l’s classification and 

many related studies in to  the physics o f various types o f ins tab ilities  (e.g. Baines &  

M itsudera (1994), Baines, M ah jum dar &  M itsudera  (1996), C ra ik  &  Adam s (1979), 

Cairns (1979)) often re ly on quasi-neutral arguments. To w hat extent and how such 

models can be applied to  the s ta b ility  calculations fo r a pa rticu la r flow  obviously 

depends on the nature o f th a t flow.

Our aim  in  th is  chapter is to  examine the in s ta b ility  o f a lam inar boundary layer 

developing, in  contrast w ith  previous chapters, on a re la tive ly  th ick  coat o f a very 

viscous flu id  covering the solid wall. The flow  is entire ly  two-dim ensional and its  

geometry is shown in  fig  5:1. The m ain boundary layer and the film  are assumed to  

have comparable thickness, and the disturbance length  scales are then taken o f the 

same order, i.e. 0 (R e “ ^/^), in  a su itab ly non-dimensionalized fo rm  w ith  Re ( >  1) 

denoting the Reynolds number based on the global flow  parameters. We take these 

to  be the development length o f the boundary layer, the  free-stream speed fa r from  

the w all and viscosity and density o f the boundary-layer flu id . The assumption o f 

large film  viscosity is crucial here: on one hand i t  simplifies the trea tm ent o f the 

base flow  allow ing us to  neglect the flow  rate in  the film , bu t on the o ther hand it  

makes ca lcu la tion o f the disturbance in  the film  more tedious since we in tend  to  trea t 

pertu rba tions in  the lower flu id  as fu lly  viscous. In  the upper flu id  the  perturbed 

m otion is n a tu ra lly  inviscid, on account o f the large Reynolds num ber.
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In s ta b ility  in  th is  flow  may arise fo r various reasons. The in flex iona l Rayleigh 

in s ta b ility  could appear i f  an adverse pressure gradient is acting on the boundary 

layer. Below we e lim inate  th is  possib ility  by tak ing  model non-inflexional profiles 

in  the upper flu id  (m ostly  the Blasius, or, to  illu s tra te  one theore tica l po in t, an 

a rtific ia l exponentia l p ro file ). The K -H  in s ta b ility  can be expected when the film  

is somewhat th icker than  the boundary layer, viscosity in  the film  is not very large 

and the d isturbance wavelength is large.

The M iles (1957) mechanism o f water-wave generation by w ind (Class B waves 

in  the Ben jam in-Landah l classification) and the TS modes (Class A  waves) are o f 

relevance to  the problem , the form er fo r suffic iently strong g rav ity  and the la tte r  fo r 

th icker film s.

In  the solutions presented below a ll these classes o f instab ilities appear as special 

lim its  o f a more general in s ta b ility  fo rm u la tion . Numerical solutions fo r the fu ll 

fo rm u la tion  establishes connections between the various growing modes and clarifies 

the conditions fo r th e ir appearance.

5.2 The problem formulation

The flow  is governed by the Navier-Stokes equations, as given in  the general in troduc ­

tion  §1.1, and we assume a non-dim ensionalization w ith  respect to  the characteristic 

length o f the solid body A*, the free stream speed and the viscosity and density 

in  the upper flu id , w ith  the + / — sign convention applied to  upper/low er flu ids w ith  

respect to  the interface. Hence the base flow is characterized by the non-dimensional 

velocities (u ^ ,  u ^ )  in  the (x , y)-d irections, the pressures in  the tw o flu ids, the tim e 

f, the Reynolds num ber Re ( >  1), the Froude number F r  =  being

the g ra v ita tio n a l acceleration, surface tension coefficient 7  =  7 * /p * (7* 7)*, density p~ 

and viscosity u~ in  the film  (note we have taken =  i/+ =  1). The key assumption 

in  th is  chapter is th a t is large, and we take

,w ith. Pq =  0 (1 ) .  (5.2.1)

The film  density is o f 0 (1 ) .



C hapter 5: The problem  fo rm ula tion  164

For our in s ta b ility  calculation we adopt a quasi-parallel approxim ation  in  which 

the base ve loc ity  at a chosen sta tion  (£ =  xq in  fig 5:1) is treated as un id irec tiona l 

w ith  the und is tu rbed interface at y =  à paralle l to  the wall and the pressure varying 

w ith  y on account o f g ravity. The film  thickness is o f i.e. o f the  same

order as the m ain boundary layer. Then the tangentia l stress con tinu ity  at the 

interface, d u ^ I d y  =  p ~ d u ~ / d y ,  shows th a t, fo r the film  viscosity given in  (5.2.1), 

the f ilm  ve loc ity  is o f Th is leads to  the fo llow ing representation o f the

base-flow components:

f  =  a (5.2.2)

ÿ > 0 :  =  Cf(^(ÿ), , 1;"  ̂ =  0, =  P o { ÿ )  =  - ÿ l F r ]  (5.2.3)

- â  <  ÿ <  0 : u~ =  0 (Æe“ ^/^), v~ =  0 , p~ =  P o i v )  ~  ~ V P ~ / P ’’'i

(5.2.4)

where the ve rtica l coordinate has been shifted onto the interface and scaled ÿ  =  

Re^^^{y — à), â =  Re^^^à and the Froude number is taken small, F r  =  F r / \ / ^ e  

w ith  F r  =  0 (1 ) ,  in  order to  re ta in  g rav ita tiona l effects in  the fo rm u la tion  fo r d is tu r­

bances. The base flow  (5.2.3), (5.2.4) is perturbed by a travelling-wave disturbance 

o f small am plitude  6 , where 6 >  Re~^^^,

{u -^ ,v+ ,p + )  =  { U + , 0 , P + )  +  6 { û + , v + ,p + ) E  +  ..., (5.2.5)

{ u - , v - , p - )  =  { 0 , 0 , p - )  +  6 { û - , v - , p - ) E + (5.2.6)

where the leading film  ve locity has been neglected, and E  =  exp[iA;(x — ct)] is the 

wave-factor w r itte n  in  terms o f fast Rayleigh-scale variables

{x -  x o , i )  =  Re~^^^{x, t ) .  (5.2.7)

The interface shape is w ritte n  as ÿ =  6r)E w ith  rj a pe rtu rba tion  to  the base interface
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position 2/ =  0. For the disturbance above the interface we find  the relations

-  c)S++ =  - i k p * - ,  (5.2.8)

i k { U + - c ) v +  =  (5.2.9)
ay

dv'^
ikü-^ +  - —  =  0. (5.2.10)

dy

and from  these ob ta in  the Rayleigh equation,

In  the film  the disturbance equations are

dv~
iku~  +  - =  0, (5.2.14)

dy

w ith  w =  cA:, and these give us the general solution,

v~ =  A  cosh X'^ÿ +  B  sinh A‘*‘ ÿ +  C  cosh \ ~ ÿ  +  D  sinh A“ ÿ, (5.2.15)

where A+ =  A: and A“  =  ^Jk"^ — i u j p ~ I . We normalize the solution as 

ü ~ (0 ) =  1 and apply the no-shp boundary conditions on the wall,

dv~
v - { - a )  =  0, — ( - a )  =  0. (5.2.16)

dy

One more boundary condition needed to  solve com pletely fo r v~ follows from  the 

requirement o f tangen tia l stress con tinu ity  at the interface. Above the interface there 

is a th in  layer o f thickness 0{R e~^ l^ )  in  which viscous effects become im p o rta n t in

the upper flu id . We w rite  ÿ =  Re~^f^Y  and expand the ve loc ity  and pressure

components as

1 dW^  1 y  2 /72j t+
=  U ^ { 0 )  +  R e - ' > Y ^ { 0 )  +  R e - k ^ ^ ^ ( 0 )  +  . . . +

« (û + (r )£  +  c .c .)+ ..., (5.2.17)

»+ =  f (5 + (y )£  +  c.c.) +  ..., (5.2.18)

p+ =  Po"! +  S {p+ (Y )E  +  c.c.) +  ... . (5.2.19)
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S ubstitu ting  these expansions along w ith  those fo r the lower flow  in to  the in te rfac ia l 

conditions we obta in  the relations

dû
— (0) +  i k v - ( 0 )  =  0, (5.2.20)

dy

p + ( 0 ) - p - ( 0 )  =  (5.2.21)

where 7 =  j y / R e  is the scaled surface tension coefficient and p'^ =  Com bining

(5.2.14) w ith  (5.2.20) we obta in  the fo u rth  condition fo r v~:

^ ( 0 )  +  k ^ v - ( 0 )  =  0. ( 5 .2 .22 )
dy^

The constants in  (5.2.15) are then found to  be

2k^ 

A-2  +  A:2
C =  A  =  l - C ,  (5.2.23)

A (A "  cosh A“ â cosh A+Ü — A+sinh A''‘ as inh A“ a) +  C 'A" .
A " cosh A "â  sinh A+Ü — A+sinh A~â cosh A+â ’

^  _  AA+ +  C (A+ cosh A "ücosh  A+ü -  A " sinh A+üsinh A "ü ) f 5 2 251 
A“  cosh A " â sinh A+â — A+sinh A "â  cosh A+â

In order to  couple the film  and boundary-layer disturbances, we use (5.2.8), (5.2.10)

(5.2.21) and the kinem atic condition at the interface —icjTj =  ü ^ (0 ). Th is gives

Ç (0 ) = . 7 0 ) , ( ! - / >  ) 
“ T  +

i / ip -  2t^)A + .B  -  2 k ^ X - p y
A;c \  A  C  /

(5.2.26)

where Aj, =  dUQ /dy{0) .  Thus, the disturbance phase speed c =  c{k)  is an eigenvalue 

o f the Rayleigh equation (5.2.11) w ith  the usual boundary condition

û+(oo) =  0, (5.2.27)

and the in te rfac ia l condition (5.2.26). Num erical and asym ptotic  so lu tion o f th is 

problem  are discussed below. Unless specified otherwise Uq is taken as the Blasius 

profile, in  pa rticu la r A{, =  0.33206.
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5.3 The thick inviscid film limit

F irs t o f a ll we would like to  demonstrate how some o f the known instab ilities  can be 

derived from  the fo rm u la tion  (5.2.11), (5.2.26), (5.2.27). This wiU also lin k  our w ork 

w ith  previous studies such as those undertaken by Shrira (1993), M orland , Saffman 

and Yuen (1991), M orland  &  Saffman (1993), M iles (1957) and others.

In  the lim it  o f inviscid  disturbance in  the film , /jLq —> 0, the boundary condition 

(5.2.26) reduces to

dÿ \  c ta n h /îâ  F rc^  (? /

If, next, f ilm  thickness is large, a —> oo, then this re la tion  becomes

_  (  Afc  ̂  ̂ ( l - p “ ) ^^7^
-  (,“ T  +  +  ~ F r i ~

This last fo rm  was used by Miles (1957), M orland, Saffman &  Yuen (1991), M orland  

&  Saffman (1993) in  the ir study o f w ind-induced water waves. I f  in  (5.3.2) we pu t 

p~ =  0, and w rite  F r  — - F r  th a t is fo r the case o f heavy flu id  in  the boundary layer 

and g rav ity  po in ting  upward, the boundary condition becomes o f the fo rm  used in  

Shrira (1993) who investigated in s ta b ility  o f a current w ith  a free surface.

Let us consider in  more deta il the flow w ith  inviscid disturbances on th ick  film s 

(5.3.2). The disturbance phase speeds, obtained num erically w ith  the use o f the 

m ethod described in  §5.4, fo r the Blasius profile in  the boundary layer, w ith  several 

values o f the Froude number and negligible surface tension, are illu s tra te d  in  F ig  

5:2(a). The solutions fo r small { F r  — oo) and fin ite  [ F r  ^  oo) g ra v ity  are clearly 

d is tinct. In  the firs t case, F r  =  oo, 7  =  0 , ü -4  oo, we can expand the solution o f 

the Rayleigh equation (5.2.11) in  the fo rm

Vq +  k v ^ , c =  Co +  /cci, as k 0. (5.3.3)

Substitu ting  in to  the governing equation (5.2.11) and m atching to  the po ten tia l flow
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region where y  =  0 { l f k )  we find

v t  =

U }  -  Co (5.3.4)

- C l  +  Q i ( U ^  -  Co) -  {Uq -  Co) I  yi p: — (5.3.5)
Jo [ U q  -  Co) 

dv~^
Co ^  (0) +  ciAfc =  —p Cq — Ab'u^(O), (5.3.6)

where surface tension and g rav ita tiona l influence have been neglected, and Q i is an 

undefined constant. We find  th a t the unstable wave is governed by the re la tion

Co =

The im aginary p a rt o f Cq corresponds to  the K -H  grow th  rate given by the form ula  

(5.1.1). Hence we found th a t K H  in s ta b ility  arises as the long-wave lim it o f our 

fo rm u la tion  in  the case o f inviscid perturbations on a th ick  film . A  comparison of 

the num erical solu tion w ith  the lim it  fo rm ula  (5.3.7) is made in  fig  5:2(b). Note tha t 

the condition o f negligible g ra v ity  is v ita l fo r the K -H  type lim it  solution, we see 

th a t even a small amount o f g ra v ity  elim inates the eigenmode at suffic iently small 

wavenumbers, see fig  5:2(a), F r  =  10,20.

Consider next short waves. F irs t, neglecting g ra v ity  and surface tension [ F r  =  

00, 7  =  0), we observe th a t short-wave in s ta b ility  persists fo r a ll wavenumbers. The 

grow th  rate, derived by T im osh in , is found to  be

Ci =  ^  cosh i p "  +  l ) ‘ '( ta n h  {p~ +  I ) " '  -  1), as i  oo,

(5.3.8)

fo r th is case, where Ai =  —A^/48. G ra v ity  enhances short-wave ins tab ility , as is 

seen in  fig  5:2(a). Th is connects w ith  Miles (1957) suggestion th a t w ater waves are 

destabilized by a boundary-layer type flow in  the a ir. We find  th a t in  fig 5:2(a) 

the phase speed at A: =  0.4 is =  0.4449 fo r F r  =  10, and th is  is close to  a pure 

water-wave w ith  phase speed Cr =  [ k F r ) ~ ^ f ^  =  0.5.

We can illu s tra te  th is  connection ana ly tica lly  in  the lim it  p~ oo (strong grav-



Chapter 5: The th ick  inviscid  film  lim it  169

ita tio n a l influence) fo r an inviscid th ick  film . W ritin g  the solution in  the form

C =  Cq ——Cl +  •••j (5.3.9)

=  (f)Q -| ~(pl "i" (5.3.10)

at the leading order we find  im m ediate ly th a t

which is the phase speed o f deep water waves, and then from  (5.3.2) we have

_  cq{ co(I)q{{ ) )  +  \ b )  +  k^'y -  l / F r

-  2 ^ k  •  ̂  ̂  ̂ ^

Since cq is real the solution fo r (po w ill have a c ritica l layer at the po in t ÿ =  ÿc 

where Cf(^(ÿc) =  cq. The effect o f th is  c ritica l layer is most easy to  evaluate fo r

short waves k oo, and we w rite  (po, Uq as functions o f the shorter-scale vertica l

co-ordinate z =  k^^^ÿ,

(po =  0o(^) H— +  "• ' (5.3.13)
k i

Uq =  Cq =  k 2Co. (5.3.14)

S ubstitu tion  in to  (5.2.11) and application o f the norm aliza tion  ü'^(O) =  1 gives the 

solution

00 =  (5.3.15)

- Q ± e - "  +  P ^ e ‘  +  ^ e ‘  T '  In | z -  z , \e-^‘ dz, (5.3.16)
2X1

where Zc =  co/Aj, is the c ritica l layer position, the superscripts - f / — refer to  regions 

above and below z =  Zc respectively and =  Zc, y2 =  0 0 , y ^  =  y~ — Zc> We 

apply the boundary conditions (5.3.2) and find  th a t

A i / 1 , 6co
p .  =  0. = +  + (5.3.17)
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A t the c ritica l layer, must be continuous whereas the derivative is singular and 

must satisfy the usual loga rithm ic  ju m p  condition

~È~^^  "  ■ (5.3.18)

These constra ints lead to  the solutions

p;2^-2zc
Q+ =  \ n \ z -  Z c \e ~ ^ ^d z -  ln \  z -  z^ \e~^^dz^

Q7 = (5.3.20)

where the subscript i  denotes the im aginary part. S ubstitu ting  th is result back in to  

(5.3.12) using (5.3.13) we find

c i, =  -  '  %  ,-------- . (5.3.21)
2 ( F r h h i ) 3

We observe th a t the in s ta b ility  here is dependent on the existence o f a c ritica l 

level where the curvature o f the base profile must be negative. This is exactly the 

mechanism investigated by Miles and others and which was defined in  Benjam in 

(1963) as Class B ins tab ility .

5.4 The numerical solution

In  the fuU fo rm u la tion  the equation (5.2.11) was solved num erically w ith  the bound­

ary conditions (5.2.26), (5.2.27) and the norm alization condition ü'^(O) =  1. The 

method (a second order accurate d iscretization w ith  Newton ite ra tions to  improve 

on the value o f c fo r a given k)  is a m inor m odification o f the m ethod described in  

Chapter 2. The results fo r the complex frequency u  =  kc =  Ur iuJi and various 

com binations o f the flow  parameters are shown in  figs 5:3(a)-(e). F irs t we examine 

the effect o f viscosity variations in  the film  w ith  no in terfac ia l effects, i.e. at F r  =  oo, 

'y =  0. We see in  fig  5:3(a) th a t stronger film  viscosity reduces g row th  rates, w ith
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the maximum in cJi(k) always around a finite wave number. In fig 5:3(b) we see that 

even without gravity the density variation strongly affects the instability as it alters 

the momentum/ pressure balance in the film part of the disturbance. For increas­

ingly dense films the maximum instability decreases and occurs for longer waves. 

The loss of this instability for very large values of p~ shows that very viscous and 

heavy films act like a solid wall, in effect turning the flow into that of a single fluid. 

The introduction of surface tension, 7 7̂  0, damps the instability at all wavenum­

bers, particularly affecting short waves, the growth rate maximum is decreased for 

increased 7 , occuring for longer waves, see fig 5:3(c). Gravity also stabilizes the flow, 

fig 5:3(d), although the wavenumber of the most unstable disturbance is only weakly 

dependent on the Froude number. A rather interesting non-monotonic behaviour 

under the Froude number variation is observed on short waves, however, since the 

short waves are completely stabilized by viscosity we do not see here the strong 

destabilizing influence of gravity noted for inviscid disturbances in §5.3. The effect

of the film thickness is quite obvious from fig 5:3(e). As the film thickness decreases

for F r =  00, 7 =  0 , the growth rate maximum decreases and the unstable spectrum 

moves towards longer waves. Increasing the film thickness on the other hand leads 

to saturation of the solution as the wall effect becomes weak.

5.4.1 Long-wave limit

In this section we analytically obtain a long-wave limit solution to the fuU problem. 

We approach this by assuming A: <C 1 and expand both above and below the interface

in powers of k. Starting with the flow in the film we expand the perturbations ü~,

û“ , p~ and frequency as follows

Û" =  kûl{ÿ)  4- k^û~ +  ..., (5.4.1.1)

v~ =  k^v^{ÿ) + k^V2 +  ", (5.4.1.2)

P '  =  Pô {ÿ) +  kp- +  (5.4.1.3)

w = k̂ UQ -j- uj\ ... . (5.4.1.4)
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Substituting these expansions into the governing equations (5.2.12)-(5.2.14) and ap­

plying the boundary conditions

dü~
ü ï ( - â )  = 0, - ^ ( 0 )  =  0, û i( - â )  =  0, ï;j^(0) =  1, (5.4.1.5)

where the last o f these is a normalization of our choosing, we find tha t

Likewise, in the upper flow we expand the perturbations in w riting

p + = p +  + kp+ +  (5.4.1.7)

+ k v + + - j - (5.4.1.8)

Û+ =  iü +  +  Ü+ +  kü}  -F ..., (5.4.1.9)

and upon substitution in to  (5.2.8)-(5.2.10) we obtain the solutions

5+ =  Q (,[/+, (5.4.1.10)

1̂+ =  [ q i  -  J_°° > (5.4.1.11)

As ÿ - ,  0, (5.4.1.12)
At

Pi = Pic + Q o i ( y  + J  { { U o ? ■ (5.4.1.13)

v t  =  - ^ d y \ ; (5.4.1.14)

As ÿ —, 0, 0^ —, (5.4.1.15)
At

where

fJTT+
T = - Q o ( ^ o ^ - i P Î ,  (5.4.1.16)

dy

s =  - i p t  (5.4.1.17)
dy dy

Qoi Qii Qii Pic are constants of integration and, w ithout loss o f generality, we set

Qi =  Q2 =  0.
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From the definitions o f r ,  5 we see th a t

üJq — — ^Po
Q o^b'

_  ^(0) +  ip+ (0 )

(5.4.1.18)

(5.4.1.19)

and from  the kinem atic condition , along w ith  the ju m p  in  pressures we find

(5.4.1.20)5(0 ) =  Afc, Qo =  +  —
a cuq

where F =  —7  +  (p~ — 1) / F r  and we have reseeded the surface tension to  keep i t  in  

the problem  by w ritin g  j  =

The expansions in  the fa r fie ld where Y  =  kÿ  =  0 (1 )  are w ritte n  as

u+ =  û + {Y )  +  kû+ ..., 

v+ =  i ^ ( Y )  +  kv+ ..., 

p t  = p t ( Y )  +  k p t. . . ,

and substitu tion  in to  (5.2.8)-(5.2.10) gives the solutions

• - Y  . 4- - Yp {  =  ic ie  , v {  =  cie  ,

«+ • - Y  - Yp j  =  IC26 , V j =  €26 \

(5.4.1.21)

(5.4.1.22)

(5.4.1.23)

(5.4.1.24)

(5.4.1.25)

where Ci,C2 are constants o f in tegra tion . Then the m atch w ith  the region y =  0 (1 )  

gives

Cl =  Qo, Po =  (5.4.1.26)

C2 =  —L iQ o , p ic  — —iQ o{L2 — L \ )  (5.4.1.27)

where

L i  =  lim  
ÿ—0 - 1  +

1 :

l - w o U ^ \ y )
dy (5.4.1.28)

(5.4.1.29)

{ K ( y ) f

L 2 =  lim  r  { { U + { y ) f  -  1) dy. 
y-'OJg

Therefore uq =  l/A j,  is real and the g row th  rate is given by which is found by 

com bining (5.4.1.20), (5.4.1.27) and (5.4.1.19). Num erical in teg ra tion  o f T i ,  L 2 gives
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the values L i  =  —2.21428, L 2 =  —2.38489 and since p ^ (0 ) =  pic  we find  th a t

( 5 , 4 , 1 . 3 0 )
Vo '̂ b

We note here th a t neither surface tension nor g rav ity  affect the g row th  ra te  at th is 

order. We show in  fig  5:4 a graphical comparison o f the asym ptotic  so lution (5.4.1.4) 

w ith  Cr,Ci computed fo r the fuU problem .

5.5 The thin-film limit case

In  th is subsection we describe various instab ilities  arising on th in  film s. S im ultane­

ously w ith  the film  thickness the viscosity /Iq wiU also be taken sm all to  capture 

the most typ ica l flow  regimes. Our num erical solutions in  §5.4 show th a t th in -film  

in s ta b ility  tends to  be moved towards smaller wavenumbers, hence we take k 1 

as well.

5 .5 .1  T S  in s t a b i l i t y  o n  a v is c o u s  t h in  f i lm

Suppose firs t th a t k  and â are o f the same order, (k ,a )  =  0 (e ) say, where e <  1. 

We take the film  viscosity Pq =  O(e^) and we w ill ju s t ify  th is  choice la te r. So we 

w rite

k =  eK , à =  eà, (ÜT,a , / ig )  =  ^ (1 ) -  (5.5.1)

The disturbance components in  the film  are sought in  the fo rm

=  e P - ( y ) ,  V -  =  e ^ V - {Y ) ,  p "  =  € ^P ~ {Y ), (6,5,2)

to  leading order, w ith  Y  =  ÿ /e  =  0 (1 )  and the frequency and in te rfac ia l displace­

ment w ritte n  as

u  =  e^n +  ..., =  (5.5.3)
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S ubstitu tion  in to  (5.2.12)-(5.2.14) and the use o f the boundary conditions 

U ~ (—à) =  V ~ ( —à) =  0, d U ~ /d Y (0 )  =  0 lead to  the solutions

where a =  —iu p ~  f  p,Q . The in te rfac ia l k inem atic  condition then becomes

(*■«>

The disturbance in  the upper flu id  takes a three-layer structure . In  the region 

ÿ ~  0 ( 1), we have

=  eA U ^ { ÿ ) =  e ^ { - iK A U ^ { ÿ ) )  +  (5.5.7)

p +  =  e^P +E  +  C.C. +  (5.5.8)

and we find , m atch ing in  the usual way to  the outer po ten tia l flow  where ÿ ~  0 (e“ ^) 

th a t

P + =  \K \A .  (5.5.9)

Then in  the region y ~ 0 ( l ) , y  > 0  the solu tion takes the fo rm

Ü+ =  eXbA +  0 {e ), =  e \ B Y  -  iK X b A ), (5.5.10)

w ith  the same pressure (5.5.8) and the constant B  given by the re la tion

XbB =  - i K P ^  +  iüX bA . (5.5.11)

The k inem atic cond ition  fo r the upper flow , B  =  —iÇlrj, along w ith  (5.5.9) and the 

in te rfac ia l condition ,

P+ -  P -  +  =  0, (6.5.12)
F t

w ith  the surface tension coefficient and the Froude num ber adjusted to  the present 

regime by 7  =  7 e and F t =  €~^Ft , lead eventually to  the dispersion re la tion  for
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n  = Q { K )

=  (5 .5 .13)

w ith  (T =  ^ —iù p ~ jp ,Q . Figures 5 :5(a)-(c) illu s tra te  the g row th  ra te îl^ obtained 

num erically from  (5.5.13). The effect o f g rav ity  in  fig  5:5(a) is ra the r complex, as we 

see th a t long waves are damped w h ils t short waves are not affected, and the range 

o f wavenumbers in  the m iddle is destabihzed. On the other hand, the influence o f 

surface tension, shown in  fig 5:5(b), does not affect long waves, bu t destabilizes short 

waves. A  most remarkable behaviour is observed fo r reduced film  viscosity w ith  an 

island o f in s ta b ility  arising in  a fixed wavenumber in te rva l as p,Q —> 0, see fig  5:5(c). 

These properties are explored in  more deta il in  the next subsection w h ils t here we 

comment on the connection o f the present regime w ith  the solutions derived in  the 

previous subsections and elsewhere. A t small wavenumber A  —> 0, the solution o f 

(5.5.13) has the l im it  properties

f i ,  =  +  0 { K ^ ) ,  (5.5.14)

Qi = -------------3 ° %    +  o ( K ‘')  (5.5.15)
(Â J ) :  +  9 {p -  -  ly -a ^ X l/F r^

which fo r large F r  coincide w ith  the long-wave result (5.4.1.4). The g rav ity  te rm  

exp lic itly  included in  (5.5.15) confirms the stabiliz ing influence on long waves ob­

served in  a ll our num erical solutions in  th is chapter. I f ,  next, 7  =  0 ,F r  =  00 and 

p~ 0 0 , p.Q 00 w ith  /2o ~  p~ then

n  =  f f l  +  l - i r A , f î ^ î ^ - â ) + o ( ^ ) .  (5.5.16)
p V CTQ J P

where gq =  y j - i K \ K \ p ~ I . The solution o f the fo rm  (5.5.16) was derived by 

T im osh in  (1997), in  his §5.4, as a special lim it  o f the TS in s ta b ility  governed by the 

trip le-deck equations, see Chapter 4. The destabilizing effects o f surface tension, 

which caused a resonance between cap illa ry  and TS waves in  Chapter 4, appear to  

also be present here and we discuss th is  possib ility  in  the next section.



Chapter 5: The th in -film  lim it  case 177

5.5.2 Thin films of smaller viscosity

The fo rm a tion  o f an isolated range o f in s ta b ility  at a reduced film  viscosity in  fig  

5:5(c) could have been explained by sim ply tak ing  the hm it p,Q 0 m  (5.5.13), 

however fa r more in teresting  results are obtained i f  we assume much smaller values 

o f the film  viscosity,

MÔ =  . w ith  AÔ =  0 (1 ) .  (5.5.1)

We keep the o ther parameters (i.e. K ,p ~ ^ à  ) seeded as in  §5.5.1 and expand the 

complex wave speed c as

c =  c(co +  fCi - f e^C2 +  c^C3 +  ...). (5.5.2)

As in  §5.5.1, the upper flu id  has three d is tinc t regions w ith  ÿ o f 0 (e ), 0 (1 )  and 

0 (e “ ^). A  new feature here is th a t the film  also becomes m u lti layered, due to  the 

reduced viscosity, sp litt in g  in to  three regions fo r ÿ <  0, Y  à ~  O(e^), Y  ~  0 (1 )  

and Y  ~  O(e^) where we recall ÿ =  eY . The viscous effects are contained w ith in  

w a ll and in te rfac ia l layers, w ith  the in te rfac ia l viscous layer rem aining inactive fo r 

our purposes. As the calculations fo r the hm it solution below are bo th  long and 

tedious we present the expansions along w ith  solutions fo r the ir coefficients bu t 

reserve comment on ly  fo r the most significant steps.

In  the region ÿ  ~  0 (e ) above the interface we take ÿ =  eT, expand the base 

Blasius profile  Uq and the solution o f the Rayleigh equation (5.2.11) in  the fo rm

£T+ =  eXtY +  +  ..., w ith  A j =  -A ^ /4 8 , (5.5.3)

v+ =  e^(Vo+ +  +  e V +  +  ...), (5.5.4)

c =  e(co +  ÊCi +  4* “h ...), (5.5.5)

where the leading coefficients are found to  be

F o +  =  XbY +  Bo, V+  =  A iY  +  B , , TÇ+ =  A2Y  +  B , ,  (5.5.6)

V 3 = +  Q f { Y  -  Y c )  +  12Ai ( - ^  + y c -^  +

+i2Ai(ye" + Boy/)((y - ye)in |y - ni - (y -  y»)) + (5.5.7)
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w ith  constants A j,  B j ,  Q f  and d^. The superscript ±  refers to  the value o f

above or below the c ritica l level Y  =  Yc =  co/A{>. In  the layer ÿ  =  0 (1 )  the 

solu tion expands as

v+ =  e(Vÿ- +  eV+ + e% + +  t^V+ +  +  ...), (5.5.8)

whereas in  the outer region Ÿ  =  eÿ =  0 {1 )  we have

^;+ =  V o + ( ÿ )+ . . . .  (5.5.9)

For the term s shown in  (5.5.8) we obta in  the solutions

=  U ^ ,  V-+ =  co{U+ -  1) +  \K \^ ^ ,  (5.5.10)

= Cl + cI{Uq  -  1) -  02qUq -  0 2 i U q {  J ~  I -  l |  ds -  ÿ) + $ 2,

(5.5.11)

^ 3̂  ~  (^0 “  — CiCo — #20Co +  C2){Uq — 1) — Ô̂ qUq

+ (S.5.12)

where 9 ij are real constants and the functions ^ j { ÿ )  have the fo llow ing properties:

$2  =  (5 5 14)

• •  =

rs =  K ^ U +  {{U +  - l ) c o -  | i r | * i ) + c o $ ; - ( 92iC o - | # | c i ) $ i ,

(5.5.16)

lÜTP
As ÿ —* 00 : $2  —2— "f" ^2i ÿ  T  ^20 *f t.s .t.f (5.5.17)

As 2/ —> 0 : $2  —^2—(co 4- Bo)y  +  0 [y  ), (5.5.18)

\K \K ^
As ÿ  —> 00 : $3  —> ---------— +  Gsiÿ 4- 9so 4~ t.s .t., (5.5.19)

b

As ÿ 0 : Ë Æ lfÊ ÿ in  ÿ 4- 4- 3̂ 2 4- (.a.t. . (5.5.20)
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Here the le tte rs t.s .t. denotes transcendentally small term s. M a tch ing  to  the 

solution in  layers ÿ  =  0 {1 )  and ÿ =  0{e)  shows th a t

B q =  —Co +  (5.5.21)

B \ =  —Cl — Cq +  -r—, (5.5.22)

B 2 =■ cqK^ +  Cl Co — Cq — 02OCO — C2 H— (5. 5. 23)
Ab

Provided th a t co,Ci,C2 are real, the grow th rate is contained in  the next te rm  C3 =  

C3r +  icsi. To determ ine c^i we only need to  look at the im aginary p a rt o f ,

%  =  ([/o ' -  l)c3 i. (5.5.24)

Then, from  m atch ing to  the region ÿ =  0 (e ), we find  th a t

csi =  - Im iV z w  +  d ^ )  =  -V z ^ i H — L  (5.5.25)

w ith  the value o f related to  the logarithm ic phase ju m p  across the c ritica l layer 

in the region ÿ =  0 {e ), ÿ >  0. In  the film , ÿ <  0, in  the wall Stokes layer, we w rite  

Y  +  à =  e^Y. The leading terms in  the disturbance expansions are

Ü - =  Ù Ô {Ÿ ), V - =  e % - { Ÿ ) ,  p -  =  e P -,  (5.5.26)

and we ob ta in  the result

where â =  y /—iK c o lu ~ . In  the m ain pa rt o f the film , where y =  eY, Y  =  0 (1 ) ,  

y  <  0 the expansions are

u~ = û ~  +  eû- +  €^Û2 +  (5.5.28)

v~ =  +  e %  +  +  ..., (5.5.29)

p -  =  £Po +  ( ‘‘ p -  +  (5.5.30)

and fo r the norm al ve locity terms (fo r example), in  terms o f the pressures, we have

the fo llow ing relations

%  =  - ' - ^ { Y  +  à), =  — ^ ( - ^  +  p r )  (y  +  a), (5.5.31)
CqP  CqP  \  Cq j

V2 =  r  ( +  3 )  Po “  + P 2 )  ( ^  +  “ )> (5.5.32)
^O P  \  \  ^ 0  Cq /  Cq j
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i K
V-3 =  — ■

CqP'

x(y+ a).

C2 , q
 1 2
Co cl Vi

Cl « _

~V 2  +P3
Cq

(5.5.33)

Then the in te rfac ia l pressure ju m p  condition and the k inem atic cond ition  lead, firs t 

o f a ll, to  an equation fo r the leading-order phase speed.

Cq
CqP'

(5.5.34)

where F =  +  (p — 1) / F r ,  and then to  the sequence o f corrections to  the phase

speed

Cl =
^ 0 2 Q  ( c q  +  1 /â  +  F / c q )  — Cq (1 — p  /& ) — c q ( F  —  . A i )

C2 = 1 -

p / Ü (|iF|/Afc — 2 cq) +  F / cq (1 +  Afc/co) 

CqP
 h

Cq
+  — 1  ( ^ ^ C q  +  C l  C o —  C q —  C o $ 2 Q +

C o V a
B i +  ^ B o

Cq

1 ( 1  +  _  i l a
Co Co a p

-1

(5.5.35)

(5.5.36)

We note th a t i f  cq in  (5.5.34) is complex-valued then th is fo rm u la  provides the 

leading order g row th  rate so the rest o f the analysis is no t necessary. The firs t 

bracketed expression in  (5.5.34) can be thought o f as re la ting  to  TS waves, and the 

second is related to  g rav ity -cap illa ry  waves. The in s ta b ility  governed by (5.5.34) can 

thus be in te rp re ted  as a resonance between the tw o classes o f neu tra l waves, very 

sim ilar to  the K -H  mechanism in  (5.1.1). We saw in  fig  5:5(b) th a t an increase in  

surface tension destabilized a w ider band o f wavenumbers, ind ica ting  a resonance 

o f th is  k ind. However when cq is real we see th a t so are c i,  C2, bu t cg is not and 

C3i =  /m (c 3) is found to  be

P ~ c q \  1 2 a A i C o | i F | 7 r

C3i =
1/ Co

2 K

£

Co p~>'b

M y r i  V '
(5.5.37)

Num erical results fo r the leading order in s ta b ility  and its  corrections in  th is  regime 

are shown in  figures 5:6(a)-(c) and figs 5:7(a),(b ). Tw o d is tinc t modes can be seen
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in  F ig 5:6(a) corresponding to  Class A  (TS ) and Class B modes o f the Benjam in- 

Landahl classification. We see, fo r the long-wave lim it  AT <C 1 th a t when no g rav i­

ta tiona l influence is present cq fu lly  describes the leading order in s tab ility . However 

w ith  a g rav ita tiona l effect, in  our example F r  =  10, the leading in s ta b ility  is given 

by C3i,  see fig  5:6 (c), K  <  0 .02 . Class B waves remain stable, w h ils t fo r TS (Class 

A ) waves a s light broadening o f the unstable wave spectrum  is seen. For short waves, 

on the o ther hand, we see th a t there appears to  be a c ritica l value o f the Froude 

number, Fvc, below which the presence o f g rav ity  provides a positive im aginary 

correction to  c, increasing the destabilizing role o f the curvature fo r Class B waves 

bu t stab iliz ing TS modes, see fig  5:6 (b). For F r  >  F rc  the curvature plays an (a l­

most negligible) contrary, i.e. stabiliz ing, role over a small wavenumber range. A n  

analysis o f the influence o f bo th  curvature and viscosity on the instab ilities  present 

shows curvature to  be the dom inant force. However i f  we take /ig 1, lin k ing  w ith  

the previous regime, we see in  fig 5:7(a), th a t the effect o f viscosity overcomes th a t 

o f curvature and a w ider range o f K  becomes unstable fo r Class A  waves. We clearly 

see the destabilizing role o f viscosity fo r TS waves bo th  here and in  fig  5:5(c). Strong 

viscosity, w ith in  th is regime, can stabilize bands o f wavenumber fo r Class B modes 

even in  the presence o f g rav ity  or surface tension bu t we observe in  fig  5:7(b) th a t 

surface tension wiU become the dom inant effect as K  becomes large and a second 

range o f wavenumbers wiU become unstable.

5.6 Discussion

Through ana ly tica l investigation o f lim it in g  regimes o f the Rayleigh problem  (given 

by (5 .2 .11), (5.2.26), u+(oo) =  0 and i;''"(0 ) =  1) we have been able to  see how 

different flow  parameters affect the in s ta b ility  mechanisms. The K -H , ToUmien- 

Schlichting, and Miles mechanisms as weU as a ca p illa ry /T S  wave resonance are 

found to  operate in  special lim its  o f the fu ll fo rm u la tion , however in  order to  de­

term ine fu ll in s ta b ility  ranges, especially the range o f the g row th  ra te  m axim um , 

num erical so lu tion o f the problem  is necessary in  general. We have also shown th a t
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the various special cases tackled in  previous papers are continuously connected in 

the param eter space o f the Rayleigh problem  considered here.

There are some apparent discrepancies between the behaviours o f the fu ll nu­

merical and lim itin g  solutions which require c larifica tion . We do not observe a 

short-wave in s ta b ility  in  the fu ll so lution w h ils t one is present in  lim it in g  solutions 

in  §5.5. This means th a t an a lte rnative  lim it  theory is required to  describe the 

short-wave cu t-o ff o f the curves in  figs 5:3, fo r example. I t  is also clear th a t the 

shape o f the g row th -ra te  curves in  figs 5:5, 5:6 and 5:7 w ith  a pronounced hump in  

the m iddle surrounded by broad ranges o f weakly grow ing modes, has noth ing in  

common w ith  com puta tiona l solutions shown in  fig  5:3, w ith  perhaps the exception 

o f one curve in  fig  5:3(a). One reason fo r th is  difference is o f a technical nature: 

fuU num erical solutions were d ifficu lt to  ob ta in  fo r th inner film s due to  very small 

grow th rates. The small g row th  rates are in  agreement w ith  our predictions in  §5.5, 

where i t  is shown th a t th is  is related to  the small curvature o f the Blasius profile 

near the interface. We can expect th a t a be tte r agreement between th in  film  theory 

and num erical solutions can be obtained fo r a base profile w ith  larger curvature. To 

verify th is idea we have computed a few solutions in  the fu ll fo rm u la tion  using the 

exponential base-velocity d is tr ib u tio n  Uq =  1 — exp [—y]. The results are shown in  

fig 5:8, and we can see an agreement w ith  the properties o f the lim itin g  solution 

(note th a t the theory in  §5.5 can be easily adjusted to  the case w ith  an exponential 

profile).

F ina lly  we comment on the va lid ity  o f our num erical solutions fo r very long 

waves. The g row th  ra te  calculations at very small wavenumbers were d ifficu lt since 

the solutions obta ined by the Rayleigh solver require a fa r fie ld condition to  be 

imposed at ÿ =  ÿmax o f inverse p roportion  to  the wavelength fo r small wavenumbers. 

V ia  accuracy tests a re la tion  ÿmax =  5/A: was settled on as a satisfactory num erical 

depth fo r the upper flu id . Values smaller than  th is  meant th a t the solution for 

struggled to  decay as ÿ —» ÿmax- Because o f th is  res tric tion  calculations became very 

slow fo r k <  0.02 and so th is was taken as the longest wavelength to  be examined. 

The stepsize dÿ  was chosen to  be dÿ =  0.005 fo r the fuU Rayleigh solutions. For the
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param eters k =  0.1, p~  =  2, pg =  0.1, â =  5, F =  0 w ith  64001 steps and varying 

stepsize dÿ  the fo llow ing  results were obtained:

dÿ =  0.01, c =  0.2283496+ 0.0951937Z 

dÿ =  0.005 c =  0.2283497+ 0.09519392 

dÿ =  0.0025, c =  0.2283497+ 0.0951939% (5.6.1)

A  doub ling  o f stepsize and halv ing o f ÿmax gave exactly the same answer.
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5.7 Figures
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F ig u re  5 :2 (a ) Num erical solutions o f (5.2.11), w ith  the boundary conditions (5.3.2), 

(5.2.27) and a =  5 ,p~  =  2.0, Pq =  1.0,7,4 =  0, real and im aginary c p lo tted  against 

wavenumber k fo r various F r .  (b )  a comparison o f the solution when F r  =  00 w ith  

(5.3.7).
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K
F ig u re  5:3 The fu ll Rayleigh problem. Unstable eigenvalues o f (5.2.11), (5.2.26) 

and (5.2.27); w ^/lO  and grow th  rate w* versus wavenumber k fo r (a )  ô =  5 ,p~  =  

2 .0 , 75f =  0 , F r  =  00 and Pq varying, (b )  â =  5 ,/ iô  =  1-0 , 7,4 =  0 , F r  =  00 and p~ 

varying.
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F ig u re  5 :3  As before, (c )  â =  5 ,p  =  2 .0 ,//q =  1.0, F r  =  oo and 7 ,^ varying, ( d )  

â =  5,/?“  =  2 .0 ,/ig =  1 .0 ,7 af =  0, and F r  varying.



C hapter 5: Figures 188

0 . 0 4 0

. 0 . 0 3 0

^  0.020

0.010

0.000  —  
0.00 0.200.10 0 . 3 0 0 . 4 0

K
F ig u re  5 :3 (e ) As before, (e ) p~ =  2.0, p,Q =  1.0, =  0, F r  =  oo and â varying.
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Full case , Ci0.10

0.040.02 0.06 0.08 0.10
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Figure 5 :4 . Comparison of the complex phase speed c =  u / k  =  +  ic i  versus the

wavenumber ky calculated from (5.2.11), (5.2.26) and (5.2.27), with the limit formula 

(5.4.1.4), (5.4.1.18), (5.4.1.30) for â =  5,/^^ =  l  =  2 .0 ,7 ,̂  =  7  =  0, F r  =  00 . 

Figure 5 :5 . The numerical solution of (5.5.13), with â =  l ,p "  =  2.0. The growth 

rate fi,* plotted against Ky (a) 7  =  0,/io  = 1  for various F r,
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F ig u re  5 :5 . As before, (b )  F r  =  oo, /Iq =  1, various 7  

(c )  as before, F r  =  0.05, 7  =  1, various /2q .
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Figure 5:6. Numerical values for the complex phase speed components

cor, cot, C3i, with Pq =  .1, =  2, Ô =  1, 7  =  0 given by (5.5.34), (5.5.37). Letters A,

B denote the Benjamin-Landahl wave class; (a) cq against wavenumber K  varying 

F t (b) czi against wavenumber K  varying F t ,
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F ig u re  5 :7 . Num erica l values fo r the complex phase speed component c^i, p lo tted  

against wavenumber ÜT, w ith  =  2, â =  1 . (a ) Class A  wave, j  =  0, F r  =  oo 

various p.
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F ig u re  5 :7 . Num erica l values fo r the complex phase speed component ca,-, p lo tted  

against wavenumber FT, w ith  =  2, â =  1. (a )  Class A  wave, 7  =  0, F r  =  oo 

various p.
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F ig u re  5 :8 . The fuU Rayleigh problem  w ith  Uq =  l - e x p [ - ÿ ] .  Unstable eigenvalues 

o f (5.2.11), (5.2.26) and (5.2.27), w ith  grow th  rate q  =  U i/k  versus wavenumber k 

fo r p~  =  2.0, ja t  =  0 , Ô =  0.1, fo r various F r ,  Pq .
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C hapter 6

Conclusions

To conclude this Thesis we summarize here the new results obtained in Chapters 

2-5.

F irs t and foremost we showed in  Chapter 2 tha t a two shear profile was indeed 

a valid in it ia l approxim ation for triple-deck studies o f two-flu id flow when the film  

lies completely w ith in  the viscous sublayer. We then went on to  investigate the 

s tab ility  properties o f tw o-flu id  how over an elongated obstacle and found tha t the 

presence o f a th in  film  greatly enhanced inviscid instab ility . The discontinu ity in  

m ateria l properties at the interface was seen to provide an im portan t mechanism for 

ins tab ility . A  study o f the condensed flow problem, for short obstacles, then allowed 

us to  calculate separated profiles fo r two flu id  flow and we showed th a t the presence 

o f a film  could re tard  or enhance flow separation, depending on the film  thickness 

and the ra tio  o f film  and boundary layer flu id viscosities and densities.

In  Chapter 3 we derived wave-amplitude equations governing the resonant in ­

teraction o f two pairs o f oblique waves traveling w ith  the same phase speed and 

the ir in teraction  w ith  a three-dimensional vortex which develops in a unid irectional 

piecewise shear flow. The wave-amplitude equations were found to  reduce to  those 

o f Sm ith, B rown &  Brown (1993) in  the non-resonant lim it. We showed tha t the 

presence o f th is  second pair o f waves could lead to  finite-distance wave-amplitude 

blow-up, which may lead to  stronger nonlinear regimes or to  transition .
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The linear s ta b ility  study o f ToUmien-Schlichting disturbances in  f ilm  flows by 

T im oshin (1997) was extended to  cover weakly-nonlinear tem pora l TS instab ilities. 

The governing wave-am plitude equation was derived along w ith  equations fo r strong 

Reynolds-stress induced mean flow in  the in terfac ia l layers. The s ta b ility  proper­

ties o f the altered base profile to  secondary disturbances were examined w ith in  these 

layers and Rayleigh in s ta b ility  was found. In  the absence o f such background d is tu r­

bances i t  was found th a t, fo r a pa rticu la r com bination o f the surface tension, gravity , 

film  thickness and density ra tios, a resonance could take place which was a ttr ib u te d  

to  the in te rac tion  o f grow ing TS modes and decaying cap illary modes. Analysis o f 

the wave-am plitude equation showed non-linear effects forcing a sa tu ra tion  in  m ag­

nitude o f the disturbances. The disparate natures o f the two regimes were connected 

via  tw o in term edia te  regimes and a smooth analytic trans ition  between the regimes 

confirmed the expansion structures.

In  the fina l chapter we studied the in s ta b ility  o f disturbances o f a comparable 

wavelength to  the lower layer thickness in  flow on a very viscous film . We showed 

th a t disturbances previously categorized d is tinctly , namely the Class A , Class B and 

K H  modes in  the Benjam in-Landahl classification, exist as special lim it in g  cases o f 

our general fo rm u la tion . Investigation o f the th in  film  case revealed the presence o f 

a s im ila r resonance mechanism to  th a t o f Chapter 4.
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