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A bstract

This thesis presents a practical design tool for wind turbine blades which was de­
veloped from existing theory on spectral fatigue analysis previously used for off­
shore platform design. The usual aim with spectral fatigue analysis techniques is 
to estimate fatigue damage or some related function such as rainflow ranges from 
spectral statistics. Monitored structural responses from different wind turbines 
were used to assess these existing techniques. The best two methods (suitable 
only for Gaussian stationary and random responses) were found to be Dirlik’s 
empirical formula and Bishop’s theoretical solution. Various parameters involved 
in the computation such as cutoff frequency and clipping ratio were examined. 
Guidelines for selection of these parameters are also given.

A method based on Bishop’s theoretical solution is extended to include the 
influence of mean stress. The joint PDF of rainflow cycle and mean stress can 
be obtained from the response PSD using this method. Because the global mean 
level information is usually not provided by the PSD, only the relative mean of 
each rainflow cycle is calculated using this method. The global mean level can 
then be provided by the designer during the structural analysis stage. This new 
method was used to analyse the mean stress influence for wind turbine blades 
using the two monitored structural response histories mentioned above.

A number of possible approaches for the spectral fatigue analysis of non- 
Gaussian response histories are discussed. A method based on Bishop’s theo­
retical solution is extended to calculate the PDF of rainflow ranges from non- 
Gaussian response histories specified as a peak trough transition matrix. Al­
though this is only a partial solution to the overall problem it still represents 
a significant breakthrough. It may, for instance, be of use for estimating rain­
flow ranges from standardised load sequences specified as turning point matrices. 
Restricted by the complexity of non-Gaussian processes, especially the limited in­
formation provided by PSD’s, a universal solution for the transition matrix and 
the peak number of the process in unit time is currently not available.

As part of the continual development of wind turbines, blade diameters are 
continuing to increase. The blade response can then sometimes contain a huge 
deterministic component, caused by gravity, which makes the edgewise response 
process not only non-Gaussian but also not random. Existing methods can not 
deal with this situation. By numerical simulation from selected spectra and de­
terministic component parameters, a mathematical model for the rainflow cycle 
PDF has been established. Least square techniques were employed for curve fit­
ting to obtain a set of model parameters. These parameters were used to train a 
back propagation neural network. Finally, a neural network toolbox was devel­
oped for the fatigue analysis of wind turbine blades subjected to both Gaussian 
stationary random flap wise responses and edgewise responses with a deterministic 
component. In principle, the method can easily be extended to cover more then 
one deterministic components. Verification of the technique has been carried out 
using measured responses from a Howden HWP330 wind turbines.
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C hapter 1 

Introduction
Spectral fatigue analysis is a very new topic. Basic techniques were developed 
for very limited situations in the 1960’s and 1970’s. More advanced techniques 
for stationary Gaussian and random loadings were developed in the late 1980’s 
and early 1990’s. The original objectives of the work in this thesis were to extend 
the techniques to cover loading situations not satisfying these assumptions and 
these objectives have been satisfied through the development of solutions to cover 
non-Gaussian loadings and non-random (deterministic) components. In addition, 
further goals have been achieved such as a solution for the range-mean distribution 
for a random signal specified in the frequency domain as a Power Spectral Density 
(PSD) function.

Fatigue is defined as the process of structural change occurring in a material 
subjected to conditions which produce fluctuating stresses and strains at some 
point or points and which may culminate in cracks or complete fracture after 
a sufficient number of fluctuations [1]. Fatigue failures were starting to worry 
engineers over a hundred years ago [2] [3]. Research on fatigue was then started. 
Early research during 1850 to 1875 involved conducting experiments to establish 
a safe alternating stress below which failure would not occur. Full scale axles as 
well as smaller laboratory specimens were employed to establish the endurance 
limit concept for design. Among the early researches, August Wohler first pointed 
out many important aspects of fatigue behaviour. The most important one being 
that fatigue depends more on the range of stress than the maximum stress and 
the life of specimens reduces when the amplitudes of repeated loading increases. 
He also introduced the concept of a stress versus life (S-N) diagram.

After the initial research from 1850 to 1875, more experimental work was 
conducted to establish a clearer understanding of the fatigue phenomena, i.e., 
the process of crack propagation under cyclic loading. The importance of cyclic 

deformation was clearly established in 1932 [4]. Research in fatigue during the 
1930’s and 1940’s was largely devoted to experimentally establishing the effects of
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the many factors that influence the long-life fatigue strength. Tests were usually 
conducted in rotating bending and the life range of interest was about 10® cycles 
and greater.

The quantitative relationships between plcistic strain and fatigue life was es­
tablished in the 1950’s. In the 1960’s fracture mechanics was developed as a 
practical engineering tool for fatigue analysis. Paris quantified the relationships 
for fatigue crack propagation in “Twenty Years of Reflection on Questions Involv­
ing Fatigue Crack Growth”. By the 1970’s fatigue analysis became an established 
engineering tool in many industrial applications.

Based on this research, various analysis techniques [5] [6] have emerged to 
deal with different design requirements. They include:

(i) The nominal stress approach. The amplitude of some representative stress 
in the component is used to predict its life. The stress is often a nominal 
stress and local features such as holes and notches are dealt with by intro­
ducing stress concentration factors. Failure may be taken as the appearance 
of a crack, a specific length of crack, or total failure depending on the test 
data available.

(ii) The fracture mechanics approach [7]. Crack propagation is assumed to 
depend on a fracture mechanics parameter, usually the range of crack tip 
stress intensity factor A K .  Life is then calculated by assuming an initial 
crack length and finding how many cycles are needed to make this crack 
grow to an unacceptable size.

(iii) The local stress-strain or critical location approach [8] [9]. The strain history 
of some critical location is estimated from the loading history, including 
plasticity effects. Life is then estimated from test data taken under strain 
controlled conditions.

The nominal stress approach was used in this thesis. It was chosen because 
methods such as the ones described above, either have no relevant influence on 
the focus of the present study, or are unsuitable for dealing with the loading 
problem investigated because there is a need to define a stress (or strain) “cycle” 
for the loading conditions which are more complex than constant amplitude.

For a constant amplitude loading history, the S-N  curve can be reliably used 
to predict fatigue life. However, when a structure or component is subjected to 
normal service loadings this approach has to be adapted to account for the fact



that the loadings will not be of constant amplitude. For such situations, firstly 
there must be a way to count the accumulation of fatigue damage, and secondly 
a method must be used to extract the “cycles” which contribute to such damage 
from the loading time history. For the first problem. Miner’s law is generally 
adopted. This law assumes a linear fatigue accumulation and ignores the order of 
cycles of different range and their interactive effects [10]. For the second problem, 
many methods of “cycle” defining or counting have been proposed. Among them, 
the rainflow cycle counting method is generally used because it is believed that 
this method gives the best correlation with test results.

For stochastic loading, it is hard to express the loading history using a m ath­
ematical formula. A more common way is to express the loading in the frequency 
domain as a PSD, as with, for instance, wind loading, sea wave loading, etc. The 
structural analysis for such loading histories is also conducted using frequency 
domain techniques. Using a linear assumption, the input-output relationship is 
described with the so-called transfer function. This analysis technique has many 
advantages. The most important one is that, the tedious and time consuming 
computing work in the time domain can be avoided and the response spectrum 
can be obtained without knowing the time history of the loading (actually it is 
very difficult to know). With most Finite Element packages used for structural 
analysis, such spectra can be obtained directly.

It is for this reason that considerable attention haa focused on the spectral 
fatigue analysis approach for structures and/or components subjected to stochas­
tic loadings [1]. This approach uses the frequency domain information describing 
structural response to predict the fatigue damage, rather than relying on the 
more traditional deterministic or time domain solutions.

Work by S. O. Rice [11] and then J.S. Bendat [12] produced relationships for 
calculating the number of peaks and zero crossings per unit time from the joint 
probability density function of the process and its first and second order differen­
tial processes. For a Gaussian signal, this joint probability density function can 
be determined from the frequency domain representations of the loading. This 
relationship provides the basic foundation for spectral fatigue analysis.

The first frequency domain approach was the so-called narrow band solution 
which assumes that the response has a narrow frequency band of one predomi­
nant frequency. However, this is not always the situation, especially when taking 
account of possible nonlinearities and the fact that structures are nearly always 
multi-degree of freedom systems. Other methods were developed to modify it to



deal with more general loading situations and to use the rainflow cycle definition. 
Some methods have also been developed to calculate the rainflow cycle proba­
bility density function directly, either using numerical simulation [13] or Markov 
chain theory [Ij. Most of the work up to present date assumes that the response 
processes are stationary, random and Gaussian. Perhaps there are two reasons 
for this assumption. The first is that, according to the central limit theorem, 
most structural responses should be Gaussian. The second is that, the Power 
Spectral Density functions can only provide enough information about the distri­
bution of Gaussian processes. It is known that the distribution of the process and 
its first and second order differential processes is essential for such analysis. For 
non-Gaussian responses, there is currently no efficient way to perform the fatigue 
analysis using frequency domain information. Actually, non-Gaussian processes 
are too wide a class of distributions to deal with as a whole.

The first large scale application of frequency domain fatigue analysis was for 
offshore engineering. Much material has been published on the spectral fatigue 
design of offshore platforms. This technique has been applied for railway engi­
neering design [14]. This technique has also been applied to wind turbine blade 
design. However, the loading on wind turbine blades does not satisfy the Gaussian 
assumption as the gravity component in the edgewise direction becomes bigger. 
This deterministic (gravity) component is applied predominantly in the blades 
edgewise direction although there is some coupling into the flapwise direction. 
In all but the purely flapwise direction there is therefore a combined stochastic 
(wind loading) and deterministic (gravity) mixed signal. Such a deterministic 
component makes the response not only non-Gaussian but not purely random as 
well. This thesis develops a fatigue design tool for such structures.

C h a p te r  2 gives the theoretical background necessary for spectral fatigue 
analysis, such as Miner’s law, rainflow cycle counting, the theory of stochastic 
processes, spectral analysis etc. This chapter also presents Rice’s work for deriv­
ing the number of peaks and zero-crossings of a stochastic process in unit time.

C h a p te r  3 presents most of the present methods using frequency domain 
information. Among them are the narrow band solution and the so-called cor­
rection factor methods, Tunna’s method, Dirlik’s empirical formula, Madsen’s 
formula, and Biship’s theoretical solution.

C h a p te r  4 assesses most of the present methods with two sets of monitored 
structural response data. First of all, a statistical analysis of the time histories is 
performed in order to check stationarity and normality. Then, using the PSD’s



calculated directly from these signals, the fatigue damage is calculated using the 
frequency domain methods. Rainflow cycle counting is also performed on these 
time signals directly and the results are taking cis a reference solution with which 
to compare the frequency domain approaches. It was found that the narrow 
band solution always gives an over conservative prediction while Dirlik’s empiri­
cal formula and Biship’s theoretical solution give the most consistent results with 
the time domain solution. It was also found that the existence of a determinis­
tic component in the response causes great problems for the fatigue analysis as 
expected.

C h a p te r  5 presents the computational considerations required when perform­
ing the calculations in C h a p te r  4. Some problems concerning practical calcula­
tions are discussed in this chapter. The first problem discussed is the selection 
of the cutoff frequency of the PSD function, which is related to the monitoring 
noise problem or the truncation of response spectra. The frequency cutoff point 
is the integration limit used when computing the moments of the PSD. Since 
higher moments are used to determine the probability distribution of the second 
order differential process, the cutoff frequency problem is sometimes very serious. 
The length of the signal required for fatigue analysis is also discussed here. This 
can also be taken as a guide for response monitoring for the purpose of fatigue 
analysis. The selection of clipping ratio is also an important issue. This chapter 
finds practical ways of selecting these parameters based on frequency domain in­
formation for the first time. The influence of S~N curve slope b is also discussed 
here. It was found that the so-called equivalent stress parameter should be used 
with great care.

C h a p te r  6 presents a method to include the mean stress in spectral fatigue 
analysis. This method is based on Bishop’s theoretical solution [1]. Since the 
global mean information is not available from the PSD, the relative mean of 
each cycle is used. This is not usually a problem at the design stage because 
such global mean information is then often available. For research purposes, this 
information can be obtained from the corresponding time series. The fatigue 
damage can then be calculated by employing Goodman’s relationship or some 
other formulae to transform the cycle with mean to a cycle without mean which 
causes the equivalent fatigue damage. The S-N  curve can then be used as usual. 
This method is applied to the two sets of monitored response histories, i.e., WEG 
MS-1 and Howden HWP330 data, to assess the influence of mean stress on fatigue.

C h a p te r  7 gives a review of current approaches for non-Gaussian analysis.



First of all, methods for the mathematical and spectral representation of a non- 
Gaussian process are discussed. Some methods for the fatigue analysis of non- 
Gaussian signals with assumptions are also discussed. A method for calculating 
the rainflow cycle distribution from non-Gaussian responses is presented in this 
chapter, provided that the peak to trough and trough to peak transition proba­
bility matrices are known. Again, this method is based on Bishop’s theoretical 
solution [1]. As the peak number in unit time is related to the joint probability 
distribution of the process and its first and second order differential processes, 
it is currently impossible to find a universal formula for the complete problem. 
The peak-trough transition matrix is also related to these differential processes. 
In order to make progress with this problem in this chapter an approach related 
to standard load sequence development is suggested as a better solution if the 
peak-trough and trough-peak transition matrices are available.

C h a p te r  8 presents a neural network toolbox for the fatigue analysis of 
responses which contain a deterministic component. This toolbox is based on 
numerical simulation. After performing rainflow cycle counting on time series 
simulated from selected spectra and deterministic components, a mathematical 
model was established to express the rainflow cycle probability density function. 
Curve fitting using least square techniques was then employed to calculate a set 
of model parameters. A neural network was established and trained to calculate 
the model parameters using spectral statistics and deterministic component pa­
rameters. The situation of a pure Gaussian signal is also considered in this neural 
network toolbox development.

C h a p te r  9 presents an assessment of the toolbox developed in C h a p te r  8 . 
A first attem pt is made to use the edgewise signals of the Howden HWP330 data. 
An attem pt is made to separate the deterministic components from the response 
histories. A new method combining a band pass filter and a least square technique 
is proposed for such work. It is a more efficient way than the azimuth averaging 
method. The assessment gives a satisfactory result.

C h a p te r  10 gives a summary of the conclusions from each chapter and pro­
poses some topics for future work.



C hapter 2 

T heoretical background for 
spectral fatigue analysis

2.1 In trod u ction

Structural fatigue under constant amplitude fluctuating stresses has been stud­
ied widely for many years, both theoretically and experimentally. In theoret­
ical studies, fracture mechanics can be employed. The theories of linear elas­
tic fracture mechanics (LEFM), elastic-plastic fracture mechanics (EPFM), and 
even microstructure-based micromechanics have been developed to analyse fa­
tigue damage at different stages of the crack growth [15]. All these theories 
give us a good understanding about crack propagation and the process of fatigue 
damage.

If the crack is relatively long (or the stress is low), LEFM is a suitable theory 
to describe the crack growth. This stage of crack growth is governed by the 
so-called Paris law as follows:

^  = DAK-  (2.1)

where a is the crack length, A is the cycle number, D and n are material constants, 
AÆ is the stress (or strain) intensity factor defined as AÆ =  Y 8 (T\J{<f>a) with Y  
as the specimen geometry and loading system factor and 8(t as the cyclic stress 
range. A suitable integral will give the relationship between the limit of stress 
cycle number N  (fatigue life) and the stress cycle ranges 5, which is the widely 
used S-N  curve. In the log-log plane, they are generally straight lines, as shown 
in Figure 2.1. The so-called Basquin equation N  =  kS~^ can then be used to 
mathematically represent the relationship.

These curves meet well with experimental results [2] [4] [16]. Actually, the 
S-N  curve was first discovered experimentally at an early stage of research in 
fatigue (See Introduction).
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Life (Cycle numbers to failure) Log(N)

Figure 2.1: A typical S-N curve

Most existing structures, however, experience the action of random loads, 
such as automobiles, offshore platforms, windmills, air fighters etc. The loads 
for such structures are neither constant nor even deterministic. There is no way 
to simply translate the results of constant amplitude fatigue theory for these 
circumstances even though this is the practical environment under which the 
structure is operating.

Fatigue damage analysis under such circumstances is very difficult to perform 
in the time domain at the structural design stage. However, because of the 
development of random vibration theory, especially the development of frequency 
domain techniques, this analysis has now become possible using frequency domain 
information which is much easier to obtain in relation to the structural analysis.

Much research work has been done concerning the task of estimating fatigue 
life using frequency domain techniques. The ability to estimate fatigue damage 
from the PSD of stress or strain at some critical location is now a valuable design 
tool in the offshore, aerospace, and wind engineering industries. The next section 
gives a brief introduction to the theory necessary for spectral fatigue analysis, such 
as extracting the stress cycles from complex stress histories, fatigue accumulation, 
and spectral analysis of structures.

2.2 F atigu e dam age accu m u la tion

Two difficulties arise when attempting to use the fracture mechanics approach 
for design purposes. First, the initial characteristics of the crack or flaws must be



known, and second, the order of different cycles in the lifetime calculation must 
also be known. This information is often not available for the designer. Indeed, 
when the loads are stochastic, the ordering can not be known in a deterministic 
sense. Thus, it is necessary to propagate the statistics of the crack lengths and 
the loading through the nonlinear differential Equation 2.1, and this is a very 
difficult task.

In order to overcome these difficulties, the somewhat simpler Palmgren-Miner 
approach has been extended to cover the case of irregular load histories [17] [18]. 
Two basic assumptions lie at the heart of this approach. First, it is assumed that 
the damage increment for each load cycle is characterised by the corresponding 
closed hysteresis path in the local plastic stress-strain diagram shown as in Figure 
2.2. Thus, any given (closed loop) load cycle is equivalent to a sinusoidal cycle 
with the same stress or strain range. In this thesis, it will be assumed that the 
cycle can be characterised by either the stress or the strain range.

A a

Strain

Figure 2.2: The stress-strain  hysteresis  cycle

The second main assumption is that the effect of the sequencing of the hys­
teresis cycles can be neglected. It is assumed that each cycle causes an incre­
ment of damage which depends on its stress range regardless of the previous 
load history[19]. With these two assumptions, the cumulative damage caused by 
stochastic loading can be estimated by assuming that at final failure.

(2 .2)

where is the number of cycles counted with a particular stress range band(s) 
and N  is the fatigue life from S — N  curve N  = kS~^ corresponding to this stress 
range.



The second assumption is of course not precisely correct. However, it has been 
argued heuristically that in the case of stochastic loading, the random sequencing 
tends to reduce the influence of cycle order. In other words, sequences causing 
increased damage (as determined by their order and not the stress range content) 
are equally as likely to occur as sequences causing decreased damage [20].

The basic idea behind the Palmgren-Miner approach to fatigue analysis is to 
find a set of sinusoidal load cycles, which does the same fatigue damage as the 
given history, and then, the results from constant amplitude fatigue testing can 
be used. The process of finding this set of sinusoidal cycles is generally referred 
to as the “cycle counting” and will be discussed in the next section.

This linear accumulation law is sometimes found to be not true for some
complicated stress situations [15] [21]. Some alternative formula have also been
proposed to replace this law [21]. However, no other method has been found to 
work better for the universal situation.

Using the Palmgren-Miner’s law, for a given time series with cycles counted 
from it, the expected fatigue damage E[D] can be estimated using

= E  ÿ  (2 3)

The expected fatigue life is then the reciprocal of E[D],
The number of stress cycle ranges from S  to S  dS  during time T  can be 

expressed as :
n, =  r  . E[P] • p(S)  • dS  (2.4)

where, E[P] is the expected number of peaks in unit time and p{S) is the PDF
of cycle ranges.

By substituting Equation 2.4 and the Basquin equation into Equation 2.3, 
yields the expected damage caused by the whole loading history:

E[D] = E[P] ■ J  r  S ’’p{S)dS  (2.5)

Thus, to calculate the fatigue damage the probability density of cycle dis­
tribution and the number of peaks in unit time must be calculated first. The 
important tasks of spectral fatigue analysis are therefore to calculate both the 
peak rate and cycle PDF in the frequency domain. This has been achieved by 
some research groups but with many important assumptions.

Another way of expressing the above damage equation is by using an equiva­
lent stress range parameter. It is a single stress range which produces the same
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fatigue damage. It can be expressed as :

Sh = S ‘‘p(S)dS]'^ (2.6)

2.3 S tress (S tra in ) cy c le  cou n tin g

Stress cycle definition, or choosing a suitable cycle counting method, is the first 
problem encounted in random fatigue analysis. As pointed out in the previous 
section, the cycle counting process is actually trying to find a set of sinusoidal 
cycles which has the same fatigue damage as the original stochastic sequence. 
Up to now, there are more than ten types of counting methods which have been 
reported in the literatures [22] [23] [24] [1]. Some of them are listed below.

(i) P eak  coun t m eth o d . The number of peaks and/or troughs at particular 
levels are counted.

(ii) M ean-crossing  p eak  coun t m e th o d . As (i) above except that only the 
maximum peak or minimum trough is counted between zero crossings.

(iii) O rd in a ry  range  count. The height of ranges between adjacent peaks and 
troughs is counted. From this a probability density of ordinary ranges can 
be calculated.

(iv) R an g e-m ean  C ount. This method is identical to (iii), except that the 
mean value of each ordinary range is also counted.

(v) Level crossing count. The number of upwards (or downwards) crossings 
of particular levels are counted.

(vi) F a tig u e m e te r  count. A technique developed in the aeronautics industry 
to measure variations of acceleration. This is a similar technique to (v) 
except that small variations in the signal, such as noise, are removed by 
using a gate or trigger level. Signal excursions from the previous recorded 
level are only recorded if the trigger level is exceeded [25].

(vii) R an g e -p a ir count [22].

(viii) W etze l’s m e th o d  [26].

(ix) Rainflow  m eth o d  [27] [28].
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Among all of them, the last three have generally been accepted as better 
methods of calculating fatigue damage from random signals [18]. Among the last 
three, the rainflow counting method is now widely accepted as the one which 
gives the most consistent prediction compared to the actual life result [18] [29]. It 
is for this reason that, rainflow cycle counting is accepted as the default counting 
method in the whole of this thesis.

The rainflow cycle counting method was first proposed by Matsuishi and Endo 
[27] [30] in 1968. The original definition of a rainflow cycle was fairly complicated. 
It simulated the phenomena of rain dripping down rooftops, and so it was called 
the “Pagoda Roof method”. Several equivalent versions of the rainflow counting 
method have evolved [31] [32] [33]. The minor differences which led to the creation 
of these methods have now been resolved and all give identical cycle counts if the 
time history starts and ends at either the highest peak or the lowest trough. 
The first alternative and more useful definition was made by Rychlik as given 
below [34].

Definition 1. Let j/(r), —T < r  < T, be a load function (Figure 2.3), and
suppose it has a local maximum at time t with height y{t) =  u. Let be the 
time for the first upcrossing after t of the level u, (or = T  ii no such upcrossing 
exists for t < r < T),  t~ he the time for the first upcrossing before t of the level 
w, (or t~ = T  ii no such upcrossing exists for —T  < t  < t). Define two ranges at

5+ =  max (y(<) -  y{r))
t < T < t - r

S~ = max {y{t) -  y{T))
t ~ < T < t

The amplitude of a rainflow cycle originating at {t,y{t)) is defined by :

S  = m in(5“ , 5'*’)

If the load history is a stationary ergodic time signal, a symmetric about t = 0 
exists. For this reason, another restriction of S~ > can be applied to the
definition. Every cycle counted then should be considered as two cycles with the
same amplitude. This modified the definition as [1]:

Definition 2. For a rainflow cycle valued S  to exist at a current peak, the
signal must have the following configuration as in Figure 2.4:

i). takes the signal forwards ( + v e  time) from point 1 to point 2, a distance 
S  below it.
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y(t)=u

Figure 2.3: R y c h lik ’s définition for rainfiow cycle

ii). takes the signal forwards from point 2 to point 3, some level at or 
above point 1.

iii). takes the signal backwards (-ve time) from point 1 to point 4, some 
level at or below point 2.

iv). takes the signal backwards from point 4 to point 5, some level at or 
above point 1.

point 1 point 3points

point 2

point 4

-ve
_1 _
time +ve

Figure 2.4: M odified definition for rainfiow cycle

However, for stationary ergodic signals, when considering the long term dis­
tribution of the signal, event iv) of this definition is redundant. Because if the 
signal comes from below the level of point 2 there is a probability of 1 . 0  that it
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originally came from a level above point 1 prior to this (given that it could go to 
any level below point 2 during this process).

Based on above analysis, a new definition was made by Bishop[35] and is given 
as below (Figure 2.5):

Definition 3. For a rainflow cycle valued S  to be defined from a particular 
peak the following events must happen:

i). Y\ The signal must have come from a level at least S  below the level 
of point 1 without at any time going above the level of point 1 (with 
any number of extreme points in between).

ii). Y2 The signal must then go from the level of point 1 to some level a 
distance S  below without at any time between going back to the level 
of point 1 or below the level of point 2 (with any number of extreme 
points in between).

iii). I 3 The signal must then go from the level of point 2 to some level at 
or above point 1 without at any time going back to the level of point 
2 (with any number of extreme points in between).

point 1 points

point 2point 4

-¥ve-ve

Figure 2.5: B ish o p ’s definition for rainflow cycle

The essential idea of rainflow cycle counting is to characterise the stress (or 
strain) history over a long time period. That is, to allow the hysteresis cycle to be 
closed after a long time interval by using the stress-strain “memory” information. 
The transitions in-between can then be processed separately. The advantage is
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therefore that large cycles which can be missed very easily by ordinary counting 
methods is counted by this method. Figure 2.6 shows such an example. Figure 
2.6(a) shows a typical strain history. The initial strain excursion, from 0  to A, 
uses the cyclic stress-strain curve. The strain range 0  to A is plotted on the 
strain axis, and the stress at point A is calculated from the equation for the 
cyclic stress-strain curve. Point A is then taken as an origin, the stress range 
from A to B is then calculated from the hysteresis curve. The actual stress at B 
then is obtained by subtracting the stress range A to B from the value at point 
A. By continuing this plotting process until the end of the local strain history, 
the stress-strain hysteresis history can be derived as shown in Figure 2.6(b).

e

o

(a). A typical local train history

(b). The stress-strain hysteresis loop for strain history (a)

Figure 2.6: An exam ple  o f  rainflow cycle counting
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As seen from this stress-strain history, apart from two closed hysteresis loops 
ranged as E-F and B-C, there exists a large cycle which has the range A-D, which 
could easily be missed by other counting methods.

2.4  S to ch a stic  p rocess

2.4.1 G eneral assum ptions

The time process in general terms can be classified as either d e te rm in is ­
tic  or random . A deterministic process can be thought of as one where future 
states into which the process may fall can be predicted accurately, and with cer­
tainty. This type of process can generally be expressed explicitly in mathematical 
form. Such a process can be either periodic or nonperiodic. A random process 
is one where the future movements of the process can not be represented by any 
mathematical expression with certainty at any particular time.

A s ta tio n a ry  random process is one where the statistical properties measured 
across a set of records, or ensemble, at a particular time, are identical with the 
statistics measured across the ensemble at any other time. In addition to being 
stationary, the process can be termed ergodic if the statistics measured along any 
one sample or record are representative of the statistics measured along any other 
sample. It is much more convenient for statistical computation if the process has 
such a property because the statistics can then be obtained from one sample.

2.4.2 Probability and m om ents

If the process is stationary, it can best be described by its probability distribution 
function P(x) or the probability density function (PDF) p(x), which are indepen­
dent of time t. The moments of the process are defined by its probability density 
function p(x) as:

/oo
x^p(x)dx

-OO
The central moments are similarly defined as:

/oo
(x — x)^p(x)dx

-oo

in which x denotes the global mean value of the process. The variance of the 
process is then given by the second order central moment, and its square root 
gives the so-called root mean square (or standard deviation).
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The characteristic function of the process is defined as

<j>{u) =  £:{e‘“ } =  r  e’“> (x )d x  (2.7)
J — OO

Thus, the PDF is obtained by applying a Fourier transformation to the char­
acteristic function.

p(z) =  IT  /  (2.8)
Z7T V—oo

The characteristic function can be expanded as a MacLaurin series as follows

.2

+  ... =
j=o ^

From Equation 2.7,

i^(«) =  <A(0) +  i^'(0)u +  <!> (0)— +  ... =  ^  ^ ( « “ )̂  +  0 (u ") (2.9)

çi(")(0) =  t" / ”  x"p(x)dx =
V—oo

For the situation of more than one random variables, the parameters are 
defined similarly.

It is obvious that for a general stochastic process, the probability distribution 
of the process should be described by all the moments of the process. In other 
words, finite order moments of the process are never enough to fully describe 
the process. Any truncation causes errors unless the higher order moments can 
be expressed as functions of lower order moments. The widely used Gaussian 
distribution with the PDF expressed as

is a good example of where all higher order moments can be calculated from the 
lower order moments as:

= {n -  l)a'^ în- 2  n =  2,4,6,* ••

while the odd moments vanish.

2.4.3 Correlation function

The cross-correlation function gives a measurement of the amount by which two 
functions are related to each other. For two random variables x(t) and y(t)^ their 
cross-correlation function is given by:

R^y =  ^ i ^  ^  +  r)dt (2.10)

17



The autocorrelation function gives a measurement of the amount by which a 
signal is correlated with itself. It is defined as the average value of the product 
x{t)x{t +  r). Provided that the process is stationary, the value of E[x{t)x{t -f r)] 
is independent of time t and will depend only on the time separation r:

Rxx(r) =  E[x(t)x{t +  r)]

or, alternatively

R x x ( t )  = lim ^  f  x ( t ) x { t  +  T ) d t  =  R { t )  (2.11)
i  —Kx> J —T

2.4.4 Fourier analysis and spectrum

As well as describing any process in the time domain, it can also be described 
by its Fourier components in the frequency domain [36] [37]. If x(t) is a periodic 
function of time t, with period T, it can be expressed as an infinite Fourier series 
of the form

OO

x{t) =  Û0 +  cosLJnt +  bk s'munt) (2.12)
t=l

where =  nui  =  n ^ ,  and the Fourier constants are given by 

r 1
ao= -  x{t)dt 

2
a„ =  — /  x{t) cos{LOnt)dt n =  l,2 ,3 , •••

bn = — x { t ) s m { u j n t ) d t  n =  1,2,3,-••
1 Jo

This series expression can also be put in integral form as:

1 .
X(u)) =  A{u) -  iB(u)  = —  x ( l) e - “‘d< (2.13)

Z T T  J — g o

where A{uj) and B(lj) denote the Fourier constants a„ and bn except that ao is 
put to zero.

An inverse transform would give:

X(w)e'"yw (2.14)
-O O

The most important condition for this expansion to hold is that the function 
must decay to zero when |i| —» oo, that is,

/oo
\x{t)\dt < oo (2.15)

-O O
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If the process x(t) is random instead of periodic, it can not be represented 
by a discrete Fourier series. Also, for a stationary process. Equation 2.15 is not 
satisfied, so that the Fourier analysis can not be applied to the sample function 
directly. This difficulty can be overcome by analysing, not sample functions of 
the process itself, but its autocorrelation function. Provided the mean value of 
a process is adjusted to zero and the process haa no periodic components, the 
autocorrelation function does satisfy:

R { t  oo) =  0

and then the condition

/oo
\R{T)\dr < oo

-O O

is satisfied. The Fourier transform can be applied to R { t ).

S{u)  =  R{T)e~''^''dT (2.16)
27T 2—00

This function is called the spectral density function of the process in radians. 
It consists of a Fourier transform pair with correlation function as:

/ oo
(2.17)

-O O

The spectral density function defined in this way is known as the two-sided 
spectral density function. It gives a “negative frequency” which only makes some 
sense mathematically. More generally, the one-sided spectral density function is 
defined to give just positive frequency components and can still give the same
mean square value of the process. If the frequency (/) is defined in Hz, it is related
to the two-sided spectral density function (in radians w) as:

G{f) = 2S{f)  = i7rS(üj)

The spectra of the stochastic process X  and its derivate X  are connected by

Sx(uj) = (2.18)

Similarly,

Sx(uj) =  u ‘̂ Sx{(jj) (2.19)

2.4.5 Fast Fourier Transform

In practical calculations, the transform is generally performed on the discrete 
time series {2^} as:

^  =  0,1,2, ..iV -  1 (2.20)r = 0
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The one sided Power Spectral Density (PSD) is given by :

Gk{f) = 2L,\\Xk\\^ (2.21)

where, L,  =  (N  • At)  and A t  is the time interval between each time point in {Tr}. 
The PSD defined in this way takes the energy information from the time series 
but discards the phase information.

The computation of the discrete Fourier transform of Equation 2.20 is time 
consuming, especially when TV is big. The Fcist Fourier Transform (FFT) is there­
fore generally adopted for this computation. The methodology is that the work 
can be performed by partitioning the whole sequence {x^} into a number of 
shorter sequences. Then, combination of these subsequences together will yield 
the full DFT of the original sequence.

Suppose that {x^}, r  =  0,1,2, • • • {N — 1) is the sequence where A îs an even 
number and that this is partitioned into two shorter sequences { y r }  and {zr} 
where [36] [38]

Vr = X2 r
r = 0 , l , 2 , . . . , ( TV/ 2- l )

2Tr =  X2r+1

The DFT’s of these two short sequences are Tjt and Zk given as:

n  =  ^  E  . e - - )

it =  0 , l , 2 , - - - , ( i V - l )  (2.22)
1 Nl2 —\

S
Recombination of Equation 2.20 would give:

. 3v/2-l 7V/2 -1  (2.23)

r = 0  r = 0

It is found from Equation 2.22 and 2.23 that

* = 0 , l , 2 , - - - , ( i V/ 2 - l )  (2.24)

The DFT of the original sequence can therefore be obtained directly from the 
DFT’s of the two half-sequences and Zk according to Equation 2.24. If the 
original length AT of sequence {x^} is a power of 2  ̂ then the half-sequences {y^}
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and {zr} may themselves be partitioned into quarter-sequences, and so on, until 
eventually the last sub-sequences have only one term each. As Yk and Zk are 
periodic in k with period N/2,  the full computation is[36]:

'  + W ‘z , }
i
. Xt+N/ 2  = l{Yk -  W ‘Z ,}  

in which W  =

(2.25)

2.4.6 S tatistics in th e frequency dom ain

For the purpose of this thesis the spectrum is characterised by its moments as 
shown in Figure 2.7. These are actually the weighted sums of the spectrum.

m„ = r  r G ( f ) d f  = fj:Gk{fk)Sf  
k=l

(2.26)

(stress) ^
Hz

Gdf)

frequency, Hz

Figure 2.7: PSD m o m en ts  calculation

The even order moments can be calculated from both one-sided and two-sided 
PSD s. The odd order moments are generally only defined for one-sided PSD’s.

From Equation 2.18 and 2.26, the zeroth order moment from the spectrum 
gives the standard deviation of the original process. The 2nd order moment gives 
the standard deviation of the first order differential process.

Much of the work on statistics of the spectrum relies heavily on the work of
S.0 .Rice [11] and J.S.Bendat [12]. Some details related to the calculation of these
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statistics are shown in the next section. If the signal is stationary, ergodic and 
Gaussian, results were produced for the number of zero crossings and number of 
peaks per unit time.

The number of zero crossings and number of peaks per unit time (peak rate) 
are given as:

E[0] =  \Jm 2 lmQ (2.27)

E[P] =  \Jm 4 l m 2  (2.28)

Using the number of zero crossings and number of peaks, the irregularity 
factor is defined as:

7 =  E[Çi\IE[P] =  m 2 /y/rn^rnl (2.29)

The irregularity factor is generally taken as an indication of the frequency 
band width of the signal and its spectrum. It can take any value between 0.0 and
1.0. When 7 approaches 1.0, the signal becomes more like a regular sine wave. In 
this limiting case the signal is said to be narrow band and its probability density 
function of peaks becomes Rayleigh; Cycle counting in this case is relatively easy. 
As the irregularity factor approaches 0.0 the signal becomes more like shot noise.
In this limiting case the signal is said to be completely w ide band, and its
probability density function of peaks becomes Gaussian. In practice the response 
is rarely narrow nor completely wide band but somewhere between.

In some circumstances, the centroid of the spectrum is taken as a measurement 
of the frequency level of the spectrum and is defined as “mean frequency” and is 
made dimensionless by normalisation using the peak rate [13].

fm = mi/mo/E[P]

2.5 S p ectra l analysis and stru ctu ra l d yn am ics

From the theory of structural dynamics, the motion equation of structures can 
be written as [39] :

Mu +  CÙ + K v  = F (n , t) (2.30)

where M, C, and K  are mass, damping, and stiffness matrices respectively, v is 
the structural response, H is the space in which the structure is defined. Under 
the circumstances that the structure is under the action of deterministic dynamic 
loading, structural analysis can be performed in the time domain using suitable 
numerical integration methods, such as Newmark method, wilson-^ method, etc. 
For the case of arbitrary dynamic loading, Duhamel’s integral equation can be
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taken as the general solution for structural response in time domain. For single 
degree of freedom systems, this integral can be expressed as:

u(t) =  J  p(T)h{t — T ) d r  (2.31)

where, h[t — r )  is the unit-impulse response function and is expressed as:

h{t — r)  =  sin u){t — t ) (2.32)
m u

for undamped single degree of freedom systems.
Most systems are of multi-degree of freedom. If the loading in coordinate j  is 

a general time varying load Pj(t), the dynamic response in coordinate i could be 
obtained by superposing the effects of a succession of impulses as specified using 
Duhamel’s integral, assuming zero initial conditions. The generalised expression 
for the response in coordinate i to the load at j  is the integral as follows:

u,j(f) =  /  P j ( r ) h i j ( t  -  r )d r  i =  1,2, • • •, iV (2.33)
Jo

where N  is the total number of degrees of freedom. h i j ( t )  denotes the response 
at coordinate i to the unit-impulse loading in coordinate j.  The total response in 
coordinate i produced by a general loading involving all components of the load 
vector p( t )  is obtained by summing the contributions from all load components:

^f(0 =  Z l [ /  Pj('r)/^u(^-T)dT] % =  1 ,2 , . " ,Æ  (2.34)
i=i

This type of time domain analysis is complex and time consuming but is 
possible. However, if the loading is stochastic instead of deterministic in type, 
this analysis method is generally invalid because the history of the loading is 
unknown except for some statistical characteristics. Frequency domain analysis 
then becomes quite useful.

To perform a frequency domain analysis, the variables (load and response) 
must be expressed as Fourier series. For the periodic loading p(t) with period T, 
the Fourier series form is given by Equation 2.12 and 2.13.

OO

p ( 0  =  E  P { i U n ) e x p { i u J )

where the complex amplitude coefficients are given by

1 /-r/2
■T/2

1 /•î’/2
P{ iun)  =  -  /  p { t ) e x p { - i u j ) d t  

1 J-TI2
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with nui = ujn — n ’ 27t/T.
When p(t) is an arbitrary nonperiodic loading, the above equations can still 

be used by letting T  oo, as in integral form
1 r°°

p{t) = —  P(iuj) exp(W )dw
27rJ-oo (2.35)

P(iüj) = / p{t) exp(—iujt)dt
I J — oo

which is the Fourier transform pair.
The Fourier series expression of the response can then be connected with the 

Fourier series of the loading by the complex frequency response function jif(zw), 
which is the invrese Fourier transform of A(t), as

/oo
v{i) exp{—iu}t)dt =  H{iuj)P{iu})

-O O

When the case of multi-degree of freedom is considered, the loading and its 
Fourier series become a vector p (t) and P(iw), and the frequency response func­
tion becomes a matrix H(iw). Their components in coordinate j  are :

/oo
P j { t )  e y i p { — i ( j j t ) d t

•OO

and

/ oo
v{t) exp(—iujt)dt =  Hij{i(jj)Pj{iu) (2.36)

-O O

The response in coordinate i can be obtained as

=  Y .  = Y [ l  fb(r)A^(Z -  r)dT] (2.37)
i=i i=i

The unit impulse and the complex frequency response functions are two trans­
fer function in time and frequency domains respectively. They are related aa a 
Fourier transform pair:

/oo
h{t) exp{—iujt)dt

1 (2J 8)
h{t) =  —  y  H{iu)  exp(zwf)dw 

In multi-degree of freedom cases, this relationship becomes:

/ oo
hij{t) exp(—iui)dt  

1 ;%o (2X19)
^ti(0  = 7T i Hij{iu)exp{iujt)

ZTT j —oo

In the point view of the spectrum, the input and output spectrum are con­
nected by the relationship

Sy{iu) = H{-iüj)H(iu)Sj,{iu)  =  \H{uj)\^Sp{iLj) (2.40)
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2.6 Som e usefu l resu lts  from  th e  P S D

The expected number of zeros of a stochastic process X{t)  within a given inter­
val [̂ 1,^2] or, more generally, the expected number of crossing of X{t)  at some 
arbitrary level xq in [̂ 1,^2] is of considerable interest. When Miner’s law is used 
for random fatigue analysis, the expected number of peaks in unit time is also an 
important parameter for the damage accumulative computation. Together with 
the zero crossing rate, it should be calculated from the spectrum[40].

2.6.1 Zero crossings

Let X(t) ,   ̂ G T, be a m.s. differentiable stochastic process^. The formulation of 
the threshold-crossing problem for X( t )  is facilitated by defining a new process

Y{t) = u [ X ( t ) - x o ] ,  t e T  (2.41)

where u[] is a unit step function. It is seen that the formal derivative of Y{i)  can 
be in the form

Y{t) =  X{t)8[X{t)  -  xol  t e  T  (2.42)

where [̂] is the Dirac delta function. It has the weight A typical function of
X{t)  along with its corresponding sample functions Y{t)  and Y{t)  are shown in
Figure 2.8. The sample function of Y(f) consists of unit impulses, these impulses 
are directed upward or downward depending upon whether the crossings of its 
dissociated x(t) at Xq occur with positive or negative slopes.

If Â (a:o; ^1, 2̂) denotes the random variable whose value is the number of 
crossings of X(t)  at xq within the interval [̂ 1,^2], it thus can be denoted by

N{xo; t i , t 2 ) = f  \X(t)\6[X{t) -  xo]dt (2.43)
J t i

The number of zeros of X{t)  within the interval [̂ 1,^2] is simply A (̂0; fi, 2̂)-
Hence, the expected number of crossings of X(f) at xq within the interval

[̂ 1,^2] is given by
rt2 roo roo

E[N{xo;ti^t 2 )] =  /  /  /  \x\S(x — xo) f(x , t ;x , t )dxdxdt  (2.44)
^t\ */—00 — 00

ft2  roo
— |i|/(aJo,^; f)did^ (2.45)

%/ •/ —00
 ̂A second-order stochastic process X{ t ) , t  G T,  has a mean square derivative or m.s. deriva­

tive X{ t )  at t if

lim[A(< -f r) -  X { t ) ] / r  =  X{ t )

Higher order m.s. derivatives are defined analogously. Here, l im refers to limit in mean square.
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x(t)'

y(t)

Figure 2.8: A typical sam ple function o f  X { t )  and its associa ted  sam ple  functions

This gives the information on expected number of zero-crossings and threshold- 
crossings within an interval by the joint density function of X( t )  and X( t )  at t 
over the interval.

If N+(xo;ti , t 2 ) is the number of crossings of X ( t )  at xq with positive slopes 
with an interval then it can be easily obtained by changing the integral
boundary

roo
E{ N+( xo; t i , t 2 )] =  /  /  x f ( x o , t ; x , t ) d x d t  (2 .46)

Jti Jo
The problem of threshold crossings with negative slopes can also be easily 

obtained

E[ N- { x o ; t i , t 2 )] =  — [  [  x f { x o , t ; x , t ) d x d t  (2 .47)
Jt^ J —oo
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As seen from Equation 2.45, the integral

/oo
\x\f{xQ,t;x,t)dx (2.48)

-O O

may be regarded as the expected rate of crossing at xo{t). This rate becomes 
independent of t if the stochaistic process X{t)  is stationary, and r(a:o,^) =  r(xo) 
gives the expected number of crossings at xq per unit time in this case.

Consider the Ccise where X (t)  is a stationary, once m.s. differentiable, and 
Gaussian process with mean zero and correlation function R x x {t')’ The joint 
density function of X{i)  and X ( t )  at t then takes the form

f ( x ,  f ,  X ,  t )  =  f ( x ,  X )  = +  f - ) ]  (2.49)

where = Rxx{^)  and

^ x  — ^ X X  =  R x x { T ) / d T  |r= 0  (2 .5 0 )

The expected rate of crossing at xq is constant and can be obtained by sub­
stituting Equation 2.49 into 2.48

r(xo) =  ((7^/Tr(Tx)exp{-xll2<Tx) (2.51)

The expected rate of zero crossings has the simple form

r(0) =  cr^/7T(7x, r+(0) =  r_(0) =  r(0)/2  (2.52)

If the spectral density function of the process is 5 x ( /) ,  then Sj^ =  (27t/)^5x(/). 
The expected rate of zero crossings can be expressed as

r(0) =  =  2[jf“  f S x i m / J "  Sx{f)df]^/^ (2.53)

In terms of the moments of the spectrum, it can be expressed as

r_(0) =  r+(0) =  r(0)/2 =  yJ{m2 /mo) (2.54)

2.6.2 D istribution  o f E xtrem a

The problem of determining the expected number of extremes (maxima and min­
ima) of a stochastic process X(t)  within a given interval is a direct analogy with 
the zero-crossing problem. A maximum in a sample function x{t) of X{t)  oc­
curs when its first derivative x{t) is zero and the second derivative is negative; a 
minimum occurs when x{t) = 0 and x{t) is positive. The number of extrema of
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the sample function within a given interval is then equal to the number of zero 
crossings of x{t) in that interval.

Let X ( t ) , t  € T be at least twice m.s. differentiable. As in the zero-crossing 
problem, we consider a new stochastic process defined by

Y{t) = u[X(t)], t e  T

Formally differentiating Y(t) we obtain

Ÿ{t)  =  X(t)6[X( t ) l  t e  T

Hence, the number of extrema of X(t)  within the interval [̂ 1,^2] is given by

If only the number of extrema above level xq of X(t)  in the interval [̂ 1,^2] is 
concerned, it can be denoted by random variable M (xo;^i,^2) and be expressed 
as

M(xo;̂ i , 2̂) =  /  \X{t)\S[X(t)]u[X(t) — xo]dt (2.55)

The mean is given by

F^{M(xo; <1, 2̂)} — f  f  f  \ x \ 6{x)u{x  — x o ) f { x , t ; x , t ' , x ^ t ) d x d x d x d t
Jt-I J  — oo J  — oo 

f t2  roo roo
= / dt  d x  I  \ x \ f { x , t ; 0 ^ t ; x , t ) d x

J t \  J —oo Jxo
(2.56)

It is seen that then the information about the expected number of extrema in a 
given interval is in general contained in the joint density function of %(^), %(f),and 
X{t)  at t over the interval. From this equation, the maxima of X(t)  above xq in 

the interval [̂ 1,^2] is expressed as

E { M ^ ( x o ' t i , t 2 ) }  =  f  d t  f  d x  f  \ x \ f { x , t ; 0 ^ t ; x j t ) d x  (2.57)
J t i  J —oo J xq

As seen from the above, we get

q+{xo, t )  =  — f  dx  f  x f { x , t ; 0 , t ; x , t ) d x  (2.58)
J —oo J  X q

For a stationary, twice m.s. differentiable Gaussian process X{t)  with zero 
mean, the joint density function of %(f), % (t), and X{t)  takes the form

/ (x, f )  = (27r)~^/^|A|~^/^exp[-ix^A"^x] (2.59)
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0 “ 4
0 4 0

0 4

where =  [a; i  i]  and

A =

By substituting the joint probability density function 2.59 into Equation 2.58, 
the integral can be obtained as:

q+(xo,t) =  9+(xo) =
-\-(7r/2y^^{(T^x/crx)exp{-x^/2cr‘̂ )  (2.60)
x [l +  erf(a^^x/y/2ax\A\^^'^)]}dx

where erf() is the error function defined by

erf(x)  =  (2/ \ /^ )  j  exp{—u^)du 

The expected total number of maxima per unit time g+(—oo) is expressed as

ç+(-oo) =  {l/27r){cTx/ax) (2.61)

In terms of spectrum moments it has the form

g+(-oo) =  y^TM/mâ) (2.62)

It is also noted that, this formula can be eaaily derived from Equation 2.53 
by noting the equivalence between the zero crossings of X ( t )  with negative slope 
and the maxima of X(t),

2.7  D iscu ssio n

From the theory of fatigue accumulation, the two factors to be calculated from 
frequency domain information are the peak rate of the random process and the 
rainflow cycle probability density function. Since the phase information in the 
complex spectrum is discarded when the PSD is calculated, there is always the 
question of whether the PSD can provide enough information for a complete 
fatigue analysis.

The answer to this question can be found by looking at the probability distri­
bution of the time process. The PSD must at least provide enough information for 
the joint probability distribution of the process and its first and second order dif­
ferential processes. This necessity is required from Equation 2.58 for calculating 
the peak rate. If the probability distribution of the process is Gaussian, it can be 
proven that the joint probability distribution of the process and its first and sec­
ond order differential processes is Gaussian as well [40]. For this special situation,
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the zeroth, second and fourth moments of the PSD can completely determine the 
joint probability distribution function as can be calculated directly
from these three moments. This means that spectral fatigue analysis is valid for 
the situation under which the process has a Gaussian distribution. Perhaps this 
is the most important reason why a Gaussian distribution is assumed by most of 
the present methods in use.

However, if the Gaussian assumption does not hold, it is hard to say whether 
the PSD can provide enough information for spectral analysis. Actually, knowing 
the distribution of the process itself is not enough because the joint probability 
distribution can not be decided if the process distribution is not Gaussian. This 
simply means that some assumptions then have to be made about the joint prob­
ability distribution itself. It has still not been proven whether the PSD itself can 
provide enough information for determining such distributions. Chapter 7 of this 
thesis covers the topic of non-Gaussian signals in more detail.
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C hapter 3 

Present m ethods in use

3.1 G eneral background

Spectral fatigue analysis has been widely used in aircraft, offshore platform [41] 
[42] and welded joint design [43]. More recently it has been adopted in wind 
engineering for the fatigue analysis of wind turbine blades. Currently, most of 
the available techniques assumes that the response is random, stationary, ergodic 
and Gaussian.

The first spectral fatigue solution was the so-called narrow band solution. 
Some correction factor methods were then developed to adapt it for wide band 
situations by incorporating rainflow cycle counting. Theoretical analysis was 
less prominent than digital simulation work. This is perhaps because of the 
complexity of the rainflow cycle configuration.

3.2 N arrow  ban d  so lu tion

The narrow band solution was the first for resolving the random fatigue damage 
problem using frequency domain information. It was formulated using the fact 
that the stress peaks have a Rayleigh distribution if the process is Gaussian and 
narrow-banded [40]. In particular, each stress range(s) is taken to be twice the 
stress peak amplitude(s) of the random process. In this case, the probability 
density of peaks for Gaussian signals with irregularity factor approaching 1.0 \s 
given by : ^

PpeaJk(«s) =  — e " ^  (3.1)
TUq

The distribution of peaks can be related to the distribution of cycle ranges 
because the probability of a range greater than or equal to 5 (=  2s) is the same 
as the probability of a peak greater than or equal to s. Thus

P[range > S] = P[peak > s] = f  Ppeak(s)ds
Jo
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This integral can be evaluated directly from Equation 3.1 with the result that
,2

P[range > 5] =  1 -  e x p { ;^ }  =  1 -  exp{—
ZTTLq o TTIq

Differentiating this probability distribution gives the PDF for stress ranges in 
a narrow band Gaussian signal

The rate of occurrence of cycles for narrow band signal is taken as the rate 
of occurrence of zero-crossings E[P] = F7[0], as 7 =  E[0]/E[P] = 1. This gives a 
conservative result as :

T  I T  foo , .9
E[D]nb =  E [ P ] -  /  5 ‘p(5)<i5 =  E[0]T / (3.3)

k Jo k Jo 4mo

Note here that the damage equation is completely defined using mo, m 2 and 
m4 (if E[P] rather than E[0] is used).

Further integration gives:

e [d ]n b  = f ; [ o ] |( 2V ^ ) ‘r ( ^  + 1)

where F( ) is the gamma function expressed as:

T{z) =  2 r  y^ -̂'^e-y^dy z > 0  (3.4)
Jo

Because numerical integration is now a relatively straightforward task use of 
Gamma function is less common.

The assumptions leading to this equation are strictly correct only for very 
narrow-banded Gaussian processes, but the equation is used in a much wider 
range of situations. For this reason, some methods have been developed to “cor­
rect” the narrow band solution into a rainflow solution suitable for wider band 
situations.

3.3  C orrection  factor m eth o d s

3.3.1 W irsching’s correct factor

The model developed by Wirsching [44] [45], was adequate for narrow band load­
ing, but required an empirical function in order to accommodate wide band stress 
histories as expressed by

E[D]rr =  E[D] î b • A(6, e) (3.5)
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where A(6, e) is a correction factor for the bandwidth. It was obtained by simulat­
ing signals from wide band spectra which were then compared with the rainflow 
cycle counting results and narrow band results. Regression analysis produced the 
following expression.

A(6, e) =  o -|- (1 — a)(l —

where

0 =  0.926-0.0336 c =  1.5876 -  2.323 e =  ^ 1  -  7 ^

In terms of equivalent stress, it can be written as :

Sh — 2\/2mo[A(6,e)r(— 4 -1)]** (3.6)

3.3.2 Chaudhury and Dover equations

An equation was proposed by Chaudhury and Dover [46]. After extensive study 
of the peak distribution in different power spectra, two general solutions for the 
narrow band and the wide band spectra were determined. Based on the assump­
tion that the equivalent stress range solution always lies between the narrow and
wide band solutions, the following semi-theoretical solution was proposed,

s ,  = 2 V ^ o [ ^ V ( ^ )  + (3.7)

Later, after J.C.P. Kam and W.D.Dover [41] studied this formula using sea 
state stress response spectra, a new empirical procedure was proposed. It is 
expressed as:

Sh =  2 ^ | ^ r ( ^ )  +  +  e r / ( 7 ) r ( ^ ) ] i  (3.8)

The error function er f ( ' y )  can be expressed by

er/(7 ) =  0.30127 -h 0 .49167  ̂ -j- 0 .91817  ̂ -  2.35347^ -  3.330?7®

-f 15.65247® -  10.7847  ̂ f o r  0.13 < 7  < 0.96

3.3.3 H ancock’s equations

Two equations, developed by Hancock et al [47], incorporate curve fitting param­
eters into the Weibull distribution. Thus obtained the expression for equivalent 
stress. They are expressed as:
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p('S') =  7 r : ;2 e x p 5 - ^  (3.11)

Handcock A :

Sh =  2\/2m o[7r(^ +  l)]s (3.9)

Handcock B  :

5^ =  7 v / 2 ï ; i ; ( 2 - a [ r ( 2 ^  +  ll^ (3.10)

in which ^ is the damping factor.

3 .4  -T unna’s form ula

J. M. Tunna developed two formulae for Gaussian random loads situations [48] 
[14]. One is used for the narrow band load ca.se, which is exactly the same as 
formula 3.2. Another one is used for wide band situation, which is expressed as:

S  - S ^
47<t  ̂ 87(7"

This formula actually contains the narrow band solution as 7 =  1 for narrow 
band signals. The range here is defined as the Range Mean cycle instead of 
rainflow cycle.

3.5  D ir lik ’s form ula

Dirlik conducted extensive computer simulation on the rainflow cycle distribution 
of random Gaussian stress histories. He studied seventy spectra of various shapes, 
with 7 in the range 0.160 to 0.988 [13]. Seventy Gaussian stationary stress 
histories were then simulated from these spectra. Both countings for ordinary 
range and rainflow range cycles were performed on the simulated signals. The 
rainflow cycle PDF was modelled by using the following expression:

Pr r ( z ) =  C i ^ e - i  +  C j - ^ e - é r  +  (3.12)

where cycle range S  =  2zy/wi^. z is therefore a normalised range parameter.
This model used three combined PDF’s, exponential, Rayleigh and standard 

Rayleigh distributions, to fit the probability density of low, middle and high range 
cycles respectively. By minimising the cost function (mean square error of the 
model equation with the time domain counting result) and regression analysis.
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the parameters were derived in terms of the spectrum moments,

mo rri4
—  7^)Cl =

C

1 + 7 ^
1 -  7 -  Cl +  C?

1 — Q

C3 = 1 — Cl — C2
1.25(7 — C3 — C2O!)

T =

a  =

Cl
1 ~  fm — C\

1 — 7 — Cl +  Cl

This important empirical formula was the first to directly link the rainflow 
cycle distribution with the spectrum moments. Because of the wide range covered 
by the selected irregularity factor and mean frequency, the formula works very 
well for Gaussian stress/strain histories [49] [50] [51]. The simulation process here 
seems to have worked quite successfully. The phases used for simulating the time 
histories from the spectra are assumed to have a uniform distribution in 0 — 27T, 
the Gaussian assumption was therefore implicitly adopted.

3.6 B ish o p ’s th eo retica l so lu tio n

Dr. Bishop carried out theoretical studies on the connection between the spec­
trum and rainflow cycle distribution[l] [52]. For a rainflow cycle as defined in 
Definition 3 in previous section, the three events which constitute a rainflow cy­
cle can be separated and considered as three single events. The probability of a 
rainflow cycle existing was therefore considered to be equal to the probability of 
these three events occurring together. This consideration significantly simplified 
the computation of rainflow cycles because each event was dealt with as a series 
of transitions of the signal from a peak to a trough or from a trough to a peak 
rather than the complicated configuration associated with the original definition. 
The rainflow cycle PDF then can be expressed as:

2 0
P R R ( h )  =  - ^ 7 - ^ 2  i p  -  h ) Y 3 { i p ,  i p  -  h ) p { i p )  (3.13)

i p = h + i

where, Y i { i p , i p  — /i), Y 2{ i p , i p  — /i), and Y ^ ^ i p ^ i p  — h )  are the probabilities of 
events Fi, and F3, respectively and can be calculated by Markov process theory. 
d h  is the interval width used to divide the signal and p ( i p )  is the probability of
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the signal being at peak ip. The coefficient 2.0 occurs because there exists a 
symmetry about t=0 for stationarity.

To calculate the probability of the signal transition from peak to trough and 
from trough to peak, the peak-trough series can be assumed as a Markov chain. 
The probability of the above three events can then be calculated using Markov 
stochastic process theory. The complete PDF of rainflow ranges can therefore be 
obtained.

Theoretically, this method can be taken as a universal method and is suit­
able for any type of signals either Gaussian or non-G aussi an. As will be seen 
later, however, this method needs a one step signal transition matrix to set up 
the Markov model matrix. This transition matrix is generally very difficult to 
derive except for a Gaussian distribution. So, this method is restricted mainly 
to the Gaussian signals. However, due to its clear theoretical background, this 
method can be easily used for some special non-G aussi an situations once the 
heavy mathematical work is done to produce the required one step transition 
matrix. Additionally, this is the only method which offers the possibility of re­
taining the information about the relative mean of the rainflow cycles. This is 
obviously needed if the influence of mean stress is to be considered. This is 
covered in more detail in Chapter 6.

3 .7  M ad sen  form ula

The work of Madsen et al [53] was derived specifically for application to wind 
turbines. It deals with signals which combine stochastic and deterministic loads. 
These two components of signal are treated separately. For a random stationary 
stochastic process, damage is assumed to be a constant function of time, the 
value of the constant being dependent on the signal characteristics. For a zero- 
mean, Gaussian, narrow band stochastic process, a Rayleigh distribution of peaks 
applies and each range is taken as a half cycle as before. For this idealised signal, 
Madsen proposes a dimensionless damage parameter, which is equal to the actual 
damage of the signal, normalised by dividing by the damage due to a constant 
amplitude signal having the same rms. This was shown to be a function of the 
slope of S-N  curve.

For more complex and realistic wide band processes, Madsen assumes a Gaus­
sian distribution, and hence a solution for the distribution of the peaks, refer­
encing Wirsching [44], he uses the assumption that each peak will eventually pair
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with an equal and opposite trough to form a closed cycle. This is exceptionally 
conservative, and so a ‘bandwidth correction factor’ is proposed. Madsen pro­
poses a formula, independent of S-N  curve slope, and supports it by reference to 
published fatigue test data. His basis for the formula is a comparison of fatigue 
lives, rather than the signal statistics themselves.

For the deterministic component of load, the simple case of two superimposed 
sine waves is considered, and a constant amplitude sine wave of equivalent dam­
age is proposed, as a function of S-N curve slope. Making the assumption of 
uniform distribution of phase between the two original sine waves, he fitted an 
empirical relationship to calculate the equivalent constant amplitude stress range 
as a function of irregularity factor and S-N  curve slope.

For the general case of a sum of periodic and stochastic terms, Madsen builds 
from the special case of a sinusoid plus a narrow band stochastic process. He pro­
poses to view the confluent hypergeometric function as an interpolating function 
between the purely periodic signal and the Gaussian stochastic signal. To allow 
for wide band processes, the periodic rms and stochastic rms are each corrected 
for irregularity.

theory

Throughout the theory of Madsen, the expected damage rate is defined as

E{D] =  £?[0](^)‘ (3.14)

where E[0] is the zero-crossing rate with positive slope, k the stress intercept and
b the fixed inverse slope of S-N  curve, and Sh an equivalent constant amplitude
stress range calculated for the signal.

Stochastic Loading

For a purely stochastic signal,

%  =  2V2s.(7.)<T.[r(l +  (3.15)

where the bandwidth correction term is defined as

ÇxM  =  0-93 +  0.077^

D eterm inistic Loading

The equivalent stress range for the deterministic component, Z{t) is

Sh = 2V2g,(^ ,)a ,  (3.16)
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with bandwidth correction correction factor

=  1.24 -  (0.325 -  0.0256)(2.27 -  7^)

The bandwidth (irregularity factor) is defined as 7 =  N^/Np,  where Ny, is the 
number of mean up-crossing, and Np the number of peaks, in one time period 
(To =  27r/wo). By defining 7 in this form, Madsen believed that some information 
on the relative phase between the Fourier components is retained, whereas all such 
information is lost in the spectral moment parameters.

The standard deviation is calculated as

 ̂ jt=i

where Ck is the amplitude of the sine waves.

Com bined Loading

For the combined time history, Y(t)=X(t)+Z(t),

S h = 2V2ff.(7v)<Tx[r(l +  1, (3.17)

M(-, - , •) is a confinent hypergeometric function satisfying

^ ( —2 ' 1/3=0 =  1

and

M( —- , 1, —/? )!/?_+oo —
2 ’ ’ " r(i-Hf)

The combined model therefore also includes the previous models as special 
cases.

The correction for irregularity is applied using the bandwidth parameter,

7,  =  E[o]y/E[P]y

defined for the combined signal from

1 / 7 7
=  E [ O l  ■ -  f °

J •'0 (T (T ̂

and
= E [ P l  ■ ^  p

J . Jo Œ j ;  (T ̂
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m  =
where

' i { t )  =  4>{i) -  t i ’ i t )
. = floo (f>(p)^P =  e r /( t)

with <Ti =  -y/mj and (T£ — y/rrû
The function 7 (*) is derived by subtracting the deterministic time-history from

the mean of the combined signal, =  cq, so that

K

7 (0  =  =  -  ^  ct sin(A;wo  ̂+  Ok)
Jk=l

3.8 D iscu ssion

The methods discussed in this chapter are mainly of three classes. The first is the 
narrow band solution, which introduces a rigorous assumption on the frequency 
distribution of the response history. The second class is that of correction factor 
methods which try to adapt the narrow band solutions to a wide frequency band 
and introduce rainflow cycle counting in the damage estimation. The third claas 
includes the methods which involve more numerical simulation and theoretical 
studies such as Dirlik’s formula and the theoretical method. Because of the order 
in which they were developed, the second class generally work better than the 
first and the third class are expected to be the best. Assessment in the following 
chapter proves this point. Apart from the methods described in this chapter, 
there are also some other methods developed to predict the rainflow cycle PDF, 
say [34], [54], [54]. However, they are not widely used.

Although madsen made an attem pt to solve the deterministic component 
problem here, it is far from satisfactory. The damage he derived for the stochastic 
part is still based on a correction to the narrow band solution. The interpolation 
he uses involving hypergeometric functions also has no theoretical background.

All these methods assume the response histories are Gaussian. Such assump­
tions should be reasonable for most engineering situations. The fatigue life pre­
diction for most engineering structures should then have reasonable results. Non- 
Gaussian situations will be discussed in C h a p te r  7.
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C hapter 4 

Fatigue A nalysis o f W EG  M S-1  
and H ow den data

4.1 In trod u ction

For all of the methods described in the previous chapter, the best way of assessing 
how well they can work is to apply them to the analysis of monitored structural 
response histories. The monitored times series would then be able to provide 
a time domain solution which can be taken as a reference solution with which 
to compare the frequency domain solution. The work presented in this chapter 
performs this assessment. The power spectral density functions used for the 
fatigue analysis are calculated from the response history directly.

Two sets of data from WEG MS-1 and Howden HWP330 wind turbine ma­
chines were used. They are monitored response histories of the wind turbine 
blades during operation. Since most of the methods are developed for fatigue 
analysis of offshore structures other than wind turbine blades, it is useful to per­
form fatigue analysis on these monitored turbine responses in order to assess the 
validity of applying these methods to turbine blade fatigue analysis.

This chapter presents the results from such an analysis. The problems revealed 
by the analysis and some possible solutions are presented in later chapters.

4.2  A n a lysis  program

A program was developed to perform fatigue analysis calculations on the random 
stress history in both the time and frequency domains. In the time domain 
analysis, rainflow counting is performed on the time series to obtain the time 
domain fatigue life estimation. This estimation is then taken as the reference 
solution. This is because it is the result that all the frequency domain approaches 

are trying to estimate. When working in the frequency domain, the spectrum 
is computed from the given time series or read from a data file which stores the
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spectrum. If the later is the case, there would be no reference solution with which 
to compare the frequency domain solutions. Most of the methods described in 
the previous chapter are implemented in the program. They are:

• Narrow band solution

• Wirsching’s modification

• Hancock A and B

• Chaudhury and Dover’s modification

• Dirlik’s empirical formula

• Bishop’s theoretical solution

As far as the deterministic element of the signal is concerned, only one sig­
nificant component caused by gravity was discovered in the Howden edgewise 
signals. The WEG MS-1 data files did not contain edgewise signals whilst the 
Howden data are combined deterministic and stochastic response histories.

The rainflow cycle PDF’s predicted by all the frequency domain methods are 
calculated first. The damages from these rainflow cycle PD F’s are then compared 
with the one from the time domain analysis. The ratio of the frequency domain 
damages with the time domain solution is defined as the damage rate in this thesis. 
A value greater than f.O implies that the frequency domain result is conservative, 
i.e., gives a damage value greater than the time domain solution. Conversely, a 
value less than 1.0 implies that the frequency domain result is unconservative. 
The program is presented in Appendix A.

As part of its initial development the program was first used for the analysis of 
a set of computer simulated data, denoted as nhdata, nbdatb, nbdatc and nbdatd. 
For a typical data set, nbdata, the PSD function is shown in Figure 4.1.

The rainflow cycle PDF’s counted from the time series and predicted by the 
frequency domain methods mentioned above are shown in Figure 4.2. Since the 
signal is a simulated Gaussian time history, it was found that most of the methods 
agree well with the time domain analysis results. The narrow band solution, as 
expected, is definitely conservative as the middle and high range part of the 
probability density are over predicted. This part of the PDF contributes most to 
the total fatigue damage because of the nonlinear Basquin equation.
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Figure 4.2: Rainflow cycle di stribut ion of  nbdata
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4 .3  A n a lysis  o f  W E G  M S-1 d a ta

4.3.1 T he W EG  MS-1 data

The WEG MS-1 data was recorded from a WEG MS-1 wind turbine on Orkney. 
This machine has a two-bladed steel rotor, 20 meters in diameter and is rated at 
50kw.

Six load cases were examined, two for freely teetered operation and four with 
fixed hub, covering a wide range of wind speeds. Four radial locations were 
considered in each case: at 1.35m, 3.28m, 4.94m and 7.24m measured from the 
blade root (and denoted as case 12, 19, 27 and 35), respectively. The load cases 
are defined in Table 4.1.

The data given are not the stress time histories. Instead, they are the flapwise 
moments at each section. As known from beam theory, dividing the bending 
moment history by the sectional bending resistance module can easily produce 
the stress history. But it does not have to be done because what is concerned 
here is the PDF of the cycles. The transformation from bending moment cycle 
range into stress cycle range does not change the shape of the probability density 
function. The fatigue damage, of course, has changed. But if one is only trying to 
compare the damage with a time domain result, the ratio will remain unchanged. 
Thus, all the work here is performed directly on the bending moment histories.

Table 4.1: MS-1 load cases

Case wind speed 
(m/s)

Yaw
(deg.)

Turb. Int. 
(%)

Hub Config. Campaign 
dur. (secs)

Length
(points)

A 18.4 7.1 9.7 Fixed 300 37500
B 23.7 3.0 11.1 Fixed 240 30028
C 11.1 -12.5 8.9 Fixed 300 37500
D 16.5 2.5 10.1 Fixed 300 37500
E 15.6 -3.1 6.6 Teetered 102 12823
F 11.3 12.3 15.0 Teetered 300 37500

4.3.2 S  — N  curve

The S — N  curve used in the damage calculation should be based on BS5400 weld 
specification [55]. It is CLASS D and defined as.

N  = 10"(<To)' fo r  (Jr >  (To
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N  =  {(ToŸ'̂ '̂  fo r  (Jr < (Jo

where (Jq is the stress range corresponding to iV =  1 x 10^. For convenience of 
analysis, a single inverse slope 6 =  5.0 was used in this section.

4.3.3 S tatistical analysis

Two types of statistical check were performed on the WEG data. First of all, 
the Reverse Arrangement Test (RAT) [56] was carried out to check for trend and 
stationarity. The Reverse Arrangement Test is a test on the independence of the 
observations in a time series. The signal is first divided into different blocks and 
the statistical parameters such as the mean and root mean square are calculated 
for each block. Then the mean or rms calculated from each block is taken as a 
sequence x,-, i = 1,2,..A^, and the number of times that x,- > xj  for i <  j  is 
counted thus obtained the number of reverse arrangements. If the sequence of 
observations is independent (i.e., no trend is present) then the number of reverse 
arrangements is a random variable with a mean value and variance as follows

N ( N - l )

N { N - l ) { 2 N  +  5)
~  72

The actual distribution from the signal can then be compared with a theo­
retical value. Given a tolerance (significance) level, an acceptable region for the 
stationarity of the signal can be determined.

When performing this test for the MS-1 data, the signals were divided into 
different blocks, with each block containing about 15 seconds of data except for 
load case E. The block number is 20 for load cases A,C,D and F, 16 for B, and 
10 for E. The mean and root mean square are calculated for each block. For a 
given confidence level of O.Of, the acceptable regions for the hypothesis that the 
observations are independent are :

AT =  20 : 59 < A <  130

Æ =  16 : 34 < A < 85

Æ =  10 : 9 < A < 35

The results from the RAT test applied to the MS-1 data are listed in Table 
4.2. They are also presented in Figure 4.3, together with the acceptable regions 
for all the load cases. It is clear that, except for load case A, the RAT values for
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both mean and root mean square of the signals are inside the acceptable region 
for the confidence level of 0.01. Thus, the conclusion from the stationarity check 
of the WEG MS-1 data is that, load case A of WEG data is a nonstationary 
time series for a confidence level of 0.01., but all the other signals can be taken as 
stationary.
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0 Reverse arrangement of mean 
+ Reverse arrangement of root mean square

+ + + +  4-
□ □ □ 

+
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I I I 
B C D E

Load case

Figure 4.3: Reverse  arrangement  test  o f  W E G  MS-1 data

The chi-square and kurtosis values are used for the check of normality. 
is defined as [56] [57]:

t=i Fi

where K  is the number of class intervals which the observations are grouped into, 
fi is the observed frequency and F{ is the expected frequency. The distribution for 

is approximately the same as for Xn with the number of degree n = K  — 3. 
Given a significance level a , the observations are accepted as normal if

<  Xl:.

Coefficient of Excess) is defined as

K urtosis  =  ^  — 3
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where ^ 2  and are defined aa the second and fourth central moments of the sig­
nal. It can be used as a measure of the flattening of a distribution near its centre. 
The value of Kurtosis can range from -2 to infinity with -2 corresponding to a 
symmetric binary random variable (|z | =  constant) and a value of 00 correspond­
ing to the distributions with slowly decaying tails. For a normal distribution, the 
Kurtosis should be zero since E[x^] =  3(7  ̂ [58].

The values were calculated with 30 degrees of freedom for WEG MS- 
1 data. All the results are listed in Table 4.2. The normality check from 
concludes that all the signals are non-Gaussian given a significance level of 0.99 
and corresponding upper bound of 50.9. Figure 4.4 presented all of the values 
and the upper bound for significant level 0.99. All the values are far above the 
upper bound. The values of Kurtosis broadly reflect the degree of non-normality 
for the signals but can not provide a definite conclusion since there is no quantity 
acceptance region given theoretically.

7000 n
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5 0 0 0 -
Upper bound for normal distribution
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3000 -

2000 -

1000 -

Load case

Figure 4.4: o f  W E G  MS-1 data  for degree 30
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Table 4.2: Statistical analysis for WEG MS-1 data

datar mean ratm rm s Ratr m ^ [0] 7 Kts
y l2a -132.78 46 32.04 111 4805 859 0.18 760.1 -0.035
yl9a 43.56 144 31.57 111 4936 857 0.17 462.1 0.028
y27a 44.78 146 36.85 111 5140 764 0.15 1417.5 -0.059
y35a 68.78 148 55.87 93 5231 548 0.11 4574.6 -0.205
y l2b -67.83 39 29.03 70 3361 1023 0.30 1118.7 -0.375
yl9b -9.02 81 28.51 69 3339 1041 0.31 1118.9 0.363
y27b -50.81 78 29.39 63 3636 1122 0.31 1835.9 0.544
y35b -93.33 81 38.19 50 4258 1035 0.24 6038.5 0.895
y l2c -90.27 85 21.75 86 6063 867 0.14 1282.8 -0.177
yl9c 19.32 106 21.06 83 6162 942 0.15 1571.0 0.193
y27c 6.76 106 19.68 86 6212 1105 0.18 1160.4 0.193
y35c 42.08 108 18.23 90 6604 1316 0.20 643.6 0.163
y l2d -168.95 111 22.37 109 5084 1134 0.22 633.6 -0.003
yl9d 77.05 76 21.76 113 5144 1154 0.22 632.8 -0.036
y27d 68.30 81 21.48 112 5448 1287 0.24 724.3 -0.105
y35d 114.85 81 24.02 101 5843 1379 0.24 1869.0 -0.442
y l2e -184.18 37 18.31 35 2013 476 0.24 714.4 0.493
yl9e 68.50 6 19.35 36 1915 489 0.26 554.5 -0.285
y27e 50.88 9 19.98 35 1851 547 0.30 751.5 -0.377
y35e 106.58 9 23.79 32 1869 580 0.31 1498.3 -0.772
y l2f -149.26 83 19.02 83 6299 1148 0.18 551.0 0.073
yl9f 66.92 107 18.05 83 6265 1185 0.19 663.7 -0.139
y27f 46.37 106 17.80 83 5858 1381 0.24 651.6 -0.240
y35f 90.41 106 18.55 88 5971 1525 0.26 1006.3 -0.255
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4.3.4 Fatigue analysis

The MS-1 data was acquired using a frequency 125Hz^ giving a Nyquist frequency 
of 62.5Hz. Since the rotor speed of the MS-1 machine is 88 RPM. This implies a 
fP  frequency of 1.47Hz. The first 10 harmonics were used to obtain a maximum 
stochastic frequency of 15.625Hz. The cutoff frequency was then set at 15.625Hz
[59].

The rainflow cycle PDF’s of y 12a from both time and frequency domain anal- 
ysises are presented in Figure 4.5a. It is clear that the narrow band solution 
over estimates the middle and high range cycles. However, Dirlik’s formula and 
the theoretical solution give a reasonably good prediction for the cycles in these 
ranges. In terms of fatigue, the middle and high range cycles always contribute 
most to the fatigue damage, as shown in Figure 4.56.

The fatigue analysis from the WEG MS-1 data was performed in both the 
time and frequency domains. In the frequency domain analysis, the narrow band 
solution, Wirsching’s modified solution, Chaudhury and Dover’s solution, and 
Hancock A were used, together with Dirlik’s empirical formula and Bishop’s the­
oretical solution. They are all listed in Table 4.3 in terms of damage rates[49] [50].

The most consistent frequency domain results were obtained using Dirlik’s 
empirical formula and Neil Bishop’s theoretical solution. These two approaches 
are far more accurate than the alternative approaches. However, although the 
averages for the 24 load cases are close to 1.00 for both methods, estimates of 
less than 1 .0 0  î o t  individual locations are quite possible.

The fluctuation of the results listed here can be partly explained as simple 
stochastical scatter. The damage rates for y35a and y35b are the two highest 
in this table. They have most serious level of non-normality in the normality 
check. The nonnormality of y35b is more serious than y35a but has a better 
fatigue damage rate. This may be caused by the nonstationarity existing in y35a. 
Because the normality check on the whole signal indicated that all the data 
is non-Gaussian the fatigue damage results are surprisingly good. There may 
be several reasons for this. One of the most important is that the spectra are 
calculated using rectangular windows. The non-stationarity and non-normality 
in each window (block) is not as serious as for the whole data sample and thus 
the data inside each window is a better approximation to the Gaussian signal.

Further discussion on this topic is presented in the next chapter.
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Table 4.3: Fatigue damage rates for WEG MS-1 data

load narrow-band Dirlik Wirsching Bishop Chaudhury Hancock
y l2a 5.14 1.03 3.91 1.07 2.13 2.75
yl9a 5.15 1.00 3.92 1.09 2.14 2.77
y27a 14.34 1.59 10.91 1.23 5.12 5.83
y35a 81.87 2.34 62.23 1.37 30.08 25.08
y l2b 1.91 0.77 1.46 0.79 0.98 1.25
yl9b 1.98 0.81 1.50 0.86 1.04 1.31
y27b 3.67 1.07 2.79 0.91 1.47 1.92
y35b 18.34 1.48 13.95 1.30 5.68 6.10
y l2c 1.98 0.76 1.51 0.61 0.95 1.25
yl9c 1.87 0.73 1.43 0.61 0.92 1.20
y27c 2.03 0.74 1.54 0.51 0.87 1.14
y35c 3.22 0.76 2.45 0.46 1.15 1.42
y l2d 2.09 0.84 1.59 0.81 1.03 1.33
yl9d 2.03 0.83 1.54 0.83 1.02 1.31
y27d 2.92 1.01 2.22 0.81 1.23 1.62
y35d 7.50 1.12 5.70 0.87 2.75 3.29
y l2e 2.80 0.99 2.13 0.90 1.50 1.95
yl9e 3.06 1.01 2.33 1.02 1.64 2.12
y27e 3.50 1.03 2.67 1.08 1.65 2.16
y35e 8.81 1.11 6.71 1.41 3.31 4.15
y l2f 3.86 0.98 2.93 1.01 1.66 2.18
yl9f 3.97 1.00 3.02 1.13 1.78 2.33
y27f 3.96 1.01 3.01 1.11 1.76 2.31
y35f 5.59 0.98 4.25 1.17 2.17 2.80
avrg 7.98 1.04 6.08 0.96 3.08 3.32

50



4 .4  A n a lysis  o f  H ow d en  H W P 3 3 0  d a ta

4.4.1 H O W D E N  H W P330 data

The Howden HWP330 data was monitored from a 33m wind turbine in Altamont, 
Pass, California. The data was stored on tapes labeled 18, 26, 27 and 30. Each 
tape contained bending moment histories from the blade at 3, 8 and 13 meters 
from the hub. The load cases are summarised in Table 4.4.

Table 4.4: Load case o f  Howden H W P 3 3 0  data

Tape Windspeed
(m/s)

Turbulence
Intensity(%)

Mean yaw 
( d e g )

Duration
( s )

Length
(points)

1 8 1 0 . 6 8 1 9 . 6 - 1 1 . 7 2 5 6 0 1 0 2 0 0 0
2 6 1 4 . 0 7 9 . 2 - 6 . 5 3 2 6 0 1 3 0 4 0 0
2 7 1 6 . 8 6 1 0 . 7 - 1 1 . 8 3 8 6 3 1 5 4 5 1 8
30 8 . 5 1 1 5 . 3 2 . 4 3 5 1 2 1 4 0 3 9 8

4.4.2 S  — N  curve

The S  — N  slope values used for the Howden HWP330 data were b=4.0, 8.0 and
12.0. Of course, only as a means of comparing fatigue analysis results for research
purposes is it acceptable to use different S  — N  slope values.

4.4.3 S tatistical analysis

The same statistical analysis calculations as with the WEG MS-1 data was per­
formed on the Howden HWP330 data. For the stationarity check the signals were 

divided into 50, 60, 70 and 70 blocks for tape 18, 26, 27 and 30 respectively. The 
results are listed in Table 4.5. The acceptance regions for a given confidence level 
0.01 are as follow

N  = 50:473 < A <  751

Æ =  60 : 702 < A <  1067

TV =  70 : 977 < A <  1437

The RAT test applied to the mean and root mean square is presented in 
Figure 4.6. It is seen from the table and the figure that nearly all the Howden 
HWP330 data is nonstationary. The nonstationarity of a few signals such as the 
3m edgewise and 8m flapwise of tape 18, and the 3m edgewise of tape 26 is not
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3000

g  2500

I
2000 -

Ë
> 1500

1000 -

500 -

o Reverse arrangement of mean 

4 Reverse arrangement of root mean square

□ Q-

□ a

□
4-

J:_____ S_

o "  a 

4-

Tape 18 Tape 26 Tape 27 Tape 30

Figure 4.6: Reverse arrangement test o f  Howden H W P 3 3 0  data

The values were calculated with 30 degrees of freedom. The upper bound 
for accepting the signal as Gaussian is 50.9., given a significance level of 0.99. 
From the normality test, all the data show a very strong non-Gaussian property. 
The normality test for nonstationary signals, of course, does not make any sense. 
Actually, since dominant deterministic components exist in the edgewise signals, 
the statistical parameters are dominated by these components.

The extremely high chi-square values from the test could also be caused by the 
non-stationarity in the signals apart from the non-normality of the signals. As 
stated in [60], a chi-square test is a conventional test for the distribution but it is 
also a less powerful one. “They should not be recommented for use in testing for 
departures from normality when the full ungrouped sample of data is available”
[60] pp371. As the hypotheses test is not the topic of this thesis, no further details 
were discussed in the test.

4.4.4 Fatigue analysis

The sampling frequency of the Howden data was 40.0Hz, giving a cutoff frequency 
for the PSD of 20.0Hz. However, it was found that the high frequency components

5 2



Table 4.5: Statistical analysis for Howden data

data mean ratm rm s Ratr E[P] E[0] 7 K
T18-3-f 91.80 453 11.54 664 10477 1978 0.19 4238.4 -0.47
T18-3-C 50.35 654 29.88 584 3861 1582 0.41 72978.1 -0.01
T18-8-f 29.47 438 4.92 658 11829 2502 0.21 4469.8 -0.47
T18-8-C 39.64 820 6.91 601 4900 1585 0.32 63416.6 -0.01
T18-13-f 3.08 409 0.77 649 16423 4187 0.26 3582.1 -0.37
T18-13-C 3.66 101 2.28 538 12023 1635 0.14 38723.2 0.01
T26-3-f 93.66 1207 13.10 628 11541 2675 0.23 1116.9 -0.20
T26-3-C 10.40 466 35.47 470 5916 2043 0.35 58783.5 -0.01
T26-8-f 31.49 1259 7.59 595 13885 1976 0.14 8099.7 -0.40
T26-8-C 1.41 510 12.47 521 8622 2096 0.24 49046.8 -0.01
T26-13-f 1.74 1246 2.41 573 19770 1086 0.06 44864.8 -0.58
T26-13-C -0.20 1085 2.30 789 17547 2265 0.13 22323.4 0.0
T27-3-f 81.94 2006 15.21 895 11529 4331 0.38 1057.1 -0.08
T27-3-C 13.98 1419 35.38 1470 9618 2450 0.26 70737.7 -0.05
T27-8-f 2.86 1295 12.50 1009 12676 2538 0.20 58583.5 -0.06
T27-8-C 22.39 2033 8.53 1131 13943 4030 0.29 3036.3 0.27
T27-13-f -2.39 2052 2.52 1486 21605 3066 0.14 21015.4 0.73
T27-13-C -3.08 1021 2.26 1546 23549 2960 0.13 36138.1 0.10
T30-3-f 71.71 1873 15.74 1664 12380 1875 0.15 2727.6 -0.14
T30-3-C 8.14 219 35.47 1261 4923 2174 0.44 84744.0 -0.02
T30-8-f 27.27 1907 6.22 1394 15060 2217 0.15 3181.1 -0.14
T30-8-C 1.14 261 12.30 1177 5895 2178 0.37 79738.8 -0.02
T30-13-f 3.36 1869 0.85 1320 21133 4015 0.19 1587.3 -0.33
T30-13-C 0.13 2287 2.21 1137 14780 2208 0.15 40965.3 0.01
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in the signal have a great influence on the final damage estimation (which will 
be discussed in the following chapter). For the work in this thesis the cutoff 
frequency was set at the point at which mo reached 99.5% of its whole value. 
This takes most of the signal into account but eliminates the influence of high 
frequency components.

The computed rainflow cycle PD F’s for the 3m flapwise and edgewise edgewise 
load cases of tape 26 are plotted in Figure 4.7. The fatigue estimations are listed 
in Table 4.6, 4.7 and 4.8 for 5  — slopes of 6 =  4.0, 8.0 and 12.0 respectively. 
For simplicity, only the damage estimations from Dirlik’s formula and Bishop’s 
theoretical solution are listed.

Although Dirlik’s empirical formula and Bishop’s theoretical solution give 
good agreement in the fatigue analysis of the WEG MS-1 data, both of them fail 
to give a satisfactory result for the Howden data. This could be caused by the 
nonstationarity of the time histories or their non-normality. The existence of a 
strong deterministic component also contributes a lot to the discrepancies in the 
edgewise signals.

T&ble 4.6: Fatigue damage  rates for Howden data  b= 4.0

chnl tape 18 tape 26 tape 27 tape 30
Dirlik Bishop Dirlik Bishop Dirlik Bishop Dirlik Bishop

5 0.825 0.905 0.858 0.852 0.854 0.971 1.012 0.927
6 1.702 1.965 1.616 0.832 1.581 0.519 1.758 2.324
7 0.740 0.740 0.841 0.840 1.466 0.397 0.811 0.844
8 1.625 1.140 1.548 0.493 0.830 0.860 1.693 1.822
9 0.773 0.323 1.108 0.163 1.113 0.290 0.839 0.357
10 1.495 0.660 1.334 0.294 1.281 0.306 1.483 0.896

Table 4.7: Fatigue damage  rates for Howden data  h=8.0

chnl tape 18 tape 26 tape 27 tape 30
Dirlik Bishop Dirlik Bishop Dirlik Bishop Dirlik Bishop

5 0.416 0.581 0.366 0.446 0.575 0.730 0.808 0.838
6 16.508 18.147 13.959 8.377 12.594 5.107 18.149 23.338
7 0.278 0.332 0.334 0.452 9.477 3.341 0.407 0.478
8 14.604 12.665 11.691 4.620 0.488 0.596 16.098 16.301
9 0.299 0.161 0.697 0.145 0.500 0.177 0.170 0.092
10 11.897 6.225 4.845 1.430 6.405 2.053 11.753 8.107
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Table 4.8: Fatigue damage rates for Howden data b=12.0

chnl tape 18 tape 26 tape 27 tape 30
Dirlik Bishop Dirlik Bishop Dirlik Bishop Dirlik Bishop

5 0.14 0.22 0.13 0.17 0.26 0.34 0.26 0.29
6 387.30 406.44 309.11 193.66 260.95 114.64 448.30 559.04
7 0.09 0.11 0.10 0.16 146.38 63.54 0.08 0.10
8 316.22 274.07 209.76 90.03 0.18 0.24 367.66 352.93
9 0.09 0.06 0.42 0.13 0.17 0.08 0.01 0.01
10 245.99 132.81 7.54 2.91 62.96 26.88 221.88 165.04

Various computational considerations except for the issue of non-stationarity 
will be discussed in the following chapter. To address the problem of non­
stationarity, the signals were divided into blocks. The fatigue analysis was then 
performed on each block just as if it was an independent time history. The dam­
age rate was then taken as the average of the rates of these blocks. It should 
be emphasesed that this is reasonable because the Howden data has a relatively 
longer duration and thus it is possible to obtain enough points for each block. 
For the WEG MS-1 data histories which are much shorter, this is less satisfac­
tory. It should be stressed that the issue of sample length is a very difficult and 
controversial subject. The question of fatigue scatter or variance as a function 
of sample length has not been properly addressed before and only a qualitative 
approach could be adopted in this thesis.

Figure 4.8 shows the result of using blocks for tape 26 3m flapwise signals. As 
the number of blocks increases, the damage rate between the frequency domain 
and the time domain analysis approaches 1.0. This consistent tendency might 
imply that the nonstationarity problem in the analysis is partly overcome. Small 
segments of the signal would presents less serious nonstationarity. However, here 
is a dilemma: a signal which is too long would be difficult to analyse because 
of the nonstationarity; a signal which is too short would result in the possibility 
of large fatigue damaging cycles being missed. This is an important problem. 
Future effort should be concentrated on finding a more rigorous solution.

4.5 D iscu ssion

As seen from above, a fatigue analysis in the time domain is relatively straight 
forward. For the frequency domain analysis approach, all the current methods

56



N

O

K

dkO
W
cdB
edA

o
d

o
o

o 3 * e B lO
N u m b e r  o  f  b l o c k s

Figure 4.8: Block effect o f  Howden data  tape 26 3m flapwise

should be used with great care. The WEG and Howden data have provided a good 
mechanism for verifying the present spectral analysis methods. However, because 
of the nonstationarity, non-normality and the strong deterministic component 
present in some of the signals, the frequency domain analysis techniques can not 
universally give acceptable results.

Analysing monitored data is quite a different task from the analysis of simu­
lated data, or theoretical spectra. It is quite difficult to process recorded data. 
The results are always significantly influenced by the way the data is collected and 
processed, for example, the window type and window size effect on the spectrum 
calculated from the time signal. Different choices of cutoff frequency also produce 
large differences in the moments calculated from the spectrum. This may in turn 
produce a different peak rate expectation. However, the work presented in this 
chapter has enabled an overview of all the methods to be obtained and provided 
a guide on how they should be used in design.

In general, Dirlik’s empirical formula and Bishop’s theoretical solution work 
quite well with the damage rates close to 1.0 for WEG MS-1 data. Further 
computational problems are discussed in the next chapter.
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C hapter 5 

C om putational considerations in  
random  fatigue analysis

The fatigue analysis in the previous chapter made an overall assessment of the 
current methods used for random fatigue life estimation using frequency domain 
techniques. It was found that the computation is influenced by many factors, 
such as the cutoff frequency and the clipping ratio of the probability density func­
tion, etc. These parameters have to be selected carefully in the computational 
procedure because completely diflFerent life estimation results may otherwise be 
obtained. This chapter presents the results from an investigation of these param­
eters. Some are related to the assessment of frequency domain analysis tools and 
some are related to the use of these tools in design.

5.1 E ffect o f  cu to ff frequ en cy

Theoretically, the cutoff frequency of a spectrum is generally half of the time 
series acquisition rate. As seen in the previous chapter, however, this cutoff fre­
quency is decoupled from the process of calculating the moments of the spectrum 
when performing fatigue analysis. The reaaon for this is that high frequency 
components may cause serious problems in the calculation when often they are 
not structural responses but just acquisition noise. For the WEG MS-1 data 
the cutoff frequency was set at 15.625Hz to include the first 10 harmonics of the 
response. For the Howden data, the cutoff frequency was set at the point at 
which the area of the spectrum reached 99.5% of its whole area. Both these two 
ways of selecting the cutoff frequency are attempting to include all the structural 
response data in the spectra whilst excluding the noise which is either caused by 
acquisition error or by electronic noise during measurement.

If all the high frequency components are included in the spectrum calculation, 
it is possible to check how the damage changes as the point at which the cutoff 
frequency is varied. Figure 5.1 and 5.2 show such results from the WEG MS-1
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and Howden HWP330 data. In Figure b.\(a)^ the PSD is plotted up to 62.5Hz, 
together with the 1000 times magnified tails. The moments calculated from 
the spectrum are also plotted in (h). It can be seen that the high frequency 
components have a very big influence on the higher order moments and finally on 
the irregularity factor as expected. The damage rates (normalised by the time 
domain fatigue result) of all the methods used here are plotted in (c). None of 
them are stable until after about 27Hz. Actually this is the point under which 
most of the power is included from the PSD as plotted in (a).

The question which arises is, for the monitored time history or the PSD, 
how should the cutoff frequency be determined? The high frequency components 
are noise produced in data acquisition, but where should the boundary between 
structural response and noise be set? In other words, which part of the signal 
should be taken as structural response and which part as acquisition error?

The answer to this question depends partly on the bit number used in the 
data acquisition system. Figure 5.4 shows a simple test showing the generation 
of such acquisition error[38]. It is actually the acquisition error associated with 
a sine wave. Figure hA(a) shows the error when 5 bits are used, both the actual 
error and the error spectrum. Figure bA(h)^ shows the error for 6 bits. A simple 
comparison on these two gives us a very strong impression that increasing the bit 
number in the data acquisition process would greatly change the error produced. 
Of course, the memory requirement would increase as well. Another observation 
is that the error is nearly white noise, distributed along the frequency axis. For­
tunately, the low frequency error has a relatively small influence on the result.

Two typical results are plotted for the Howden data tape 26 in Figure 5.2, (a) 
for 3 meter flapwise and (b) for 3 meter edgewise. The PSD’s are plotted with a 
log scale so that the high frequency components can be observed more clearly. It 
seems that the influence of these high frequency components is more serious here 
than with the WEG MS-1 data as seen from Figure 5.2. The high order moments 
and irregularity factor change more rapidly. Only the damage rates from Dirlik’s 
formula and Bishop’s theoretical solution are plotted here for simplicity.

Neither of the methods presented gives a stable solution. However, Dirlik’s 
solution is relatively more stable in this situation. The results from Bishop’s 
theoretical solution do not give reliable results for a signal with high frequency 
noise. The reason for this is that the irregularity factor becomes very low (close 
to zero) which makes the Kowalewski matrix used in Bishop’s solution [1] ill
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conditioned. Figure 5.3 shows the change of Kowalewski matrix with the change 
of irregularity factor. Figure 5.3(a) and (b) are the Kowalewski matrices with the 
following parameters respectively:

• (a) mo = 0.406, mg = 122.959, = 992926.0, 7 =  0.193838

• (b) mo = 0.406, mg =  122.708, m^ = 54833.9, 7 =  0.822418.

IS

Figure 5.3: Kowalewski  matrices with different cutoff  frequency

These two groups of moments are from the same time series but calculated 
with different cutoff frequencies. It is clear from the matrix that, as the cutoff 
frequency increases, the probability of small cycles increases very rapidly and 
this makes the matrices “diagonally dominant”. Since the theoretical solution 
generally uses a squaring method to empty the transition matrix, the squaring 
of this type of matrix becomes inefficient. It may even fail to converge for some 
extreme situations. A change of method of calculating the long-run probability 
would therefore help to improve the solution under these circumstances.

It is clear that the high frequency components have a big influence on the 
higher order moments. This increases the expected number of peaks in unit 
time. It would be encouraging if this increase kept the total number of higher 
range cycles unchanged. Since the small range cycles contributes little to the 
total damage, keeping the number of big cycles constant would mean the value 
of fatigue damage could remain the same. Unfortunately, this is not the case as 
shown in Figure 5.2.

The cutoff frequency issue is mainly a problem for the frequency domain tools 
when they are used to analyse monitored data. There is not a high frequency 
noise problem when a theoretical spectrum is used for structural analysis at the 
design stage but the spectrum truncation problem still exists. Loading spectra 
for some structures are provided as theoretical, empirical, or semi-theoretical 
formula. The sea wave load spectrum for an offshore platform, for example, is
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expressed as a semi-theoretical formula which is a function of the significant wave 
height and the wave dominant period [46]. No m atter where the spectrum comes 
from, the cutoff frequency has to be set by the user. This truncation problem is 
then the same as the cutoff frequency problem.

5.2 L en gth  requ irem en t

The lengths of monitored time histories are always limited by the capacity of 
digital recording equipment. The two sets of data analysed in this thesis, WEG 
MS-1 and Howden HWP330, have significant differences in this respect. For 
the WEG MS-1 data, the durations are 300 seconds for load cases A,C,D,F, 240 
seconds for load case B and 102 seconds for E. For the Howden data, the durations 
are 2550, 3260, 3862, 3510 seconds for tape 18, 26, 27 and 30 respectively.

As with statistical analysis, the time series is generally required to have enough 
length (sample size) to be taken as a sample of the process. This requirement 
is also necessary for the fatigue analysis of structures under the action of ran­
dom loads because each time series is taken as a representative sample of the 
whole stress history the structure will undergo. It has to be representative to be 
“qualified” as a sample for such a history.

To assess this sample length problem different lengths of time signal were used 
to rainfiow count and estimate damage. A relationship between damage rate and 
signal length was therefore obtained. The results when an 5  — slope value of 
h =  5.0 and A; =  1.23 x was used are presented in Figure 5.6 for the WEG 
MS-1 data and Figure 5.8, 5.9 for the Howden data. The idealised data produced 
by computer simulation, nbdata, was also examined. This result is presented in 
Figure 5.5. For this data it can be seen that if the signal is too short, the damage 
rate estimated fiuctuates without converging to any value. As the length increase, 
the damage rate converges towards the result obtained by taking the signal as a 
whole. For this length of signal there are enough cycles counted from the signal 
to form a smooth curve of the probability density function. Increasing the length 
of the signal further would add some cycles to the whole set of counted cycles but 
the PDF does not then change much. The damage rate can therefore be regarded 
as stable.

The result for the WEG MS-1 data in Figure 5.6, on the other hand, does 
not show such a tendency. The damage rate is still fluctuating even when the 
whole time signal is used. This clearly means that the length of the signal is still
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not enough to form a smooth PDF curve. Each time a longer signal is used, the 
damage is influenced by the new cycles added in. However, careful scrutiny of the 
maximum cycle number reveals that it is much less than for the idealised data. 
The general trend is therefore similar. One should be careful to realise therefore 
that the damage calculated at this stage can not be taken as the real structure 
damage because the signal can not be taken as a wholly representative sample of 
the structural response.
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This phenomenon is shown more clearly in Figure 5.7, where two rainflow
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cycle PDF’s from simulated signals are plotted with the rainflow cycle PDF from 
the original signal MS-1 y27d. The simulated signals use the spectrum of y27d 
so that they keep the same frequency characteristics with the original signal, 
although one of them uses a 15.625Hz low pass filter. It can be seen from this 
figure that ais the signals become longer (by simulation), the rainflow cycle PDF’s 
keep the same shape but become smoother. Then the situation in Figure 5.6 can 
be expected to have a significant improvement.

01 _

Simulated signal without filter

•H 01 m * Simulated signal with filter

-

H
■H

-

Original signal

°  0.00 0.03 0.07 0.10 0.13 0.17 0.21
C y c l e  r a n g e  ( l O e 3 )

Figure 5.7: Rainflow cycle P D F ’s of  simulated long signal

When the low pass filter is used, many small cycles produced by the high 
frequency noise are removed. This makes the middle and high range cycles have 
a relatively higher probability.

The situation for the Howden data shown in Figure 5.8 and 5.9 is quite differ­
ent. The flapwise result includes several jumps to reach their final values while 
the edgewise results converge from the beginning. The reason for the jumps in 
the flapwise signal is that there exists a nonstationarity in the signal. For the 
edgewise signals, the damage rates are very stable due to the existence of a dom­
inant deterministic component. This can be seen from the rainflow cycle PDF’s 
very clearly.

It is very difficult for any method to deal with a situation where the signal 
is not long enough. If the signal is not long enough for rainflow counting, it is
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probably true that it is not long enough to contain all the frequency information 
for frequency domain analysis. Actually, in general when a FFT is performed on 
the signal, not all the data is used in the calculation unless zeros are added to 
the end of the signal. When windows are used in the calculation, the problem 
is even more complicated because use of windows means that the data in each 
window can be taken as a sample and the length becomes even shorter. Actually, 
the size of window used has a great influence on the frequency domain estimation 
as shown in Figure 5.10.

WEGy27a

&

•Time Signa 
D i r l i k

bOOO 10000 15000 200 0 0  25000

window size

Figure 5.10: W indow size effect: W EG  MS-1 data. y27a

It is therefore very difficult to give any quantitative instruction on the choice of 
sample length when trying to monitor structural response. However, the sampling 
frequency used for acquiring the data does not have to be too high for fatigue 
calculation because the peak-trough sequence is of principal concern for fatigue.

The length problem encounted with the WEG MS-1 data is also important 
for a statistical analysis. If the first 300 seconds of the Howden data is used 
for the stationarity check, it will give a stationary conclusion, which is obviously 
contradictory to the one drawn from the statistical check in the previous chapter. 
This shows that the stationarity check should also be performed on relatively 
longer signals.
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5.3 Effect o f  — curve s lop e

When two rainflow cycle probability density functions are compared with each 
other, it is rarely noticed that the inverse slope of the S —N  curve has a significant 
influence on the fatigue damage estimated from these two functions as in Figure 
5.11. Generally speaking, the closer the two rainflow cycle PD F’s are, the closer 
the damages derived from these two PD F’s will be. In practical computation, 
however, it is impossible to obtain two PDF curves which are exactly the same. 
The difference between these two curves will then produce different damage ratios 
for different S  — N  curve slope b value. The term damage ratio is used here again 
to represent one damage value divided by the other.

Figures 5.11 and 5.12 highlight this variance for two typical WEG MS-1 data 
files. They were simply derived by fixing the rainflow cycle PD F’s and changing 
the value of b in the damage calculation. It is quite interesting to see from Figures 
5.11 and 5.12 that, despite the difference in the PDF curves between the frequency 
domain and the time domain solutions, the fatigue damages estimated will meet 
at two points where the values of 6 are carefully selected. While for other values 
of 6, both over-prediction and under prediction are possible. This is obviously 
caused by the weighted integral in the damage calculation. The importance of 
the difference between the PDF’s from the frequency domain analysis with the 
one from the time domain analysis is actually changing with 6.

A similar investigation on the Howden data has also been performed. Figure 
5.13 and 5.14 show the results for data tape 26 3 meter flapwise and 3m edgewise 
respectively. The result for the 3m flapwise signal shows a similar tendency to 
that which appeared in the WEG MS-1 data. The result for 3m edgewise signal, 
on the other hand, shows a consistent upward tendency. Once again, this is 
because of the dominant deterministic component in the edgewise signal. The 
deterministic component results in cycles being concentrated in a certain range 
and the weighted sum is dominanted by these cycles.

This phenomena suggests that some methods which work well for one kind 
of material may give very poor estimation results for other kinds. The accurate 
prediction of both medium and higher range cycles is very important if a method 
is to be used for different kind of materials. It should also be noted that the term 
of “equivalent stress” should be understood as strictly valid only for the specified 
value of b which is used in its derivation. There is no universal “equivalent stress” 
in random fatigue estimation.
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5.4  S e lec tio n  o f c lip p in g  ra tio

When fatigue life estimation is performed in the time domain, the maximum value 
of the rainflow cycle can be determined eaaily using the difference between the 
highest peak and the lowest trough in the time signal. When a frequency domain 
analysis is performed, the range of the signal is determined from the shape of the 
PDF tail which theoretically goes from —oo to oo for a Gaussian distribution as 
shown in Figure 5.15. If the time series from which the spectrum is calculated 
is available, it is possible to derive the maximum range by referring to the time 
domain,analysis. However this can only make sense in a research environment 
(and probably nonsense if one refers to Figure 4.7 in the previous chapter). A 
practical computation is unable to deal with this infinite range. Thus, a clipping 
point must be selected to set a finite maximum range other than infinity. This 
point is described as the so-called “clipping ratio” , which is defined as the ratio 
of the maximum value with the root mean square. That is,

Â rnox

The maximum range is 2p<7 because of symmetry.
The principle behind the selection of clipping ratio is that it should include 

most of the probability inside the range determined. However, the important 
question is what level of probability can be truncated. Some methods used for 
fatigue estimation, such as Dirlik’s empirical formula and Bishop’s solution, can 
theoretically extend to infinity. A problem for practical computation is therefore 
to select a suitable cutoff point.

The relationship between damage rate and clipping ratio can be examined to 
answer this question. Figure 5.16, 5.17 and 5.18 show the typical results of this 
relationships when Dirlik’s formula is used. The examination of the WEG MS-1 
and the Howden data shows that the fatigue damage rate generally converges to 
the stable value for a clipping ratio range between Ĵ .O and 6.0. So, selecting a 
clipping ratio of 6.0 would be enough from the point of view of fatigue estimation. 
This conclusion is also suitable for Bishop’s theoretical solution.

5.5 E ffect o f  d eterm in istic  co m p o n en ts

Deterministic components play a very important part in wind turbine blade fa­
tigue. As seen from the analysis of the Howden data, the deterministic compo­
nent constitutes a separate peak in the rainflow cycle probability density function,
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which can not be predicted by any of the present methods. The fatigue damage 
results estimated using these methods can not, in general, be consistent with the 
time domain analysis even if it does sometimes by chance.

Chapter 8 deals with this problem in detail.

5.6 D iscu ssio n

Some problems which were discovered in the fatigue analysis on monitored struc­
tural response signals in previous chapters were examined in detail in this chapter. 
Some parameters associated with the use of present methods were investigated. 
This investigation provides a useful guide for the use of present methods in fatigue 
damage estimations.

Many problems were investigated for the first time. This will definitely help 
to ensure present frequency domain tools are used practically in engineering de­
sign. Some parameters, such as clipping ratio, can now be determined based on 
frequency domain information for the first time. The investigation of this pa­
rameter for fatigue analysis can not give a criterion on how the cutoff frequency 
should be selected but can raise its importance. The selection of this parameter 
should be baaed on the results from a structural random vibration analysis, that 
is, to separate the noise based on the analysis of structural response. The length 
requirement problem is mainly of concern in a time domain analysis. The analysis 
in this chapter provides some guidance on the monitoring of structural response 
histories. As with any other statistical problem, sample length is important in the 
analysis. As for the analysis on the effect of 5  — curve slope, the importance 
of an accurate prediction of the medium and high range cycles is raised again.
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C hapter 6 

Influence o f M ean Stress

6.1 In trod u ction

It WcLS shown in a previous chapter that both the Dirlik and Bishop methods 
produce very good results when the data is reasonably Gaussian, stationary and 
random as long as mean stress effects are ignored. For welded structures, mean 
stress usually has little influence on crack propagation because of the existence of 
residual stresses. However, wood epoxy and grp wind turbine blades have been 
shown to be very fatigue sensitive to mean stress [61]. The crack growth of some 
low alloy steels haa also been found to be strongly influenced by mean stress [62].

Quite a few fracture mechanics models are proposed for considering mean 
stress in the analysis of crack growth. Fracture mechanics will not be discussed 
here since it has not been applied to the fatigue analysis of random load cases 
using frequency domain techniques.

Of all the spectral fatigue analysis methods, only Bishop’s theoretical solution 
is capable of being adapted to take the mean stress into account because this 
method is decomposable whilst the other methods are generally given in closed 
forms which are impossible to separate.

It is noted that, by the very definition of rainflow cycles, they are made up of 
sections of signal which may be separated by a large time interval. The concept of 
the mean stress of a rainflow cycle then becomes rather abstract. However, since 
a primary characteristic of a rainflow cycle is a stress-strain hysteresis loop, the 
mean stress value can be associated with the mean of the loop in the stress-strain 
plane as shown in Figure 6.1.

Any frequency domain analysis such as the theoretical solution being described 
here, is generally performed without reference to the global mean of the stochastic 
process since its value is not part of the generally supplied spectrum. Since the 
so-called “mean stress” generally refers to the mean level of the cycle relative 
to the zero mean, the frequency domain analysis can only provide the relative
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mean of each cycle when referenced to the global mean level. At the design stage, 
however, the global mean information is usually known cis part of the structural 
analysis. This global mean value and information about the relative mean level 
of each cycle will together, decide the actual mean value of the cycle. At the 
research stage, if only the spectrum is supplied, it is impossible to determine the 
actual mean value of each cycle [4].

Strain

Figure 6.1: Rainflow cycles with different mean

6.2 G ood m an  rela tion sh ip

Laboratory experiments to obtain S-N  curves have also been conducted on dif­
ferent mean stress levels. Figure 6.2 shows how the S-N  curve might change with 
varying mean stress level. As the tensile mean stress increases, generally the 
fatigue life reduces [10].

This influence has, up to now, not been included in any frequency domain 
approach. The relationship between fatigue damage (or life) and the mean stress 
and cycle range can be determined by taking a slice through Figure 6.2, the result 
of which is shown in Figure 6.3.

If this curve is taken as linear, the so-called Goodman relationship can be
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obtained as given below [2]:

1 ^  +  1 =- =  1.0
*̂aO ^ult

(6.1)

in which, Sao is the cycle range with zero mean equivalent to cycle range Sa with 
mean 5m, Suit is the ultimate tensile stress of the material.

Some other formulae for considering mean stress have been proposed. The 
non-linear Gerber relationship [2], for instance, is another one expressed as

^ + ( ^ r  =  i

If the yield stress, instead of the ultimate tensile stress is used, the relationship 
proposed by Soderbergr in 1930 is obtained which is expressed as:

*̂oO *̂ j/
All these relationships are presented in Figure 6.4. The Goodman relationship 

is suitable for smooth polished specimens and is widely accepted. It is also used 
for all the analysis in this chapter.

Sa
Sao

Gerber

Goodman

Soderberg

S, Sulty

Figure 6.4: G oodm an rela tionship

The Goodman relationship can be put into another form as:

c _5oo — (i-a) (6.2)

This formula provides a way of converting any stress cycle with a non zero 
mean into a stress cycle with a zero mean which will produce the same fatigue 
damage. Using this conversion, the S-IV curves, which are generally applied to 
constant amplitude cycles with zero mean stress, can then be used in the analysis 
without modification.
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6.3 T h eoretica l so lu tio n  for G au ssian  signals

Before proceeding to consider mean stresses, the theoretical method developed by 
Dr. Bishop [1] [35] will be introduced first. This is because it is the best choice 
for connecting the mean value with each cycle range. The three events which 
make up Bishop’s theoretical solution are considered separately in a way which 
allows modification. The mean value of each cycle can be noted down when its 
probability is computed. Dirlik’s solution has a good overall accuracy but it is 
given as a closed form and so is impossible to reform.

6.3.1 Markov Process  

Stochastic Process

Random variables or random vectors are adequate for describing results of ran­
dom experiments which assume scalar or vector values in a given trial. In some 
situations, however, the outcomes of a random experiment are represented by 
functions. These outcomes are described by a random function, also known as a 
stochastic process. It is generally defined by a family of joint distribution func­
tions of a set of random variables, which are actually member functions of the 
process from a finite time set.

Markov processes

A Markov process is one kind of stochastic processes classified by its memory 
property. Its formal definition is as follows.

Definition. A stochastic process X(t), t ^  T, is called a Markov process if for 

every n and for < 2̂ < ' ' < L  in T  we have the conditional PDF as

l ^ n —1 > in—1 j ^ n —2 j ^ n —2> | ^ n —1 1 ^ n —1 )

if the indicated density functions exist.
It can be seen that the Markov process is simply a stochastic process which 

can only “remember” its last position. In other words, only the present position 
is important in deciding where to go next in the process.

6.3.2 Basic form ulation o f the theoretical solution

The Theoretical solution assumes the peak-trough and trough-peak transitions 
of the time series can be represented by a Markov chain. From the associated
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definition of a rainflow cycle [1], each cycle can be taken as three separate events 
occurring together. The probabilities of the three events then can be calculated 
separately. The probability for each event is actually the long run transition 
probability from one level to another level. If the process is Markovian, this 
probability can be calculated by Markov chain theory.

As shown in Figure 6.5, if the probability of being at a particular peak is 
defined as p(ip) and a rainflow range of value h=ip-kp is defined, where ip and 
kp are the levels at point 1 and 2 respectively, the expression for the probability 
density function of a rainflow range value h for any peak value can be found by 
summing over all values of ip:

2 0 ° °

Pr r W  = - tt -  h)Y2(ip, ip -  h)Y2(ip, ip -  h)p{ip) (6.3)
t p = / i + i

for h=l  to ip-1 where Y\{ip, ip—h) is the conditional probability of event given 
a peak with height ip, Y2 {ip, ip—h) is the conditional probability of event Y2 , given 
a peak with height ip, and Yz[ip,ip — h) is the conditional probability of event 
I 3, given a trough with height ip-h. The parameter dh represents the interval 
width used to divide the total signal stress range. The value 2.0 comes from the 
fact that for a full set of events, rainflow ranges occurring with event Y\ on the 
right hand side need to be considered. In other words, for every configuration 
of Y\, Y2 , and I 3 being considered, there is an equally likely configuration of 
the signal which is a reflection of the signal about t=0. Therefore the problem 
of obtaining a theoretical derivation to the rainflow range has become one of 
obtaining Yi(ip, ip — h), F^(2p, ip — h), Y^{ip, ip — h) and p(ip).

Two areas of theory will be required for this. A suitable method is required 
to model the dependence between adjacent extremes, then a theory is required to 
extend this to model the dependence between extremes which are not adjacent. 
For the first an expression by Kowalewski [63] is used and a Markov Chain model 
is used for the second.

6.3.3 Markov m odel for rainflow cycle

Markov chain models are widely used in random fatigue analysis, both for crack 
growth [64] and damage accumulation calculations [65]. However, this Bishop’s 
model was the first time they were used for modelling rainflow cycles in a random 
response process. According to the definition of rainflow cycles, the three events 
needed to constitute a cycle can be modelled as in Figure 6.6. All the necessary 
information required to define the rainflow cycle is given by this figure. It is a

8 2



point 3
p o i n t  1 (cuireiU peak poaition)
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from point 1 to point 2

point 2
Lowest trough of rainflow cyclepoint 4

-ve

Figure 6.5: Illustration of events  I 2 , ^ 3

Markov chain model with absorption states. A description of this model is given
below.

State 1 (level kp). This is an absorption state into which transitions can 
occur from any level between ip and ip-h, plus ip itself.

State 2 (all levels below kp). This is also an absorption state into which 
transitions can occur from any level between ip and ip-h, plus ip itself.

State 3 (all levels above ip). This is an absorption state into which transi­
tions can occur from any level between ip and ip-h. Transitions from 
level ip can not occur because a peak given trough transition can only 
originate from a trough at some level below it, and a trough at ip can 
only occur after a trough given peak transition from above. Such a 
transition is invalid. State 3 has an unusual feature. We are just in­
terested in the probability of a set of transitions which originate from 
ip and eventually end up in either absorption state 1 or 2 without 
returning to level ip or above. Therefore, entries into level ip have 
to be transferred into state 3. This ensures that any transitions via 
level ip are prevented from accumulating to the required probability 
of absorption into state 1 or 2.

State 4 (levels between ip and kp). This is an transient state. Transitions 
to any level in this state can only occur from some other level within
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absorption state 3 exit only state 5

transient state 4

absorption state 2absorption state 1

Figure 6.6: M arkov m odel  for rainûow cycle

state 4, with the exception of level ip̂  for which the initial trough given 
peak transition is the only possible non zero transition probability into 
state 4 from outside it.

State 5 (level ip). As explained above the only non zero transition prob­
ability out of this state is the initial trough given peak step. All 
transitions back into this state are transferred to state 3 in order to 
make subsequent transition probabilities from this state zero. Hence 
it is an entry only state.

6.3.4 In itial transition and K owalewski formula

Before the long run probabilities defined by Figure 6.6 can be evaluated a one-step 
transition matrix is set up to model the dependency between adjacent extremes. 
This adjacent extremes problem can be solved by employing the Kowalewski 
approximate expression [63], which is valid only for stationary Gaussian signals 
and is expressed in terms of the zeroth,second and fourth moments of the PSD 
about the zero frequency axis.

Tnin,max
1

4 m o 7 ^  ( 2 7 r m o ( l  — 7 ^ ) ) ^ / ^

a ^  + a ^ + 2 a i a 2 ( 2 - f ^ —1)  

8 mo 7̂ (7̂ -1) (6.4)
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where ai is the trough level and a 2 is the peak level, m„ is the nth moment of the 
PSD function and 7 = m 2 ly/m^iru is the irregularity factor. Figure 6.7 shows 
one example of this function.

3

Figure 6.7: Illustration o f  K o w a lew sk i’s expression.

This formula should be taken c l s  two parts: being a  peak given trough part 
and a trough given peak part. Since the signal is considered to be Gaussian, 
symmetry about the diagonal exists. It can be illustrated in matrix form as in 
Figure 6.8.

The corresponding parts of the Markov model are shown in Figure 6.9. As 
state 5 is entry only, column ip in the matrix is transferred into column ip-hl.

According to Markov chain theory [66], the transition matrix of the absorption 
problem always has the form

C
P = {Ptj} = j,

(6.5)

in which,
P is the transition matrix.
T denotes the transient states 
C denotes the absorption states,
R is the probability of transition from T  to C,
Q is the transition probability with T,
I  is the transition probability within C, which is a unit matrix. 
0  is the transition probability out of C, which is a null matrix.
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This form is consistent with the model used here. The initial transition matrix 
can be obtained by multiplying the peak given trough and trough given peak 
matrices together. These are shown in Figure 6.10 and (b) in its full and 
condensed form. The outside part of the absorption states are removed in the 
condensed form.

trough position

CN <N
^  ^  ^  A . A .

I
I

State 2 1  

state 2 2  

state 1 
state 4 1 

state 4 2  

state 4 3  

state 4 4  

state 4  5 

state 4 a 
state 5 
state 3 1 

state 3 2 

state 33 
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state 3 5 
state 3 6

1
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(a). Model matrix in two-step transient matrix
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(b). Condensed form (c). "long ran" distribution

Figure 6.10: Transition matrix and its equilibrium distribution
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6.3.5 Long run probability

Once the initial transition matrix which models the conditions of Figure 6.6 has 
been set up, some appropriate method can be used to calculate the equilibrium 
distribution probability, i.e. the “long run” probability that the signal starts 
from ip and is absorbed into kp with any number of transitions in between. From 
the initial transition matrix in Equation 6.5, the n-step transition matrix can be 
expressed as

I  O

The ‘distribution will be in equilibrium after n becomes large enough, that is.

(6 .6)

n  =  lim P" =n—̂oo

o

$=1
(6.7)

As n tends to infinity, the limit of will become null. At the same time, the 
series {0*} will be convergent. Let the series converge to F, then

n  =  lim P ” =
n —.oo

/  o  
V  o (6.8)

Because PIT =  II, we have

1 O 
R Q

I  0  
V o

I  o  
R - ^ Q V  O

/ 0
V 0

So,
R - { . Q V = V  

The equilibrium distribution V  satisfies

{ I - Q ) V  = R

(6.9)

(6.10)

or

V  = ( I - Q ) - ^ R  (6.11)

The long run probability can be obtained by solving a linear equation set. In 
practical computation, this can also be achieved by squaring and resquaring the 
matrix enough times until the transient part becomes empty.

Since a Gaussian stationary process is considered, there are some symmetric 
relationships which can be used to simplify the computation as shown in Figure 
6 . 11 .
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SIGNAL TRANSITION TURNING POINT MATRIX

maxmum value of signal 3132

minimum value of signal

Prob(l)=Prob(3) for Gaussian signal, i.e.

Prob(l)=Prob(5) for stationary signal, i.e.

Figure 6.11: The assum ption o f  norm ali ty  and s ta t io n a r i ty

Then if / j  is the “long run” probability of going to level i from level j, the 
three probabilities needed can be obtained as:

and by vertical symmetry

yi = n , + f i .

^  f  tp—ip+h f  tp—ip+h

(6 .12)

(6.13)

(6.14)

where tp is the value twice the mean signal level, state 1* is level (tp-ip) and state 
2* is made up of levels below tp-ip.

6.4  M od ifica tion  for con sid erin g  th e  m ean  stress

The theoretical solution for Gaussian stress histories can be extended to consider 
the influence of mean stress. In order to do this, the solution was redefined as 
follows:

2 0 ° °

p(S, ^rn) = - ^  E  yi(ip, ip -  S)Y2{ip, ip -  S)Y3{ip, ip -  S)p(ip) (6.15)
:p=5+l

where Sm is the mean stress value defined by (ip-hkp)/2.
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Figure 6.12: Example illustrating the m ethod  of evaluating P r r ( 3 )  for a 16 level process

Figure 6.12 shows an example of evaluating P r r { 3 )  for a 16 level process. 
When the mean stress is taken into account, the probability of these cycles are 
grouped according to their ranges as well as mean levels.

All the parameters needed to compute Equation 6.15 are set out in the pre­
vious section.

It should be noted that the mean value included in this formula is just the 
relative mean of each cycle relative to the global average of the process. It is not 
possible to consider the absolute mean value in a frequency domain analysis.

6.5 A nalysis o f W E G  data includ ing m ean  stress

An analysis considering mean stress was performed in both the time and frequency 
domains for the WEG MS-1 data. A typical joint PDF is shown in Figure 6.13. 
As has been discussed earlier, the WEG data is not long enough to do such an 
analysis. This situation becomes worse when the cycles are grouped with different 
mean values because the limited number of cycles have to be distributed in a 
mean-range plane rather than along a range axis only. It is therefore very difficult 
to obtain a smooth PDF curve. It is unreasonable to expect the theoretical 
solution to give very good agreement in this situation.

The ultimate tensile stress of the material for the WEG MS-1 data was un­
known for this analysis. It was therefore difficult to assess the actual influence of 
mean stress. In our analysis, the ratio k between the ultimate tensile stress and 
maximum stress range in the signal was assumed to be at different levels for the 
24 load cases. Table 6.1 shows the results for k at 5, 10, 20 and 30. The dam-
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age values are normalised by the damage calculated directly from the whole time 
signal without considering the mean stress effect. This data shows that there is 
a certain amount of scatter at all the values of k. This scatter is also generally 
found when the load cases are analysed whilst ignoring mean stress effects (see 
[50]).

Table 6.1: Fatigue dam age ratio  for W E G  MS~1 da ta  with mean s tress

data Suit/Smax (time dom.) (frec[. doiii.)
5 10 20 30 5 10 20 30

y l2a
yl9a
y27a
y35a

3.10
2.81
3.06
3.33

1.87
1.53
1.38
1.37

1.98
1.69
1.69 
1.87

1.61
1.47
1.69
1.95

3.88
3.19
3.20 
1.95

2.42
1.98
1.97
1.19

2.32
1.90
1.90 
1.15

1.81
1.49
1.50 
0.92

y l2b
yl9b
y27b
y35b

2.49
2.50 
2.70 
3.31

1.40
1.30 
1.32
1.30

1.50
1.42
1.49
1.73

1.36
1.37 
1.51 
1.87

1.38
1.31
1.19
1.11

0.89
0.85
0.77
0.70

0.82
0.77
0.71
0.66

0.63
0.59
0.54
0.51

y l2c
yl9c
y27c
y35c

2.58
2.61
2.54
2.44

1.52 
1.41
1.53 
1.52

1.51 
1.41
1.51 
1.49

1.16
1.30
1.17
1.23

1.63
1.46
1.22
1.18

1.01
0.91
0.76
0.74

0.97
0.87
0.73
0.70

0.76
0.68
0.57
0.55

y l2d
yl9d
y27d
y35d

2.74
3.56
3.35
2.58

1.52
1.76
1.82
1.47

1.53
1.97
1.97
1.54

1.44
1.60
1.40
1.32

2.59
2.57
2.32
2.29

1.65
1.64
1.47
1.41

1.55
1.53
1.39
1.36

1.19
1.18
1.07
1.07

y l2e
yl9e
y27e
y35e

2.51
3.57
1.75
3.61

1.41
1.78
0.99
1.49

1.51
1.95
0.92
2.06

1.35
1.69
1.00
2.09

2.00
2.62
2.08
2.52

1.24
1.63
1.31
1.58

1.19
1.56
1.24
1.50

0.94
1.22
0.96
1.17

y l2f
yl9f
y27f
y35f

2.96
2.30
3.34
2.62

1.72
1.22
1.70
1.55

1.72
1.31
1.79
1.71

1.41
1.33
1.58
1.49

2.84
2.46
3.37
2.99

1.79
1.55
2.12
1.90

1.70
1.47
2.01
1.79

1.32
1.14
1.56
1.38

91



2 5E-

20E-

V  15E-

lOE-

5E-

25

(a). Time domain analysis

(b). Frequency domain analysis

Figure 6.13: The jo in t  P D F  o f  rainflow range and mean from y 2 7 a

9 2



6 .6  A n alysis  o f  H ow d en  d a ta  in clu d in g  m ean  
stress

As mentioned earlier, the stress history of the Howden data is not given directly. 
Instead, a time series of bending moments at each section is given. Thus, rainflow 
cycle counting on such time signals will just give the rainflow cycle of bending 
moments at the sections instead of stress at the hot spots. When mean stress is 
considered through a Goodman type relationship in this situation, the ultimate 
tensile stress needs to be changed to ultimate bending moments at each corre­
sponding section. This is allowed again because only the ratio between the mean 
value (stress or moment) and ultimate tensile value is important. Both ratios are 
actually identical. From the Goodman relationship, this ratio, 1/(1 — is
acting just as a magnification factor to the cycle ranged Sa with mean 5m- Since 
the ratios remain unchanged, the magnification factor also remains unchanged. 
The ultimate bending moments used for the Howden data are listed in Table 6.2.

Table 6.2: U lt im a te  bending m o m e n ts  o f  Howden data

Location CéLse 1 b=8 case 2 b=12
3.0 325.5 452.9 538.1 902.9

8.09 170.3 166.1 277.3 329.5
13.04 40.52 31.97 64.92 62.47

Once again, rainflow counting including the mean in both the time and fre­
quency domains using the modified theoretical solution was performed on the 
Howden data. Typical joint PD F’s are shown in Figure 6.14 and 6.15 for both 
flapwise and edgewise respectively. It can be seen from the edgewise rainflow cy­
cle PD F’s that, because of the existence of a dominant deterministic component, 
the PDF has two finite sections in the time domain. However, the frequency do­
main analysis gives a PDF which is quite smooth. Generally speaking, these two 
different approaches will not be in agreement. This is because for the edgewise 
signal, as explained earlier, the assumption of randomness no longer holds.

The fatigue damage rates from both the time and frequency domain analy­
sis are shown in Tables 6.3 and 6.4 for inverse S-N  curve slope b=8 and h=12 
respectively. All the damage rates are normalised by the corresponding damage 
rate without considering the mean stress effect. Despite the difference between 
the time domain and frequency domain analysis, it is very encouraging that the
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frequency domain results change quite consistently with the time domain results. 
The prediction from the frequency domain analysis is generally in good agreement 
with the time domain analysis [67].

Table 6.3: Fatigue dam age ratio o f  Howden da ta  with mean h=8.0

Location tape 18 tape 26 tape 27 tape 30
time freq. time freq. time freq. time freq.

3m flap 3.910 4.394 4.680 4.554 3.781 3.712 3.029 3.090
3m edge 1.585 1.486 1.103 1.093 1.129 1.128 1.076 0.873
8m flap 2.234 2.412 2.281 2.583 2.059 1.937 2.155 2.248
8m edge 2.791 2.751 1.053 1.040 1.068 1.068 1.031 1.017
13m flap 1.394 1.443 1.080 1.225 1.010 0.973 1.314 1.496
13m edge 1.639 1.609 1.018 1.000 1.000 0.973 1.045 1.025

Table 6.4: Fatigue dam age ratio o f  Howden da ta  with mean b= 1 2 .0

Location tape 18 tape 26 tape 27 tape 30
time freq. time freq. time freq. time freq.

3m flap 35.89 52.16 65.21 57.93 43.75 32.37 17.25 19.37
3m edge 4.13 3.94 1.35 1.35 1.44 1.49 1.25 1.05
8m flap 7.53 9.48 7.38 11.39 7.23 5.36 6.63 7.86
8m edge 26.46 26.20 1.27 1.16 1.22 1.26 1.09 1.12
13m flap 2.18 2.48 1.16 1.66 1.02 0.95 1.72 2.71
13m edge 4.49 4.39 1.01 1.02 1.00 0.95 1.15 1.10

6 .7  D iscu ssion

For the first time, a theoretical method has been developed to predict both the 
rainflow range content and the corresponding cycle mean information from fre­
quency domain statistics. The new method has been applied to data which is 
approximately Gaussian, stationary and random and the results obtained show 
very good agreement with the corresponding time domain result which is used as 
a reference value. Results for the Howden data are less good, as expected, because 
of the poor quality of the data in terms of it being non-Gaussian, nonstationary 
and not purely random.
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C hapter 7 

Fatigue analysis for 
N on-G aussian response histories

7.1 In trod u ction

Up to now, the fatigue analysis of stochastic stress histories has focused on sit­
uations where the random process is Gaussian. For most engineering problems, 
assuming the structural response to be Gaussian is reasonable, according to the 
central limit theorem. However, if structural nonlinearity is an issue, the response 
may not then conform to the Gaussian assumption as we have seen from the statis­
tical analysis of the Howden HWP330 data. Some other response measurements 
also reveal the same non-normality [68].

The most difficult problem for non-Gaussian signals is the expression for their 
probability density functions. Of course it is known that only one parameter, the 
root mean square, is needed for a Gaussian distribution given that the mean value 
is zero. This is calculated from the second order central moment of the signal, 
or the zeroth order moment of its power spectral density function. For a non- 
Gaussian signal there is no universal expression for its probability distribution nor 
for the relevant frequency domain information. Some techniques, such as Hermite 
series, or MacLaurin series, have been employed to express the probability density 
functions. However, they all have their disadvantages.

Most of the present methods, as we have seen in previous chapters, are unable 
to deal with the non-Gaussian problem. A method based on Bishop’s theoretical 
method using Markov chain theory is presented in this chapter. It can be used for 
all kinds of non-Gaussian distributions aa long aa the peak to trough and trough 
to peak transition matrices are known. This is often the case when using, for 
instance, standardised load sequences such as FALSTAFF.
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7.2 M ath em atica l d escr ip tio n  o f  n on -G au ssian  
variables

There is no doubt that a random variable is described optimally in terms of its 
probability density functions. However, this form of description is not available 
for some situations, for instance, with experimental data. For these practical 
cases, statistical methods can only provide a limited amount of information such 
as the statistical moments (i.e. mean,variance, skewness etc). This information 
may be utilised to approximate the unknown PDF in closed form. Generally, 
such am approximation can not be unique since a PDF is defined by infinitely 
many statistical moments. Additional uncertainties about the PDF arise because 
of limited confidence (in a statistical sense) in these statistical moments because 
of the short sample lengths used for the calculation.

7.2.1 C haracteristic functions

As discussed in Chapter 2, the nth order moment of a random variable x is defined 
as[40],

a„ =  E { X ^ }  =  f  x^p{x)dx
J— OO

where p(x) is the probability density function (PDF).
When the moments are taken about the mean x, the central moments are 

defined as

/OO _

(x -  x)^p{x)dx
-O O

The characteristic function is defined as

(j>(u) = =  r  e‘“ p(x)dx (7.1)
J — OO

Thus, the PDF is obtained by applying the Fourier transformation to the 
characteristic function.

P(a;) =  ^  e~'^^<l>(u)du (7.2)

The characteristic function can be expanded as MacLaurin series as follows

= <̂ (0) +  (f)'(0)u +  <̂”( 0 ) ^  +  ... =  ^  ^ (m )^  +  0 (u ”) (7.3)
 ̂ j=o 7 .

From Equation 7.1,

<^W(0) =  i" r  x"p(x)dx =
J — 0 0
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Equation 7.2 can be taken as the universal expression for the probability 
density functions. Theoretically, infinite order moments are needed to express 
the PDF. This makes the expression quite difficult to use. There is no closed 

form expression which can be derived.

7.2.2 G ram-Char lier Expansion

Several types of expansion have been developed in the past [69], one of the most 
convenient, in term of computational efficiency, is the Gram-Charlier expansion. 
In this case, the PDF p(x) is approximated by

p(x) = (^(x)[l +  2  ^ f f k ( x ) ]  (7.4)
k=3

f f t (x )  =  ( -1 )  “ p ( y y ) ]  (* =  0 ,1 ,...)

is the Hermite series.
In the above equation, < (̂x) denotes the normal distribution with given mean 

and variance, the coefficients Ck are determined from the higher statistical mo­
ments and Hk(x) denotes the Hermite polynomials of order k. Since these poly­
nomials are orthogonal with respect to the normal density as weighting function 
the lower order statistical moments are not influenced by adding additional terms 
in the series 7.4. This means that, for instance, normalisation is not affected by 
adding additional terms which, in turn, implies that in some regions p(x) may 
attain negative values. It should therefore be treated quite carefully.

There is another approach based on the fact that for Gaussian variables the 
cumulants of order > 2 vanish. It is therefore quite reasonable to define non­
normal properties in terms of higher order cumulants instead of moments. This 
so-called cumulant neglect closure method assumes that cumulants higher than a 
certain order vanish. It can be shown that this is equivalent to an approximating 
function P{uj) - which is the Fourier transform of p(x) - given by

P{ui) =  e z p ( ^  (7-5)
k=3

where the coefficients Kk follow from the cumulants. The PDF p(x) can be 
obtained by applying an inverse Fourier transformation. However, this is generally 
not feasible in closed form. Upon discretisation and after the FFT the numerical 
values oi p(x) may become negative in some regions. In fact, the results are quite 
similar to those of Equation 7.4.
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7.2.3 Mctximum Entropy M ethod(M E M )

A different concept is introduced by this method, i.e. to leave the random variable 
in as general a form as possible given the known information about the statistical 
moments. Mathematically, this is achieved by maximising the “entropy” Hp of a 
PDF p(x)

/ OO

p(x)\np{x)dx  (7.6)
-OO

subject to the constraints:

E[x^] =  /  x^p(x)dx k = 0
J — OO

n

for all given statistical moments up to order n.
This has a solution of the form

p(x) =  exp ^  Ckx'^ (7.7)
t=o

in which the coefficients Ck are determined from the statistical moments, i.e., 
to satisfy the constraints. It is clearly seen that only positive values can result 
from this expression. A drawback of the method is that for odd n the PDF may 
become unbounded at either x oo or x —oo. Computationally, there is 
the problem that each additional term in the series 7.7 alters all the statistical 
moments. Still the results obtained from this method are in some cases superior 
to those from other methods.

7.3 S ta tis tica l d escr ip tion  o f  n on -G au ssian  pro­
cesses

7.3.1 T im e dom ain

Analogously to the autocorrelation function of a random process x(^), the higher 
moment function, e.g. third correlation (Bi-correlation)

Rxxx( tut 2 , t 3 ) =  E[x{ t i )x{ t 2 )x( t 3 )] (7.8)

or fourth order correlation (Tri-correlation)

Rxxxx(tl,t2, 3̂, 4̂) =  E[x{ti)x(t2)x{t3)x{t4)] (7.9)

can be defined. As usual, E['] in the above equations denotes ensemble aver­
age (mathematical expectation), tk denotes time arguments. If the process is 
stationary, only the time lags are important, so that:

Rxxx{ri,T2 ) =  E[x{t )x{ t  -f Ti)x(t  -f T ]) ]  (7.10)
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and
R x x x x ( t i ,  T2 , Ta) =  E [ x { t ) x ( t  +  T x ) x ( t  +  T2 ) x { t  +  T3 )]  ( 7 . H )

For a zero mean and with zero time lags, the correlation functions yield the 
one time central statistical moments of the random process x { t ) :

/^3,x =  7 2 x x x ( 0 , 0 )  =  ( 7 . 1 2 )

/^4 ,x =  7 ? x x x x ( 0 , 0 , 0 )  =  E [ x ' ^ { t ) ]  ( 7 . 1 3 )

While not giving complete information, these two quantities still provide some 
measure of the non-Gaussian properties of a process x ( t ) .

7.3.2 Frequency dom ain

Analogously to the above time domain approach, multiple Fourier transforms 
can be applied to higher order spectra. The Bi-spectrum S x x x i ^ i ^ ^ i )  and the 
Tri-spectrum ^ r x x x ( w i , W 2 ,W 3 ) are defined by the following Fourier transform:

1 r o o  f - 0 0

5 " x x x (w i,W 2 ) =  —  /  /  R x x x { r i , T 2 ) e ~ ^ ' ^ ^ ' ^ ^ e ~ * ' ^ ^ ' ^ d T i d r 2  ( 7 . 1 4 )
47T j —00 J —00

1 r o o  r o o  r o o

& x x x ( w i , W 2 , W 3 )  =  —  /  /  /  / ? x x x x ( n , T 2 , T 3 ) e
OTT %/—00 %/—00 */—00

(7.15)
The inverse relations are given by:

/ o o  r o o

/  & X X  ( w i , W 2  )  d w i  d w 2  ( 7 . 1 6 )
-00 */ — 00

/ o o  r o o  r o o

/  /  Sxxxx  ( w i , W 2 , W 3 )  T2 T3 d w 3

-00 */ —00 •/— 00
(7.17)

When time lags are zero, the central moments are obtained:

/ o o  r o o

I  *^xxx((.*.^i ) W2 ) d w i  d w 2  ( 7 . 1 8 )
-00 •/ —00

/ OO r o o  r o o

I  j  xxx x  ( ^ 1  ) ^ 2  ) (*̂ 3 ) d w 2  d w 3  ( 7 . 1 9 )
- o o  J — o o  J — o o

The introduction of higher order spectra implies the use of higher order mo­
ments of the process. The problem again is determining to what order the spec­
trum should be computed in order to be able to enough describe the non-Gaussian
process? It is hoped that, the Bi-spectrum and Tri-spectrum will contain the most
important information about the non-Gaussian properties.
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7.4 P resen t m eth od s for n on -G au ssian  sign a l 
fa tigu e an alysis

7.4.1 Transform ation m ethod

Suppose the non-Gaussian response of a structure is denoted as X(t). It can be 
the result of applying a monotonie transfer function, </, to a standard normal 
process, U(t): [70] [71] [72]

X( t )  = g\U{t)\

in which g(u) =  F “ '[$(u)] in terms of the cumulative distribution functions, 
and 0 , of X(t)  and U(t).

The difficulty in using this equation is that, the transfer function g must be 
determined numerically, complicating the subsequent fatigue analysis. And, it is 
not clear how g should be chosen if only certain response moments are available. 
To overcome these difficulties, a Hermite series approximation to g is constructed 
baaed on the known response moments.

X(t)  =  Y .  0‘nH„[U(t)\
n>0

Since x = ao, <Tx = Qi  ̂ the above series can be rearranged into a standardised 
form: _

Xo(t)  S  E Û S 1 I . =  U(t)  +  Y

and
n>2

_ E { H ^ [X S )] }
t n  —  —

n!
in which it assumed that Cn+i =  otn/cTx l{n > 2), so that the 0(e„e„i) terms 
are negligible. Depending on the known moments, a suitable cutoff order can be 
selected as an approximation of g.

A fatigue analysis can then follow this approximation. If X(t)  is narrow-band, 
the peak distribution of U(t) would have a Rayleigh distribution. If U(t) has a 
peak at level 5, X(t)  would have a peak at level g(S) and there would exist a 
cycle g(S)-g(-S). The fatigue damage is then determined by using the moments 
of the signal.

7.4.2 W eakly non-Gaussian approxim ation

The Gram-Charlier approximation of PDF described in the previous section can 
be developed into another expression for calculating the distribution of signal
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peaks. Firstly, the joint probability density function ^ random variable
(  and  ̂ can be calculated. Then, if the response is narrow-banded, the probability 
distribution F (() for the peak values of (  is approximated by [73]:

where N{()  is the average number of crossing of level ^ f  per unit time

^ ( i )  =  /  p{iJ)\é \déV —oo

This approximation assumes that the most-often crossed level is (  =  0. This 
holds for a symmetric response, but is just an approximation for an asymmetric 
response, even with zero mean.

Using this approximation, the probability distribution for the peak values is 
obtained. The peak range distribution is then found to be Fa{i) = -f
F (—̂ )] because of the narrow-band assumption. The fatigue damage is then 
evaluated from the cycle probability density function as before.

7.5 T h eoretica l so lu tion  for n o n -G a u ssia n  stress  
h istory  analysis

7.5.1 S tatistic  aspect

As discussed in previous chapters, two symmetrical properties exist for Gaussian 
stationary signals. One is the symmetry about mean axis the other is about the 
t=0 axis as shown in Figure 6.11. A fatigue analysis for Gaussian response histo­
ries then can make use of this, as in Bishop’s theoretical solution for a Gaussian 
stress history. For the non-Gaussian signals being discussed here, stationarity is 
still assumed. Thus, symmetry about the t=0 axis can still be assumed. Sym­
metry about mean axis, however, does not exist for non-Gaussian signals. The 
Markov model for rainflow cycle computation therefore has to be modified.

7.5.2 T heoretical solution for non-G aussian responses

The theoretical solution described in Section 3.6 and 6.3 assumes the signal is 
stationary and Markovian. When applied to Gaussian response histories, sym­
metry about the mean value axis is used to simplify the Markovian model and 
computation.
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For non-Gaussian response histories, this symmetry does not exist. However, 
the transition from peak to trough and from trough to peak of the process can 
still be taken as a Markov chain and thus the probability density can still be 
calculated as before. That is,

P R R { h )  = ‘̂  ( P -  h ) Y 2 { i p , i p -  h ) Y 3 { i p , i p -  h)p(ip)  (7.20)
ip=k+i

Event Yi and representing transitions to ip from kp and below, are the same 
as before, and the procedure for its probability calculation remains unchanged. 
The probability calculation for events I 3, however, is different. If the signal is 
turned upside down, that is, every peak becomes a trough and every trough 
become a peak, the original model can then be used to derive the probability of 
event Y3.  That is, the probability of event Y3 can be calculated using the same 
procedure as Y\ with the initial transition matrices transposed.

Figure 7.2 shows one example based on such a calculation. The turning point 
matrix is a combination of two matrices from the Kowalewski formula with dif­
ferent spectral moments. The peak to trough part is based on moments group
(a) below while the trough to peak part is based on moments group (b). The 
matrix is plotted in Figure 7.1.

• (a) mo = 0.405986, m2 = 122.708, = 74833.9, 7  = 0.703993

• (a) mo = 0.405254, m2 =  122.959, m^ =  202541.0, 7  = 0.429198

Figure 7.1: Non-Gaussian transition probab il i ty  m atrix

The result obtained by using this new theoretical solution for a non-Gaussian 
transition matrix is plotted in Figure 7.2 along with the result obtained by ap­
plying the original theoretical solution. The result from a peak-trough sequence
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regeneration using this transition matrix is also shown. If the simulation result 
is taken as a reference for other solutions to compare with, it is clear that the 
solution without the Gaussian assumption works much better than the one with 
Gaussian assumption. In other words, the non-Gaussian theoretical solution does 
take the non-Gaussian property in the transition matrix into account.

theoretical solution with 
Gaussian assumption

theoretical solution based on 
non-Gaussian transition matrix

peak-trough series simulation 
based on turning point matrix

cycle range

Figure 7.2: Rainüow cycle P D F ’s from non-Gaussian transition m atrix

The difficulty which remains is that currently there is no suitable non-Gaussian 

replacement for the one-step Gaussian Kowalewski transition formula. And, the 

peak number in unit time is also another parameter not known because the Gaus­
sian formula is no longer valid. But once such formulae are available, the com­
plete problem would be solved. However, the problem with the representation of 
a non-Gaussian process arises again. Since the properties of a non-Gaussian pro­
cess need to be expressed by the high order moments, then how can the spectrum 
provide such information? Although Bi-spectra and Tri-spectra provide some of 
this information it is difficult to say how much information is retained in such 

spectra. Furthermore, such spectra are quite difficult to derive.
Perhaps then, it is advisable to abort the search for a universal solution for 

non-Gaussian processes. Since there are so many kinds of probability distributions 

which are non-Gaussian (since the Gaussian distribution is just one special case) it
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is practically impossible to deal with all of them together. Therefore, the possible 
approach is to assume the suitable distribution functions of the response. The 
spectra can then be employed to determined the parameters in these distribution 
functions.

7.6 P eak -trou gh  series regen era tion

Because of the difficulties which arise in the theoretical solution for non-Gaussian 
response histories, signal or peak-trough regeneration is usually adopted instead. 
The methodology used for Standardised Load Sequence regeneration is therefore 
examined here [74].

7.6.1 Transition m atrix

Modern structural fatigue laboratories are usually equipped with computer-controlled 
servohydraulic machines. A variable amplitude fatigue experiment can then easily 
be performed using complicated loading histories. One problem which arises with 
such tests is, if several experiments are conducted with different loading histories 
in different laboratories, the results are difficult to compare. To overcome this 
difficulty, standardised load sequences have been developed, such as FALSTAFF 
for aircraft [75] [76], WASH for offshore structures [77], etc. Generally, the load 
sequences are stored as a peak trough turning point matrix which denotes the 
transition probabilities from peak to trough and from trough to peak [78]. Figure 
7.3 shows the three FALSTAFF transition matrices for three different aircraft 
serving conditions.

The requirements for a standardised load sequence are:
- the choice of the essential parameters of the sequence must be well found;
- the sequence must be realisable in a practicable manner on the test equip­

ment.
The bcLsis of a meaningful standardised load history is either strain or load 

measurements in service, preferably from a number of similar structures. From 
these many measurements, common features can be extracted; that is, their spec­
trum  shapes must be similar. Based on these strain measurements in service, an 
“average” spectrum can then be selected.
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(a). FALSTAFF turning point matrix for service condition type I
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(b). FALSTAFF turning point matrix for service condition type II
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(c). FALSTAFF turning point matrix for service condition type III

Figure 7.3: F A L S T A F F  m at r i ce s
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7.6.2 Load seq u en ce gen eration

To regenerate the load sequence from a transition matrix, a random number 
generator is needed. Nearly all computers nowadays provide an intrinsic function 
such as a pseudo random number generator which has a uniform distribution in 
a given area.

The routine for load sequence generation is then as follows:

(1). Determine the cumulative distribution for each row of the transition matrix, 
as shown in Figure 7.4.

(2). Generate a random number between 1 and the maximum level of signal as 
the start point.

(3). Generate another random number inside the range of the cumulative distri­
bution of the starting row. Take the hit column number as the trajectory 
turning point (next peak or trough).

(4). Repeat procedure 3). until the return period length is reached.

hit in step 5 leads to

starting 
point n =  
step 7 y -  
down /  6

random  ̂
number 4

10

9

1 2  3 4 6 7 8 9 10

hit in step 9 leads to

starting
point

f
random
number

10

9

8

7

6

5

[H random number generator

Figure 7.4: Load sequence regeneration

This method has been applied to the WEG MS-1 data with the transition 
matrices obtained directly from the time histories. Figure 7.5 shows the rainflow
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cycle PDF’s for such a regenerated load sequence, together with the original 
time series from which the transition matrix is extracted. This time series was 
simulated using the turning point matrix of the WEG data y27d time history 
after the noise above 15.625Hz was filtered out. The results here show good 

agreement.

Simulated from transition matrixC o

Original time signal

SI

0 0 .0 0  100 .00  100 .00  
C y c l e  range

Figure 7.5: P D F ’s from regenerated load sequence

7.7 D iscussion

The possibility of employing the theoretical solution for the fatigue analysis of 
non-Gaussian response histories is addressed in this chapter. It was found that 
suitable modifications to the theoretical solution enable it to take account the non­
normality in the fatigue loading history provided that the peak trough transition 

matrix is available. Therefore, the theoretical solution has been extended as 
a universal tool for fatigue analysis of non-Gaussian response histories. The 

difficulty which remains for the overall problem is a suitable expression for the 
peak trough transition matrix.

As shown in Equation 7.2, finite order moments of the signal are never enough 

to represent the probability distribution for any general class of signal. Some 

assumption or approximation must be made in any practical computation. On
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the other hand, as shown in the Rice’s formula for peak rate computation ([40]), 
the joint distribution of the process and its first and second order differential 
processes must be known. This simply means that, the number of peaks in unit 
time of the process is a function of the process moments —  all the moments 
in general non-Gaussian situations. The conclusion therefore is that, there is no 
universal solution for non-Gaussian stochastic processes.

It is quite easy to reach this conclusion using another argument. If all the 
possible probability distributions of the stochastic processes are grouped into 
one set, the Gaussian distribution is just one point in this set. The so-called 
non-Gaussian distribution is the whole probability distribution set including the 
Gaussian distribution. In this sense, the so-called non-Gaussian stochastic process 
is a very wide class of distributions. A universal solution is obviously impossible. 
There is a simple analogy, there exists one unique solution for a linear equation 
but it is impossible to have a universal solution for nonlinear equations.

If a fatigue analysis has to be performed for a non-Gaussian situation, the 
response distribution should be determined first. Some mathematical work based 
on Rice’s formula could be involved to develop a peak-trough and trough-peak 
one step matrix. Then, the theoretical solution could be applied for the fatigue 
analysis. Or alternatively, simulation is another choice. No m atter what method 
is used, we have to remember that, there is no universal solution.
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Chapter 8 

Fatigue analysis for random  
stress histories w ith  

determ inistic com ponents

8.1 B ackground

To date, most of the methods used for random fatigue analysis are based on the 
assumption that the time history is random and Gaussian. For wind turbine 
blades, the stress history resulting from the action of the stochastic wind field is 
definitely random. However, when gravity of the blades is considered, a strong 
deterministic component is superimposed onto the stochastic component. The 
response of the blades therefore contains both a deterministic component caused 
by gravity and a stochastic part caused by wind speed fluctuations. Generally 
speaking, this time history with a strong deterministic component included is no 
longer Gaussian. Thus, the analysis methods based on the Gaussian assumption 
are not valid. The assumption of randomness is also in doubt although this is 
a complex issue. This is because the whole signal is random but, for instance, 
with a strong sine wave superimposed onto the signal the ensemble average is 
not stationary although the temporal one is. In this case we might also say that 
although the signal is stationary it is not ergodic.

From the previous analysis of the Howden data, the existence of a dominant 
deterministic component in the stress time history represents an important prob­
lem for fatigue life estimation in the frequency domain. For the Howden data 
edgewise signals, apart from the low and middle range rainflow cycles, the prob­
ability density functions show a peak in the high range portion, which can not 
be predicted by any existing method using frequency domain techniques. When 
the damage distribution is plotted, this high range peak contributes most to the 
total damage as shown in Figure 8.1.

Although Madsen’s method provided a way of performing such an analysis,
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Figure 8.1: The effect of de term inistic  com ponent in stress history
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it is far from satisfactory. Other work has focused on this problem but failed to 
obtain a feasible design tool [79]. In [79], efforts were made to modify Dirlik’s 
formula (because it works well for Gaussian response histories) by increasing the 
power of 2 in the third term, or by adding a fourth term to the formula. However, 
it was found that changing the third term was not very satisfactory and the work 
of adding the fourth term was not finished.

A method therefore needs to be developed to deal with these situations for a 
more accurate fatigue analysis of wind turbine blades. This chapter presents a 
method to predict the rainflow cycle probability distribution and peak rate for 
such combined stress histories. Due to the complexity of the problem, a simulation 
method is used to develop the analysis toolbox. This toolbox for spectral fatigue 
analysis is presented at the end of this chapter. The methodology is quite straight 
forward as shown in Figure 8.2.

parameters
evaluation

input spectrum

neural network 
regression

combined signal 
toolbox

rainflow counting 
and modelling

Gaussian signal 
simulation

deterministic
component

random signals 
with deterministic 
component

Figure 8.2: The m e th o d o lo g y  used to develop  a com bined signal too lbox  for fatigue  
analysis
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8.2 S im ulation  o f  a stress  h isto ry  w ith  d eter­
m in istic  com p on en ts

8.2.1 Sim ulation o f a stationary G aussian process

When a Fourier transform is performed on a time series, the time domain informa­
tion of the process is transformed into the frequency domain. No information has 
been lost up to this stage and in fact it is quite straightforward to transform back 
to the original time signal. When the power spectral density function is formed 
from the transformed data, however, the phase information is lost. One spectrum 
can therefore be theoretically derived from an infinite number of time signals in 
so far as they contain the same amplitude constitution but different phase in­
formation. In other words, only one spectrum can be derived from a time series 
but a lot of time series can be derived from one spectrum given that the phase 
information is unknown. Since the PSD does not contain all the information from 
the original signals, it is necessary to assume the probability distribution of the 
time series. This assumption generally makes it possible to derive a sample time 
series from a given spectrum.

To simulate a stationary Gaussian process for a given power spectral density 
function, consider a stationary Gaussian process x{t) with zero mean and power 
spectral density 5(u;). The process x{i) could be expressed by the form of the 
spectral representation [80] [81]:

/ O O  . ^

(8 .1)
-O O

where X (u )  is an orthogonal random process with zero mean and

E {d X (u ; ,)d X -{u ^ )]  =  (S
E [\dX {u^) \^ \  =  S { u ) d u  I*' /

The autocorrelation function Rx{t ) of x{t) and x{t -|- r )  is related to the 
spectral density as follows:

fO O

R x{t ) = J  G(u) COS (jjrduj (8.3)

where G{u) = 2S{uj) for w > 0 is the one-sided spectral density function. Since 
ar(f) is a real process. Equation 8.1 can be written as :

r o o

x(t) = / COS Lj tdU{u)smuj tdV(u j)  (8.4)
Jo

where

dU{bJk) =  [2G{uk)Xuk)Yl'^ cos il̂ k (8.5)
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dV{uJk) =  ~[2G{uJk)Au}k)Ÿ^^ smipk

where, '(pk{k =  1,2, • • •) are independent and all have uniform distribution in 

(0,2*].
By substituting Eqn. 8.5 into Eqn. 8.4 and approximating the integral by a 

summation, the simulated random process can be obtained as :

N
^(0 = '^ [2G {uk)A u jkY ^ '^  cos(uk t H- rpk)

k=l
(8.6)

Equation 8.6 actually takes a strip (Figure 8.3) as a harmonic component. 
The amplitude of each component can be evaluated using the Fourier transform 
formula. This is an acceptable approximation if the number of strips used for 
the approximation is large enough to satisfy the condition set by the central limit 
theorem. Some papers have used this technology to simulate Gaussian signals [82]. 
However, it will not be adopted in this thesis because with the inverse Fourier 
method it is easier to guarantee the Gaussian distribution of the simulated signals.

G(CD)

1/2
[2G(û))A(û]

Am

m

Figure 8.3: Harmonic com ponen t from sp ec tru m

In order to do this, the complex inverse Fourier transform is applied to the 
series yj2G(u}k)e*^^. This produces a complex random process expressed as:

N

y { t )  =
k=l

(8.7)

The random process described by Equation 8.6 then becomes the real part of 
Y{ty.

x{t) = y/ÂûRe{Y(t) )  (8.8)

Using this approach, a sample random process for a given power spectral 
density function can be simulated by applying an inverse FFT to the relevant
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PSD. According to the central limit theorem, the process obtained in this way 
has a normal distribution aa long as the phases have a uniform distribution in 
(0, 2x]. It can also be shown that such a simulated process is ergodic irrespective 
of A [̂83]. Thus, a relatively long process can be obtained by putting different 
simulated samples together.

The procedure for simulating a Gaussian stationary time series for a given 
PSD can be set out as follows:

1). Generate a series of random phases •
2). Perform an inverse FFT on

to produce a complex time series

N
Y{t) =

/:=!

3). Take the real part of the time series:

x(t)  =  , / ^ R e ( Y ( t ) )

4). Repeat 1) to 3) until the desired length of time signal is obtained.

8.2.2 Sim ulation of a stress h istory w ith  a determ in istic  
com ponent

Sim ulation of the stochastic stress history

Seventy spectral density functions were selected to simulate the stress time history 
of typical wind turbine blades. These spectra were of two types, smooth and 
rectangular, as shown in Figure 8.4. In this way the PSD’s used for simulation 
covered a very wide range of both irregularity factor and “mean frequency” , as 
shown in Table 8.1 and 8.2 with the first 14 as smooth spectra and the others as 
rectangular ones. The smooth spectra have two peaks which have the analytical 
form:

G ( f )  =  - = = A =
^ 1  +  ( /  -  f<)VQl

Sim ulation of the determ inistic com ponent

The deterministic component can be modelled by a sine wave. The amplitudes of 
the sine waves were selected between 2a and lOcr where a is the root mean square
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Table 8.1: 70 P S D ’s used in stress history simulation (1)

PSD No. / i Qi A 2 A Q2 f c 7
1 32767 98 5 0 0 0 229 0.9235 0.9073
2 23580 90 10 0 0 0 210 0.8684 0.8380
3 22543 82 11 0 0 0 226 0.8124 0.7739
4 21683 74 12 0 0 0 233 0.7559 0.7092
5 20226 65 14 0 0 0 227 0.7004 0.6431

'6 26333 40 5 18444 105 3 242 0.6674 0.5877
7 27019 30 5 20264 104 2 231 0.5984 0.4925
8 29204 32 5 17522 108 2 237 0.5624 0.4712
9 30202 30 5 15101 106 1 245 0.5350 0.4497
10 31527 29 5 10404 114 2 237 0.5040 0.4296
11 29680 25 6 7420 108 2 235 0.5040 0.4310
12 30402 20 6 6081 109 2 225 0.4435 0.3650
13 31091 19 6 0 0 0 236 0.2992 0.2283
14 32741 14 5 0 0 0 222 0.2566 0.1804
15 31800 2 17 3572 123 138 0.1674 0.1030
16 31500 2 17 3984 103 134 0.2178 0.1198
17 31000 2 17 5020 93 132 0.2785 0.1477
18 30000 2 17 5324 69 138 0.3557 0.1964
19 29000 2 17 7045 76 134 0.4286 0.2495
20 28000 2 17 11130 94 124 0.4978 0.3058
21 27000 2 17 12758 95 123 0.5482 0.3546
22 25000 2 17 10873 78 131 0.6170 0.4357
23 23000 2 17 12111 78 131 0.6827 0.5166
24 20000 2 17 13008 74 132 0.7553 0.6184
25 18000 2 17 16330 86 1277 0.8159 0.6999
26 12000 2 17 13984 64 135 0.8659 0.8000
27 8000 2 17 16562 76 131 0.9292 0.8954
28 4000 2 17 30801 101 117 0.9888 0.9815
29 16000 2 15 32660 104 115 0.8829 0.7953
30 15850 2 14 21268 94 122 0.8902 0.8112
31 13700 2 17 18290 87 126 0.8895 0.8168
32 11100 2 22 16289 79 130 0.8889 0.8253
33 7840 2 40 15397 74 132 0.8886 0.8353
34 5440 2 62 14036 63 136 0.8862 0.8438
35 0 0 0 13492 49 138 0.8891 0.8573
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Table 8.2: 70 P S D ’s used in stress history simulation (2)

PSD No. ■̂1 f i Qi A 2 /2 Q2 /c 7
36 23400 2 11 30150 104 115 0.8186 0.6885
37 17020 2 20 23930 100 118 0.8164 0.6963
38 14000 2 30 23130 100 119 0.8132 0.7012
39 12000 2 41 19140 95 123 0.8158 0.7150
40 11000 2 44 14664 80 131 0.8181 0.7274

‘ 41 9700 2 53 13296 71 135 0.8189 0.7381
42 7900 2 48 12158 49 139 0.8192 0.7504
43 24700 2 13 27482 104 115 0.7458 0.5838
44 18000 2 24 22276 101 118 0.7440 0.5977
45 17150 2 25 15081 87 127 0.7511 0.6141
46 15900 2 25 12140 66 135 0.7538 0.6312
47 12500 2 49 12826 80 133 0.7495 0.6377
48 11900 2 42 11156 55 139 0.7511 0.6482
49 0 0 0 10818 2 141 0.7507 0.6546
50 22480 2 19 23677 104 116 0.6706 0.4948
51 22300 2 19 17243 97 121 0.6800 0.5081
52 21700 2 19 12452 80 130 0.6853 0.5221
53 20900 2 19 10955 65 135 0.6863 0.5324
54 19700 2 19 10107 48 139 0.6838 0.5408
55 18700 2 19 9897 38 140 0.6841 0.5478
56 14800 2 31 9714 38 141 0.6816 0.5566
57 22000 2 23 21863 105 116 0.6006 0.4209
58 21000 2 25 14392 96 123 0.6100 0.4364
59 19820 2 28 13036 93 126 0.6111 0.4436
60 17980 2 34 11147 86 131 0.6119 0.4561
61 18000 2 32 9319 66 138 0.6119 0.4605
62 17090 2 32 8605 44 142 0.6132 0.4711
63 16000 2 35 8433 36 143 0.6143 0.4788
64 27200 2 17 13764 98 121 0.5390 0.3448
65 26900 2 17 10222 84 129 0.5459 0.3554
66 26400 2 17 8525 65 136 0.5459 0.3625
67 25980 2 17 8154 65 138 0.5396 0.3557
68 25580 2 17 7849 45 140 0.5458 0.3712
69 25000 2 17 7724 35 141 0.5472 0.3769
70 22200 2 20 7586 21 142 0.5462 0.3855
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Figure 8.4: Shapes o f  spec tra  used

of the time series simulated by inverse FFT. Here we assume a time series with a 
deterministic component of amplitude less than 2a is still Gaussian; and, if the 
amplitude of the deterministic component is bigger than 10<t , the deterministic 
component completely dominates the damage calculation. The frequency of the 
sine waves were selected between 0.5Hz and 3.01/z. If the frequency is lower than 
0.5Hz., it is assumed that the sine wave does not change the statistical property 
of the stochastic signals. If the frequency is above 3.0Hz, it is assumed that there 
would be too many cycles to consider other cycles produced by the stochastic 
components. The cycles produced by the deterministic component should cause 
most of the damage.

If all the assumptions here do not hold, it is hoped that the interpolation of the 
formula will still work well. For most structures, the amplitudes and frequencies 
used here should be able to cover the main area of dynamic response.

Com bination of the stochastic and determ inistic com ponents

The random signal with a deterministic component can be obtained simply by 
superimposing the deterministic component and the random simulated signal. 
One problem involved in mixing these two signals is a suitable choice of the sine 
wave phase.

When trying to combine more than two sine waves together, the phase dif­
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ferences between them might be important from the point of view of fatigue 
damage. Since the phase information in the power spectral density function is 
lost, the phase of the single sine wave should not be important relative to the 
spectrum, given that the phase information in the spectrum is lost and this is not 
important for fatigue analysis. Actually, it Wcts found that phase is irrelevant.

Numerical checks on the influence of the phase have been performed. For each 
check the rainflow cycle PDF’s and the corresponding damage of the signals with 
different phases were calculated. Figure 8.5 shows one example of these rainflow 
cycle PDF’s and the damages against phase with b =  5.0. The rainflow cycle 
PD F’s show very little variance and the damage was within 1%. Similar checks 
were performed for all the spectra. The amplitude of the sine wave added in was 
selected as Qcr and the frequency was selected as 0.5Hz. The phases of the sine 
waves were selected as 0.0, 0.47T, O.Stt, 1.27t and I.Ott. The fatigue damages from 
these simulated signals were calculated for b=5.0, 8.0, and 12.0 respectively. The 
percentage error of the damages against their mean value was then calculated. 
Figure 8.6 presents the average taken from the absolute values of these errors. 
This clearly shows that the errors are less then 1.5%, 2.0% and 2.5% respectively 
for the three S-N  curves selected. It can therefore be concluded that the phases 
of the sine waves added to the Gaussian signals have nearly no effect on the 
distribution of rainflow cycles and the corresponding fatigue damages.

Thus, the deterministic components can be characterised by their amplitudes 
and frequencies. Their phases were therefore selected randomly. W ith these 
sine waves added into the Gaussian stationary stress histories, the stochastic 
signals with a deterministic component were obtained. There were 30 sine waves 
considered for each of the 70 spectra. Thus, the total number of simulated time 
series is over 2000.

Theoretically, for a sine wave with amplitude A  and phase (f>, given the phase 
has a uniform distribution in (0 ,2%], the signal should have a distribution density 
as :

Px{x) =
'K y/A '^  —

Suppose this signal is added into a Gaussian signal which has a distribution 
density function as:

1 _
Pv(y) =  - 7 ^ ^  ^

the joint distribution density function y) of sum z = x y has the form as :

/ o o  r o o

p{x,y)dx = / p{x,z — x)dx
-O O  J  —  O O
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Since x  and y  are independent random variables, we have

p { x , y )  = p ^ { x )  - p y { y )

/ o o

Px{x)Py{z -  X)dx
- o o

The stress histories with a deterministic components then have the distribu­
tion

x/zTTTra J-.
1 .I' - tr  , : e  2 <t2 d x

V^TTCr J - A  y / — x"̂

Statistical analysis was performed on all the simulated data. The statistic 
parameters of the simulated signal from PSD no. 1 combined with various sine 
waves are listed in Table 8.3 as an example. As expected, the signal is Gaussian 
before the deterministic components are added in. The stronger the sine wave 
which is added, the stronger becomes the degree of non-normality. The statistical 
parameters are irrelevant with the frequency of sine waves as the probability 
density of these signals are not the function of the frequency as in Equation 8.9.
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Table 8,3: Statistical parameters for signals from PSD No.l

amp frq mean rms E[P] E[0] 7 K
0.0 0.5 0.03 49.73 30.54 3155.90 2950.20 0.515 0.001
1.0 0.5 0.02 156.78 3454.79 11477.10 4877.70 0.425 -0.664
1.0 1.0 0.02 156.74 3436.92 11466.40 4917.30 0.429 -0.663
1.0 1.5 0.02 156.73 3617.44 11465.50 4886.20 0.426 -0.674
1.0 2.0 0.01 156.75 3422.72 11449.10 4884.00 0.427 -0.659
1.0 2.5 0.00 156.75 3430.34 11445.60 4909.70 0.429 -0.659
1.0 3.0 0.01 156.79 3486.51 11445.40 4900.30 0.428 -0.668
2.0 0.5 0.03 271.52 19447.80 11472.20 2182.60 0.190 -1.184
2.0 1.0 0.05 271.49 19463.22 11449.70 2167.80 0.189 -1.184
2.0 1.5 .0.03 271.48 19791.37 11429.30 2193.80 0.192 -1.188
2.0 2.0 0.01 271.50 19364.40 11390.10 2204.00 0.194 -1.182
2.0 2.5 0.00 271.50 19387.120 11353.00 2215.30 0.195 -1.182
2.0 3.0 0.00 271.55 19539.74 11307.80 2220.40 0.196 -1.186
3.0 0.5 0.05 394.51 33732.14 11466.90 1418.20 0.124 -1.346
3.0 1.0 0.07 394.48 33773.72 11425.50 1413.30 0.124 -1.345
3.0 1.5 0.05 394.46 34105.60 11372.50 1440.70 0.127 -1.348
3.0 2.0 0.02 394.49 33612.81 11292.30 1456.50 0.129 -1.345
3.0 2.5 0.00 394.48 33670.52 11207.80 1483.80 0.132 -1.345
3.0 3.0 0.00 394.53 33798.72 11091.80 1496.30 0.135 -1.347
4.0 0.5 0.07 519.91 44665.20 11462.50 1049.10 0.092 -1.410
4.0 1.0 0.09 519.89 44801.94 11396.40 1065.80 0.094 -1.410
4.0 1.5 0.07 519.86 45136.84 11297.60 1091.40 0.097 -1.411
4.0 2.0 0.03 519.89 44544.04 11166.70 1112.70 0.100 -1.410
4.0 2.5 0.00 519.89 44705.58 11007.00 1142.90 0.104 -1.410
4.0 3.0 0.01 519.94 44805.47 10794.00 1166.00 0.108 -1.411
5.0 0.5 0.08 646.33 53271.66 11450.90 838.90 0.073 -1.441
5.0 1.0 0.11 646.31 53387.67 11352.20 855.70 0.075 -1.442
5.0 1.5 0.09 646.28 53729.53 11202.80 888.20 0.079 -1.442
5.0 2.0 0.03 646.31 53098.50 11008.20 913.10 0.083 -1.441
5.0 2.5 0.00 646.31 53242.54 10758.80 946.10 0.088 -1.441
5.0 3.0 0.01 646.36 53385.98 10432.30 994.10 0.095 -1.442
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8.3  M od ellin g  th e  rainflow  range p rob ab ility  
d en sity

8.3.1 Gaussian tim e history

When rainflow counting was applied to the 70 Gaussian stochastic time histo­
ries (no deterministic component), 70 rainflow cycle PD F’s were derived. These 
PD F’s are designed to cover a wide range of Gaussian signals and were described 
by their irregularity factor and mean frequency. A typical probability density 
curve is shown cts in Figure 8.7.

0.7-1

2  0.5-

T3
0.4-

•9 0.3-

y  0.2-

0. 1-

0.0
3 4 50 1 2

Rainflow range (*2o)

Figure 8.7: Rainffow cycle p ro b a b il i ty  d en s ity  function from sp e c tru m  1 

This type of function can be modelled using three expressions cis follows:

(8 .10)
œ

where, Gi, G2, G3, r  and a  are all parameters to be decided and G1-I-G2+G 3 =  1.0, 
z =  5 / 2(7 is taken aa the normalised cycle range. This model was intended to 
express the lower, middle and high range portions of the rainflow cycle PD F’s by 
using exponential, Rayleigh and standard Rayleigh distributions.

This model was actually the one used by Dirlik [13]. However, since the 
model for a random time history combined with a deterministic component is 
quite different from the one above, a new model was required and this is covered 
in the next section. The model for Gaussian response histories was still employed 
to improve accuracy when the deterministic component is very small. This also 
makes the fatigue analysis toolbox complete.
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8.3.2 Random  tim e history w ith  a d eterm in istic  com po­
nent

Rainflow cycle counting was performed on all the combined signals simulated in 
the previous section. A typical one is shown in Figure 8.8. Like the model for 
Gaussian response histories, these curves apparently have three portions. The 
model which was eventually developed is as follows:

2/32 (8.11)

where, G'l, C2 , C3 , r, a , p and fi are all parameters to be decided and C1 4 -C2 +C 3 =  
1.0 .

This model is intended to express the low range part by a exponential function, 
the middle range part by a Rayleigh function and the high range part by a 
Gaussian distribution function as shown in Figure 8.8. Parameters r, a , and 
^  are the shape control parameters for the three probability density functions 
employed. Ci, C2 and C3  control the distribution of the probability among the 
three range portions, jj, is determined by the location of the peak in the PDF 
curve caused by the deterministic component.

0 . 2 '

GaussianRayleighExponential

Figure 8.8: Model for the rainflow cycle probability  density function
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8 .4  P aram eter  eva lu ation

8.4.1 Least square technique

The procedure of representing data in functional form and then selecting param­
eter values in the function to best fit the data is called curve fitting. The form 
of the function used is generally determined by the physical process governing 
the data or by a graphical observation of the data. The process of selecting the 
parameters in the function to which a best fit is to be applied is called parameter 
evaluation [84] [85] [86].

The' method of least squares is the most widely used curve fitting procedure. 
At least in the case of pure curve fitting, where the coefficients have no physical 
significance. In the general case, assume that there are n independent obser­
vations 7/1, 7/2, ..., 7/n obtained for various values Xi, X2, and a model
y =  /(x , 6) is set for fitting the data, the problem reduces to the suitable selection 
of the parameter 9.

Firstly, the residuals can be defined as

=  Vi -  f{x i, 9) (8.12)

The idea of leaat squares is to select the parameter 9 to minimise the least 
square error (sum of squares of the residuals),i.e.,

$(«) =  è  e,(0): =  è ( ÿ i  -  f ( x i ,  9)): (8.13)
t=l t=l

The difficulty here is deciding how to use nonlinear programming techniques 
to perform the optimisation in order to search for 9* values which minimise 0(^). 
Many methods, such as the simplex, direction search, or even direct search can 
be employed. For the problem with constraints, the direction search method is
most widely used. The procedure is to perform an iteration 4= 9i along a
suitable direct v from the initial guess 9i. The procedure is as follow

1. Set 2 =  1, an initial guess 9i must be provided externally.
2. Determine a vector V{ in the direction of the proposed fth step.
3. Determine a scalar pi such that the step

CTi =  PiVi (8.14)

is acceptable. That is, take

.̂+1 = +  pi' î (8.15)
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whilst ensuring that pi is chosen so that the following equation holds

^,+1 < (8.16)

4. Test whether the termination criterion is met. If not, increase i by one and 
return to step 2. If yes, accept 9i^\ as the value of 9*.

There are different methods for choosing the step direction u,- and step size 
The most widely used method for determining the step direction is the so-called 
gradient method which uses the direction which forms a greater than 90° angle 
with the gradient qi. The step direction thus chosen is expressed as

Vi =  —RiÇi

Newton’s method, used in nonlinear programming, is to take Ri as the Hessian 
matrix, which is the matrix of the second partial derivatives of the objective 
function, i.e.,

^  dOidej
For the least square problem, this special form of the objective function has 

certain advantages. From Equation 8.13, the gradient vector and the Hessian 
matrix are expressed by :

(8.18)

+  (8.19)

In the Gauss method, the first term is neglected, and N  is used in place of /f ,  
where N  is defined by

The Gauss method can be taken as an approximation of Newton’s method. 
Since the residuals are, hopefully, small, this provides some justification for re­
garding N  as a good approximation of /f ,  particularly near the minimum. How­
ever, when a poor initial guess is given, the method may fail to converge. In such 
a situation an improvement should be obtained by providing suitable constraints.

Some situations need constraints because some physical parameters can not 
take arbitrary values. The constraints are usually provided by using penalty 
functions, the projection method or a variable transformation. When penalty 
functions are adopted, the objective functions (and the corresponding gradient
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vector and Hessian matrix) are modified such that the values of the parameters 
will not leave the feasible region.

For the inequality constraint

hj{e) > 0

the penalty function can be taken as

Ci(^) =  ocj/hj{0)

where a» is a small positive constant called a penalty factor. The objective
function can then be modified by adding the penalty functions to it for all the
constraints.

^ \ 0 )  = m  + E ^ i / h A 6 )  (8.21)
3

Let 6  ̂ and 0* be the points at which $1 and 0  attain their respective minima 
within the feasible region. It can be proven that

lim =  e* (8.22)aj-fO  ̂ '

The iteration scheme for an unconstrained 9* remains nearly unchanged except 
that another iteration of aj has to be added for the limiting condition of Equation 
8 .22 .

8.4.2 Param eter evaluation for rainflow cycle m odels

By applying a rainflow cycle count to each simulated time series, the probability 
density functions p r r ( z ) of rainflow cycles are derived. Then by using the model 
function fRR(z,9) established in the previous section, a least square technique 
was employed to evaluate the parameters in the model equation.

The residuals were defined as :

=  è  =  ^[pB A (zt) -  fRR{zk, 9)]'̂  (8.23)
Â:=l t=l

where n is the number of points used to discretise the curve.

O ptim isation of m odel for purely random tim e histories

The model equation which was used is expressed in Equation 8.10. The parame­
ters to be evaluated were 9 = [C\ C2 C3 r  a  as explained in Section 8.3.1.

128



The full mathematical expression for nonlinear programming is as follows:

m in E{6) (8.24)

s.t.

0.0 <  Cl <  1.0 

0.0 <  Cg <  1.0

0.0 < C s<  1.0

Cl +  C2 4" C3 =  1.0 

r  > 0.0 

a >  0.0

O ptim isation of m odel for random tim e history w ith a determ inistic  
com ponent

The model equation is expressed as in Equation 8.11. The parameters to be 
evaluated were 6  =  [Ci C2 C 3  t  a  fi

The full mathematical expression for nonlinear programming is as follows:

s.t.

m in E{0) (8.25)

0.0 < Cl < 1.0 

0.0 < C2 < 1.0

0.0 < C3 < 1.0 

Cl +  C2 +  C3 =  1.0 

r  > 0.0 

a > 0.0 

^ > 0.0 

fi >  0.0

The gradient vector and the Hessian matrix were calculated using the equation 
presented in Section 8.4>1-
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Accuracy im provem ent of solution

There are two problems which must be considered in the calculation procedure.
The first one is the possibility of convergence to a local stationery point. To 

avoid this,
a). Different initial values were given for each case and the computation was 

repeated to check for consistency of solution.
b). The program was designed to be able to jum p out from a stationery point 

and then be terminated “manually” .
c). An “eye-test” was used after each calculation was performed in order to 

ensure convergence to the global stationery point.
The second possible problem is that a relatively higher accuracy is needed for 

the higher range cycles. To achieve this, the computation is actually performed 
on a weighted objective function which incorporates the fatigue damage potential 
of each cycle range. This is achieved by applying a weight function ^(z) to the 
rainflow cycle PD F’s calculated from the time series. That is, instead of fitting 
f R R ( Z j  t o  P r r ( z )  as in Equation 8.23, the computation was performed by fitting 
(i^)fRRi^^^) to i(z)pRR{z). The residual was then expressed as:

= ' I 2 4  = Y1 -  I r r (^)?  (8.26)

This modifies the gradient vector and the Hessian m atrix into the following 
form:

(8.28)

Thus, once (^(z) is selected it can be used as a multiplier to the gradient vector 
and Hessian matrix, ((z) was chosen as z  ̂for most computation. This sometimes 
makes the lower range portion of the probability density function have a poor fit. 
However, from the point of view of fatigue, the damage potential of each cycle is 
proportional to the power b of its range. Furthermore, if the cycle range is quite 
high and its probability is too small for the program to detect (because missing 
it causes very little error), the weighted fitting will avoid missing such cycles .

Figure 8.9 shows a typical rainflow cycle PDF and damage density from one 
of the time histories using both weighted and unweighted fitting. The weight 
function was selected here as f^(z) =  z. Although there is so little difference 
between the PD F’s which can hardly be detected, the fatigue damage distribution
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caused by the PDF’s are quite different. The damage is very similar in the low 
range part but for the medium and higher ranges, weighted fitting gives a much 
closer fit. A higher powered weight function would have provided an even better 
fit to the high range part of the damage distribution.

Param eters for Gaussian signals (no determ inistic com ponent)

The weight function used to curve fit the 70 Gaussian cases is (^(z) =  z. This 
is based on the consideration that, the high range cycle part of the PDF should 
be given more attention, but on the other hand, some emphasis should remain 
on keeping the PDF shape generally correct. The 70 sets of fitted parameters for 
the 70 Gaussian signals are listed in Table 8.4 and 8.5. The generally used “cost” 
(or residual) is not listed in this table, but instead, the fatigue damage rates of 
the fitted model curve compared with the damage counted directly from the time 
signals are listed. The listed here are the damage values obtained when
inverse S-N  curve slope b =  5.0 is used while are the values when 6 =  8.0
is used. Most of them meet well with the time history curves from the point of 
view of fatigue. The average absolute error is 7% for b =  5.0 and 18% for b =  8.0. 
The maximum error is 35% for 6 =  5.0 and 4 ^ ^  for b =  8.0. When the PD F’s 
from both the time series and the curve fitting are plotted together, it was noted 
that most of them meet quite well. Figure 8.10 shows the curve fitting results for 
spectrum 1. Figure 8.10(a) shows the rainflow cycle PD F’s from the simulated 
time history and curve fitting. Figure 8.10(b) shows the correspondent damage 
density of the cycles when b=5.0 is used.

Param eter for random signals w ith determ inistic com ponents (the com ­
bined case)

2100 sets of fitted data were used for the simulated random signals incorporating 
deterministic components. The fitting was performed using the weight function 
i^(z)  =  for most cases. For others (^(z) =  z was used. It is impossible to list 
all this data in the thesis although it can be provided on floppy disk. However, 
in order to examine quality of the fitting, the ratios of the damage rates between 
the fitted PD F’s with the simulated time history are listed in Table 8.6 to Table 
8.11 for b=5.0. The second row in these tables refer to the frequency of the 
deterministic component. It can be seen from these tables that the fitting process 
is quite successful from the point of view of fatigue damage.

Figure 8.11 shows some PD F’s from spectrum No.60 together with the cor-

131



respondent functions from the time series. The high range part of the functions 
have been magnified by 10 in order to have a better visualisation.
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Figure 8.9: Curve fitting on weighted and unweighted basis

1 3 2



0.70.7

tim e series - 0.60.6 -
C/3

0.5

a
S  0.4-

I  ■
^  0.3-

-0.4

-0.3

0.2 -
m odel fitting

- 0.10.1-

0.00.0
50 1 2 3 4

Cycle range (*2a)

(a). Probability density functions

10.0 10

-8
c  7.5

00
I  5.0 tim e series

25

m odel fitting
0.0

30 1 2 4 5

Cycle range (*2a)

(b). Damage density
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Table 8.4: Model parameters by curve fftting with weight =  z  (1)

No. Cl 02 03 T a Db=s Db=8
1 0.0277 0.7196 0.2527 0.1103 0.9335 0.9889 0.9754
2 0.0782 0.6700 0.2518 0.1498 0.9326 1.0124 1.0332
3 0.0782 0.8796 0.0422 0.1473 0.9645 1.0665 1.1012
4 0.1779 0.4493 0.3728 0.1645 0.9711 1.0328 1.0858
5 0.2499 0.3817 0.3684 0.2006 1.0082 1.0521 1.1361

' 6 0.4333 0.5589 0.0078 0.3374 1.1054 1.1017 1.3162
7 0.7015 0.2800 0.0185 0.5046 1.2695 1.1321 1.5305
8 0.5789 0.4096 0.0115 0.2994 1.1841 1.0958 1.3752
9 0.5658 0.4326 0.0016 0.2513 1.1509 1.0596 1.2926
10 0.5355 0.4594 0.0051 0.1979 1.1131 1.0321 1.2195
11 0.5054 0.4885 0.0061 0.1910 1.0811 1.0092 1.1426
12 0.5841 0.2130 0.2030 0.2065 1.2175 1.0387 1.2405
13 0.6892 0.1559 0.1550 0.1743 1.2982 1.0791 1.3629
14 0.8037 0.0748 0.1215 0.1788 1.5386 0.9436 1.3016
15 0.8951 0.0494 0.0555 0.1320 1.5281 0.9230 1.3319
16 0.9181 0.0388 0.0431 0.1680 1.6295 0.9383 1.3509
17 0.9281 0.0342 0.0376 0.2327 1.6359 0.8565 1.1910
18 0.1599 0.6897 0.1504 0.2199 0.0763 0.7463 0.6783
19 0.1663 0.6763 0.1574 0.2912 0.1158 0.7366 0.6515
20 0.2868 0.6239 0.0892 0.5600 0.1566 0.8172 0.9161
21 0.2465 0.6367 0.1168 0.5746 0.1958 0.9089 1.0861
22 0.1865 0.6394 0.1741 0.6686 0.2527 0.9975 1.2484
23 0.1332 0.6245 0.2423 0.6464 0.3083 0.9787 1.1065
24 0.0968 0.5776 0.3256 0.6530 0.3804 0.9862 1.0649
25 0.0532 0.5458 0.4010 0.5074 0.4249 1.0469 1.1262
26 0.0595 0.5422 0.3983 0.1582 0.6285 0.9298 0.9000
27 0.0246 0.4999 0.4755 0.1138 0.6765 0.9879 1.0117
28 0.0243 0.5653 0.4104 1.0244 0.7189 1.0620 1.2500
29 0.0588 0.6460 0.2952 0.5825 0.5668 1.0412 1.1523
30 0.0428 0.5431 0.4141 0.5723 0.5378 1.0582 1.1818
31 0.0416 0.4772 0.4812 0.5313 0.5229 1.0631 1.1724
32 0.0309 0.4369 0.5323 0.1728 0.5237 1.0385 1.1268
33 0.0974 0.4870 0.4156 0.4155 0.7006 0.9817 0.9992
34 0.1261 0.6367 0.2372 0.2624 0.8325 0.9554 0.9462
35 0.0925 0.9013 0.0062 0.1778 0.9102 1.0309 1.0463
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Table 8.5: Model parameters by curve fitting with weight =  z  (2)

No. Cl C2 Cs r a ■̂ 6=5 Dh=B
36 0.0593 0.6957 0.2450 0.5197 0.4787 1.0602 1.1783
37 0.0876 0.5979 0.3145 0.5371 0.4595 1.0393 1.1360
38 0.1165 0.5018 0.3817 0.5170 0.4295 1.0431 1.1421
39 0.1705 0.3899 0.4396 0.5395 0.4353 1.0612 1.1961
40 0.1708 0.3266 0.5026 0.4852 0.4557 1.0433 1.1390

*41 0.2411 0.3507 0.4082 0.5813 0.6280 1.0182 1.1537
42 0.2244 0.4458 0.3297 0.4386 0.8171 0.9926 1.0050
43 0.0897 0.7039 0.2064 0.5510 0.3916 1.0485 1.1740
44 0.1389 0.5662 0.2949 0.5235 0.3593 1.0257 1.1167
45 0.1447 0.5017 0.3537 0.5522 0.3545 1.0409 1.1346
46 0.1199 0.4630 0.4171 0.3694 0.3695 0.9492 0.9534
47 0.2582 0.2729 0.4689 0.5090 0.3287 1.0310 1.1042
48 0.2931 0.2459 0.4610 0.5164 0.4265 1.0022 1.1070
49 0.3993 0.3128 0.2879 0.6132 0.7332 1.0579 1.3072
50 0.1647 0.6317 0.2036 0.5378 0.2979 0.9972 1.1125
51 0.1547 0.6266 0.2186 0.5432 0.3086 0.9647 1.0121
52 0.1344 0.5950 0.2706 0.5607 0.3027 0.9426 0.9559
53 0.1993 0.5701 0.2306 0.7460 0.3297 1.0996 1.5507
54 0.2958 0.4576 0.2465 0.6642 0.3776 1.0521 1.3839
55 0.2071 0.4719 0.3210 0.3184 0.3901 0.8045 0.7362
56 0.3498 0.2542 0.3959 0.5160 0.3016 0.9745 1.0663
57 0.2542 0.5639 0.1819 0.5534 0.2186 0.9649 1.0999
58 0.2610 0.5325 0.2065 0.5470 0.2265 0.9349 1.0134
59 0.2974 0.4815 0.2211 0.5537 0.2215 0.9438 1.0394
60 0.3273 0.4024 0.2703 0.5442 0.1966 0.9529 1.0608
61 0.3259 0.3912 0.2829 0.5475 0.2064 0.9312 1.0522
62 0.3964 0.2947 0.3089 0.5233 0.2141 0.9095 0.9615
63 0.4268 0.2353 0.3379 0.5197 0.1891 0.9376 1.0115
64 0.2265 0.6438 0.1297 0.5015 0.1893 0.8206 0.8471
65 0.2317 0.6420 0.1263 0.6121 0.1922 0.9189 1.0988
66 0.2686 0.6220 0.1093 0.6967 0.2021 1.0467 1.5008
67 0.2817 0.6236 0.0947 0.7131 0.1998 1.1090 1.7068
68 0.1882 0.6198 0.1919 0.2528 0.2291 0.6517 0.5620
69 0.2413 0.5593 0.1994 0.2995 0.2388 0.6527 0.5695
70 0.4650 0.3815 0.1536 0.5849 0.2043 0.8684 1.0475
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Table 8.6: Fatigue damage rates for fitted model curve with b = 5.0 (1)

PSD No. amplitude=1.0 amplitude=2.0
0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0

1 1.11 1.12 1.11 1.29 1.22 1.15 1.09 1.10 1.14 1.15
2 1.04 1.05 1.08 1.06 1.12 1.13 1.08 1.10 1.10 1.11
3 1.02 1.16 1.10 1.12 1.10 1.13 1.07 1.10 1.09 1.11
4 1.03 1.07 1.12 1.12 1.13 1.12 1.07 1.10 1.11 1.11
B 1.09 1.11 1.12 1.13 1.13 1.15 1.10 1.10 1.11 1.12
6 1.08 1.09 1.12 1.14 1.18 1.15 1.11 1.10 1.11 1.12
7 1.08 1.12 1.13 1.15 1.16 1.15 1.08 1.06 1.09 1.11
8 1.10 1.11 1.19 1.16 1.17 1.17 1.12 1.04 1.10 1.14
9 1.09 1.10 1.03 1.15 1.14 1.15 1.11 1.08 1.09 1.12
10 1.05 1.11 1.18 1.17 1.18 1.18 1.10 1.06 1.12 1.14
11 1.13 1.28 1.28 1.23 1.28 1.32 1.12 1.12 1.10 1.13
12 1.10 1.28 1.22 1.29 1.19 1.19 1.10 1.11 1.12 1.13
13 1.07 1.10 1.11 1.17 1.28 1.38 1.12 1.00 1.12 1.12
14 1.06 1.12 1.33 1.20 1.16 1.20 1.11 1.11 1.10 1.13
15 1.16 1.18 1.13 1.12 1.13 1.36 1.14 1.11 1.08 1.09
16 1.14 1.79 1.14 1.13 1.30 1.32 1.17 1.12 1.11 1.08
17 1.21 1.14 1.26 1.28 1.49 1.49 1.15 1.11 1.09 1.10
18 1.24 1.31 1.13 1.14 1.15 1.09 1.26 1.09 1.06 1.07
19 1.23 1.22 1.16 1.12 1.08 1.11 1.17 1.15 1.06 1.08
20 1.12 1.19 1.15 1.08 1.09 1.06 1.18 1.15 1.09 1.08
21 1.08 1.27 1.17 1.09 1.09 1.08 1.19 1.17 1.11 1.09
22 1.04 1.27 1.21 1.12 1.11 1.07 1.17 1.12 1.12 1.08
23 1.04 1.19 1.17 1.11 1.10 1.03 1.15 1.13 1.11 1.08
24 1.08 1.16 1.12 1.10 1.10 1.24 1.10 1.11 1.10 1.09
25 1.10 1.22 1.09 1.10 1.08 1.08 1.11 1.16 1.10 1.10
26 1.07 1.07 1.04 1.09 1.06 1.09 1.10 1.09 1.08 1.09
27 1.02 1.08 1.00 1.10 1.09 1.08 1.08 1.09 1.10 1.11
28 0.94 0.99 0.98 0.97 0.99 1.00 1.13 1.06 1.20 1.15
29 1.05 1.11 1.23 0.89 1.06 1.11 1.17 1.14 1.12 1.11
30 1.09 1.10 1.12 1.14 1.21 1.09 1.15 1.13 1.11 1.11
31 1.11 1.11 1.09 1.11 1.09 1.23 1.13 1.11 1.14 1.10
32 1.07 1.11 1.09 1.08 1.09 1.11 1.10 1.11 1.13 1.11
33 1.05 1.09 1.09 1.08 1.09 1.10 1.08 1.09 1.12 1.11
34 1.02 1.14 1.10 1.10 1.26 1.28 1.12 1.09 1.20 1.11
35 1.01 1.08 1.19 1.22 1.26 1.26 1.11 1.09 1.09 1.10
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Table 8.7: Fatigue damage rates for Htted model curve with b =  5.0 (2)

PSD No. amplitude=3.0
2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0

1 1.14 1.09 1.09 1.12 1.12 1.16 1.14 1.12 1.11 1.15
2 1.11 1.14 1.09 1.16 1.27 1.11 1.33 1.17 1.08 1.08
3 1.11 1.13 1.08 1.09 1.08 1.09 1.10 1.11 1.07 1.08
4 1.13 1.11 1.06 1.08 1.10 1.09 1.10 1.10 1.07 1.08
5 1.11 1.13 1.08 1.07 1.09 1.10 1.08 1.10 1.08 1.07
6 1.14 1.12 1.13 1.11 1.10 1.11 1.11 1.10 1.04 1.08
7 1.22 1.11 1.09 1.13 1.14 1.14 1.08 1.09 1.09 1.06
8 1.12 1.11 1.07 1.09 1.09 1.12 1.10 1.10 1.12 1.07
9 1.12 1.12 1.08 1.07 1.09 1.10 1.10 1.11 1.09 1.06
10 1.13 1.13 1.10 1.07 1.10 1.11 1.11 1.10 1.09 1.06
11 1.25 1.24 1.10 1.18 1.16 1.10 1.19 1.17 1.07 1.10
12 1.12 1.12 1.10 1.16 1.09 1.17 1.08 1.08 1.09 1.14
13 1.14 1.26 1.12 1.07 1.10 1.08 1.18 1.18 1.11 1.04
14 1.11 1.13 1.10 1.09 1.08 1.08 1.07 1.09 1.10 1.07
15 1.07 1.06 1.12 1.08 1.06 1.06 1.05 1.05 1.10 1.06
16 1.07 1.14 1.13 1.09 1.06 1.06 1.05 1.05 1.09 1.07
17 1.09 1.09 1.14 1.08 1.06 1.05 1.04 1.04 1.10 1.07
18 1.06 1.05 1.28 1.06 0.96 1.05 1.04 1.04 1.21 1.05
19 1.07 1.07 1.13 1.11 1.07 1.05 1.05 1.04 1.13 1.08
20 1.07 1.04 1.17 1.12 1.06 1.06 1.04 1.03 1.14 1.08
21 1.06 1.06 1.17 1.13 1.08 1.07 1.04 1.29 1.14 1.08
22 1.07 1.05 1.15 1.10 1.08 1.05 1.05 1.04 1.11 1.08
23 1.07 1.06 1.12 1.09 1.08 1.06 1.05 1.05 1.11 1.09
24 1.08 1.07 1.11 1.08 1.07 1.06 1.05 1.05 1.09 1.06
25 1.08 1.09 1.07 1.10 1.07 1.07 1.07 1.07 1.07 1.08
26 1.09 1.09 1.09 1.08 1.07 1.08 1.07 1.07 1.09 1.07
27 1.11 1.09 1.08 1.09 1.10 1.11 1.08 1.08 1.09 1.08
28 1.15 1.14 1.15 1.12 1.12 1.12 1.11 1.12 1.12 1.11
29 1.10 1.10 1.14 1.13 1.11 1.08 1.07 1.07 1.13 1.11
30 1.10 1.10 1.13 1.10 1.10 1.08 1.07 1.07 1.13 1.08
31 1.09 1.10 1.09 1.07 1.09 1.08 1.07 1.08 1.08 1.07
32 1.11 1.09 1.10 1.10 1.09 1.07 1.07 1.08 1.10 1.08
33 1.13 1.12 1.07 1.08 1.10 1.09 1.09 1.08 1.13 1.08
34 1.21 1.21 1.08 1.08 1.13 1.13 1.10 1.13 1.07 1.03
35 1.13 1.13 1.07 1.07 1.07 1.09 1.09 1.10 1.08 1.06
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Table 8.8: Fatigue damage rates for fitted model curve with b =  5.0 (3)

PSD No. ampli tude=4.0 amplitude=5.0
1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0

1 1.11 1.10 1.09 1.09 1.12 1.09 1.10 1.10 1.10 1.08
2 1.09 1.08 1.08 1.08 1.08 1.08 1.08 1.07 1.08 1.07
3 1.07 1.08 1.08 1.11 1.07 1.07 1.06 1.07 1.08 1.10
4 1.07 1.07 1.09 1.09 1.06 1.07 1.08 1.07 1.08 1.07
5 1.07 1.08 1.07 1.09 1.07 1.07 1.06 1.10 1.07 1.08
6 1.08 1.09 1.09 1.08 1.05 1.06 1.07 1.07 1.08 1.11
7 1.05 1.08 1.13 1.13 1.08 1.05 1.06 1.07 1.06 1.06
8 1.07 1.10 1.09 1.08 1.14 1.06 1.07 1.09 1.08 1.06
9 1.08 1.09 1.08 1.09 1.07 1.04 1.08 1.08 1.08 1.08
10 1.08 1.10 1.10 1.09 1.08 1.05 1.07 1.09 1.08 1.07
11 1.06 1.09 1.15 1.14 1.07 1.13 1.11 1.08 1.07 1.07
12 1.08 1.13 1.06 1.06 1.09 1.07 1.07 1.06 1.06 1.05
13 1.08 1.07 1.08 1.14 1.06 1.06 1.07 1.06 1.07 1.06
14 1.06 1.07 1.05 1.07 1.08 1.06 1.06 1.06 1.04 1.06
15 1.05 1.04 1.04 1.04 1.08 1.05 1.03 1.04 1.03 1.03
16 1.05 1.05 1.04 1.04 1.08 1.05 1.04 1.03 1.02 1.03
17 1.05 1.04 1.03 1.03 1.08 1.06 1.04 1.03 1.02 1.00
18 1.04 1.04 1.03 1.03 1.16 1.04 1.03 1.03 1.02 1.03
19 1.06 1.04 1.03 1.03 1.12 1.07 1.05 1.03 1.03 1.03
20 1.05 1.04 1.03 1.02 1.12 1.07 1.04 1.03 1.02 1.02
21 1.06 1.06 1.03 1.03 1.13 1.07 1.04 1.05 1.02 1.03
22 1.06 1.04 1.04 1.03 1.11 1.08 1.05 1.03 1.03 1.03
23 1.06 1.04 1.04 1.04 1.10 1.08 1.05 1.03 1.03 1.03
24 1.05 1.05 1.04 1.04 1.09 1.06 1.05 1.04 1.03 1.03
25 1.06 1.06 1.05 1.05 1.05 1.07 1.06 1.05 1.04 1.04
26 1.07 1.06 1.06 1.06 1.10 1.09 1.06 1.05 1.05 1.05
27 1.09 1.08 1.07 1.07 1.08 1.07 1.07 1.07 1.06 1.06
28 1.09 1.11 1.09 1.09 1.12 1.11 1.09 1.10 1.09 1.09
29 1.08 1.06 1.05 1.06 1.11 1.08 1.07 1.05 1.05 1.05
30 1.09 1.06 1.06 1.07 1.12 1.07 1.08 1.05 1.05 1.05
31 1.08 1.06 1.06 1.07 1.07 1.06 1.07 1.05 1.05 1.06
32 1.07 1.06 1.07 1.06 1.10 1.07 1.07 1.05 1.05 1.05
33 1.09 1.09 1.07 1.07 1.10 1.06 1.08 1.07 1.06 1.06
34 1.08 1.07 1.11 1.12 1.01 1.07 1.08 1.06 1.07 1.06
35 1.06 1.08 1.08 1.09 1.07 1.08 1.06 1.07 1.07 1.09
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Table 8.9: Fatigue damage rates for Gtted model curve with b =  5.0 (4)

PSD No. amplitude=1.0 amplitude=2.0
0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0

36 1.07 1.15 1.10 1.06 1.01 1.07 1.14 1.12 1.10 1.09
37 1.13 1.34 1.31 1.06 1.08 1.17 1.12 1.12 1.11 1.08
38 1.13 1.22 1.12 1.10 1.09 1.09 1.13 1.11 1.11 1.09
39 1.11 1.13 1.12 1.11 1.10 1.09 1.15 1.12 1.12 1.11
40 1.05 1.09 1.10 1.24 1.26 1.25 1.07 1.05 1.11 1.20
41 1.07 1.09 1.12 1.26 1.28 1.29 1.08 1.07 1.10 1.10
42 1.08 1.08 1.22 1.15 1.25 1.28 1.07 1.19 1.10 1.10
43 1.09 1.17 1.28 1.08 1.08 1.11 1.12 1.15 1.11 1.08
44 1.07 1.14 1.14 1.09 1.09 1.02 1.12 1.11 1.11 1.09
45 1.12 1.14 1.10 1.10 1.11 1.10 1.15 1.11 1.10 1.09
46 1.09 1.15 1.10 1.10 1.11 1.09 1.11 1.15 1.09 1.09
47 1.10 1.13 1.14 1.12 1.12 1.13 1.12 1.11 1.12 1.09
48 1.10 1.10 1.11 1.12 1.10 1.12 1.09 1.11 1.09 1.09
49 0.98 1.10 1.11 1.13 1.12 1.12 1.08 1.11 1.09 1.10
50 1.04 1.17 1.15 1.10 1.08 0.99 1.11 1.12 1.10 1.08
51 1.06 1.23 1.17 1.09 1.07 1.13 1.18 1.11 1.11 1.08
52 1.05 1.24 1.16 1.07 1.09 1.05 1.18 1.12 1.10 1.09
53 1.03 1.22 1.12 1.07 1.10 1.04 1.15 1.12 1.08 1.08
54 1.05 1.15 1.11 1.06 1.08 1.10 1.13 1.13 1.09 1.07
55 1.10 1.11 1.08 1.10 1.10 1.05 1.12 1.12 1.07 1.06
56 1.09 1.14 1.14 1.11 1.09 1.05 1.12 1.13 1.07 1.09
57 0.99 1.19 1.22 1.11 1.08 1.08 1.13 1.13 1.10 1.08
58 1.01 1.24 1.20 1.11 1.08 1.05 1.16 1.13 1.10 1.09
59 1.01 1.18 1.16 1.12 1.10 1.10 1.14 1.13 1.09 1.07
60 1.08 1.18 1.18 1.12 1.09 1.10 1.13 1.13 1.10 1.08
61 1.11 1.18 1.19 1.13 1.09 1.07 1.14 1.12 1.11 1.09
62 1.11 1.17 1.16 1.12 1.11 1.08 1.12 1.13 1.11 1.09
63 1.01 1.15 1.17 1.12 1.13 1.06 1.09 1.12 1.10 1.09
64 1.05 1.25 1.19 1.07 1.02 1.01 1.16 1.15 1.08 1.07
65 1.02 1.22 1.21 1.08 1.06 1.09 1.17 1.16 1.09 1.07
66 0.97 1.21 1.18 1.09 1.07 1.02 1.18 1.13 1.09 1.07
67 0.97 1.21 1.18 1.10 1.05 1.00 1.18 1.15 1.08 1.08
68 0.98 1.24 1.15 1.08 1.05 1.06 1.13 1.14 1.09 1.06
69 0.98 1.19 1.14 1.10 1.04 1.07 1.12 1.14 1.08 1.08
70 1.06 1.21 1.17 1.11 1.08 1.09 1.12 1.13 1.10 1.08
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Table 8.10: Fatigue damage rates for fitted model curve with b =  5.0 (5)

PSD No. amplitude=3.0
2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0

36 1.07 1.06 1.16 1.10 1.07 1.06 1.06 1.04 1.13 1.08
37 1.09 1.20 1.14 1.08 1.09 1.07 1.07 1.06 1.12 1.07
38 1.09 1.09 1.14 1.09 1.08 1.07 1.07 1.07 1.12 1.07
39 1.10 1.10 1.13 1.09 1.10 1.07 1.07 1.08 1.11 1.08
40 1.10 1.20 1.08 1.11 1.09 1.10 1.08 1.06 1.15 1.11
41 1.10 1.11 1.15 1.09 1.08 1.08 1.09 1.16 1.12 1.08
42 1.19 1.20 1.08 1.09 1.15 1.09 1.08 1.15 1.09 1.08
43 1.08 1.07 1.16 1.11 1.08 1.06 1.06 1.05 1.13 1.11
44 1.09 1.08 1.13 1.08 1.08 1.07 1.07 1.05 1.12 1.07
45 1.09 1.08 1.14 1.08 1.08 1.07 1.08 1.06 1.12 1.08
46 1.10 1.08 1.15 1.12 1.08 1.07 1.07 1.06 1.10 1.10
47 1.10 1.10 1.16 1.11 1.08 1.08 1.08 1.08 1.13 1.10
48 1.08 1.10 0.94 1.12 1.08 1.08 1.06 1.07 1.14 1.10
49 1.10 1.09 1.10 1.08 1.07 1.08 1.08 1.07 1.13 1.09
50 1.06 1.07 1.12 1.10 1.08 1.06 1.04 1.04 1.09 1.08
51 1.07 1.06 1.21 1.09 1.08 1.06 1.05 1.05 1.17 1.08
52 1.08 1.06 1.20 1.11 1.08 1.06 1.05 1.05 1.11 1.09
53 1.07 1.06 1.17 1.09 1.06 1.06 1.05 1.04 1.09 1.08
54 1.07 1.07 1.15 1.10 1.07 1.06 1.05 1.05 1.11 1.08
55 1.07 1.06 1.11 1.09 1.06 1.06 1.06 1.04 1.10 1.10
56 1.08 1.07 1.15 1.09 1.08 1.07 1.07 1.06 1.06 1.09
57 1.07 1.07 1.10 1.09 1.08 1.06 1.06 1.04 1.10 1.09
58 1.07 1.07 1.13 1.10 1.08 1.07 1.06 1.05 1.12 1.09
59 1.08 1.08 0.92 1.10 1.07 1.06 1.05 1.06 1.15 1.08
60 1.08 1.08 1.19 1.09 1.08 1.06 1.06 1.06 1.15 1.08
61 1.08 1.08 1.16 1.09 1.08 1.07 1.06 1.06 1.12 1.07
62 1.08 1.08 1.15 1.10 1.07 1.07 1.07 1.06 1.12 1.10
63 1.08 1.09 1.13 1.13 1.08 1.07 1.06 1.06 1.10 1.10
64 1.05 1.06 1.18 1.11 1.06 1.05 1.04 1.04 1.16 1.09
65 1.06 1.06 1.19 1.13 1.06 1.05 1.04 1.04 1.14 1.10
66 1.06 1.05 1.19 1.09 1.07 1.05 1.04 1.04 1.14 1.08
67 1.06 1.05 1.21 1.09 1.06 1.07 1.04 1.04 1.18 1.08
68 1.05 1.04 1.15 1.11 1.08 1.05 1.03 1.04 1.12 1.07
69 1.06 1.06 1.09 1.10 1.07 1.06 1.04 1.04 1.14 1.09
70 1.07 1.06 1.14 1.10 1.08 1.06 1.05 1.04 1.12 1.08
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Table 8.11: Fatigue damage rates for Gtted model curve with b =  5.0 (6)

PSD No. amplitucle=4.0 ampiitude=5.0
1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0

36 1.06 1.05 1.05 1.03 1.12 1.07 1.05 1.04 1.04 1.03
37 1.08 1.05 1.05 1.04 1.10 1.06 1.07 1.05 1.05 1.04
38 1.07 1.05 1.05 1.05 1.11 1.07 1.06 1.05 1.04 1.05
39 1.08 1.06 1.06 1.06 1.10 1.08 1.07 1.06 1.05 1.05
40 1.08 1.07 1.08 1.05 1.01 1.08 1.06 1.05 1.06 1.04
41 1.07 1.07 1.08 1.12 1.04 1.08 1.07 1.07 1.07 1.10
42 1.07 1.07 1.06 1.13 1.08 1.06 1.07 1.07 1.06 1.06
43 1.06 1.04 1.05 1.04 1.11 1.09 1.05 1.03 1.04 1.04
44 1.07 1.05 1.05 1.04 1.09 1.05 1.05 1.04 1.04 1.03
45 1.07 1.05 1.06 1.05 1.10 1.08 1.06 1.05 1.05 1.04
46 1.05 1.06 1.06 1.05 1.09 1.08 1.05 1.04 1.05 1.04
47 1.08 1.06 1.06 1.06 1.14 1.09 1.07 1.06 1.06 1.05
48 1.07 1.06 1.05 1.06 1.13 1.08 1.06 1.05 1.05 1.05
49 1.06 1.07 1.07 1.06 1.12 1.07 1.05 1.06 1.06 1.05
50 1.06 1.04 1.03 1.03 1.08 1.07 1.05 1.03 1.02 1.03
51 1.07 1.04 1.04 1.04 1.14 1.07 1.06 1.04 1.03 1.03
52 1.06 1.05 1.04 1.04 1.16 1.07 1.05 1.05 1.03 1.03
53 1.05 1.05 1.04 1.03 1.14 1.07 1.04 1.04 1.04 1.03
54 1.05 1.05 1.04 1.04 1.09 1.08 1.05 1.04 1.03 1.04
55 1.05 1.05 1.04 1.03 1.09 1.08 1.05 1.04 1.04 1.03
56 1.07 1.06 1.06 1.05 1.05 1.08 1.06 1.05 1.05 1.04
57 1.07 1.05 1.04 1.03 1.12 1.07 1.06 1.04 1.04 1.03
58 1.05 1.06 1.04 1.04 1.10 1.07 1.04 1.05 1.04 1.03
59 1.06 1.05 1.05 1.05 1.12 1.06 1.05 1.04 1.04 1.04
60 1.06 1.05 1.05 1.04 1.12 1.07 1.05 1.04 1.05 1.04
61 1.06 1.05 1.05 1.05 1.10 1.07 1.06 1.05 1.04 1.04
62 1.06 1.06 1.05 1.04 1.10 1.08 1.05 1.05 1.04 1.03
63 1.07 1.06 1.05 1.05 1.10 1.08 1.07 1.05 1.04 1.04
64 1.05 1.04 1.03 1.03 1.13 1.07 1.04 1.03 1.02 1.03
65 1.05 1.04 1.03 1.03 1.14 1.08 1.05 1.03 1.03 1.03
66 1.05 1.04 1.03 1.03 1.11 1.07 1.04 1.03 1.02 1.02
67 1.05 1.05 1.03 1.03 1.14 0.83 1.04 1.04 1.02 1.03
68 1.06 1.04 1.03 1.03 1.11 1.07 1.05 1.03 1.02 1.02
69 1.06 1.05 1.03 1.03 1.07 1.07 1.05 1.05 1.02 1.03
70 1.06 1.05 1.04 1.03 1.10 1.07 1.06 1.04 1.04 1.03
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8.5 A n  in trod u ction  to  neural co m p u ta tio n

8.5.1 Basic structure o f neural network

Introduction

Neural computing is a new computer information processing technique quite dif­
ferent to conventional programmed computing [87] [88]. Programmed computing 
approaches are baaed on devising an algorithm and a set of rules for solving the 
problem and then correctly coding these in software. If the required algorithm 
and set of rules are not known, then they must be developed —  even if it is 
very difficult and time consuming. Neural computing is a new approach that 
does not require the algorithm to be known or any rule development. For some 
types of problems such as pattern recognition or data analysis and control where 
rule development is impossible or too difficult, Neural computing offers many 
possibilities.

D efinition of a neural network

The primary structures in neural computing is the neural network which is defined 
as follows.

• DEFINITION • A neural network is a parallel, distributed information pro­
cessing structure consisting of processing elements (which can process a local 
memory and can carry out localised information processing operations) inter­
connected via undirectional signal channels called connections. Each processing 
element has a single output connection that.branches (“fans out”) into as many 
collateral connections as desired; each carries the same signal -  the processing 
element output signal. The processing element output signal can be of any m ath­
ematical type desired. The information processing that goes on within each pro­
cessing element can be defined arbitrarily with the restriction that it must be 
completely local; that is, it must depend only on the current values of the input 
signals at the processing element via impinging connections and on values stored 
in the processing element’s local memory.

According to this definition, neural networks are composed of processing ele­
ments and connections. It is therefore a parallel distributed information process­
ing structure in the form of directed graph, i.e., a geometrical object consisting 
of a set of points (called nodes) along with a set of directed line segments (called 
links between them), with the following sub-definitions and restrictions:
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1. The nodes of the graph are called processing elements (or neurons).
2. The links of the graph are called connection. Each connection function 

as an instantaneous undirectional signal-conduction path.
3. Each processing element can receive any number of incoming connections 

(also called input connections).
4. Each processing element can have any number of outgoing connections, 

but the signals in all these must be the same. In effect, each processing element 
has a single output connection that can branch or fan out into copies to form 
multiple output connections, each of which carries the same identical signal (the 
processing element’s output signal).

5. Processing elements can have local memory.
6. Each processing element possesses a transfer function which uses local 

memory on the input signals, thereby producing the processing element’s output 
signal. In other words, the only inputs allowed to the transfer function are the 
values stored in the processing element’s local memory and the current value of 
the input signals in the connections received by the processing element. The 
only output allowed from the transfer function is the value stored in the process­
ing element’s local memory and the processing element’s output signal. Transfer 
functions can operate continuously or episodically. If they operate episodically, 
there must be an input called activate” that causes the processing element’s 
transfer function to operate on the current input signal and local memory value 
to produce an updated output signal (and possibly to modify the local memory 
value). Continuous processing elements are always operating. The “activate” in­
put arrives via a connection from a scheduling element that is part of the network.

7. Input signals to a neural network from outside the network arrive via 
connections that originate in the outside world. Outputs from the network to the 
outside world are connections that leave the network.

Figure 8.12 shows a typical neural network architecture and Figure 8.13 shows 
the internal details of a neural network processing element. The processing el­
ement transfer function receives, as input, the signals arriving via the incoming 
connections which impinge upon the processing element, aa well as values from 
local memory. Given these inputs, the transfer function outputs values to be 
stored in specified locations in local memory, aa well as supplying the processing 
element’s output signal. The output signal then branches into copies after leaving 
the processing element.
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Figure 8.12: A typical neural ne tw ork  architecture

Input signals
X ,  X Xn ••

Transfer 
function

a
Local 
memory

activate"

Y"*- output signal

copies of output signal

Figure 8.13: A generic processing e lem ent

145



Transfer functions and local m em ories

The transfer function receives values from the incoming connections and from 
local memory. It produces outputs from the processing element and values from 
storage in the local memory. Each time an active signal is sent, these operations 
are performed. If the neural network is not continuously running, the processing 
element ceases to function after each operation is performed.

A typical example of such a transfer function is a case where the input signal 
(assumed to be a floating point number) of the connections are combined to 
form a weighted sum of the form Ik =  • Xk for input class k with Xk as the
input vector and Wk as the weight. A weight is a local memory variable of a 
specified data type assigned to input connections. A vector which has weights as 
components is known cis a weight vector.

Training of a neural network

Weight plays a very important rule in most neural networks that have learning 
capabilities. Learning is accomplished through a modification of the processing 
element weights. There are many kinds of training methods for different types of 
networks which depend on different learning laws. There can be divided into su­
pervised training, graded training , and self-organised training at the fundamental 
level.

Supervised training is used in this thesis. This type of training is generally 
used for the situation where the network is functioning as an input/output sys­
tem. In other words, the network receives an input vector x  and emits a vector y. 
Supervised training for such a system implies a regimen in which the network is 

supplied with a sequence of examples (x i ,y i) ,  (x2,y2), ••••, (x k ,y k )v  of “desir­
able” or “correct” input/output pairs. As each input Xk is entered into the neural 
network, the “correct output” yk is also supplied to the network. The network is 
thus told precisely what it should be emitting as its output. The actual output 
is then taken as an estimation of the correct output.

In many supervised training situations the (xk, yk) pairs used during training 
are assumed to be examples of a fixed function /. The neural network is then 
used to identify the system. It is generally of use for situations where examples 
can be obtained but where the function is difficult to establish using traditional 
regression methods. This type of network is introduced in the following section.
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8.5.2 M apping Networks

The approximation of mathematical functions is an important issue in many 
fields. Numerous methods have been developed to solve this problem. Essentially, 
all of them can be regarded as variants of regression analysis. Neural networks 
are more capable of doing this kind work. Neural networks can be viewed as a 
type of regression that in some ways generalises traditional regression approaches. 
One kind of multi-layer data transformation network is back propagation neural 
network(BPN). This is the method used in this thesis and is introduced here.

The Structure of a back propagation network

The typical structure of a back propagation network is shown in Figure 8.14 
[89]. Basically, this type of neural network has a fully interconnected multi-layer 
structure. It uses supervised training.

Figure 8.14: Layout o f  back propagation  ne tw ork

Along with the arrow direction of the connections, the first layer is the input 
layer which read in the inputs Xp from the input/output pairs ( x i ,y i ) ,  (x2,y2)j 
...., (xk,yk)- The last layer, the output layer, gives the estimation results of 
yp. The layers in between are the so-called hidden layers. The size of the input 
and output layers is determined by the function which the network is modelling. 
The number of hidden layers and the sizes for each layer, however, can in theory 
be arbitrary. According to the Kolmogorov’s mapping neural network existence 
theorem [87] (p i22), any continuous function of n variables can be implemented 
exactly by a three layer network with (2n-hl) processing elements in the hidden 
layer. This theorem provides some guidance for the selection of the hidden layer
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size.
The work of a back propagation network can be divided into a forward pass 

and a backward pass. The backward pass only occurs on training trials. This for­
ward and backward pass form a loop during the network training which is used 
to search for a set of weights which gives the network its optimum performance. 
Mathematically, the optimum performance means the best estimation of the de­
sired output (or legist error between them). After the training process, this set 
of weights can be regarded aa one special regression of the function relationship
between the input and output. The trained network can then be used for further
computation using an input for which the desired output is not known.

Forward pass

The inputs for the processing elements in the input layer are determined by the 
system input. For any processing elements in the hidden layer and output layer, 
the input from the connections are taken as the weighted sum, that is,

n e t p j  =  ^  W j i O p i  ( 8 . 2 9 )
t

The output from each processing element j  can be assumed as any differen­
tiable monotonie function,

^ V 3  “  / j ( n e f p j )  ( 8 . 3 0 )

From the output layer, the estimation for function value yp can then be 
obtained :

=  Z ! (8.31)
j

O p k  =  f k i ' ^ ^ ^ p k )  ( 8 . 3 2 )

The superscript “o” here refers to the quantities on the output layer.

Backward propagation

During the network training, the mean square error of the output vector is taken 
as an objective function which need to be minimised. The error can be defined

as 6pk =  {Vpk — Opk). The total error of the output layer is

=  (8.33)
 ̂ k

The value |  here is used to make the calculation process easier. The values of 
the weights can be adjusted such that the total error reduces. This can be done
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by using a gradient direction search, such as

As =  Opj, the negative gradient direction is:

B F
-  = iVph -  Opk)fk'{net°^)Ofj (8.35)

If the sigmoid function is used, then

/(«etj-fc) = (8.36)

and
r '  = /,/:(! -  A“) = ^^Opk{l -  Opk) (8.37)

where fi is a, constant.
By defining a step size ij and a quantity as

%  = (Vpk -  Opk)fk{netli^) (8.38)

The weights can be upgraded as

+ Vpk^pkOpi (8 39)

Following on further, the weights of the hidden layers can be upgraded by 
changing 6°!̂  to

Si^ = / f{net^pi) '£S;k^^i  (8.40)
k

Considerations in network training

The back propagation algorithm described previously provides a way of network 
training. Implementation of the algorithm is, in many ways, a more difficult 
problem. Since the weights are generally assigned as random initial values at the 
beginning of the training loop, the problem which arises is how can the network 
find a global minimum in the error space. As shown in Figure 8.15, it is quite 
possible for a network to cease its training loop at a local stationery point.

This is a general problem for nonlinear programming and there is no universal 
panacea. Four steps have been taken to avoid such problems arising.

1). Different initial values for the weight and bias were used;
2). Different size of network were tested;
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3). The iteration was allows to jump out from a stationary point and search 
in a wider area;

4). An “eye test” (plot checking) waa used to compare the results with the 
time domain analysis results.

Some results have also been compared with least square fitted results.

8.6 T he use o f  neural netw orks for fa tigu e anal­
ysis

8.6.1 Toolbox for fatigue analysis o f random  stress his­
tories w ith  determ inistic com ponent

The fatigue damage for a situation where a stochastic stress history is combined 
with a deterministic components can be calculated using model Equation 8.11. 
The problem which remains is how should the model parameters be calculated 
using the frequency domain and deterministic component information instead of 
following the whole procedure. This is the task of regression. The spectrum can 
be well characterised by its mean frequency fm and its irregularity factor 7 and 
the deterministic component can be described by its amplitude A and frequency 

fd.
Thus, the task remaining is the determination of the relationship between the 

following parameters:

• input : fm, 7 , /I, Id

• output: Cl, C2, C3, r, a , /?, /z, E[P]

Once the model parameters have been evaluated by employing least square
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techniques, examples between model parameters and the stress history informa­
tion are obtained. The relationship could then be established using traditional 
regression methods. However, for the multi-input situation and with such a large 
number of cases, regression is not an easy task. Moreover, regression analysis 
has to be performed for each output parameter. The neural network approach is 
therefore a much better alternative in this situation.

A four-layer network was established for each of the output parameters. These 
subnets worked together just like one network in order to perform the calculation. 
The network training, of course, is performed on each subnetwork. As mentioned 
earlier during the network training, the network was allowed to “get off’ the 
local stationery point. This made the search for the global minimum possible but 
results in a longer training time.

Some networks converged monotonically, while others had to be pulled out 
from local stationary points. Figure 8.16 shows the convergence path of //, (7, C2  

and E[P\ for a typical network.
Some rainflow cycle PDF’s calculated using this neural network toolbox are 

plotted in Figure 8.17, together with the time domain analysis results. As with 
least square fitting, the higher range part is magnified by 10 and plotted on the 
same graph for visualisation purpose.

The residual of the neural network output with the training data was not 
checked directly. Again, they were checked using a comparison of the fatigue 
damage rates with the time domain results. For an S-N  curve slope b=5.0, the 
results are listed in Table 8.14 to Table 8.19. The values in the second row of 
these tables refer to the frequency of the deterministic component. These tables 
show that the neural network toolbox can give results which meet quite well with 
the time domain solution.

8.6.2 Toolbox of fatigue design for G aussian stress his­
tories

A regression analysis on the model parameters evaluated by least square curve 
fitting in the previous section leads to a formula for the PDF when the stress 
responses are assumed to be Gaussian. However, this regression analysis haa been 
performed using multilayer neural network in order to maintain consistency with 
the toolbox developed for the situation when the random signals are combined 
with one significant deterministic component. As stated before, such a neural 
network approach needs no model for the output data.
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The input and output layer of the network are:

• input \ fm, 7

• output : Cl, C2 , C'a, r, a

The peak rate is calculated as E[P] =  \Jrn4 Jrn2 as the signal is assumed as 
Gaussian.

Four three layer networks were established for this problem. They were sep­
arately intended to perform a regression analysis for C2 , C3 , r ,  and a. Ci is 
calculated as (7i =  1.0 — C2 — C3 . Once training of the networks was completed, 
the data was used together with the combined signal results to form a complete 
toolbox for doing fatigue analysis. The convergence paths for the four parameters 
are shown in Figure 8.18.

Figure 8,19 shows the rainflow cycle PDF’s from both the time domain anal­
ysis and neural network computation, together with the corresponding damage 
densities.

The model parameters obtained for the 70 sets of data used for training are 
given in Tables 8.12 and 8.13 along with the damage rates when 6=5. and b=8.0 
are used. These damage rates show that the fatigue damage calculated from the 
neural network has a reasonable consistency with the time domain analysis.

8 .7  D iscu ssion

Some previous research work has been devoted to the fatigue analysis of random 
response histories which contain one deterministic component [79] [53]. However, 
most of them are unsatisfactory for different reason [79]. Madsen’s formula can 
not be expected to work well [53] because this method simply employs a correc­
tion factor method for the random response and an interpolation using confluent 
hypergeometric functions which has no theoretical background. The most impor­
tant conclusion is, that it does not make sense to interpolate the damage between 
the purely stochastic and deterministic component.

A neural network toolbox for the fatigue analysis of a random response history 
which contains one deterministic component is developed in this chapter. A 
typical application of this toolbox is the fatigue analysis of wind turbine blades. 
Analysis of the monitored response histories in the previous chapters has shown 
that the existence of deterministic component cause serious problem when other
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methods are employed in the analysis. The toolbox developed in this chapter is 
of particular significance for such structures.

Because of the complexity involved in developing a theoretical solution for the 
combined signal problem, a numerical simulation method was adopted instead to 
solve this problem. As seen from the output results of the neural network toolbox 
developed in this chapter, the simulation worked successfully. This means that 
both the parameter evaluation and neural network training were successful.

In principle, the toolbox can be extended to the situation where there are 
more than one deterministic components existing in the response history. The 
procedure would be the same as in this chapter but more attention should be 
paid to the selection of models and parameters. The relative phase between the 
sine wave would also be important for such situations.
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Table 8.12: Model parameters calculated from neural network toolbox for the 70 PSD^s
use.

No. Cl C2 C3 T a Db=s
1 0.0263 0.7187 0.2550 0.1111 0.9286 0.9816 0.9636
2 0.0685 0.6691 0.2623 0.1545 0.9386 1.0357 1.0640
3 0.0806 0.8795 0.0399 0.1635 0.9608 1.0537 1.0820
4 0.1781 0.4494 0.3725 0.1689 0.9743 1.0369 1.0927

, 5 0.2506 0.3822 0.3672 0.2005 1.0072 1.0497 1.1327
6 0.4343 0.5594 0.0063 0.3368 1.1072 1.1047 1.3232
7 0.7022 0.2785 0.0192 0.4992 1.2739 1.1258 1.5224
8 0.5744 0.4145 0.0112 0.3008 1.1835 1.1071 1.3888
9 0.5692 0.4292 0.0017 0.2520 1.1560 1.0625 1.3031
10 0.5226 0.4748 0.0027 0.1959 1.0997 1.0317 1.2019
11 0.5069 0.4867 0.0064 0.1901 1.0919 1.0305 1.1816
12 0.5802 0.2176 0.2022 0.2106 1.2180 1.0524 1.2590
13 0.6888 0.1560 0.1553 0.1739 1.2995 1.0819 1.3677
14 0.8029 0.0753 0.1218 0.1770 1.5392 0.9492 1.3107
15 0.8942 0.0495 0.0563 0.1330 1.5286 0.9298 1.3409
16 0.9196 0.0379 0.0425 0.1709 1.6305 0.9200 1.3236
17 0.9258 0.0355 0.0386 0.2310 1.6361 0.8848 1.2337
18 0.9851 0.0073 0.0077 0.3533 1.6786 0.3240 0.3289
19 0.2324 0.6420 0.1256 0.3651 0.1118 0.6239 0.5453
20 0.2858 0.6246 0.0896 0.5572 0.1712 0.8171 0.9030
21 0.2337 0.6418 0.1245 0.5490 0.2015 0.8682 0.9642
22 0.1761 0.6388 0.1851 0.6640 0.2360 0.9939 1.2231
23 0.1326 0.6143 0.2531 0.6294 0.3135 0.9915 1.0915
24 0.1163 0.5404 0.3432 0.6528 0.3630 1.0303 1.1468
25 0.1107 0.5287 0.3606 0.5300 0.4397 0.9998 1.0865
26 0.0645 0.5282 0.4073 0.1630 0.6321 0.9412 0.9161
27 0.0362 0.4899 0.4739 0.1150 0.6991 1.0035 1.0307
28 0.0306 0.5563 0.4130 1.0278 0.7282 1.0938 1.3307
29 0.0741 0.6281 0.2978 0.5843 0.5643 1.0463 1.1802
30 0.0649 0.5318 0.4032 0.5747 0.5525 1.0624 1.1959
31 0.0504 0.4605 0.4892 0.5414 0.5250 1.0786 1.1988
32 0.0581 0.4261 0.5158 0.1713 0.5427 1.0207 1.1023
33 0.0885 0.4739 0.4376 0.4197 0.6841 0.9894 1.0139
34 0.1475 0.6256 0.2269 0.2647 0.8426 0.9478 0.9448
35 0.0335 0.8945 0.0721 0.1797 0.9052 1.1036 1.1258
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Table 8.13: Model parameters calculated from neural network toolbox for the 70 P S D ’s
use.

No. Cl C2 Cs T a ^5=5 Db-&
36 0.0772 0.6717 0.2510 0.5180 0.4767 1.0733 1.2122
37 0.0956 0.5771 0.3273 0.5277 0.4464 1.0499 1.1623
38 0.1139 0.4864 0.3996 0.5265 0.4288 1.0816 1.1953
39 0.1739 0.3619 0.4642 0.5107 0.4164 1.0772 1.2083

,40 0.1976 0.3238 0.4786 0.5039 0.4504 1.0148 1.1205
41 0.2531 0.3255 0.4214 0.5750 0.6277 1.0274 1.1682
42 0.2361 0.4322 0.3317 0.4541 0.8170 0.9909 1.0113
43 0.1016 0.6855 0.2129 0.5375 0.3744 1.0425 1.1876
44 0.1608 0.5457 0.2934 0.5209 0.3510 1.0217 1.1251
45 0.1330 0.5225 0.3445 0.5489 0.3640 1.0191 1.0959
46 0.1213 0.4551 0.4236 0.3607 0.3774 0.9645 0.9680
47 0.2527 0.2704 0.4769 0.5007 0.3272 1.0374 1.1060
48 0.2937 0.2473 0.4591 0.5092 0.4412 0.9971 1.0921
49 0.3975 0.3103 0.2922 0.6046 0.7332 1.0455 1.2710
50 0.1542 0.6294 0.2163 0.5084 0.3087 1.0116 1.0749
51 0.1473 0.6219 0.2308 0.5161 0.3181 0.9805 0.9915
52 0.1239 0.6111 0.2651 0.5481 0.3164 0.9218 0.9108
53 0.1994 0.5641 0.2365 0.7335 0.3300 1.0889 1.5005
54 0.2832 0.4638 0.2530 0.6596 0.3707 1.0367 1.3381
55 0.2152 0.4669 0.3179 0.3124 0.3919 0.7974 0.7291
56 0.3431 0.2577 0.3992 0.5081 0.3024 0.9691 1.0496
57 0.2593 0.5618 0.1789 0.5511 0.2222 0.9562 1.0875
58 0.2611 0.5396 0.1993 0.5414 0.2225 0.9007 0.9713
59 0.2852 0.4885 0.2263 0.5527 0.2200 0.9475 1.0365
60 0.3161 0.4017 0.2822 0.5355 0.2211 0.9684 1.0533
61 0.3453 0.3772 0.2776 0.5369 0.2223 0.9153 1.0212
62 0.3648 0.3226 0.3126 0.5228 0.2153 0.9031 0.9473
63 0.4324 0.2291 0.3385 0.5128 0.1871 0.9301 0.9965
64 0.2481 0.6395 0.1125 0.5075 0.1968 0.7771 0.8209
65 0.2407 0.6417 0.1176 0.6136 0.2010 0.9082 1.0989
66 0.2484 0.6330 0.1186 0.6996 0.2038 1.0413 1.4639
67 0.2600 0.6319 0.1081 0.7082 0.2015 1.0840 1.6058
68 0.2378 0.5932 0.1690 0.2914 0.2103 0.5750 0.4966
69 0.2416 0.5536 0.2048 0.3117 0.2147 0.6600 0.5845
70 0.4637 0.3839 0.1524 0.5861 0.2272 0.8737 1.0505
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Table 8.14: Fatigue damage rates from neural toolbox h =  5.0 (1)

PSD No. amplitude=1.0 amplitude=2.0
0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0

1 1.16 1.23 1.23 1.26 1.28 1.30 1.16 1.24 1.22 1.22
2 1.05 1.13 1.13 1.13 1.15 1.19 1.07 1.17 1.15 1.13
3 0.99 1.06 1.08 1.08 1.11 1.15 1.00 1.11 1.10 1.08
4 1.01 1.10 1.12 1.15 1.19 1.23 1.03 1.13 1.13 1.12
5 1.05 1.16 1.19 1.23 1.27 1.32 1.07 1.18 1.17 1.18
6 1.02 1.07 1.09 1.12 1.17 1.21 1.01 1.08 1.08 1.10
7 0.98 1.05 1.08 1.11 1.13 1.15 1.01 1.08 1.08 1.08
8 1.03 1.11 1.12 1.16 1.19 1.21 1.03 1.10 1.09 1.10
9 1.04 1.11 1.14 1.19 1.23 1.24 1.05 1.10 1.10 1.11
10 1.06 1.17 1.20 1.25 1.29 1.28 1.08 1.14 1.13 1.14
11 1.15 1.22 1.26 1.34 1.36 1.29 1.17 1.17 1.17 1.19
12 1.03 1.13 1.19 1.22 1.20 1.10 1.08 1.11 1.11 1.11
13 0.92 1.03 1.09 1.15 1.19 1.20 1.01 1.06 1.06 1.07
14 0.97 1.12 1.21 1.25 1.25 1.25 1.03 1.11 1.10 1.09
15 1.00 1.10 1.12 1.15 1.12 1.08 0.98 1.03 1.02 1.03
16 0.93 1.06 1.10 1.07 1.07 1.06 1.01 1.03 1.00 0.99
17 0.75 0.89 0.96 0.98 0.98 0.96 1.02 1.06 1.01 0.98
18 1.13 1.25 1.20 1.14 1.07 1.04 1.20 1.16 1.07 1.02
19 1.09 1.26 1.18 1.08 1.03 0.98 1.21 1.17 1.07 1.00
20 0.86 1.04 1.09 1.05 0.99 0.93 1.16 1.13 1.06 1.01
21 0.84 0.99 1.04 1.04 0.98 0.96 1.13 1.14 1.07 1.04
22 0.78 0.96 1.04 1.06 1.05 1.04 1.13 1.20 1.16 1.11
23 0.82 0.99 1.05 1.07 1.06 1.06 1.13 1.22 1.18 1.13
24 0.85 1.07 1.14 1.14 1.14 1.12 1.14 1.24 1.20 1.15
25 0.92 1.12 1.19 1.20 1.18 1.18 1.16 1.24 1.23 1.19
26 1.10 1.22 1.24 1.25 1.26 1.27 1.15 1.26 1.24 1.22
27 1.18 1.31 1.36 1.36 1.38 1.40 1.26 1.37 1.37 1.34
28 1.06 1.11 1.11 1.12 1.13 1.17 1.15 1.23 1.23 1.25
29 0.94 1.07 1.07 1.06 1.04 1.05 1.05 1.13 1.11 1.10
30 1.16 1.27 1.27 1.25 1.24 1.23 1.20 1.29 1.25 1.22
31 1.18 1.29 1.31 1.29 1.29 1.29 1.22 1.32 1.29 1.25
32 1.15 1.28 1.30 1.31 1.30 1.31 1.20 1.32 1.29 1.27
33 1.10 1.22 1.25 1.26 1.28 1.29 1.18 1.29 1.27 1.25
34 1.06 1.17 1.19 1.21 1.23 1.25 1.14 1.25 1.24 1.23
35 1.03 1.12 1.15 1.17 1.20 1.23 1.11 1.22 1.22 1.21
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Table 8.15: Fatigue damage rates from neural toolbox b =  5.0 (2)

PSD No. amplitude=3.0
2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0

1 1.22 1.22 1.08 1.20 1.20 1.19 1.18 1.18 1.02 1.16
2 1.13 1.14 1.03 1.16 1.15 1.13 1.12 1.12 0.99 1.13
3 1.09 1.10 0.98 1.12 1.12 1.09 1.10 1.11 0.97 1.11
4 1.14 1.15 1.02 1.14 1.15 1.13 1.14 1.14 1.00 1.13
5 1.20 1.21 1.07 1.19 1.18 1.18 1.18 1.19 1.05 1.17
6 1.11 1.13 1.02 1.10 1.10 1.10 1.11 1.12 1.02 1.10
7 1.08 1.08 1.02 1.09 1.08 1.07 1.07 1.07 1.02 1.08
8 1.10 1.11 1.04 1.10 1.09 1.08 1.08 1.08 1.05 1.09
9 1.13 1.11 1.07 1.10 1.09 1.09 1.10 1.08 1.08 1.09
10 1.15 1.13 1.10 1.13 1.11 1.11 1.11 1.09 1.12 1.13
11 1.17 1.10 1.18 1.15 1.13 1.14 1.12 1.06 1.19 1.13
12 1.08 0.98 1.12 1.11 1.08 1.08 1.05 0.98 1.14 1.11
13 1.07 1.07 1.10 1.12 1.08 1.06 1.05 1.05 1.10 1.13
14 1.07 1.07 1.10 1.13 1.08 1.04 1.03 1.02 1.08 1.10
15 1.01 1.02 1.03 1.05 1.02 1.02 1.02 1.03 1.00 1.04
16 1.00 1.00 1.06 1.06 1.00 0.97 0.98 0.98 1.04 1.04
17 0.98 0.99 1.09 1.08 1.01 0.98 0.98 1.00 1.06 1.07
18 0.99 1.00 1.12 1.10 1.01 0.97 0.96 0.99 1.05 1.07
19 0.99 0.98 1.12 1.10 1.01 0.96 0.96 0.97 1.04 1.06
20 0.99 0.98 1.10 1.07 1.01 0.97 0.97 0.98 1.03 1.03
21 1.00 1.01 1.10 1.09 1.03 1.00 0.99 1.01 1.04 1.05
22 1.07 1.06 1.13 1.17 1.12 1.07 1.05 1.06 1.08 1.13
23 1.09 1.08 1.11 1.18 1.14 1.10 1.07 1.07 1.09 1.15
24 1.12 1.10 1.10 1.19 1.15 1.11 1.09 1.08 1.08 1.17
25 1.16 1.15 1.08 1.17 1.16 1.12 1.10 1.10 1.05 1.15
26 1.20 1.20 1.08 1.20 1.19 1.17 1.15 1.14 1.05 1.17
27 1.32 1.33 1.16 1.29 1.30 1.26 1.25 1.24 1.09 1.24
28 1.28 1.33 1.09 1.21 1.23 1.24 1.26 1.29 1.03 1.19
29 1.10 1.12 0.97 1.06 1.06 1.07 1.07 1.10 0.95 1.07
30 1.20 1.21 1.08 1.19 1.16 1.14 1.14 1.14 1.04 1.16
31 1.24 1.24 1.11 1.22 1.20 1.17 1.16 1.16 1.06 1.18
32 1.25 1.24 1.11 1.23 1.21 1.19 1.17 1.17 1.06 1.19
33 1.25 1.24 1.10 1.23 1.22 1.20 1.18 1.17 1.05 1.19
34 1.22 1.22 1.08 1.21 1.20 1.19 1.18 1.17 1.03 1.17
35 1.20 1.20 1.07 1.19 1.20 1.19 1.17 1.17 1.02 1.16
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Table 8.16: Fatigue damage rates from neural toolbox b =  5.0 (3)

PSD No. amplitude=4.0 amplitude=5.0
1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0

1 1.16 1.15 1.14 1.13 1.00 1.15 1.14 1.12 1.10 1.09
2 1.12 1.10 1.09 1.09 1.01 1.14 1.13 1.09 1.08 1.06
3 1.11 1.08 1.08 1.08 1.01 1.15 1.13 1.08 1.07 1.06
4 1.13 1.11 1.11 1.11 1.05 1.17 1.15 1.11 1.10 1.09
5 1.16 1.14 1.14 1.14 1.09 1.20 1.17 1.14 1.12 1.11
6 1.08 1.08 1.08 1.09 1.06 1.13 1.09 1.07 1.06 1.06
7 1.07 1.05 1.04 1.05 1.05 1.11 1.08 1.04 1.03 1.02
8 1.06 1.05 1.05 1.06 1.08 1.12 1.07 1.04 1.03 1.03
9 1.07 1.06 1.06 1.06 1.11 1.12 1.08 1.05 1.04 1.03
10 1.09 1.07 1.08 1.07 1.15 1.15 1.10 1.06 1.06 1.05
11 1.09 1.11 1.10 1.06 1.21 1.15 1.08 1.08 1.07 1.04
12 1.07 1.07 1.06 1.00 1.17 1.13 1.07 1.05 1.03 0.98
13 1.09 1.06 1.04 1.04 1.04 1.08 1.03 1.00 0.99 0.98
14 1.05 1.00 0.99 0.99 0.96 0.99 0.96 0.94 0.96 0.99
15 1.05 1.09 1.08 1.08 0.79 0.96 1.08 1.09 1.00 1.00
16 0.98 0.95 0.97 0.96 0.84 0.91 0.93 0.97 1.01 1.03
17 1.01 0.98 0.98 0.98 0.95 0.99 0.96 0.94 0.94 0.96
18 1.01 0.98 0.98 1.00 1.02 1.06 1.02 1.00 0.99 1.00
19 0.99 0.96 0.97 0.99 1.01 1.06 1.02 0.99 1.00 1.02
20 0.99 0.96 0.97 0.99 0.99 1.03 1.00 0.98 0.99 1.02
21 1.00 0.98 0.98 1.01 1.00 1.04 1.00 0.99 0.99 1.02
22 1.08 1.04 1.03 1.05 1.06 1.12 1.07 1.03 1.03 1.04
23 1.11 1.07 1.06 1.07 1.08 1.15 1.11 1.07 1.05 1.06
24 1.14 1.10 1.08 1.08 1.09 1.18 1.14 1.10 1.08 1.08
25 1.14 1.11 1.09 1.09 1.06 1.16 1.14 1.11 1.09 1.09
26 1.16 1.14 1.12 1.11 1.05 1.17 1.16 1.13 1.10 1.09
27 1.24 1.21 1.19 1.18 1.06 1.20 1.20 1.17 1.15 1.13
28 1.21 1.22 1.23 1.25 0.97 1.13 1.16 1.17 1.17 1.18
29 1.07 1.07 1.08 1.10 0.95 1.07 1.08 1.08 1.08 1.10
30 1.14 1.12 1.12 1.12 1.03 1.15 1.13 1.11 1.10 1.10
31 1.17 1.14 1.13 1.13 1.05 1.17 1.16 1.13 1.11 1.11
32 1.18 1.15 1.14 1.13 1.05 1.18 1.16 1.13 1.11 1.10
33 1.18 1.16 1.14 1.13 1.05 1.18 1.17 1.14 1.12 1.10
34 1.17 1.15 1.14 1.13 1.04 1.17 1.17 1.14 1.11 1.10
35 1.17 1.15 1.13 1.13 1.02 1.16 1.16 1.13 1.11 1.09
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Table 8.17: Fatigue damage rates from neural toolbox b =  5.0 (4)

PSD No. amplitude=1.0 amplitude=2.0
0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0

36 0.74 0.88 0.94 0.96 0.98 1.01 1.04 1.12 1.09 1.07
37 0.84 1.03 1.08 1.08 1.09 1.08 1.10 1.19 1.15 1.11
38 0.87 1.06 1.11 1.11 1.10 1.09 1.08 1.17 1.14 1.11
39 0.96 1.11 1.15 1.15 1.13 1.13 1.09 1.16 1.15 1.13
40 1.06 1.16 1.18 1.16 1.15 1.16 1.08 1.18 1.17 1.14
41 1.03 1.12 1.14 1.14 1.15 1.16 1.05 1.15 1.15 1.14
42 0.98 1.08 1.08 1.10 1.11 1.13 1.03 1.15 1.12 1.12
43 0.74 0.88 0.90 0.90 0.91 0.96 1.04 1.12 1.09 1.06
44 0.76 0.94 0.99 1.00 1.01 1.01 1.05 1.15 1.11 1.06
45 0.81 1.00 1.08 1.09 1.08 1.08 1.09 1.18 1.15 1.11
46 0.87 1.08 1.13 1.13 1.12 1.11 1.08 1.17 1.15 1.12
47 0.91 1.07 1.09 1.07 1.08 1.07 1.02 1.12 1.11 1.08
48 0.95 1.08 1.06 1.07 1.07 1.09 1.02 1.13 1.10 1.08
49 0.96 1.04 1.05 1.07 1.07 1.09 1.01 1.10 1.09 1.08
50 0.72 0.87 0.91 0.90 0.90 0.92 1.03 1.11 1.08 1.04
51 0.77 0.92 0.96 0.95 0.96 0.98 1.08 1.15 1.12 1.07
52 0.81 0.98 1.04 1.07 1.05 1.05 1.12 1.21 1.16 1.12
53 0.81 1.00 1.08 1.10 1.10 1.08 1.12 1.20 1.16 1.13
54 0.81 1.04 1.09 1.09 1.08 1.07 1.09 1.19 1.14 1.10
55 0.83 1.04 1.08 1.09 1.08 1.06 1.07 1.16 1.12 1.09
56 0.87 1.04 1.07 1.08 1.07 1.09 1.04 1.13 1.10 1.09
57 0.70 0.88 0.95 0.96 0.94 0.93 1.02 1.11 1.06 1.02
58 0.72 0.90 1.00 1.02 1.00 0.99 1.06 1.13 1.09 1.06
59 0.72 0.93 1.03 1.04 1.01 1.01 1.06 1.13 1.10 1.06
60 0.78 1.01 1.08 1.07 1.04 1.03 1.07 1.15 1.11 1.07
61 0.81 1.04 1.11 1.09 1.08 1.07 1.08 1.16 1.13 1.09
62 0.86 1.05 1.10 1.09 1.09 1.09 1.06 1.14 1.13 1.10
63 0.87 1.04 1.09 1.10 1.10 1.08 1.05 1.14 1.12 1.10
64 0.84 0.98 1.03 1.00 0.96 0.93 1.14 1.14 1.07 1.01
65 0.86 1.03 1.08 1.06 1.02 0.99 1.17 1.18 1.10 1.05
66 0.89 1.08 1.14 1.13 1.07 1.04 1.19 1.20 1.14 1.10
67 0.89 1.10 1.16 1.13 1.07 1.03 1.19 1.22 1.15 1.09
68 0.91 1.14 1.16 1.14 1.09 1.04 1.18 1.23 1.15 1.10
69 0.92 1.14 1.16 1.16 1.10 1.08 1.16 1.20 1.15 1.12
70 0.95 1.15 1.17 1.13 1.10 1.08 1.13 1.20 1.15 1.09
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Table 8.18: Fatigue damage rates from neural toolbox b =  5.0 (5)

PSD No. amplitude=3.0
2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0

36 1.08 1.12 0.98 1.06 1.05 1.05 1.06 1.10 0.97 1.06
37 1.10 1.09 1.02 1.13 1.10 1.07 1.06 1.07 1.01 1.12
38 1.09 1.08 1.02 1.12 1.10 1.08 1.06 1.06 1.01 1.11
39 1.10 1.10 1.03 1.12 1.12 1.10 1.08 1.07 1.02 1.12
40 1.12 1.12 1.04 1.15 1.14 1.11 1.09 1.09 1.02 1.14
41 1.13 1.12 1.02 1.14 1.14 1.12 1.11 1.10 1.00 1.13
42 1.11 1.10 1.01 1.14 1.12 1.12 1.10 1.10 1.00 1.13
43 1.05 1.08 1.01 1.08 1.06 1.04 1.05 1.08 1.00 1.08
44 1.05 1.04 1.02 1.12 1.09 1.05 1.04 1.04 1.01 1.11
45 1.08 1.08 1.05 1.14 1.12 1.08 1.06 1.06 1.04 1.14
46 1.10 1.08 1.06 1.15 1.13 1.10 1.08 1.07 1.05 1.15
47 1.07 1.06 1.01 1.13 1.11 1.08 1.07 1.06 1.01 1.13
48 1.07 1.07 1.02 1.14 1.11 1.09 1.08 1.07 1.02 1.14
49 1.07 1.07 1.01 1.11 1.11 1.09 1.08 1.08 1.01 1.12
50 1.01 1.02 1.03 1.10 1.06 1.03 1.02 1.03 1.02 1.08
51 1.04 1.05 1.07 1.13 1.10 1.05 1.04 1.05 1.05 1.11
52 1.08 1.07 1.11 1.18 1.13 1.10 1.07 1.07 1.08 1.15
53 1.10 1.08 1.10 1.17 1.13 1.10 1.08 1.07 1.09 1.15
54 1.08 1.06 1.07 1.17 1.13 1.09 1.07 1.06 1.07 1.16
55 1.08 1.06 1.07 1.16 1.12 1.09 1.08 1.06 1.06 1.15
56 1.07 1.07 1.04 1.14 1.11 1.10 1.08 1.07 1.04 1.14
57 1.00 0.99 1.04 1.09 1.04 1.01 1.00 1.01 1.02 1.07
58 1.02 1.02 1.07 1.11 1.07 1.04 1.02 1.03 1.05 1.09
59 1.03 1.03 1.06 1.12 1.08 1.05 1.03 1.03 1.05 1.10
60 1.04 1.03 1.07 1.13 1.09 1.06 1.04 1.03 1.05 1.11
61 1.07 1.05 1.08 1.15 1.12 1.08 1.06 1.05 1.06 1.13
62 1.08 1.07 1.07 1.14 1.12 1.09 1.07 1.07 1.06 1.13
63 1.09 1.07 1.07 1.14 1.12 1.10 1.08 1.07 1.06 1.13
64 0.99 0.99 1.09 1.09 1.03 0.98 0.97 0.99 1.03 1.05
65 1.03 1.03 1.12 1.12 1.05 1.01 1.01 1.02 1.07 1.08
66 1.06 1.05 1.15 1.15 1.08 1.05 1.03 1.04 1.09 1.10
67 1.05 1.04 1.14 1.16 1.09 1.04 1.02 1.03 1.08 1.11
68 1.08 1.05 1.15 1.17 1.09 1.06 1.05 1.04 1.10 1.13
69 1.08 1.07 1.14 1.16 1.10 1.07 1.05 1.06 1.10 1.13
70 1.07 1.06 1.11 1.16 1.11 1.06 1.05 1.05 1.08 1.13
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Table 8.19: Fatigue damage rates from neural toolbox b =  5.0 (6)

PSD No. amplitude=4.0 amplitude=5.0
1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0

36 1.06 1.07 1.08 1.11 0.98 1.08 1.08 1.08 1.09 1.11
37 1.10 1.07 1.06 1.07 1.02 1.13 1.11 1.07 1.07 1.08
38 1.10 1.08 1.06 1.06 1.02 1.13 1.11 1.08 1.06 1.06
39 1.11 1.09 1.07 1.07 1.04 1.14 1.12 1.09 1.07 1.06
40 1.13 1.10 1.08 1.07 1.04 1.16 1.14 1.10 1.08 1.07
41 1.13 1.11 1.09 1.08 1.03 1.16 1.14 1.11 1.09 1.07
42 1.11 1.10 1.09 1.08 1.03 1.16 1.13 1.11 1.08 1.07
43 1.06 1.05 1.06 1.09 1.01 1.08 1.06 1.06 1.07 1.10
44 1.08 1.05 1.04 1.05 1.03 1.13 1.09 1.05 1.05 1.06
45 1.11 1.08 1.06 1.06 1.06 1.15 1.12 1.08 1.06 1.06
46 1.13 1.10 1.08 1.07 1.07 1.17 1.14 1.10 1.07 1.07
47 1.11 1.08 1.07 1.06 1.05 1.16 1.13 1.09 1.07 1.06
48 1.11 1.09 1.07 1.07 1.06 1.17 1.13 1.09 1.07 1.06
49 1.11 1.09 1.08 1.07 1.05 1.16 1.13 1.10 1.08 1.07
50 1.05 1.02 1.02 1.04 1.02 1.09 1.05 1.02 1.03 1.05
51 1.08 1.04 1.03 1.05 1.04 1.11 1.07 1.04 1.03 1.05
52 1.10 1.07 1.06 1.07 1.08 1.15 1.10 1.06 1.05 1.06
53 1.11 1.08 1.07 1.07 1.09 1.16 1.11 1.08 1.06 1.07
54 1.11 1.08 1.07 1.06 1.08 1.17 1.12 1.08 1.06 1.06
55 1.11 1.08 1.07 1.06 1.08 1.17 1.12 1.08 1.07 1.06
56 1.11 1.09 1.07 1.07 1.07 1.16 1.12 1.09 1.06 1.06
57 1.02 1.00 0.99 1.01 1.00 1.07 1.03 1.00 1.00 1.02
58 1.05 1.02 1.01 1.03 1.03 1.09 1.05 1.02 1.01 1.03
59 1.06 1.03 1.02 1.03 1.04 1.10 1.06 1.03 1.01 1.03
60 1.07 1.04 1.03 1.03 1.05 1.12 1.08 1.04 1.02 1.03
61 1.09 1.06 1.04 1.04 1.06 1.14 1.09 1.05 1.03 1.03
62 1.10 1.06 1.05 1.06 1.07 1.14 1.11 1.06 1.04 1.05
63 1.10 1.08 1.06 1.06 1.07 1.15 1.11 1.07 1.06 1.05
64 1.00 0.96 0.97 1.00 0.99 1.04 1.00 0.98 0.98 1.02
65 1.02 0.99 0.99 1.01 1.02 1.07 1.02 0.99 1.00 1.03
66 1.05 1.02 1.01 1.03 1.05 1.09 1.05 1.01 1.01 1.04
67 1.05 1.01 1.00 1.02 1.04 1.10 1.05 1.01 1.01 1.03
68 1.06 1.03 1.03 1.03 1.06 1.12 1.06 1.03 1.03 1.04
69 1.07 1.04 1.03 1.05 1.07 1.12 1.06 1.04 1.03 1.05
70 1.08 1.03 1.02 1.04 1.06 1.13 1.08 1.03 1.02 1.03
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C hapter 9 

A ssessm ent o f th e neural 
network too lb ox

9.1 In trod u ction

Loadings on most engineering structures are generally complex. Apart from de­
terministic loading which can be described mathematically, there generally exists 
some loading which can not be described this way. This is the so-called random 
loading for which only statistical parameters are known. Wind turbine blades are 
one such kind of structure. The loading acting on the turbine includes determin­
istic components as well as random ones. The following kinds of deterministic 
loads for wind turbines generally exist [20].

• Wind shear.

• Skew wind.

• Tower interference.

• Mean wind.

• Gravity loading.

• Centrifugal forces.

The stochastic loading, of course, results from wind turbulence.
Among all the deterministic components, the most important is undoubtably 

the one caused by gravity. Its value is usually so big that all the others can be 
classified into the stochastic part. There may be some situations where more 
than one deterministic component is important. For this situation an extended 
form of the toolbox presented in this thesis would be required. In principle, this
should pose few problems for a future work programme. It would simply require
additional parameters to be included in the training process such as the second 
sine wave’s frequency and amplitude. In this case, phase would also be needed.
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9.2 E xtraction  o f d e term in istic  com p on en ts

The bending moments on a wind turbine blade at different sections (or stress 
at hot spots) are the sum of the effects caused by the wind and gravity of the 
blade itself. The response to wind is a stochastic process and the response to 
gravity is generally a sine wave. At the design stage, these two responses are 
computed separately. Based on this information, the fatigue analysis can now 
be performed using the toolbox developed in the previous chapter. In order to 
assess the accuracy of this neural network toolbox, it is necessary to extract the 
deterministic components from the mixed signals. This data can then be used to 
test the toolbox.

As seen from the spectra shown in previous chapters, the gravity induced 
response is the main deterministic component in the bending moment history. 
Thus, a single sine wave situation can be considered. Let X (t)  be the response 
caused by the wind turbulence, and Y(t) be the one caused by the gravity of the 
blade. The monitored signal is then Z(t)=X(t)-hY(t). Together with the bending 
moment histories in Howden HWP330 data files, the azimuth of the turbine blade 
is also recorded, which is generally measured as shown in Figure 9.1. Thus, the 
gravity induced response takes the following form:

r ( 0  =  Asin(<^ +  0  +  ^  (9.1)

where A is the amplitude of the sine wave, D is the global mean value of the 
signal, (j) is the azimuth, and f i s  a suitable phase.

9.2.1 Band pass filter

The task of separating the sine wave from the stochastic signal is then to deter­
mine the value A and f  in Equation 9.1 given that the azimuth is known. This 
can be done in many ways. The first method tried in this thesis was a band pass 
filter which was intended to filter the stochastic signal but let the single sine wave 
(or a very narrow band of signal around it)pass. Unfortunately, this method did 
not work well because of the leakage problem with FFT calculations. This is 
inevitable in discrete FFT computation, regardless of type of window used. The 
sine wave becomes a narrow band signal because of this leakage. Also, there is 
no guarantee that the blade is always rotating at a constant frequency during the 
time period in which the data is acquired. This ruled out the possibility of using 
such a band pass filter.

166



Figure 9.1: A z im u th  o f  turbine blade

9.2.2 Least square sine wave fitting

We can assume the global mean of Z(t) is zero without losing generality. The 
stochastic response X(t) is also a process with zero mean. This implies that, when 
the stochastic component is added into a sine wave Yft), it still has a zero mean 
if this mean value is taken around the sine wave. Thus, we have

f}[z(w-n4)] = o.o

This expression shows that, for a signal such as Z(t) which contains a signif­
icant deterministic component expressed as Equation 9.1, a sine wave could be 
best fitted to the signal to make the average around the sine wave zero. This 
highlights the possibility of employing a least square technique. Although theo­
retically a zero mean can not guarantee a minimum least square error, the least 
square fitting can be expected to produce acceptable results. The smaller the 
stochastic component is, the better the results are likely to be obtained since the 
fact of zero mean will more likely tend to meet the least square error assumption.

A better strategy for calculating the parameters of the sine wave is to apply 
a band pass filter to the original signal and then apply a least square error fitting 
to the filtered signal. Since the task is only to determine a few parameters, this 
work can be performed on part of the signal instead of the whole.
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The mathematical model for sine wave extracting can be established as

k=l

s.t. A > 0

D > 0

All of the computation can be performed with the same program that was 
used for curve fitting in the previous chapter. A band pass filter was employed 
on the original signal in order to focus the fitting work towards the sinusoidal 
part. Since the Howden data contains not only the moments of the blades during 
rotating but some control induced loads such as braking etc., it is necessary to 
extract a suitable portion of the signal which contains the sine wave.

9.2.3 Some com m ents about th e azim uth averaging m ethod

It is necessary to give a brief comment on the so-called “Azimuth averaging” 
method [90] [79]. The idea of this method is that, if every point which is one 
period of the sine wave away from the previous one is taken from the combined 
signal, the average of this new series will give the value of the sine wave at this 
azimuth angle. To make this true, it must be assumed that the stochastic com­
ponent is absolutely stationary and ergodic. The signal is grouped in accordance 
with its azimuth angle and each group must have a zero mean. This assump­
tion proved to be too rigorous for the wind response history. The least square 
fitting method here only assumes the error between the sine wave and stochastic 
component is at its minimum. If the fact that the overall average around the 
sine wave is zero is considered, this assumption is not difficult to satisfy. Thus, 
there is reason to believe that the least square fitting method gives better results. 
Accuracy can be improved by combining the analysis with a band pass filter (see 
next section).

9.3 S ep aration  o f  th e  H ow d en  d a ta

The azimuth information included in the Howden HWP330 data is recorded on 
channel 4 for all the tapes. A typical azimuth from tape 18 is shown in Figure 
9.2.
Using the azimuth information and the technique introduced in the previous sec­

tion, the sine waves in the edgewise signals of HWP330 data files were extracted
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Figure 9.2: A sam ple  o f  azim uth record from H W P 3 3 0  tape  18

out. In the practical computation, the phase angle was introduced in order to ad­
just the possible lag. Before using the program developed in the previous chapter, 
the azimuth information was analysed in order to find the time when the rotor 
began normal operation because the beginning and the end often included such 
control operations as braking. In terms of fatigue analysis, only the amplitudes 
and frequencies of the sine waves were important.

Before the least-square sine wave fitting procedure was applied to the signals, 
a band pass filter was used to get rid of irrelevant frequency information in order 
to improve the accuracy. As can be seen from the spectra of the signals, the 
frequencies of the deterministic components in the edgewise signals are in the 
range 0.5Hz to 0.6Hz. Two frequency bands were selected for the filter. The first 
one is 0.2Hz to 2.0Hz and the second one 0.4Hz to 0.8Hz. Further narrowing of 
the frequency band is not used in order to avoid the possibility of leakage. In any 
case it did not prove necessary because the results with different frequency bands 
met very well.

The amplitudes of the sine waves existing in all the edgewise signals are listed 
in Table 9.1 and 9.2 for the filtered and raw signals. The least-square sine wave 
fitting method works very well for the Howden edgewise signals because the errors 
between the results from filtered and raw signals are all nearly negligible. The
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other reason is that the sine waves are so dominant that the stochastic components 
are simply acting like noise. But anyway, this consistency inferred the reliability 
of the results.

Table 9.1: A m p l i tu d e s  o f  de term in is tic  com pon en ts  in Howden d a ta  edgewise signals

filter band tape 18 tape 26
3m 8m 13m 3m 8m 13m

raw 42.126 9.720 3.179 49.195 17.223 3.028
0.2-2.0(Hz) 42.196 9.743 3.187 49.143 17.176 3.040
0.4-0.8(Hz) 42.190 9.734 3.185 49.114 17.165 3.038

Table 9.2: A m p l i tu d e s  o f  de term in is tic  com ponen ts  in Howden d a ta  edgewise signals

filter band tape 27 tape 30
3m 8m 13m 3m 8m 13m

raw 49.027 17.145 3.011 49.643 17.191 3.020
0.2-2.0(Hz) 49.156 17.316 3.065 50.262 17.463 3.040
0.4-0.8(Hz) 49.328 17.367 3.074 50.395 17.512 3.046

The stochastic component can then be separated from the original signal by 
deducting the sine wave. A sample of the stochastic component extracted from 
tape 18 3m edgewise signal is shown in Figure 9.3.

9.4  R ean a lysis  o f  H ow d en  d a ta

Once the deterministic components were extracted from the edgewise signals, 
the neural network toolbox was used for a fatigue analysis using these signals. 
Figure 9.4 shows the rainflow cycle probability density function calculated from 
the neural network toolbox and the one from the time signal directly for tape 18 
3 meter edgewise signal. It can be seen that, despite the over prediction of the 
low range cycles, the high range part of the frequency domain result agree quite 
well with the time domain solution. Table 9.3 shows the results for the damage 
rates between the neural network calculation and time domain solutions when a 
value of b=5.0 is used.

The results shown in this table are in some ways disappointing since better 
solutions were expected. However, when the flapwise results in Chapter 4 are 
referred to, it is easy to see that the reason for this discrepancy is in the signals
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Table 9.3: Dam age rates o f  frequency domain results with time domain results for 
Howden da ta  edgewise signals with b=5 .0

Tape 3 meter 8 meter 13 meter
18 1.610 0.958 0.8781
26 2.711 2.085 0.624
27 4.767 3.567 4.554
30 5.453 2.908 1.240

themselves. Because the results in the frequency domain for the flapwise signals 
do not agree, there is no reason to expect the neural network toolbox here to give 
better results than the flapwise signals containing no significant deterministic 
component. Apart from the nonstationarity in the time histories, it was found 
from the stochastic components that, nearly all the signals contain some strange 
spikes.

Figure 9.5(a) shows a very long segment of the stochastic component from tape 
26 3 meter edgewise signal which contains this type of fault. It is seen from this 
figure that some extraordinarily high spikes exist in the stochastic component. 
Figure 9.5 (b), (c), (d), and (e) show the details of the spikes in both the stochastic 
component and the original signal. It can be seen that these spikes exist in the 
signals as isolated points. For a signal acquired at 40Hz, it is hard to believe that 
these spikes are anything other than recording errors. Such spikes are not found 
in the wind speed signals at the same time duration. Therefore, they must be 
caused by equipment faults.

If the signal contains both a stochastic component and a deterministic compo­
nent, these spikes would have less influence on the fatigue estimation since they 
can hardly change the high range part of the PDF. However, since the two kinds 
of components are separated, the spikes remained in the stochastic part. The 
spectra from the stochastic components is then seriously influenced.

Thus, these spikes have two aspects of influence on the fatigue analysis. The 
first one is that they produce false cycles in the time domain analysis. Secondly, 
they completely distorted the spectra from the stochastic components. Since the 
damage rates produced are at about the same level as the flapwise results, it 
may be concluded that the neural network toolbox will work perfectly well for 
signals with a deterministic component. In addition, the nonstationarity is still 
a problem here. This is addressed in the next section for more realistic signals.
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9.5 R esu lt for sim u la ted  signals

Further simulated time signals different from the signals used in the previous 
chapter was produced in order to provide an assessment of the neural network 
toolbox. The PSD used for signal simulation is shown in Figure 9.6.

35000'

F r e q u e n c y  ( H z )

Figure 9.6: New sim ula ted  signal

Because different deterministic components were added into the signal, dif­
ferent rainflow range PDF’s are obtained. Figure 9.7 shows one of these PD F’s 
when the amplitude of the deterministic component is 2a and frequency is l.OHz 
with a  as the rms of the stochastic component. Together with the time domain 
solution, the one from neural network toolbox and Dirlik’s formula were also pre­
sented in the same figure. It is seen from this figure that the result from neural 
network toolbox can meet the time domain solution very well for the cycle ranges 
produced by the deterministic component. Dirlik’s formula was unable to pro­
duce such a peak in the PDF curve. The result attem pted to derive in [79] Wcis 

achieved by the neural network toolbox developed in this thesis.
The damage rates from neural network toolbox for a value of h=5.0 are shown 

in Table 9.4. It can be seen from this table that the results from the neural 
network meet well with the time domain results.

The damage rates from Dirlik’s formula are listed in Table 9.5. The damage 
rate for the purely stochastic signal is 1.13, which can be taken as a reason­
able prediction. However, it is seen that when the deterministic components are 
added into the stochastic signal, Dirlik’s formula failed to give a good prediction,
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especially when the deterministic component becomes bigger.

Table 9.4: Damage rates of frequency domain results compared with the time domain  
results for the new simulated signals with b=5.0

1 2 3 4 5
1 0.973 0.918 0.863 0.820 0.782
2 0.980 0.914 0.855 0.806 0.757
3 0.913 0.8G3 0.838 0.801 0.787

Table 9.5: Damage rates of D irlik’s formula compared with the time domain results for 
the new sim ulated  signals with b=5.0

1 2 3 4 5
1 1.44283 1.58510 1.76641 1.95076 2.10519
2 1.27628 1.49100 1.76277 1.98683 2.17223
3 1.22268 1.52935 1.84667 2.10761 2.30154
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9.6 C onclusions

The neural network toolbox developed in the previous chapter has been examined 
in this chapter with the Howden data edgewise signals and new simulated sig­
nals. The assessment on the monitored data was seriously influenced by the faults 
existing in the recorded data, especially when the deterministic component was 
extracted from the combined response history. The faults distorted the stochastic 
part and the results from neural networks, even though they have nearly no influ­
ence on the combined signals. Assessment using new simulated signals indicate 
good performance of the toolbox developed.

Effort was also made to separate the deterministic component from the com­
bined signal. The method used here incorporate a band pass filter and the least 
square techniques. It has a higher efficiency than the conventionally used azimuth 
averaging method.
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C hapter 10 

Conclusions and Suggested  
Future W ork

10.1 C onclusions

The work presented in this thesis makes a number of significant advances in 
spectral fatigue analysis techniques. Current methods which have previously been 
developed are reviewed and assessed here. The theoretical solution developed by 
Dr. Bishop is extended to consider the influence of mean stress for random fatigue 
analysis. It is also extended for the fatigue analysis of non-Gaussian response 
histories provided that the peak-trough and trough-peak matrices are known. A 
toolbox for fatigue analysis of wind turbine blades is developed based on numerical 
simulation and neural network technique. This toolbox should have made wide 
applicability than wind turbine loadings but this has not been assessed.

Fatigue analysis of two sets of monitored response histories, the WEG MS- 
1 and Howden HWP330, was performed in C h a p te r  4, both in the time and 
frequency domains. The frequency domain results include most of the present 
methods in use and are compared with the time domain results, which are taken 
as a reference solution. The narrow band solution is always conservative due to 
the narrow band assumption. The two methods which meet best with the time 
domain results are Dirlik’s empirical formula and Bishop’s theoretical solution. 
The former one is based on numerical simulation and regression. The later one 
is based on Markov chain theory and thus has a better theoretical background. 
Most of the methods now in use assume the response histories have a Gaussian 
distribution mainly because of the limited information provided by the ordinary 
power spectral density function.

C h a p te r  5 presents some important results concerning the parameters choices 
involved in the computation work of C h a p te r  4. The first parameter investigated 
is the cutoff frequency of the power spectral density function. This problem is 
mainly concerned with the high frequency noise problem but more generally the

177



truncation problem of other spectrum is of relevance. The high frequency noise 
in the spectrum can seriously influence the fourth moment of the spectrum and 
thus influence the irregularity factor. Most of the spectral methods are seriously 
affected by this high frequency noise. The length requirement of the response 
histories was also investigated for both sets of data. The Howden HWP330 data 
is much longer than the WEG MS-1 data. Because of this the rainflow cycles 
counted from Howden data form continuous PD F’s which are more representa­
tive of the process. The WEG MS-1 data, on the other hand, is too short to give 
such continuous functions. Thus, the signal length needs to be carefully consid­
ered when response monitoring work is performed. The clipping ratio problem 
is discussed here for the first time and some guidance is given for selecting this 
parameter for fatigue analysis. It is interesting to find that, the consistency be­
tween fatigue predictions is affected by the material characteristic, i.e. the slope 
of S-N  curve. This means that the same spectral method can give an equiva­
lent stress very close to the correct value for some materials but may give very 
poor predictions for some other materials with different S-N  curve slopes. The 
deterministic component in the Howden edgewise response presented a serious 
problem with the calculation of fatigue damage. One of the main parts of this 
thesis is concerned with development of a toolbox for the fatigue analysis of such 
responses. This is presented in C h a p te r  8.

C h a p te r  6 presents a method for taking the mean stress influence into ac­
count in a frequency domain analysis for the first time. This method is batsed 
on Bishop’s theoretical solution which uses Markov chain theory for the rainflow 
cycle probability calculation. Since the spectrum can not provide information of 
the the global mean level of response, the mean level of rainflow cycle relative to 
the global mean is calculated and a joint rainflow range PDF of relative mean 
stress and cycle range is obtained using this method. The requirement of needing 
the global mean to be specified does not normally represent a problem since this 
global mean level is usually known at the design stage. Once this value is com­
bined with the relative mean from the spectral solution, a damage estimation can 
then be performed by employing Goodman’s relationship, or any other formulae 
used to convert cycle range with mean into equivalent cycle range without mean. 
This method is applied to the two sets of data used in C h a p te r  4 to analyse the 
influence of mean stress on the fatigue damage.

A number of possible approaches to deal with non-Gaussian responses are 
discussed in C h a p te r  7. A method for calculating the rainflow cycle PDF is
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developed based on Markov chain theory. This approach assumes the peak to 
trough and trough to peak transition matrices are known. Because the general 
non-Gaussian class of distributions is such a huge set of probability distributions, 
it is impossible to find any method which can deal with the general non-Gaussian 
situations.

Since most of present methods cannot give satisfactory results for the edge­
wise response of wind turbine blades where significant deterministic components 
are present, this thesis addresses such situations in C h a p te r  8. Seventy power 
spectral density functions were selected to cover a wide range of engineering spec­
tra. Signal simulation work was then performed using an inverse FFT technique. 
After examined the rainflow range PD F’s derived from the signals, a mathemati­
cal model was established. By employing least-square technique for curve fitting, 
more than 2000 sets of model parameters were obtained. To improve the accuracy 
of the fatigue damage calculation, the least squares calculation were performed on 
the weighted PD F’s according to their cycle ranges. A neural network with back 
propagation was established to perform the regression work. After training the 
network, the neural network is capable of calculating the model parameters from 
the spectrum statistics and deterministic component parameters. Since the peak 
number in unit time can no longer be calculated from the formula which is suit­
able for Gaussian signals, the network was also developed to calculate the peak 
rate. Thus, a neural network toolbox was developed and presented in C h a p te r  
8 .

Some reassessment work using the neural network toolbox was performed on 
the Howden data and new simulated data inr C h a p te r  9.

10.2 S u ggested  fu ture w ork

Generally speaking, the future work of spectral fatigue analysis should be con­
centrated on the non-Gaussian problem and nonstationary problem. For future 
research work on the spectral fatigue analysis of wind turbine blades, the nonsta­
tionary problem should be the most important because the deterministic compo­
nent problem reduces the importance of non-normality of the response history. 
It has been shown in the statistical analysis of the WEG MS-1 data and Howden 
HWP330 data that, the turbine blade response is strongly non-Gaussian and non­
stationary. This phenomena can be seen quite clearly from the statistical results 
of the Howden data. A suitable technique to deal with this problem is needed.
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One approach might be to divide the response history into small blocks to reduce 
the influence of nonstationarity. Such techniques can reduce the influence but 
can not eliminate it. Furthermore, there is the risk of reducing the blocks to 
a point where they are not long enough to see the important fatigue damaging 
rainflow cycles. A frequency domain approach maybe necessary to deal with such 
situations.

The spectral method presented in C h a p te r  6 made the theoretical method 
capable of considering the mean stress. It would be desirable to find the distri­
bution of mean, together with rainflow cycle ranges. It is then possible to modify 
all the method to consider the mean stress influence in spectral fatigue analysis. 
The formula developed by Kowalewiski would provide a clue for this work.

The theoretical solution described in C h a p te r  7 provided a useful tool for 
solving the non-Gaussian problem but the peak-trough and trough-peak tran­
sition matrices have to be provided first. It is necessary to develop the peak 
trough turning point matrix based on frequency domain information to derive a 
complete solution. As stated in C h a p te r  7, such a turning point matrix would 
be very difficult to derive for universal non-Gaussian process. Therefore, suitable 
assumption should be adopted according to the concerned application.

Another direction in future research is the developing of spectral method for 
multi axial fatigue evaluation. Much work has been devoted to multi axial fatigue 
analysis and experiments [91]. However, there is no efficient way to evaluate the 
fatigue damage using frequency domain information.
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A ppendix  A  

Spectral fatigue analysis 
program  for G aussian responses

This is the program used in C h a p te r  3. The fowchart is shown as in Figure A.I.

c
c Main program for spectral fatigue analysis. Some SUI FORTRAl functions are used

variable l i s t  :
bb, bk
nos
nchk
npos
nl
samp
fc

S-I curve parameters 
signal length
number of blocks to be used 
in terval numbers to divide the signal 
poser of 2 of the sindoe size in FFT 
sampling frequency of the signal 
cutoff frequency to be used

PROGRAM FATIQ
PARAMETER (MP-520,MALI»1Q24000,HHF-60000)
DIMElSIOl Sia(MALl),G(MHF)
COMMOI /DEISITy/IPOS,Dl,RS(MP),RI(MP),RD(MP),RT(MP)
COMMOI XMEAl,AD,AX,VAR,RMS,BO,B1.B2.B4.GAMMA,BB.BK 
CHARACTER FSP*15. IIPUTMODE«i
HRITE(*,»(SX///,1SX,A)»)' FORTRAl PROGRAM FOR FATIGUE ESTIMATIOI’
lARGS-IARGCO
IF(IARGS.1E.2)THEI
HRITE(*.»(10X,A,$)»)’Usage : ’
CALL GETARG(0,FSP)
HRITE(*.’(A,$)’)FSP(1:8)
WRITEC*, ’(A)’) ’task.type filename’
CALL EXIT(l)
EIDIF
CALL GETARG(l.IIPUTMODE)
IF((IIPUTM0DE.1E.’2 ’) .AID.(IIPUTMODE.IE.’l ’))THEi 
HRITE(*,’(21X,A)’) ’ Unknown task. ’
CALL EXIT(2)
EIDIF

c read in system f i le

WRITE(*,’(S X /////)’)
CALL GETARG(2,FSP)
M-IIDEX(FSP,’ ’)
FSP(M:M+3)=’ sys’
0PEK7,FILE=FSP(1 :M+3) .STATUS*’OLD’)
REWIID 7 
READ(7,*)BB.BK
READ(7,♦)lOS.ICHK,IPOS,IL.SAMP,FC 
CL0SEC7)

FSP(M:M+3)»’ .psd’
OPEI(10.FILE=FSP(1 :M+3))
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End

Figure A .l:  Flowchart of the program for random fatigue analysis
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FSP(H:H+3)»».out’
0PEI(9,FILE»FSP(l:H+3))
REUIID 9
WRITE(9,’(5X /////)>)

c
c i f  PSD only, read in PDF
c

IFdlPUTNODE.EQ. >2’)THEI 
READ(10,*)FC,IOP,DI,SAMP 
READ(10,*)(G(I),I»1,I0P)
TK«i.O
CALL AFTER(Sia,HALI,HHF,G,lOP,SAMP,FC,TK,inv)
GOTO 500 
EIDIF

c
c computation vhen signal history is  provided 
c

IiV-1 
FC=FC/IIV 
NKDS«iOS/iCHI 
IF(lL.Eq.O)THEl 

20 IL-IL+1
MAXT«2**1L
IF(NXDS/MAXT.IE.O)GOTO 20
1L«1L-1
EIDIF
MAXT»2**IL
IOP-MAXT/2

c
c signal read in
c

FSP(M:M+3)«».bin’
OPEI(8 ,FILE«FSP(l:M+4),STATUS*’OLD’ ,ACCESS*’DIRECT’ ,RECL-4) 
WRITE(*,’(1SX,A,I8)’) ’Length of time signal: ’ ,103
DO 200 L*1,ICHK 
DO 80 1*1,IPOS 

80 RS(I)*0.0
IFdCHK.IE.DTHEI
WRITE($, ’(20X,A,12,5X,1 6 /)’) ’ Block ’ ,L,MIDS
WRITE(9,’(20X,A,I2/)’) ’ Block ’ ,L
WRITEdO, ’(20X,A,I2/)’) ’ Block ’ ,L
EIDIF
XMEAI*0.0
AD*-9E+20
AX—AD
DO 18 I*1,MKDS
READ(8,REC*I+(L-1)*MKDS)SIG(I)

XMEAI=XMEAI+SIG(I)
AD*ANAX1(AD,SIG(I))
AX*ANII1(AX,SIG(I))

18 COITIIUE
XHEAI*XMEAI/MKDS
CALL PSDG(G,MHF,SIG,MKDS,XMEAI,IL, IIV,SAMP)
CALL TSERIS(SIG,MKDS,SAMP,TK)
WRITE(10,♦)FC,lOP,DI,SAMP 
WRITEdO,*) (G(I) ,1*1,lOP)
CALL AFTER(SIG .MALI,MHF,G,IOP,SAMP,FC,TX,inv)

200 COITIIUE 
500 COITIIUE 

CL0SE(9)
WRITE(*,’(5X ///)’)
WRITE(*, ’d0X,20(lH-),A)’) ’THE EID. ’
STOP
EID

c Subroutine for rainflow cycle counting on time series 
c

SUBROUTIIE TSERIS(SIG,IOS,SAMP,TK)
PARAMETER (MP*520,MPKS*300000)
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DINEISIOI SIG(IOS).PXTR(NPKS).lE(NPKS)
COMHOI XHEAI,AD,AX,VAR,RMS,BO,B1,B2,B4,GAHHA,BB,BK 
COMMOI /DEISITY/iPOS,DI,RS(MP),RI(HP),RD(MP),RT(MP) 
WRITE(*,'(5X/////,15X,A///)>)’Working on the Time S ignal’ 
DI=(AD-AX)/(IPOS-1.0)
DO 5 1=1,lOS
SIG(I)=IIT((SIG(I)-AX)/DI+0.5)+l 
IF(SIGd) .LT.l.OTHER
WRITEC*,* )’ Signal Lower Than the Lowest Limit. ’ , I ,s ig ( i )
SIG(I)=1.0
EIDIF
IF(SIGd) .GT.IPOS)THEi
WRITE(*,* )’ Signal Higher Than the Highest Limit. ’ , I ,s ig ( i )  
SIGd)«iPOS 
EIDIF 

5 COITIIUE
DO 10 1*1,IPOS 

10 RS(J)»0.0
J»1
DO 20 1=2,lOS
IF(SIGd) .IE.SIG(J>)THEI
J-J+1
SIG(J)=SIG(I)
EIDIF 

20 COITIIUE
K=J-1 
LI=1
PKTR(1)»SIG(1)
DO 30 1-2,K
JS=IIT(SIGd)-SIG(I-l))
JL=IIT(SIG(I+1)-SIG(I))
IF(JS*JL.LT,0)THEI
LI-LI+1
PKTR(LI)«SIG(I)
EIDIF 

30 COITIIUE
JS=PKTR(1)-PKTR(2)
JL»PITR(LI-1)-PKTR(LI)
MAXSIG=IIT(PKTR(1))
1=1
DO 40 1*2,LI
IFdIT(PKTR(I)),GT.MAXSIG)THEI
MAXSIG=IIT(PITR(I))
K*I 
EIDIF 

40 COITIIUE
DO SO 1*1,LI 

50 IEd)*PKTR(I)
J=1
IF(JL.GT.O)THEI 
IF(JS.GT.O)THEI 
IF d E (l) .LE.IE(LI))THEI 
IE(LI)=IE(2)
J»3
EIDIF
ELSE
J*2
IE(LI)=HII(IE(LI),IE(1))
EIDIF
ELSE
IF(JS.LT.O)THEI 
IF d E (l) .GE.IE(LI))THEI 
IE(LI)=IE(2)
J*3
EIDIF
ELSE
J»2
IE(LI)=MAX(IE(LI) ,IE(D)
EIDIF
EIDIF
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KK»LI-K+1 
DO 60 1*1,IK 

60 PKTR(I)=IE(I+K-1)
DO 70 I»J,K
KI=KI+1
PKTR(KK)»IE(I)

70 COITIIUE 
LI-LI+2-J 
I I  1 
KK*1
IE(II)>PKTR(KK)

90 IK-KI+1 
I I - I I  1
IE(II)»PKTR<KI)
IF(II.LT.4)G0T0 90 

100 I»IABS(IE(II-2)-IE(II-3))
J«IABS(IE(II-1)-IE(II-2))
K»IABS(IE(II)-IE(II-1))
IF((J.GT.I).OR.(J.GT.I))GOTO 90
RS(J)*RS(J)+1.0
I I - I I  2
IE(II)»IE(II+2)
IF(II.GE.4)G0T0 100 
IF(II.LT.LI)GOTO 90 
J=IP0S-1 
RS(J)»RS(J)+1.0 
I0C«O
DO 110 1=1,IPOS 

110 IOC=IOC+RS(I)
DO 120 1=1,IPOS 

120 RS(I)=RS(I)/IOC/DI
WRITE(*,»(15X,A,I8,5X/////)>)»Cycl« Counting End.»,LEIGH
* rit# (* ,* ) 'cycl## a fte r  filter»,IO C
TI=IOC*SAMP/(IOS)
RETURI
EID

c subroutine for PSD calculation 
c

SUBROUTIIE PSDG(G,MHF,SIG,lOS,XHEAI,IL, IIV,SAMP) 
PARAMETER(MALI=160000)
DIMEISIOI G(MHF),SIG(IOS)
COMPLEX F(MALI)
MAXT=2**IL
IOP-MAXT/2
IBLOCI-IOS/IIV/MAXT
T-FLOAT(MAXT)
DO 10,1=1,IOP 

10 G(I)=0.0
WRITE(*, »(5X ///, 12X,A,13)») » Calculating P.S.D »,IBLOCK 
DO 40 I=1,IBL0CI
HRITE(*,»(20X,A,I4,5X,I5)»)» Block lo . »,I,MAXT 
DO 20,J=1,MAXT
IJ=(J-1)*IIV+1+(I-1)*MAXT*IIV
F(J)=CMPLX((SIG(IJ)-XMEAI)/T,0.0)

20 COITIIUE
CALL FFT(F,MAXT,IL)
DO 30 1=1,lOP 

30 G(I)=G(I)+(REAL(F(I))**2+AIMAG(F(I))**2)
40 COITIIUE

T»2.0*11V*MAXT/FLOAT(IBLOCI)/S AMP 
DO 50 1=1,lOP 

50 G(I)=G(I)*T
WRITE(*,»(5X//,10X,A//////)»)» P.S.D. Calculating End»
RETURI
EID

C FFT subroutine
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SUBROUTIIE FFT(A,1,11)
COMPLEX A(1),W,T,U 
J»1
DO 40 L=1,1-1 

10 IF(L.LT.J)THE1
T»A(J)
A(J)»A(L)
A(L)»T
EIDIF
1=1/2

20 IF(X.GE.J)GOTO 30
J -J - I  
1*1/2 
GOTO 20 

30 J-J+K
40 COITIIUE

DO 80 N *l,ll 
U»(l.0,0.0)
I*2**(H-1)
P I-3 .1415926589793/1 
W*CMPLX(COS(PI) ,-SIl(PD )
DO 70 J»1,K 
I*J

60 T*A(I+1)*U
A(I+K)*A(I)-T
A(I)»A(I)+T
I»I+2**H
IFd.LE.DGOTO 60 
U*U*W 

70 COITIIUE 
80 COITIIUE 

RETURI 
EID

c
c Subroutine for calculating the rainflou PDF’s 
c

SUBROUTIIE DEIST 
PARAMETER (MP*520)
COMMOI XMEAl,AD, AX, VAR,RMS,B0,B1,B2,B4,GAMMA,BB,BK 
COMMOI /DE1SITY/1P03,D1,RRA1GE(MP),R1(MP),RD(MP),RT(MP) 
WRITE(*,’(5X /////15X ,A ///)’) ’Probability Densities » 
L-lPOS+1

c
c narrow band 
c

DO 10 1*1,L 
S»(I-0)*D1
Rl(I)*EXP(-S*S/8.0/B0)*S/4.0/B0 

10 COITIIUE 
c
c D irlik ’s formula
c

XM*B1*SQRT(B2/B4)/B0
w rite (* ,e )’mm’ ,bO,bl,b2,b4,gamma
D1*2.0*(XM-GAMMA*GAMMA)/(1.0+GAMMA*GAMMA)
R»(GAMMA-XM-D1*D1)/(1.0-GAMMA-D1+D1*D1)
D2»(1 .0-GAMMA-Dl+Dl*D1) /(1 .0-R)
D3»l 0-D1-D2
q*l.25*(GAMMA-D3-D2*R)/D1 
XC*0.5/SQRT(B0)
DO 20 1*1,L 
Z*(I-1)*D1*XC
C*Dl*EXP(-Z/q)/Q+D2*ZeEXP(-Z*Z/2.0/R/R)/R/R
RD(I)*(C+D3*Z*EXP(-Z*Z/2.0))*XC
w rite (* ,* )i,rd (i)

20 COITIIUE
WRITE(*, ’ (15X .A //////)’) ’ Densities End’
RETURI
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EID

c Bishop’s theoretical solution 
c

SUBROUTIIE SRAII 
PARANETER(HP«520,ISq«20)
DINEISIOI ARR(NP.NP),BRR(HP,NP).SPKS(HP)
DIMEISIOI PPPT(HP.MP),XIEM<MP,MP),WX(MP,HP)
COMMOI XMEAI,AD,AX,VAR,RMS,BO,B1,B2,B4,GAMMA,BB,BK 
COMMOI /DEISITY/IPOS,DI,RRAIGE(MP),RI(MP),RD(MP),SRR(MP) 
XC»DI*(IP0S)/2.0 
SUM»B0*(1 0-GAMMA**2)
SUMD«DI*DI 
DO 10 J>1,IP0S 
DO 10 K»1,J-1 
yP»(DI*(J-0.5)“XC)
YT»(DI*(K-0.5)-XC)
XRR-(YP-YT)/ (4.0*BO*OAMMA**2)
YRR»SUMD/(SqRT(6.284*SUM))
ZRR—1/(8*SUM*GAMMA**2)*(YP*»2+YT**2+2.0*YP*YT*(2.0*GAMMA$*2-1)) 
PPPT(J,K)»XRR*YRR*EXP(2RR)

10 COITIIUE
DO IS 1=1,IPOS 
DO 15 J»I+1,IP0S 

IS PPPT(I,J)*PPPT(J,I)
SUMD=0.0
DO 40 1=1,IPOS
PPPT(I,I)=0.0
SUM-0.0
DO 20 J»1,I-1
SUM-SUM+PPPT(I,J)

20 COITIIUE
SPKS(I)«SUM 
SUMD-SUMD+SUM 
IF(SUMD.Eq.O.O)GOTO 40 
DO 30 J»1,I-1 
PPPT(I ,J )-PPPT(I , J) / SUM 

30 COITIIUE 
40 COITIIUE

DO SO IR-1,IPOS 
SPES(IR)-SPXS(IR>/SUMD 

SO COITIIUE
DO 80 1=1,IPOS 
SUM-0.0
DO 60 J-I+1,IPOS 
SUM=SUM+PPPT(I,J)

60 COITIIUE
DO 70 J-I+1,IPOS 
PPPT <I , J )-PPPT(I , J )/SUM 

70 COITIIUE 
80 COITIIUE

DO 90 I»1,IP0S 
DO 90 J-1,IP0S 
ARR(I,J)-0.0 
BRR(I,J)-0.0 

90 COITIIUE
DO 220 IP-4,IPOS
WRITE(*,’(16X,A,IS)’) ’ Peak : ’ .IP
DO 210 KP-2.IP-2
IA-IP-1
IB-IP+1
IC-IP-IA
IE-3
DO 100 I- l,IC  
DO 100 J=1,IC 
XIEW(I,J)=0.0 

100 COITIIUE
DO 120 LA-IE.IC 
DO 110 LB-1, lA

195



XIEU(LA,1)=X:EWC LA,1)+PPPT(LA+IA,LB)
110 COITIIUE

XIEW(LA,2)*PPPT(LA+IA,KP)
120 COITIIUE

XIEW(1,1)=1.0 
XIEW(2,2)»1.0 
DO 150 LA«IE,IC 
JCIT»LA+IA 
00 140 LB«IE,IC 
KCIT'LB+IA
LCIT»HIIO(ICIT,JCIT)-1 
DO 130 NA>IB,LCIT
XIEW(LA,LB)=XIEW(LA,LB)+PPPT(JCIT,MA)*PPPT(MA,KCIT) 

130 COITIIUE 
140 COITIIUE 
150 COITIIUE

DO 200 I l I 'l . I S q  
DO 180 LA>1,IC 
DO 180 LB*1,IC 
SUN»0.0 
DO 170 LC>1,IC
IFdll.EQ.l.AID.LC.EQ.IOGO TO 160 
SUM-SUM+XIEW(LA,LC)*XIEW(LC,LB)

160 COITIIUE 
170 COITIIUE

WX(LA,LB)«SUM 
180 COITIIUE

DO 190 I- l.IC  
DO 190 J»1,IC 

190 XIEM(I,J)»WX(I,J>
200 COITIIUE

ARK ( IP , IP > «XIEU ( IC, 1)-t-XIEW ( IC, 2 ) 
BRR(IP,KP)«XIEU(IC,2)

210 COITIIUE 
220 COITIIUE

DO 230 1*1,IPOS 
SRR(I)»0.0 

230 COITIIUE
DO 240 IP»4,IP0S 
DO 240 KP»2,IP-2 
I*IP0S+1-KP 
K*IP0S+1-IP
DRR*2.0*ARR(IP,XP)*BRR(IP,XP)*ARR(I,K)*SPXS(IP)/DI 
SRR(IP-IP)»SRR(IP-KP)+DRR 

240 COITIIUE 
RETURI 
EID

c Damage calculation 
c

SUBROUTIIE EDANAQE(SH,SIG,N,TK,EP)
PARAHETER(NP«520)
DINEISIOI SIG(N),SH(10)
COMMOI XMEAI,AD,AX,VAR,RMS,BO,B1,B2,B4,GAMMA,BB,BK 
COMMOI /DEISITY/IPOS,DI,RS(MP),RI(MP),RD(MP),RT(MP) 
WRITE(*,>(5X/////,15X,A/////)>)’Expected Damage Life' 
L*IP0S+1 
E0*SQRT(B2/B0)
EP*SQRT(B4/B2)
RT(L)*0.0 
RS(L)*0.0 
do 10 i= l ,5 

10 sh(i)»0.0
DO 109 1*1,IPOS 
XTOT*((I*DI)**BB)
XT*(((I-1)*DI)**BB)
RS(I)*RS(I)*XTOT
RI(I)*RI(I)*XT
RD(I)*RD(I)*XTOT
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RT(I)*RT(I+l)*((i+l)*dn)**bb 
sh(l)»8h(l)+rs(i)*dn*tk/bk 
8h(2)»sh(2)+rn(i)*dn*«p/bk 
8h(3)»8h(3)+rd(i)*dn*ep/bk 
8h(5)»8h(5)+rt(i)*dn*«p/bk

109 continue 
AB>0.0 
k«npo8-l
CALL SINPS011(RS,L,eb,dn,ub,ER)
CALL SINPS011(Rl,L,ab.dn,ab.El)
CALL SIHPSOIl(RD,L,ab,dn,ab,ED)
CALL SIHPSOIl(RT,k,ab,dn,ab,ET)
URITE(*,*)ER,E1,ED,ET
WRITE(*,*)TI,EP,» p8d/time ’ ,EP/TK
SH(l)»ER*TI/bk
SH(2)*El*EP/bk
SU(3)«ED*EP/bk
SH(S)»ET*EP/bk
EPS»SQRT(1 0-GAMMA*0AMMA)
AB»0.926-0.033»BB
CB»1.587*BB-2.323
DLAH-AB+(1 .0-AB)*(1.0-EPS)♦*CB
SH(4)>SH(2)*DLAN
ZZ»BB/2.0+1.0
CALL GANA(ZZ,SIG,H.GB)
SH(6)«(DLAN*GB)«*(1.0/BB)
SH(6)»SH(6)*2.0*SQRT(2.0*B0)
ZZ»(BB+1.0)/2.0
CALL GANA(ZZ,SIG,H,GB1)
ERF«0.5
CC"GBl*EPS**(BB+2.0)/SqRT(3.1415927)+GB*(1.0+ERF)*GAMMA
SH(7)»2.0*SQRT(2.0*B0)*(CC/2.0)**(1.0/BB)
ERF-0.3012*GAMMA+0.4916*GAMMA*GAMMA+0.9181*GANNA**3

ERF-ERF-2.3534*GAHHA*M-3.3307*GAMMA**5
ERF"ERF+15.6524*GAMMA**6-10.7846«GAMNA**7
CC»GBl*EPS*$(BB+2.0)/SqRT(3.1415927)+GB*(1.0+ERF)*GAMMA
SH(B)>2.0«SqRT(2.0*B0)*(CC/2.0)**(1.0/BB)
SH(9)"SqRT(8.0*B0)*(GAMMA*GB)**(1.0/BB)

ZZ«BB/(2 .0-EPS*EPS)+l.0 
CALL GAMA(ZZ,SIG,M,GB)
EPS-0.02
SM(10)"SqRT((2.0*B0)*(2.0-EPS**2))*GB**(1.0/BB)
DO 20 I"6,10

20 SH(I)>(SH(I)**BB)*EP/BK
4 RETURI

EID

c
c Gamma function
c

SUBROUTIIE GAMA(ZZ,F,M,GB)
DINEISIOI F(N)
H«1.0/(H-1)
F(1)—AL0G (0.00001)
F(H)»0.0 
DO 10 1*2,H-1 
X»(I-1)*H 
R»-ALOG(X)
F(I)»R**(ZZ-1.0)

10 COITIIUE
H*1.0/(N-1)
a*0.0
5*0.0
CALL SIHPSOIl(F,H,a,H,*,GB)
RETURI
EID

c
c PSD momenta calculation
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SUBROUTIIE AFTER(SIG,MALI,HHF,G,IOP,SAHP,FC,TK,inv) 

PARAMETER (NP-520)
DINEISIOI SIG(NALI),G(MHF),SH(10)
COMMOI /DEISITY/IPOS,DI,RRAIGE(MP),RI(MP),RD(MP),RT(MP)
COMMOI XMEAI,AD,AX,VAR,RMS,BO,E l.B2,84.GAMMA,BB,BK
G(IOP+1)»0.0
H»SAMP/2.0/inv/(IOP-1)
knd*0

1 knd=knd+l
if(knd*h.ge.fc)goto 2 
goto 1 

c KID»IIT(FC/H)
c IF(M0D(KID,2).EQ.0)KID»KID+1
2 J»IIT(0.0/H)

DO 3 1=1,J
3 G(I)»0.0 

G(1)»0.0 
A»0,0 
WL«0.0
CALL SIMPSOI1(G,KID,A,H.UL.BO)
WL-1.0
CALL SIMPSOIl(a,KID,A,H.WL,Bl)
WL-2.0
CALL SIMPS0Il(a.KID,A,H.VL,B2)
WL-4.0
CALL SIMPS0I1(Q,KID.A,H,VL,B4)
EP-SQRT(B4/B2)
GAMMA"SQRT(1 .0 /(B0*B4>)*B2
WRITE(*,* )(KID-1)*H,' MOMEITS >,BO,B1,B2,B4.GAMMA 
CALL DEIST 
CALL SRAII 
J-IPOS+1
WRITE(9.*)IP0S.DI 
URITE(9.*)(RRAIGE(I).1=1.IPOS)
WRITE(9,#)
WRITE(9.*)(RI(I).1-1.J)
WRITE(9.*)
WRITE(9.*)(RD(I).1-1.J)
WRITE(9.*>
WRITEC9 .oXRTCl) .I-l .IPOS)
J-MALI-1
IF(MALI.GE.200000)1-199999 
CALL EDAMAGE(SH,SIG,J.TK.EP)

c
c rosu lts  output to f i l e  out

u rite (9 ,
WRITE(9.
WRITE(9.
WRITE(9.
WRITE(9.
WRITE(9.
WRITE(9.
WRITE(9.
WRITE(9.
WRITE(9.
WRITE(9.
WRITE(9.
WRITE(9.
WRITE(9.
WRITE(9.
WRITE(9.
WRITE(9.
WRITE(9.
u rite (9 .
WRITE(9.
WRITE(9.
WRITE(9.
WRITE(9.
WRITE(9.

’At Frequency » ’ .KID.’ *’ .H .’ - ’ .h*(knd-l)
’Moment* -  ’ .80.81.82.84.GAMMA 
’Expected peaks (PSD /  TIME)- ’ .EP,’ / ’ .TK
5X///.15X.A//)’) ’Expected Damage Life ’
’ Probability density
’ Time Signal
’ Iarrow Band
’ D irlic Theory
’ D irlic  Theory
’ Wirsching Modified
’ Theoretical Rainflou 
5X ///)’)
’ Equivalent Stress
’ Wirsching

Damage L ife ’ 
’ .SH(1).SH(1)/SH(1) 

’ .SM(2).SH(2)/SH(1) 
’ .SH(3).SH(3)/SM(1) 
’ .SH(3).SH(3)/SH(1) 
’ .SH(4).SH(4)/SH(1) 
’ .SH(5).SH(S)/SH(1)

’ Chaudhuryl :
’ Chaudhury2 :
’ Hancock A 
’ Hancock B 
’mean-’ .xmean.
’ Time Signal
’ D irlic Theory
’ Theoretical Rainflou 
5X ///)’)
10X,20(1H-).A)’) ’THE EID.

’ .SH(6).SH(6)/SH(1)
’ .SH(7),SH(7)/SH(1)
’ .SH(8).SH(8)/SH(1)
’ .SH(9),SH(9)/SH(1)
’ ,SH(10).SH(10)/SH(1) 
dn-’ .dn

.SH(1).SH(1)/SH(1)

.SH(3).SH(3)/SH(1)

.SH(S).SH(S)/SH(1)
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URITE(*
WRITE<*
WRITE(*
WRITE(*
WRITE(*
WRITE(*
WRITE(*
WRITE(*
WRITE(*
WRITE(*
WRITE(♦
WRITE(*
WRITE(*
WRITE(♦
WRITEC*
WRITE(7
WRITE(*
RETVRI
EID

»(10X///)»)
»(5X///,15X,A//)»)’Expected Damage Life

Probability density 
Time Signal 
larroB Band 

D irlic  Theory 
Wirsching Modified 

Theoretical Rainflow

Damage L ife ’ 
’ ,SH(i),SH(l)/SH(l) 
’ ,SH(2),SH(2)/SH(1) 
’ ,SH(3),SH(3)/SH(1) 
’ ,SH(4),SH<4)/SH(1) 
’ ,SH(5),SH(5)/SM(1)

’(5X///)>)
*) ’ Equivalent Stress 
* )’ Wirsching
* ) ’ Chaudhuryl
* ) ’ Chaudhury2 
*) ’ Hancock A 
*) ’ Hancock B 
*)IID,IID*H,<SH(I) ,1*1,10) 
’ (5X ///)’>

’ ,SH(6),SH(6)/SH(1)
’ ,SH(7),SH(7)/SH(1)
’ ,SH(8),SH(8)/SH(1) 
’ ,SH(9),SH<9)/SH(1) 
’ ,SH<10),SH(10)/SH(1)

c in tegration by Simpson’s rule 
c

SUBROUTIIE SIHPS0I1(FUIC,H,A,H,WL,RSLT) 
DIMEISIOI FUIC(M)
FUIC(l)»FUIC(l)/2.0
FUIC(M)»FUIC(M)/2.0
11* 0.0
DO 10 I»2,M-1,2 
TE*A+(I-1)*H 

10 R1»R1+FUIC(I)*TE**WL
R2-0.0
DO 20 1*1,M,2 
TE-A+(I-1)*H 

20 R2-R2+FUIC(I)*TE* *WL
RSLT*(Rl*4.0+R2*2.0)*H/3.0
RETURI
EID
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A ppendix B  

C om puter program  for neural 
network training

This appendix includes the for neural network training. It is a multi-layer network 
with back propagation. The structure of the program is described in Chapter 
8 .

/ *
C program for neural network train ing 
variable l i s t  :

nl number of layers
n number of tra in ing  data
layer layout of the net
i ta ite ra tio n  step size
alp momentum size
bj.bx transform factor

•P accuracy crite rio n

• /
tdefine nd 2200 
tdefine In 5 
idefine nu 30 
ilnclude <stdio.h> 
tinclude <math.h> 
iinclude <stdlib.h> 
tinclude <string.h> 
main(argc,argv) 
in t argc; 
char *argv[];

{
in t i , j ,k ,n ,n l,s t ,m ,n i,k k ,j j ,n o ,la y e r[ In ] ,count,cn ts ; 
f lo a t St[In][nu][nu],theta[ln][nu],x[nu][nd],dth[ln][nu] 
f lo a t ds[In][nu] [nu],eps,de,t[nu], s[n u ],ep ,ta l,es ; 
f lo a t ita ,ne t[In ][nu],nou t[ln ][nu],de lt[ln ][nu],o ld ; 
f lo a t pth[ln][nu],ps[ln][nu][nu],y[nu][nd],alp ,bj,bx; 
FILE *fi,* fo ; 
if(argc  !» 2)

printf("usage; %s filename \n",argv[0]); 
e x it( i)  ;

}

/♦
•/

data read in

m »strlen(argv[l]); 
strcpy(argv[l]+m ,".sys"); 
if((fi=fopen(argv[i],"r">) »» lULL)

{
printf("Xs: can 't open %s\n",argv[0 ] ," .sys f i l e " ) ; 
e x it(2 ) ;

>
fs c a n f ( f i , "%d%d",knl,kn);
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fo r(i» 0 ; i<*nl;i++)
fscanf (fi,"y.d" ,tlay e r[i]  ) ; 

fscanf ( f i  ,"y.g7.g" ,i i ta , ta lp )  ; 
fscanf(fi,"%g%g",»bj,*bx); 
fscanf (fi,'7.g",*ep) ; 
fc lo seC fi);

n i« layer[0]; 
no>layer[nl];

Strcpy(argv[1]+m," . in " ) ; 
if((fi*fopen(argv[l],"r"> ) == MULL)

{
printf("%s: can’t  open %s\n".♦argv,argv[1]); 
ex itO ) ;

>

strcpy(argv[l]+«,".out"); 
fosfopen(argv[l],"u"); 
f o r ( i* l : i<=n;i++)

{
for(j»0;j<ni;j++)

fscan f(fi,"% g " ,tx [j][i]); 
f o r ( j» l ;j<=no;j++)

fscan f(fi,"% g " ,iy [j][i]);

}
eps=9e+10;old»-ops; 
for(i»l;i<*n;i++) 

f o r ( j» l ;j<*no;j++)

{
yCj] [i]»(y[j][i]+bj)+bx; 

i f  ( y [ j] [ i]  > old ) 
o ld » y [j][ i] ; 

i f  ( y [ j] [ i]  < ops ) 
eps«y[j] [ i ] ;

>

for(st"l;st<»n;st++)

{
printf("%5d " ,s t)  ; 
for(i»0;i<ni;i++)

printf("% 8.3f " ,x [ i ] [ s t ] ) ; 
f o r ( i* l : i<»no; i++)

printf("% 8.5f " ,y [ i ] [ s t ] ); 
p r in tf (" \n " ) ;

}

/♦
network in i t ia l  se ttin g , random

♦ /

for(k*l;k<*nl;k++)
fo r ( j* l ;j<»layer[k];j++)

{
fo r(i» l;i<»layer[k-l];i++ )

w t[k ][ j] [ i]=(0.02vi+0.01#j-0.08#k)/layer[k] 
thetaC k][j]=(0.02#k-0.0lej)/layer[k];

}
for(k=l;k<=nl;k++)

f o r ( j» l :j<=layer[k];j++)

(
pth[k][j]=0.0; 
f o r ( i» l ; i<» layer[k-l];i++) 

pw [k][j][i]=0.0;

>

/♦

♦ /

iteration training 
forward computation first
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old»9e+20; 
count*0; 
ont8*0; 
do { 
eps*0.0; 
tal*0 .0;
for(st*l;at<»n;8t++)

{
f o r ( i* l ; i<»ni;i++)

n o u t[0 ][ i]» x [i- l] [s t] ; 
for(k»l;k<*nl;k++)

fo r ( j» l ;j<*layer[k];j++)

{
n e t[k ][j]= th e ta [k ][j]; 
fo r(i» l;i<*layer[k-l];i++ )

n e t[k ][j]+ » « t[k ][j][i]* n o u t[k -l][i] ; 
. nout[k][j]=val(net[k][j ] );

}

/♦
back propagation

*/
fo r< j* l: j<*no;j++)

{
d e* y [j][s t]-n o u t[n l][j]; 
d e l t [n l] [j]»de*slp(nout[nl][j]); 
es* fabs(de/y [j][st]); 
tal+»es/n; 
i f  ( eps < es ) 

eps* es;

for(k*l;k<*nl-i;k++)
for(i»l;i<*layer[k];i++)

{
for(j*l:j<»layer[k+l];j++)

t[j]*ut[k+l][j][i]$slp(nout[k][i]); 
for(kk»k+2;kk<»nl;kk++)

{
for(jj*l;jj<»layer[kk] ;jj++)

{
s[jj]*0.0;
for(m*l;m<*layer[kk-l];m++)

*[jj]+*»t[kk] [jj][m]*slp(nout[kk-1][m])*t[m];
}

for(jj*l;jj<=layer[kk];jj++) 
t[jj]»s[jj];

>
delt[k][i]=0.0; 
for(j»l;j<»no;j++)

delt[k][i]+*delt[nl][j]*t[j] ;
}

for(k»l;k<*nl;k++)
for(j»l;j<»layer[k];j++)

{
for(i*l;i<=layer[k-l];i++)

du[k][j][i]*ita*delt[k][j]*nout[k-l][i]; 
dth[k][j]*ita*delt[k][j];

}
for(k*l;k<=nl;k++)

for(j=l;j<*layer[k];j++)
<

for(i=l;i<=layer[k-l];i++)
*t[k][j][i]+=du[k][j][i]+alp*pu[k][j] [i] ; 

theta[k][j]+=dth[k][j]+alp*pth[k][ j ]  ;
}

for(k*l;k<=nl;k++)
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f o r ( j» l :j<*layer[k];j++)

{
fo r ( i» l ; i<*layer[k-l];i++) 

pw[k] [j] [i] =de [k] [j] [i] ; 
p th [k ][j]= d th [k ][j];

}

}
count++;
if(count >»1000)

{
cnts++;
k»cnts*1000;
printf("%8d naximan #rror=%10.6f average»% i0.6f\n",k,«ps,tal); 
counfO;

}
i f ( fabsCl.O-old/eps) > l.Oe-20) 

old?apB; 
else 

break;

>«hile((eps > 100.0*ep) | |  ( ta l  > ep )); 

re su lts  output

p r in tf (" end s ith  maximam error tlO.lt and average % g\n",eps,tal) 
fp r in tf  (fo , "%d\n ",nl) ; 
for(i*0;i<»nl;i++)

f p r in t f ( f o ," %d " , la y e r [ i ] ) ; 
fp r in tf ( fo ," \n " ) ; 
fprintf(fo,"% g Xg\n",bj,bx): 
f o r ( i " l ; i<"nl;i++)

fo r ( j» l ;j< * layer[i];j++)

{
for(k"l;k<»layer[i-l];k++)

fprintf(fo," Xg",wt[i][j][k]): 
fprintf(fo," Xg\n",theta[i][j]);

}

eps"0.0 ; 
t a l "0.0; 
p r in tf (" M o"); 
f o r ( i» l ; i<*ni;i++>

printf(" XXd ",i>: 
for(i*l:i<=no;i++)

printf(" YXd " ,i); 
for(i»l;i<»no;i++) 

printf(" OutXd",i); 
for(i»l;i<=no;i++)

printf(" deXd",i);
for(i»l;i<»no;i++)

printf(" error%d",i);
printf("\n"); 
for(i»l:i<*85;i++) 

printf("_"); 
printf("\n"); 
for(st*l:st<»n;st++)

<
for(i»l;i<«ni;i++)

nout[0][i]»x[i-l][st]; 
for(k»l;k<»nl;k++>

fo r ( j» l ;j<»layer[k];j++)

{
net[k][j]*theta[k][ j ] ; 
for(i»l;i<*layer[k-l];i++)

net[k][j]+»wt[k][j][i]*nout[k-l][i]; 
nout[k][ j ] =val(net[k][j]);

>
for(j*l;j<»no;j++)
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{
y[j] [s t]= y [j][st]/bx -b j ; 
noutC nl][j]=nout[nl][j]/bx-bj;

>

for(i*l;i<=no;i++)

{
d e»y[i][st]-nou t[n l][i] ; 
es= fab#(de/y [i][st]); 
tal+*«s/n; 
i f  ( eps < es ) 

eps» es;

>
printf("%3d " , s t ) ; 
fo r(i» 0 ;i< n i; i++)

printf("% 8.3f " ,x [i][s t]> ; 
fo r< i* l; i<»no; i++)

printf("% 8.5f " ,y [ i ] [ s t ] ) ; 
f o r ( i» l ; i<»no;i++)

printf("% 8.5f " ,n o u t[n l][ i]); 
printf("%10.7f %10.7 f% s\n " ,d e ,e s» 1 0 0 .0 ,);

}
fo r ( i= l ; i<=85;i++) 

p r in tf ("_"); 
p r in tf (" \n " ) ; 
eps*»100.0 :tal*»100.0 ;
printf("maximax error ■ %10.6f%s average error » %10.6f%s\n",eps, , t a l , )
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