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Abstract

This thesis presents a practical design tool for wind turbine blades which was de-
veloped from existing theory on spectral fatigue analysis previously used for off-
shore platform design. The usual aim with spectral fatigue analysis techniques is
to estimate fatigue damage or some related function such as rainflow ranges from
spectral statistics. Monitored structural responses from different wind turbines
were used to assess these existing techniques. The best two methods (suitable
only for Gaussian stationary and random responses) were found to be Dirlik’s
empirical formula and Bishop’s theoretical solution. Various parameters involved
in the computation such as cutoff frequency and clipping ratio were examined.
Guidelines for selection of these parameters are also given.

A method based on Bishop’s theoretical solution is extended to include the
influence of mean stress. The joint PDF of rainflow cycle and mean stress can
be obtained from the response PSD using this method. Because the global mean
level information is usually not provided by the PSD, only the relative mean of
each rainflow cycle is calculated using this method. The global mean level can
then be provided by the designer during the structural analysis stage. This new
method was used to analyse the mean stress influence for wind turbine blades
using the two monitored structural response histories mentioned above.

A number of possible approaches for the spectral fatigue analysis of non-
Gaussian response histories are discussed. A method based on Bishop’s theo-
retical solution is extended to calculate the PDF of rainflow ranges from non-
Gaussian response histories specified as a peak trough transition matrix. Al-
though this is only a partial solution to the overall problem it still represents
a significant breakthrough. It may, for instance, be of use for estimating rain-
flow ranges from standardised load sequences specified as turning point matrices.
Restricted by the complexity of non-Gaussian processes, especially the limited in-
formation provided by PSD’s, a universal solution for the transition matrix and
the peak number of the process in unit time is currently not available.

As part of the continual development of wind turbines, blade diameters are
continuing to increase. The blade response can then sometimes contain a huge
deterministic component, caused by gravity, which makes the edgewise response
process not only non-Gaussian but also not random. Existing methods can not
deal with this situation. By numerical simulation from selected spectra and de-
terministic component parameters, a mathematical model for the rainflow cycle
PDF has been established. Least square techniques were employed for curve fit-
ting to obtain a set of model parameters. These parameters were used to train a
back propagation neural network. Finally, a neural network toolbox was devel-
oped for the fatigue analysis of wind turbine blades subjected to both Gaussian
stationary random flapwise responses and edgewise responses with a deterministic
component. In principle, the method can easily be extended to cover more then
one deterministic components. Verification of the technique has been carried out
using measured responses from a Howden HWP330 wind turbines.



Table of Contents

Abstract

Table of Contents

List of Figures

List of Tables

List of Symbols and Abbreviations
Acknowledgements

Declaration

1 Introduction

2 Theoretical background for spectral fatigue analysis

2.1 Introduction . . .. ... .... .. ... ... .. ... -
2.2 Fatigue damage accumulation . . . .. .. .. ... .. ...
2.3 Stress (Strain) cyclecounting . . . .. .. .... ... ...
2.4 Stochasticprocess . . . .. ... ... ... ... ...
2.4.1 General assumptions . . . . ... ... ..o
2.4.2 Probability and moments. . . . .. .. ... L.
2.4.3 Correlation function . ... .. ... ... . .....
2.4.4 Fourier analysis and spectrum . . . .. ... .. ...
2.4.5 Fast Fourier Transform . . . . ... .. ........
2.4.6 Statistics in the frequency domain . . . . . . .. . ..
2.5 Spectral analysis and structural dynamics . . ... .. ...
2.6 Some useful results fromthe PSD . . . .. .. ... .. ...
2.6.1 Zerocrossings . . . . . . .« ot ot e i oo
2.6.2 Distribution of Extrema . . . .. ... ... .. ...
2.7 Discussion . . . .. .. .. .. e

3 Present methods in use

3.1 General background . . . . . .. .. ... L L.
3.2 Narrow band solution . . . . .. .. ... ... ... .....
3.3 Correction factor methods . . . . . .. .. .. ... .....
3.3.1 Wirsching’s correct factor . . . . .. ... ... ...
3.3.2 Chaudhury and Dover equations . . . . ... .. ...

ix
ix
ix

ix

xiii

xiv



3.3.3 Hancock’sequations . .. ... .. .. ... ........

34 Tunna’sformula. ... .. ... ... ... .. .. ... . ...
3.5 Dirlik’sformula . . ... ... ... ... ... . . . . ...
3.6 Bishop’s theoretical solution . . . . ... ... ... ........
3.7 Madsenformula . . . . . ... ... ... ... . ... . ...
3.8 Discussion . . . . . . it e e e e e e e e e e e e e e

Fatigue Analysis of WEG MS-1 and Howden data
4.1 Introduction . . . . .. .. ... .. ... e

4.2 Analysisprogram . . . . . . . . . . ... e e
4.3 Analysisof WEGMS-1data . . .. .................
431 The WEGMS-l1data. ... .................
432 S—=NCUIVE. . . . o ittt e e e e e e
4.3.3 Statistical analysis . . ... ... ... ... .......
434 Fatigueanalysis . . . .. ... ... ... ... .. . ...
4.4 Analysis of Howden HWP330 data . . . . .. ... .. ... ...
44.1 HOWDEN HWP330data . .................
442 S—=Ncurve. . . . . . . i vt ittt
4.4.3 Statistical analysis . . ... ... ... ... ...,
444 Fatigueanalysis . . .. ... .. ... ... .0,
4.5 Discussion . . . . . . . . ... e e e e

Computational considerations in random fatigue analysis
5.1 Effect of cutoff frequency . . . . . . .. .. ... ... L.

5.2 Lengthrequirement . . . . ... ... ... ... . ... ....
5.3 Effect of S— N curveslope .. ...................
5.4 Selection of clippingratio . . . .. ... .. ... ... ...
5.5 Effect of deterministic components . . . . .. ... ... ... ..
56 Discussion . . . . . .. ... L e

Influence of Mean Stress

6.1 Introduction . . .. ... ... ... ... . ... L.
6.2 Goodman relationship . . ... ... ... .. ... . ..., .
6.3 Theoretical solution for Gaussian signals . . . ... .. ... ...
6.3.1 Markov Process . . . .. ... ... ... ...
6.3.2 Basic formulation of the theoretical solution . . . ... ..
6.3.3 Markov model for rainflow cycle . . . . ... ...
6.3.4 Initial transition and Kowalewski formula . .. ... ...
6.3.5 Long run probability . . .. ... ... .. ... .....
6.4 Modification for considering the mean stress . . . . ... ... ..
6.5 Analysis of WEG data including mean stress . . . . . . ... ...
6.6 Analysis of Howden data including mean stress . . . . . ... ..
6.7 Discussion . . . . . . . .. .. e e e

i



7 Fatigue analysis for Non-Gaussian response histories 97

7.1 Imtroduction . . . . .. .. ... ... ... 97

7.2 Mathematical description of non-Gaussian variables . . . . . . .. 98

7.2.1 Characteristic functions . . . . .. .. ... ... .. .. 98

7.2.2 Gram-Charlier Expansion . . ... ... .. ........ 99

7.2.3 Maximum Entropy Method MEM) . . ... ... ... .. 100

7.3 Statistical description of non-Gaussian processes . . . . . . .. .. 100

7.3.1 Timedomain . ... ..................... 100

7.3.2 Frequency domain . ... .................. 101

7.4 Present methods for non-Gaussian signal fatigue analysis . . . . . 102

7.4.1 Transformation method . ... .. .. ... .. ...... 102

7.4.2 Weakly non-Gaussian approximation . ... ........ 102

7.5 Theoretical solution for non-Gaussian stress history analysis . . . 103

7.5.1 Statisticaspect . . .. ... .. ... .. ... ... 103

7.5.2 Theoretical solution for non-Gaussian responses . . . . . . 103

7.6 Peak-trough series regeneration . . ... ... ... ........ 106

7.6.1 Tramsition matrix . . . . .. .. .. .. ... ... ... 106

7.6.2 Load sequence generation . . . .. ............. 108

7.7 Discussion . . . . . . . v i e e e e e e e e 109

8 Fatigue analysis for random stress histories with deterministic

components 111

81 Background . . . ... ... ... 111

8.2 Simulation of a stress history with deterministic components . . . 114

8.2.1 Simulation of a stationary Gaussian process . . .. .. .. 114

8.2.2 Simulation of a stress history with a deterministic component116

8.3 Modelling the rainflow range probability density . . . . . . .. .. 124

8.3.1 Gaussian time history . . ... ... ... ... ...... 124

8.3.2 Random time history with a deterministic component . . . 125

8.4 Parameterevaluation . . . ... .. .. ... ... .00 ... 126

8.4.1 Least square technique . . . . . .. .. ... ... ..... 126

8.4.2 Parameter evaluation for rainflow cycle models . . . . . . . 128

8.5 An introduction to neural computation . . . . ... ... ... .. 143

8.5.1 Basic structure of neural network . . .. ... ... . ... 143

8.5.2 Mapping Networks . . . . ... ... ..., ... .... 147

8.6 The use of neural networks for fatigue analysis . . . . . ... ... 150
8.6.1 Toolbox for fatigue analysis of random stress histories with

deterministiccomponent . . . . .. .. ... L0 150

8.6.2 Toolbox of fatigue design for Gaussian stress histories . . . 151

8.7 Discussion . . . . . . . . . o i e e e 154

9 Assessment of the neural network toolbox 165

9.1 Introduction . . .. .. .. ... .. ... ... .. L ... 165

9.2 Extraction of deterministic components . . . . . .. .. ... ... 166

9.2.1 Bandpassfilter . . . ... ... ... ... ... ...... 166

9.2.2 Least square sine wave fitting . . . . .. ... ... .... 167

i



9.2.3 Some comments about the azimuth averaging method . . . 168

9.3 Separation of the Howdendata . ... .. ............. 168
9.4 Reanalysis of Howdendata . . . . . . ... .. ........... 170
9.5 Result for simulated signals . . . ... ... ............ 174
9.6 Conclusions . . . . . . .. . . i i it i e e 176
10 Conclusions and Suggested Future Work 177
10.1 Conclusions . . . . . . . . . . . .. i e e 177
10.2 Suggested futurework . . ... ... ... . oL, 179
References 180
A Speetral fatigue analysis program for Gaussian responses 189
B Computer program for neural network training 200

v



2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

6.1

List of Figures

A typical S-Ncurve . . . . . .. ... o o 8
The stress-strain hysteresiscycle. . . . .. ... ... ... .. .. 9
Rychlik’s definition for rainflow cycle . . . .. ... ... ... .. 13
Modified definition for rainflow cycle . . . .. .. ... ... ... 13
-Bishop’s definition for rainflow cycle . . ... .. ... .. .... 14
An example of rainflow cycle counting . . .. ... ... ... .. 15
PSD moments calculation . .. .. .. .. .. ... .. .. ..., 21

A typical sample function of X (t) and its associated sample functions 26

Spectrumof nbdata . . . . . .. ... ... ... ... 42
Rainflow cycle distribution of nbdate . . . .. ... ... ... .. 42
Reverse arrangement test of WEG MS-1data . . . .. ... ... 45
X? of WEG MS-1 data fordegree 30 . . ... ........... 46
Rainflow cycle probability density and damage distribution for

WEG MS-1data g2 . . ... ... ... ... ... ... 49
Reverse arrangement test of Howden HWP330 data . . . . . . .. 52
Rainflow cycle probability density of Howden data . . . . . . . .. 55
Block effect of Howden data tape 26 3m flapwise . . . . . . L... BT
Influence of cutoff frequency of WEG MS-1 data y27a . . . . . .. 60
Influence of cutoff frequency of Howden data, tape 26 . . . . .. 61
Kowalewski matrices with different cutoff frequency . . . . . . .. 62
Noise level produced by different acquisition bit. . . . . . . . . .. 64
Length effect of idealiseddata . . . . . . ... ... .. ...... 65
Length effect of WEG MS-1datayl2a .. ............. 65
Rainflow cycle PDF’s of simulated long signal . . ... ... ... 66
Length effect for Howden data tape 27 flapwise signal . . . . . . . 67
Length effect for Howden data tape 27 edgewise signal . . . . . . 67
Window size effect: WEG MS-1datay27a .. ... .. ...... 68
Effect of S-N curve slope: WEG MS-1 data y27a . . ... ... .. 70
Effect of S-N curve slope: WEG MS-1datay27d. .. ... .. .. 71
Effect of S-N curve slope: Howden data tape 26 3m flapwise . .. 72
Effect of S-N curve slope: Howden data tape 26 3m edgewise . . . 72
Clipping of normal distribution . . .. ... ... ... ...... 74
Choice of clipping ratio: WEG data y27d . . . . .. ... ... .. 74
Choice of clipping ratio: Howden data tape 26 3m flapwise . . .. 75
Choice of clipping ratio: Howden data tape 26 3m edgewise. . . . 75
Rainflow cycles with different mean . . . . . . .. ... .. ..., 78



6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9

6.10
6.11
6.12

6.13
6.14

6.15

7.1
7.2
7.3
74
7.5

8.1
8.2

8.3
8.4
8.5
8.6

8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18

S-N curves with different mean . . . . . ... ... ..o 0L
Fatigue life - cycle range - mean stresscurve . . . . . . .. .. ..
Goodman relationship . . . . ... ... ... .. ... .....
Iustration of events Y3, Y2, Y3 . . . . . . . . .. ... ...
Markov model for rainflow cycle . . . . ... ... ... ... ...
Illustration of Kowalewski’s expression. . . . . ... ... ... ..
(a) The trough given peak part of Kowalewski’s expression for a
16 by 16 matrix.(b) The peak given trough part of Kowalewski’s
expression for a 16 by 16 matrix. . .. .. ... .. ... ... ..
Example of one step transition matrix.(a) peak to trough, (b)
troughtopeak . .. ... ... ... ... .. ... ...
Transition matrix and its equilibrium distribution . . . . . .. ..
The assumption of normality and stationarity . .. .. ... ...
Example illustrating the method of evaluating prgr(3) for a 16 level
PIOCESS « « v v v v v e e e e e e e e e e e e e e e e e
The joint PDF of rainflow range and mean from y27a . . . . . . .
The joint PDF of rainflow range and mean from Howden data tape
26 3mflapwise. . . . . .. L.
The joint PDF of rainflow range and mean from Howden data tape
26 3medgewise . . . . . . ... e

Non-Gaussian transition probability matrix. . . . . ... ... ..
Rainflow cycle PDF’s from non-Gaussian transition matrix . .
FALSTAFF matrices . . . . . . . . .. . v v ...
Load sequence regeneration . . ... ... .. ... ........
PDF’s from regenerated load sequence . . .. .. ... ......

The effect of deterministic component in stress history . . .. ..
The methodology used to develop a combined signal toolbox for
fatigue analysis . . . . .. ... ... o o oo oL,
Harmonic component from spectrum . . . .. .. ... .. ....
Shapes of spectraused . . . ... ... .. ... ..........
Phase check for input sinewaves. . . . . ... .. ... ......
Average of absolute percentage errors of fatigue damage with dif-
ferent phase . . . . .. .. ... ... L
Rainflow cycle probability density function from spectrum 1

Model for the rainflow cycle probability density function . . . ..
Curve fitting on weighted and unweighted basis . . . . . ... ..
Curve fitting for spectrumno. 1 . . . . . . ... ... ... ...,
Least-square fitting results for spectra 60 . . . . . . ... ... ..
A typical neural network architecture . . . . . ... .. ... ...
A generic processingelement . . . . ... ... Lo L
Layout of back propagation network . . . . . . ... .. .. ... ..
A typical error surface. . . . . .. .. ... oL oL oL
Convergence path of u,0,Coand E[P] . . . . ... .. ... ...
Neural network prediction for spectra 60 . . . ... ... ... ..
Convergence path of the parameters for Gaussian model . . . . .

vi



8.19 The rainflow cycle PDF’s and fatigue damage density functions
from time domain analysis and neural network computation

9.1 Azimuth of turbineblade . . . . . . ... ... ... oL,
9.2 A sample of azimuth record from HWP330 tape 18 . . . . . . ..
9.3 The stochastic component of tape 18 3m edgewise signal . . . . .
9.4 Rainflow cycle probability density function from time and fre-

quency domain analysis . . . . . .. ... ... oo
9.5 Howden data tape 26 3m edgewise . . .. .. ... ........
9.6 New simulatedsignal . . . . ... ... ... ... .........
9.7 Rainflow cycle PDF’s from new simulated signal . . . . .. .. ..

A.1 -Flowchart of the program for random fatigue analysis . . . . . . .

vii



4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

6.1
6.2
6.3
6.4

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12

8.13

8.14
8.15
8.16
8.17
8.18
8.19

9.1

List of Tables

MS-1loadcases . . . . . .. ... i i 43
Statistical analysis for WEG MS-1data . . . . ... ... ..... 47
Fatigue damage rates for WEG MS-1data . . . ... ... .. .. 50
Load case of Howden HWP330 data . . . . .. ... ... ... .. 51
- Statistical analysis for Howden data . . . . . . ... ... ... .. 53
Fatigue damage rates for Howden data 4=4.0 . .. ... ... .. 54
Fatigue damage rates for Howden data 6=8.0 ... ... ... .. 54
Fatigue damage rates for Howden data b=12.0 . . . . . . ... .. 56
Fatigue damage ratio for WEG MS-1 data with mean stress . .. 91
Ultimate bending moments of Howden data . . . . ... ... .. 93
Fatigue damage ratio of Howden data with mean 6=8.0 . . . . . . 94
Fatigue damage ratio of Howden data with mean b=12.0 . . . . . 94
70 PSD’s used in stress history simulation (1) . . ... .. .. .. 117
70 PSD’s used in stress history simulation (2) . .. .. ... ... 118
Statistical parameters for signals from PSD No.1. . . . .. .. .. 123
Model parameters by curve fitting with weight £2(z) = z (1) . 134
Model parameters by curve fitting with weight £2(z) =2 (2) ... 135
Fatigue damage rates for fitted model curve with b=15.0 (1) . . . 137
Fatigue damage rates for fitted model curve with 6=15.0 (2) . . . 138
Fatigue damage rates for fitted model curve with 6=15.0 (3) . . . 139
Fatigue damage rates for fitted model curve with b=15.0 (4) . . . 140
Fatigue damage rates for fitted model curve with 6 =15.0 (5) . . . 141
Fatigue damage rates for fitted model curve with 6=5.0 (6) . . . 142
Model parameters calculated from neural network toolbox for the
TOPSD’suse. . . . .. .. o e 157
Model parameters calculated from neural network toolbox for the
TOPSD’suse. . . ... ... . e 158
Fatigue damage rates from neural toolbox b=5.0 (1). .. .. .. 159
Fatigue damage rates from neural toolbox b=5.0 (2). ... . .. 160
Fatigue damage rates from neural toolbox b=5.0 (3). .. .. .. 161
Fatigue damage rates from neural toolbox 6=50 (4). .. .. .. 162
Fatigue damage rates from neural toolbox 6=5.0 (5). .. .. .. 163
Fatigue damage rates from neural toolbox b=5.0 (6) . . . .. .. 164

Amplitudes of deterministic components in Howden data edgewise
signals . . ... L e 170

viii



9.2

9.3

9.4

9.5

Amplitudes of deterministic components in Howden data edgewise
signals . ... L. e
Damage rates of frequency domain results with time domain results
for Howden data edgewise signals with b=5.0. . . . . . . ... ..
Damage rates of frequency domain results compared with the time
domain results for the new simulated signals with 6=5.0 . . . ..
Damage rates of Dirlik’s formula compared with the time domain
results for the new simulated signals with =5.0 . . . . . ... ..

X



PSD
PDF
DFT
FFT
RAT

rms

o 'z W

List of Symbols and Abbreviations

Power Spectral Density
Probability Density Function
Discrete Fourier Transform
Fast Fourier Transform
Reverse Arrangement Test
root mean square

cycle range

cycle number

inverse slope of S-N curve
S-N curve intercept

Chapter 2

crack length

stress (strain) intensity factor
material constants

specimen geometry

and loading factor

cycle stress range

number of cycles with range S
expected fatigue damage
expected peak number

in unit time

expected zero crossing

in unit time

time duration

cycle range

probability density function
response series

time forwards

time backwards

random process

probability distribution of z
probability density function of z
nth order moment

nth order central moment
mean value of random process
root mean square
mathematical expectation
characteristic function
cross-correlation function
time lag

autocorrelation function

R.. autocorrelation function
@y, by, Fourier constants

wy  radius frequency

X (w) Fourier integral

A(w) real part of X(w)

B(w) imaginary part of X (w)
S(w) two sided spectrum
G(f) one sided spectrum

X  stochastic process

X
X  second order differential process
Gi(f)power spectral density function

first order differential process

L, duration of signal
At  time interval width of signal
m, nth order moment of PSD

~ irregularity factor

fm  “mean” frequency

M  mass matrix

C  damping matrix

K  stiffness matrix

V  deformation

p(7) loading

T, period of load

k() unit impulse response function
P(iw)Fourier transform of load p(t)
v(t) time domain response
V(iw)frequency domain response
H(w) frequency response function
S(tw) response spectrum

u[] unit step function

N() number of level crossing
r(0) number of zero crossing
M() number of extrema

q+()

number of extrema per unit time

Chapter 3

E[D)rr expected damage by rainflow cycle
E[D]np expected damage
by narrow band solution
A(+,+)  correction factor
a,c constants

€ =+1-172



INQ) Gamma function

Sh equivalent stress
erf(-) error function

z normalised cycle range

(= 5/2ymo )

prr(z) rainflow cycle range PDF

Ch coefficients in Dirlik’s formula
C, coefficients in Dirlik’s formula
Cs coefficients in Dirlik’s formula
T factor of

exponential distribution
o factor of Rayleigh distribution
" first event in rainflow cycle
Y, second event in rainflow cycle
Y; third event in rainflow cycle

Yi() probabilities of Y;
Y2()  probabilities of Y,
Y3() probabilities of Y3

ip peak level
kp trough level
dh level interval width

X(t)  stochastic signal
Z(t)  deterministic component
Y(t)  combined time history

X(t)+Y(t)
9z() bandwidth correction term
M(:,-,-) confluent hypergeometric
function
N, number of mean upcrossings

of deterministic component
in one period

N, number of peaks
of deterministic component
in one period

ox standard deviation
of stochastic process
oz standard deviation

of deterministic component
Ck amplitudes of sine waves
#(t) standard normal distribution
b() = It d(p)dp = erf(2)
) = at)— th(—)
¥(t) deterministic component

of the combined signal

Chapter 4

xi

p

Xmaa:

Sa
SaO
Sm
Sult
Sy
fC1)
o

az

Prin.maz() peak-trough transition probability

P
Pij

SNTO N Q

= QO

number of signal blocks
acceptable range for RAT
chi-square distribution

calculated value of chi-square test
class intervals

observed frequency

expected frequency

number of freedom

significance level

chi-square value with number of
degrees n with significance level a

Chapter 5

clipping ratio
assumed maximum value
of random process

Chapter 6

cycle range with mean
cycle range with zero mean
mean stress of cycle
ultimate tensile stress
yield stress

conditional probability
trough level

peak level

transition probability matrix
element of P

absorption state

transient state

transition probability from T to C

transition probability within T

transition probability within C,

unit matrix
transition probability out of C,
null matrix

equilibrium distribution
of transition probability
long run probability

of transition from i to it j

Chapter 7



Hi() Hermite series

P(w) Fourier transform of p(z)

H, entropy of PDF

Ch coeflicient

R... bi-correlation

tk time argument

Rozre tri-correlation

Szzz(*s ) bi-spectrum

Sezzz(*y+y+) tri-spectrum

F, cumulative distribution
of process X(t)

d, cumulative distribution
of process U(t)

g(+) transferring function
from @, to F;

£, € random process and
its first order differential

p(€,€) joint PDF of ¢ and ¢

F (f) peak probability
distribution of ¢

N() number of level crossings

z(t)

Chapter 8

stationary Gaussian process
Fourier transform of z(t)
PSD function of z(t)
orthogonal function of X (w)
one-sided PSD

phase angle information
complex random process
constants for defining spectra
constants for defining spectra
constants for defining spectra
constants for defining spectra
amplitude of sine wave

PDF of sine wave z(t)

with random phase

Gaussian distribution
process y(t)

PDF of process z(t)=z(t)+y(t)
model function

for rainflow cycle PDF
constants in model equation
constants in model equation
constants in model equation

X(t)
Y(t)

Z(t)
A

xil

coefficient

in exponential distribution
coefficient

in Rayleigh distribution

coefficient in Gaussian distribution

model parameter

model equation

residual of ith observation
least square error

(sum of squares of the residual)
iterate step length

iterate direction

target value of 6

coefficient matrix

gradient vector

Hessian matrix
approximation of H;
constraint equation

penalty function

penalty factor

extended objective function
objective function for the model
of rainflow cycle PDF
rainflow cycle PDF

counted from simulated signal
weight function

input to neuron j

from system input p

weight factor of neuron

¢ to neuron j

output of neuron i

for system input p

error at neuron k

for system input p

total error of output layer
coefficient of sigmoid function
intermediate quantity
upgrading step size

Chapter 9

response of wind turbulence
response of gravity

sum of X(t) and Y(?)
amplitude of gravity response
azimuth of turbine blade
phase of gravity response



Acknowledgements

I would like to express my thanks to my supervisor, Dr. Neil Bishop. The thesis

is fulfilled with his excellent supervision and encouragement.

With special thanks to my wife, Wang Qin, for her companionship and un-
derstanding during this difficult time in the last four years, which makes all this

possible.

I will not forget the support from my parents and two sisters. They sustained
all the hardship in the past fifteen years after I left home in 1979.

I would also like to express my appreciation to Professor Fang Shanfeng and
other Professors in the Department of Civil and Structural Engineering, Wuhan
University of Hydraulic and Electric Engineering, P.R. China, for their guidance

and help during my time in China before I came to study in Britain.

Finally, thanks to the Chinese government and British Council for their spon-

sorship of the work.

Xiii



Declaration

This dissertation is submitted in support of an application for the Degree of

Doctor of Philosophy in Engineering Science, from University College London.

No part of the work contained in the thesis has been submitted for any other

Degree or Diploma from this University or any other Institution.

All the computation work in this thesis was performed by me with my own
programs. All the programs used in this thesis are coded and developed by me.
The work contained in this thesis is original and my own unless otherwise stated

in the text.

I hereby declare that this declaration is true in every respect.

Zhihua Hu

Xiv



Chapter 1

Introduction

Spectral fatigue analysis is a very new topic. Basic techniques were developed
for very. limited situations in the 1960’s and 1970’s. More advanced techniques
for stationary Gaussian and random loadings were developed in the late 1980’s
and early 1990’s. The original objectives of the work in this thesis were to extend
the techniques to cover loading situations not satisfying these assumptions and
these objectives have been satisfied through the development of solutions to cover
non-Gaussian loadings and non-random (deterministic) components. In addition,
further goals have been achieved such as a solution for the range-mean distribution
for a random signal specified in the frequency domain as a Power Spectral Density
(PSD) function.

Fatigue is defined as the process of structural change occurring in a material
subjected to conditions which produce fluctuating stresses and strains at some
point or points and which may culminate in cracks or complete fracture after
a sufficient number of fluctuations [1]. Fatigue failures were starting to worry
engineers over a hundred years ago [2] [3]. Research on fatigue was then started.
Early research during 1850 to 1875 involved conducting experiments to establish
~ a safe alternating stress below which failure would not occur. Full scale axles as
well as smaller laboratory specimens were employed to establish the endurance
limit concept for design. Among the early researches, August Wahler first pointed
out many important aspects of fatigue behaviour. The most important one being
that fatigue depends more on the range of stress than the maximum stress and
the life of specimens reduces when the amplitudes of repeated loading increases.
He also introduced the concept of a stress versus life (S-N) diagram.

After the initial research from 1850 to 1875, more experimental work was
conducted to establish a clearer understanding of the fatigue phenomena, i.e.,
the process of crack propagation under cyclic loading. The importance of cyclic
deformation was clearly established in 1932 [4]. Research in fatigue during the

1930’s and 1940’s was largely devoted to experimentally establishing the effects of



the many factors that influence the long-life fatigue strength. Tests were usually
conducted in rotating bending and the life range of interest was about 10° cycles
and greater.

The quantitative relationships between plastic strain and fatigue life was es-
tablished in the 1950’s. In the 1960’s fracture mechanics was developed as a
practical engineering tool for fatigue analysis. Paris quantified the relationships
for fatigue crack propagation in “Twenty Years of Reflection on Questions Involv-
ing Fatigue Crack Growth”. By the 1970’s fatigue analysis became an established
engineering tool in many industrial applications.

Based on this research, various analysis techniques [5] [6] have emerged to

deal with different design requirements. They include:

(i) The nominal stress approach. The amplitude of some representative stress
in the component is used to predict its life. The stress is often a nominal
stress and local features such as holes and notches are dealt with by intro-
ducing stress concentration factors. Failure may be taken as the appearance
of a crack, a specific length of crack, or total failure depending on the test

data available.

(i1) The fracture mechanics approach [7]. Crack propagation is assumed to
depend on a fracture mechanics parameter, usually the range of crack tip
stress intensity factor AK. Life is then calculated by assuming an initial
crack length and finding how many cycles are needed to make this crack

grow to an unacceptable size.

(iii) The local stress-strain or critical location approach [8] [9]. The strain history
of some critical location is estimated from the loading history, including
plasticity effects. Life is then estimated from test data taken under strain

controlled conditions.

The nominal stress approach was used in this thesis. It was chosen because
methods such as the ones described above, either have no relevant influence on
the focus of the present study, or are unsuitable for dealing with the loading
problem investigated because there is a need to define a stress (or strain) “cycle”
for the loading conditions which are more complex than constant amplitude.

For a constant amplitude loading history, the S-N curve can be reliably used
to predict fatigue life. However, when a structure or component is subjected to

normal service loadings this approach has to be adapted to account for the fact



that the loadings will not be of constant amplitude. For such situations, firstly
there must be a way to count the accumulation of fatigue damage, and secondly
a method must be used to extract the “cycles” which contribute to such damage
from the loading time history. For the first problem, Miner’s law is generally
adopted. This law assumes a linear fatigue accumulation and ignores the order of
cycles of different range and their interactive effects [10]. For the second problem,
many methods of “cycle” defining or counting have been proposed. Among them,
the rainflow cycle counting method is generally used because it is believed that
this method gives the best correlation with test results.

For stochastic loading, it is hard to express the loading history using a math-
ematical formula. A more common way is to express the loading in the frequency
domain as a PSD, as with, for instance, wind loading, sea wave loading, etc. The
structural analysis for such loading histories is also conducted using frequency
domain techniques. Using a linear assumption, the input-output relationship is
described with the so-called transfer function. This analysis technique has many
advantages. The most important one is that, the tedious and time consuming
computing work in the time domain can be avoided and the response spectrum
can be obtained without knowing the time history of the loading (actually it is
very difficult to know). With most Finite Element packages used for structural
analysis, such spectra can be obtained directly. )

It is for this reason that considerable attention has focused on the spectral
fatigue analysis approach for structures and/or components subjected to stochas-
tic loadings [1]. This approach uses the frequency domain information describing
structural response to predict the fatigue damage, rather than relying on the
more traditional deterministic or time domain solutions.

Work by S. O. Rice [11] and then J.S. Bendat [12] produced relationships for
calculating the number of peaks and zero crossings per unit time from the joint
probability density function of the process and its first and second order differen-
tial processes. For a Gaussian signal, this joint probability density function can
be determined from the frequency domain representations of the loading. This
relationship provides the basic foundation for spectral fatigue analysis.

The first frequency domain approach was the so-called narrow band solution
which assumes that the response has a narrow frequency band of one predomi-
nant frequency. However, this is not always the situation, especially when taking
account of possible nonlinearities and the fact that structures are nearly always

multi-degree of freedom systems. Other methods were developed to modify it to



deal with more general loading situations and to use the rainflow cycle definition.
Some methods have also been developed to calculate the rainflow cycle proba-
bility density function directly, either using numerical simulation [13] or Markov
chain theory [1]. Most of the work up to present date assumes that the response
processes are stationary, random and Gaussian. Perhaps there are two reasons
for this assumption. The first is that, according to the central limit theorem,
most structural responses should be Gaussian. The second is that, the Power
Spectral Density functions can only provide enough information about the distri-
bution of Gaussian processes. It is known that the distribution of the process and
its first -and second order differential processes is essential for such analysis. For
non-Gaussian responses, there is currently no efficient way to perform the fatigue
analysis using frequency domain information. Actually, non-Gaussian processes
are too wide a class of distributions to deal with as a whole.

The first large scale application of frequency domain fatigue analysis was for
offshore engineering. Much material has been published on the spectral fatigue
design of offshore platforms. This technique has been applied for railway engi-
neering design [14]. This technique has also been applied to wind turbine blade
design. However, the loading on wind turbine blades does not satisfy the Gaussian
assumption as the gravity component in the edgewise direction becomes bigger.
This deterministic (gravity) component is applied predominantly in the blades
edgewise direction although there is some coupling into the flapwise direction.
In all but the purely flapwise direction there is therefore a combined stochastic
(wind loading) and deterministic (gravity) mixed signal. Such a deterministic
component makes the response not only non-Gaussian but not purely random as
well. This thesis develops a fatigue design tool for such structures.

Chapter 2 gives the theoretical background necessary for spectral fatigue
analysis, such as Miner’s law, rainflow cycle counting, the theory of stochastic
processes, spectral analysis etc. This chapter also presents Rice’s work for deriv-
ing the number of peaks and zero-crossings of a stochastic process in unit time.

Chapter 3 presents most of the present methods using frequency domain
information. Among them are the narrow band solution and the so-called cor-
rection factor methods, Tunna’s method, Dirlik’s empirical formula, Madsen’s
formula, and Biship’s theoretical solution.

Chapter 4 assesses most of the present methods with two sets of monitored
structural response data. First of all, a statistical analysis of the time histories is

performed in order to check stationarity and normality. Then, using the PSD’s



calculated directly from these signals, the fatigue damage is calculated using the
frequency domain methods. Rainflow cycle counting is also performed on these
time signals directly and the results are taking as a reference solution with which
to compare the frequency domain approaches. It was found that the narrow
band solution always gives an over conservative prediction while Dirlik’s empiri-
cal formula and Biship’s theoretical solution give the most consistent results with
the time domain solution. It was also found that the existence of a determinis-
tic component in the response causes great problems for the fatigue analysis as
expected.

Chapter 5 presents the computational considerations required when perform-
ing the calculations in Chapter 4. Some problems concerning practical calcula-
tions are discussed in this chapter. The first problem discussed is the selection
of the cutoff frequency of the PSD function, which is related to the monitoring
noise problem or the truncation of response spectra. The frequency cutoff point
is the integration limit used when computing the moments of the PSD. Since
higher moments are used to determine the probability distribution of the second
order differential process, the cutoff frequency problem is sometimes very serious.
The length of the signal required for fatigue analysis is also discussed here. This
can also be taken as a guide for response monitoring for the purpose of fatigue
analysis. The selection of clipping ratio is also an important issue. This chapter
finds practical ways of selecting these parameters based on frequency domain in-
formation for the first time. The influence of S-N curve slope b is also discussed
here. It was found that the so-called equivalent stress parameter should be used
with great care.

Chapter 6 presents a method to include the mean stress in spectral fatigue
- analysis. This method is based on Bishop’s theoretical solution [1]. Since the
global mean information is not available from the PSD, the relative mean of
each cycle is used. This is not usually a problem at the design stage because
such global mean information is then often available. For research purposes, this
information can be obtained from the corresponding time series. The fatigue
damage can then be calculated by employing Goodman’s relationship or some
other formulae to transform the cycle with mean to a cycle without mean which
causes the equivalent fatigue damage. The S-N curve can then be used as usual.
This method is applied to the two sets of monitored response histories, i.e., WEG
MS-1 and Howden HWP330 data, to assess the influence of mean stress on fatigue.

Chapter 7 gives a review of current approaches for non-Gaussian analysis.



First of all, methods for the mathematical and spectral representation of a non-
Gaussian process are discussed. Some methods for the fatigue analysis of non-
Gaussian signals with assumptions are also discussed. A method for calculating
the rainflow cycle distribution from non-Gaussian responses is presented in this
chapter, provided that the peak to trough and trough to peak transition proba-
bility matrices are known. Again, this method is based on Bishop’s theoretical
solution [1]. As the peak number in unit time is related to the joint probability
distribution of the process and its first and second order differential processes,
it is currently impossible to find a universal formula for the complete problem.
The peak-trough transition matrix is also related to these differential processes.
In order to make progress with this problem in this chapter an approach related
to standard load sequence development is suggested as a better solution if the
peak-trough and trough-peak transition matrices are available.

Chapter 8 presents a neural network toolbox for the fatigue analysis of
responses which contain a deterministic component. This toolbox is based on
numerical simulation. After performing rainflow cycle counting on time series
simulated from selected spectra and deterministic components, a mathematical
model was established to express the rainflow cycle probability density function.
Curve fitting using least square techniques was then employed to calculate a set
of model parameters. A neural network was established and trained to calculate
the model parameters using spectral statistics and deterministic component pa-
rameters. The situation of a pure Gaussian signal is also considered in this neural
network toolbox development.

Chapter 9 presents an assessment of the toolbox developed in Chapter 8.
A first attempt is made to use the edgewise signals of the Howden HWP330 data.
An attempt is made to separate the deterministic components from the response
histories. A new method combining a band pass filter and a least square technique
is proposed for such work. It is a more efficient way than the azimuth averaging
method. The assessment gives a satisfactory result.

Chapter 10 gives a summary of the conclusions from each chapter and pro-

poses some topics for future work.



Chapter 2

Theoretical background for
spectral fatigue analysis

2.1 Introduction

Structural fatigue under constant amplitude fluctuating stresses has been stud-
ied widely for many years, both theoretically and experimentally. In theoret-
ical studies, fracture mechanics can be employed. The theories of linear elas-
tic fracture mechanics (LEFM), elastic-plastic fracture mechanics (EPFM), and
even microstructure-based micromechanics have been developed to analyse fa-
tigue damage at different stages of the crack growth [15]. All these theories
give us a good understanding about crack propagation and the process of fatigue
damage. )

If the crack is relatively long (or the stress is low), LEFM is a suitable theory
to describe the crack growth. This stage of crack growth is governed by the

so-called Paris law as follows:

da n
i DAK (2.1)

where a is the crack length, Nis the cycle number, D and n are material constants,
AK is the stress (or strain) intensity factor defined as AK = Yéo/(¢a) with ¥
as the specimen geometry and loading system factor and éo as the cyclic stress
range. A suitable integral will give the relationship between the limit of stress
cycle number N (fatigue life) and the stress cycle ranges S, which is the widely
used S-N curve. In the log-log plane, they are generally straight lines, as shown
in Figure 2.1. The so-called Basquin equation N = kS~° can then be used to
mathematically represent the relationship.

These curves meet well with experimental results [2] [4] [16]. Actually, the
S-N curve was first discovered experimentally at an early stage of research in

fatigue (See Introduction).
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Figure 2.1: A typical S-N curve

Most existing structures, however, experience the action of random loads,
such as automobiles, offshore platforms, windmills, air fighters etc. The loads
for such structures are neither constant nor even deterministic. There is no way
to simply translate the results of constant amplitude fatigue theory for these
circumstances even though this is the practical environment under which the
structure is operating.

Fatigue damage analysis under such circumstances is very difficult to perform
in the time domain at the structural design stage. However, because of the
development of random vibration theory, especially the development of frequency
domain techniques, this analysis has now become possible using frequency domain
information which is much easier to obtain in relation to the structural analysis.

Much research work has been done concerning the task of estimating fatigue
life using frequency domain techniques. The ability to estimate fatigue damage
from the PSD of stress or strain at some critical location is now a valuable design
tool in the offshore, aerospace, and wind engineering industries. The next section
gives a brief introduction to the theory necessary for spectral fatigue analysis, such
as extracting the stress cycles from complex stress histories, fatigue accumulation,

and spectral analysis of structures.

2.2 Fatigue damage accumulation

Two difficulties arise when attempting to use the fracture mechanics approach

for design purposes. First, the initial characteristics of the crack or flaws must be

8



known, and second, the order of different cycles in the lifetime calculation must
also be known. This information is often not available for the designer. Indeed,
when the loads are stochastic, the ordering can not be known in a deterministic
sense. Thus, it is necessary to propagate the statistics of the crack lengths and
the loading through the nonlinear differential Equation 2.1, and this is a very
difficult task.

In order to overcome these difficulties, the somewhat simpler Palmgren-Miner
approach has been extended to cover the case of irregular load histories [17][18].
Two basic assumptions lie at the heart of this approach. First, it is assumed that
the damage increment for each load cycle is characterised by the corresponding
closed hysteresis path in the local plastic stress-strain diagram shown as in Figure
2.2. Thus, any given (closed loop) load cycle is equivalent to a sinusoidal cycle
with the same stress or strain range. In this thesis, it will be assumed that the

cycle can be characterised by either the stress or the strain range.

}

Stress

p/ FamE

Figure 2.2: The stress-strain hysteresis cycle

The second main assumption is that the effect of the sequencing of the hys-
teresis cycles can be neglected. It is assumed that each cycle causes an incre-
ment of damage which depends on its stress range regardless of the previous
load history[19]. With these two assumptions, the cumulative damage caused by
stochastic loading can be estimated by assuming that at final failure,

N
> N = 1.0 (2.2)
where n, is the number of cycles counted with a particular stress range band(s)
and N is the fatigue life from S — N curve N = kS~ corresponding to this stress

range.



The second assumption is of course not precisely correct. However, it has been
argued heuristically that in the case of stochastic loading, the random sequencing
tends to reduce the influence of cycle order. In other words, sequences causing
increased damage (as determined by their order and not the stress range content)
are equally as likely to occur as sequences causing decreased damage [20].

The basic idea behind the Palmgren-Miner approach to fatigue analysis is to
find a set of sinusoidal load cycles, which does the same fatigue damage as the
given history, and then, the results from constant amplitude fatigue testing can
be used. The process of finding this set of sinusoidal cycles is generally referred
to as the “cycle counting” and will be discussed in the next section.

This linear accumulation law is sometimes found to be not true for some
complicated stress situations [15] [21]. Some alternative formula have also been
proposed to replace this law [21]. However, no other method has been found to
work better for the universal situation.

Using the Palmgren-Miner’s law, for a given time series with cycles counted

from it, the expected fatigue damage E[D] can be estimated using

E[D] = %[- (2.3)

The expected fatigue life is then the reciprocal of E[D].
The number of stress cycle ranges from S to S + dS during time T can be

expressed as :

ne =T - E[P]- p(S) - dS (2.4)

where, E[P] is the expected number of peaks in unit time and p(S) is the PDF
of cycle ranges.

By substituting Equation 2.4 and the Basquin equation into Equation 2.3,
yields the expected damage caused by the whole loading history:

E[D) = E[P]- T [ stp(s)as (2.5)

Thus, to calculate the fatigue damage the probability density of cycle dis-
tribution and the number of peaks in unit time must be calculated first. The
important tasks of spectral fatigue analysis are therefore to calculate both the
peak rate and cycle PDF in the frequency domain. This has been achieved by
some research groups but with many important assumptions.

Another way of expressing the above damage equation is by using an equiva-

lent stress range parameter. It is a single stress range which produces the same
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fatigue damage. It can be expressed as :

Sv=1[ s*p($)as)} (2.6)

2.3 Stress (Strain) cycle counting

Stress cycle definition, or choosing a suitable cycle counting method, is the first
problem encounted in random fatigue analysis. As pointed out in the previous
section, the cycle counting process is actually trying to find a set of sinusoidal
cycles which has the same fatigue damage as the original stochastic sequence.
Up to nbw, there are more than ten types of counting methods which have been
reported in the literatures [22]{23]{24][1]. Some of them are listed below.

(i) Peak count method. The number of peaks and/or troughs at particular

levels are counted.

(i) Mean-crossing peak count method. As (i) above except that only the

maximum peak or minimum trough is counted between zero crossings.

(ili) Ordinary range count. The height of ranges between adjacent peaks and
troughs is counted. From this a probability density of ordinary ranges can

be calculated.

(iv) Range-mean Count. This method is identical to (iii), except that the

mean value of each ordinary range is also counted.

(v) Level crossing count. The number of upwards (or downwards) crossings

of particular levels are counted.

(vi) Fatiguemeter count. A technique developed in the aeronautics industry
to measure variations of acceleration. This is a similar technique to (v)
except that small variations in the signal, such as noise, are removed by
using a gate or trigger level. Signal excursions from the previous recorded

level are only recorded if the trigger level is exceeded [25].
(vii) Range-pair count [22].
(viil) Wetzel’s method [26].

(ix) Rainflow method [27][28].
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Among all of them, the last three have generally been accepted as better
methods of calculating fatigue damage from random signals [18]. Among the last
three, the rainflow counting method is now widely accepted as the one which
gives the most consistent prediction compared to the actual life result [18][29]. It
is for this reason that, rainflow cycle counting is accepted as the default counting
method in the whole of this thesis.

The rainflow cycle counting method was first proposed by Matsuishi and Endo
[27] [30] in 1968. The original definition of a rainflow cycle was fairly complicated.
It simulated the phenomena of rain dripping down rooftops, and so it was called
the “Pagoda Roof method”. Several equivalent versions of the rainflow counting
method have evolved [31] [32] [33]. The minor differences which led to the creation
of these methods have now been resolved and all give identical cycle counts if the
time history starts and ends at either the highest peak or the lowest trough.
The first alternative and more useful definition was made by Rychlik as given
below([34).

Definition 1. Let y(7), —T < 7 < T, be a load function (Figure 2.3), and
suppose it has a local maximum at time ¢ with height y(¢) = u. Let t* be the
time for the first upcrossing after ¢ of the level u, (or t¥ = T if no such upcrossing
exists for t < 7 < T'), t~ be the time for the first upcrossing before t of the level

u, (or t~ = T if no such upcrossing exists for —T < 7 < t). Define two ranges at

(t,y(2)),

ST = max (y(t) —y(r))

S5~ = max (y(t) — y(7))

t—<7<t
The amplitude of a rainflow cycle originating at (¢,y(t)) is defined by :

S = min(S~, SY)

If the load history is a stationary ergodic time signal, a symmetric about ¢t = 0
exists. For this reason, another restriction of S~ > S* can be applied to the
definition. Every cycle counted then should be considered as two cycles with the
same amplitude. This modified the definition as [1]:

Definition 2. For a rainflow cycle valued S to exist at a current peak, the

signal must have the following configuration as in Figure 2.4:

i). takes the signal forwards (+ve time) from point 1 to point 2, a distance
S below it.

12



Figure 2.3: Rychlik’s definition for rainflow cycle

i1). takes the signal forwards from point 2 to point 3, some level at or

above point 1.

iii). takes the signal backwards (-ve time) from point 1 to point 4, some

level at or below point 2.

iv). takes the signal backwards from point 4 to point 5, some level at or

above point 1.

\ point 5 point 1 point 3 /

Figure 2.4: Modified definition for rainflow cycle

However, for stationary ergodic signals, when considering the long term dis-
tribution of the signal, event iv) of this definition is redundant. Because if the

signal comes from below the level of point 2 there is a probability of 1.0 that it
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originally came from a level above point 1 prior to this (given that it could go to
any level below point 2 during this process).

Based on above analysis, a new definition was made by Bishop([35] and is given
as below (Figure 2.5):

Definition 3. For a rainflow cycle valued S to be defined from a particular

peak the following events must happen:

i). Y; The signal must have come from a level at least S below the level
of point 1 without at any time going above the level of point 1 (with

any number of extreme points in between).

i1). Y2 The signal must then go from the level of point 1 to some level a
distance S below without at any time between going back to the level
of point 1 or below the level of point 2 (with any number of extreme

points in between).

iii). Y3 The signal must then go from the level of point 2 to some level at
or above point 1 without at any time going back to the level of point

2 (with any number of extreme points in between).

Figure 2.5: Bishop’s definition for rainflow cycle

The essential idea of rainflow cycle counting is to characterise the stress (or
strain) history over a long time period. That is, to allow the hysteresis cycle to be
closed after a long time interval by using the stress-strain “memory” information.

The transitions in-between can then be processed separately. The advantage is

14



therefore that large cycles which can be missed very easily by ordinary counting
methods is counted by this method. Figure 2.6 shows such an example. Figure
2.6(a) shows a typical strain history. The initial strain excursion, from O to A,
uses the cyclic stress-strain curve. The strain range O to A is plotted on the
strain axis, and the stress at point A is calculated from the equation for the
cyclic stress-strain curve. Point A is then taken as an origin, the stress range
from A to B is then calculated from the hysteresis curve. The actual stress at B
then is obtained by subtracting the stress range A to B from the value at point
A. By continuing this plotting process until the end of the local strain history,

the stress-strain hysteresis history can be derived as shown in Figure 2.6(b).

€

o

(b). The stress-strain hysteresis loop for strain history (a)

Figure 2.6: An example of rainflow cycle counting

15



As seen from this stress-strain history, apart from two closed hysteresis loops
ranged as E-F and B-C, there exists a large cycle which has the range A-D, which

could easily be missed by other counting methods.

2.4 Stochastic process

2.4.1 General assumptions

The time process z(t), in general terms can be classified as either determinis-
tic or random. A deterministic process can be thought of as one where future
states irito which the process may fall can be predicted accurately, and with cer-
tainty. This type of process can generally be expressed explicitly in mathematical
form. Such a process can be either periodic or nonperiodic. A random process
is one where the future movements of the process can not be represented by any
mathematical expression with certainty at any particular time.

A stationary random process is one where the statistical properties measured
across a set of records, or ensemble, at a particular time, are identical with the
statistics measured across the ensemble at any other time. In addition to being
stationary, the process can be termed ergodic if the statistics measured along any
one sample or record are representative of the statistics measured along any other
sample. It is much more convenient for statistical computation if the process has

such a property because the statistics can then be obtained from one sample.

2.4.2 Probability and moments

If the process is stationary, it can best be described by its probability distribution
function P(z) or the probability density function (PDF) p(z), which are indepen-
dent of time ¢. The moments of the process are defined by its probability density

function p(z) as:

a, = E{X"} = /Oo z"p(z)dz

—00

The central moments are similarly defined as:

pn = B{(X =2} = [ (2 = 2)"pla)d

in which T denotes the global mean value of the process. The variance of the
process is then given by the second order central moment, and its square root

gives the so-called root mean square (or standard deviation).
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The characteristic function of the process is defined as

Bu) = E{e=} = [ eop(a)da (2.7)

Thus, the PDF is obtained by applying a Fourier transformation to the char-

acteristic function.

1 e —tux
pa) = 5 /_ " e (u)du (2.8)
The characteristic function can be expanded as a MacLaurin series as follows
u? % a;
8u) = 60) + S O+ 4’0+ = L Fwy +0w)  (29)
j=0

From Equation 2.7,

800) =" [~ 2"p(z)da = i"a

For the situation of more than one random variables, the parameters are
defined similarly.

It is obvious that for a general stochastic process, the probability distribution
of the process should be described by all the moments of the process. In other
words, finite order moments of the process are never enough to fully describe
the process. Any truncation causes errors unless the higher order moments can
be expressed as functions of lower order moments. The widely used Gaussian
distribution with the PDF expressed as

p(z) = —

2ro

:2
e202

is a good example of where all higher order moments can be calculated from the

"~ lower order moments as:
= (n - 1)02/1"_2 n =24, 67 Tt

while the odd moments vanish.

2.4.3 Correlation function

The cross-correlation function gives a measurement of the amount by which two
functions are related to each other. For two random variables z(t) and y(t), their

cross-correlation function is given by:

R, = 11rn ﬁ z(t)y(t + 7)dt (2.10)
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The autocorrelation function gives a measurement of the amount by which a
signal is correlated with itself. It is defined as the average value of the product
z(t)z(t + 7). Provided that the process is stationary, the value of E[z(t)z(t + 7)]

is independent of time ¢ and will depend only on the time separation 7:
Rer(7) = E[z(t)z(t + 7)]
or, alternatively

1 T
Ras(r) = Jlim — /_ _z(t)e(t +r)dt = B(r) (2.11)

T—oco

2.4.4 Fourier analysis and spectrum

As well as describing any process in the time domain, it can also be described
by its Fourier components in the frequency domain [36] [37]. If z(t) is a periodic
function of time ¢, with period T', it can be expressed as an infinite Fourier series

of the form

z(t) = ao + Z(ak coswyt + by sinwyt) (2.12)
k=1

2r . .
where w, = nw; = N and the Fourier constants are given by

LT t)dt
w0 =7 Jp =0

T
an = [ a(t)cos(wt)dt  n=1,2,3,--
b

= = | z(t)sin(w,t)dt n=123,---
T Jo

This series expression can also be put in integral form as:

1 oo .
X(w) = Aw) - iB(w) = 5- / z(t)e="tdt (2.13)
where A(w) and B(w) denote the Fourier constants a, and b, except that ao- is
put to zero.
An inverse transform would give:

z(t) = / X (w)etdw (2.14)

-—00

The most important condition for this expansion to hold is that the function

must decay to zero when |t| — oo, that is,

/°° |z(t)]dt < oo (2.15)

—00
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If the process z(t) is random instead of periodic, it can not be represented
by a discrete Fourier series. Also, for a stationary process, Equation 2.15 is not
satisfied, so that the Fourier analysis can not be applied to the sample function
directly. This difficulty can be overcome by analysing, not sample functions of
the process itself, but its autocorrelation function. Provided the mean value of
a process is adjusted to zero and the process has no periodic components, the

autocorrelation function does satisfy:
R(r — 00) =0

and then the condition
/ |R(7)|dT < o0

is satisfied. The Fourier transform can be applied to R(7).
1 [ :
S(w) = — / R(r)e~“"dr (2.16)
2T J-o00
This function is called the spectral density function of the process in radians.
It consists of a Fourier transform pair with correlation function as:

R(r) = /

o0

S(w)e™ dw (2.17)

The spectral density function defined in this way is known as the two-sided
spectral density function. It gives a “negative frequency” which only makes some
sense mathematically. More generally, the one-sided spectral density function is
defined to give just positive frequency components and can still give the same
mean square value of the process. If the frequency (f) is defined in Hz, it is related

to the two-sided spectral density function (in radians w) as:
G(f) =25(f) = 4rS(w)
The spectra of the stochastic process X and its derivate X are connected by
Si(w) = w?Sx(w) (2.18)
Similarly,
Si(w) = w*Sx () (2.19)
2.4.5 Fast Fourier Transform

In practical calculations, the transform is generally performed on the discrete

time series {z.} as:

1 N-1 . .
X, = " ) ze ¥ k=0,1,2,.N—1 (2.20)
r=0
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The one sided Power Spectral Density (PSD) is given by :
Gi(f) = 2L, |1 X? (2.21)

where, L, = (N - At) and At is the time interval between each time point in {z,}.
The PSD defined in this way takes the energy information from the time series
but discards the phase information.

The computation of the discrete Fourier transform of Equation 2.20 is time
consuming, especially when N is big. The Fast Fourier Transform (FFT) is there-
fore generally adopted for this computation. The methodology is that the work
can be performed by partitioning the whole sequence {z,} into a number of
shorter sequences. Then, combination of these subsequences together will yield
the full DFT of the original sequence.

Suppose that {z,}, r =0,1,2,--- (N — 1) is the sequence where N is an even
number and that this is partitioned into two shorter sequences {y,} and {z,}
where[36][38]

Yr = T2r
r=071127"'a(N/2_1)

Zr = T2r41

The DFT’s of these two short sequences are Y; and Z; given as:

Y , l1|'7—
k= N/2 120 Yyre
{ k=0,1,2,---,(N =1) (2.22)
N/2-1 2(
{ k N/2 1;) zT

Recombination of Equation 2.20 would give:

N-1
= l Z T, 6_12”( kr)
rﬁ?z 1 . N/271 o (2.23)
— _{ Z T, e—z?r(iﬁl)+ Z Tors —:21r(—£—)-N )}
r=0 r=0

It is found from Equation 2.22 and 2.23 that
1 .
X =5{¥i+ e~ Nz Y k=0,1,2,---,(N/2-1) (2.24)

The DFT of the original sequence can therefore be obtained directly from the
DFT’s of the two half-sequences Y, and Z; according to Equation 2.24. If the
original length N of sequence {z,} is a power of 2, then the half-sequences {y,}

20



and {z,} may themselves be partitioned into quarter-sequences, and so on, until
eventually the last sub-sequences have only one term each. As Y, and Z; are
periodic in k with period N/2, the full computation is[36]:
{ Xy = Y + WrZ,}
k=0,1,2,---,(N/2-1) (2.25)
Xisnyz = MY — W5 Z,}

in which W = ¢—i(27/N)

2.4.6 Statistics in the frequency domain

For the purpose of this thesis the spectrum is characterised by its moments as

shown in Figure 2.7. These are actually the weighted sums of the spectrum.

mo= [ GG = Y Cuf8f (2:26)
k=1
(stress) % 4
Hz
fx J
'l pr—
5t | £

frequency, Hz

Figure 2.7: PSD moments calculation

The even order moments can be calculated from both one-sided and two-sided
PSD’s. The odd order moments are generally only defined for one-sided PSD’s.

From Equation 2.18 and 2.26, the zeroth order moment from the spectrum
gives the standard deviation of the original process. The 2nd order moment gives
the standard deviation of the first order differential process.

Much of the work on statistics of the spectrum relies heavily on the work of
S.O.Rice [11] and J.S.Bendat [12]. Some details related to the calculation of these
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statistics are shown in the next section. If the signal is stationary, ergodic and
Gaussian, results were produced for the number of zero crossings and number of
peaks per unit time.

The number of zero crossings and number of peaks per unit time (peak rate)

E[O] =4/ mg/mo (2.27)

Using the number of zero crossings and number of peaks, the irregularity

are given as:

factor is defined as:
7= E[0]/E[P] = ms/ /o (2:29)
The irregularity factor is generally taken as an indication of the frequency
band width of the signal and its spectrum. It can take any value between 0.0 and
1.0. When v approaches 1.0, the signal becomes more like a regular sine wave. In
this limiting case the signal is said to be narrow band and its probability density
function of peaks becomes Rayleigh; Cycle counting in this case is relatively easy.
As the irregularity factor approaches 0.0 the signal becomes more like shot noise.
In this limiting case the signal is said to be completely wide band, and its
probability density function of peaks becomes Gaussian. In practice the response
is rarely narrow nor completely wide band but somewhere between.
In some circumstances, the centroid of the spectrum is taken as a measurement
of the frequency level of the spectrum and is defined as “mean frequency” and is

made dimensionless by normalisation using the peak rate [13].

fm = ml/mO/E[P]

2.5 Spectral analysis and structural dynamics

From the theory of structural dynamics, the motion equation of structures can
be written as [39) :
M+ Co+ Kv=F(Q,t) (2.30)

where M, C, and K are mass, damping, and stiffness matrices respectively, v is
the structural response, (2 is the space in which the structure is defined. Under
the circumstances that the structure is under the action of deterministic dynamic
loading, structural analysis can be performed in the time domain using suitable
numerical integration methods, such as Newmark method, wilson-8 method, etc.

For the case of arbitrary dynamic loading, Duhamel’s integral equation can be
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taken as the general solution for structural response in time domain. For single

degree of freedom systems, this integral can be expressed as:

t
o(t) = ] p(r)h(t = 7)dr (2.31)
0
where, h(t — 7) is the unit-impulse response function and is expressed as:

h(t—1)= -ml_w. sinw(t — 7) (2.32)

for undamped single degree of freedom systems.

Most systems are of multi-degree of freedom. If the loading in coordinate j is
a general time varying load p;(t), the dynamic response in coordinate i could be
obtained by superposing the effects of a succession of impulses as specified using
Duhamel’s integral, assuming zero initial conditions. The generalised expression

for the response in coordinate i to the load at j is the integral as follows:
t
vii(t) = /O pi(7)his(t — 7)dr i=1,2,---,N (2.33)

where N is the total number of degrees of freedom. h;;(t) denotes the response
at coordinate 7 to the unit-impulse loading in coordinate j. The total response in
coordinate ¢ produced by a general loading involving all components of the load

vector p(t) is obtained by summing the contributions from all load components:

vi(t) = 2[ / pi(T)hi; (t — 7)dr] i=1,2,---,N (2.34)

i=1

This type of time domain analysis is complex and time consuming but is
possible. However, if the loading is stochastic instead of deterministic in type,
this analysis method is generally invalid because the history of the loading is
unknown except for some statistical characteristics. Frequency domain analysis
then becomes quite useful.

To perform a frequency domain analysis, the variables (load and response)
must be expressed as Fourier series. For the periodic loading p(t) with period T,

the Fourier series form is given by Equation 2.12 and 2.13.

p(t) = i P(iwy,) exp(iwnt)

n=—o0

where the complex amplitude coeflicients are given by

T/2 .
n) = (t) exp(—iwy,t)dt
P(iw T /T/zp exp(—iwnt)
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with nw; = w, =n - 27/T.
When p(t) is an arbitrary nonperiodic loading, the above equations can still
be used by letting T — oo, as in integral form
1 foo . .
p(t) = — P(iw) exp(iwt)dw
21 S5 (2.35)
P(iw) =/ p(t) exp(—iwt)dt
which is the Fourier transform pair.
The Fourier series expression of the response can then be connected with the
Fourier series of the loading by the complex frequency response function H (iw),
which i§ the invrese Fourier transform of k(t), as

V(iw) = / ‘: v(t) exp(—iwt)dt = H(iw)P(iw)

When the case of multi-degree of freedom is considered, the loading and its
Fourier series become a vector p(t) and P(iw), and the frequency response func-

tion becomes a matrix H(iw). Their components in coordinate j are :

P;(iw) = /:: p;(t) exp(—iwt)dt

and
Vii(iw) = [ v(t)exp(—iwt)dt = His(iw) P; i) (2.36)
The response in coordinate ¢ can be obtained as
N N
w(t) = L os(®) = LU pi(hs(t - ryar] (2.37)
=1 1=1

The unit impulse and the complex frequency response functions are two trans-
fer function in time and frequency domains respectively. They are related as a
Fourier transform pair:
oo
H(iw) = / h(t) exp(—iwt)dt

~hoe (2.38)
h(t) = 51;/00 H(iw) exp(iwt)do

In multi-degree of freedom cases, this relationship becomes:

Hij(iw) = / hij(t) exp(—iwt)dt
1" foo (2.39)
hi;(t) = —/ H;;(1w) exp(iwt)
27 J-oo
In the point view of the spectrum, the input and output spectrum are con-

nected by the relationship

S, (iw) = H(—iw)H(iw)S,(iw) = |H(w)[2S,(iw) (2.40)
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2.6 Some useful results from the PSD

The expected number of zeros of a stochastic process X(t) within a given inter-
val [t;,t,] or, more generally, the expected number of crossing of X(t) at some
arbitrary level zq in [t;, %] is of considerable interest. When Miner’s law is used
for random fatigue analysis, the expected number of peaks in unit time is also an
important parameter for the damage accumulative computation. Together with

the zero crossing rate, it should be calculated from the spectrum[40].

2.6.1 Zero crossings

Let X(t), t € T, be a m.s. differentiable stochastic process!. The formulation of
the threshold-crossing problem for X(t) is facilitated by defining a new process

Y (t) = u[X(t) — zo), teT (2.41)

where u[] is a unit step function. It is seen that the formal derivative of Y'(t) can
be in the form

Y(t) = X()6[X(t)—z0), te€T (2.42)

where §[] is the Dirac delta function. It has the weight }ﬁ A typical function of
X (t) along with its corresponding sample functions Y'(t) and Y'(t) are shown in
Figure 2.8. The sample function of Y (t) consists of unit impulses. these impulses
are directed upward or downward depending upon whether the crossings of its
associated z(t) at zo occur with positive or negative slopes.

If N(zo;t1,t2) denotes the random variable whose value is the number of

crossings of X(t) at zo within the interval [¢1,;], it thus can be denoted by
t2 .
N(zojts,ta) = [ XIS (2) - woldt (2.43)
1

The number of zeros of X(t) within the interval [t1,,] is simply N(0;4,¢s).
Hence, the expected number of crossings of X(t) at zo within the interval

[t1,1,] is given by
i2 0o oo
E[N(zo;t1,t2)] = / / / 12|6( — z0) f(, t; &, t)dzdidt  (2.44)
t —00 J =00

t oo
= [* [T Glf (oot 2, t)didt (2.45)
131 —00

1A second-order stochastic process X(t),t € T, has a mean square derivative or m.s. deriva-
tive X (t) at tif

lm[X(t+7) - X(O)/r = X(1)

Higher order m.s. derivatives are defined analogously. Here, lim refers to limit in mean square.
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Figure 2.8: A typical sample function of X(t) and its associated sample functions

This gives the information on expected number of zero-crossings and threshold-
crossings within an interval by the joint density function of X(t) and X (t) at ¢
over the interval.

If Ny(zo;t1,t2) is the number of crossings of X(t) at zo with positive slopes
with an interval [¢;,;], then it can be easily obtained by changing the integral

boundary ,
E[Ny(zo; t1,13)] =/2/  f(zo,t; T,t)dzdt (2.46)
t1 0

The problem of threshold crossings with negative slopes can also be easily

obtained

ta 0
E[N_(zo; 11, 15)] = ~ /t /_ & f(zo,t; &, t)dadt (2.47)
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As seen from Equation 2.45, the integral

r(zo,t) = / Z || f (2o, t; &, t)di (2.48)

may be regarded as the expected rate of crossing at zo(t). This rate becomes
independent of t if the stochastic process X (t) is stationary, and r(zo,t) = r(zo)
gives the expected number of crossings at zo per unit time in this case.

Consider the case where X(t) is a stationary, once m.s. differentiable, and
Gaussian process with mean zero and correlation function Rxx(7). The joint
density function of X(t) and X(t) at ¢ then takes the form

f@tidt) = f(2,8) = ——eapl (5 + )] (249)
T AT T onoxoy P 20k oy '
where 0% = Rxx(0) and
g?-( = RXX = —d2RXX(T)/dT2'-,-=0 (250)

The expected rate of crossing at zo is constant and can be obtained by sub-
stituting Equation 2.49 into 2.48

r(20) = (0/7ox)eap(~z}/20%) (251)
The expected rate of zero crossings has the simple form
r(0) = oy /7ox, r+(0) = r_(0) = r(0)/2 (2.52)

If the spectral density function of the process is Sx(f), then Sy = (27 f)?Sx(f).

The expected rate of zero crossings can be expressed as
r(0) = ox/rox =2 [ PSx(NG/ [ Sx(ndI? (259
In terms of the moments of the spectrum, it can be expressed as

r_(0) = r+(0) =r(0)/2 = \/(m2/mo) (2.54)

2.6.2 Distribution of Extrema

The problem of determining the expected number of extremes (maxima and min-
ima) of a stochastic process X(t) within a given interval is a direct analogy with
the zero-crossing problem. A maximum in a sample function z(t) of X(t) oc-
curs when its first derivative (t) is zero and the second derivative is negative; a

minimum occurs when £(t) = 0 and #(t) is positive. The number of extrema of
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the sample function within a given interval is then equal to the number of zero
crossings of &(t) in that interval.
Let X(t),t € T be at least twice m.s. differentiable. As in the zero-crossing

problem, we consider a new stochastic process defined by
Y(t) =u[X(t), teT
Formally differentiating Y(t) we obtain
Y(t) = X(2)§[X(t)], teT
Henc;e, the number of extrema of X(t) within the interval [t,,¢,] is given by

[ Xk

If only the number of extrema above level zo of X(t) in the interval [t;,1,] is
concerned, it can be denoted by random variable M(zo;t1,%2) and be expressed

M(zo;t,ts) = /t' X (O)I61X(0)]ulX () — zo]dt (2.55)
The mean is given by
E{M(zo;t1,t3)} / / / |£|6(2)u(z — o) f(z, t; ,t; £, t)dzdzdidl

= dt/ d:c/ |Z|f(z,t;0,t; Z,t)dz
" (2.56)
It is seen that then the information about the expected number of extremain a
given interval is in general contained in the joint density function of X (t), X (t),and
X(t) at t over the interval. From this equation, the mazima of X(t) above z, in

the interval [t,,1;] is expressed as

173 0 oo
E{M,(zo; ts,t3)} = /t dt / di / 13|f(z,£;0, t; 3, t)dz (2.57)
1 -0 zo

As seen from the above, we get

+(2o, ) / dx/ 5f(z,;0,t; &, t)de (2.58)

For a stationary, twice m.s. differentiable Gaussian process X(t) with zero
mean, the joint density function of X (t), X(t), and X(t) takes the form

f(x,t) = (27) 32| A|71/2 exp[—%xTA'lx] (2.59)
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where xT = [z  #] and

2
A= 02 0')'( 02
—UX 0 O'X

By substituting the joint probability density function 2.59 into Equation 2.58,
the integral can be obtained as:
g+ (20, t) = gu(20) = (27) ¥ (ox04)* 77 {|AI7ezpl—gigo % 03 ="]
+(m/2)Y*(o%z/ox)exp(—2?/20%) (2.60)
x[1 + er f(o%a/v2ox IAJV2))}dz

where erf() is the error function defined by

erf(z) = (2/V/) /or exp(—u?)du

The expected total number of maxima per unit time ¢4 (—o00) is expressed as

q+(—00) = (1/27)(o 2 [ox) (2.61)

In terms of spectrum moments it has the form

¢+(—00) = \/(ma/m;) (2.62)

It is also noted that, this formula can be easily derived from Equation 2.53
by noting the equivalence between the zero crossings of X (t) with negative slope
and the maxima of X(2).

2.7 Discussion

From the theory of fatigue accumulation, the two factors to be calculated from
. frequency domain information are the peak rate of the random process and the
‘rainflow cycle probability density function. Since the phase information in the
complex spectrum is discarded when the PSD is calculated, there is always the
question of whether the PSD can provide enough information for a complete
fatigue analysis.

The answer to this question can be found by looking at the probability distri-
bution of the time process. The PSD must at least provide enough information for
the joint probability distribution of the process and its first and second order dif-
ferential processes. This necessity is required from Equation 2.58 for calculating
the peak rate. If the probability distribution of the process is Gaussian, it can be
proven that the joint probability distribution of the process and its first and sec-

ond order differential processes is Gaussian as well [40]. For this special situation,
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the zeroth, second and fourth moments of the PSD can completely determine the
joint probability distribution function as ox,0y,03 can be calculated directly
from these three moments. This means that spectral fatigue analysis is valid for
the situation under which the process has a Gaussian distribution. Perhaps this
is the most important reason why a Gaussian distribution is assumed by most of
the present methods in use.

However, if the Gaussian assumption does not hold, it is hard to say whether
the PSD can provide enough information for spectral analysis. Actually, knowing
the distribution of the process itself is not enough because the joint probability
distribution can not be decided if the process distribution is not Gaussian. This
simply means that some assumptions then have to be made about the joint prob-
ability distribution itself. It has still not been proven whether the PSD itself can
provide enough information for determining such distributions. Chapter 7 of this

thesis covers the topic of non-Gaussian signals in more detail.
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Chapter 3

Present methods in use

3.1 General background

Spectral fatigue analysis has been widely used in aircraft, offshore platform [41]
[42] and welded joint design [43). More recently it has been adopted in wind
engineering for the fatigue analysis of wind turbine blades. Currently, most of
the available techniques assumes that the response is random, stationary, ergodic
and Gaussian.

The first spectral fatigue solution was the so-called narrow band solution.
Some correction factor methods were then developed to adapt it for wide band
situations by incorporating rainflow cycle counting. Theoretical analysis was
less prominent than digital simulation work. This is perhaps because of the

complexity of the rainflow cycle configuration.

3.2 Narrow band solution

The narrow band solution was the first for resolving the random fatigue damage
problem using frequency domain information. It was formulated using the fact
that the stress peaks have a Rayleigh distribution if the process is Gaussian and
narrow-banded [40]. In particular, each stress range(s) is taken to be twice the
stress peak amplitude(s) of the random process. In this case, the probability
density of peaks for Gaussian signals with irregularity factor approaching 1.0 is
given by : ) ,
Preak(s) = ——e "m0 (3.1)

The distribution of peaks can be related to the distribution of cycle ranges
because the probability of a range greater than or equal to S(= 2s) is the same

as the probability of a peak greater than or equal to s. Thus

Plrange > S| = P[peak > s] = /Osppeak(s)ds
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This integral can be evaluated directly from Equation 3.1 with the result that

SZ
}
Mg

Differentiating this probability distribution gives the PDF for stress ranges in

Plrange > S| =1 - exp{—} =1- exp{

a narrow band Gaussian signal

P(S) = o explo (52)

The rate of occurrence of cycles for narrow band signal is taken as the rate
of occurrence of zero-crossings E[P] = E[0}, as v = E[0]/E[P] = 1. This gives a

conservz;tive result as :
ElDIns = BIPIL [ S'9(8)is = BOI [ S 2eids  (33)

Note here that the damage equation is completely defined using mg, m; and
my (if E[P] rather than E[0] is used).

Further integration gives:
E[Dls = ED)7(2v3m0)T(3 +1)
where I'() is the gamma function expressed as:
I(z) =2 /0 TyEleVdy 23>0 (3.4)

Because numerical integration is now a relatively straightforward task use of
Gamma function is less common.

The assumptions leading to this equation are strictly correct only for very
narrow-banded Gaussian processes, but the equation is used in a much wider
range of situations. For this reason, some methods have been developed to “cor-
rect” the narrow band solution into a rainflow solution suitable for wider band

situations.

3.3 Correction factor methods

3.3.1 Wirsching’s correct factor

The model developed by Wirsching [44]{45], was adequate for narrow band load-
ing, but required an empirical function in order to accommodate wide band stress

histories as expressed by
E[D)grr = E[D]nB - A(b,¢€) (3.5)
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where A(b, €) is a correction factor for the bandwidth. It was obtained by simulat-
ing signals from wide band spectra which were then compared with the rainflow
cycle counting results and narrow band results. Regression analysis produced the

following expression.
A(be)=a+ (1 —a)(1 —¢)°

where
a = 0.926 — 0.033b c=1.587b—2.323 e=4/1—+2

In terms of equivalent stress, it can be written as :
b 1

3.3.2 Chaudhury and Dover equations

An equation was proposed by Chaudhury and Dover [46]. After extensive study
of the peak distribution in different power spectra, two general solutions for the
narrow band and the wide band spectra were determined. Based on the assump-
tion that the equivalent stress range solution always lies between the narrow and

wide band solutions, the following semi-theoretical solution was proposed,

Sh = 2v/Fmal e fr(”—tl-) + It 2y (3.7)

Later, after J.C.P. Kam and W.D.Dover [41] studied this formula using sea

state stress response spectra, a new empirical procedure was proposed. It is

expressed as:

b+1

i Y Y st

Sh = 2v/2mol —= 50F (338)

2ym

The error function er f(y) can be expressed by

erf(y) = 0.3012y + 0.4916+% + 0.9181~° — 2.35344* — 3.3307+°
+ 15.65244% — 10.784y"  for 0.13 <~v < 0.96

3.3.3 Hancock’s equations

Two equations, developed by Hancock et al [47], incorporate curve fitting param-
eters into the Weibull distribution. Thus obtained the expression for equivalent

stress. They are expressed as:
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Handcock A :

S = 2\/—2m0[7F(-;- +1)]b (3.9)
Handcock B :
Sk = 1v/Emo(2 — )N (g + 1]} (3.10)

in which ¢ is the damping factor.

3.4 .Tunna’s formula

J. M. Tunna developed two formulae for Gaussian random loads situations [4§]
[14]. One is used for the narrow band load case, which is exactly the same as
formula 3.2. Another one is used for wide band situation, which is expressed as:

S x -S?
4vo? p8702

p(S) = (3.11)

This formula actually contains the narrow band solution as 4 = 1 for narrow
band signals. The range here is defined as the Range Mean cycle instead of

rainflow cycle.

3.5 Dirlik’s formula

Dirlik conducted extensive computer simulation on the rainflow cycle distribution
of random Gaussian stress histories. He studied seventy spectra of various shapes,
with v in the range 0.160 to 0.988 [13]. Seventy Gaussian stationary stress
histories were then simulated from these spectra. Both countings for ordinary
range and rainflow range cycles were performed on the simulated signals. The

rainflow cycle PDF was modelled by using the following expression:

~

1 z z - 12 z_
prr(z) = Cy ;e"f' + Cg;e 2% 4 Caze™ 2 (3.12)

where cycle range S = 2z,/myg. z is therefore a normalised range parameter.
This model used three combined PDF’s, exponential, Rayleigh and standard
Rayleigh distributions, to fit the probability density of low, middle and high range
cycles respectively. By minimising the cost function (mean square error of the

model equation with the time domain counting result) and regression analysis,
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the parameters were derived in terms of the spectrum moments,

foo— myma
mgo My
2 fm — 72
c, = Af ;7)
1+
— = C, +C?
Cz — 1 Y 1+ 1
]l -«

Cs = 1-C1-C,
1.25(y — C3 — Cza)
Ch
7'—fm_012
1—-‘)’—Cl+012

T =

This important empirical formula was the first to directly link the rainflow
cycle distribution with the spectrum moments. Because of the wide range covered
by the selected irregularity factor and mean frequency, the formula works very
well for Gaussian stress/strain histories [49][50][51]. The simulation process here
seems to have worked quite successfully. The phases used for simulating the time
histories from the spectra are assumed to have a uniform distribution in 0 — 2,

the Gaussian assumption was therefore implicitly adopted.

3.6 Bishop’s theoretical solution

Dr. Bishop carried out theoretical studies on the connection between the spec-
trum and rainflow cycle distribution[1] [52]. For a rainflow cycle as defined in
Definition 3 in previous section, the three events which constitute a rainflow cy-
cle can be separated and considered as three single events. The probability of a
rainflow cycle existing was therefore considered to be equal to the probability of
these three events occurring together. This consideration significantly simplified
the computation of rainflow cycles because each event was dealt with as a series
of transitions of the signal from a peak to a trough or from a trough to a peak
rather than the complicated configuration associated with the original definition.

The rainflow cycle PDF then can be expressed as:

20 & o y y :
prr(h) = T > Yi(ip,ip — h)Ya(ip,ip — h)Ys(ip,ip — h)p(ip) (3.13)
ip=h+1

where, Y;(ip,ip — h), Ya(ip,ip — h), and Y3(i¢p,tp — h) are the probabilities of
events Y1, Y; and Y3, respectively and can be calculated by Markov process theory.

dh is the interval width used to divide the signal and p(ip) is the probability of
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the signal being at peak ip. The coefficient 2.0 occurs because there exists a
symmetry about ¢t=0 for stationarity.

To calculate the probability of the signal transition from peak to trough and
from trough to peak, the peak-trough series can be assumed as a Markov chain.
The probability of the above three events can then be calculated using Markov
stochastic process theory. The complete PDF of rainflow ranges can therefore be
obtained.

Theoretically, this method can be taken as a universal method and is suit-
able for any type of signals either Gaussian or non-Gaussian. As will be seen
later, however, this method needs a one step signal transition matrix to set up
the Markov model matrix. This transition matrix is generally very difficult to
derive except for a Gaussian distribution. So, this method is restricted mainly
to the Gaussian signals. However, due to its clear theoretical background, this
method can be easily used for some special non-Gaussian situations once the
heavy mathematical work is done to produce the required one step transition
matrix. Additionally, this is the only method which offers the possibility of re-
taining the information about the relative mean of the rainflow cycles. This is
obviously needed if the influence of mean stress is to be considered. This is

covered in more detail in Chapter 6.

3.7 Madsen formula

‘The work of Madsen et al [53] was derived specifically for application to wind
turbines. It deals with signals which combine stochastic and deterministic loads.
These two components of signal are treated separately. For a random stationary
stochastic process, damage is assumed to be a constant function of time, the
value of the constant being dependent on the signal characteristics. For a zero-
mean, Gaussian, narrow band stochastic process, a Rayleigh distribution of peaks
applies and each range is taken as a half cycle as before. For this idealised signal,
Madsen proposes a dimensionless damage parameter, which is equal to the actual
damage of the signal, normalised by dividing by the damage due to a constant
amplitude signal having the same rms. This was shown to be a function of the
slope of S-N curve.

For more complex and realistic wide band processes, Madsen assumes a Gaus-
sian distribution, and hence a solution for the distribution of the peaks. refer-

encing Wirsching [44], he uses the assumption that each peak will eventually pair
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with an equal and opposite trough to form a closed cycle. This is exceptionally
conservative, and so a ‘bandwidth correction factor’ is proposed. Madsen pro-
poses a formula, independent of S-N curve slope, and supports it by reference to
published fatigue test data. His basis for the formula is a comparison of fatigue
lives, rather than the signal statistics themselves.

For the deterministic component of load, the simple case of two superimposed
sine waves is considered, and a constant amplitude sine wave of equivalent dam-
age is proposed, as a function of S-N curve slope. Making the assumption of
uniform distribution of phase between the two original sine waves, he fitted an
empirical relationship to calculate the equivalent constant amplitude stress range
as a function of irregularity factor and S-N curve slope.

For the general case of a sum of periodic and stochastic terms, Madsen builds
from the special case of a sinusoid plus a narrow band stochastic process. He pro-
poses to view the confluent hypergeometric function as an interpolating function
between the purely periodic signal and the Gaussian stochastic signal. To allow
for wide band processes, the periodic rms and stochastic rms are each corrected

for irregularity.

theory

Throughout the theory of Madsen, the expected damage rate is defined as
Sh
E[D] = E[0](52) (3.14)
where E[0] is the zero-crossing rate with positive slope, k the stress intercept and
b the fixed inverse slope of S-N curve, and Sj, an equivalent constant amplitude
stress range calculated for the signal.

Stochastic Loading

For a purely stochastic signal, X(?),
b
Sh = 2v2g.(7:)o=[C(1 + 5)]‘/6 (3.15)

where the bandwidth correction term is defined as

g-(7) = 0.93 +0.079°

Deterministic Loading

The equivalent stress range for the deterministic component, Z(t) is

Sy = 2\/§g,(7,)oz (3.16)
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with bandwidth correction correction factor
g:(7) = 1.24 — (0.325 — 0.025b)(2.2y — 7?)

The bandwidth (irregularity factor) is defined as v = N, /N,, where N, is the
number of mean up-crossing, and N, the number of peaks, in one time period
(To = 27 Jwo). By defining 4 in this form, Madsen believed that some information
on the relative phase between the Fourier components is retained, whereas all such
information is lost in the spectral moment parameters.

The standard deviation is calculated as
1 2\1/2
-GL "
where ¢ is the amplitude of the sine waves.

Combined Loading

For the combined time history, Y(t)=X(t)+Z(t),

b b
Sk = 2v2g. (7)o (T(1 + FM(=3.1, -7 (3.17)
with § = 5:(1,)’%:
M(-,-,-) is a confluent hypergeometric function satisfying
b 2
M("Ea 1, =B p=0=1
and
M(_é 1,-4%)| = ._ﬂb_
R ()

The combined model therefore also includes the previous models as special
cases.

The correction for irregularity is applied using the bandwidth parameter,
= E[0)/E[P)*
defined for the combined signal from

W = El0). - 7 / s(L )¢ ;7_—)dt

.’L‘

= EPL- 7 [ o(Dye( Ly
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where

2

£(t) = (1) — t(2)
Y(t) = [ ¢(p)dp = erf(t)

with o; = \/m; and oz = \/m4

The function ~(-) is derived by subtracting the deterministic time-history from

b(t) = Fme™"1

the mean of the combined signal, p, = co, so that
K
v(t) = py — Z(t) = = > _ cksin(kwot + 0)
k=1

3.8 Discussion

The methods discussed in this chapter are mainly of three classes. The first is the
narrow band solution, which introduces a rigorous assumption on the frequency
distribution of the response history. The second class is that of correction factor
methods which try to adapt the narrow band solutions to a wide frequency band
and introduce rainflow cycle counting in the damage estimation. The third class
includes the methods which involve more numerical simulation and theoretical
studies such as Dirlik’s formula and the theoretical method. Because of the order
in which they were developed, the second class generally work better than the
first and the third class are expected to be the best. Assessment in the following
chapter proves this point. Apart from the methods described in this chapter,
there are also some other methods developed to predict the rainflow cycle PDF,
say [34], [54], [54]. However, they are not widely used.

Although madsen made an attempt to solve the deterministic component
problem here, it is far from satisfactory. The damage he derived for the stochastic
part is still based on a correction to the narrow band solution. The interpolation
he uses involving hypergeometric functions also has no theoretical background.

All these methods assume the response histories are Gaussian. Such assump-
tions should be reasonable for most engineering situations. The fatigue life pre-
diction for most engineering structures should then have reasonable results. Non-

Gaussian situations will be discussed in Chapter 7.
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Chapter 4

Fatigue Analysis of WEG MS-1
and Howden data

4.1 Introduction

For all of the methods described in the previous chapter, the best way of assessing
how well they can work is to apply them to the analysis of monitored structural
response histories. The monitored times series would then be able to provide
a time domain solution which can be taken as a reference solution with which
to compare the frequency domain solution. The work presented in this chapter
performs this assessment. The power spectral density functions used for the
fatigue analysis are calculated from the response history directly.

Two sets of data from WEG MS-1 and Howden HWP330 wind turbine ma-
chines were used. They are monitored response histories of the wind turbine
blades during operation. Since most of the methods are developed for fatigue
analysis of offshore structures other than wind turbine blades, it is useful to per-
form fatigue analysis on these monitored turbine responses in order to assess the
validity of applying these methods to turbine blade fatigue analysis.

This chapter presents the results from such an analysis. The problems revealed

by the analysis and some possible solutions are presented in later chapters.

4.2 Analysis program

A program was developed to perform fatigue analysis calculations on the random
stress history in both the time and frequency domains. In the time domain
analysis, rainflow counting is performed on the time series to obtain the time
domain fatigue life estimation. This estimation is then taken as the reference
solution. This is because it is the result that all the frequency domain approaches
are trying to estimate. When working in the frequency domain, the spectrum

is computed from the given time series or read from a data file which stores the
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spectrum. If the later is the case, there would be no reference solution with which
to compare the frequency domain solutions. Most of the methods described in

the previous chapter are implemented in the program. They are:

e Narrow band solution

Wirsching’s modification

Hancock A and B

Chaudhury and Dover’s modification

Dirlik’s empirical formula

e Bishop’s theoretical solution

As far as the deterministic element of the signal is concerned, only one sig-
nificant component caused by gravity was discovered in the Howden edgewise
signals. The WEG MS-1 data files did not contain edgewise signals whilst the
Howden data are combined deterministic and stochastic response histories.

The rainflow cycle PDF’s predicted by all the frequency domain methods are
calculated first. The damages from these rainflow cycle PDF’s are then compared
with the one from the time domain analysis. The ratio of the frequency domain
damages with the time domain solution is defined as the damage rate in this thesis.
A value greater than 1.0 implies that the frequency domain result is conservative,
i.e., gives a damage value greater than the time domain solution. Conversely, a
value less than 1.0 implies that the frequency domain result is unconservative.
The program is presented in Appendix A.

As part of its initial development the program was first used for the analysis of
a set of computer simulated data, denoted as nbdatae, nbdath, nbdatc and nbdatd.
For a typical data set, nbdata, the PSD function is shown in Figure 4.1.

The rainflow cycle PDF’s counted from the time series and predicted by the
frequency domain methods mentioned above are shown in Figure 4.2. Since the
signal is a simulated Gaussian time history, it was found that most of the methods
agree well with the time domain analysis results. The narrow band solution, as
expected, is definitely conservative as the middle and high range part of the
probability density are over predicted. This part of the PDF contributes most to

the total fatigue damage because of the nonlinear Basquin equation.
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4.3 Analysis of WEG MS-1 data
4.3.1 The WEG MS-1 data

The WEG MS-1 data was recorded from a WEG MS-1 wind turbine on Orkney.
This machine has a two-bladed steel rotor, 20 meters in diameter and is rated at
50kw.

Six load cases were examined, two for freely teetered operation and four with
fixed hub, covering a wide range of wind speeds. Four radial locations were
considered in each case: at 1.35m, 3.28m, 4.94m and 7.24m measured from the
blade root (and denoted as case 12, 19, 27 and 35), respebtively. The load cases
are defined in Table 4.1.

The data given are not the stress time histories. Instead, they are the flapwise
moments at each section. As known from beam theory, dividing the bending
moment history by the sectional bending resistance module can easily produce
the stress history. But it does not have to be done because what is concerned
here is the PDF of the cycles. The transformation from bending moment cycle
range into stress cycle range does not change the shape of the probability density
function. The fatigue damage, of course, has changed. But if one is only trying to
compare the damage with a time domain result, the ratio will remain unchanged.

Thus, all the work here is performed directly on the bending moment histories.

Table 4.1: MS-1 load cases

Case | wind speed | Yaw | Turb. Int. | Hub Config. | Campaign | Length

(m/s) (deg.) (%) dur.(secs) | (points)

A 18.4 7.1 9.7 Fixed 300 37500
B 23.7 3.0 11.1 Fixed 240 30028
C 11.1 -12.5 8.9 Fixed - 300 37500
D 16.5 2.5 10.1 Fixed 300 37500
E 15.6 -3.1 6.6 Teetered 102 12823
F 11.3 12.3 15.0 Teetered 300 37500

4.3.2 S — N curve

The S — N curve used in the damage calculation should be based on BS5400 weld
specification [55]. It is CLASS D and defined as,

N =107(00)® for o, > 09
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N = 107(0'0)b+2 fOT‘ o, < 0p

where oy is the stress range corresponding to N = 1 x 107. For convenience of

analysis, a single inverse slope b = 5.0 was used in this section.

4.3.3 Statistical analysis

Two types of statistical check were performed on the WEG data. First of all,
the Reverse Arrangement Test (RAT) [56] was carried out to check for trend and
stationarity. The Reverse Arrangement Test is a test on the independence of the
observations in a time series. The signal is first divided into different blocks and
the statistical parameters such as the mean and root mean square are calculated
for each block. Then the mean or rms calculated from each block is taken as a
sequence z;, : = 1,2,..N, and the number of times that z; > z; for i < j is
counted thus obtained the number of reverse arrangements. If the sequence of
observations is independent (i.e., no trend is present) then the number of reverse

arrangements is a random variable with a mean value and variance as follows

_N(N-1)
==
_ N(N —1)(2N +5)
- 72

The actual distribution from the signal can then be compared with a theo-
retical value. Given a tolerance (significance) level, an acceptable region for the
stationarity of the signal can be determined.

When performing this test for the MS-1 data, the signals were divided into
different blocks, with each block containing about 15 seconds of data except for
load case E. The block number is 20 for load cases A,C,D and F, 16 for B, and
10 for E. The mean and root mean square are calculated for each block. For a
given confidence level of 0.01, the acceptable regions for the hypothesis that the

observations are independent are :
N=20:59<A<130
N=16:34<A<L8

N=10:9<A<35

The results from the RAT test applied to the MS-1 data are listed in Table
4.2. They are also presented in Figure 4.3, together with the acceptable regions
for all the load cases. It is clear that, except for load case A, the RAT values for
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both mean and root mean square of the signals are inside the acceptable region
for the confidence level of 0.01. Thus, the conclusion from the stationarity check
of the WEG MS-1 data is that, load case A of WEG data is a nonstationary

time series for a confidence level of 0.01, but all the other signals can be taken as

stationary.
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Figure 4.3: Reverse arrangement test of WEG MS-1 data

The chi-square x? and kurtosis values are used for the check of normality. X?
is defined as [56] [57]: B
: — F)?
X2 = ; E%
where K is the number of class intervals which the observations are grouped into,
fi is the observed frequency and F; is the ezpected frequency. The distribution for
X? is approximately the same as for x2 with the number of degree n = K — 3.

Given a significance level o, the observations are accepted as normal if
2 2
X® < Xnia

Kurtosis(Coeflicient of Excess) is defined as

Kurtosis = ll_; -3

%)
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where p2 and p4 are defined as the second and fourth central moments of the sig-
nal. It can be used as a measure of the flattening of a distribution near its centre.
The value of Kurtosis can range from -2 to infinity with -2 corresponding to a
symmetric binary random variable (|z| = constant) and a value of oo correspond-
ing to the distributions with slowly decaying tails. For a normal distribution, the
Kurtosis should be zero since E[z%] = 304 [58].

The X? values were calculated with 80 degrees of freedom for WEG MS-
1 data. All the results are listed in Table 4.2. The normality check from x?
concludes that all the signals are non-Gaussian given a significance level of 0.99
and corresponding upper bound of 50.9. Figure 4.4 presented all of the X? values
and the upper bound for significant level 0.99. All the values are far above the
upper bound. The values of Kurtosis broadly reflect the degree of non-normality
for the signals but can not provide a definite conclusion since there is no quantity

acceptance region given theoretically.
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Figure 4.4: X% of WEG MS-1 data for degree 30
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Table 4.2: Statistical analysis for WEG MS-1 data

data | mean |ratm | rms | Ratr | E[p] | E[0] | ~ X2 Kts

yl2a | -132.78 | 46 | 32.04 | 111 |[4805 | 859 | 0.18 | 760.1 | -0.035
yl9a | 43.56 144 | 31.57 | 111 | 4936 | 857 | 0.17 | 462.1 | 0.028
y27a | 44.78 146 | 36.85 | 111 | 5140 | 764 | 0.15 | 1417.5 | -0.059
y35a | 68.78 148 | 55.87 | 93 | 5231 | 548 | 0.11 | 4574.6 | -0.205
yi2b | -67.83 39 129.03( 70 (3361|1023 [ 0.30 | 1118.7 | -0.375
y19b | -9.02 81 | 2851 69 |3339 1041 (0.31 | 1118.9 | 0.363
y27b | -50.81 78 129.39| 63 |3636 | 1122 | 0.31 | 1835.9 | 0.544
y35b | -93.33 81 |38.19|( 50 |4258 | 1035 | 0.24 | 6038.5 | 0.895
yl2c | -90.27 8 [21.75| 86 | 6063 [ 87 |0.14 | 1282.8 | -0.177
y19c | 19.32 106 |21.06 | 83 | 6162 | 942 | 0.15 | 1571.0 | 0.193
y27c | 6.76 106 | 19.68 [ 8 | 6212 | 1105 | 0.18 | 1160.4 | 0.193
y35c | 42.08 108 [ 18.23 | 90 | 6604 | 1316 | 0.20 | 643.6 | 0.163
yl2d | -168.95 | 111 | 22.37 | 109 | 5084 | 1134 | 0.22 | 633.6 | -0.003
yl9d | 77.05 76 | 21.76 | 113 | 5144 | 1154 | 0.22 | 632.8 | -0.036
y27d | 68.30 81 [21.48 | 112 | 5448 | 1287 | 0.24 | 724.3 | -0.105
y35d | 114.85 81 |24.02 | 101 | 5843 | 1379 | 0.24 | 1869.0 | -0.442
yl2e | -184.18 | 37 |[18.31| 35 |2013 | 476 |0.24 | 714.4 | 0.493
yl9e | 68.50 6 19.35| 36 | 1915 | 489 | 0.26 | 554.5 | -0.285
y27e | 50.88 9 19.98 | 35 | 1851 | 547 | 0.30 | 751.5 | -0.377
y35e | 106.58 | 9 (23.79 | 32 |1869 | 580 | 0.31 | 1498.3 | -0.772
yl2f | -149.26 | 83 |[19.02 | 83 |6299 | 1148 | 0.18 | 551.0 | 0.073
yl19f | 66.92 107 |18.05 | 83 | 6265|1185 |0.19 | 663.7 | -0.139
y27f | 46.37 106 | 17.80 | 83 | 5858 | 1381 | 0.24 | 651.6 |-0.240
y35f | 90.41 106 | 18.55 | 88 | 5971 | 1525 | 0.26 | 1006.3 | -0.255
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4.3.4 Fatigue analysis

The MS-1 data was acquired using a frequency 125Hz, giving a Nyquist frequency
of 62.5Hz. Since the rotor speed of the MS-1 machine is 88 RPM. This implies a
1P frequency of 1.47Hz. The first 10 harmonics were used to obtain a maximum
stochastic frequency of 15.625Hz. The cutoff frequency was then set at 15.625Hz
[59].

The rainflow cycle PDF’s of y12a from both time and frequency domain anal-
ysises are presented in Figure 4.5a. It is clear that the narrow band solution
over estimates the middle and high range cycles. However, Dirlik’s formula and
the theoretical solution give a reasonably good prediction for the cycles in these
ranges. In terms of fatigue, the middle and high range cycles always contribute
most to the fatigue damage, as shown in Figure 4.5.

The fatigue analysis from the WEG MS-1 data was performed in both the
time and frequency domains. In the frequency domain analysis, the narrow band
solution, Wirsching’s modified solution, Chaudhury and Dover’s solution, and
Hancock A were used, together with Dirlik’s empirical formula and Bishop’s the-
oretical solution. They are all listed in Table 4.3 in terms of damage rates[49][50].

The most consistent frequency domain results were obtained using Dirlik’s
empirical formula and Neil Bishop’s theoretical solution. These two approaches
are far more accurate than the alternative approaches. However, although the
averages for the 24 load cases are close to 1.00 for both methods, estimates of
less than 1.00 for individual locations are quite possible.

The fluctuation of the results listed here can be partly explained as simple
stochastical scatter. The damage rates for y35a and y35b are the two highest
“in this table. They have most serious level of non-normality in the normality
check. The nonnormality of y35b is more serious than y35e¢ but has a better
fatigue damage rate. This may be caused by the nonstationarity existing in y33a.
Because the normality check on the whole signal indicated that all the data
is non-Gaussian the fatigue damage results are surprisingly good. There may
be several reasons for this. One of the most important is that the spectra are
calculated using rectangular windows. The non-stationarity and non-normality
in each window (block) is not as serious as for the whole data sample and thus
the data inside each window is a better approximation to the Gaussian signal.

Further discussion on this topic is presented in the next chapter.
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Table 4.3: Fatigue damage rates for WEG MS-1 data

load_ | narrow-band | Dirlik | Wirsching | Bishop | Chaudhury | Hancock
yl2a 5.14 1.03 3.91 1.07 2.13 2.75
y19a 5.15 1.00 3.92 1.09 2.14 2.77
y27a 14.34 1.59 10.91 1.23 5.12 5.83
y35a 81.87 2.34 62.23 1.37 30.08 25.08
y12b 1.91 0.77 1.46 0.79 0.98 1.25
y19b 1.98 0.81 1.50 0.86 1.04 1.31
y27b 3.67 1.07 2.79 0.91 1.47 1.92
y35b 18.34 1.48 13.95 1.30 5.68 6.10
yl2c 1.98 0.76 1.51 0.61 0.95 1.25
y19c 1.87 0.73 1.43 0.61 0.92 1.20
y27c 2.03 0.74 1.54 0.51 0.87 1.14
y35¢ 3.22 0.76 2.45 0.46 1.15 1.42
yl2d 2.09 0.84 1.59 0.81 1.03 ©1.33
y19d 2.03 0.83 1.54 0.83 1.02 1.31
y27d 2.92 1.01 2.22 0.81 1.23 1.62
y35d 7.50 1.12 5.70 0.87 2.75 3.29
yl2e 2.80 0.99 2.13 0.90 1.50 1.95
y19e 3.06 1.01 2.33 1.02 1.64 2.12
y2Te 3.50 1.03 2.67 1.08 1.65 2.16
y35e 8.81 1.11 6.71 1.41 3.31 4.15
yl2f 3.86 0.98 2.93 1.01 1.66 2.18
y19f 3.97 1.00 3.02 1.13 1.78 2.33
y27f 3.96 1.01 3.01 1.11 1.76 2.31
y35f 5.59 0.98 4.25 1.17 2.17 2.80
avrg 7.98 1.04 6.08 0.96 3.08 3.32
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4.4 Analysis of Howden HWP330 data
4.4.1 HOWDEN HWP330 data

The Howden HWP330 data was monitored from a 33m wind turbine in Altamont,
Pass, California. The data was stored on tapes labeled 18, 26, 27 and 30. Each
tape contained bending moment histories from the blade at 3, 8 and 13 meters

from the hub. The load cases are summarised in Table 4.4.

Table 4.4: Load case of Howden HWP330 data

Tape | Windspeed | Turbulence | Mean yaw { Duration | Length
(m/s) Intensity(%) (deg) (s) (points)

18 10.68 19.6 -11.7 2560 102000
26 14.07 9.2 -6.5 3260 130400
27 16.86 10.7 -11.8 3863 154518
30 8.51 15.3 24 3512 140398

4.4.2 S — N curve

The S — N slope values used for the Howden HWP330 data were b=4.0, 8.0 and
12.0. Of course, only as a means of comparing fatigue analysis results for research

purposes is it acceptable to use different S — N slope values.

4.4.3 Statistical analysis

The same statistical analysis calculations as with the WEG MS-1 data was per-
formed on the Howden HWP330 data. For the stationarity check the signals were
divided into 50, 60, 70 and 70 blocks for tape 18, 26, 27 and 30 respectively. The
results are listed in Table 4.5. The acceptance regions for a given confidence level

0.01 are as follow
N =50:473 < A< 751

N =60:702 < A <1067
N =170:977T < A <1437

The RAT test applied to the mean and root mean square is presented in
Figure 4.6. It is seen from the table and the figure that nearly all the Howden
HWP330 data is nonstationary. The nonstationarity of a few signals such as the

3m edgewise and 8m flapwise of tape 18, and the 3m edgewise of tape 26 is not
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as severe as for the rest.
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Figure 4.6: Reverse arrangement test of Howden HWP330 data

The values were calculated with 30 degrees of freedom. The upper bound
for accepting the signal as Gaussian is 50.9, given a significance level of 0.99.
From the normality test, all the data show a very strong non-Gaussian property.
The normality test for nonstationary signals, of course, does not make any sense.
Actually, since dominant deterministic components exist in the edgewise signals,
the statistical parameters are dominated by these components.

The extremely high chi-square values from the test could also be caused by the
non-stationarity in the signals apart from the non-normality of the signals. As
stated in [60], a chi-square test is a conventional test for the distribution but it is
also a less powerful one. “They should not be recommented for use in testing for
departures from normality when the full ungrouped sample of data is available”
[60] pp371. As the hypotheses test is not the topic of this thesis, no further details

were discussed in the test.

4.4.4 Fatigue analysis

The sampling frequency of the Howden data was 40.0Hz, giving a cutoff frequency
for the PSD of 20.0Hz. However, it was found that the high frequency components
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Table 4.5: Statistical analysis for Howden data

data | mean | ratm | rms | Ratr | E[P] | E[0] | « X3 K
T18-3-f | 91.80 | 453 | 11.54 | 664 | 10477 | 1978 | 0.19 | 4238.4 | -0.47
T18-3-c | 50.35 | 654 |29.88 | 584 | 3861 | 1582 | 0.41 | 72978.1 | -0.01
T18-8-f | 29.47 | 438 | 4.92 | 658 [ 11829 | 2502 | 0.21 | 4469.8 | -0.47
T18-8-c | 39.64 | 820 | 6.91 | 601 | 4900 | 1585 | 0.32 | 63416.6 | -0.01
T18-13-f | 3.08 | 409 | 0.77 | 649 | 16423 | 4187 | 0.26 | 3582.1 | -0.37

T18-13-c | 3.66 | 101 | 2.28 | 538 | 12023 | 1635 | 0.14 | 38723.2 | 0.01
T26-3-f | 93.66 | 1207 | 13.10 | 628 | 11541 | 2675 | 0.23 | 1116.9 | -0.20
T26-3-c | 10.40 | 466 | 35.47 | 470 | 5916 | 2043 | 0.35 | 58783.5 | -0.01
T26-8-f | 31.49 | 1259 | 7.59 | 595 | 13885 | 1976 | 0.14 | 8099.7 | -0.40
T26-8-c | 1.41 | 510 | 12.47 { 521 | 8622 | 2096 | 0.24 | 49046.8 | -0.01
T26-13-f | 1.74 | 1246 | 2.41 | 573 | 19770 | 1086 { 0.06 | 44864.8 | -0.58
T26-13-c | -0.20 | 1085 | 2.30 | 789 | 17547 | 2265 | 0.13 | 22323.4 | 0.0
T27-3-f | 81.94 | 2006 | 15.21 | 895 | 11529 | 4331 | 0.38 | 1057.1 | -0.08
T27-3-c | 13.98 | 1419 | 35.38 | 1470 | 9618 | 2450 | 0.26 | 70737.7 | -0.05
T27-8-f | 2.86 | 1295 | 12.50 | 1009 | 12676 | 2538 | 0.20 | 58583.5 | -0.06
T27-8-c | 22.39 | 2033 | 8.53 | 1131 | 13943 | 4030 | 0.29 | 3036.3 | 0.27
T27-13-f | -2.39 | 2052 | 2.52 | 1486 | 21605 | 3066 | 0.14 | 21015.4 | 0.73
T27-13-c | -3.08 | 1021 | 2.26 | 1546 | 23549 | 2960 | 0.13 | 36138.1 | 0.10
T30-3-f | 71.71 | 1873 | 15.74 | 1664 | 12380 | 1875 | 0.15 | 2727.6 | -0.14
T30-3-c | 8.14 | 219 | 35.47 | 1261 | 4923 | 2174 | 0.44 | 84744.0 | -0.02
T30-8-f | 27.27 | 1907 | 6.22 | 1394 | 15060 | 2217 | 0.15 | 3181.1 | -0.14
T30-8-c | 1.14 | 261 |12.30 | 1177 | 5895 | 2178 | 0.37 | 79738.8 | -0.02
T30-13-f | 3.36 | 1869 | 0.85 | 1320 | 21133 | 4015 | 0.19 | 1587.3 | -0.33
T30-13-c | 0.13 | 2287 | 2.21 | 1137 | 14780 | 2208 | 0.15 | 40965.3 | 0.01
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in the signal have a great influence on the final damage estimation (which will
be discussed in the following chapter). For the work in this thesis the cutoff
frequency was set at the point at which mq reached 99.5% of its whole value.
This takes most of the signal into account but eliminates the influence of high
frequency components.

The computed rainflow cycle PDF’s for the 3m flapwise and edgewise edgewise
load cases of tape 26 are plotted in Figure 4.7. The fatigue estimations are listed
in Table 4.6, 4.7 and 4.8 for S — N slopes of b = 4.0, 8.0 and 12.0 respectively.
For simplicity, only the damage estimations from Dirlik’s formula and Bishop’s
theoretieal solution are listed.

Although Dirlik’s empirical formula and Bishop’s theoretical solution give
good agreement in the fatigue analysis of the WEG MS-1 data, both of them fail
to give a satisfactory result for the Howden data. This could be caused by the
nonstationarity of the time histories or their non-normality. The existence of a
strong deterministic component also contributes a lot to the discrepancies in the

edgewise signals.

Table 4.6: Fatigue damage rates for Howden data b=4.0

chnl tape 18 tape 26 tape 27 tape 30
Dirlik | Bishop | Dirlik | Bishop | Dirlik | Bishop | Dirlik | Bishop
5 |0825 | 0905 | 0.858 | 0.852 | 0.854 | 0.971 | 1.012 | 0.927
6 | 1.702 | 1.965 | 1.616 | 0.832 | 1.581 | 0.519 | 1.758 | 2.324
7 10.740 | 0.740 | 0.841 | 0.840 | 1.466 | 0.397 | 0.811 | 0.844
8 11625 | 1.140 | 1.548 | 0.493 | 0.830 | 0.860 | 1.693 | 1.822
9 10773 | 0.323 | 1.108 | 0.163 | 1.113 | 0.290 | 0.839 | 0.357
10 { 1.495 | 0.660 | 1.334 | 0.294 | 1.281 | 0.306 | 1.483 | 0.896
Table 4.7: Fatigue damage rates for Howden data b=8.0
chnl tape 18 tape 26 tape 27 tape 30
Dirlik | Bishop | Dirlik | Bishop | Dirlik | Bishop | Dirlik | Bishop
5 0.416 | 0.581 | 0.366 | 0.446 | 0.575 | 0.730 | 0.808 | 0.838
6 |16.508 | 18.147 | 13.959 | 8.377 | 12.594 | 5.107 | 18.149 | 23.338
7 0.278 | 0.332 | 0.334 | 0.452 | 9.477 | 3.341 | 0.407 | 0.478
8 | 14.604 { 12.665 | 11.691 | 4.620 | 0.488 | 0.596 | 16.098 | 16.301
9 0.299 | 0.161 | 0.697 | 0.145 | 0.500 | 0.177 | 0.170 | 0.092
10 | 11.897 | 6.225 | 4.845 | 1.430 | 6.405 | 2.053 | 11.753 | 8.107
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Figure 4.7: Rainflow cycle probability density of Howden data
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Table 4.8: Fatigue damage rates for Howden data b=12.0

chnl tape 18 tape 26 tape 27 tape 30
Dirlik | Bishop | Dirlik | Bishop | Dirlik | Bishop | Dirlik | Bishop
5 0.14 0.22 0.13 0.17 0.26 0.34 0.26 0.29
6 | 387.30 | 406.44 | 309.11 | 193.66 | 260.95 | 114.64 | 448.30 | 559.04
7 0.09 0.11 0.10 0.16 | 146.38 | 63.54 | 0.08 0.10
8 | 316.22 | 274.07 | 209.76 | 90.03 | 0.18 0.24 | 367.66 | 352.93
9 0.09 0.06 0.42 0.13 0.17 0.08 0.01 0.01
10 | 245.99 | 132.81 | 7.54 291 | 62.96 | 26.88 | 221.88 | 165.04

Various computational considerations except for the issue of non-stationarity
will be discussed in the following chapter. To address the problem of non-
stationarity, the signals were divided into blocks. The fatigue analysis was then
performed on each block just as if it was an independent time history. The dam-
age rate was then taken as the average of the rates of these blocks. It should
be emphasesed that this is reasonable because the Howden data has a relatively
longer duration and thus it is possible to obtain enough points for each block.
For the WEG MS-1 data histories which are much shorter, this is less satisfac-
tory. It should be stressed that the issue of sample length is a very difficult and
controversial subject. The question of fatigue scatter or variance as a function
of sample length has not been properly addressed before and only a qualitative
approach could be adopted in this thesis.

Figure 4.8 shows the result of using blocks for tape 26 3m flapwise signals. As
the number of blocks increases, the damage rate between the frequency domain
and the time domain analysis approaches 1.0. This consistent tendency might
imply that the nonstationarity problem in the analysis is partly overcome. Small
segments of the signal would presents less serious nonstationarity. However, here
is a dilemma: a signal which is too long would be difficult to analyse because
of the nonstationarity; a signal which is too short would result in the possibility
- of large fatigue damaging cycles being missed. This is an important problem.

Future effort should be concentrated on finding a more rigorous solution.

4.5 Discussion

As seen from above, a fatigue analysis in the time domain is relatively straight

forward. For the frequency domain analysis approach, all the current methods
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Figure 4.8: Block effect of Howden data tape 26 3m flapwise

should be used with great care. The WEG and Howden data have provided a good
mechanism for verifying the present spectral analysis methods. However, because
of the nonstationarity, non-normality and the strong deterministic component
present in some of the signals, the frequency domain analysis techniques can not
universally give acceptable results.

Analysing monitored data is quite a different task from the analysis of simu-
lated data, or theoretical spectra. It is quite difficult to process recorded data.
The results are always significantly influenced by the way the data is collected and
processed, for example, the window type and window size effect on the spectrum
calculated from the time signal. Different choices of cutoff frequency also produce
large differences in the moments calculated from the spectrum. This may in turn
produce a different peak rate expectation. However, the work presented in this
chapter has enabled an overview of all the methods to be obtained and provided
a guide on how they should be used in design.

In general, Dirlik’s empirical formula and Bishop’s theoretical solution work
quite well with the damage rates close to 1.0 for WEG MS-1 data. Further

computational problems are discussed in the next chapter.
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Chapter 5

Computational considerations in
random fatigue analysis

The fatigue analysis in the previous chapter made an overall assessment of the
current methods used for random fatigue life estimation using frequency domain
techniques. It was found that the computation is influenced by many factors,
such as the cutoff frequency and the clipping ratio of the probability density func-
tion, etc. These parameters have to be selected carefully in the computational
procedure because completely different life estimation results may otherwise be
obtained. This chapter presents the results from an investigation of these param-
eters. Some are related to the assessment of frequency domain analysis tools and

some are related to the use of these tools in design.

5.1 Effect of cutoff frequency

Theoretically, the cutoff frequency of a spectrum is generally half of the time
series acquisition rate. As seen in the previous chapter, however, this cutoff fre-
quency is decoupled from the process of calculating the moments of the spectrum
when performing fatigue analysis. The reason for this is that high frequency
components may cause serious problems in the calculation when often they are
not structural responses but just acquisition noise. For the WEG MS-1 data
the cutoff frequency was set at 15.625Hz to include the first 10 harmonics of the
response. For the Howden data, the cutoff frequency was set at the point at
which the area of the spectrum reached 99.5% of its whole area. Both these two
ways of selecting the cutoff frequency are attempting to include all the structural
response data in the spectra whilst excluding the noise which is either caused by
acquisition error or by electronic noise during measurement.

If all the high frequency components are included in the spectrum calculation,
it is possible to check how the damage changes as the point at which the cutoff
frequency is varied. Figure 5.1 and 5.2 show such results from the WEG MS-1
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and Howden HWP330 data. In Figure 5.1(a), the PSD is plotted up to 62.5Hz,
together with the 1000 times magnified tails. The moments calculated from
the spectrum are also plotted in (4). It can be seen that the high frequency
components have a very big influence on the higher order moments and finally on
the irregularity factor as expected. The damage rates (normalised by the time
domain fatigue result) of all the methods used here are plotted in (¢). None of
them are stable until after about 27Hz. Actually this is the point under which
most of the power is included from the PSD as plotted in (a).

The question which arises is, for the monitored time history or the PSD,
how should the cutoff frequency be determined? The high frequency components
are noise produced in data acquisition, but where should the boundary between
structural response and noise be set? In other words, which part of the signal
should be taken as structural response and which part as acquisition error?

The answer to this question depends partly on the bit number used in the
data acquisition system. Figure 5.4 shows a simple test showing the generation
of such acquisition error(38]. It is actually the acquisition error associated with
a sine wave. Figure 5.4(a) shows the error when 5 bits are used, both the actual
error and the error spectrum. Figure 5.4(b), shows the error for 6 bits. A simple
comparison on these two gives us a very strong impression that increasing the bit
number in the data acquisition process would greatly change the error produced.
Of course, the memory requirement would increase as well. Another observation
is that the error is nearly white noise, distributed along the frequency axis. For-

tunately, the low frequency error has a relatively small influence on the result.

Two typical results are plotted for the Howden data tape 26 in Figure 5.2, (a)
for 3 meter flapwise and (b) for 3 meter edgewise. The PSD’s are plotted with a
log scale so that the high frequency components can be observed more clearly. It
seems that the influence of these high frequency components is more serious here
than with the WEG MS-1 data as seen from Figure 5.2. The high order moments
and irregularity factor change more rapidly. Only the damage rates from Dirlik’s
formula and Bishop’s theoretical solution are plotted here for simplicity.

Neither of the methods presented gives a stable solution. However, Dirlik’s
solution is relatively more stable in this situation. The results from Bishop’s
theoretical solution do not give reliable results for a signal with high frequency
noise. The reason for this is that the irregularity factor becomes very low (close

to zero) which makes the Kowalewski matrix used in Bishop’s solution [1] ill
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conditioned. Figure 5.3 shows the change of Kowalewski matrix with the change
of irregularity factor. Figure 5.3(a) and (b) are the Kowalewski matrices with the

following parameters respectively:
* (a) mo = 0.406, mg = 122.959, = 992926.0, 7 = 0.193838

* (b) mo = 0.406, mg = 122.708, m” = 54833.9, 7 = 0.822418.

Figure 5.3: Kowalewski matrices with different cutoff frequency

These two groups of moments are from the same time series but calculated
with different cutoff frequencies. It is clear from the matrix that, as the cutoff
frequency increases, the probability of small cycles increases very rapidly and
this makes the matrices “diagonally dominant”. Since the theoretical solution
generally uses a squaring method to empty the transition matrix, the squaring
of this type of matrix becomes inefficient. It may even fail to converge for some
extreme situations. A change of method of calculating the long-run probability
would therefore help to improve the solution under these circumstances.

It is clear that the high frequency components have a big influence on the
higher order moments. This increases the expected number of peaks in unit
time. It would be encouraging if this increase kept the total number of higher
range cycles unchanged. Since the small range cycles contributes little to the
total damage, keeping the number of big cycles constant would mean the value
of fatigue damage could remain the same. Unfortunately, this is not the case as
shown in Figure 5.2.

The cutoff frequency issue is mainly a problem for the frequency domain tools
when they are used to analyse monitored data. There is not a high frequency
noise problem when a theoretical spectrum is used for structural analysis at the
design stage but the spectrum truncation problem still exists. Loading spectra
for some structures are provided as theoretical, empirical, or semi-theoretical

formula. The sea wave load spectrum for an offshore platform, for example, is
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expressed as a semi-theoretical formula which is a function of the significant wave
height and the wave dominant period [46]. No matter where the spectrum comes
from, the cutoff frequency has to be set by the user. This truncation problem is

then the same as the cutoff frequency problem.

5.2 Length requirement

The lengths of monitored time histories are always limited by the capacity of
digital recording equipment. The two sets of data analysed in this thesis, WEG
MS-1 and Howden HWP330, have significant differences in this respect. For
the WEG MS-1 data, the durations are 300 seconds for load cases A,C,D,F, 240
seconds for load case B and 102 seconds for E. For the Howden data, the durations
are 2550, 3260, 3862, 3510 seconds for tape 18, 26, 27 and 30 respectively.

As with statistical analysis, the time series is generally required to have enough
length (sample size) to be taken as a sample of the process. This requirement
is also necessary for the fatigue analysis of structures under the action of ran-
dom loads because each time series is taken as a representative sample of the
whole stress history the structure will undergo. It has to be representative to be
“qualified” as a sample for such a history.

To assess this sample length problem different lengths of time signal were used
to rainflow count and estimate damage. A relationship between damage rate and
signal length was therefore obtained. The results when an S — N slope value of
b=5.0 and k = 1.23 x 10+15 was used are presented in Figure 5.6 for the WEG
MS-1 data and Figure 5.8, 5.9 for the Howden data. The idealised data produced
by computer simulation, nbdata, was also examined. This result is presented in
Figure 5.5. For this data it can be seen that if the signal is too short, the damage
rate estimated fluctuates without converging to any value. As the length increase,
the damage rate converges towards the result obtained by taking the signal as a
whole. For this length of signal there are enough cycles counted from the signal
to form a smooth curve of the probability density function. Increasing the length
of the signal further would add some cycles to the whole set of counted cycles but
the PDF does not then change much. The damage rate can therefore be regarded
as stable.

The result for the WEG MS-1 data in Figure 5.6, on the other hand, does
not show such a tendency. The damage rate is still fluctuating even when the

whole time signal is used. This clearly means that the length of the signal is still
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Figure 5.5: Length effect of idealised data

not enough to form a smooth PDF curve. Each time a longer signal is used, the
damage is influenced by the new cycles added in. However, careful scrutiny of the
maximum cycle number reveals that it is much less than for the idealised data.
The general trend is therefore similar. One should be careful to realise therefore
that the damage calculated at this stage can not be taken as the real structure
damage because the signal can not be taken as a wholly representative sample of

the structural response.

Cycle number

Figure 5.6: Length effect of WEG MS-1 data yl2a

This phenomenon is shown more clearly in Figure 5.7, where two rainflow
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cycle PDF’s from simulated signals are plotted with the rainflow cycle PDF from
the original signal MS-1 y27d. The simulated signals use the spectrum of y27d
so that they keep the same frequency characteristics with the original signal,
although one of them uses a 75.625Hz low pass filter. It can be seen from this
figure that ais the signals become longer (by simulation), the rainflow cycle PDF’s
keep the same shape but become smoother. Then the situation in Figure 5.6 can

be expected to have a significant improvement.

a_
Simulated signal without filter
Simulated signal with filter
H
ul
Original signal

Cycle range (10e3)

Figure 5.7: Rainflow cycle PDF% of simulated long signal

When the low pass filter is used, many small cycles produced by the high
frequency noise are removed. This makes the middle and high range cycles have
a relatively higher probability.

The situation for the Howden data shown in Figure 5.8 and 5.9 is quite differ-
ent. The flapwise result includes several jumps to reach their final values while
the edgewise results converge from the beginning. The reason for the jumps in
the flapwise signal is that there exists a nonstationarity in the signal. For the
edgewise signals, the damage rates are very stable due to the existence of a dom-
inant deterministic component. This can be seen from the rainflow cycle PDF’s
very clearly.

It is very difficult for any method to deal with a situation where the signal

is not long enough. If the signal is not long enough for rainflow counting, it is
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probably true that it is not long enough to contain all the frequency information
for frequency domain analysis. Actually, in general when a FFT is performed on
the signal, not all the data is used in the calculation unless zeros are added to
the end of the signal. When windows are used in the calculation, the problem
is even more complicated because use of windows means that the data in each
window can be taken as a sample and the length becomes even shorter. Actually,
the size of window used has a great influence on the frequency domain estimation

as shown in Figure 5.10.

WEGy27a

*Time Signa
Dirlik
00O 10000 15000 20000 25000

window size

Figure 5.10: Window size effect: WEG MS-1 data. y27a

It is therefore very difficult to give any quantitative instruction on the choice of
sample length when trying to monitor structural response. However, the sampling
frequency used for acquiring the data does not have to be too high for fatigue
calculation because the peak-trough sequence is of principal concern for fatigue.

The length problem encounted with the WEG MS-1 data is also important
for a statistical analysis. If the first 300 seconds of the Howden data is used
for the stationarity check, it will give a stationary conclusion, which is obviously
contradictory to the one drawn from the statistical check in the previous chapter.
This shows that the stationarity check should also be performed on relatively

longer signals.
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5.3 Effect of — curve slope

When two rainflow cycle probability density functions are compared with each
other, it is rarely noticed that the inverse slope of the S— N curve has a significant
influence on the fatigue damage estimated from these two functions as in Figure
5.11. Generally speaking, the closer the two rainflow cycle PDF’s are, the closer
the damages derived from these two PDF’s will be. In practical computation,
however, it is impossible to obtain two PDF curves which are exactly the same.
The difference between these two curves will then produce different damage ratios
for different S — N curve slope b value. The term damage ratio is used here again
to represent one damage value divided by the other.

Figures 5.11 and 5.12 highlight this variance for two typical WEG MS-1 data
files. They were simply derived by fixing the rainflow cycle PDF’s and changing
the value of & in the damage calculation. It is quite interesting to see from Figures
5.11 and 5.12 that, despite the difference in the PDF curves between the frequency
domain and the time domain solutions, the fatigue damages estimated will meet
at two points where the values of b are carefully selected. While for other values
of b, both over-prediction and under prediction are possible. This is obviously
caused by the weighted integral in the damage calculation. The importance of
the difference between the PDF’s from the frequency domain analysis with the
one from the time domain analysis is actually changing with b.

A similar investigation on the Howden data has also been performed. Figure
5.13 and 5.14 show the results for data tape 26 3 meter flapwise and 3m edgewise
respectively. The result for the 3m flapwise signal shows a similar tendency to
that which appeared in the WEG MS-1 data. The result for 3m edgewise signal,
on the other hand, shows a consistent upward tendency. Once again, this is
because of the dominant deterministic component in the edgewise signal. The
deterministic component results in cycles being concentrated in a certain range
and the weighted sum is dominanted by these cycles.

This phenomena suggests that some methods which work well for one kind
of material may give very poor estimation results for other kinds. The accurate
prediction of both medium and higher range cycles is very important if a method
is to be used for different kind of materials. It should also be noted that the term
of “equivalent stress” should be understood as strictly valid only for the specified
value of b which is used in its derivation. There is no universal “equivalent stress”

in random fatigue estimation.

69



o030 Bishop’s solution

Dirlik’s formula

i 0.025'

©S 0.020

l.

Time domain solution

50 100 150 200 250

Cycle range

(a). Rainflow cycle PDF’s from WEG data y27a

A

Tim* Signal
D irllk

Inverse S-N curve slope b

(b). Damage rates from PDF’s in (a), with different b values

Figure 5.11: Effect of S-N curve slope: WEG MS-1 data y27a

70



>y 0.035 'ime domain solution

Bishop’s solution

*T3  0.025"

Dirlik’s formula

Cycle range

(a). Rainflow cycle PDF’s from WEG data y27d

% »

~Tim» Signal
Dirlik
Bishop

Inverse S-N curve slope b

(b). Damage rates from PDF’s in (a), with different b values.

Figure 5.12: Effect of S-N curve slope: WEG MS-1 data y27d

71



\\

Tima Signal
D irllk
Blahop

Inverse S-N curve slope b

Figure 5.13: Effect of S-N curve slope: Howden data tape 26 3m flapwise

Ph

c
InVel Se S'Iq curve SlOpe b

Figure 5.14: Effect of S-N curve slope: Howden data tape 26 3m edgewise

72



5.4 Selection of clipping ratio

When fatigue life estimation is performed in the time domain, the maximum value
of the rainflow cycle can be determined easily using the difference between the
highest peak and the lowest trough in the time signal. When a frequency domain
analysis is performed, the range of the signal is determined from the shape of the
PDF tail which theoretically goes from —oo to oo for a Gaussian distribution as
shown in Figure 5.15. If the time series from which the spectrum is calculated
is available, it is possible to derive the maximum range by referring to the time
domain.analysis. However this can only make sense in a research environment
(and probably nonsense if one refers to Figure 4.7 in the previous chapter). A
practical computation is unable to deal with this infinite range. Thus, a clipping
point must be selected to set a finite maximum range other than infinity. This
point is described as the so-called “clipping ratio”, which is defined as the ratio
of the maximum value with the root mean square. That is,

del‘

g

p=

The maximum range is 2po because of symmetry.

The principle behind the selection of clipping ratio is that it should include
most of the probability inside the range determined. However, the important
question is what level of probability can be truncated. Some methods used for
fatigue estimation, such as Dirlik’s empirical formula and Bishop’s solution, can
theoretically extend to infinity. A problem for practical computation is therefore
to select a suitable cutoff point.

The relationship between damage rate and clipping ratio can be examined to
answer this question. Figure 5.16, 5.17 and 5.18 show the typical results of this
relationships when Dirlik’s formula is used. The examination of the WEG MS-1
and the Howden data shows that the fatigue damage rate generally converges to
the stable value for a clipping ratio range between 4.0 and 6.0. So, selecting a
clipping ratio of 6.0 would be enough from the point of view of fatigue estimation.

This conclusion is also suitable for Bishop’s theoretical solution.

5.5 Effect of deterministic components

Deterministic components play a very important part in wind turbine blade fa-
tigue. As seen from the analysis of the Howden data, the deterministic compo-

nent constitutes a separate peak in the rainflow cycle probability density function,
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which can not be predicted by any of the present methods. The fatigue damage
results estimated using these methods can not, in general, be consistent with the
time domain analysis even if it does sometimes by chance.

Chapter 8 deals with this problem in detail.

5.6 Discussion

Some problems which were discovered in the fatigue analysis on monitored struc-
tural response signals in previous chapters were examined in detail in this chapter.
Some parameters associated with the use of present methods were investigated.
This investigation provides a useful guide for the use of present methods in fatigue
damage estimations.

Many problems were investigated for the first time. This will definitely help
to ensure present frequency domain tools are used practically in engineering de-
sign. Some parameters, such as clipping ratio, can now be determined based on
frequency domain information for the first time. The investigation of this pa-
rameter for fatigue analysis can not give a criterion on how the cutoff frequency
should be selected but can raise its importance. The selection of this parameter
should be based on the results from a structural random vibration analysis, that
is, to separate the noise based on the analysis of structural response. The length
requirement problem is mainly of concern in a time domain analysis. The analysis
in this chapter provides some guidance on the monitoring of structural response
histories. As with any other statistical problem, sample length is important in the
analysis. As for the analysis on the effect of S — N curve slope, the importance

of an accurate prediction of the medium and high range cycles is raised again.
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Chapter 6

Influence of Mean Stress

6.1 Introduction

It was shown in a previous chapter that both the Dirlik and Bishop methods
produce very good results when the data is reasonably Gaussian, stationary and
random as long as mean stress effects are ignored. For welded structures, mean
stress usually has little influence on crack propagation because of the existence of
residual stresses. However, wood epoxy and grp wind turbine blades have been
shown to be very fatigue sensitive to mean stress [61]. The crack growth of some
low alloy steels has also been found to be strongly influenced by mean stress [62].

Quite a few fracture mechanics models are proposed for considering mean
stress in the analysis of crack growth. Fracture mechanics will not be discussed
here since it has not been applied to the fatigue analysis of random load cases
using frequency domain techniques.

Of all the spectral fatigue analysis methods, only Bishop’s theoretical solution
is capable of being adapted to take the mean stress into account because this
method is decomposable whilst the other methods are generally given in closed
forms which are impossible to separate.

It is noted that, by the very definition of rainflow cycles, they are made up of
sections of signal which may be separated by a large time interval. The concept of
the mean stress of a rainflow cycle then becomes rather abstract. However, since
a primary characteristic of a rainflow cycle is a stress-strain hysteresis loop, the
mean stress value can be associated with the mean of the loop in the stress-strain
plane as shown in Figure 6.1.

Any frequency domain analysis such as the theoretical solution being described
here, is generally performed without reference to the global mean of the stochastic
process since its value is not part of the generally supplied spectrum. Since the
so-called “mean stress” generally refers to the mean level of the cycle relative

to the zero mean, the frequency domain analysis can only provide the relative
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mean of each cycle when referenced to the global mean level. At the design stage,
however, the global mean information is usually known as part of the structural
analysis. This global mean value and information about the relative mean level
of each cycle will together, decide the actual mean value of the cycle. At the
research stage, if only the spectrum is supplied, it is impossible to determine the

actual mean value of each cycle [4].

Stress

/ Strain

Figure 6.1: Rainflow cycles with different mean

6.2 Goodman relationship

Laboratory experiments to obtain S-N curves have also been conducted on dif-
ferent mean stress levels. Figure 6.2 shows how the S-N curve might change with
varying mean stress level. As the tensile mean stress increases, generally the
fatigue life reduces [10].

This influence has, up to now, not been included in any frequency domain
approach. The relationship between fatigue damage (or life) and the mean stress
and cycle range can be determined by taking a slice through Figure 6.2, the result
of which is shown in Figure 6.3.

If this curve is taken as linear, the so-called Goodman relationship can be
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obtained as given below [2]:

Sa  Sm
=1.0 6.1
SaO t Sult ( )

in which, S, is the cycle range with zero mean equivalent to cycle range S, with

mean S,,, Su; is the ultimate tensile stress of the material.
Some other formulas for considering mean stress have been proposed. The

non-linear Gerber relationship [2], for instance, is another one expressed as
Sa S,

+ (s

Sao Sult

If the yield stress, instead of the ultimate tensile stress is used, the relationship

y=1

proposed by Soderbergr in 1930 is obtained which is expressed as:

S . Sm _
=10

All these relationships are presented in Figure 6.4. The Goodman relationship
is suitable for smooth polished specimens and is widely accepted. It is also used

for all the analysis in this chapter.

4

Sa
Sao

Figure 6.4: Goodman relationship

The Goodman relationship can be put into another form as:

S
Sa0 = ———
(1-5=

This formula provides a way of converting any stress cycle with a non zero

(6.2)

mean into a stress cycle with a zero mean which will produce the same fatigue
damage. Using this conversion, the S-N curves, which are generally applied to
constant amplitude cycles with zero mean stress, can then be used in the analysis

without modification.
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6.3 Theoretical solution for Gaussian signals

Before proceeding to consider mean stresses, the theoretical method developed by
Dr. Bishop [1] [35] will be introduced first. This is because it is the best choice
for connecting the mean value with each cycle range. The three events which
make up Bishop’s theoretical solution are considered separately in a way which
allows modification. The mean value of each cycle can be noted down when its
probability is computed. Dirlik’s solution has a good overall accuracy but it is

given as a closed form and so is impossible to reform.

6.3.1 . Markov Process

Stochastic Process

Random variables or random vectors are adequate for describing results of ran-
dom experiments which assume scalar or vector values in a given trial. In some
situations, however, the outcomes of a random experiment are represented by
functions. These outcomes are described by a random function, also known as a
stochastic process. It is generally defined by a family of joint distribution func-
tions of a set of random variables, which are actually member functions of the

process from a finite time set.

Markov processes

A Markov process is one kind of stochastic processes classified by its memory
property. Its formal definition is as follows.

Definition. A stochastic process X(t), t € T, is called a Markov process if for
every n and for ¢; < f; < --- < t, in T we have the conditional PDF as

f(xn, tnlxn—ly tn—l; ITn-2, tn—2; ey T,y tl) = f(xn, tnlzn-—l, tn—-l)

if the indicated density functions exist.
It can be seen that the Markov process is simply a stochastic process which
can only “remember” its last position. In other words, only the present position

is important in deciding where to go next in the process.

6.3.2 Basic formulation of the theoretical solution

The Theoretical solution assumes the peak-trough and trough-peak transitions

of the time series can be represented by a Markov chain. From the associated
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definition of a rainflow cycle [1], each cycle can be taken as three separate events
occurring together. The probabilities of the three events then can be calculated
separately. The probability for each event is actually the long run transition
probability from one level to another level. If the process is Markovian, this
probability can be calculated by Markov chain theory.

As shown in Figure 6.5, if the probability of being at a particular peak is
defined as p(ip) and a rainflow range of value h=ip-kp is defined, where ip and
kp are the levels at point 1 and 2 respectively, the expression for the probability
density function of a rainflow range value & for any peak value can be found by

summing over all values of ip:

2.0 & . . . .
prr(h) = = Y- Yi(ip,ip — W)Ya(ip, ip — h)Ya(ip, ip — h)p(ip) (6.3)
tp=h+1

for h=1to ip-1 where Y;(ip,ip—h) is the conditional probability of event Y;, given
a peak with height ip, Y;(ip, ip—h) is the conditional probability of event Y3, given
a peak with height ip, and Y3(ip,ip — h) is the conditional probability of event
Y3, given a trough with height ip-h. The parameter dh represents the interval
width used to divide the total signal stress range. The value 2.0 comes from the
fact that for a full set of events, rainflow ranges occurring with event Y; on the
right hand side need to be considered. In other words, for every configuration
of Y}, Y;, and Y; being considered, there is an equally likely configuration of
the signal which is a reflection of the signal about t=0. Therefore the problem
of obtaining a theoretical derivation to the rainflow range has become one of
obtaining Y;(ip,ip — k), Ya(ip,ip — k), Ya(ip,ip — k) and p(ip).

Two areas of theory will be required for this. A suitable method is required
to model the dependence between adjacent extremes, then a theory is required to
extend this to model the dependence between extremes which are not adjacent.
For the first an expression by Kowalewski [63] is used and a Markov Chain model

1s used for the second.

6.3.3 Markov model for rainflow cycle

Markov chain models are widely used in random fatigue analysis, both for crack
growth [64] and damage accumulation calculations [65]. However, this Bishop’s
model was the first time they were used for modelling rainflow cycles in a random
response process. According to the definition of rainflow cycles, the three events
needed to constitute a cycle can be modelled as in Figure 6.6. All the necessary

information required to define the rainflow cycle is given by this figure. It is a
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A set of transitions from point 2 to point 3
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A set of transitions
from point 1 to point 2

point 2
pOillt 4 Lowest trough of rainflow cycle
-ve
Figure 6.5: Illustration of events [2, ~3

Markov chain model with absorption states. A description of this model is given

below.

State 1 (level kp). This is an absorption state into which transitions can

occur from any level between ip and ip-h, plus ip itself.

State 2 (all levels below kp). This is also an absorption state into which

transitions can occur from any level between ip and ip-h, plus ip itself.

State 3 (all levels above ip). This is an absorption state into which transi-
tions can occur from any level between ip and ip-h. Transitions from
level ip can not occur because a peak given trough transition can only
originate from a trough at some level below it, and a trough at ip can
only occur after a trough given peak transition from above. Such a
transition is invalid. State 3 has an unusual feature. We are just in-
terested in the probability of a set of transitions which originate from
ip and eventually end up in either absorption state 1 or 2 without
returning to level ip or above. Therefore, entries into level ip have
to be transferred into state 3. This ensures that any transitions via
level ip are prevented from accumulating to the required probability

of absorption into state 1 or 2.

State 4 (levels between ip and kp). This is an transient state. Transitions

to any level in this state can only occur from some other level within
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e > e ]

absorption state 1 [- absorption state 2

Figure 6.6: Markov model for rainflow cycle

state 4, with the exception of level ip, for which the initial trough given
peak transition is the only possible non zero transition probability into

state 4 from outside it.

State 5 (level ip). As explained above the only non zero transition prob-
ability out of this state is the initial trough given peak step. All
transitions back into this state are transferred to state 3 in order to
make subsequent transition probabilities from this state zero. Hence

it is an entry only state.

6.3.4 Initial transition and Kowalewski formula

Before the long run probabilities defined by Figure 6.6 can be evaluated a one-step
transition matrix is set up to model the dependency between adjacent extremes.
This adjacent extremes problem can be solved by employing the Kowalewski
approximate expression [63], which is valid only for stationary Gaussian signals
and is expressed in terms of the zeroth,second and fourth moments of the PSD

about the zero frequency axis.

e 1 R
4moy? " (2rmo(1 _72))1/2]‘3 o

(6.4)

Pmin,maz(ala C!z) = [
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where ai is the trough level and a2 is the peak level, m,, is the nth moment of the
PSD function and 7 = m:ly/m”iru is the irregularity factor. Figure 6.7 shows

one example of this function.

Figure 6.7: Illustration of Kowalewski} expression.

This formula should be taken «is two parts: being . peak given trough part
and a trough given peak part. Since the signal is considered to be Gaussian,
symmetry about the diagonal exists. It can be illustrated in matrix form as in
Figure 6.8.

The corresponding parts of the Markov model are shown in Figure 6.9. As
state 5 is entry only, column ip in the matrix is transferred into column ip-Al.

According to Markov chain theory [66], the transition matrix of the absorption

problem always has the form

C (6.5)

P ={pPj} = j,
in which,

P is the transition matrix.

T denotes the transient states

C denotes the absorption states,

R is the probability of transition from 7 to C,

QO is the transition probability with T,

I is the transition probability within C, which is a unit matrix.

0 s the transition probability out of C, which is a null matrix.
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Figure 6.8: (a) The trough given peak part of Kowalewski’s expression for a 16 by

16 matrix.(b) The peak given trough part of Kowalewski’s expression for a 16 by 16

matrix.
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This form is consistent with the model used here. The initial transition matrix
can be obtained by multiplying the peak given trough and trough given peak
matrices together. These are shown in Figure 6.10(e) and (b) in its full and
condensed form. The outside part of the absorption states are removed in the

condensed form.

trough position
~ 0~ ~ N m Y N oo N N M e v
I D
EEEEREEEEEREEELEE
. state 2 ; |1
state 2, 1
state 1 1
state4, jololo
g state4, |olofo| |olofofo]o]| [o]o]o]o]o]o
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(a). Model matrix in two-step transient matrix
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(b). Condensed form (c). "long ran" distribution

Figure 6.10: Transition matrix and its equilibrium distribution
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6.3.5 Long run probability

Once the initial transition matrix which models the conditions of Figure 6.6 has
been set up, some appropriate method can be used to calculate the equilibrium
distribution probability, i.e. the “long run” probability that the signal starts
from ip and is absorbed into kp with any number of transitions in between. From
the initial transition matrix in Equation 6.5, the n-step transition matrix can be

expressed as

I 0
(I+Q+Q*+---+Q" )R Q"

The ‘distribution will be in equilibrium after n becomes large enough, that is,

P = (6.6)

I o
TR m QR lim o

=1

(6.7)

As n tends to infinity, the limit of Q™ will become null. At the same time, the

series {Q'} will be convergent. Let the series converge to V, then

. n I O
II= nlLIgP =lv o (6.8)
Because PII = II, we have
I O{|I O]_ I o|_|TI O (6.9)
R Q||V O|"|R+QV O| |V O )
So,
R+QV =V (6.10)
The equilibrium distribution V satisfies
(I-QV=R
or
V=(I-@Q) 'R (6.11)

The long run probability can be obtained by solving a linear equation set. In
practical computation, this can also be achieved by squaring and resquaring the
matrix enough times until the transient part becomes empty.

Since a Gaussian stationary process is considered, there are some symmetric
relationships which can be used to simplify the computation as shown in Figure
6.11.
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Figure 6.11: The assumption of normality and stationarity

Then if f; is the“long run” probability of going to level i from level j, the

three probabilities needed can be obtained as:

Yi=f,+ 1 (6.12)

and by vertical symmetry
-1 (6.13)
1/3 = ftlp‘—ip+h + ftzp*—ip+h (614)

where tp is the value twice the mean signal level, state 1* is level (tp-ip) and state

2* is made up of levels below tp-ip.

6.4 Modification for considering the mean stress

The theoretical solution for Gaussian stress histories can be extended to consider

the influence of mean stress. In order to do this, the solution was redefined as

follows:
2 (o o)
P(S,Sn) = 75 Y Yi(ip,ip — S)Ya(ip,ip — S)Ys(ip,ip — S)p(ip)  (6.15)
ip=S+1

where Sy, is the mean stress value defined by (ip+kp)/2.
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Figure 6.12: Example illustrating the method of evaluating Prr(3) for a 16 level process

Figure 6.12 shows an example of evaluating prr¢3) for a 16 level process.
When the mean stress is taken into account, the probability of these cycles are
grouped according to their ranges as well as mean levels.

All the parameters needed to compute Equation 6.15 are set out in the pre-
vious section.

It should be noted that the mean value included in this formula is just the
relative mean of each cycle relative to the global average of the process. It is not

possible to consider the absolute mean value in a frequency domain analysis.

6.5 Analysis of WEG data including mean stress

An analysis considering mean stress was performed in both the time and frequency
domains for the WEG MS-1 data. A typical joint PDF is shown in Figure 6.13.
As has been discussed earlier, the WEG data is not long enough to do such an
analysis. This situation becomes worse when the cycles are grouped with different
mean values because the limited number of cycles have to be distributed in a
mean-range plane rather than along a range axis only. It is therefore very difficult
to obtain a smooth PDF curve. It is unreasonable to expect the theoretical
solution to give very good agreement in this situation.

The ultimate tensile stress of the material for the WEG MS-1 data was un-
known for this analysis. It was therefore difficult to assess the actual influence of
mean stress. In our analysis, the ratio k£ between the ultimate tensile stress and
maximum stress range in the signal was assumed to be at different levels for the
24 load cases. Table 6.1 shows the results for k£ at 5 /0, 20 and 30. The dam-
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age values are normalised by the damage calculated directly from the whole time
signal without considering the mean stress effect. This data shows that there is
a certain amount of scatter at all the values of k. This scatter is also generally

found when the load cases are analysed whilst ignoring mean stress effects (see

(50]).

Table 6.1: Fatigue damage ratio for WEG MS-1 data with mean stress

data | Suit/Smaez (time dom.) | Suit/Smaz (freq. dom.)
5 10 20 30 5 10 20 30
yil2a { 3.10 [ 1.87 | 1.98 | 1.61 | 3.88 | 2.42 | 2.32 | 1.81
yl9a [ 2.81 | 1.53 | 1.69 | 1.47 | 3.19 [ 1.98 | 1.90 | 1.49
y27a | 3.06 | 1.38 { 1.69 | 1.69 | 3.20 | 1.97 | 1.90 { 1.50
y35a {3.33 | 1.37 { 1.87 [ 1.95 { 1.95 | 1.19 | 1.15 | 0.92
yl2b | 249 ( 1.40 | 1.50 | 1.36 | 1.38 | 0.89 | 0.82 | 0.63
y19b | 2.50 { 1.30 | 1.42 { 1.37 | 1.31 | 0.85 | 0.77 | 0.59
y27b | 2.70 {1.32 | 1.49 { 1.51 | 1.19 [ 0.77 | 0.71 | 0.54
y35b | 3.31 { 1.30 | 1.73 | 1.87 | 1.11 | 0.70 | 0.66 | 0.51
yl12c | 2.58 [ 1.52 [ 1.51 [ 1.16 | 1.63 | 1.01 | 0.97 | 0.76
yl9c | 2.61 | 1.41 | 1.41 | 1.30 | 1.46 | 0.91 | 0.87 | 0.68
y27c | 2.54 | 1.53 | 1.51 [ 1.17 [ 1.22 { 0.76 | 0.73 | 0.57
y35c | 2.44 1 1.52 | 1.49]1.23 | 1.18 | 0.74 | 0.70 | 0.55
yl2d { 2.74 { 1.52 | 1.53 | 1.44 | 2.59 | 1.65 | 1.55 | 1.19
y19d | 3.56 | 1.76 | 1.97 [ 1.60 | 2.57 | 1.64 | 1.53 | 1.18
y27d | 3.35 [ 1.82 | 1.97 | 1.40 | 2.32 | 1.47 | 1.39 | 1.07
y35d | 2.58 [ 1.47 | 1.54 [ 1.32 ] 2.29 { 1.41 | 1.36 | 1.07
yl2e | 2.51 | 141 | 1.51 | 1.35|2.00 | 1.24 | 1.19 |{ 0.94
yl19e | 3.57 | 1.78 | 1.95 | 1.69 | 2.62 | 1.63 | 1.56 | 1.22
y27e | 1.75 1 0.99 {1 0.92 { 1.00 |1 2.08 { 1.31 | 1.24 { 0.96
y35e | 3.61 | 1.49 | 2.06 | 2.09 | 2.52 | 1.58 { 1.50 | 1.17
yl2f 1296 [ 1.72 [ 1.72 | 1.41 | 2.84 | 1.79 | 1.70 | 1.32
y19f {2.30 { 1.22 | 1.31 | 1.33 | 2.46 | 1.55 | 1.47 | 1.14
y27f 1 3.34 | 1.70 { 1.79 | 1.58 | 3.37 | 2.12 | 2.01 | 1.56
y35f [ 2.62 | 1.55 1 1.71 | 1.49 1 2.99 { 1.90 [ 1.79 | 1.38
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Figure 6.13: The joint PDF of rainflow range and mean from y27a
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6.6 Analysis of Howden data including mean
stress

As mentioned earlier, the stress history of the Howden data is not given directly.
Instead, a time series of bending moments at each section is given. Thus, rainflow
cycle counting on such time signals will just give the rainflow cycle of bending
moments at the sections instead of stress at the hot spots. When mean stress is
considered through a Goodman type relationship in this situation, the ultimate
tensile stress needs to be changed to ultimate bending moments at each corre-
sponding section. This is allowed again because only the ratio between the mean
value (stress or moment) and ultimate tensile value is important. Both ratios are
actually identical. From the Goodman relationship, this ratio, 1/(1 — Sy, /Sui), is
acting just as a magnification factor to the cycle ranged S, with mean S,,. Since
the ratios remain unchanged, the magnification factor also remains unchanged.

The ultimate bending moments used for the Howden data are listed in Table 6.2.

Table 6.2: Ultimate bending moments of Howden data

Location | case 1 b=8 | case 2 b=12
3.0 325.5 | 452.9 | 538.1 | 902.9
8.09 170.3 | 166.1 | 277.3 | 329.5
13.04 40.52 | 31.97 | 64.92 | 62.47

Once again, rainflow counting including the mean in both the time and fre-
quency domains using the modified theoretical solution was performed on the
Howden data. Typical joint PDF’s are shown in Figure 6.14 and 6.15 for both
flapwise and edgewise respectively. It can be seen from the edgewise rainflow cy-
cle PDF’s that, because of the existence of a dominant deterministic component,
the PDF has two finite sections in the time domain. However, the frequency do-
main analysis gives a PDF which is quite smooth. Generally speaking, these two
different approaches will not be in agreement. This is because for the edgewise
signal, as explained earlier, the assumption of randomness no longer holds.

The fatigue damage rates from both the time and frequency domain analy-
sis are shown in Tables 6.3 and 6.4 for inverse S-N curve slope =8 and b=12
respectively. All the damage rates are normalised by the corresponding damage
rate without considering the mean stress effect. Despite the difference between

the time domain and frequency domain analysis, it is very encouraging that the
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frequency domain results change quite consistently with the time domain results.

The prediction from the frequency domain analysis is generally in good agreement

with the time domain analysis [67).

Table 6.3: Fatigue damage ratio of Howden data with mean 5=8.0

Location tape 18 tape 26 tape 27 tape 30
time | freq. | time | freq. | time | freq. | time | freq.
3m flap | 3.910 | 4.394 | 4.680 | 4.554 | 3.781 | 3.712 | 3.029 | 3.090
3m edge | 1.585 | 1.486 | 1.103 | 1.093 | 1.129 | 1.128 | 1.076 | 0.873
8m flap | 2.234 | 2.412 | 2.281 | 2.583 | 2.059 | 1.937 | 2.155 | 2.248
8m edge | 2.791 | 2.751 | 1.053 | 1.040 { 1.068 | 1.068 | 1.031 | 1.017
13m flap | 1.394 | 1.443 | 1.080 | 1.225 | 1.010 | 0.973 | 1.314 | 1.496
13m edge | 1.639 | 1.609 | 1.018 | 1.000 | 1.000 | 0.973 | 1.045 | 1.025

Table 6.4: Fatigue damage ratio of Howden data with mean b=12.0

Location tape 18 tape 26 tape 27 tape 30
time | freq. | time | freq. | time | freq. | time | freq.
3m flap | 35.89 | 52.16 | 65.21 | 57.93 | 43.75 32.37 [ 17.25 | 19.37
dmedge | 413 | 3.94 | 1.35 | 1.35 | 1.44 | 1.49 | 1.25 | 1.05
8m flap 7.53 | 9.48 | 7.38 {1139 7.23 { 5.36 | 6.63 | 7.86
8m edge | 26.46 | 26.20 { 1.27 | 1.16 | 1.22 | 1.26 | 1.09 | 1.12
13m flap | 2.18 | 248 | 1.16 | 1.66 | 1.02 | 0.95 | 1.72 | 2.71
13m edge | 4.49 | 4.39 1.01 1.02 | 1.00 | 0.95 1.15 1.10

6.7 Discussion

For the first time, a theoretical method has been developed to predict both the
rainflow range content and the corresponding cycle mean information from fre-
quency domain statistics. The new method has been applied to data which is
approximately Gaussian, stationary and random and the results obtained show
very good agreement with the corresponding time domain result which is used as
a reference value. Results for the Howden data are less good, as expected, because
of the poor quality of the data in terms of it being non-Gaussian, nonstationary

and not purely random.
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Figure 6.14: The joint PDF of rainflow range and mean from Howden data tape 26 3m

flapwise
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Figure 6.15: The joint PDF of rainflow range and mean from Howden data tape 26 3m
edgewise
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Chapter 7

Fatigue analysis for
Non-Gaussian response histories

7.1 Introduction

Up to now, the fatigue analysis of stochastic stress histories has focused on sit-
uations where the random process is Gaussian. For most engineering problems,
assuming the structural response to be Gaussian is reasonable, according to the
central limit theorem. However, if structural nonlinearity is an issue, the response
may not then conform to the Gaussian assumption as we have seen from the statis-
tical analysis of the Howden HWP330 data. Some other response measurements
also reveal the same non-normality [68].

The most difficult problem for non-Gaussian signals is the expression for their
probability density functions. Of course it is known that only one parameter, the
root mean square, is needed for a Gaussian distribution given that the mean value
is zero. This is calculated from the second order central moment of the signal,
or the zeroth order moment of its power spectral density function. For a non-
Gaussian signal there is no universal expression for its probability distribution nor
for the relevant frequency domain information. Some techniques, such as Hermite
series, or MacLaurin series, have been employed to express the probability density
functions. However, they all have their disadvantages.

Most of the present methods, as we have seen in previous chapters, are unable
to deal with the non-Gaussian problem. A method based on Bishop’s theoretical
method using Markov chain theory is presented in this chapter. It can be used for
all kinds of non-Gaussian distributions as long as the peak to trough and trough
to peak transition matrices are known. This is often the case when using, for

instance, standardised load sequences such as FALSTAFF.
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7.2 Mathematical description of non-Gaussian
variables

There is no doubt that a random variable is described optimally in terms of its
probability density functions. However, this form of description is not available
for some situations, for instance, with experimental data. For these practical
cases, statistical methods can only provide a limited amount of information such
as the statistical moments (i.e. mean,variance, skewness etc). This information
may be utilised to approximate the unknown PDF in closed form. Generally,
such an-approximation can not be unique since a PDF is defined by infinitely
many statistical moments. Additional uncertainties about the PDF arise because
of limited confidence (in a statistical sense) in these statistical moments because

of the short sample lengths used for the calculation.

7.2.1 Characteristic functions

As discussed in Chapter 2, the nth order moment of a random variable z is defined
as[40],
a, = E{X"} = / z"p(z)dz
—o00
where p(z) is the probability density function (PDF).
When the moments are taken about the mean T, the central moments are

defined as
pn= [ (z=7)"p(z)dz

—00

The characteristic function is defined as

#(u) = B{e™} = [~ ep(e)da (7.1)

Thus, the PDF is obtained by applying the Fourier transformation to the

characteristic function.

p@) = o [ e g(u)du (1.2)

The characteristic function can be expanded as MacLaurin series as follows

2 P
8() = 4(0) + 6O+ (0)5 + .= 2 2w +0wY)  (13)
=0 J°
From Equation 7.1,
¢™(0) =" /_o:o z"p(z)dr = "ay,
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Equation 7.2 can be taken as the universal expression for the probability
density functions. Theoretically, infinite order moments are needed to express
the PDF. This makes the expression quite difficult to use. There is no closed

form expression which can be derived.

7.2.2 Gram-Charlier Expansion

Several types of expansion have been developed in the past [69], one of the most
convenient, in term of computational efficiency, is the Gram-Charlier expansion.

In this case, the PDF p(z) is approximated by

p(z) = ¢(z)[1 + Z _Hk (7.4)

k-3

in which
z? dF

H(2) = (-1 exp(5) rlexp(-2)] (k=0,1,..)

is the Hermite series.

In the above equation, ¢(z) denotes the normal distribution with given mean
and variance, the coefficients C; are determined from the higher statistical mo-
ments and Hi(z) denotes the Hermite polynomials of order k. Since these poly-
nomials are orthogonal with respect to the normal density as weighting function
the lower order statistical moments are not influenced by adding additional terms
in the series 7.4. This means that, for instance, normalisation is not affected by
adding additional terms which, in turn, implies that in some regions p(z) may
attain negative values. It should therefore be treated quite carefully.

There is another approach based on the fact that for Gaussian variables the
cumulants of order > 2 vanish. It is therefore quite reasonable to define non-
normal properties in terms of higher order cumulants instead of moments. This
so-called cumulant neglect closure method assumes that cumulants higher than a
certain order vanish. It can be shown that this is equivalent to an approximating

function P(w) - which is the Fourier transform of p(z) - given by

= ea:p[z Kk w)¥] (7.5)

k=3
where the coefficients K} follow from the cumulants. The PDF p(z) can be
obtained by applying an inverse Fourier transformation. However, this is generally
not feasible in closed form. Upon discretisation and after the FFT the numerical
values of p(z) may become negative in some regions. In fact, the results are quite

similar to those of Equation 7.4.
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7.2.3 Maximum Entropy Method(MEM)

A different concept is introduced by this method, i.e. to leave the random variable
in as general a form as possible given the known information about the statistical
moments. Mathematically, this is achieved by maximising the“entropy” H, of a
PDF p(z)

H,=- /: p(z)Inp(z)dz (7.6)

subject to the constraints:
E[z"] = / z*p(z)dz k=0---n

for all éiven statistical moments up to order n.

This has a solution of the form

p(z) = exp Xn: Crz* (7.7)

k=0
in which the coefficients C; are determined from the statistical moments, i.e.,
to satisfy the constraints. It is clearly seen that only positive values can result
from this expression. A drawback of the method is that for odd n the PDF may
become unbounded at either z — o0 or £ — —oo. Computationally, there is
the problem that each additional term in the series 7.7 alters all the statistical
moments. Still the results obtained from this method are in some cases superior

to those from other methods.

7.3 Statistical description of non-Gaussian pro-
cesses
7.3.1 Time domain

Analogously to the autocorrelation function of a random process z(t), the higher

moment function, e.g. third correlation (Bi-correlation)
Rezz(th,t2,t3) = Elz(t1)z(t2)z(t3)] (7.8)
or fourth order correlation (Tri-correlation)
Rezao(ty, b2, b, 1) = Ele(t1)z(t2)z(ts)z(L)] (7.9)

can be defined. As usual, E[:] in the above equations denotes ensemble aver-
age (mathematical expectation), t; denotes time arguments. If the process is

stationary, only the time lags are important, so that:
Rzzr(rla T2) = E'[a:(t)x(t + Tl):l"(t + T2)] (710)
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and

Rezez(m1,72,73) = Elz(t)z(t + 1)z (t + 72)z(t + 73)) (7.11)

For a zero mean and with zero time lags, the correlation functions yield the

one time central statistical moments of the random process z(t):
K3,z = R:rz:z:(o,o) = Elxa(t)] (7.12)

faz = Rzzz2(0,0,0) = E[z4(2)] (7.13)

While not giving complete information, these two quantities still provide some

measure of the non-Gaussian properties of a process z(t).

7.3.2 Frequency domain

Analogously to the above time domain approach, multiple Fourier transforms
can be applied to higher order spectra. The Bi-spectrum S;;z(w;,w;) and the

Tri-spectrum S;zzz (w1, w2, ws) are defined by the following Fourier transform:

1 oo oo . i
Sa:xa:(wl,"")?) = Ei‘/_m ’/_oo R,;,,-I(Tl, Tz)e_'wlﬁe—mmﬁdTldTg (7.14)

Sirzzz(wr,wz,ws) = 8%./_00 /_w /_oo R,,.m,(ﬁ,‘rg,ra)e"“"‘e"“’”"’e"‘””“drldrzdrg,
(7.15)

The inverse relations are given by:

Rzzx(TlaT2) = /_oo [oo Szz‘z(wl,WZ)C’.WITleiwzndwldwz (716)

o0 o) o) . . .
R:cr:m:(Tl, T2, T3) = / / / Sz:xa::(wl s W2, "‘-’S)thlﬁ e'v2m g'v2 s dwl dLU2d(U3
—00 J=o0 J=0
(7.17)

When time lags are zero, the central moments are obtained:

fise = Rozs = / ) /  Suza(wnw2)dwr duy (7.18)

fiae = Rosss = /_ ': /_ : /_ °; Sewa(wr, way wa)dwr dwsduws (7.19)

The introduction of higher order spectra implies the use of higher order mo-
ments of the process. The problem again is determining to what order the spec-
trum should be computed in order to be able to enough describe the non-Gaussian
process? It is hoped that, the Bi-spectrum and Tri-spectrum will contain the most

important information about the non-Gaussian properties.
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7.4 Present methods for non-Gaussian signal
fatigue analysis

7.4.1 Transformation method

Suppose the non-Gaussian response of a structure is denoted as X(%). It can be
the result of applying a monotonic transfer function, g, to a standard normal
process, U(t): [70] [71] [72]

X(t) = glU()]

in which g(u) = F;!'[®(u)] in terms of the cumulative distribution functions, F;
and @, of X(t) and U(t).

The difficulty in using this equation is that, the transfer function g must be
determined numerically, complicating the subsequent fatigue analysis. And, it is
not clear how g should be chosen if only certain response moments are available.
To overcome these difficulties, a Hermite series approximation to g is constructed

based on the known response moments.

X(t) = Z anHy[U(t)]

n>0

Since T = ag, 0, = a3, the above series can be rearranged into a standardised
form: X(t) ~%
—~T
Xo(t) = 227 2 U(t) 4 T e HalU (1)

z n>2

and

_ E{H[X(1))
" n!
in which it assumed that €,4+1 = a,/0; < 1(n > 2), so that the O(en€r) terms
are negligible. Depending on the known moments, a suitable cutoff order can be
selected as an approximation of g.

A fatigue analysis can then follow this approximation. If X (%) is narrow-band,
the peak distribution of U(t) would have a Rayleigh distribution. If U(?) has a
peak at level S, X(t) would have a peak at level ¢(S) and there would exist a
cycle g(S)-g(-S). The fatigue damage is then determined by using the moments

of the signal.

7.4.2 Weakly non-Gaussian approximation

The Gram-Charlier approximation of PDF described in the previous section can

be developed into another expression for calculating the distribution of signal
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peaks. Firstly, the joint probability density function p(¢ € ) of a random variable
¢ and € can be calculated. Then, if the response is narrow-banded, the probability

Y

distribution F(£) for the peak values of ¢ is approximated by [73]:

FO=1-T0

where N (é ) is the average number of crossing of level £ = E per unit time

N = [ plé,6)lé1dé
This approximation assumes that the most-often crossed level is £ = 0. This
holds for a symmetric response, but is just an approximation for an asymmetric
response, even with zero mean.
Using this approximation, the probability distribution for the peak values is
obtained. The peak range distribution is then found to be F,(£) = %[F(é) +
F(—£)] because of the narrow-band assumption. The fatigue damage is then

evaluated from the cycle probability density function as before.

7.5 Theoretical solution for non-Gaussian stress
history analysis

7.5.1 Statistic aspect

As discussed in previous chapters, two symmetrical properties exist for Gaussian
stationary signals. One is the symmetry about mean axis the other is about the
t=0 axis as shown in Figure 6.11. A fatigue analysis for Gaussian response histo-
ries then can make use of this, as in Bishop’s theoretical solution for a Gaussian
stress history. For the non-Gaussian signals being discussed here, stationarity is
still assumed. Thus, symmetry about the ¢{=0 axis can still be assumed. Sym-
metry about mean axis, however, does not exist for non-Gaussian signals. The

Markov model for rainflow cycle computation therefore has to be modified.

7.5.2 Theoretical solution for non-Gaussian responses

The theoretical solution described in Section 3.6 and 6.3 assumes the signal is
stationary and Markovian. When applied to Gaussian response histories, sym-
metry about the mean value axis is used to simplify the Markovian model and

computation.
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For non-Gaussian response histories, this symmetry does not exist. However,
the transition from peak to trough and from trough to peak of the process can
still be taken as a Markov chain and thus the probability density can still be
calculated as before. That is,

PRR{h) = "~ (P- n)Y2{ip,ip- h)Y3{ip,ip- h)p(ip) (7.20)
ip=k+i

Event ¥i and representing transitions to ip from kp and below, are the same
as before, and the procedure for its probability calculation remains unchanged.
The probability calculation for events I3, however, is different. If the signal is
turned upside down, that is, every peak becomes a trough and every trough
become a peak, the original model can then be used to derive the probability of
event v3. That is, the probability of event v3 can be calculated using the same
procedure as Y| with the initial transition matrices transposed.

Figure 7.2 shows one example based on such a calculation. The turning point
matrix is a combination of two matrices from the Kowalewski formula with dif-
ferent spectral moments. The peak to trough part is based on moments group
(a) below while the trough to peak part is based on moments group (b). The
matrix is plotted in Figure 7.1.

* (a) mo = 0.405986, m2= 122.708, = 748339, 7 = 0.703993

* (a) mo = 0.405254, m2= 122959, m" = 202541.0, 7 = 0.429198

Figure 7.1: Non-Gaussian transition probability matrix

The result obtained by using this new theoretical solution for a non-Gaussian
transition matrix is plotted in Figure 7.2 along with the result obtained by ap-

plying the original theoretical solution. The result from a peak-trough sequence
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regeneration using this transition matrix is also shown. If the simulation result
is taken as a reference for other solutions to compare with, it is clear that the
solution without the Gaussian assumption works much better than the one with
Gaussian assumption. In other words, the non-Gaussian theoretical solution does

take the non-Gaussian property in the transition matrix into account.

theoretical solution with
Gaussian assumption

theoretical solution based on
non-Gaussian transition matrix

peak-trough series simulation
based on turning point matrix

cycle range

Figure 7.2: Rainiiow cycle PDF % from non-Gaussian transition matrix

The difficulty which remains is that currently there is no suitable non-Gaussian
replacement for the one-step Gaussian Kowalewski transition formula. And, the
peak number in unit time is also another parameter not known because the Gaus-
sian formula is no longer valid. But once such formulae are available, the com-
plete problem would be solved. However, the problem with the representation of
a non-Gaussian process arises again. Since the properties of a non-Gaussian pro-
cess need to be expressed by the high order moments, then how can the spectrum
provide such information? Although Bi-spectra and Tri-spectra provide some of
this information it is difficult to say how much information is retained in such
spectra. Furthermore, such spectra are quite difficult to derive.

Perhaps then, it is advisable to abort the search for a universal solution for
non-Gaussian processes. Since there are so many kinds of probability distributions

which are non-Gaussian (since the Gaussian distribution is just one special case) it
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is practically impossible to deal with all of them together. Therefore, the possible
approach is to assume the suitable distribution functions of the response. The
spectra can then be employed to determined the parameters in these distribution

functions.

7.6 Peak-trough series regeneration

Because of the difficulties which arise in the theoretical solution for non-Gaussian
response histories, signal or peak-trough regeneration is usually adopted instead.
The methodology used for Standardised Load Sequence regeneration is therefore

examined here [74].

7.6.1 Transition matrix

Modern structural fatigue laboratories are usually equipped with computer-controlled
servohydraulic machines. A variable amplitude fatigue experiment can then easily
be performed using complicated loading histories. One problem which arises with
such tests is, if several experiments are conducted with different loading histories
in different laboratories, the results are difficult to compare. To overcome this
difficulty, standardised load sequences have been developed, such as FALSTAFF
for aircraft [75) [76], WASH for offshore structures [77], etc. Generally, the load
sequences are stored as a peak trough turning point matrix which denotes the
transition probabilities from peak to trough and from trough to peak [78]. Figure
7.3 shows the three FALSTAFF transition matrices for three different aircraft
serving conditions.

The requirements for a standardised load sequence are:

- the choice of the essential parameters of the sequence must be well found;

- the sequence must be realisable in a practicable manner on the test equip-
ment.

The basis of a meaningful standardised load history is either strain or load
measurements in service, preferably from a number of similar structures. From
these many measurements, common features can be extracted; that is, their spec-
trum shapes must be similar. Based on these strain measurements in service, an

“average” spectrum can then be selected.
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(a). FALSTAFF turning point matrix for service condition type I
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(b). FALSTAFF turning point matrix for service condition type II

Q0.4

(c). FALSTAFF turning point matrix for service condition type III

Figure 7.3: FALSTAFF matrices
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7.6.2 Load sequence generation

To regenerate the load sequence from a transition matrix, a random number
generator is needed. Nearly all computers nowadays provide an intrinsic function
such as a pseudo random number generator which has a uniform distribution in
a given area.

The routine for load sequence generation is then as follows:

(1). Determine the cumulative distribution for each row of the transition matrix,

as shown in Figure 7.4.

(2). Generate a random number between 1 and the maximum level of signal as

the start point.

(3). Generate another random number inside the range of the cumulative distri-
bution of the starting row. Take the hit column number as the trajectory

turning point (next peak or trough).

(4). Repeat procedure 3). until the return period length is reached.

hit in step 5 leads to

12 3 4 6 7 8 9 10 10
10
9
? 8
starting 7
point n = starting
step7 y - point 6
down / 6
5
random
number 4
random
number

hit in step 9 leads to

[H random number generator
Figure 7.4: Load sequence regeneration

This method has been applied to the WEG MS-1 data with the transition

matrices obtained directly from the time histories. Figure 7.5 shows the rainflow
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cycle PDF’s for such a regenerated load sequence, together with the original
time series from which the transition matrix is extracted. This time series was
simulated using the turning point matrix of the WEG data y27d time history
after the noise above 15.625H; was filtered out. The results here show good

agreement.

Co Simulated from transition matrix

Original time signal

SI

00.00 100.00 100.00
Cycle range

Figure 7.5: PDF% from regenerated load sequence

7.7 Discussion

The possibility of employing the theoretical solution for the fatigue analysis of
non-Gaussian response histories is addressed in this chapter. It was found that
suitable modifications to the theoretical solution enable it to take account the non-
normality in the fatigue loading history provided that the peak trough transition
matrix is available. Therefore, the theoretical solution has been extended as
a universal tool for fatigue analysis of non-Gaussian response histories. The
difficulty which remains for the overall problem is a suitable expression for the
peak trough transition matrix.

As shown in Equation 7.2, finite order moments of the signal are never enough
to represent the probability distribution for any general class of signal. Some

assumption or approximation must be made in any practical computation. On

109



the other hand, as shown in the Rice’s formula for peak rate computation ({40]),
the joint distribution of the process and its first and second order differential
processes must be known. This simply means that, the number of peaks in unit
time of the process is a function of the process moments — all the moments
in general non-Gaussian situations. The conclusion therefore is that, there is no
universal solution for non-Gaussian stochastic processes.

It is quite easy to reach this conclusion using another argument. If all the
possible probability distributions of the stochastic processes are grouped into
one set, the Gaussian distribution is just one point in this set. The so-called
non-Gaussian distribution is the whole probability distribution set including the
Gaussian distribution. In this sense, the so-called non-Gaussian stochastic process
is a very wide class of distributions. A universal solution is obviously impossible.
There is a simple analogy, there exists one unique solution for a linear equation
but it is impossible to have a universal solution for nonlinear equations.

If a fatigue analysis has to be performed for a non-Gaussian situation, the
response distribution should be determined first. Some mathematical work based
on Rice’s formula could be involved to develop a peak-trough and trough-peak
one step matrix. Then, the theoretical solution could be applied for the fatigue
analysis. Or alternatively, simulation is another choice. No matter what method

is used, we have to remember that, there is no universal solution.
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Chapter 8

Fatigue analysis for random
stress histories with
‘deterministic components

8.1 Background

To date, most of the methods used for random fatigue analysis are based on the
assumption that the time history is random and Gaussian. For wind turbine
blades, the stress history resulting from the action of the stochastic wind field is
definitely random. However, when gravity of the blades is considered, a strong
deterministic component is superimposed onto the stochastic component. The
response of the blades therefore contains both a deterministic component caused
by gravity and a stochastic part caused by wind speed fluctuations. Generally
speaking, this time history with a strong deterministic component included is no
longer Gaussian. Thus, the analysis methods based on the Gaussian assumption
are not valid. The assumption of randomness is also in doubt although this is
a complex issue. This is because the whole signal is random but, for instance,
~with a strong sine wave superimposed onto the signal the ensemble average is
not stationary although the temporal one is. In this case we might also say that
although the signal is stationary it is not ergodic.

From the previous analysis of the Howden data, the existence of a dominant
deterministic component in the stress time history represents an important prob-
lem for fatigue life estimation in the frequency domain. For the Howden data
edgewise signals, apart from the low and middle range rainflow cycles, the prob-
ability density functions show a peak in the high range portion, which can not
be predicted by any existing method using frequency domain techniques. When
the damage distribution is plotted, this high range peak contributes most to the
total damage as shown in Figure 8.1.

Although Madsen’s method provided a way of performing such an analysis,
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Figure 8.1: The effect of deterministic component in stress history



it is far from satisfactory. Other work has focused on this problem but failed to
obtain a feasible design tool [79]. In [79], efforts were made to modify Dirlik’s
formula (because it works well for Gaussian response histories) by increasing the
power of zin the third term, or by adding a fourth term to the formula. However,
it was found that changing the third term was not very satisfactory and the work
of adding the fourth term was not finished.

A method therefore needs to be developed to deal with these situations for a
more accurate fatigue analysis of wind turbine blades. This chapter presents a
method to predict the rainflow cycle probability distribution and peak rate for
such combined stress histories. Due to the complexity of the problem, a simulation
method is used to develop the analysis toolbox. This toolbox for spectral fatigue
analysis is presented at the end of this chapter. The methodology is quite straight

forward as shown in Figure 8.2.

input spectrum

1

Gaussian signal
simulation

deterministic
¥ component
random signals
with deterministic
component

A

rainflow counting
and modelling

y
parameters
evaluation

.

neural network
regression

!

combined signal
toolbox

Figure 8.2: The methodology used to develop a combined signal toolbox for fatigue
analysis
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8.2 Simulation of a stress history with deter-
ministic components

8.2.1 Simulation of a stationary Gaussian process

When a Fourier transform is performed on a time series, the time domain informa-
tion of the process is transformed into the frequency domain. No information has
been lost up to this stage and in fact it is quite straightforward to transform back
to the original time signal. When the power spectral density function is formed
from the transformed data, however, the phase information is lost. One spectrum
can therefore be theoretically derived from an infinite number of time signals in
so far as they contain the same amplitude constitution but different phase in-
formation. In other words, only one spectrum can be derived from a time series
but a lot of time series can be derived from one spectrum given that the phase
information is unknown. Since the PSD does not contain all the information from
the original signals, it is necessary to assume the probability distribution of the
time series. This assumption generally makes it possible to derive a sample time
series from a given spectrum.

To simulate a stationary Gaussian process for a given power spectral density
function, consider a stationary Gaussian process z(t) with zero mean and power
spectral density S(w). The process z(t) could be expressed by the form of the
spectral representation [80][81]:

z(t) = / X (w) (8.1)
where X (w) is an orthogonal random process with zero mean and

E[dX(wl)dX*(wg)] =0

E[|dX (w)[*] = S(w)dw (8.2)

The autocorrelation function R.(7) of z(t) and z(t 4+ 7) is related to the

spectral density as follows:
R.(7) = /oo G(w) cos wrdw (8.3)
0

where G(w) = 25(w) for w > 0 is the one-sided spectral density function. Since

z(t) is a real process, Equation 8.1 can be written as :

z(t) = /Ooo cos wtdU(w) + sinwtdV (w) (8.4)

where

dU (wi) = [2G(wi) Awi )]} cos i (8.5)
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dV(wk) = —[QG(wk)Awk)]l/z sin '(bk

where, ¥r(k = 1,2, - ) are independent and all have uniform distribution in
(0, 2~].
By substituting Eqn. 8.5 into Eqn. 8.4 and approximating the integral by a

summation, the simulated random process can be obtained as :

z(t) = i[ZG(wk)Awk]l/z cos(wt + ) (8.6)

k=1

Equation 8.6 actually takes a strip (Figure 8.3) as a harmonic component.
The amplitude of each component can be evaluated using the Fourier transform
formula. This is an acceptable approximation if the number of strips used for
the approximation is large enough to satisfy the condition set by the central limit
theorem. Some papers have used this technology to simulate Gaussian signals [82].
However, it will not be adopted in this thesis because with the inverse Fourier

method it is easier to guarantee the Gaussian distribution of the simulated signals.

G(w)

2G(®Aw]

A®

=
()]

Figure 8.3: Harmonic component from spectrum

In order to do this, the complex inverse Fourier transform is applied to the
series /2G(wy)e*¥*. This produces a complex random process expressed as:

N ma——— o o
Y(t) = lg[\/za(wk)e'%]ew (8.7)

The random process described by Equation 8.6 then becomes the real part of
Y(t):

z(t) = VAwRe(Y (1)) (8.8)

Using this approach, a sample random process for a given power spectral

density function can be simulated by applying an inverse FFT to the relevant
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PSD. According to the central limit theorem, the process obtained in this way
has a normal distribution as long as the phases 1 have a uniform distribution in
(0, 27]. It can also be shown that such a simulated process is ergodic irrespective
of N[83]. Thus, a relatively long process can be obtained by putting different

simulated samples together.

The procedure for simulating a Gaussian stationary time series for a given
PSD can be set out as follows:
1). Generate a series of random phases vy .

2). Perform an inverse FFT on

\ / 2G(wk )ei"’*

to produce a complex time series

N
Y(t) = ;[\/2G(wk)ei'l’k]e‘“*‘

3). Take the real part of the time series:

2(t) = /BwRe(Y (1))

4). Repeat 1) to 3) until the desired length of time signal is obtained.

8.2.2 Simulation of a stress history with a deterministic
component

Simulation of the stochastic stress history

Seventy spectral density functions were selected to simulate the stress time history
of typical wind turbine blades. These spectra were of two types, smooth and
rectangular, as shown in Figure 8.4. In this way the PSD’s used for simulation
covered a very wide range of both irregularity factor and “mean frequency” , as
shown in Table 8.1 and 8.2 with the first 14 as smooth spectra and the others as
rectangular ones. The smooth spectra have two peaks which have the analytical

form:
A;

G =
) VI+(f = £)2/Q?

Simulation of the deterministic component

The deterministic component can be modelled by a sine wave. The amplitudes of

the sine waves were selected between 20 and 100 where o is the root mean square
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Table 8.1: 70 PSD’s used in stress history simulation (1)
PSDNo.| A | fi|Qi] A fal Q2 | fc Y Tom

1 32767 | 98 | 5 0 0 0 229 1 0.9235 | 0.9073
2 23580 { 90 | 10 0 0 0 210 | 0.8684 | 0.8380
3 22543 {82 | 11 0 0 0 226 | 0.8124 | 0.7739
4 21683 | 74 | 12 0 0 0 233 | 0.7559 | 0.7092
) 20226 | 65 | 14 0 0 0 227 | 0.7004 | 0.6431
) 26333 | 40 | 5 | 18444 | 105 3 242 1 0.6674 | 0.5877
7 27019 | 30 | 5 | 20264 | 104 2 231 | 0.5984 | 0.4925
8 29204 (32| 5 [ 17522 | 108 2 237 1 0.5624 | 0.4712
9 30202 | 30 | 5 ) 15101 | 106 1 245 | 0.5350 | 0.4497
10 31527 {29 | 5 | 10404 | 114 2 237 1 0.5040 | 0.4296
11 20680 | 25} 6 | 7420 | 108 2 235 | 0.5040 | 0.4310
12 30402 {20 | 6 | 6081 | 109 2 225 | 0.4435 | 0.3650
13 31091 [ 19| 6 0 0 0 236 | 0.2992 | 0.2283
14 32741 (14| 5 0 0 0 222 | 0.2566 | 0.1804
15 31800 | 2 | 17 [ 3572 | 123 | 138 0.1674 | 0.1030
16 31500 | 2 | 17 | 3984 | 103 | 134 0.2178 | 0.1198
17 31000 | 2 | 17 | 5020 | 93 | 132 0.2785 | 0.1477
18 30000 | 2 | 17 | 5324 | 69 | 138 0.3557 | 0.1964
19 29000 § 2 | 17 | 7045 | 76 | 134 0.4286 | 0.2495
20 28000 | 2 | 17 | 11130 | 94 | 124 0.4978 | 0.3058
21 27000 | 2 | 17 | 12758 | 95 | 123 0.5482 | 0.3546
22 25000 | 2 | 17 110873 | 78 | 131 0.6170 | 0.4357
23 23000 { 2 | 17 [ 12111 | 78 | 131 0.6827 | 0.5166
24 20000 | 2 | 17 | 13008 | 74 { 132 0.7553 | 0.6184
25 18000 | 2 | 17 | 16330 | 86 | 1277 0.8159 | 0.6999
26 12000 | 2 | 17 | 13984 | 64 | 135 0.8659 | 0.8000
27 8000 | 2 | 17 | 16562 | 76 | 131 0.9292 | 0.8954
28 4000 | 2 | 17 | 30801 | 101 | 117 0.9888 | 0.9815
29 16000 | 2 | 15 | 32660 | 104 | 115 0.8829 | 0.7953
30 15850 | 2 [ 14 | 21268 | 94 | 122 0.8902 | 0.8112
31 13700 | 2 | 17 | 18290 | 87 | 126 0.8895 | 0.8168
32 11100 | 2 | 22 | 16289 | 79 | 130 0.8889 | 0.8253
33 7840 | 2 | 40 [ 15397 | 74 | 132 0.8886 | 0.8353
34 5440 | 2 | 62 | 14036 | 63 | 136 0.8862 | 0.8438
35 0 0| 0 [13492 | 49 | 138 0.8891 | 0.8573
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Table 8.2: 70 PSD’s used in stress history simulation (2)

[PSDNo. | A4, [A[Qi| 42 | o | Q:{fc] 7 | zm |
36 23400 | 2 | 11 | 30150 { 104 | 115 0.8186 | 0.6885
37 17020 | 2 1 20 | 23930 | 100 | 118 0.8164 | 0.6963
38 14000 | 2 | 30 | 23130 | 100 | 119 0.8132 | 0.7012
39 12000 | 2 | 41 |1 19140 1 95 | 123 0.8158 | 0.7150
40 11000 | 2 | 44 | 14664 { 80 | 131 0.8181 | 0.7274

T 41 9700 | 2 | 53 [ 13296 | 71 | 135 0.8189 | 0.7381
42 7900 | 2 | 48 | 12158 | 49 | 139 0.8192 | 0.7504
43 24700 | 2 | 13 | 27482 | 104 | 115 0.7458 | 0.5838
44 18000 | 2 | 24 | 22276 | 101 | 118 0.7440 | 0.5977
45 17150 | 2 | 25 | 15081 | 87 | 127 0.7511 | 0.6141
46 15900 | 2 | 25 | 12140 | 66 | 135 0.7538 | 0.6312
47 12500 | 2 | 49 | 12826 | 80 | 133 0.7495 | 0.6377
48 11900 | 2 | 42 | 11156 | 55 | 139 0.7511 | 0.6482
49 0 0{ 0 |10818 | 2 | 141 0.7507 | 0.6546
50 22480 | 2 | 19 | 23677 | 104 | 116 0.6706 | 0.4948
51 22300 1 2 [ 19 [ 17243 | 97 | 121 0.6800 | 0.5081
52 21700 | 2 | 19 | 12452 | 80 | 130 0.6853 | 0.5221
53 20900 1 2 [ 19 [ 10955 | 65 | 135 0.6863 | 0.5324
54 19700 | 2 | 19 | 10107 | 48 | 139 0.6838 | 0.5408
55 18700 [ 2 [ 19 | 9897 | 38 | 140 0.6841 | 0.5478
56 14800 | 2 | 31 | 9714 | 38 | 141 0.6816 | 0.5566
57 22000 ] 2 | 23 | 21863 | 105 | 116 0.6006 | 0.4209
58 21000 | 2 | 25 | 14392 | 96 | 123 0.6100 | 0.4364
59 19820 | 2 | 28 | 13036 | 93 | 126 0.6111 | 0.4436
60 17980 | 2 | 34 | 11147 | 86 | 131 0.6119 | 0.4561
61 18000 | 2 | 32 | 9319 | 66 | 138 0.6119 | 0.4605
62 17090 | 2 | 32 | 8605 | 44 | 142 0.6132 | 0.4711
63 16000 | 2 | 35 | 8433 | 36 | 143 0.6143 | 0.4788
64 27200 1 2 [ 17 | 13764 | 98 | 121 0.5390 | 0.3448
65 26900 | 2 | 17 |1 10222 | 84 | 129 0.5459 | 0.3554
66 26400 | 2 | 17 | 8525 | 65 | 136 0.5459 | 0.3625
67 25980 [ 2 | 17 | 8154 | 65 | 138 0.5396 | 0.3557
68 25580 | 2 | 17 | 7849 | 45 | 140 0.5458 | 0.3712
69 25000 | 2 [ 17 | 7724 | 35 | 141 0.5472 | 0.3769
70 22200 | 2 [ 20 | 7586 | 21 | 142 0.5462 | 0.3855
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Figure 8.4: Shapes of spectra used

of the time series simulated by inverse FFT. Here we assume a time series with a
deterministic component of amplitude less than 2¢ is still Gaussian; and, if the
amplitude of the deterministic component is bigger than 10c, the deterministic
component completely dominates the damage calculation. The frequency of the
sine waves were selected between 0.5H 2 and 3.0Hz. If the frequency is lower than
0.5Hz, it is assumed that the sine wave does not change the statistical property
of the stochastic signals. If the frequency is above 3.0Hz, it is assumed that there
would be too many cycles to consider other cycles produced by the stochastic
components. The cycles produced by the deterministic component should cause
most of the damage.

If all the assumptions here do not hold, it is hoped that the interpolation of the
formula will still work well. For most structures, the amplitudes and frequencies

used here should be able to cover the main area of dynamic response.

Combination of the stochastic and deterministic components

The random signal with a deterministic component can be obtained simply by
superimposing the deterministic component and the random simulated signal.
One problem involved in mixing these two signals is a suitable choice of the sine
wave phase.

When trying to combine more than two sine waves together, the phase dif-
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ferences between them might be important from the point of view of fatigue
damage. Since the phase information in the power spectral density function is
lost, the phase of the single sine wave should not be important relative to the
spectrum, given that the phase information in the spectrum is lost and this is not
important for fatigue analysis. Actually, it was found that phase is irrelevant.

Numerical checks on the influence of the phase have been performed. For each
check the rainflow cycle PDF’s and the corresponding damage of the signals with
different phases were calculated. Figure 8.5 shows one example of these rainflow
cycle PDF’s and the damages against phase with b = 5.0. The rainflow cycle
PDF’s show very little variance and the damage was within 1%. Similar checks
were performed for all the spectra. The amplitude of the sine wave added in was
selected as 60 and the frequency was selected as 0.5Hz. The phases of the sine
waves were selected as 0.0, 0.47, 0.87,1.27 and 1.67. The fatigue damages from
these simulated signals were calculated for b=5.0, 8.0, and 12.0 respectively. The
percentage error of the damages against their mean value was then calculated.
Figure 8.6 presents the average taken from the absolute values of these errors.
This clearly shows that the errors are less then 1.5%, 2.0% and 2.5% respectively
for the three S-N curves selected. It can therefore be concluded that the phases
of the sine waves added to the Gaussian signals have nearly no effect on the
distribution of rainflow cycles and the corresponding fatigue damages.

Thus, the deterministic components can be characterised by their amplitudes
and frequencies. Their phases were therefore selected randomly. With these
sine waves added into the Gaussian stationary stress histories, the stochastic
signals with a deterministic component were obtained. There were 30 sine waves
considered for each of the 70 spectra. Thus, the total number of simulated time
series is over 2000.

Theoretically, for a sine wave with amplitude A and phase ¢, given the phase
has a uniform distribution in (0, 27], the signal should have a distribution density

as :

1
TV A? — z°

Suppose this signal is added into a Gaussian signal which has a distribution

pe(z) =

density function as: .
72

Py(y) = \/2—7‘_06_;7
the joint distribution density function p(z,y) of sum z = = + y has the form as :

O

)= [ pey)a= [ pe,z-c)da

-00
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Figure 8.6: Average of absolute percentage errors of fatigue damage with different phase
Since x and y are independent random variables, we have

pix,y) =p™{x) -pyly)

/" Px{x)Py{z - X)dx

The stress histories with a deterministic components then have the distribu-

tion | P
Yoiliee J-4 y / —x"A:e v

Statistical analysis was performed on all the simulated data. The statistic
parameters of the simulated signal from PSD no. 1 combined with various sine
waves are listed in Table 8.3 as an example. As expected, the signal is Gaussian
before the deterministic components are added in. The stronger the sine wave
which is added, the stronger becomes the degree of non-normality. The statistical
parameters are irrelevant with the frequency of sine waves as the probability

density of these signals are not the function of the frequency as in Equation 8.9.
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Table 8.3: Statistical parameters for signals from PSD No.l

amp | frq | mean | rms X3 E[P] E[0] ¥ K

0.0 [ 0.5 0.03 | 49.73 30.54 3155.90 | 2950.20 | 0.515 | 0.001
1.0 {0.5] 0.02 | 156.78 | 3454.79 | 11477.10 | 4877.70 | 0.425 | -0.664
1.0 | 1.0 0.02 | 156.74 | 3436.92 | 11466.40 | 4917.30 | 0.429 | -0.663
1.0 | 1.5 0.02 | 156.73 | 3617.44 | 11465.50 | 4886.20 | 0.426 | -0.674
1.0 [ 2.0 ] 0.01 | 156.75 | 3422.72 | 11449.10 | 4884.00 | 0.427 | -0.659
1.0 | 2.5 0.00 | 156.75 | 3430.34 | 11445.60 | 4909.70 | 0.429 | -0.659
1.0 | 3.0 | 0.01 [ 156.79 | 3486.51 | 11445.40 | 4900.30 | 0.428 | -0.668
2.0 105 0.03 | 271.52 | 19447.80 | 11472.20 | 2182.60 | 0.190 | -1.184
2.0 | 1.0} 0.056 | 271.49 | 19463.22 | 11449.70 | 2167.80 | 0.189 | -1.184
2.0 [1.5(.0.03 | 271.48 | 19791.37 | 11429.30 | 2193.80 { 0.192 | -1.188
2.0 (2.0 0.01 {271.50 | 19364.40 | 11390.10 | 2204.00 | 0.194 | -1.182
2.0 | 25| 0.00 | 271.50 | 19387.120 | 11353.00 { 2215.30 | 0.195 | -1.182
2.0 {3.0| 0.00 | 271.55 | 19539.74 | 11307.80 | 2220.40 | 0.196 | -1.186
3.0 10.5]| 0.05 | 394.51 | 33732.14 | 11466.90 | 1418.20 | 0.124 | -1.346
3.0 | 1.0 | 0.07 | 394.48 | 33773.72 | 11425.50 | 1413.30 | 0.124 | -1.345
3.0 |1.5] 0.05 | 394.46 | 34105.60 | 11372.50 | 1440.70 | 0.127 | -1.348
3.0 12.0] 0.02 | 394.49 | 33612.81 | 11292.30 | 1456.50 | 0.129 | -1.345
3.0 2.5 0.00 | 394.48 | 33670.52 | 11207.80 | 1483.80 | 0.132 | -1.345
3.0 | 3.0] 0.00 | 394.53 | 33798.72 | 11091.80 | 1496.30 | 0.135 | -1.347
4.0 | 0.5 | 0.07 | 519.91 | 44665.20 [ 11462.50 | 1049.10 | 0.092 | -1.410
4.0 [1.0{ 0.09 | 519.89 | 44801.94 | 11396.40 | 1065.80 | 0.094 | -1.410
4.0 | 1.5 0.07 | 519.86 | 45136.84 | 11297.60 | 1091.40 | 0.097 | -1.411
4.0 | 2.0 0.03 | 519.89 | 44544.04 | 11166.70 | 1112.70 |{ 0.100 | -1.410
4.0 | 2.5 0.00 | 519.89 | 44705.58 | 11007.00 { 1142.90 | 0.104 | -1.410
4.0 (3.0 0.01 | 519.94 | 44805.47 | 10794.00 | 1166.00 | 0.108 | -1.411
5.0 [ 0.5 0.08 | 646.33 | 53271.66 | 11450.90 | 838.90 | 0.073 | -1.441
5.0 [ 1.0 | 0.11 | 646.31 | 53387.67 | 11352.20 | 855.70 | 0.075 | -1.442
50 | 1.5} 0.09 |646.28 | 53729.53 | 11202.80 | 888.20 | 0.079 | -1.442
5.0 2.0 0.03 | 646.31 | 53098.50 | 11008.20-| 913.10 | 0.083 | -1.441
5.0 | 2.5 0.00 | 646.31 | 53242.54 | 10758.80 | 946.10 | 0.088 | -1.441
5.0 [ 3.0 0.01 | 646.36 { 53385.98 | 10432.30 { 994.10 ([ 0.095 | -1.442
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8.3 Modelling the rainflow range probability
density

8.3.1 Gaussian time history

When rainflow counting was applied to the 70 Gaussian stochastic time histo-
ries (no deterministic component), 70 rainflow cycle PDF’s were derived. These
PDF’s are designed to cover a wide range of Gaussian signals and were described
by their irregularity factor and mean frequency. A typical probability density

curve is shown as in Figure 8.7.
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Rainflow range (*20)
Figure 8.7: Rainflow cycle probability density function from spectrum 1

This type of function can be modelled using three expressions as follows:

frr(z) = C’léeé + Cgc—xl—ie'aé:" + Cae"% (8.10)
where, C;, C,, C3, 7 and a are all parameters to be decided and C;+C2+C3 = 1.0,
z = §/20 is taken as the normalised cycle range. This model was intended to
express the lower, middle and high range portions of the rainflow cycle PDF’s by
using exponential, Rayleigh and standard Rayleigh distributions.

This model was actually the one used by Dirlik [13]. However, since the
model for a random time history combined with a deterministic component is
quite different from the one above, a new model was required and this is covered
in the next section. The model for Gaussian response histories was still employed
to improve accuracy when the deterministic component is very small. This also

makes the fatigue analysis toolbox complete.
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8.3.2 Random time history with a deterministic compo-
nent

Rainflow cycle counting was performed on all the combined signals simulated in
the previous section. A typical one is shown in Figure 8.8. Like the model for
Gaussian response histories, these curves apparently have three portions. The

model which was eventually developed is as follows:

2—p)2

fre(z) = Cljl;eé + 025136_24:!. +Cs \/21—7rﬁ6_£2_‘;§L (8.11)

where, ¢, C;, C3, 7, a, 4 and 3 are all parameters to be decided and C,+C,+C3 =
1.0.

This model is intended to express the low range part by a exponential function,
the middle range part by a Rayleigh function and the high range part by a
Gaussian distribution function as shown in Figure 8.8. Parameters 7, a, and
B are the shape control parameters for the three probability density functions
employed. C}, C,; and Cj control the distribution of the probability among the
three range portions. p is determined by the location of the peak in the PDF

curve caused by the deterministic component.

Exponential Gaussian

Figure 8.8: Model for the rainflow cycle probability density function

125



8.4 Parameter evaluation

8.4.1 Least square technique

The procedure of representing data in functional form and then selecting param-
eter values in the function to best fit the data is called curve fitting. The form
of the function used is generally determined by the physical process governing
the data or by a graphical observation of the data. The process of selecting the
parameters in the function to which a best fit is to be applied is called parameter
evaluation [84] [85] [86].

The method of least squares is the most widely used curve fitting procedure.
At least in the case of pure curve fitting, where the coefficients have no physical
significance. In the general case, assume that there are n independent obser-
vations v;, ¥z, ..., ¥» obtained for various values z;, z3, ..., ,, and a model
y = f(z,0) is set for fitting the data, the problem reduces to the suitable selection
of the parameter 6.

Firstly, the residuals can be defined as

ei(0) = yi — f(x:,0) (8.12)

The idea of least squares is to select the parameter 6 to minimise the least

square error (sum of squares of the residuals),i.e.,

n

8(0) = Y- () = (0 - £(z:,0))" (8.13)

i=1 i=1
The difficulty here is deciding how to use nonlinear programming techniques

to perform the optimisation in order to search for §* values which minimise ®(8).
Many methods, such as the simplex, direction search, or even direct search can
be employed. For the problem with constraints, the direction search method is
most widely used. The procedure is to perform an iteration 6;4; < 0; along a
suitable direct v from the initial guess 6;. The procedure is as follow

1. Set : = 1, an initial guess 6; must be provided externally.

2. Determine a vector v; in the direction of the proposed ith step.

3. Determine a scalar p; such that the step
O; = piv; (8'14)

is acceptable. That is, take
9,'+1 =0; + pivi (815)
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whilst ensuring that p; is chosen so that the following equation holds
Bip1 < B; (8.16)

4. Test whether the termination criterion is met. If not, increase i by one and
return to step 2. If yes, accept 6;4; as the value of §*.

There are different methods for choosing the step direction v; and step size p;.
The most widely used method for determining the step direction is the so-called
gradient method which uses the direction which forms a greater than 90° angle

with the gradient ¢;. The step direction thus chosen is expressed as
vi = —Riqi

Newton’s method, used in nonlinear programming, is to take R; as the Hessian
matrix, which is the matrix of the second partial derivatives of the objective

function, i.e., ,
0‘d
H500) = 3550,

For the least square problem, this special form of the objective function has

(8.17)

certain advantages. From Equation 8.13, the gradient vector and the Hessian

matrix are expressed by :

n g
6= gg =2 e f’ (8.18)
i=1
0 5 S 3k 0fk
Hii = go98; = ~2 X 5508, Z 96, 96, (8.19)

In the Gauss method, the first term is neglected, and N is used in place of H,
where N is defined by

0fk0fk
tj = 22 (90 30 (8'20)

The Gauss method can be taken as an approximation of Newton’s method.
Since the residuals are, hopefully, small, this provides some justification for re-
garding N as a good approximation of H, particularly near the minimum. How-
ever, when a poor initial guess is given, the method may fail to converge. In such
a situation an improvement should be obtained by providing suitable constraints.

Some situations need constraints because some physical parameters can not
take arbitrary values. The constraints are usually provided by using penalty
functions, the projection method or a variable transformation. When penalty

functions are adopted, the objective functions (and the corresponding gradient
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vector and Hessian matrix) are modified such that the values of the parameters
will not leave the feasible region.

For the inequality constraint
h;(6) >0
the penalty function can be taken as

(;(0) = ;/h;(6)

where a; is a small positive constant called a penalty factor. The objective
function can then be modified by adding the penalty functions to it for all the

constraints.

o'(6) = ®(9) + Za, /h;(6) (8.21)

Let 6t and 6* be the points at which ®' and @ attain their respective minima

within the feasible region. It can be proven that

lim 6t = 6" (8.22)

a;—0
The iteration scheme for an unconstrained §* remains nearly unchanged except
that another iteration of a; has to be added for the limiting condition of Equation
8.22.

8.4.2 Parameter evaluation for rainflow cycle models

By applying a rainflow cycle count to each simulated time series, the probability
density functions prp(z) of rainflow cycles are derived. Then by using the model
function frr(z,0) established in the previous section, a least square technique
was employed to evaluate the parameters in the model equation.

The residuals were defined as :
=2 €= Z rr(zx) — frR(ze,0)]’ (8.23)
k=1 k=1
where n is the number of points used to discretise the curve.

Optimisation of model for purely random time histories

The model equation which was used is expressed in Equation 8.10. The parame-

ters to be evaluated were § = [C; C; Cs3 7 « ]T as explained in Section 8.3.1.
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The full mathematical expression for nonlinear programming is as follows:

min E(0) (8.24)
s.t.
00 L1.0
00<C; <10
00053510
Ci+C;+C3=1.0
T>0.0
a>0.0

Optimisation of model for random time history with a deterministic

component

The model equation is expressed as in Equation 8.11. The parameters to be

evaluated were § = [C, C; C3 7  p f]7.

The full mathematical expression for nonlinear programming is as follows:

min E(6) (8.25)
s.t.
00<C1£1.0
00<C; <10
00<C5<1.0
Ci+C;+C3=1.0
7>0.0
a>0.0
B>0.0
w>0.0

The gradient vector and the Hessian matrix were calculated using the equation

presented in Section &8.4.1.
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Accuracy improvement of solution

There are two problems which must be considered in the calculation procedure.

The first one is the possibility of convergence to a local stationery point. To
avoid this,

a). Different initial values were given for each case and the computation was
repeated to check for consistency of solution.

b). The program was designed to be able to jump out from a stationery point
and then be terminated “manually”.

c). An “eye-test” was used after each calculation was performed in order to
ensure éonvergence to the global stationery point.

The second possible problem is that a relatively higher accuracy is needed for
the higher range cycles. To achieve this, the computation is actually performed
on a weighted objective function which incorporates the fatigue damage potential
of each cycle range. This is achieved by applying a weight function £(z) to the
rainflow cycle PDF’s calculated from the time series. That is, instead of fitting
frr(z,9) to prr(z) as in Equation 8.23, the computation was performed by fitting
é(z)frr(z,0) to &(2)prr(z). The residual was then expressed as:

E(6) = kz e = kz €(2)lpra(z) — far(z)) (8.26)

This modifies the gradient vector and the Hessian matrix into the following

form: SE . of
L= 2 S : 2 't}
qt 60, 2:,-:16 (Z)CJ aa' (8'27)
- Ofk 0 fk
b e m— 2 t— ——
N;j = 2;;:1{ (2) 39, 99 (8.28)

Thus, once £%(z) is selected it can be used as a multiplier to the gradient vector
and Hessian matrix. {(z) was chosen as 22 for most computation. This sometimes
makes the lower range portion of the probability density function have a poor fit.
However, from the point of view of fatigue, the damage potential of each cycle is
proportional to the power b of its range. Furthermore, if the cycle range is quite
high and its probability is too small for the program to detect (because missing
it causes very little error), the weighted fitting will avoid missing such cycles .

Figure 8.9 shows a typical rainflow cycle PDF and damage density from one
of the time histories using both weighted and unweighted fitting. The weight
function was selected here as £?(z) = z. Although there is so little difference

between the PDF’s which can hardly be detected, the fatigue damage distribution
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caused by the PDF’s are quite different. The damage is very similar in the low
range part but for the medium and higher ranges, weighted fitting gives a much
closer fit. A higher powered weight function would have provided an even better

fit to the high range part of the damage distribution.

Parameters for Gaussian signals (no deterministic component)

The weight function used to curve fit the 70 Gaussian cases is £é2(z) = z. This
is based on the consideration that, the high range cycle part of the PDF should
be given more attention, but on the other hand, some emphasis should remain
on keeping the PDF shape generally correct. The 70 sets of fitted parameters for
the 70 Gaussian signals are listed in Table 8.4 and 8.5. The generally used “cost”
(or residual) is not listed in this table, but instead, the fatigue damage rates of
the fitted model curve compared with the damage counted directly from the time
signals are listed. The “D,_5" listed here are the damage values obtained when
inverse S-N curve slope b = 5.0 is used while “D;—-g” are the values when b = 8.0
is used. Most of them meet well with the time history curves from the point of
view of fatigue. The average absolute error is 7% for b = 5.0 and 18% for b = 8.0.
The maximum error is 35% for b = 5.0 and 3% for b = 8.0. When the PDF’s
from both the time series and the curve fitting are plotted together, it was noted
that most of them meet quite well. Figure 8.10 shows the curve fitting results for
spectrum 1. Figure 8.10(a) shows the rainflow cycle PDF’s from the simulated
time history and curve fitting. Figure 8.10(b) shows the correspondent damage

density of the cycles when b=5.0 is used.

Parameter for random signals with deterministic components (the com-

~bined case)

2100 sets of fitted data were used for the simulated random signals incorporating
deterministic components. The fitting was performed using the weight function
£2(z) = 2? for most cases. For others {2(z) = z was used. It is impossible to list
all this data in the thesis although it can be provided on floppy disk. However,
in order to examine quality of the fitting, the ratios of the damage rates between
the fitted PDF’s with the simulated time history are listed in Table 8.6 to Table
8.11 for b=5.0. The second row in these tables refer to the frequency of the
deterministic component. It can be seen from these tables that the fitting process
is quite successful from the point of view of fatigue damage.

Figure 8.11 shows some PDF’s from spectrum No.60 together with the cor-
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respondent functions from the time series. The high range part of the functions

have been magnified by 10 in order to have a better visualisation.

0.7 0.7
06- time series 0.6
e 0.5- -0.5

ordinary fitting

(without weight) -0.4
-0.3
cL
0.2- -0.2
weightedVitting
0.1- -0.1
0.0 0.0
0 1 2 3 4 5 6 7
cycle range (*2a)
(a), rainflow cycle probability
15.0-
-14
125 weighted fitting time series -12
5 100 ordinary fitting _ 10
(without weight)
-8
-6
5.0
-4
25 -2
0.0
0 1 2 3 4 5 6 7

cycle range (*2a)

(b). damage density with b=5.0

Figure 8.9: Curve fitting on weighted and unweighted basis
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Figure 8. 10: Curve fitting for spectrum no.
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Table 8.4: Model parameters by curve fitting with weight {2(2) =z (1)

2
)

C 1 Cz C3 T [0 3 Db=5 Db=8

0.0277 | 0.7196 | 0.2527 | 0.1103 | 0.9335 | 0.9889 | 0.9754

0.0782 | 0.6700 | 0.2518 | 0.1498 | 0.9326 | 1.0124 | 1.0332

0.0782 | 0.8796 | 0.0422 | 0.1473 | 0.9645 | 1.0665 | 1.1012

0.1779 | 0.4493 | 0.3728 | 0.1645 | 0.9711 | 1.0328 | 1.0858

0.2499 | 0.3817 | 0.3684 | 0.2006 | 1.0082 | 1.0521 | 1.1361

0.4333 | 0.5589 | 0.0078 | 0.3374 | 1.1054 | 1.1017 | 1.3162

0.7015 | 0.2800 | 0.0185 | 0.5046 | 1.2695 | 1.1321 | 1.5305

QO =] | O | W N =

0.5789 | 0.4096 | 0.0115 | 0.2994 | 1.1841 | 1.0958 | 1.3752

=]

0.5658 | 0.4326 | 0.0016 | 0.2513 | 1.1509 | 1.0596 | 1.2926

0.5355 | 0.4594 | 0.0051 | 0.1979 | 1.1131 | 1.0321 | 1.2195

—
o

p—
P

0.5054 | 0.4885 | 0.0061 | 0.1910 | 1.0811 | 1.0092 | 1.1426

0.5841 | 0.2130 { 0.2030 | 0.2065 | 1.2175 | 1.0387 | 1.2405

p—
[ 3]

0.6892 | 0.1559 | 0.1550 | 0.1743 | 1.2982 | 1.0791 | 1.3629

—
w

—
'S

0.8037 | 0.0748 | 0.1215 | 0.1788 | 1.5386 | 0.9436 | 1.3016

0.8951 | 0.0494 | 0.0555 | 0.1320 | 1.5281 | 0.9230 | 1.3319

[
(<]

—
(=]

0.9181 | 0.0388 | 0.0431 | 0.1680 | 1.6295 | 0.9383 | 1.3509

[
-3

0.9281 | 0.0342 | 0.0376 | 0.2327 | 1.6359 | 0.8565 | 1.1910

0.1599 | 0.6897 | 0.1504 | 0.2199 | 0.0763 | 0.7463 | 0.6783

[
[0 o)

0.1663 | 0.6763 | 0.1574 | 0.2912 | 0.1158 | 0.7366 | 0.6515

ey
<o

[3}
(=]

0.2868 | 0.6239 | 0.0892 | 0.5600 | 0.1566 | 0.8172 | 0.9161

0.2465 | 0.6367 | 0.1168 | 0.5746 | 0.1958 | 0.9089 | 1.0861

N
—

N
N

0.1865 | 0.6394 | 0.1741 | 0.6686 | 0.2527 | 0.9975 | 1.2484

[\]
w

0.1332 | 0.6245 | 0.2423 | 0.6464 | 0.3083 { 0.9787 | 1.1065

N
N

0.0968 | 0.5776 | 0.3256 | 0.6530 | 0.3804 | 0.9862 | 1.0649

N
(S

0.0532 | 0.5458 | 0.4010 | 0.5074 | 0.4249 | 1.0469 | 1.1262

|3
(=2]

0.0595 | 0.5422 | 0.3983 | 0.1582 | 0.6285 | 0.9298 | 0.9000

N
-3

0.0246 | 0.4999 | 0.4755 | 0.1138 | 0.6765 | 0.9879 | 1.0117

[N
oo

0.0243 | 0.5653 | 0.4104 | 1.0244 | 0.7189 | 1.0620 | 1.2500

N
©

0.0588 | 0.6460 | 0.2952 | 0.5825 | 0.5668 | 1.0412 | 1.1523

w
o

0.0428 | 0.5431 | 0.4141 | 0.5723 | 0.5378 | 1.0582 | 1.1818

W
—

0.0416 | 0.4772 | 0.4812 | 0.5313 | 0.5229 | 1.0631 | 1.1724

[
N

0.0309 | 0.4369 | 0.5323 | 0.1728 | 0.5237 | 1.0385 | 1.1268

(o]
w

0.0974 | 0.4870 | 0.4156 | 0.4155 | 0.7006 | 0.9817 | 0.9992

[I%]
g

0.1261 | 0.6367 | 0.2372 | 0.2624 | 0.8325 | 0.9554 | 0.9462

w
(S,

0.0925 | 0.9013 | 0.0062 | 0.1778 | 0.9102 | 1.0309 | 1.0463
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Table 8.5: Model parameters by curve fitting with weight fz(z) =2z (2

No. Cl Cz Ca T o Db=5 Db:s

36 |0.0593 | 0.6957 | 0.2450 | 0.5197 | 0.4787 | 1.0602 | 1.1783

37 | 0.0876 | 0.5979 | 0.3145 { 0.5371 | 0.4595 | 1.0393 | 1.1360

38 10.1165 | 0.5018 | 0.3817 | 0.5170 | 0.4295 | 1.0431 | 1.1421

39 |0.1705 | 0.3899 | 0.4396 | 0.5395 | 0.4353 | 1.0612 | 1.1961

40 | 0.1708 | 0.3266 | 0.5026 | 0.4852 | 0.4557 | 1.0433 | 1.1390

41 | 0.2411 | 0.3507 | 0.4082 | 0.5813 | 0.6280 | 1.0182 | 1.1537

42 | 0.2244 | 0.4458 | 0.3297 | 0.4386 | 0.8171 | 0.9926 | 1.0050

43 | 0.0897 { 0.7039 | 0.2064 | 0.5510 | 0.3916 | 1.0485 | 1.1740

44 | 0.1389 | 0.5662 | 0.2949 | 0.5235 | 0.3593 | 1.0257 | 1.1167

45 | 0.1447 | 0.5017 | 0.3537 | 0.5522 | 0.3545 | 1.0409 | 1.1346

46 | 0.1199 | 0.4630 | 0.4171 | 0.3694 | 0.3695 | 0.9492 | 0.9534

47 | 0.2582 | 0.2729 | 0.4689 | 0.5090 | 0.3287 | 1.0310 | 1.1042

48 | 0.2931 | 0.2459 | 0.4610 | 0.5164 | 0.4265 | 1.0022 | 1.1070

49 | 0.3993 | 0.3128 | 0.2879 | 0.6132 | 0.7332 | 1.0579 | 1.3072

50 | 0.1647 | 0.6317 | 0.2036 | 0.5378 | 0.2979 | 0.9972 | 1.1125

51 | 0.1547 | 0.6266 | 0.2186 | 0.5432 | 0.3086 | 0.9647 | 1.0121

52 | 0.1344 | 0.5950 | 0.2706 | 0.5607 | 0.3027 | 0.9426 | 0.9559

53 | 0.1993 | 0.5701 | 0.2306 | 0.7460 | 0.3297 | 1.0996 | 1.5507

54 | 0.2958 | 0.4576 | 0.2465 | 0.6642 | 0.3776 | 1.0521 | 1.3839

55 | 0.2071 | 0.4719 | 0.3210 | 0.3184 { 0.3901 | 0.8045 | 0.7362

56 | 0.3498 | 0.2542 | 0.3959 | 0.5160 | 0.3016 | 0.9745 | 1.0663

97 10.2542 | 0.5639 | 0.1819 | 0.5534 | 0.2186 | 0.9649 | 1.0999

58 | 0.2610 | 0.5325 | 0.2065 | 0.5470 | 0.2265 | 0.9349 | 1.0134

59 | 0.2974 | 0.4815 | 0.2211 | 0.5537 | 0.2215 | 0.9438 | 1.0394

60 | 0.3273 | 0.4024 | 0.2703 | 0.5442 | 0.1966 | 0.9529 | 1.0608

61 | 0.3259 | 0.3912 | 0.2829 | 0.5475 | 0.2064 | 0.9312 | 1.0522

62 | 0.3964 | 0.2947 | 0.3089 | 0.5233 | 0.2141 | 0.9095 | 0.9615

63 | 0.4268 | 0.2353 | 0.3379 | 0.5197 | 0.1891 | 0.9376 | 1.0115

64 | 0.2265 | 0.6438 | 0.1297 | 0.5015 | 0.1893 | 0.8206 | 0.8471

65 |0.2317 | 0.6420 | 0.1263 | 0.6121 | 0.1922 | 0.9189 | 1.0988

66 | 0.2686 | 0.6220 | 0.1093 | 0.6967 | 0.2021 | 1.0467 | 1.5008

67 | 0.2817 | 0.6236 | 0.0947 | 0.7131 | 0.1998 | 1.1090 | 1.7068

68 | 0.1882 | 0.6198 | 0.1919 | 0.2528 | 0.2291 | 0.6517 | 0.5620

69 | 0.2413 | 0.5593 | 0.1994 | 0.2995 | 0.2388 | 0.6527 | 0.5695

70 | 0.4650 | 0.3815 | 0.1536 | 0.5849 | 0.2043 | 0.8684 | 1.0475
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Table 8.6: Fatigue damage rates for fitted model curve with b= 5.0 (1)

PSD No. amplitude=1.0 amplitude=2.0

0511015 (20(25)30 {05 {101 15| 20
1 1.11 | 1.12 {1.11 {1.29 | 1.22 | 1.15 | 1.09 { 1.10 | 1.14 | 1.15
2 1.04 | 1.05 |1.08 {1.06 | 1.12 | 1.13 [ 1.08 | 1.10 | 1.10 | 1.11
3 1.02 {1.16 { 1.10 | 1.12 | 1.10 § 1.13 | 1.07 | 1.10 | 1.09 | 1.11
4 1.03 {1.071.12 }1.12)1.13 | 1.12 | 1.07 | 1.10 | 1.11 | 1.11
D 1.09f1.11 (112 (1.13}1.13 |1.15{1.10{1.10 { 1.11 | 1.12
6 1.0811.091.12{1.14{1.18 {1.15| 1.11 | 1.10 | 1.11 | 1.12
7 1.081.12|1.13 {1.15}1.16 | 1.15] 1.08 | 1.06 | 1.09 | 1.11
8 1.1011.11 | 1.19 {1.16 { 1.17 | 1.17 { 1.12 { 1.04 | 1.10 | 1.14
9 1.09 (1.10 1 1.03{1.15|1.14 { 1.15 | 1.11 { 1.08 { 1.09 | 1.12
10 1.05|1.11 | 1.18|1.17|1.18 | 1.18 | 1.10 | 1.06 | 1.12 | 1.14
11 1.13 {1.28 (1.28 [ 1.23 | 1.28 | 1.32 | 1.12 | 1.12 | 1.10 | 1.13
12 1.101.28 11.22{1.29{1.19|1.19|1.10 | 1.11 | 1.12 | 1.13
13 1.071.10 {1.11 | 1.17 | 1.28 | 1.38 | 1.12 | 1.00 | 1.12 | 1.12
14 1.06 {1.12 | 1.33 {1.20 1 1.16 | 1.20 | 1.11 { 1.11 | 1.10 | 1.13
15 116 1.18}1.13}11.121.13}1.36 | 1.14 | 1.11 | 1.08 | 1.09
16 1.14 {1.79 1114 |11.13 | 1.30 {1.32 | 1.17 | 1.12 | 1.11 | 1.08
17 1.21 | 1.14 { 1.26 | 1.28 | 1.49 | 1.49 | 1.15 | 1.11 | 1.09 | 1.10
18 124 {131 ({1.13|1.14 | 1.151.09 | 1.26 | 1.09 | 1.06 | 1.07
19 1.2311.22{1.16 ) 1.12 | 1.08 | 1.11 § 1.17 | 1.15 | 1.06 | 1.08
20 1.12{1.19 | 1.151.08 | 1.09 | 1.06 | 1.18 | 1.15 | 1.09 | 1.08
21 1.08 { 1.27 [ 1.17 | 1.09 | 1.09 | 1.08 | 1.19 | 1.17 | 1.11 | 1.09
22 1.04 | 1.27 | 1.21 | 1.12 | 1.11 { 1.07 | 1.17 | 1.12 | 1.12 | 1.08
23 1.04 ({1.191.17|1.11 | 1.10 | 1.03 | 1.15 | 1.13 | 1.11 | 1.08
24 1.0811.16 | 1.12 1.10 | 1.10 | 1.24 { 1.10 } 1.11 | 1.10 | 1.09
25 1.1011.22 |1.09|{1.10{1.08 | 1.08 | 1.11 | 1.16 | 1.10 | 1.10
26 1.07{1.0711.0411.091.06 { 1.09 | 1.10 | 1.09 | 1.08 | 1.09
27 1.02 { 1.08 { 1.00 | 1.10 | 1.09 | 1.08 | 1.08 | 1.09 | 1.10 | 1.11
28 0.94 10.99|0.98 { 0.97 { 0.99 | 1.00 | 1.13 | 1.06 | 1.20 | 1.15
29 1.05 111 11.23({0.891.06 {1.11 |1.17|1.14 |1.12 | 1.11
30 1.09 ({1.10 | 1.12 | 1.14 | 1.21 | 1.09 { 1.15 | 1.13 | 1.11 | 1.11
31 1.11 1111 }1.09{1.11{1.09 {1.23 | 1.13 [ 1.11 | 1.14 | 1.10
32 1.07 {1.11 { 1.09 | 1.08 | 1.09 { 1.11 | 1.10 | 1.11 | 1.13 | 1.11
33 1.05{1.09 {1.09 | 1.08 | 1.09 | 1.10 | 1.08 { 1.09 | 1.12 | 1.11
34 1.02(1.14 (1.10 { 1.10 | 1.26 | 1.28 | 1.12 | 1.09 | 1.20 | 1.11
35 1.01 | 1.08 (1.19{1.22 |1.26 { 1.26 | 1.11 [ 1.09 | 1.09 | 1.10
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Table 8.7: Fatigue damage rates for fitted model curve with b=5.0 (2)

PSD No. amplitude=3.0

25130 (05{10(|15]20)]25(30] 05| 1.0
1 1.14 11.09 |1 1.09 | 1.12 {1.12 { 1.16 | 1.14 | 1.12 | 1.11 | 1.15
2 1.11 | 1.14 { 1.09 | 1.16 | 1.27 { 1.11 | 1.33 { 1.17 | 1.08 | 1.08
3 1.11|1.13 | 1.08 | 1.09 { 1.08 { 1.09 | 1.10 { 1.11 | 1.07 | 1.08
4 1.13 (1.11 | 1.06 { 1.08 | 1.10 | 1.09 | 1.10 | 1.10 | 1.07 | 1.08
5 1.11 {1.13 ] 1.08 | 1.07 { 1.09 { 1.10 | 1.08 | 1.10 | 1.08 | 1.07
6 1.141.12|1.13|1.11 | 1.10 | 1.11 [ 1.11 | 1.10 | 1.04 | 1.08
7 1.2211.11 | 1.09 | 1.13 {1.14 [ 1.14 | 1.08 | 1.09 | 1.09 | 1.06
8 1.12 | 1.11 | 1.07 | 1.09 { 1.09 | 1.12 { 1.10 | 1.10 | 1.12 | 1.07
9 1.12(1.12|1.08|1.07|1.09 | 1.10 { 1.10 | 1.11 | 1.09 { 1.06
10 1.13{1.13 | 1.10 { 1.07 | 1.10 | 1.11 | 1.11 { 1.10 | 1.09 | 1.06
11 1.2511.2411.10|1.18 | 1.16 [ 1.10 | 1.19 | 1.17 | 1.07 { 1.10
12 1.1211.1211.10{1.16 | 1.09 | 1.17 { 1.08 | 1.08 | 1.09 | 1.14
13 1.1411.26 | 1.12 {1.07 { 1.10 | 1.08 | 1.18 | 1.18 | 1.11 | 1.04
14 1.1111.13 [1.101.09 { 1.08 | 1.08 | 1.07 | 1.09 | 1.10 | 1.07
15 1.07{1.06 | 1.12 | 1.08 | 1.06 | 1.06 | 1.05 | 1.05 | 1.10 | 1.06
16 1.071.14 1 1.13(1.09 | 1.06 | 1.06 | 1.05 { 1.05 | 1.09 | 1.07
17 1.0911.0911.14|1.08 | 1.06 | 1.05 | 1.04 | 1.04 | 1.10 | 1.07
18 1.06 | 1.05 | 1.28 { 1.06 | 0.96 | 1.05 | 1.04 | 1.04 | 1.21 | 1.05
19 1.07 | 1.07 | 1.13 [ 1.11 | 1.07 | 1.05 | 1.05 | 1.04 | 1.13 | 1.08
20 1.07 11.04 | 1.17[1.12 | 1.06 | 1.06 | 1.04 | 1.03 | 1.14 | 1.08
21 1.06 [ 1.06 | 1.17 | 1.13 | 1.08 | 1.07 | 1.04 | 1.29 | 1.14 | 1.08
22 1.07 | 1.05 { 1.15{ 1.10 | 1.08 | 1.05 | 1.05 { 1.04 | 1.11 | 1.08
23 1.07 | 1.06 | 1.12 } 1.09 { 1.08 | 1.06 | 1.05 | 1.05 | 1.11 | 1.09
24 1.08 {1.07 | 1.11 | 1.08 | 1.07 | 1.06 | 1.05 | 1.05 | 1.09 | 1.06
25 1.08 | 1.09 | 1.07 [ 1.10 | 1.07 | 1.07 | 1.07 | 1.07 | 1.07 | 1.08
26 1.09 11.09 | 1.09 [ 1.08 | 1.07 | 1.08 { 1.07 | 1.07 | 1.09 | 1.07
27 1.1111.09{1.08}1.09 {1.10|1.11 { 1.08 | 1.08 | 1.09 | 1.08
28 1.15(1.14 | 1.15]1.12{1.12 {1.12 ( 1.11 | 1.12 | 1.12 | 1.11
29 1.101.10 { 1.14 | 1.13 | 1.11 [ 1.08 | 1.07 { 1.07 | 1.13 | 1.11
30 1.101.10 { 1.13 | 1.10 { 1.10 | 1.08 | 1.07 | 1.07 | 1.13 | 1.08
31 1.09 1 1.10 [ 1.09 | 1.07 | 1.09 | 1.08 { 1.07 | 1.08 | 1.08 | 1.07
32 1.11 ({1.09 |1.10 | 1.10 | 1.09 | 1.07 | 1.07 | 1.08 | 1.10 | 1.08
33 1.131.12|1.07|1.08 | 1.10 | 1.09 { 1.09 | 1.08 | 1.13 | 1.08
34 1.21|1.21|1.08{1.08|1.13(1.131.101.13|1.07 | 1.03
35 1.13 { 1.13 | 1.07 | 1.07 { 1.07 { 1.09 | 1.09 | 1.10 | 1.08 | 1.06
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Table 8.8: Fatigue damage rates for fitted model curve with b = 5.0 (3)

PSD No. amplitude=4.0 amplitude=5.0

1.5 12012530} 05 (10|15 |20 25] 3.0
1 1.11 | 1.10 { 1.09 | 1.09 | 1.12 { 1.09 | 1.10 | 1.10 | 1.10 | 1.08
2 1.09 | 1.08 [ 1.08 | 1.08 | 1.08 | 1.08 | 1.08 | 1.07 | 1.08 | 1.07
3 1.07 { 1.08 | 1.08 | 1.11 | 1.07 { 1.07 | 1.06 | 1.07 | 1.08 | 1.10
4 1.07 { 1.07 { 1.09 | 1.09 | 1.06 | 1.07 | 1.08 | 1.07 | 1.08 | 1.07
5 1.07 { 1.08 | 1.07 | 1.09 | 1.07 | 1.07 | 1.06 | 1.10 | 1.07 | 1.08
6 1.08 11.0911.09 | 1.08 | 1.05 | 1.06 | 1.07 | 1.07 | 1.08 | 1.11
7 1.05 {1.08 | 1.13 [ 1.13 | 1.08 | 1.05 | 1.06 | 1.07 | 1.06 | 1.06
8 1.07 |{1.10|1.09 | 1.08 | 1.14 | 1.06 | 1.07 | 1.09 | 1.08 | 1.06
9 1.0811.091.08{1.09|1.07{1.04|1.08)1.08|1.081.08
10 1.08 {1.10 | 1.10 | 1.09 | 1.08 | 1.05 | 1.07 | 1.09 | 1.08 | 1.07
11 1.06 | 1.09 | 1.15 | 1.14 | 1.07 | 1.13 | 1.11 | 1.08 | 1.07 | 1.07
12 1.08 11.13 | 1.06 | 1.06 | 1.09 { 1.07 | 1.07 | 1.06 | 1.06 | 1.05
13 1.08 { 1.07 [ 1.08 | 1.14 | 1.06 | 1.06 | 1.07 | 1.06 | 1.07 | 1.06
14 1.06 | 1.07 | 1.05 | 1.07 | 1.08 | 1.06 | 1.06 | 1.06 | 1.04 | 1.06
15 1051104 |1.04 {104 }|1.0811.05}1.03)1.04(1.03]1.03
16 1.05 [ 1.05 | 1.04 | 1.04 | 1.08 | 1.05 | 1.04 | 1.03 | 1.02 | 1.03
17 1.05 { 1.04 { 1.03 | 1.03 | 1.08 | 1.06 | 1.04 | 1.03 | 1.02 | 1.00
18 1.04 | 1.04 {1.03 | 1.03 | 1.16 | 1.04 | 1.03 | 1.03 { 1.02 | 1.03
19 1.06 | 1.04 {1.03 | 1.03 | 1.12 | 1.07 | 1.05 | 1.03 | 1.03 | 1.03
20 1.0511.04 | 1.03 | 1.02 | 1.12 | 1.07 | 1.04 | 1.03 | 1.02 | 1.02
21 1.06 { 1.06 | 1.03 | 1.03 | 1.13 | 1.07 { 1.04 | 1.05 | 1.02 | 1.03
22 1.06 {1.04 | 1.04 | 1.03 | 1.11 | 1.08 | 1.05 | 1.03 | 1.03 | 1.03
23 1.06 | 1.04 { 1.04 { 1.04 | 1.10 { 1.08 { 1.05 | 1.03 | 1.03 | 1.03
24 1.0511.05(1.04§1.04 | 1.09]1.06 | 1.05 ] 1.04 { 1.03 | 1.03
25 1.06 [ 1.06 | 1.05 | 1.05 | 1.05 { 1.07 | 1.06 | 1.05 | 1.04 | 1.04
26 1.07 | 1.06 | 1.06 | 1.06 | 1.10 | 1.09 | 1.06 | 1.05 | 1.05 | 1.05
27 1.09 | 1.08 { 1.07 [ 1.07 | 1.08 | 1.07 | 1.07 | 1.07 | 1.06 | 1.06
28 1.09 { 1.11 { 1.09 | 1.09 | 1.12 | 1.11 | 1.09 | 1.10 | 1.09 | 1.09
29 1.08 | 1.06 | 1.05 | 1.06 | 1.11 | 1.08 | 1.07 | 1.05 | 1.05 | 1.05
30 1.09 | 1.06 | 1.06 | 1.07 | 1.12 | 1.07 | 1.08 | 1.05 | 1.05 | 1.05
31 1.08 | 1.06 | 1.06 | 1.07 | 1.07 | 1.06 | 1.07 | 1.05 | 1.05 | 1.06
32 1.07 | 1.06 | 1.07 | 1.06 | 1.10 | 1.07 | 1.07 | 1.05 | 1.05 | 1.05
33 1.09 {1.09 | 1.07 | 1.07 | 1.10 | 1.06 | 1.08 | 1.07 | 1.06 | 1.06
34 1.0811.07{1.11§1.1211.01 {1.07{1.08|1.06 |1.07|1.06
35 1.06 | 1.08 | 1.08 { 1.09 | 1.07 | 1.08 | 1.06 | 1.07 | 1.07 | 1.09
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Table 8.9: Fatigue damage rates for fitted model curve with b = 5.0 (4)

PSD No. amplitude=1.0 amplitude=2.0

05|10 15(20}25]]30(05]|10(15 ]| 20
36 1.07 [ 1.15 { 1.10 { 1.06 | 1.01 | 1.07 | 1.14 | 1.12 | 1.10 | 1.09
37 1.13 1134|131 {1.06 | 1.08 | 1.17 | 1.12 { 1.12 | 1.11 | 1.08
38 1.13 1122112 {1.10 { 1.09 | 1.09 | 1.13 { 1.11 | 1.11 | 1.09
39 1.11 113112 {1.11 | 1.10 | 1.09 | 1.15 | 1.12 | 1.12 | 1.11
40 1.051.09 |1 1.10 {1.24 { 1.26 | 1.25 { 1.07 | 1.05 | 1.11 | 1.20
41 1.07 11.09 | 1.12 ({1.26 | 1.28 | 1.29 | 1.08 | 1.07 | 1.10 | 1.10
42 1.0811.081.22}11.15]1.25|1.28 | 1.07 | 1.19 | 1.10 { 1.10
43 1.09 {1.17 ) 1.28 | 1.08 { 1.08 { 1.11 | 1.12 | 1.15 | 1.11 | 1.08
44 1.07(1.1411.14 11.091.09 |1.02{1.12 | 1.11 | 1.11 | 1.09
45 1.121.14 | 1.10 { 1.10 { 1.11 | 1.10 | 1.15 | 1.11 | 1.10 | 1.09
46 1.091.15|1.10 {1.10 | 1.11 [ 1.09 | 1.11 | 1.15 | 1.09 | 1.09
47 1.101.13 | 1.14 | 1.12 | 1.12{1.13 | 1.12 | 1.11 | 1.12 | 1.09
48 1.10 {1.10 | 1.11 | 1.12 | 1.10 | 1.12 | 1.09 | 1.11 | 1.09 | 1.09
49 098 (1.101.11}1.13(1.12|1.12 | 1.08 | 1.11 | 1.09 | 1.10
50 1.04 {1.171.15)1.10 { 1.08 { 0.99 | 1.11 | 1.12 | 1.10 | 1.08
51 1.06 1 1.23 | 1.17 [ 1.09 { 1.07 | 1.13 | 1.18 | 1.11 | 1.11 | 1.08
52 1.05{1.24 1 1.16 | 1.07 | 1.09 | 1.05 | 1.18 | 1.12 | 1.10 | 1.09
53 1.03 {1.22 11.12|1.07 | 1.10 | 1.04 | 1.15 | 1.12 | 1.08 | 1.08
54 1.05 | 1.15 | 1.11 [ 1.06 | 1.08 | 1.10 | 1.13 | 1.13 | 1.09 | 1.07
55 1.10 | 1.11 | 1.08 | 1.10 | 1.10 | 1.05 { 1.12 | 1.12 | 1.07 | 1.06
56 1.09 {1.14 | 1.14 | 1.11 | 1.09 | 1.05 | 1.12 | 1.13 | 1.07 | 1.09
87 099 1119(1.22{1.11|1.08 |1.08 |1.13}1.13}1.10| 1.08
58 1.01 | 1.24 | 1.20 { 1.11 [ 1.08 { 1.05 | 1.16 | 1.13 | 1.10 | 1.09
59 1.01 | 1.18 | 1.16 {1.12 | 1.10 | 1.10 { 1.14 | 1.13 | 1.09 | 1.07
60 1.08 | 1.18 | 1.18 { 1.12 {1.09 | 1.10 { 1.13 [ 1.13 | 1.10 | 1.08
61 1.11 1 1.18 1 1.19 {1.13 | 1.09 | 1.07 | 1.14 { 1.12 } 1.11 | 1.09
62 1.11 | 1.17 | 1.16 | 1.12 { 1.11 [ 1.08 | 1.12 [ 1.13 | 1.11 | 1.09
63 1.01 (1.15 | 1.17 [ 1.12 | 1.13 | 1.06 | 1.09 | 1.12 { 1.10 | 1.09
64 1.051.25|1.19 {1.07|1.02 |1.01 [1.16 | 1.15 | 1.08 | 1.07
65 1.02 11221121 [1.08 |1.06 | 1.09 | 1.17 | 1.16 | 1.09 | 1.07
66 097 ]1.211.18|1.09 | 1.07 { 1.02 | 1.18 | 1.13 | 1.09 | 1.07
67 097 {1.21 {1.18 (1.10 | 1.05 | 1.00 { 1.18 | 1.15 | 1.08 | 1.08
68 0981124 |1.15|1.08 (1.05|1.06 | 1.13 | 1.14 | 1.09 | 1.06
69 0.981.191.14 11.10 [ 1.04 { 1.07 | 1.12 | 1.14 | 1.08 | 1.08
70 1.06 {1.21 | 1.17 | 1.11 {1.08 | 1.09 | 1.12 | 1.13 | 1.10 | 1.08
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Table 8.10: Fatigue damage rates for fitted model curve with b= 5.0 (5)

PSD No. amplitude=3.0

25 (3005 |10 |15 (20|25 )30]05]10
36 1.0711.06 | 1.16 | 1.10 { 1.07 { 1.06 | 1.06 [ 1.04 | 1.13 | 1.08
37 1.0911.20 | 1.14 { 1.08 | 1.09 | 1.07 | 1.07 | 1.06 | 1.12 | 1.07
38 1.09 | 1.09 | 1.14 | 1.09 | 1.08 | 1.07 | 1.07 [ 1.07 | 1.12 | 1.07
39 1.10 | 1.10 | 1.13 | 1.09 | 1.10 | 1.07 | 1.07 { 1.08 | 1.11 | 1.08
40 1.10 ({120 { 1.08 | 1.11 { 1.09 { 1.10 | 1.08 | 1.06 | 1.15 | 1.11
41 1.10|1.11 | 1.15]1.09{1.08|1.08|1.09 | 1.16 | 1.12 | 1.08
42 1.1911.20 | 1.08 | 1.09 [ 1.15 | 1.09 | 1.08 { 1.15 | 1.09 | 1.08
43 1.08 { 1.07 | 1.16 | 1.11 { 1.08 | 1.06 | 1.06 | 1.05 | 1.13 | 1.11
44 1.09 { 1.08 | 1.13 { 1.08 | 1.08 | 1.07 { 1.07 | 1.05 | 1.12 | 1.07
45 1.09 {1.08 | 1.14 | 1.08 | 1.08 | 1.07 | 1.08 | 1.06 | 1.12 | 1.08
46 1.10 | 1.08 | 1.15 | 1.12 | 1.08 | 1.07 | 1.07 { 1.06 | 1.10 | 1.10
47 1.10(1.10 | 1.16 | 1.11 [ 1.08 | 1.08 | 1.08 | 1.08 | 1.13 | 1.10
48 1.0811.1010.94 |1.12|1.08|1.08 |1.06 | 1.07 | 1.14 | 1.10
49 1.10 ({1.09 | 1.10 | 1.08 | 1.07 | 1.08 | 1.08 | 1.07 | 1.13 | 1.09
50 1.06 { 1.07 | 1.12{1.10 | 1.08 | 1.06 | 1.04 | 1.04 | 1.09 | 1.08
51 1.07 1 1.06 | 1.21 | 1.09 { 1.08 | 1.06 | 1.05 | 1.05 | 1.17 | 1.08
52 1.08 (1.06 [ 1.20 | 1.11 [ 1.08 [ 1.06 | 1.05 | 1.05 | 1.11 | 1.09
53 1.07 | 1.06 | 1.17 | 1.09 | 1.06 | 1.06 | 1.05 | 1.04 | 1.09 | 1.08
54 1.07 [ 1.07 | 1.15 | 1.10 [ 1.07 { 1.06 | 1.05 | 1.05 | 1.11 | 1.08
55 1.07 | 1.06 | 1.11 | 1.09 | 1.06 | 1.06 | 1.06 | 1.04 | 1.10 | 1.10
56 1.08 | 1.07 | 1.15| 1.09 | 1.08 { 1.07 | 1.07 [ 1.06 | 1.06 | 1.09
57 1.0711.071.10|1.09 | 1.08 | 1.06 | 1.06 | 1.04 | 1.10 | 1.09
58 1.07{1.07 | 1.13 | 1.10 | 1.08 | 1.07 | 1.06 | 1.05 | 1.12 | 1.09
59 1.08 [ 1.08 | 0.92 | 1.10 [ 1.07 | 1.06 | 1.05 | 1.06 | 1.15 | 1.08
60 1.08 {1.08 | 1.19 | 1.09 | 1.08 | 1.06 { 1.06 { 1.06 | 1.15 | 1.08
61 1.08 {1.08 |1.16 | 1.09 | 1.08 | 1.07 | 1.06 | 1.06 | 1.12 | 1.07
62 1.08 11.08 | 1.15} 1.10 | 1.07 | 1.07 | 1.07 | 1.06 | 1.12 | 1.10
63 1.08 {1.09 | 1.13 | 1.13 | 1.08 | 1.07 | 1.06 | 1.06 | 1.10 | 1.10
64 1.056)1.06 |1 1.18)1.11 | 1.06}1.05}|1.04 | 1.04 | 1.16 | 1.09
65 1.06 | 1.06 | 1.19 | 1.13 | 1.06 | 1.05 | 1.04 | 1.04 | 1.14 | 1.10
66 1.06 [ 1.05 | 1.19 { 1.09 | 1.07 | 1.05 | 1.04 | 1.04 | 1.14 | 1.08
67 1.06 | 1.05 | 1.21 | 1.09 | 1.06 | 1.07 | 1.04 | 1.04 | 1.18 | 1.08
68 1.05(1.04 [ 1.15|1.11 | 1.08 | 1.05 | 1.03 | 1.04 | 1.12 | 1.07
69 1.06 | 1.06 | 1.09 | 1.10 | 1.07 | 1.06 | 1.04 | 1.04 | 1.14 | 1.09
70 1.07 | 1.06 | 1.14 | 1.10 | 1.08 | 1.06 | 1.05 [ 1.04 | 1.12 | 1.08
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Table 8.11: Fatigue damage rates for fitted model curve with b = 5.0 (6)

PSD No. amplitude=4.0 amplitude=5.0

1.5 1201|2530 05|10 15| 20| 25 3.0
36 1.06 | 1.05 { 1.05 | 1.03 | 1.12 | 1.07 | 1.05 | 1.04 | 1.04 { 1.03
37 1.08 { 1.05 { 1.05 | 1.04 | 1.10 | 1.06 | 1.07 |{ 1.05 { 1.05 | 1.04
38 1.07 1 1.05 | 1.05 | 1.05 | 1.11 | 1.07 | 1.06 | 1.05 { 1.04 | 1.05
39 1.08 | 1.06 | 1.06 | 1.06 | 1.10 { 1.08 [ 1.07 | 1.06 | 1.05 | 1.05
40 1.0811.07 (1.08 |1 1.05|1.01 |1.08 | 1.06 | 1.05 | 1.06 | 1.04
41 1.07{1.07 [1.08 | 1.12 | 1.04 | 1.08 | 1.07 | 1.07 | 1.07 | 1.10
42 1.07 | 1.07 { 1.06 { 1.13 | 1.08 | 1.06 |{ 1.07 { 1.07 | 1.06 | 1.06
43 1.06 { 1.04 { 1.05 | 1.04 | 1.11 | 1.09 | 1.05 | 1.03 | 1.04 | 1.04
44 1.07 { 1.05 | 1.05 { 1.04 | 1.09 | 1.05 | 1.05 { 1.04 | 1.04 | 1.03
45 1.07 ] 1.05 [ 1.06 | 1.05 | 1.10 | 1.08 | 1.06 | 1.05 | 1.05 | 1.04
46 1.0511.06 [ 1.06 | 1.05 | 1.09 | 1.08 | 1.05 | 1.04 | 1.05 | 1.04
47 1.08 { 1.06 | 1.06 | 1.06 | 1.14 | 1.09 | 1.07 | 1.06 | 1.06 | 1.05
48 1.07 [ 1.06 [ 1.05 | 1.06 | 1.13 | 1.08 | 1.06 | 1.05 | 1.05 | 1.05
49 1.06 { 1.07 | 1.07 { 1.06 | 1.12 | 1.07 | 1.05 | 1.06 | 1.06 | 1.05
50 1.06 | 1.04 { 1.03 ] 1.03 | 1.08 | 1.07 | 1.05 | 1.03 | 1.02 | 1.03
51 107 11.04{1.04)1.04}{1.14|1.07 { 1.06 | 1.04 | 1.03 | 1.03
52 1.06 { 1.05 | 1.04 | 1.04 | 1.16 | 1.07 { 1.05 | 1.05 | 1.03 | 1.03
53 1.05 {1.05 [ 1.04 { 1.03 | 1.14 | 1.07 | 1.04 | 1.04 | 1.04 | 1.03
54 1.05 [ 1.05 {1.04 | 1.04 { 1.09 | 1.08 | 1.05 | 1.04 | 1.03 | 1.04
55 1.05 {1.05{1.04 | 1.03 | 1.09 | 1.08 | 1.05 | 1.04 | 1.04 | 1.03
56 1.07 { 1.06 { 1.06 | 1.05 | 1.05 [ 1.08 | 1.06 | 1.05 | 1.05 | 1.04
57 1.07 [ 1.05|1.04 | 1.03 { 1.12 [ 1.07 | 1.06 | 1.04 | 1.04 | 1.03
58 1.05|1.06 | 1.04 | 1.04 { 1.10 | 1.07 | 1.04 | 1.05 | 1.04 | 1.03
59 1.06 | 1.05 | 1.05 { 1.05 |{ 1.12 | 1.06 | 1.05 | 1.04 | 1.04 | 1.04
60 1.06 | 1.05 { 1.05 | 1.04 | 1.12 | 1.07 | 1.05 | 1.04 | 1.05 | 1.04
61 1.06 [ 1.05 | 1.05 | 1.05 | 1.10 [ 1.07 | 1.06 | 1.05 | 1.04 | 1.04
62 |1.061.06|1.05]1.04 |1.10 | 1.08 | 1.05 { 1.05 | 1.04 | 1.03
63 1.07 1 1.06 | 1.05 { 1.05 { 1.10 | 1.08 | 1.07 | 1.05 | 1.04 | 1.04
64 1.05{1.04 {1.03 | 1.03 | 1.13 | 1.07 | 1.04 | 1.03 | 1.02 | 1.03
65 1.051.04 | 1.03 [ 1.03 { 1.14 | 1.08 | 1.05 | 1.03 | 1.03 | 1.03
66 1.05 [ 1.04 | 1.03 | 1.03 | 1.11 | 1.07 | 1.04 | 1.03 | 1.02 | 1.02
67 1.05 | 1.051.03{1.03 |1.1410.83 | 1.04 | 1.04 | 1.02 | 1.03
68 1.06 | 1.04 { 1.03 | 1.03 { 1.11 |{ 1.07 | 1.05 | 1.03 | 1.02 | 1.02
69 1.06 { 1.05 | 1.03 | 1.03 { 1.07 { 1.07 { 1.05 | 1.05 | 1.02 | 1.03
70 1.06 [ 1.05]1.04 | 1.03 { 1.10 | 1.07 | 1.06 | 1.04 | 1.04 | 1.03
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8.5 An introduction to neural computation

8.5.1 Basic structure of neural network
Introduction

Neural computing is a new computer information processing technique quite dif-
ferent to conventional programmed computing [87] [88]. Programmed computing
approaches are based on devising an algorithm and a set of rules for solving the
problem and then correctly coding these in software. If the required algorithm
and set of rules are not known, then they must be developed — even if it is
very difficult and time consuming. Neural computing is a new approach that
does not require the algorithm to be known or any rule development. For some
types of problems such as pattern recognition or data analysis and control where
rule development is impossible or too difficult, Neural computing offers many

possibilities.

Definition of a neural network

The primary structures in neural computing is the neural network which is defined
as follows.

e DEFINITION e A neural network is a parallel, distributed information pro-
cessing structure consisting of processing elements (which can process a local
memory and can carry out localised information processing operations) inter-
connected via undirectional signal channels called connections. Each processing
element has a single output connection that.branches (“fans out”) into as many
collateral connections as desired; each carries the same signal — the processing
element output signal. The processing element output signal can be of any math-
ematical type desired. The information processing that goes on within each pro-
cessing element can be defined arbitrarily with the restriction that it must be
completely local; that is, it must depend only on the current values of the input
signals at the processing element via impinging connections and on values stored
in the processing element’s local memory.

According to this definition, neural networks are composed of processing ele-
ments and connections. It is therefore a parallel distributed information process-
ing structure in the form of directed graph, i.e., a geometrical object consisting
of a set of points (called nodes) along with a set of directed line segments (called

links between them), with the following sub-definitions and restrictions:

143



1. The nodes of the graph are called processing elements (or neurons).

2. The links of the graph are called connection. Each connection function
as an instantaneous undirectional signal-conduction path.

3. Each processing element can receive any number of incoming connections
(also called input connections).

4. Each processing element can have any number of outgoing connections,
but the signals in all these must be the same. In effect, each processing element
has a single output connection that can branch or fan out into copies to form
multiple output connections, each of which carries the same identical signal (the
processing element’s output signal).

5. Processing elements can have local memory.

6. Each processing element possesses a transfer function which uses local
memory on the input signals, thereby producing the processing element’s output
signal. In other words, the only inputs allowed to the transfer function are the
values stored in the processing element’s local memory and the current value of
the input signals in the connections received by the processing element. The
only output allowed from the transfer function is the value stored in the process-
ing element’s local memory and the processing element’s output signal. Transfer
functions can operate continuously or episodically. If they operate episodically,
there must be an input called “activate” that causes the processing element’s
transfer function to operate on the current input signal and local memory value
to produce an updated output signal (and possibly to modify the local memory
value). Continuous processing elements are always operating. The “activate” in-
put arrives via a connection from a scheduling element that is part of the network.

7. Input signals to a neural network from outside the network arrive via
connections that originate in the outside world. Outputs from the network to the
outside world are connections that leave the network.

Figure 8.12 shows a typical neural network architecture and Figure 8.13 shows
the internal details of a neural network processing element. The processing el-
ement transfer function receives, as input, the signals arriving via the incoming
connections which impinge upon the processing element, as well as values from
local memory. Given these inputs, the transfer function outputs values to be
stored in specified locations in local memory, as well as supplying the processing
element’s output signal. The output signal then branches into copies after leaving

the processing element.
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Figure 8.12: A typical neural network architecture

Input signals

X, X, Xa "activate"

Transfer
function

y 1
Local

memory

| y<— output signal

/ \—copies of output signal

Figure 8.13: A generic processing element
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Transfer functions and local memories

The transfer function receives values from the incoming connections and from
local memory. It produces outputs from the processing element and values from
storage in the local memory. Each time an active signal is sent, these operations
are performed. If the neural network is not continuously running, the processing
element ceases to function after each operation is performed.

A typical example of such a transfer function is a case where the input signal
(assumed to be a floating point number) of the connections are combined to
form a weighted sum of the form I, = wy - xi for input class k£ with xi as the
input vector and wy as the weight. A weight is a local memory variable of a
specified data type assigned to input connections. A vector which has weights as

components is known as a weight vector.

Training of a neural network

Weight plays a very important rule in most neural networks that have learning
capabilities. Learning is accomplished through a modification of the processing
element weights. There are many kinds of training methods for different types of
networks which depend on different learning laws. There can be divided into su-
pervised training, graded training , and self-organised training at the fundamental
level.

Supervised training is used in this thesis. This type of training is generally
used for the situation where the network is functioning as an input/output sys-
tem. In other words, the network receives an input vector x and emits a vector y.
Supervised training for such a system implies a regimen in which the network is
supplied with a sequence of examples (x1,y1), (X2,¥2), -, (XK, Yk ),--- Oof “desir-
able” or “correct” input/output pairs. As each input X is entered into the neural
network, the “correct output” yy is also supplied to the network. The network is
thus told precisely what it should be emitting as its output. The actual output
is then taken as an estimation of the correct output.

In many supervised training situations the (xy, yx) pairs used during training
are assumed to be examples of a fixed function f. The neural network is then
used to identify the system. It is generally of use for situations where examples
can be obtained but where the function is difficult to establish using traditional

regression methods. This type of network is introduced in the following section.
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8.5.2 Mapping Networks

The approximation of mathematical functions is an important issue in many
fields. Numerous methods have been developed to solve this problem. Essentially,
all of them can be regarded as variants of regression analysis. Neural networks
are more capable of doing this kind work. Neural networks can be viewed as a
type of regression that in some ways generalises traditional regression approaches.
One kind of multi-layer data transformation network is back propagation neural
network(BPN). This is the method used in this thesis and is introduced here.

The Structure of a back propagation network

The typical structure of a back propagation network is shown in Figure 8.14
[89]. Basically, this type of neural network has a fully interconnected multi-layer

structure. It uses supervised training,.

Figure 8.14: Layout of back propagation network

Along with the arrow direction of the connections, the first layer is the input
layer which read in the inputs xp from the input/output pairs (x1,y1), (x2,¥2),
vy (XK, Yk). The last layer, the output layer, gives the estimation results of
yp- The layers in between are the so-called hidden layers. The size of the input
and output layers is determined by the function which the network is modelling.
The number of hidden layers and the sizes for each layer, however, can in theory
be arbitrary. According to the Kolmogorov’s mapping neural network existence
theorem [87] (p122), any continuous function of n variables can be implemented
exactly by a three layer network with (2n+1) processing elements in the hidden

layer. This theorem provides some guidance for the selection of the hidden layer

147



size.

The work of a back propagation network can be divided into a forward pass
and a backward pass. The backward pass only occurs on training trials. This for-
ward and backward pass form a loop during the network training which is used
to search for a set of weights which gives the network its optimum performance.
Mathematically, the optimum performance means the best estimation of the de-
sired output (or least error between them). After the training process, this set
of weights can be regarded as one special regression of the function relationship
between the input and output. The trained network can then be used for further

computation using an input for which the desired output is not known.

Forward pass

The inputs for the processing elements in the input layer are determined by the
system input. For any processing elements in the hidden layer and output layer,

the input from the connections are taken as the weighted sum, that is,
nety,; = ij,-opg (8.29)
]

The output from each processing element j can be assumed as any differen-

tiable monotonic function,

0pj = fi(nety;) (8.30)
From the output layer, the estimation for function value yp can then be
obtained :
net,, = ZijOPJ' (8.31)
i
opi = f2(net3) (8.32)

The superscript “0” here refers to the quantities on the output layer.

Backward propagation

During the network training, the mean square error of the output vector is taken
as an objective function which need to be minimised. The error can be defined

as 6px = (Ypk — 0pk). The total error of the output layer is
1
Ep = 5 ; 6;2)k (8-33)

The value % here is used to make the calculation process easier. The values of

the weights can be adjusted such that the total error reduces. This can be done
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by using a gradient direction search, such as

0E, ofR 5net;k

= — - — 8.34
Buwg; (o = 0t) Bnet?, dwy; (8:34)
As aaL:,?i = 0p;, the negative gradient direction is:
OE, o v
- aw,aj = (ypk - opk)fk (netpk)opj (8'35)
j
If the sigmoid function is used, then
0 1
f(netjk) = I—m (836)
and
f = pfR(1 = f2) = nogi(1 — op) (8.37)
where 4 is a constant.
By defining a step size  and a quantity as
6o = (ypk = 0pk) f¥ (mety,) (8.38)
The weights can be upgraded as

Following on further, the weights of the hidden layers can be upgraded by
changing 6, to
&; = f} (nety;) Z;: OpkWi; (8.40)

~ Considerations in network training

The back propagation algorithm described previously provides a way of network
training. Implementation of the algorithm is, in many ways, a more difficult
problem. Since the weights are generally assigned as random initial values at the
beginning of the training loop, the problem which arises is how can the network
find a global minimum in the error space. As shown in Figure 8.15, it is quite
possible for a network to cease its training loop at a local stationery point.

This is a general problem for nonlinear programming and there is no universal
panacea. Four steps have been taken to avoid such problems arising.

1). Different initial values for the weight and bias were used,;

2). Different size of network were tested;
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F(w)

Figure 8.15: A typical error surface.

3). The iteration was allows to jump out from a stationary point and search
in a wider area;

4). An “eye test” (plot checking) was used to compare the results with the
time domain analysis results.

Some results have also been compared with least square fitted results.

8.6 The use of neural networks for fatigue anal-
ysis

8.6.1 Toolbox for fatigue analysis of random stress his-
tories with deterministic component

The fatigue damage for a situation where a stochastic stress history is combined
with a deterministic components can be calculated using model Equation 8.11.
The problem which remains is how should the model parameters be calculated
using the frequency domain and deterministic component information instead of
following the whole procedure. This is the task of regression. The spectrum can
be well characterised by its mean frequency f,, and its irregularity factor v and
the deterministic component can be described by its amplitude A and frequency
fa.

Thus, the task remaining is the determination of the relationship between the

following parameters:
o mput: fn, v, A, fu
o output: Cy, Cy, Cs, 7, a, B, u, E[P]
Once the model parameters have been evaluated by employing least square
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techniques, examples between model parameters and the stress history informa-
tion are obtained. The relationship could then be established using traditional
regression methods. However, for the multi-input situation and with such a large
number of cases, regression is not an easy task. Moreover, regression analysis
has to be performed for each output parameter. The neural network approach is
therefore a much better alternative in this situation.

A four-layer network was established for each of the output parameters. These
subnets worked together just like one network in order to perform the calculation.
The network training, of course, is performed on each subnetwork. As mentioned
earlier during the network training, the network was allowed to “get off” the
local stationery point. This made the search for the global minimum possible but
results in a longer training time.

Some networks converged monotonically, while others had to be pulled out
from local stationary points. Figure 8.16 shows the convergence path of y, o, C;
and E[P] for a typical network.

Some rainflow cycle PDF’s calculated using this neural network toolbox are
plotted in Figure 8.17, together with the time domain analysis results. As with
least square fitting, the higher range part is magnified by 10 and plotted on the
same graph for visualisation purpose.

The residual of the neural network output with the training data was not
checked directly. Again, they were checked using a comparison of the fatigue
damage rates with the time domain results. For an S-N curve slope 5=35.0, the
results are listed in Table 8.14 to Table 8.19. The values in the second row of
these tables refer to the frequency of the deterministic component. These tables
show that the neural network toolbox can give results which meet quite well with

the time domain solution.

8.6.2 Toolbox of fatigue design for Gaussian stress his-
tories

A regression analysis on the model parameters evaluated by least square curve
fitting in the previous section leads to a formula for the PDF when the stress
responses are assumed to be Gaussian. However, this regression analysis has been
performed using multilayer neural network in order to maintain consistency with
the toolbox developed for the situation when the random signals are combined
with one significant deterministic component. As stated before, such a neural

network approach needs no model for the output data.
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The input and output layer of the network are:

o nput : fn, 7
o output : Cy, Cy Ci3, 7, «

The peak rate is calculated as E[P] = y/m4/m. as the signal is assumed as
Gaussian.

Four three layer networks were established for this problem. They were sep-
arately intended to perform a regression analysis for C;, C3, 7, and . C; is
calcula,tfzd as Cy = 1.0 — C; — C5. Once training of the networks was completed,
the data was used together with the combined signal results to form a complete
toolbox for doing fatigue analysis. The convergence paths for the four parameters
are shown in Figure 8.18.

Figure 8.19 shows the rainflow cycle PDF’s from both the time domain anal-
ysis and neural network computation, together with the corresponding damage
densities.

The model parameters obtained for the 70 sets of data used for training are
given in Tables 8.12 and 8.13 along with the damage rates when b=5.0 and 5=8.0
are used. These damage rates show that the fatigue damage calculated from the

neural network has a reasonable consistency with the time domain analysis.

8.7 Discussion

Some previous research work has been devoted to the fatigue analysis of random
response histories which contain one deterministic component [79] [53]. However,
most of them are unsatisfactory for different reason [79]. Madsen’s formula can
not be expected to work well [53] because this method simply employs a correc-
tion factor method for the random response and an interpolation using confluent
hypergeometric functions which has no theoretical background. The most impor-
tant conclusion is, that it does not make sense to interpolate the damage between
the purely stochastic and deterministic component.

A neural network toolbox for the fatigue analysis of a random response history
which contains one deterministic component is developed in this chapter. A
typical application of this toolbox is the fatigue analysis of wind turbine blades.
Analysis of the monitored response histories in the previous chapters has shown

that the existence of deterministic component cause serious problem when other
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methods are employed in the analysis. The toolbox developed in this chapter is
of particular significance for such structures.

Because of the complexity involved in developing a theoretical solution for the
combined signal problem, a numerical simulation method was adopted instead to
solve this problem. As seen from the output results of the neural network toolbox
developed in this chapter, the simulation worked successfully. This means that
both the parameter evaluation and neural network training were successful.

In principle, the toolbox can be extended to the situation where there are
more than one deterministic components existing in the response history. The
procedure would be the same as in this chapter but more attention should be
paid to the selection of models and parameters. The relative phase between the

sine wave would also be important for such situations.
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Table 8.12: Model parameters calculated from neural network toolbox for the 70 PSD’s
use.

Z
)

O |G =] WO —

Cl Cz 03 T « D(,=5 Db=3
0.0263 | 0.7187 | 0.2550 | 0.1111 | 0.9286 | 0.9816 | 0.9636
0.0685 | 0.6691 | 0.2623 | 0.1545 | 0.9386 | 1.0357 | 1.0640
0.0806 | 0.8795 | 0.0399 | 0.1635 | 0.9608 | 1.0537 | 1.0820
0.1781 | 0.4494 | 0.3725 | 0.1689 | 0.9743 | 1.0369 | 1.0927
0.2506 | 0.3822 | 0.3672 | 0.2005 | 1.0072 | 1.0497 | 1.1327
0.4343 | 0.5594 | 0.0063 | 0.3368 | 1.1072 | 1.1047 | 1.3232
0.7022 | 0.2785 | 0.0192 | 0.4992 | 1.2739 | 1.1258 | 1.5224
0.5744 | 0.4145 | 0.0112 | 0.3008 | 1.1835 | 1.1071 | 1.3888
0.5692 | 0.4292 | 0.0017 | 0.2520 | 1.1560 | 1.0625 | 1.3031
0.5226 | 0.4748 | 0.0027 | 0.1959 | 1.0997 | 1.0317 | 1.2019
0.5069 | 0.4867 | 0.0064 | 0.1901 | 1.0919 | 1.0305 | 1.1816
0.5802 | 0.2176 | 0.2022 | 0.2106 | 1.2180 | 1.0524 | 1.2590
0.6888 | 0.1560 | 0.1553 | 0.1739 | 1.2995 | 1.0819 | 1.3677
0.8029 | 0.0753 | 0.1218 | 0.1770 | 1.5392 | 0.9492 | 1.3107
0.8942 | 0.0495 | 0.0563 { 0.1330 | 1.5286 | 0.9298 | 1.3409
0.9196 | 0.0379 | 0.0425 { 0.1709 | 1.6305 | 0.9200 | 1.3236
0.9258 | 0.0355 | 0.0386 | 0.2310 | 1.6361 | 0.8848 | 1.2337
0.9851 | 0.0073 | 0.0077 | 0.3533 | 1.6786 | 0.3240 | 0.3289
0.2324 | 0.6420 | 0.1256 | 0.3651 | 0.1118 | 0.6239 | 0.5453
0.2858 | 0.6246 | 0.0896 | 0.5572 | 0.1712 | 0.8171 | 0.9030
0.2337 | 0.6418 | 0.1245 | 0.5490 | 0.2015 | 0.8682 | 0.9642
0.1761 | 0.6388 | 0.1851 | 0.6640 | 0.2360 | 0.9939 | 1.2231
0.1326 | 0.6143 | 0.2531 | 0.6294 | 0.3135 | 0.9915 | 1.0915
0.1163 | 0.5404 | 0.3432 | 0.6528 | 0.3630 | 1.0303 | 1.1468
0.1107 | 0.5287 | 0.3606 | 0.5300 | 0.4397 | 0.9998 | 1.0865
0.0645 | 0.5282 | 0.4073 | 0.1630 | 0.6321 | 0.9412 | 0.9161
0.0362 | 0.4899 | 0.4739 | 0.1150 | 0.6991 | 1.0035 | 1.0307
0.0306 | 0.5563 | 0.4130 | 1.0278 | 0.7282 | 1.0938 | 1.3307
0.0741 | 0.6281 | 0.2978 | 0.5843 | 0.5643 | 1.0463 | 1.1802
0.0649 | 0.5318 | 0.4032 | 0.5747 | 0.5525 | 1.0624 | 1.1959
0.0504 | 0.4605 | 0.4892 | 0.5414 | 0.5250 | 1.0786 | 1.1988
0.0581 | 0.4261 | 0.5158 | 0.1713 | 0.5427 | 1.0207 | 1.1023
0.0885 | 0.4739 | 0.4376 | 0.4197 | 0.6841 | 0.9894 | 1.0139
0.1475 | 0.6256 | 0.2269 | 0.2647 | 0.8426 | 0.9478 | 0.9448
0.0335 | 0.8945 | 0.0721 | 0.1797 | 0.9052 | 1.1036 | 1.1258
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Table 8.13: Model parameters calculated from neural network toolbox for the 70 PSD’s
use.

NO. C 1 Cz 03 T a Db=5 Db=3
36 |0.0772 | 0.6717 | 0.2510 | 0.5180 | 0.4767 | 1.0733 | 1.2122
37 10.0956 | 0.5771 | 0.3273 | 0.5277 | 0.4464 | 1.0499 | 1.1623
38 | 0.1139 | 0.4864 | 0.3996 | 0.5265 | 0.4288 | 1.0816 | 1.1953
39 10.1739 | 0.3619 | 0.4642 | 0.5107 | 0.4164 | 1.0772 | 1.2083
.40 | 0.1976 | 0.3238 | 0.4786 | 0.5039 | 0.4504 | 1.0148 | 1.1205
41 | 0.2531 | 0.3255 | 0.4214 | 0.5750 | 0.6277 | 1.0274 | 1.1682
42 | 0.2361 | 0.4322 | 0.3317 | 0.4541 | 0.8170 { 0.9909 | 1.0113
43 | 0.1016 | 0.6855 | 0.2129 | 0.5375 | 0.3744 | 1.0425 | 1.1876
44 1 0.1608 | 0.5457 | 0.2934 | 0.5209 | 0.3510 | 1.0217 | 1.1251
45 | 0.1330 | 0.5225 | 0.3445 | 0.5489 | 0.3640 | 1.0191 | 1.0959
46 | 0.1213 | 0.4551 | 0.4236 | 0.3607 | 0.3774 | 0.9645 | 0.9680
47 | 0.2527 | 0.2704 | 0.4769 | 0.5007 | 0.3272 | 1.0374 | 1.1060
48 10.2937 | 0.2473 | 0.4591 | 0.5092 | 0.4412 | 0.9971 | 1.0921
49 | 0.3975 | 0.3103 | 0.2922 | 0.6046 | 0.7332 | 1.0455 | 1.2710
50 | 0.1542 | 0.6294 | 0.2163 | 0.5084 | 0.3087 | 1.0116 | 1.0749
51 |0.1473 | 0.6219 | 0.2308 | 0.5161 | 0.3181 | 0.9805 | 0.9915
52 10.1239 | 0.6111 | 0.2651 | 0.5481 | 0.3164 | 0.9218 | 0.9108
53 | 0.1994 | 0.5641 | 0.2365 | 0.7335 | 0.3300 | 1.0889 | 1.5005
54 | 0.2832 | 0.4638 | 0.2530 | 0.6596 | 0.3707 | 1.0367 | 1.3381
55 | 0.2152 | 0.4669 | 0.3179 | 0.3124 | 0.3919 | 0.7974 | 0.7291
56 | 0.3431 | 0.2577 | 0.3992 | 0.5081 | 0.3024 | 0.9691 | 1.0496
57 10.2593 | 0.5618 | 0.1789 | 0.5511 | 0.2222 | 0.9562 | 1.0875
58 | 0.2611 | 0.5396 | 0.1993 | 0.5414 | 0.2225 | 0.9007 | 0.9713
59 1 0.2852 | 0.4885 | 0.2263 | 0.5527 | 0.2200 | 0.9475 | 1.0365
60 | 0.3161 { 0.4017 | 0.2822 | 0.5355 | 0.2211 | 0.9684 | 1.0533
61 | 0.3453 | 0.3772 | 0.2776 | 0.5369 | 0.2223 | 0.9153 | 1.0212
62 | 0.3648 | 0.3226 | 0.3126 | 0.5228 | 0.2153 | 0.9031 | 0.9473
63 | 0.4324 | 0.2291 | 0.3385 | 0.5128 | 0.1871 | 0.9301 | 0.9965
64 | 0.2481 | 0.6395 | 0.1125 | 0.5075 | 0.1968 | 0.7771 | 0.8209
65 | 0.2407 | 0.6417 | 0.1176 | 0.6136 | 0.2010 | 0.9082 | 1.0989
66 | 0.2484 | 0.6330 | 0.1186 | 0.6996 | 0.2038 | 1.0413 | 1.4639
67 | 0.2600 | 0.6319 | 0.1081 | 0.7082 | 0.2015 | 1.0840 | 1.6058
68 | 0.2378 | 0.5932 | 0.1690 | 0.2914 | 0.2103 | 0.5750 | 0.4966
69 | 0.2416 | 0.5536 | 0.2048 | 0.3117 | 0.2147 | 0.6600 | 0.5845
70 | 0.4637 | 0.3839 | 0.1524 | 0.5861 | 0.2272 | 0.8737 | 1.0505
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Table 8.14: Fatigue damage rates from neural toolbox b= 5.0 (1)

PSD No. amplitude=1.0 amplitude=2.0

051101115 }1201(25}30)05 (101} 15 ] 20
1 1.16 [ 1.23 | 1.23 | 1.26 | 1.28 } 1.30 | 1.16 | 1.24 | 1.22 | 1.22
2 1.05|1.13|1.13 {1.13 | 1.15 | 1.19 [ 1.07 | 1.17 | 1.15 | 1.13
3 0.99 {1.06 | 1.08 | 1.08 { 1.11 { 1.15{ 1.00 | 1.11 | 1.10 | 1.08
4 1.01 110112 {1.15}1.191.23 |1.03 |1.13 ] 1.13 | 1.12
5 1.05 {1.16 | 1.19 | 1.23 | 1.27 { 1.32 | 1.07 [ 1.18 | 1.17 | 1.18
6 1.02 1 1.07 | 1.09 {1.12 [ 1.17 | 1.21 | 1.01 | 1.08 | 1.08 | 1.10
7 0.98|1.05|1.08 {1.11 {1.13 (1.15|1.01 |1.08|1.08 | 1.08
8 1.03 |1.11|1.121.16 | 1.19|1.21 | 1.03 | 1.10 | 1.09 | 1.10
9 1.04 |1.11 | 1.14 | 1.19 1 1.23 | 1.24 | 1.05 { 1.10 | 1.10 | 1.11
10 1.06 1 1.17 1 1.20 | 1.25 | 1.29 | 1.28 | 1.08 | 1.14 | 1.13 | 1.14
11 1.1511.22 | 1.26 | 1.34 { 1.36 | 1.29 | 1.17 | 1.17 | 1.17 | 1.19
12 1.03 {1.1311.19(1.22 | 1.20 { 1.10 { 1.08 | 1.11 | 1.11 | 1.11
13 0.92{1.03|1.09{1.15(1.19|1.20 | 1.01 | 1.06 | 1.06 | 1.07
14 0971112121 11.25|1.25|1.25{1.03 |1.11 | 1.10 | 1.09
15 1.00 {1.10 | 1.12 | 1.15 | 1.12 { 1.08 | 0.98 | 1.03 | 1.02 | 1.03
16 0.93]1.06 |1.10 | 1.07 { 1.07 { 1.06 | 1.01 |{ 1.03 | 1.00 | 0.99
17 0.75{0.89 1 0.96 1 0.98 [ 0.98 | 0.96 | 1.02 | 1.06 | 1.01 | 0.98
18 1.1311.25}11.20 { 1.14 { 1.07 | 1.04 [ 1.20 { 1.16 | 1.07 | 1.02
19 1.09 1 1.26 | 1.18 | 1.08 | 1.03 { 0.98 | 1.21 | 1.17 | 1.07 | 1.00
20 0.86|1.04 ] 1.09 | 1.05{0.99 | 0.93 | 1.16 | 1.13 | 1.06 | 1.01
21 0.84 1099 (1.04 [1.04 1098 1096 | 1.13 | 1.14 | 1.07 { 1.04
22 0.78 10.96 | 1.04 | 1.06 [ 1.05 | 1.04 | 1.13 [ 1.20 | 1.16 | 1.11
23 0.82 10.99 | 1.05|1.07 | 1.06 | 1.06 | 1.13 [ 1.22 | 1.18 | 1.13
24 0.8511.07|1.14 [ 1.14 [ 1.14 | 1.12 | 1.14 | 1.24 | 1.20 | 1.15
25 092 (1.12(1.19|1.20 | 1.18 | 1.18 | 1.16 | 1.24 | 1.23 | 1.19
26 1.10 { 1.22 | 1.24 | 1.25 | 1.26 | 1.27 | 1.15 | 1.26 | 1.24 | 1.22
27 1.18 | 1.31 | 1.36 { 1.36 | 1.38 | 1.40 { 1.26 | 1.37 | 1.37 | 1.34
28 1.06 {1.11 | 1.11 | 1.12 | 1.13 {1.17 | 1.15{1.23 | 1.23 | 1.25
29 0.94 | 1.07 | 1.07 [ 1.06 | 1.04 [ 1.05 | 1.05 [ 1.13 | 1.11 | 1.10
30 1.16 | 1.27 | 1.27 [ 1.25 | 1.24 | 1.23 | 1.20 | 1.29 | 1.25 | 1.22
31 1.1811.29 | 1.31 | 1.29{1.29 {1.29 { 1.22 { 1.32 | 1.29 | 1.25
32 1.1511.28 1130 |1.31 | 1.30 { 1.31 { 1.20 | 1.32 | 1.29 | 1.27
33 1.10 1 1.22 | 1.25 | 1.26 | 1.28 | 1.29 | 1.18 | 1.29 | 1.27 | 1.25
34 1.06 [ 1.17 | 1.19 | 1.21 | 1.23 [ 1.25 | 1.14 { 1.25 | 1.24 | 1.23
35 1.03 | 1.12 1 1.15 [ 1.17 | 1.20 | 1.23 | 1.11 | 1.22 | 1.22 | 1.21
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Table 8.15: Fatigue damage rates from neural toolbox b = 5.0 (2)

PSD No. amplitude=3.0

25130105 (10|15 ]20]| 25|30 05]1.0
1 1.22(1.2211.08{1.20{1.20|1.19 |1.18 | 1.18 | 1.02 | 1.16
2 1.13(1.14 1 1.03 | 1.16 | 1.15 | 1.13 | 1.12 | 1.12 | 0.99 | 1.13
3 1.09 | 1.10 098 1.12}1.12|1.09 { 1.10 | 1.11 | 0.97 | 1.11
4 1.14 1115|102 (1.14 | 1.151.13 | 1.14 | 1.14 | 1.00 | 1.13
5 1.20 {1.21 | 1.07 | 1.19 | 1.18 | 1.18 | 1.18 | 1.19 | 1.05 | 1.17
6 1.11 | 1.13 { 1.02 | 1.10 ) 1.10 | 1.10 | 1.11 | 1.12 | 1.02 | 1.10
7 1.08 [ 1.08 | 1.02 | 1.09 | 1.08 | 1.07 | 1.07 | 1.07 | 1.02 | 1.08
8 1.10 {1.11 | 1.04 | 1.10 | 1.09 | 1.08 | 1.08 | 1.08 | 1.05 | 1.09
9 1.13 | 1.11 {1.07|1.10 {1.09 | 1.09 | 1.10 | 1.08 | 1.08 | 1.09
10 1.15)1.13 {110} 1.13 | 1.11 | 1.11 | 1.11 | 1.09 | 1.12 | 1.13
11 1.1711.10)1.181.15{1.13 | 1.14 | 1.12 ] 1.06 | 1.19 | 1.13
12 1.08 1 0.98 | 1.12 | 1.11 [ 1.08 | 1.08 | 1.05 [ 0.98 | 1.14 | 1.11
13 1.07 ] 1.07 { 1.10 | 1.12 { 1.08 | 1.06 | 1.05 | 1.05 | 1.10 | 1.13
14 1.07 |1 1.07 } 1.10 | 1.13 | 1.08 | 1.04 |{ 1.03 | 1.02 | 1.08 | 1.10
15 1.01 | 1.02 | 1.03 | 1.05 | 1.02 | 1.02 | 1.02 | 1.03 | 1.00 { 1.04
16 1.00 { 1.00 | 1.06 | 1.06 | 1.00 | 0.97 | 0.98 | 0.98 | 1.04 | 1.04
17 0.98 {099 | 1.09 {1.08 | 1.01 { 0.98 | 0.98 | 1.00 | 1.06 | 1.07
18 0.99]1.00|1.12{1.10 | 1.01 {0.97 ]0.96 | 0.99 | 1.05 | 1.07
19 0991098 |1.12|1.10|1.01 {0.96 | 0.96 | 0.97 | 1.04 | 1.06
20 0.9910.98|1.10|1.07 }1.0110.97 097|098} 1.03 | 1.03
21 1.00 { 1.01 | 1.10 | 1.09 | 1.03 | 1.00 | 0.99 | 1.01 | 1.04 | 1.05
22 1.07 {1.06 | 1.13 | 1.17 | 1.12 { 1.07 { 1.05 | 1.06 | 1.08 | 1.13
23 1.09{1.08 |1.11|1.18 | 1.14 | 1.10 | 1.07 | 1.07 | 1.09 | 1.15
24 112110 (1.10 |1 1.19 | 1.15{ 1.11 | 1.09 | 1.08 | 1.08 | 1.17
25 1.16 [ 1.15 [ 1.08 | 1.17 | 1.16 { 1.12 | 1.10 | 1.10 | 1.05 | 1.15
26 1.20 ({ 1.20 { 1.08 | 1.20 | 1.19 | 1.17 { 1.15 | 1.14 | 1.05 | 1.17
27 1321133 11.16 1 1.29 | 1.30 } 1.26 | 1.25 | 1.24 | 1.09 | 1.24
28 1.28 11.33 | 1.09(1.21 | 1.23 | 1.24 | 1.26 | 1.29 | 1.03 | 1.19
29 1.10 { 1.12 { 0.97 | 1.06 | 1.06 | 1.07 { 1.07 | 1.10 | 0.95 | 1.07
30 120 {1.21 {1.08 1 1.19|1.16 | 1.14 | 1.14 | 1.14 | 1.04 | 1.16
31 124124111122 1.20|1.17|1.16 | 1.16 | 1.06 | 1.18
32 125124 | 1.11 {1.23 | 1.21 | 1.19 | 1.17 [ 1.17 | 1.06 | 1.19
33 1.25 (124 ({1.10 | 1.23 {1.22 { 1.20 | 1.18 | 1.17 | 1.05 | 1.19
34 1.22 {122 1.081.21 {1.20{1.19{1.18 |1.17 | 1.03 | 1.17
35 1.2011.20 1 1.07|1.19]1.20 | 1.19 | 1.17 { 1.17 { 1.02 | 1.16

160




Table 8.16: Fatigue damage rates from neural toolbox b= 5.0 (3)

PSD No. amplitude=4.0 amplitude=5.0

1512025 (30 (05|10} 15]20]| 25| 3.0

1.16 (1.15| 1.14 | 1.13 | 1.00 | 1.15 | 1.14 { 1.12 | 1.10 | 1.09

1.12{1.10 {1.09 | 1.09 | 1.01 | 1.14 | 1.13 | 1.09 | 1.08 | 1.06

1.11 {1.08 | 1.08 | 1.08 | 1.01 | 1.15 | 1.13 | 1.08 | 1.07 | 1.06

1.13 1.11 {1.11 | 1.11 | 1.05 | 1.17 | 1.15 | 1.11 | 1.10 | 1.09

116 | 1.14 {1.14 | 1.14 | 1.09 | 1.20 | 1.17 | 1.14 | 1.12 | 1.11

1.08 11.08 | 1.08 | 1.09 1 1.06 | 1.13 | 1.09 | 1.07 | 1.06 | 1.06

1.07 {1.05|1.04 1.05{1.05|1.11|1.08 [1.04 | 1.03 | 1.02

1.06 | 1.05 | 1.05 | 1.06 | 1.08 | 1.12 | 1.07 | 1.04 | 1.03 | 1.03

1.07 | 1.06 | 1.06 | 1.06 | 1.11 { 1.12 | 1.08 | 1.05 | 1.04 | 1.03

1.09 | 1.07 [ 1.08 | 1.07 | 1.15 | 1.15 | 1.10 | 1.06 | 1.06 | 1.05

1.09 {1.11 | 1.10 | 1.06 | 1.21 | 1.15 | 1.08 | 1.08 | 1.07 | 1.04

1.07 | 1.07 | 1.06 | 1.00 | 1.17 | 1.13 | 1.07 | 1.05 | 1.03 | 0.98

1.09 { 1.06 { 1.04 | 1.04 | 1.04 | 1.08 | 1.03 | 1.00 { 0.99 | 0.98

1.05 | 1.00 | 0.99 [ 0.99 | 0.96 | 0.99 | 0.96 | 0.94 | 0.96 | 0.99

1.0511.09 | 1.08 [ 1.08 | 0.79 | 0.96 | 1.08 | 1.09 | 1.00 | 1.00

0.98 10.950.97 | 0.96 | 0.84 1 0.91 { 0.93 | 0.97 { 1.01 | 1.03

1.01 | 0.98 | 0.98 [ 0.98 | 0.95 | 0.99 | 0.96 | 0.94 | 0.94 | 0.96

1.01 {098 | 0.98 | 1.00 | 1.02 [ 1.06 | 1.02 | 1.00 | 0.99 | 1.00

0.99 10.96 | 0.97 | 0.99 | 1.01 | 1.06 | 1.02 ] 0.99 | 1.00 | 1.02

0.99 10.96 | 0.97 [ 0.99 | 0.99 | 1.03 | 1.00 | 0.98 | 0.99 | 1.02

1.00 { 0.98 { 0.98 | 1.01 | 1.00 | 1.04 | 1.00 { 0.99 | 0.99 | 1.02

1.08 {1.04 { 1.03 | 1.05 | 1.06 | 1.12 | 1.07 { 1.03 | 1.03 | 1.04

NN B DO =] =] =] =] = =] =] =] = =
R 3 = | Si o] oo| ~1| | nf x| of o} —| o] L R S| O | O

1.11 { 1.07 | 1.06 | 1.07 | 1.08 | 1.15 | 1.11 { 1.07 | 1.05 | 1.06

24 1.14 | 1.10 { 1.08 { 1.08 | 1.09 | 1.18 | 1.14 | 1.10 | 1.08 | 1.08
25 1.14 ({1.11 11.0911.09 (1.06 | 1.16 | 1.14 { 1.11 | 1.09 | 1.09
26 1.16 | 1.14 | 1.12 | 1.11 | 1.05 | 1.17 | 1.16 | 1.13 | 1.10 | 1.09
27 124 {121 |1.191.18 [ 1.06 | 1.20 | 1.20 { 1.17 | 1.15 | 1.13
28 1.21 {1.22 1 1.23 11.25 {097 | 1.13 | 1.16 { 1.17 | 1.17 | 1.18
29 1.07 | 1.07 | 1.08 | 1.10 { 0.95 [ 1.07 | 1.08 { 1.08 | 1.08 | 1.10
30 1.14 | 1.12 | 1.12 {1.12 | 1.03 | 1.15 | 1.13 | 1.11 | 1.10 | 1.10
31 1.17 114 | 1.13 | 1.13 [ 1.05 | 1.17 | 1.16 | 1.13 | 1.11 | 1.11
32 1.18 (1.15|1.14 | 1.13 {1.05 | 1.18 | 1.16 { 1.13 | 1.11 | 1.10
33 1.18 1 1.16 | 1.14 { 1.13 { 1.05 | 1.18 | 1.17 | 1.14 | 1.12 | 1.10
34 1.17 {115 1.14 | 1.13 { 1.04 | 1.17 | 1.17 | 1.14 | 1.11 | 1.10
35 117 11.15§1.13 | 1.13 (1.02 | 1.16 | 1.16 | 1.13 | 1.11 | 1.09
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Table 8.17: Fatigue damage rates from neural toolbox b= 5.0 (4)

PSD No. amplitude=1.0 amplitude=2.0

05 (10 }15|20)25|30)]05 10|15 |20

36 0.74 {0.88 | 0.94 1096 | 0.98 { 1.01 | 1.04 | 1.12 { 1.09 | 1.07

37 0.84 | 1.03 | 1.08 | 1.08 | 1.09 | 1.08 | 1.10 | 1.19 | 1.15 { 1.11

38 087(106{1.11|111]1.10{1.09]1.081.17{1.14|1.11

39 096 (1.111.151.15|1.13 ({113 ]1.09{1.16 | 1.15 | 1.13

40 1.06 | 1.16 | 1.18 [ 1.16 | 1.15 | 1.16 | 1.08 | 1.18 { 1.17 | 1.14

41 1.03 112114 ({114 | 1.15 ] 1.16 [ 1.05 | 1.15 | 1.15 | 1.14

42 098 {1.08 |1.08 | 1.10 | 1.11 | 1.13 | 1.03 | 1.15 | 1.12 | 1.12

43 0.74 1 0.88 {1 0.90 [ 0.90 { 0.91 | 0.96 | 1.04 | 1.12 | 1.09 | 1.06

44 0.76 | 0.94 { 0.99 { 1.00 | 1.01 [ 1.01 { 1.05 |{ 1.15 | 1.11 | 1.06

45 0.81 {1.00 | 1.08 | 1.09 | 1.08 { 1.08 | 1.09 | 1.18 |{ 1.15 | 1.11

46 0.87)1.081.13 |1.13 |1.12 |1.11|1.08 | 1.17 | 1.15 | 1.12

47 0.91]1.07{1.09|1.07 {1.08{1.07}1.02}1.121.11 | 1.08

48 0.95|1.08 | 1.06 {1.07 [ 1.07 } 1.09 | 1.02 | 1.13 | 1.10 | 1.08

49 0.96 | 1.04 | 1.05 ] 1.07 | 1.07 { 1.09 | 1.01 | 1.10 | 1.09 | 1.08

50 0.7210.8710.911{09010.90]0.92]1.03|1.11}1.08 |1.04

51 0.7710.92 1 0.96 { 0.95 | 0.96 | 0.98 | 1.08 | 1.15 { 1.12 | 1.07

52 0.81 {0.98 | 1.04 { 1.07 { 1.05 | 1.05 | 1.12 | 1.21 { 1.16 | 1.12

53 0.81(1.00(1.081.10|1.10 (1.08 | 1.12 {1.20 } 1.16 | 1.13

94 0.81 11.04|1.091.09|1.081.071.09(1.19]1.14|1.10

59 0.83|11.04|1.08 {1.09|1.081.06|1.071.16 | 1.12]1.09

56 0.87 (1.04 | 1.07 | 1.08 | 1.07 [ 1.09 | 1.04 | 1.13 | 1.10 | 1.09

37 0.70 { 0.88 1 0.95 | 0.96 | 0.94 | 0.93 | 1.02 | 1.11 | 1.06 | 1.02

58 0.72 {0.90 | 1.00 | 1.02 | 1.00 |{ 0.99 | 1.06 |{ 1.13 | 1.09 | 1.06

59 0721093 |1.03|1.04 |1.01|1.011.06(1.13|1.10 | 1.06

60 0.78 11.01 | 1.08 |1.07|1.04 { 1.03 | 1.07 | 1.15 | 1.11 | 1.07

61 0.81 (1.04 | 1.11 | 1.09 | 1.08 { 1.07 | 1.08 | 1.16 | 1.13 | 1.09

62 0.86 { 1.05 | 1.10 { 1.09 | 1.09 | 1.09 | 1.06 | 1.14 | 1.13 | 1.10

63 087(1.041)1.09|1.10]1.10|1.08|1.051.14|1.12|1.10

64 0.84 (098 | 1.03 | 1.00 | 0.96 | 0.93 | 1.14 | 1.14 | 1.07 | 1.01

65 0.86 { 1.03 | 1.08 | 1.06 | 1.02 | 0.99 | 1.17 | 1.18 | 1.10 | 1.05

66 089108 }1.14|1.13{1.07{1.041.19|1.20 |1.14 | 1.10

67 0.89]110(1.16 | 1.13 |1.07|1.03|1.19|1.22 | 1.15 | 1.09

68 091114116 |1.14 [ 1.09 {1.04 | 1.18 [ 1.23 | 1.15 | 1.10

69 092{1.141.16]1.16 [ 1.10 { 1.08 | 1.16 | 1.20 | 1.15 | 1.12

70 09 (1.15|1.17{1.13 {1.10 | 1.08 | 1.13 | 1.20 | 1.15 | 1.09
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Table 8.18: Fatigue damage rates from neural toolbox b = 5.0 (5)

PSD No. amplitude=3.0

25 (30]105110]15)201|25|30](05]1.0

36 1.08 (1.12 1 0.98 | 1.06 | 1.05 | 1.05 | 1.06 | 1.10 | 0.97 | 1.06

37 1.10 | 1.09 | 1.02 { 1.13 { 1.10 } 1.07 | 1.06 | 1.07 | 1.01 | 1.12

38 1.09 ({1.08 | 1.02 | 1.12 | 1.10 { 1.08 | 1.06 | 1.06 { 1.01 | 1.11

39 1.10 { 1.10 | 1.03 | 1.12 | 1.12 | 1.10 | 1.08 | 1.07 | 1.02 | 1.12

40 1.1211.12 }1.04 | 1.15 | 1.14 | 1.11 | 1.09 | 1.09 | 1.02 | 1.14

41 1.131.12 |1.02{1.14 | 1.14 | 1.12 | 1.11 | 1.10 | 1.00 | 1.13

42 1.11 {1.10 | 1.01 { 1.14 | 1.12 | 1.12 | 1.10 | 1.10 | 1.00 | 1.13

43 1.05(1.08 | 1.01 | 1.08 | 1.06 | 1.04 { 1.05 | 1.08 { 1.00 | 1.08

44 1.051.04 | 1.02 | 1.12 | 1.09 | 1.05 | 1.04 | 1.04 | 1.01 | 1.11

45 1.0811.08 |1.05(1.14 (1.12 {1.08 { 1.06 | 1.06 | 1.04 | 1.14

46 1.10 1 1.08 | 1.06 | 1.15 | 1.13 | 1.10 | 1.08 | 1.07 | 1.05 | 1.15

47 1.07)1.06 | 1.01 [1.13 | 1.11 | 1.08 | 1.07 { 1.06 | 1.01 | 1.13

48 1.07 | 1.07 | 1.02 | 1.14 | 1.11 | 1.09 | 1.08 | 1.07 | 1.02 | 1.14

49 1.07 | 1.07 | 1.01 | 1.11 | 1.11 | 1.09 |{ 1.08 | 1.08 | 1.01 | 1.12

50 1.01 {1.02 | 1.03 |1.10 | 1.06 | 1.03 | 1.02 | 1.03 | 1.02 | 1.08

51 1.0411.0511.07|1.13|1.10]|1.05)1.04 |1.051.05 {1.11

52 1.08 {1.07 | 1.11 {1.18 | 1.13 | 1.10 | 1.07 | 1.07 | 1.08 | 1.15

53 1.101.0811.101.17 | 1.13|1.10 | 1.08 | 1.07 | 1.09 | 1.15

54 1.0811.06 |1.07|1.17|1.13]1.09]1.07]1.06|1.07|1.16

%) 1.08 {1.06 | 1.07 | 1.16 | 1.12 | 1.09 | 1.08 | 1.06 | 1.06 | 1.15

56 1.0711.07|1.04 | 1.14 | 1.11 { 1.10 | 1.08 | 1.07 | 1.04 | 1.14

57 1.00 1099|104 |1.09 |1.04 | 1.01 | 1.00 | 1.01 | 1.02 | 1.07

58 1.02 | 1.02 | 1.07 {1.11 | 1.07 | 1.04 | 1.02 | 1.03 | 1.05 | 1.09

59 1.03 |1.03 |1.06 | 1.12 | 1.08 | 1.05 | 1.03 | 1.03 | 1.05 | 1.10

60 1.04 {1.03 | 1.07 | 1.13 | 1.09 | 1.06 | 1.04 | 1.03 | 1.05 | 1.11

61 1.07]1.05|1.08|1.15]1.12|1.08 | 1.06 | 1.05 | 1.06 | 1.13

62 1.08 | 1.07 } 1.07 | 1.14 | 1.12 | 1.09 { 1.07 | 1.07 { 1.06 | 1.13

63 1.09 | 1.07 | 1.07 | 1.14 | 1.12 | 1.10 | 1.08 | 1.07 | 1.06 | 1.13

64 0.99 {099 |1.09 | 1.09 { 1.03 | 0.98 | 0.97 | 0.99 | 1.03 | 1.05

65 1.03 {1.03 |1.12 | 1.12 | 1.05 | 1.01 | 1.01 | 1.02 | 1.07 | 1.08

66 1.06 {1.05 | 1.15 | 1.15 | 1.08 | 1.05 | 1.03 { 1.04 | 1.09 | 1.10

67 1.0511.04 1114 |1.16 | 1.09 | 1.04 { 1.02 | 1.03 | 1.08 | 1.11

68 1.08 (1.05 | 1.15{1.17 | 1.09 { 1.06 | 1.05 | 1.04 | 1.10 | 1.13

69 1.08 {1.07 | 1.14 | 1.16 | 1.10 | 1.07 { 1.05 | 1.06 { 1.10 | 1.13

70 1.0711.06 | 1.11 | 1.16 { 1.11 { 1.06 | 1.05 | 1.05 | 1.08 | 1.13
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Table 8.19: Fatigue damage rates from neural toolbox b= 5.0 (6)

PSD No. amplitude=4.0 amplitude=5.0

15120253005 ]10(|15]|20]| 25/ 3.0

36 1.06 | 1.07 [ 1.08 | 1.11 | 0.98 { 1.08 | 1.08 [ 1.08 | 1.09 | 1.11

37 1.10 { 1.07 | 1.06 | 1.07 | 1.02 | 1.13 | 1.11 | 1.07 | 1.07 | 1.08

38 1.10 | 1.08 | 1.06 | 1.06 | 1.02 { 1.13 | 1.11 [ 1.08 | 1.06 | 1.06

39 1.11 | 1.09 [ 1.07 | 1.07 | 1.04 { 1.14 | 1.12 [ 1.09 | 1.07 | 1.06

40 1.1311.1011.08 | 1.07|1.04 11.16 | 1.14 | 1.10 | 1.08 | 1.07

41 1.13 (1.11 | 1.09 | 1.08 | 1.03 | 1.16 | 1.14 | 1.11 | 1.09 | 1.07

42 1.11 {1.10 | 1.09 | 1.08 | 1.03 | 1.16 | 1.13 | 1.11 | 1.08 | 1.07

43 1.06 | 1.05 {1.06|1.09 | 1.01 [ 1.08 | 1.06 [ 1.06 | 1.07 | 1.10

44 1.08 [ 1.05 | 1.04 { 1.05 | 1.03 | 1.13 | 1.09 | 1.05 | 1.05 | 1.06

45 1.11 | 1.08 [ 1.06 | 1.06 | 1.06 | 1.15 | 1.12 | 1.08 | 1.06 | 1.06

46 1.13 {1.10 | 1.08 | 1.07 | 1.07 | 1.17 | 1.14 | 1.10 | 1.07 | 1.07

47 1.1111.08 { 1.07 | 1.06 | 1.05 | 1.16 | 1.13 | 1.09 | 1.07 | 1.06

48 1.11 { 1.09 | 1.07 | 1.07 | 1.06 | 1.17 | 1.13 | 1.09 | 1.07 | 1.06

49 1.11 {1.09 | 1.08 { 1.07 | 1.05 | 1.16 { 1.13 | 1.10 | 1.08 | 1.07

50 1.05 {1.02 {1.02|1.04 ]1.02]1.091.056]1.02]1.03|1.05

51 1.08 11.04 {1.031.05|1.04 |1.111.07|1.04 | 1.03 | 1.05

52 1.10 | 1.07 { 1.06 | 1.07 | 1.08 | 1.15 | 1.10 | 1.06 | 1.05 | 1.06

53 1.11 {1.08 { 1.07 | 1.07 { 1.09 | 1.16 | 1.11 | 1.08 | 1.06 | 1.07

54 1.11 { 1.08 { 1.07 | 1.06 | 1.08 | 1.17 | 1.12 | 1.08 | 1.06 | 1.06

35 1.11 | 1.08 { 1.07 [ 1.06 { 1.08 | 1.17 | 1.12 | 1.08 | 1.07 | 1.06

56 1.11 } 1.09 { 1.07 [ 1.07 | 1.07 | 1.16 | 1.12 | 1.09 | 1.06 | 1.06

87 1.02 | 1.00 { 0.99 | 1.01 | 1.00 | 1.07 | 1.03 | 1.00 | 1.00 | 1.02

58 1.0511.02{1.01(1.03|1.03{1.091.05(1.021.01|1.03

59 1.06 | 1.03 {1.02 | 1.03 | 1.04 | 1.10 | 1.06 | 1.03 | 1.01 | 1.03

60 1.0711.04 {1.03]1.031.05]1.12]1.08]1.041.02]|1.03

61 1.09 1106 | 1.04 | 1.04 | 1.06 | 1.14 | 1.09 | 1.05 | 1.03 | 1.03

62 1.10 { 1.06 | 1.05 | 1.06 | 1.07 { 1.14 | 1.11 | 1.06 | 1.04 | 1.05

63 1.10 | 1.08 [ 1.06 | 1.06 | 1.07 | 1.15 | 1.11 | 1.07 | 1.06 | 1.05

64 1.00 { 0.96 { 0.97 | 1.00 | 0.99 | 1.04 | 1.00 | 0.98 | 0.98 | 1.02

65 1.02 1 0.99 | 0.99 | 1.01 | 1.02 | 1.07 | 1.02 | 0.99 | 1.00 | 1.03

66 1.05 {1.02{1.01|1.03|1.05{1.09|1.05(1.011.01/|1.04

67 1.05{1.01 | 1.00 | 1.02 | 1.04 | 1.10 | 1.05 | 1.01 | 1.01 | 1.03

63 1.06 { 1.03 { 1.03 | 1.03 | 1.06 | 1.12 | 1.06 | 1.03 | 1.03 | 1.04

69 1.0711.04 { 1.03 { 1.05 | 1.07 | 1.12 | 1.06 | 1.04 | 1.03 | 1.05

70 1.0811.03 {1.02{1.04|1.06|1.13|1.08|1.03|1.02|1.03
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Chapter 9

Assessment of the neural
network toolbox

9.1 Introduction

Loadings on most engineering structures are generally complex. Apart from de-
terministic loading which can be described mathematically, there generally exists
some loading which can not be described this way. This is the so-called random
loading for which only statistical parameters are known. Wind turbine blades are
one such kind of structure. The loading acting on the turbine includes determin-
istic components as well as random ones. The following kinds of deterministic

loads for wind turbines generally exist[20].

e Wind shear.

Skew wind.

e Tower interference.

Mean wind.

Gravity loading.

o Centrifugal forces.

The stochastic loading, of course, results from wind turbulence.

Among all the deterministic components, the most important is undoubtably
the one caused by gravity. Its value is usually so big that all the others can be
classified into the stochastic part. There may be some situations where more
than one deterministic component is important. For this situation an extended
form of the toolbox presented in this thesis would be required. In principle, this
should pose few problems for a future work programme. It would simply require
additional parameters to be included in the training process such as the second

sine wave’s frequency and amplitude. In this case, phase would also be needed.
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9.2 Extraction of deterministic components

The bending moments on a wind turbine blade at different sections (or stress
at hot spots) are the sum of the effects caused by the wind and gravity of the
blade itself. The response to wind is a stochastic process and the response to
gravity is generally a sine wave. At the design stage, these two responses are
computed separately. Based on this information, the fatigue analysis can now
be performed using the toolbox developed in the previous chapter. In order to
assess the accuracy of this neural network toolbox, it is necessary to extract the
deterministic components from the mixed signals. This data can then be used to
test the toolbox.

As seen from the spectra shown in previous chapters, the gravity induced
response is the main deterministic component in the bending moment history.
Thus, a single sine wave situation can be considered. Let X(t) be the response
caused by the wind turbulence, and Y{(t) be the one caused by the gravity of the
blade. The monitored signal is then Z(t)=X(t)+Y(t). Together with the bending
moment histories in Howden HWP330 data files, the azimuth of the turbine blade
is also recorded, which is generally measured as shown in Figure 9.1. Thus, the

gravity induced response takes the following form:
Y(t) = Asin(¢+¢&)+ D (9.1)

where A is the amplitude of the sine wave, D is the global mean value of the

signal, ¢ is the azimuth, and ¢ is a suitable phase.

9.2.1 Band pass filter

The task of separating the sine wave from the stochastic signal is then to deter-
mine the value A and £ in Equation 9.1 given that the azimuth is known. This
can be done in many ways. The first method tried in this thesis was a band pass
filter which was intended to filter the stochastic signal but let the single sine wave
(or a very narrow band of signal around it)pass. Unfortunately, this method did
not work well because of the leakage problem with FFT calculations. This is
inevitable in discrete FFT computation, regardless of type of window used. The
sine wave becomes a narrow band signal because of this leakage. Also, there is
no guarantee that the blade is always rotating at a constant frequency during the
time period in which the data is acquired. This ruled out the possibility of using

such a band pass filter.
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Figure 9.1: Azimuth of turbine blade

9.2.2 Least square sine wave fitting

We can assume the global mean of Z(t) is zero without losing generality. The
stochastic response X(t) is also a process with zero mean. This implies that, when
the stochastic component is added into a sine wave Y(t), it still has a zero mean

if this mean value is taken around the sine wave. Thus, we have

N

Y [Z(t) = Y(t)] = 0.0

k=1

This expression shows that, for a signal such as Z(t) which contains a signif-
icant deterministic component expressed a,s'Equa,tion 9.1, a sine wave could be
best fitted to the signal to make the average around the sine wave zero. This
highlights the possibility of employing a least square technique. Although theo-
retically a zero mean can not guarantee a minimum least square error, the least
square fitting can be expected to produce acceptable results. The smaller the
stochastic component is, the better the results are likely to be obtained since the
fact of zero mean will more likely tend to meet the least square error assumption.

A better strategy for calculating the parameters of the sine wave is to apply
a band pass filter to the original signal and then apply a least square error fitting
to the filtered signal. Since the task is only to determine a few parameters, this

work can be performed on part of the signal instead of the whole.
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The mathematical model for sine wave extracting can be established as

N
min kX_:[Z(tk) - Y(tk)]2

st. A>0
D>0

All of the computation can be performed with the same program that was
used for curve fitting in the previous chapter. A band pass filter was employed
on the original signal in order to focus the fitting work towards the sinusoidal
part. Since the Howden data contains not only the moments of the blades during
rotating but some control induced loads such as braking etc., it is necessary to

extract a suitable portion of the signal which contains the sine wave.

9.2.3 Some comments about the azimuth averaging method

It is necessary to give a brief comment on the so-called “Azimuth averaging”
method [90] [79]. The idea of this method is that, if every point which is one
period of the sine wave away from the previous one is taken from the combined
signal, the average of this new series will give the value of the sine wave at this
azimuth angle. To make this true, it must be assumed that the stochastic com-
ponent is absolutely stationary and ergodic. The signal is grouped in accordance
with its azimuth angle and each group must have a zero mean. This assump-
tion proved to be too rigorous for the wind response history. The least square
fitting method here only assumes the error between the sine wave and stochastic
component is at its minimum. If the fact that the overall average around the
sine wave is zero is considered, this assumption is not difficult to satisfy. Thus,
there is reason to believe that the least square fitting method gives better results.
Accuracy can be improved by combining the analysis with a band pass filter (see

next section).

9.3 Separation of the Howden data

The azimuth information included in the Howden HWP330 data is recorded on
channel 4 for all the tapes. A typical azimuth from tape 18 is shown in Figure
9.2.

Using the azimuth information and the technique introduced in the previous sec-

tion, the sine waves in the edgewise signals of HWP330 data files were extracted
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Figure 9.2: A sample of azimuth record from HWP330 tape 18

out. In the practical computation, the phase angle was introduced in order to ad-
just the possible lag. Before using the program developed in the previous chapter,
the azimuth information was analysed in order to find the time when the rotor
began normal operation because the beginning and the end often included such
control operations as braking. In terms of fatigue analysis, only the amplitudes
and frequencies of the sine waves were important. .

Before the least-square sine wave fitting procedure was applied to the signals,
a band pass filter was used to get rid of irrelevant frequency information in order
' to improve the accuracy. As can be seen from the spectra of the signals, the
frequencies of the deterministic components in the edgewise signals are in the
range (0.5Hz to 0.6Hz. Two frequency bands were selected for the filter. The first
one is 0.2Hz to 2.0Hz and the second one 0.{/Hz to 0.8Hz. Further narrowing of
the frequency band is not used in order to avoid the possibility of leakage. In any
case it did not prove necessary because the results with different frequency bands
met very well.

The amplitudes of the sine waves existing in all the edgewise signals are listed
in Table 9.1 and 9.2 for the filtered and raw signals. The least-square sine wave
fitting method works very well for the Howden edgewise signals because the errors

between the results from filtered and raw signals are all nearly negligible. The
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other reason is that the sine waves are so dominant that the stochastic components
are simply acting like noise. But anyway, this consistency inferred the reliability

of the results.

Table 9.1: Amplitudes of deterministic components in Howden data edgewise signals

filter band tape 18 tape 26

3m 8m | 13m dm 8m 13m
raw 42.126 | 9.720 | 3.179 | 49.195 | 17.223 | 3.028

0.2-2.0(Hz) | 42.196 | 9.743 | 3.187 | 49.143 | 17.176 | 3.040

0.4-0.8(Hz) | 42.190 | 9.734 | 3.185 | 49.114 | 17.165 | 3.038

Table 9.2: Amplitudes of deterministic components in Howden data edgewise signals

filter band tape 27 tape 30

dm 8m 13m 3m 8m 13m
raw 49.027 | 17.145 | 3.011 | 49.643 | 17.191 | 3.020

0.2-2.0(Hz) | 49.156 | 17.316 | 3.065 | 50.262 | 17.463 | 3.040

0.4-0.8(Hz) | 49.328 | 17.367 | 3.074 | 50.395 | 17.512 | 3.046

The stochastic component can then be separated from the original signal by
deducting the sine wave. A sample of the stochastic component extracted from

tape 18 3m edgewise signal is shown in Figure 9.3.

9.4 Reanalysis of Howden data

Once the deterministic components were extracted from the edgewise signals,
the neural network toolbox was used for a fatigue analysis using these signals.
Figure 9.4 shows the rainflow cycle probability density function calculated from
the neural network toolbox and the one from the time signal directly for tape 18
3 meter edgewise signal. It can be seen that, despite the over prediction of the
low range cycles, the high range part of the frequency domain result agree quite
well with the time domain solution. Table 9.3 shows the results for the damage
rates between the neural network calculation and time domain solutions when a
value of b=5.0is used.

The results shown in this table are in some ways disappointing since better
solutions were expected. However, when the flapwise results in Chapter 4 are

referred to, it is easy to see that the reason for this discrepancy is in the signals
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Figure 9.4: Rainflow cycle probability density function from time and frequency domain
analysis
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Table 9.3: Damage rates of frequency domain results with time domain results for
Howden data edgewise signals with b=5.0

Tape | 3 meter | 8 meter | 13 meter
18 1.610 0.958 0.8781
26 2.711 2.085 0.624
27 4.767 3.567 4.554
30 5.453 2.908 1.240

themselves. Because the results in the frequency domain for the flapwise signals
do not agree, there is no reason to expect the neural network toolbox here to give
better results than the flapwise signals containing no significant deterministic
component. Apart from the nonstationarity in the time histories, it was found
from the stochastic components that, nearly all the signals contain some strange
spikes.

Figure 9.5(a) shows a very long segment of the stochastic component from tape
26 3 meter edgewise signal which contains this type of fault. It is seen from this
figure that some extraordinarily high spikes exist in the stochastic component.
Figure 9.5 (b), (¢c), (d), and (e) show the details of the spikes in both the stochastic
component and the original signal. It can be seen that these spikes exist in the
signals as isolated points. For a signal acquired at 40Hz, it is hard to believe that
these spikes are anything other than recording errors. Such spikes are not found
in the wind speed signals at the same time duration. Therefore, they must be
caused by equipment faults.

If the signal contains both a stochastic component and a deterministic compo-
nent, these spikes would have less influence on the fatigue estimation since they
can hardly change the high range part of the PDF. However, since the two kinds
of components are separated, the spikes remained in the stochastic part. The
spectra from the stochastic components is then seriously influenced.

Thus, these spikes have two aspects of influence on the fatigue analysis. The
first one is that they produce false cycles in the time domain analysis. Secondly,
they completely distorted the spectra from the stochastic components. Since the
damage rates produced are at about the same level as the flapwise results, it
may be concluded that the neural network toolbox will work perfectly well for
signals with a deterministic component. In addition, the nonstationarity is still

a problem here. This is addressed in the next section for more realistic signals.
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9.5 Result for simulated signals

Further simulated time signals different from the signals used in the previous
chapter was produced in order to provide an assessment of the neural network

toolbox. The PSD used for signal simulation is shown in Figure 9.6.
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Figure 9.6: New simulated signal

Because different deterministic components were added into the signal, dif-
ferent rainflow range PDF’s are obtained. Figure 9.7 shows one of these PDF’s
when the amplitude of the deterministic component is 2¢ and frequency is 1.0Hz
with o as the rms of the stochastic component. Together with the time domain
solution, the one from neural network toolbox and Dirlik’s formula were also pre-
sented in the same figure. It is seen from this figure that the result from neural
network toolbox can meet the time domain solution very well for the cycle ranges
produced by the deterministic component. Dirlik’s formula was unable to pro-
duce such a peak in the PDF curve. The result attempted to derive in [79] was
achieved by the neural network toolbox developed in this thesis.

The damage rates from neural network toolbox for a value of =5.0 are shown
in Table 9.4. It can be seen from this table that the results from the neural
network meet well with the time domain results.

The damage rates from Dirlik’s formula are listed in Table 9.5. The damage
rate for the purely stochastic signal is 1.13, which can be taken as a reason-
able prediction. However, it is seen that when the deterministic components are

added into the stochastic signal, Dirlik’s formula failed to give a good prediction,
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especially when the deterministic component becomes bigger.

Table 9.4: Damage rates of frequency domain results compared with the time domain
results for the new simulated signals with b=5.0

1 2 3 4 5
I 0973 0.918 0.863 0.820 0.782
2 0980 0914 0.855 0.806 0.757
3 0913 0.8G3 0.838 0.801 0.787

Table 9.5: Damage rates of Dirlik% formula compared with the time domain results for
the new simulated signals with b=5.0

1 2 3 4 5
1 1.44283 1.58510 1.76641 1.95076 2.10519
2 1.27628 1.49100 1.76277 1.98683 2.17223
3 1.22268 1.52935 1.84667 2.10761 2.30154
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9.6 Conclusions

The neural network toolbox developed in the previous chapter has been examined
in this chapter with the Howden data edgewise signals and new simulated sig-
nals. The assessment on the monitored data was seriously influenced by the faults
existing in the recorded data, especially when the deterministic component was
extracted from the combined response history. The faults distorted the stochastic
part and the results from neural networks, even though they have nearly no influ-
ence on the combined signals. Assessment using new simulated signals indicate
good performance of the toolbox developed.

Effort was also made to separate the deterministic component from the com-
bined signal. The method used here incorporate a band pass filter and the least
square techniques. It has a higher efficiency than the conventionally used azimuth

averaging method.
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Chapter 10

Conclusions and Suggested
Future Work

10.1 Conclusions

The work presented in this thesis makes a number of significant advances in
spectral fatigue analysis techniques. Current methods which have previously been
developed are reviewed and assessed here. The theoretical solution developed by
Dr. Bishop is extended to consider the influence of mean stress for random fatigue
analysis. It is also extended for the fatigue analysis of non-Gaussian response
histories provided that the peak-trough and trough-peak matrices are known. A
toolbox for fatigue analysis of wind turbine blades is developed based on numerical
simulation and neural network technique. This toolbox should have made wide
applicability than wind turbine loadings but this has not been assessed.

Fatigue analysis of two sets of monitored response histories, the WEG MS-
1 and Howden HWP330, was performed in Chapter 4, both in the time and
frequency domains. The frequency domain results include most of the present
methods in use and are compared with the time domain results, which are taken
as a reference solution. The narrow band solution is always conservative due to
the narrow band assumption. The two methods which meet best with the time
domain results are Dirlik’s empirical formula and Bishop’s theoretical solution.
The former one is based on numerical simulation and regression. The later one
is based on Markov chain theory and thus has a better theoretical background.
Most of the methods now in use assume the response histories have a Gaussian
distribution mainly because of the limited information provided by the ordinary
power spectral density function.

Chapter 5 presents some important results concerning the parameters choices
involved in the computation work of Chapter 4. The first parameter investigated
is the cutoff frequency of the power spectral density function. This problem is

mainly concerned with the high frequency noise problem but more generally the
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truncation problem of other spectrum is of relevance. The high frequency noise
in the spectrum can seriously influence the fourth moment of the spectrum and
thus influence the irregularity factor. Most of the spectral methods are seriously
affected by this high frequency noise. The length requirement of the response
histories was also investigated for both sets of data. The Howden HWP330 data
is much longer than the WEG MS-1 data. Because of this the rainflow cycles
counted from Howden data form continuous PDF’s which are more representa-
tive of the process. The WEG MS-1 data, on the other hand, is too short to give
such continuous functions. Thus, the signal length needs to be carefully consid-
ered when response monitoring work is performed. The clipping ratio problem
is discussed here for the first time and some guidance is given for selecting this
parameter for fatigue analysis. It is interesting to find that, the consistency be-
tween fatigue predictions is affected by the material characteristic, i.e. the slope
of S-N curve. This means that the same spectral method can give an equiva-
lent stress very close to the correct value for some materials but may give very
poor predictions for some other materials with different S-N curve slopes. The
deterministic component in the Howden edgewise response presented a serious
problem with the calculation of fatigue damage. One of the main parts of this
thesis is concerned with development of a toolbox for the fatigue analysis of such
responses. This is presented in Chapter 8.

Chapter 6 presents a method for taking the mean stress influence into ac-
count in a frequency domain ahalysis for the first time. This method is based
on Bishop’s theoretical solution which uses Markov chain theory for the rainflow
cycle probability calculation. Since the spectrum can not provide information of
the the global mean level of response, the mean level of rainflow cycle relative to
the global mean is calculated and a joint rainflow range PDF of relative mean
stress and cycle range is obtained using this method. The requirement of needing
the global mean to be specified does not normally represent a problem since this
global mean level is usually known at the design stage. Once this value is com-
bined with the relative mean from the spectral solution, a damage estimation can
then be performed by employing Goodman’s relationship, or any other formulae
used to convert cycle range with mean into equivalent cycle range without mean.
This method is applied to the two sets of data used in Chapter 4 to analyse the
influence of mean stress on the fatigue damage.

A number of possible approaches to deal with non-Gaussian responses are

discussed in Chapter 7. A method for calculating the rainflow cycle PDF is
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developed based on Markov chain theory. This approach assumes the peak to
trough and trough to peak transition matrices are known. Because the general
non-Gaussian class of distributions is such a huge set of probability distributions,
it is impossible to find any method which can deal with the general non-Gaussian
situations.

Since most of present methods cannot give satisfactory results for the edge-
wise response of wind turbine blades where significant deterministic components
are present, this thesis addresses such situations in Chapter 8. Seventy power
spectral density functions were selected to cover a wide range of engineering spec-
tra. Signal simulation work was then performed using an inverse FFT technique.
After examined the rainflow range PDF’s derived from the signals, a mathemati-
cal model was established. By employing least-square technique for curve fitting,
more than 2000 sets of model parameters were obtained. To improve the accuracy
of the fatigue damage calculation, the least squares calculation were performed on
the weighted PDF’s according to their cycle ranges. A neural network with back
propagation was established to perform the regression work. After training the
network, the neural network is capable of calculating the model parameters from
the spectrum statistics and deterministic component parameters. Since the peak
number in unit time can no longer be calculated from the formula which is suit-
able for Gaussian signals, the network was also developed to calculate the peak
rate. Thus, a neural network toolbox was developed and presented in Chapter
8.

Some reassessment work using the neural network toolbox was performed on

the Howden data and new simulated data ir Chapter 9.

10.2 Suggested future work

Generally speaking, the future work of spectral fatigue analysis should be con-
centrated on the non-Gaussian problem and nonstationary problem. For future
research work on the spectral fatigue analysis of wind turbine blades, the nonsta-
tionary problem should be the most important because the deterministic compo-
nent problem reduces the importance of non-normality of the response history.
It has been shown in the statistical analysis of the WEG MS-1 data and Howden
HWP330 data that, the turbine blade response is strongly non-Gaussian and non-
stationary. This phenomena can be seen quite clearly from the statistical results

of the Howden data. A suitable technique to deal with this problem is needed.
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One approach might be to divide the response history into small blocks to reduce
the influence of nonstationarity. Such techniques can reduce the influence but
can not eliminate it. Furthermore, there is the risk of reducing the blocks to
a point where they are not long enough to see the important fatigue damaging
rainflow cycles. A frequency domain approach maybe necessary to deal with such
situations.

The spectral method presented in Chapter 6 made the theoretical method
capable of considering the mean stress. It would be desirable to find the distri-
bution of mean, together with rainflow cycle ranges. It is then possible to modify
all the method to consider the mean stress influence in spectral fatigue analysis.
The formula developed by Kowalewiski would provide a clue for this work.

The theoretical solution described in Chapter 7 provided a useful tool for
solving the non-Gaussian problem but the peak-trough and trough-peak tran-
sition matrices have to be provided first. It is necessary to develop the peak
trough turning point matrix based on frequency domain information to derive a
complete solution. As stated in Chapter 7, such a turning point matrix would
be very difficult to derive for universal non-Gaussian process. Therefore, suitable
assumption should be adopted according to the concerned application.

Another direction in future research is the developing of spectral method for
multiaxial fatigue evaluation. Much work has been devoted to multiaxial fatigue
analysis and experiments {91]. However, there is no efficient way to evaluate the

fatigue damage using frequency domain information.
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Appendix A

Spectral fatigue analysis

program for Gaussian responses

This is the program used in Chapter 3. The fowchart is shown as in Figure A.1.

O 0600000000000

[

Main program for spectral fatigue analysis. Some SUN FORTRAN functions are used

variable list:
bb, bk: S-N curve parameters

nos : signal length

nchk : number of blocks to be used

npos : interval numbers to divide the signal
nl pover of 2 of the window size in FFT
samp : sampling frequency of the signal

fc : cutoff frequency to be used

PROGRAM FATIG

PARAMETER (MP=520,MALN=1024000,MHF=60000)
DIMENSION SIG(MALE),G(MHF)

COMMON /DENSITY/NPOS,DN,RS(MP) ,RN(MP) ,RD(MP) ,RT(MP)
COMMON XMEAN,AD,AX,VAR,RMS,BO,B1,B2,B4,GAMMA,BB,BK
CHARACTER FSP+15, INPUTHODE+1
WRITE(*,’(5X///,15X,A) )’ FORTRAN PROGRAM FOR FATIGUE ESTINATION’
BARGS=IARGC()

IF(NARGS .XE.2) THEN

WRITE(*,’(10X,A,$)’) 'Usage :’

CALL GETARG(O,FSP)

WRITE(*,’(A,$) ’)FSP(1:8)

WRITE(*,’(A)’) ’task_type filename’

CALL EXIT(1)

ENDIF

CALL GETARG(1,INPUTMODE)
IF((INPUTMODE.NE.2’) .AED. (INPUTMODE.NE. ’1’) ) THEN
WRITE(*,’(21X,A)?)’ Unknown task. ’

CALL EXIT(2)

EEDIF

read in system file

WRITE(#,(8X/////)")

CALL GETARG(2,FSP)

M=INDEX(FSP,’ ?)

FSP(M:M+3)=’ .sys’

OPEN(7 ,FILE=FSP(1:M+3) ,STATUS=’0LD"’)
REVIND 7

READ(7,%)BB,BK
READ(7,%)N0S ,NCHK ,KP0S,EL , SAMP,FC
CLOSE(7)

FSP(M:M+3)=’ psd’
OPEN(10,FILE=FSP(1:M+3))
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:

Input S-N curve

Input time signal (t)
or spectrum (s) ?

Input time signal and
control information

Input PSD Basic statictical check
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Rainflow cycle counting

4
PSD calculation

Moments calculation of PSD

y

Peak and zerocrossing rate

!

Perform frequency domain analysis
--Narrow band solution

--Wirsching's modification
--Chaudhury and Dover’s modification
--Hancock A and B

--Dirlik’s formula

--Bishop’s theoretical solution

'

Damage calculation

A

\

Output

!

End

Figure A.1: Flowchart of the program for random fatigue analysis
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FSP(M:M+3)=’ out’
OPEN(9,FILE=FSP(1:M+3))
REWIND 9
WRITE(9,’(5X/////)")

if PSD only, read in PDF

3]

IF(INPUTMODE .EQ. 2’ ) THEN
READ(10,*)FC,XO0P,DN, SANP
READ(10,%)(G(I),I=1,N0P)

TK=1.0

CALL AFTER(SIG,MALN,MHF,G,NOP,SAMP,FC,TK,inv)
GOTO 500

ENDIF

0

computation when signal history is provided

INV=1
FC=FC/INV
MKDS=N0S/ECHK
IF(NL.EQ.O)THEX
20 NL=NL+1
MAXT=2¢sNL
IF(MKDS/MAXT.NE.0)GOTO 20
NL=§L-1
ENDIF
MAXT=2¢+JL
NOP=MAXT/?2

c signal read in

FSP(M:M+3)=’ .bin’
OPEN(8,FILE=FSP(1:M+4) ,STATUS=’OLD’,ACCESS=’DIRECT’ ,RECL=4)
WRITE(*,’(15X,A,18) ) Length of time signal: ’,N0S
DO 200 L=1,NCHK
DO 80 I=1,NPOS
80 R3(I)=0.0
IF(NCHK .NE.1)THEN
WRITE(*,’(20X,A,12,5X,16/)’)’ Block °’,L,MKDS
WRITE(9,’(20X,A,I12/)’)? Block ’,L
WRITE(10,’(20X,A,12/)?)’ Block ’,L
ENDIF
XMEAR=0.0
AD=~9E+20
AX==AD
DO 18 I=1,MKDS
READ(8 ,REC=I+(L-1)*MKDS)SIG(I)
XMEAE=XMEAN+SIG(I)
AD=ANAX1(AD,SIG(I))
AX=AMIN1(AX,SIG(I))
18 CONTINUVE
XMEAN=XMEAN/MKDS
CALL PSDG(G,MHF,SIG,MKDS,XMEAN ,NL,INV,SAMP)
CALL TSERIS(SIG,MKDS,SAMP,TK)
WRITE(10,*)FC,NO0P,DN,SANP
WRITE(10,%) (G(I),I=1 ,NOP)
CALL AFTER(SIG,MALN , MHF,G,NOP,SAMP,FC,TK,inv)
200 CONTINUE
500 CONTINUE
CLOSE(9)
WRITE(*,’(5X///)")
WRITE(*,’(10X,20(1H-),A)’) *THE END.’
STOP
END

c
c Subroutine for rainflow cycle counting on time series
c

SUBROUTINE TSERIS(SIG,NOS,SAMP,TK)

PARAMETER (MP=520,MPKS=300000)
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20

30

40

50

DIMENSION SIG(NOS),PKTR(MPKS),IE(MPKS)
COMMON XMEAN,AD,AX,VAR,RMS ,BO,B1,B2,B4,GAMMA,BB,BK
COMMON /DENSITY/NPOS ,DN,RS(MP) ,RN(MP) ,RD(MP) ,RT(MP)
WRITE(*,’(5X/////,15X,A///)*) Working on the Time Signal’
DN=(AD-AX)/(NP0S-1.0)

DO 5 I=1,N0S
SIG(I)=INT((SIG(I)-AX)/DN+0.5)+1
IF(SIG(I).LT.1.0)THEN
WRITE(#,*)’ Signal Lovwer Than the Lowest Limit.’,I,sig(i)
SIG(I)=1.0

ENDIF

IF(SIG(I).GT.NPOS)THEN
WRITE(*,*)’ Signal Higher Than the Highest Limit.’,I,sig(i)
SIG(I)=EPOS

ENDIF

CONTINUE

DO 10 I=1 ,NPOS

RS(])=0.0

J=1

DO 20 I=2,N0S
IF(SIG(I).NE.SIG(J))THENX

J=J+1

SIG(J)=SIG(I)

EEDIF

CONTINUE

K=J-1

LE=1

PKTR(1)=SIG(1)

DO 30 I=2,K
JS=INT(SIG(I)-SIG(I-1))
JL=INT(SIG(I+1)-SIG(I))
IF(JS*JL.LT.O)THEN

LE=LE+1

PKTR(LE)=SIG(I)

ENDIF

CONTINUE

JS=PKTR(1)~PKTR(2)
JL=PKTR(LE-1)-PKTR(LN)
MAXSIG=INT(PKTR(1))

K=1

DO 40 I=2,LN
IF(INT(PKTR(I)).GT.MAXSIG) THEN
MAXSIG=INT(PKTR(I))

K=]

ENDIF

CONTINUE

DO 50 I=1,LN

IE(I)=PKTR(I)

J=1

IF(JL.GT.O) THEN

IF(JS.GT.O0)THEN

IF(IE(1) .LE.IE(L¥))THEN
IE(LI)=IE(2)

J=3

ENDIF

ELSE

J=2

IE(LE)=MINCIE(LN),IE(1))

EEDIF

ELSE

IF(JS.LT.O)THEN

IF(IE(1) .GE.IE(LN))THEN
IE(LN)=IE(2)

J=3

ENDIF

ELSE

J=2

IE(LN)=MAX(IE(LY) ,IE(1))

ENDIF

ENDIF
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100

110

120

[+

KK=LE-K+1

DO 60 I=1,KkK
PKTR(I)=IE(I+K-1)

DO 70 I=J,.K

KK=KK+1

PKTR(KK)=IE(I)

CONTINUE

LE=LE+2-]

HE=1

KK=1

IE(EN)=PKTR(KK)

KK=KK+1

NN=NE+1

IE(NN)=PKTR(KK)
IF(NNE.LT.4)GOTO S0
I=IABS(IE(NE-2)-IE(NN-3))
J=IABS(IE(NN-1)~-IE(NN-2))
K=IABS(IE(NN)-IE(NN-1))
IF((J.GT.I).0R.(J.GT.K))GOTO 90
RS(J)=RS(J)+1.0

E=EN-2

IE(NN)=IE(NN+2)
IF(XN.GE.4)GOTO 100
IF(KK.LT.LY)GOTO 90
J=NP0S-1

RS(J)=RS(J)+1.0

10C=0

DO 110 I=1,NPOS
EOC=BOC+RS(I)

DO 120 I=1i NPOS
RS(I)=RS(I)/N0OC/DE
WRITE(#,’(15X,A,18,5X/////)’)’Cycle Counting End.’,LENGH
write(*,*)’cycles after filter’ ,NOC
TK=NOC*SAMP/ (NDS)

RETURN

END

c subroutine for PSD calculation

c

10

20

30
40

50

[+

SUBROUTIBE PSDG(G,MHF,SIG,H0S,XMEAN,NL,IEV,SANP)
PARAMETER (MALN=160000)

DIMENSION G(MHF),SIG(NOS)

COMPLEX F(MALN)

MAXT=2%#NL

NOP=MAXT/2

IBLOCK=NOS/INV/MAXT

T=FLOAT (MAXT)

DO 10,K=1,NO0P

G(K)=0.0

WRITE(#,’(SX///,12X,A,13)?)’ Calculating P.S.D ’,IBLOCK
DO 40 I=1,IBLOCK

WRITE(*,’(20X,A,14,6X,I5)°)* Block Ho. ’,I,MAXT
DO 20,J=1,MAXT

KIn(J~1) ¢ INV+1+(I~1) *MAXT+INV
F(J)=CMPLX((SIG(KJ)-XMEAN)/T,0.0)

CONTINUE

CALL FFT(F,MAXT,NL)

DO 30 K=1,NOP

G(K)=G (K)+(REAL(F(K))#%2+AIMAG(F(K)) *#2)
CONTINUE

T=2.0¢INV+MAXT/FLOAT (IBLOCK) /SAMP

DO 50 K=1,NOP

G(K)=G(K)*T

WRITE(s,’(5X//,10X,A//////)?)’ P.S.D. Calculating End’
RETURE

END

C FFT subroutine
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SUBROUTINE FFT(A,N,NN)
COMPLEX A(N) ,¥,T,U
J=1

DO 40 L=1,¥-1
IF(L.LT.J)THEN
T=A(J)

AQ))=A(L)

A(L)=T

ENDIF

K=N/2
IF(X.GE.J)GOTO 30
J=J-K

K=K/2

GOTO 20

J=J+K

CONTINUE

DO 80 M=1,NN
U=(1.0,0.0)
K=2¢x(N-1)
PI=3.1415926589793/K
W=CMPLX(COS (PI) ,-SIN(PI))
D0 70 J=1,K

I=]

T=A(I+K)*U
ACI+K)=A(D)-T
ACL)=A(I)+T
I=I+2¢¢M
IF(I.LE.N)GOTO 60
UsUs¥

CONTINUE

CONTINUE

RETURN

EEND

Subroutine for calculating the rainflow PDF’s

SUBROUTINE DENST

PARAMETER (MP=520)

COMMORN XMEAR,AD,AX,VAR,RMS ,BO,B1,B2,B4,GAMMA,BB,BK
COMMOE /DENSITY/EPOS,DN ,RRANGE(MP) ,RN(MP) ,RD(MP) ,RT(MP)
WRITE(*,?(5X/////15X,A///)*) 'Probability Densities '
L=NP0OS+1

narrov band

DO 10 I=1,L

S=(I-0)+DN
RE(I)=EXP(-S+S/8.0/B0)*S/4.0/BO
CONTIRUE

Dirlik’s formula

XM=B1+SQRT(B2/B4)/BO

write(*,s) mm’,b0,b1,b2,b4,gamma

D1=2. 0% (XM-GAMMASGAMMA) /(1 .0+GAMMA*GAMMA)
R=(GAMMA-XM-D1#D1)/(1.0-GAMMA-D1+D1#D1)
D2=(1.0-GAMMA-D1+D14D1)/(1.0-R)
D3=1.0-D1-D2

Q=1.25%(GAMMA-D3-D2#R) /D1

XC=0.5/SQRT(BO)

DO 20 I=1,L

Z=(I~1)*DEsXC
C=D1+EXP(-Z2/Q)/Q+D2¢Z+EXP(~-Z%Z/2.0/R/R)/R/R
RD(I)=(C+D3#Z+EXP(-24Z/2.0))*XC
write(®,*)i, rd(i)

CONTINUE

WRITE(*,’ (15X,A//////))? Densities End’
RETURK
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END

c

¢ Bishop’s theoretical solution

(-4
SUBROUTINE SRAIN
PARAMETER (MP=520,¥5Q=20)
DIMENSIDN ARR(MP,MP) ,BRR(MP,KP) ,SPKS(MP)
DIMENSION PPPT(MP,KP) ,XNEW(MP,MP) ,WX(MP,NP)
COMMON XMEAN,AD,AX,VAR,RMS ,BO,B1,B2,B4,GAMMA,BB,BK
COMMON /DENSITY/NPOS,DN,RRANGE(MP) ,RN(MP),RD(MP) ,SRR(MP)
XC=DN#*(¥P0S)/2.0
SUM=BO#* (1.0-GAMNA#+2)
SUMD=DE*D}
DO 10 J=1,NPOS
DO 10 K=1,J-1
YP=(DN*(J-0.5)-XC)
YT=(D¥*(K-0.5)-XC)
XRR=(YP-YT)/(4.0¢BOsGANNA®%2)
YRR=SUND/(SQRT(6.284%SUN))
ZRR=-1/(8+SUMSGAMMA+#2) ¢ (YP##2+YT#%2+2 0+YP*YT#(2.04GAMNA®*#2-1))
PPPT(J,K)=XRR¢YRR+EXP(ZRR)

10 CONTINUE
DO 15 I=1,NPOS
DO 15 J=I+1,NPOS

15 PPPT(I,J)=PPPT(J,I)
SUMD=0.0
DO 40 I=1,NP0S
PPPT(I,I)=0.0
SUN=0.0
DO 20 J=1,I-1
SUN=SUM+PPPT(I1,J)

20 CONTINUVE
SPKS(I)=SUM
SUND=SUMD+SUM
IF(SUMD.EQ.0.0)GOTO 40
DO 30 J=1,I-1
PPPT(I,J)=PPPT(I,J))/SUM

30 CONTINUVE

40 CONTINUE
DO 50 IR=1,NPOS
SPKS(IR)=SPKS(IR)/SUMD

50 CONTINUE
DO 80 I=1,NPOS
SUM=0.0
DO 60 J=I+1 ,NPOS
SUM=SUM+PPPT(I,J)

60 CONTINUE
DO 70 J=I+1,EPOS
PPPT(I,J)=PPPT(I,J)/SUN

70 CONTINUE

80 CONTINVE
DO 90 I=1,NP0OS
DO 90 J=1,NPOS
ARR(I,J)=0.0
BRR(I,J)=0.0

90 CONTINUE
DO 220 IP=4,NP0OS
WRITE(#*,’(16X,A,I5)?)’ Peak : °',IP
DO 210 XP=2,IP-2
IA=KP-1
IBaKP+1
IC=IP-1IA
IE=3
DO 100 I=1,IC
DO 100 J=1,IC
XNEW(I,J))=0.0

100 CONTINUE
DO 120 LA=IE,IC
DO 110 LB=1,IA
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XBEW(LA,1)=XNEW(LA,1)+PPPT(LA+IA,LB)

110 CONTINUE
XEEW(LA,2)=PPPT(LA+IA,KP)

120 CONTINUE
XNE¥(1,1)=1.0
XBEW(2,2)=1.0
DO 150 LA=IE,IC
JCET=LA+IA
DO 140 LB=IE,IC
KCHT=LB+IA
LCNT=MINO(KCKT,JCET)~-1
DO 130 MA=IB,LCET
XBEW(LA,LB)=XNEW(LA ,LB)+PPPT(JCNT ,MA) *PPPT (MA ,KCHT)

130 CONTINUE

140 CONTINUE

150 CONTINUE
DO 200 III=1,NSQ
DO 180 LA=1,IC
DO 180 LB=1,IC
SUN=0.0
DO 170 LC=1,IC
IF(III.EQ.1.ABD.LC.EQ.IC)GO TO 160
SUM=SUNM+XNEW (LA ,LC) *XNEW(LC,LB)

160 COENTINUVE

170 CONTINUE
WX(LA,LB)=SUN

180 CONTINUE
DO 190 I=1,IC
DO 190 J=1,IC

190  XEEW(I,J)=wX(I,J)

200 CONTINUE
ARR(IP,KP)=XNEW(IC,1)+XNEW(IC,2)
BRR(IP,KP)=XNEW(IC,2)

210 CONTINUE

220 CONTINUE
DO 230 I=1,NPOS
SRR(I)=0.0

230 CONTINUE
DO 240 IP=4,NP0S
DO 240 KP=2,IP-2
I=NPOS+1-KP
K=NP0S+1-IP
DRR=2.0%ARR (IP,KP)*BRR(IP,KP)*ARR(I,K)*SPKS(IP)/DN
SRR(IP-KP)=SRR(IP-KP)+DRR

240 CONTINUE
RETURK
END

c
¢ Damage calculation
c
SUBROUTINE EDAMAGE(SH,SIG,M,TK,EP)
PARAMETER (MP=520)
DIMERSION SIG(M),SH(10)
COMMON XMEAN,AD,AX,VAR,RMS,BO,B1,B2,B4,GAMMA,BB,BK
COMMON /DEBSITY/NPOS,DN,RS(NP) ,RN(MP) ,RD(MP) ,RT(MP)
WRITE(*,’(5X/////,15X,A/////) ") Expected Damage Life’
L=NPOS+1
EO=SQRT(B2/B0)
EP=SQRT(B4/B2)
RT(L)=0.0
RS(L)=0.0
do 10 i=t,5
10 sh(i)=0.0
DO 109 I=1,NPOS
XTOT=((I*DN)*+BB)
XT=(((I-1)+DN)#*+BB)
RS(I)=RS(I)*XTOT
RE(I)=RN(I)*XT
RD(I)=RD(I)*XTOT
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[

RT(I)=RT(I+1)#((i+1)*dn)*sbdb
sh(1)=sh(1)+rs(i)*dn*tk/bk
sh(2)=sh(2)+rn(i)*dn*ep/bk
sh(3)=sh(3)+rd(i)*dn%ep/bk
sh(5)=sh(5)+rt(i)*dn*ep/bk

continue

AB=0.0

k=npos-1

CALL SIMPSON1(RS,L,ab,dn,ab,ER)

CALL SIMPSON1(RN,L,ab,dn,ab,EN)

CALL SIMPSON1(RD,L,ab,dn,ab,ED)

CALL SIMPSON1(RT,k,ab,dn,ab,ET)
WRITE(s,*)ER,EN,ED,ET

WRITE(*,*)TK,EP,’ psd/time ’,EP/TK
SH(1)=ER+TK/bk

SH(2)=EN+EP/bk

SH(3)=ED+EP/bk

SH(§)=ET+EP/bk

EPS=SQRT(1.0-GAMMA*GAMMA)
AB=0.926-0.033*BB

CB=1,587+BB-2.323
DLAM=AB+(1.0-AB)*(1.0-EPS) +CB
SH(4)=SH(2) *DLAM

22=BB/2.0+1.0

CALL GAMA(ZZ,SIG,M,GB)
SH(6)=(DLAN*GB)s#*(1.0/BB)
SH(6)=SH(6)+2.0+SQRT(2.0+BO)
Z2=(BB+1.0)/2.0

CALL GAMA(ZZ,SIG,M,GB1)

ERF=0.5

CC=GB1+EPS## (BB+2.0)/SQRT(3.1415927)+GB# (1 .0+ERF) ¢GAMMA
SH(7)=2.0+SQRT(2.0+B0)*(CC/2.0)#++(1.0/BB)
ERF=0,3012¢GAMMA+0.4916%GAMNASGAMMA+0 . 9181+GAMMA®*3
ERF=ERF=2.3534%CAMMA+%4-3.3307+GAMMA*+5
ERFSERF+15.6524¢CGANMA*#6-10.78465GAMNNA® 7
CC=(B1+EPS¢# (BB+2.0)/SQRT(3.1415927)+GB# (1.0+ERF)*GAMKA
SH(8)=2.0+SQRT(2.0¢B0)*(CC/2.0)*#+(1.0/BB)
SH(9)=SQRT(8.0+B0)*(GAMMA*GB)**(1.0/BB)
ZZ=BB/(2.0-EPS#EPS)+1.0

CALL GAMA(ZZ,SIG,N,GB)

EPS=0.02
SH(10)=SQRT((2.04B0)*(2.0-EPS##2))*GB*+(1.0/BB)
DO 20 I=6,10

SH(I)=(SH(I)*+BB)+*EP/BK

RETURE

EXD

¢ Gamma function

[+

10

c

SUBROUTINE GAMA(ZZ,F,M,GB)
DIMENSION F(M)

H=1.0/(M-1)
F(1)=-AL0G(0.00001)
F(M)=0.0

DO 10 I=2,N-1

X=(I-1)*H

R=-ALOG(X)
F(I)=R+»(ZZ-1.0)

COETINUVE

H=1.0/(K-1)

a=0.0

v=0.0

CALL SIMPSOX1(F,M,a,H,w,GB)
RETURN

END

¢ PSD moments calculation

[+
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SUBROUTINE AFTER(SIG,MALN,MHF,G,HOP,SAMP ,FC,TK,inv)
PARAMETER (MP=520)
DIMENSION SIG(MALN) ,G(MHF) ,SH(10)
COMMON /DENSITY/NPOS,DN,RRANGE(MP) ,RN(MP) ,RD(MP) ,RT(MP)
COMMON XMEAN,AD,AX,VAR,RMS,BO,B1,B2,B4,GAMMA,BB,BK
G(NOP+1)=0.0
H=SAMP/2.0/inv/(NOP-1)
knd=0
1 knd=knd+1
if(knd*h.ge.fc)goto 2
goto 1
c KND=INT(FC/H)
c IF(MOD(KND,2) .EQ.O)KND=KND+1
2 J=INT(0.0/H)
DO 3 I=1,J
3 G(I)=0.0
G(1)=0.0
A=0,0
¥L=0.0
CALL SIMPSON1(G,KND,A,H, WL, BO)
WL=t.0
CALL SIMPSON1(G,KND,A,H,WL,B1)
WL=2.0
CALL SIMPSON1(G,KND,A,H,¥L,B2)
WL=4.0
CALL SIKPSON1(G,KND,A,H,¥WL,B4)
EP=SQRT(B4/B2)
GAMNA=SQRT(1.0/(BO*B4))*B2
WRITE(*,s)(KED-1)%H,’> MOMENTS’,BO,Bt ,B2,B4,GAMMA
CALL DENST
CALL SRAIN
J=EP0S+1
WRITE(9,*)NP0S,DX
WRITE(9,*) (RRANGE(I) ,I=1,NP0S)
WRITE(S,*)
WRITE(9,*) (RN(I),I=1,])
WRITE(S,*)
WRITE(9,*)(RD(I),I=1,])
WRITE(9,%)
WRITE(9,#) (RT(I),I=1 ,NPOS)
J=MALN-1
IF (MALN.GE.200000) J=199999
CALL EDAMAGE(SH,SIG,J,TK,EP)
c
¢ results output to file .out
write(9,s)’At Frequency = ’ ,KED,’ *’ H,? =’ h#(knd-1)
WRITE(9,%) ’Moments = ’ ,BO,B1,B2,B4,GAMNA
WRITE(9,*) ’Expected peaks (PSD / TIKE)= ’,EP,’ /°,TK
WRITE(9,'(5X///,15X,A//)?) Expected Damage Life
WRITE(9,%)’ Probability density Damage Life’

WRITE(9,*)’ Time Signal ' ,SH(1) ,SH(1)/SH(1)
WRITE(9,*)’ Narrow Band ’,SH(2) ,SH(2)/SH(1)
WRITE(9,*)’ Dirlic Theory ’ ,SH(3),SH(3)/SH(1)
WRITE(9,*)’ Dirlic Theory ’ ,SH(3),SH(3)/SH(1)

WRITE(9,*)’ VWirsching Modified ’,SH(4) ,SH(4)/SH(1)
WRITE(9,*)’ Theoretical Rainflow ’,SH(5),SH(5)/SH(1)
WRITE(9,?(5x///)?)

WRITE(9,*)’ Equivalent Stress °’

WRITE(9,*)’ Wirsching : ’,SH(6),SH(6)/SH(1)
WRITE(9,*)’ Chaudhuryl : ’,SH(7),SH(7)/SH(1)
WRITE(9,%)’ Chaudhury2 : ’,SH(8),SH(8)/SH(1)
WRITE(9,*)’ Hancock A : ’,SH(9),SH(9)/SH(1)

WRITE(9,#*)’ Hancock B : ’,SH(10),SH(10)/SH(1)
write(9,#*) 'mean=’ ,xmean,’dn=’,dn

WRITE(9,*)?’ Time Signal ’ ,SH(1) ,SH(1)/SH(1)
WRITE(9,%)? Dirlic Theory ’ ,SH(3) ,SH(3)/SK(1)
WRITE(9,*)’ Theoretical Rainflow °’,SH(S),SH(5)/SH(1)
WRITE(9,’(5X///)?)

WRITE(9,’(10X,20(1H-),A)?) *THE END.’
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WRITE(#+,’(10X///)?)
WRITE(*,’(5X///,15X,A//) ") ’Expected Damage Life °’

WRITE(*,#)’ Probability density Damage Life’

WRITE(*,s)’ Time Signal ’,SH(1) ,SH(1)/SH(1)
WRITE(*,s)’ ¥arrow Band ’ ,SH(2),SH(2)/SH(1)
WRITE(*,»)’ Dirlic Theory ’ ,SH(3),SH(3)/SH(1)

WRITE(*,*)’ Wirsching Modified ’,SH(4),SH(4)/SH(1)
WRITE(#*,*)’ Theoretical Rainflow ’,SH(5),SH(5)/SH(1)
WRITE(*,’(5X///)?)

WRITE(*,*)? Equivalent Stress '

WRITE(s,*)’ Wirsching : ’,SH(6),SH(6)/SH(1)
WRITE(#*,#*)’ Chaudhury1 : ’ ,SH(7),SH(7)/SH(1)
WRITE(*,*)’ Chaudhury2 : ’,SH(8),SH(8)/SH(1)
WRITE(#,%)’ Hancock A : ’,SH(9),SH(9)/SH(1)

WRITE(#,#)’ Hancock B : ’,SH(10),SH(10)/SH(1)
WRITE(7,+)KND,KED*H, (SH(I),I=1,10)
WRITE(s,’(5X///)?)

RETURE

END

¢ integration by Simpson’s rule

c

10

20

SUBROUTIXE SIMPSON1(FUNC,M,A,H,WL,RSLT)
DIKENSION FUBC(N)
FUBC(1)=FUNC(1)/2.0
FUBC(M)=FUEC(M)/2.0
R1=0.0

DO 10 I=2 M-1,2
TE=A+(I-1)sH
R1=R1+FUNC(I)*TE+*WL
R2=0.0

DO 20 I=1 ,N,2
TE=A+(I~1)*H
R2=R2+FUNC(I)+TE##W¥L
RSLT=(R1#%4.0+R2¢2.0)%H/3.0
RETURE

END
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Appendix B

Computer program for neural
network training

This appendix includes the for neural network training. It is a multi-layer network
with back propagation. The structure of the program is described in Chapter
8.

/%

C program for neural network training
variable list:

nl : number of layers

n : number of training data

layer : 1layout of the net

ita : iteration step size

alp : momentum size

bj,bx : transform factor

ep :  accuracy criterion

s/

8define nd 2200
#define 1n 5
#define nu 30
#include <stdio.h>
#include <math.h>
sinclude <stdlib.h>
#include <string.h>
main(argc,argv)
int argc;
char *argv(];
{

int i,j,k,n,nl,st,m,ni,kk,jj,no,layer[1n],count,cnts;

float wt[1n][nu] [nul,theta[ln] [nul,x[nul] [nd],dth[1n][nu];

float dw[1ln][nul [nu],eps,de,t[nul,s[nul,ep,tal,es;

float ita,net[1n][nu] ,nout[1n] [nu},delt(1n][nul,old;

float pth[ln][nu],pwlln][nul(nu],y(nu] [nd],alp,bj,bx;

FILE *fi,sfo;

if(arge != 2)

{
printf(“usage: %s filename \n",argv(0]);
exit(1);
}

/*
data read in

*/

m=strlen(argv(1]);
strcpy(argv[i]+m,".sys");
if((ti=fopen(argv[1],"r")) == NULL)
{
printf("%s: can’t open ¥s\n",argv[0],”.sys file");
exit(2);
}
fscanf(fi,"%d%d" ,knl,&n);
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for(i=0;i<=nl;i++)

fscanf(fi,"%d" ,klayer[il);
fscanf (fi,"Yglg" ,kita, kalp);
fscanf (fi,"%glg" ,&bj,&bx);
fscanf (fi,"Yg",&ep);
fclose(fi);

ni=layer[0];
no=layer{nl];

strcpy(argvlil+m,".in");
if((fi=fopen(argv(i],"r")) == NULL)
{
printf("¥s: can’t open %s\n",*argv,argv[i]);
exit(3);
}

strecpy(argv[1]+m," . out");
fo=fopen(argv[i],"w");
for(i=1;i<=n;i++)
{
for(j=0; j<ni;j++)
fscanf (i, %g" ,ex[j1[il);
for(j=1;j<=no; j++)
fscanf(fi,"%g",ey[i1[i]);
}
eps=9e+10;0ld=-eps;
for(i=1;i<=n;i++)
for(j=1; j<=no; j++)

y[310il=(y[j1[i]+bj) *bx;

it ( y[j10i] > o1d )
old=y[j][i];

it ( y[j1[i] < eps )
epssy[j1[il;

for(st=1;st<=n;st++)

{

printf("%5d *,st);

for(i=0;i<ni;i++)
printf("%8.3¢ " ,x[i]l[st]);

for(i=1;i<=no;i++)
printf("%8.5¢ ,y[il[st]);

printf("\n");

}

/*
network initial setting, random

«/

for(k=1;k<=nl;k++)
for (j=1; j<=layer[k];j++)
{

for(i=1;i<=layer[k-1];i++)
wt [k [j1[i]1=(0.02+i+0.01%3-0.08+k)/layer[k];
theta[k] [j1=(0.02¢k-0.01+j)/layer[k];
}
for(k=1;k<=nl;k++)
for(j=1; j<=layer[k];j++)
{
pthik][j]=0.0;
for(i=1;i<=layer[k-1];i++)
pulk][jl1(il=0.0;

/e
iteration training
forward computation first

*/



01d=9e+20;
count=0;
cnts=0;
do {
eps=0.0;
tal=0.0;
for(st=1;st<=n;st++)
{
for(i=i;ic<=ni;i++)
nout[0]) {i]=x[i-1] [st];
for (k=1;k<=nl;k++)
for(j=1;j<=layer([k];j++)
{
net[x][jl=thetalk][j]l;
for(i=1;ic<=layer(k-1];i++)
net (k] [j1+=wt[k][jI[il*nout[k-1]1(il;
nout [k] [jl=val(netx][jl);
}

/*
back propagation

*/

for(j=1;j<=no; j++)
{
de=y[jl[st]-nout{n1l(jl;
delt[n1] (jl=de*slp(nout[nll[jl);
es=fabs(de/y[j]l[st]);
tal+=es/n;
if ( eps < es )
eps® es;

}

for(k=1;k<=nl-1;k++)
for(i=1;i<=layer[k];i++)
{
for(j=1; j<=layer[k+1]; j++)
t[j1=ut(x+11(j]1(i]*s1p(nout[k1[il);
for (kk=k+2;kk<=nl ;kk++)
{
for(jj=1;jj<=layer(kk];jj++)
{

s[jjl=0.0;
for(m=1;m<=layer(kk-1];m++)
s[jjI+=ut [xk] [jj]l[m]+slp(nout [kk-1][m])*t[m];

for(jj=1;jj<=layer(kk];jj++)
tl(jil=s(iil;
}
delt[k][i]=0.0;
for(j=1; j<=no; j++)
delt[k] [i]J+=delt[n1) [j1+t[j];
}

for(k=1;k<=nl;k++)
for(j=1; j<=layer([k];j++)
{

for(i=1;i<=layer[k-1];i++)
defk][jl[i)=ita*delt [k] [j]l*nout[k-1][i];
dth{k]{jl=itasdelt[k][j];
}
for(k=1;k<=nl;k++)
for(j=1;j<=layer[k];j++)
{
for(i=1;i<=layer[k-1];i++)
wt (k] [j][i)+=dwlk] (j1[il+alp*pulk] [jI[il;
theta(x] [j1+=dth[x] [j)+alp*pth[k] [j];
}
for(k=1;k<=nl;k++)

202



for(j=1;j<=layer(k];j++)
{
for(i=1;i<=layer([k-1];i++)
pwlx](j][i)=dwlk] [5](i];
pthik]{jl=dth(x]1[j];
}

}
count++;
if(count >=1000)
{
cnts++;
k=cnts*1000;
printf("%8d maximam error=)10.6f average=%10.6f\n" ,k,eps,tal);
count=0;
}
if( fabs(1.0-old/eps) > 1.0e-20)
oldzeps;
else
break;

}while((eps > 100.0%ep) || (tal > ep ));
/*
results output

*/

printf(" end with maximam error %10.7f and average %g\n",eps,tal);
fprintf(fo,"%d\n",nl);
for(i=0;i<=nl;i++)

fprintf(fo,” %d ",layer(il);
fprintf(fo,"\n");
fprintf(fo,"%g %g\n",bj,bx);
for(i=1;i<=nl;i++)

for(j=1; j<=layer[i];j++)

{

for(ks=1;k<=slayer[i-1] ;k++)
tprint2(fo,” %g",wt[i][j1(x]);
fprintf(fo," %g\n",thetali]l[j]);
}

eps=0.0;

tal=0.0;

printf (" No.");

for(i=1;i<=ni;i++)
printf(" X%d *,i);

for(im1;i<=no;i++)
printf (" Y&d “,i);

for(i=1;i<=no;i++)
printf (" Out¥%d",i);

for(i=1;i<=no;i++)

printf(" de%d",i);
for(i=1;i<=no;i++)
printf(" errorfd",i);

printf(“\n");
for(i=1;i<=85;i++)
printf("_");
printf("\n");
for(st=1;st<=n;st++)
{
for(i=1;i<=ni;it++)
nout [0] [i]=x[i-1][st];
for(k=1;k<=nl;k++)
for(j=1; j<=layer[k]; j++)
{
net[k][jl=thetalk][j];
for(i=1;i<=layer[k-1];i++)
net[k][jl+=et[k][jI[i]l*nout(k-1][i];
nout [k] [jl=val(net[k][j]);
}

for(j=1; j<=no; j++)



{
y[j1[st]l=y[jl[st]1/bx-bj;
nout[nl] [jl=nout[nl] [j]/bx-bj;
}

for(i=1;i<=no;i++)
{
de=y[i] [st]-nout{nl][i];
es=fabs(de/y[i] [st]);
tal+=es/n;
if ( eps < es )
eps= es;
}
print£("%3d ",st);
for(i=0;i<ni;i++)
printf("%8.3f * ,x[i][st]);
for(i=1;i<=no;i++)
printf("%8.5¢ *,y[i]l[st]);
for(i=1;i<=no;i++)
printf("%8.5¢ * nout[nl][il);
print£("%10.7f %10.71%s\n",de,es#100.0,"%");
}
for(i=1;i<=85;i++)
printf("_");
printf(“\n");
eps*=100.0;tal*=100.0;
printf(“maximax error = %10.6f%s average error = %10.6f%s\n",eps,"%",tal,"%4");
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