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Purpose: Recently, there has been increasing interest in the development of scintillator-based
detectors for the measurement of depth-dose curves of therapeutic proton beams1. These detectors
allow the measurement of single beam parameters such as the proton range or the reconstruction of
the full three-dimensional dose distribution. Thus, scintillation detectors could play an important
role in beam quality assurance, on-line beam monitoring, and proton imaging. However, the light
output of the scintillator as a function of dose deposition is subject to quenching effects due to the
high specific energy loss of incident protons, particularly in the Bragg peak. The aim of this work
is to develop a model that describes the percent depth-light (PDL) curve in a quenching scintillator
and allow the extraction of information about the beam range and the strength of the quenching.

Methods: A mathematical expression of a depth-light curve, derived from a combination of
Birks’ law2 and Bortfeld’s Bragg curve3 that is termed a “quenched Bragg” curve, is presented. The
model is validated against simulation and measurement.

Results: A fit of the quenched Bragg model to simulated depth-light curves in a polystyrene-
based scintillator shows good agreement between the two, with a maximum deviation of 2.5% at the
Bragg peak. The differences are larger behind the Bragg peak and in the dose build-up region. In
the same simulation, the difference between the reconstructed range and the reference proton range
is found to be always smaller than 0.16 mm. The comparison with measured data shows that the
fitted beam range agrees with the reference range within their respective uncertainties.

Conclusions: The quenched Bragg model is, therefore, an accurate tool for the range measure-
ment from quenched depth-dose curves. Moreover, it allows the reconstruction of the beam energy
spread, the particle fluence and the magnitude of the quenching effect from a measured depth-light
curve.

Keywords: proton therapy, Bragg curve, light quenching, Birks’ law, plastic scintillator, beam range, quality
assurance, Bortfeld model, pencil beam

I. INTRODUCTION

The gold standard for the measurement of percent depth-dose (PDD) curves in proton therapy are water phantoms
with a movable ionisation chamber4. The accurate measurement of PDD curves plays an important role in beam
quality assurance, online beam monitoring and imaging. However, scanning the water tank for a full measurement
of a PDD curve is very time-consuming. Recently, there has been increasing interest in organic scintillator-based
detectors for proton PDD curve measurements1. A scintillator is a material that produces light as a response to the
energy deposition by ionising radiation. A percent depth-light (PDL) curve is defined as the scintillation light output
versus penetration depth of the beam in the scintillator. Some advantages of organic scintillators over ionisation
chambers are their low cost, high spatial resolution, the avoidance of any high voltage power supply, close-to water-
equivalent density, dose-rate independence and scalability1.

To date, commercially available clinical applications for scintillators in proton therapy focus mainly on scintillating
screens for beam spot measurements5. However, scintillation detectors that were originally developed for conventional
X-ray radiotherapy have been successfully applied to proton depth-light curve measurements in scanning water phan-
toms6. Similar to conventional water phantoms, the measurement of a full proton PDL curve with the scintillator can
take several minutes.

Several groups therefore investigated the development of solely scintillator-based detectors (without water absorber)
for fast proton PDL curve measurements at the speed of beam delivery, wherein large blocks of scintillator intercept
the entire beam: prototype detectors of such kind were built using either plastic7,8 or liquid scintillator9. However,
all of these detectors have in common that they need to correct for optical artefacts10 and quenching effects11.

In an organic scintillator, scintillation light is produced through the de-excitation of specific energy levels in organic
molecules12. All alternative de-excitation modes that do not involve the production of a scintillation photon are
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grouped under the term “quenching”. However, the percentage of dose converted to scintillation light depends on the
local energy deposition density: this results in a non-linear response in the scintillation light output to absorbed dose.

In fact, the differential light output dL/dz of an organic scintillator can be described by a nonlinear function of
the differential energy loss dE/dz (or Linear Energy Transfer, LET), first reported by Birks2. Birks suggested that
the variable quenching is caused by temporarily “damaged” molecules along the track of the ionising particle. The
density of the damaged molecules depends on the energy loss of the traversing particle. This relation is described by
Birks’ law (see equation 5). Others have suggested modifications to Birks’ law13 or developed alternative models14.
Recently, it was shown that Birks’ constant is in fact not constant for low-energy X-rays15. Later, a different class of
models emerged based on the Energy Deposition of Secondary Electrons (EDSE)16, which fixed the false prediction
by Birks’ model of a constant quenching factor for different ions with the same LET. EDSE models have been shown
to be able to predict the PDL curve within ±5%17.

However, it was found that Birks’ law gives a good approximation of the light yield for energy losses up to
100 MeV/(g cm−2)18. The average energy loss of protons along the Bragg curve is found to be < 25 MeV/(g cm−2)
in analytical calculations19 and simulations20. Moreover, Christensen et al.21 found that correction factors to Birks’
model based on track structure theory are smaller than 2% for a proton LET below 45 MeV/cm. In conclusion, the
simplicity of Birks’ model, which allows the quenching to be described with only one additional parameter, as well its
satisfying accuracy, justify its use within the energy range utilised in proton therapy.

Robertson et al.11 used simulated three-dimensional LET distributions and Birks’ model to correct for quenching
effects in measured proton PDL curves. This correction was then used for fast measurements of the range of proton
pencil beams22. It relies on the accurate matching of the predicted and the measured LET distributions and is
therefore prone to small shifts between the simulated and the measured Bragg curve1,23. Range information has also
been extracted from the scintillation light output without applying any correction for quenching at all9,24,25.

There exist commercially available multi-layer ionisation chambers (MLIC) for fast proton PDD curve measurements
with a typical spatial resolution of 2 mm water-equivalent thickness. Those MLICs rely on an analytical approximation
of the Bragg curve developed by Thomas Bortfeld3 for the accurate measurement (within 0.5 mm) of the proton
range26. The aim of this work is to make Bortfeld’s formula applicable to scintillation detectors. A mathematical
expression of a PDL curve in organic scintillators has been derived by combining Bortfeld’s analytical approximation
of a depth-dose curve with Birks’ formula for light quenching. The combination of the two models is relatively
straightforward because both models parametrise the LET distribution. Including quenching models based on track-
structure theory in Bortfeld’s model would be more complex and require more additional parameters. The resulting
“quenched Bragg” (QB) model enables the PDL curve to be modelled without prior knowledge of the LET distribution.
In fact, the simultaneous fitting of the LET distribution and the quenching correction prevents the occurrence of
alignment errors between the two, which is the main advantage of this approach. By fitting the quenched Bragg
model to the depth-light curve one can reconstruct beam/material parameters such as proton range, beam current,
initial energy distribution and Birks’ constant.

II. MATERIALS AND METHODS

A. Derivation of a quenched Bragg curve

In this section the formula for a quenched Bragg curve is derived by combining Birks’ formula for light quenching
with Bortfeld’s analytical approximation of a proton Bragg curve. The derivation follows closely the one performed
by Thomas Bortfeld3 and is therefore less detailed. Prior knowledge of Bortfeld’s original derivation is therefore
recommended.

In order to derive an analytical approximation of a Bragg curve without quenching, Thomas Bortfeld began with
the energy fluence Ψ at depth z, being the product of the local particle fluence Φ(z) and the remaining mean proton
energy E(z). In an analogous way, the light fluence Θ(z) is considered, being the product of the local particle fluence
Φ(z) and the remaining mean light output L(z) of the beam. It is the light output L(z) that takes into account the
quenching relation between energy loss and scintillation light production.

Θ(z) = Φ(z)L(z) (1)

The local scintillation light output per unit mass U(z) can be obtained through differentiation of Θ(z) and normali-
sation to the material density ρ:

U(z) = −1

ρ

dΘ(z)

dz
= −1

ρ

(
Φ(z)

dL(z)

dz
+
dΦ(z)

dz
L(z)

)
(2)
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The proton fluence reduction represented by the factor dΦ/dz can be interpreted as being caused by non-elastic
nuclear reactions that eliminate protons from the original beam. However, only a fraction of the energy going into
these reactions is deposited locally and can therefore contribute to the production of scintillation light. As such,
Bortfeld introduced a factor γ which represents the fraction of locally absorbed energy from non-elastic nuclear
interactions3. This gives an expression for the depth-light curve Q̂(z).

Q̂(z) = −1

ρ

(
Φ(z)

dL(z)

dz
+ γ

dΦ(z)

dz
L(z)

)
(3)

In its current form Q̂(z) does not account for beam range straggling. Bortfeld found that a good approximation is to

fold Q̂(z) with a Gaussian with a constant standard deviation σ in order to include the effect of range straggling. The
initial depth dependence of σ(z) can be neglected due to the relative flatness of the Bragg curve’s plateau upstream of
the Bragg peak3. The minimum value of σ is determined by the range straggling of a mono-energetic beam σmono. In
addition to that, σ will further increase if the proton beam has an initial proton energy distribution with a non-zero
width. Folding a Gaussian with standard deviation σ into Q̂(z) yields a mathematical expression of a quenched Bragg
curve Q(z).

Q(z) = 〈Q̂〉(z) =

∫ R0

0

Q̂(z′)
1√
2πσ

exp
(
−(z − z′)2/2σ2

)
dz′ (4)

In order to calculate the depth-light curve, expressions need to be found for the light output and the particle fluence.
First, the quenched light output of a scintillator is considered. According to Birks’ law, the light yield dL in a path
segment dz is a function of the differential energy loss dE/dz. Just like dE/dz, dL/dz is a negative function as it
describes the release of light or a decrease of the potential to emit light. Since Birks’ constant is usually defined as
being positive, the absolute value of the differential energy loss must be used, introducing a negative into the definition
of dL/dz. Alternatively, Birks’ constant could be defined as being negative.

dL

dz
= − S∣∣dE

dz

∣∣−1+kB
(5)

Here, S is the scintillation light constant of the material and kB is Birks’ constant. Integration of dL/dz from z to
the proton range R0, which is defined as the mean stopping depth of the beam protons, gives the remaining light
output L at depth z. The remaining light output is positive, just like the remaining energy E(z) of a proton.

L(z) = −
∫ R0

z

dL

dz′
dz′ (6)

In order to find an expression for the energy loss in the medium, Bortfeld’s derivation is again used3. At the heart of
Bortfeld’s Bragg curve is the relation between the proton range R0 and the initial beam energy E0, approximated by
a power law. The proton range R0 coincides with the 80% fall-off of the depth-dose curve if nuclear reactions and the
initial beam energy spread are neglected3. The parameters α and p are material-specific constants that need to be
determined from a fit of the power law to experimental or simulated data. The range-energy relationship, also known
as Geiger’s rule3, is given by:

R0 = αEp0 (7)

The values for α and p found for polystyrene in a Geant4-10-0227–29 simulation (see Section II B) differ slightly from
those values found by Bortfeld for water (see table I). The uncertainties on α and p are determined by varying the fit
range of the power law. The residual proton energy E at depth z can be written as:

E(z) = α−1/p(R0 − z)1/p (8)

Differentiation yields the differential energy loss:

dE(z)

dz
= − 1

pα1/p
(R0 − z)1/p−1 (9)
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TABLE I. Summary of variables and constants used in equation 13. Adapted from table 1 in3. The given values are specific to
polystyrene-based scintillator.

Variable Description Value Unit

p Exponent of range-energy relation 1.753± 0.010 1

α Proportionality factor 0.0237± 0.0005 mm/MeVp

β Slope parameter of fluence reduction 0.00123 mm−1

γ Fraction of locally absorbed energy 0.63 1

S Scintillation light constant 9,74430 photons/MeV

ρ Density of the scintillator 1.0330 g/cm3

kB Birks’ constant fit parameter mm/MeV

R0 Proton range fit parameter mm

σ Width of Gaussian range straggling fit parameter mm

Φ0 Fluence factor fit parameter particles/mm2

The range-energy relation also allows σ to be decomposed into a component that takes into account the initial beam
energy spread σE and a mono-energetic component. Bortfeld found the relation:

σ2 = σ2
mono + σ2

Eα
2p2E2p−2

0 (10)

where σE is the Gaussian width of the initial proton beam energy spectrum and α and p are parameters of Geiger’s
rule3. For water, Bortfeld found that σmono can be approximated by σmono = 0.012R0.935

0 .

The last undefined quantity in formula 4 is the proton fluence. Bortfeld approximated the normalised proton fluence
Φ(z) as:

Φ(z) = Φ0
1 + β(R0 − z)

1 + βR0
(11)

with β being a slope parameter for the linear approximation of the fluence reduction due to non-elastic nuclear
reactions and Φ0 being the initial proton fluence at depth z = 0. Differentiation gives the change in proton fluence:

dΦ(z)

dz
= −Φ0

β

1 + βR0
(12)

By inserting relations 3, 5, 6, 9,11 and 12 into equation 4 a mathematical expression of a quenched Bragg curve is
obtained:

Q(z) =

∫ R0

0

1

ρ

Φ0
1 + β(R0 − z′)

1 + βR0

S(
1

pα1/p (R0 − z′)1/p−1
)−1

+ kB
+ γΦ0

β

1 + βR0
×

∫ R0

z′

S(
1

pα1/p (R0 − z′′)1/p−1
)−1

+ kB
dz′′

 1√
2πσ

exp
(
−(z − z′)2/2σ2

)
dz′

(13)

For kB = 0 and S = 1, equation 13 transforms into Bortfeld’s model. The integration over z′ and z′′ can be carried
out numerically. In this work, the quenched Brag curve is implemented using the software toolkit ROOT31. The
occurring integrals are solved using the function TF1::Integral() with a relative precision of epsrel = 10−7 which
is a compromise between computational speed and accuracy.

Bortfeld introduced an additional parameter ε in order to describe the deviation of the initial beam energy spectrum
from a Gaussian shape. ε represents the size of a linear tail in the energy spectrum relative to Φ0. However, Bortfeld
acknowledged that this is a coarse approximation which, while allowing Bortfeld’s equation to be solved analytically,
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fails to describe realistic beam energy spectra3,32. As such, Bortfeld’s energy-tail correction is not implemented in the
quenched Bragg model. Further work is needed to develop the description of a realistic energy spectrum.

B. Geant4 simulation

The scintillation light output of a plastic scintillator irradiated by a proton beam is simulated using the Monte
Carlo simulation toolkit Geant4-10-0227–29. The implemented physics follows the recommendation of Hall et al.
(2015)33: electromagnetic interactions are modelled using the G4EmStandardPhysics option4. Nuclear interactions
are modelled using G4HadronElasticPhyscis and G4HadronPhysicsQGSP BIC HP. In addition, G4EmExtraPhysics,
G4StoppingPhysics, G4IonBinaryCascadePhysics and G4NeutronTrackingCut are included. The scintillation pho-
tons are simulated using G4Scintillation. G4EmSaturation is used to describe quenching effects with Birks’ law.
A step size of 0.1 mm and a range cut of 0.2 mm are used to guarantee high-resolution particle tracking.

Monoenergetic proton beams of 106 particles with an initial transverse beam radius of 0 mm are used for all
simulations. The initial beam energy spread and angular divergence are neglected. A 10 × 10 × 40 cm3 polystyrene
(C8H8)n block is modelled with a density of 1.03 g/cm330, a mean excitation energy of I = 68.7 eV34 and a Birks’
constant of 0.090 mm/MeV23,35. The depth-light curve is obtained by recording the production depth z of each optical
photon produced in the scintillator. The resulting depth-light curve is obtained by filling the photon production depth
z into a histogram with 0.1 mm bin width.

C. Experimental data

The depth-light curves of proton beams with beam energies of 59.15 MeV (R0,ref = 27.34 ± 0.20 mm36) and
120.92 MeV (R0,ref = 105.48±0.20 mm36) were measured using a scintillation detector at the Heidelberger Ionenstrahl-
Therapiezentrum (HIT, Heidelberg, Germany). The detector was made of a polystyrene-based plastic scintillator
segmented into 2–3 mm thick sheets. The scintillation light was read out by a large-scale CMOS sensor attached to
the side of the sheet stack. The lateral size of each scintillator sheet was 10 × 10 cm2. The total thickness of the
scintillator stack was 12.4 cm which translates into a maximum observable beam energy of ∼125 MeV. Birks’ constant
of this scintillator is unknown; however, Birks’ constant for polystyrene-based scintillators has been measured in the
past: kB = 0.0094 g MeV−1 cm−223 and kB = 0.009 g MeV−1 cm−235. A detailed publication on the detector concept
and characterisation is in preparation. The QB curve was subsequently fitted to the data in order to independently
validate the model. The detector resolution is taken into account in the fit by integrating the light output predicted
by the QB curve in each respective scintillator sheet.

III. RESULTS AND DISCUSSION

A. Comparison with Bortfeld’s Bragg curve

In this section, the effect caused by the introduction of the quenching into Bortfeld’s formula is analysed. Figure 1
shows a comparison of Bortfeld’s analytical approximation of a Bragg curve with the quenched Bragg model for three
typical clinical proton beam ranges. This comparison demonstrates the influence of introducing quenching effects.
Within each plot both curves utilise the same parameters except for kB = 0.090 mm/MeV23,35 and S = 974430 which
are specific to the QB model. Their values can be found in table I. The width of the range straggling σ is set to
be equal to 0.012R0.935

0
3 as suggested by Bortfeld which represents a mono-energetic proton beam with zero initial

energy spread in water. The relative normalisation is chosen such that the values of the curves at depth z = 0 are
identical and the absolute normalisation is such that the maximum of Bortfeld’s depth-dose curve is equal to one.

It can be seen that the introduction of quenching decreases the peak-to-plateau ratio of the Bragg curve. For short
beam ranges, the maximum of the QB curve is around 60% of the corresponding Bragg curve. However, this difference
decreases with increasing beam range: this is due to increased range straggling at higher beam energies which in turn
increases the mean proton energy at the Bragg peak. A higher mean proton energy translates into a lower differential
energy loss which means weaker quenching.
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FIG. 1. Comparison of Bortfeld’s Bragg curve with the quenched Bragg model of the same range for three typical clinical
proton beam ranges. The effect of the introduced quenching is clearly visible around the Bragg peak.
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FIG. 2. Fit of the quenched Bragg model to a Geant4 simulation of a depth-light curve in a scintillator for three typical proton
beam energies.

B. Comparison with a simulated depth-light curve

1. General assessment

In order to make a first assessment of the derived quenched Bragg model, a least-square fit of equation 13 to
simulated depth-light curves is performed using the software toolkit ROOT. This comparison, however, has a limited
meaningfulness because both the Geant4 simulation and the QB model utilise Birks’ model to describe the quenching.
The four fit parameters are the range R0, the range straggling σ, the fluence Φ0 and Birks’ constant kB. All remaining
parameters are fixed. The fit range is from zero depth to a depth of 1.03× R0 because the QB model does not take
into account the dose from secondary neutral particles which are responsible for the majority of the dose deposited
behind the Bragg peak37. Figure 2 shows the fit for three typical clinical proton beam energies. The energy E0,sim

in the plots corresponds to the simulated proton beam energy. Figure 2(a) shows a good agreement of the QB model
with the simulation at 60 MeV: discrepancies between the model and the simulation are below 2.5% at the Bragg
peak. The difference is larger in the entrance region and behind the Bragg peak, where the light output falls below
20% of the value at the Bragg peak. At higher beam energies, the difference at the Bragg peak decreases to below
2% while the difference increases in the entrance region to a maximum of 15%.

The observed discrepancies are of the same kind as reported by Bortfeld3 and can be explained by the coarse model
of nuclear interactions in Bortfeld’s analytical approximation (see also Bortfeld fit in figure 3) which is also present
in the QB model. Dose build-up of secondary protons is responsible for the disagreement between the QB model and
the simulation at the entrance to the medium37,38, which is particularly visible for high beam energies (figure 2(c) for
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FIG. 3. Fit of Bortfeld’s Bragg curve to a Geant4 simulation of a depth-dose curve in a scintillator for three typical proton
beam energies.

0 5 10 15 20 25 30 35
stopping depth (mm)

0

0.5

1

1.5

2

2.5

3

3.5

4
310×

co
un

ts

 = 60 MeV0,simE

 0.001 mm± = 30.480 0,fitR

Proton Stopping Depths

Gaussian Fit Curve

(a) E0 = 60MeV

0 20 40 60 80 100 120
stopping depth (mm)

0

0.5

1

1.5

2

2.5

3

3.5

310×

co
un

ts

 = 120 MeV0,simE

 0.003 mm± = 105.294 0,fitR

Proton Stopping Depths

Gaussian Fit Curve

(b) E0 = 120MeV

0 100 200 300 400
stopping depth (mm)

0

0.5

1

1.5

2

2.5

3
310×

co
un

ts

 = 240 MeV0,simE

 0.011 mm± = 350.191 0,fitR

Proton Stopping Depths

Gaussian Fit Curve

(c) E0 = 240MeV

FIG. 4. Fit of a Gaussian curve to a histogram of the simulated proton stopping depths. The fit range is ±1% around the
expected proton range. The obtained range value is considered to be the best approximation of the true proton range and is
henceforth used as a reference value.

z < 100 mm). The difference upstream of the Bragg peak can also be explained by the coarse description of nuclear
reactions and a possible overestimation of the peak width σ. Complex parameterisations of Bortfeld’s Bragg curve
have been proposed in the past in order to improve the matching between data and model39. These are not included
in the QB model for the sake of simplicity but could be introduced in an analogous way as proposed by Zhang et
al.39.

Since Bortfeld’s analytical formula utilises the same parameters as the QB model, Bortfeld’s formula can be used to
reconstruct the initial depth-dose curve from the measured depth-light curve. This is done by calculating Bortfeld’s
depth-dose curve with the parameter values that are obtained from the fit of the QB model to the depth-light curve.
However, the accuracy of the reconstructed depth-dose curve depends strongly on the accuracy of the fitted beam
width σ and is also subject to the model uncertainties discussed by Bortfeld3.

2. Proton range reconstruction

This work focuses on the range reconstruction performance of the QB model. In order to quantify the good
agreement seen in figure 2 the proton beam ranges determined by three different methods are compared: the range
from the QB model fit to the PDL (figure 2), the range from Bortfeld’s Bragg curve fit to the PDD curve (figure 3)
as well as the range from a Gaussian fit to the histogram of stopping depths of the simulated protons (figure 4).

The mean of the Gaussian fit to the histogram of proton stopping depths is defined as the reference proton range.
However, it is non-trivial to obtain the true proton range from the histogram of the stopping depths. First, there
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FIG. 5. Reconstruction of beam/material parameters from the simulated PDL curve using the quenched Bragg model for the
typical range of clinical proton beam ranges.

are nuclear reactions removing protons from the beam and producing secondary particles. Second, the proton range
is the projected path length of the protons which is always lower than the actual path length in a three-dimensional
absorber. Those effects distort the initially Gaussian peak shape in the proton stopping depths histogram. In order
to minimise the systematic uncertainty on the position of the peak maximum, the histogram is fitted in a narrow
region of ±1% around the expected proton range. The relative statistical uncertainty on the Gaussian fit is 0.003%.
The relative systematic difference between the true proton range (unknown ground truth) and the reference proton
range (Gaussian fit) is estimated to be < 0.05%.

Figure 5(a) shows the difference ∆R0 between each calculation method and the Gaussian fit, calculated for proton
beam energies from 60 to 240 MeV (corresponding to 30 to 350 mm range) in 20 MeV steps. For the QB model fit,
∆R0 decreases with increasing beam range to a minimum of -0.16 mm at 260 mm beam range. The maximum range
difference for the Bortfeld fit is at a beam range of 350 mm and amounts to 0.04 mm. The worse performance of the
QB model fit in terms of range reconstruction can be explained by the additional parameter (Birks’ constant) which
opens up the parameter space for the range. The range reconstruction performance can be improved by fixing the
value of Birks’ constant, if known. Both the Bortfeld fit and the QB fit consistently underestimate the beam range,
which is probably caused by the minimisation algorithm trying to compensate for model inaccuracies. The observed
range difference can be interpreted as an estimate for the systematic model uncertainty on the range measurement.

The range measurement accuracy can be further improved by limiting the fitting range to a narrow region (e.g.
±2%) around the expected proton range, thus avoiding the model uncertainties in the Bragg curve plateau. In this
case, the maximum range difference is 0.11 mm for the Bortfeld fit and 0.025 mm for the QB model fit.

3. Birks’ constant reconstruction

The quenched Bragg model can also be used to measure Birks’ constant. Figure 5(b) shows the fitted value of Birks’
constant in comparison with the ground truth in the simulation. Birks’ constant is reconstructed within ±7% for all
simulated proton beams. The maximum deviation is found at a beam range of 175 mm. There are large uncertainties
associated with measurements of Birks’ constants in plastic scintillators, which is also reflected in the large variation
of values in the literature18,23,35,40. The QB model could help to reduce this uncertainty by providing a quick tool for
measuring Birks’ constant from PDL curves.

C. Validation with experimental data

The QB model is validated against experimental data. Figure 6 shows the measured depth-light curves of two
different proton beam energies, together with the fitted QB model. The PDL curve is normalised to the peak light
output. The values of the fit parameters and their uncertainties can be found in the figures.
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FIG. 6. Fit of the quenched Bragg model to measured PDL curves. The uncertainty on the fitted range R0 only includes the
uncertainty returned by the fitting process.

The fit range to the 59.15 MeV proton beam is restricted to 9–30 mm because the large beam spot size at HIT
resulted in protons hitting the CMOS sensor directly, resulting in a breakdown of the sensor calibration at depths
below 9 mm. The missing data points at the beam entrance probably lead to an overestimation of Birks’ constant.

The measured beam ranges are R0,fit = 27.16 ± 0.20 mm and R0,fit = 105.20 ± 0.20 mm, which includes the
uncertainty on the water-equivalent thickness of the scintillator. These values are consistent with the reference ranges
within their uncertainties. The fitted values of Birks’ constant are kB = 0.1074± 0.0056 mm/MeV (59.15 MeV) and
kB = 0.0988± 0.0037 mm/MeV (120.92 MeV), which are similar to values reported in previous publications23,35.

The depth resolution of the detector is 2–3 mm (scintillator sheet thickness), which is too large to resolve the Bragg
peak region to the same degree as in simulation. This also leads to an overestimation of the fitted beam width σ
and a larger uncertainty on the fitted Birks’ constant. However, this also demonstrates the strength of the QB model
since it allows some beam parameters to be reconstructed with a remarkable degree of accuracy, despite the coarse
spatial resolution. Future work will be needed to validate the QB model against high-resolution PDL curves in order
to resolve structures at the Bragg peak. The validation with higher-energy data above 120.92 MeV is also subject of
future work.

D. Model extension to ion beams

This work focuses on the description of PDL curves for protons. In order to expand the quenched Bragg model
to ion beams, it is in principle sufficient to adapt the energy-range relation, i.e. the values of α and p. However, in
addition, the dose contribution from projectile fragmentation must be considered. Instead of adapting the particle
fluence Φ(z) in Bortfeld’s model, the PDD model developed by Krämer et al.41 could be extended with a quenching
correction. Krämer’s Bragg curve uses extensive nuclear cross-section libraries to describe nuclear reactions between
the projectile and the material and is therefore more complex to implement. A QB model based on Krämer’s model
would also benefit the modelling of proton PDL curves because of the more accurate description of the proton energy
loss via nuclear reactions with the absorber.

IV. CONCLUSION

The mathematical expression of a quenched depth-dose curve has been derived by combining Birks’ law and Bort-
feld’s Bragg curve and compared with associated simulations of the scintillator light production and dose deposition.
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The strength of the approach is the simultaneous fitting of the quenching correction and the LET distribution which
avoids misalignment uncertainties. The effect of quenching is demonstrated by a comparison of the resulting model
of a quenched Bragg curve to Bortfeld’s original Bragg curve. A fit of the quenched Bragg model to the simulated
depth-light curve in a polystyrene-based scintillator shows that simulation and model agree within 2.5% in the Bragg
peak. An analysis of the accuracy of the range reconstruction in simulation shows a maximum range difference of
0.16 mm between the range determined by a quenched Bragg model fit and the reference proton range. Birks’ constant
is reconstructed within ±7%. A comparison to measured data shows that the fitted range values agree with their
reference values within their quoted sub-millimetre uncertainties. The quenched Bragg model is therefore believed
to be an accurate tool for measuring the range of a proton beam from a depth-light curve, especially in the case
of low depth resolution. Finally, since the quenched Bragg model and Bortfeld’s Bragg curve utilise the same set
of parameters, it is possible to use Bortfeld’s formula to reconstruct the original depth-dose curve in a quenching
medium from the fit parameters of the quenched Bragg model.
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